Diff for /imach/src/imach.c between versions 1.36 and 1.99

version 1.36, 2002/03/29 15:27:27 version 1.99, 2004/06/05 08:57:40
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.98  2004/05/16 15:05:56  brouard
   first survey ("cross") where individuals from different ages are    New version 0.97 . First attempt to estimate force of mortality
   interviewed on their health status or degree of disability (in the    directly from the data i.e. without the need of knowing the health
   case of a health survey which is our main interest) -2- at least a    state at each age, but using a Gompertz model: log u =a + b*age .
   second wave of interviews ("longitudinal") which measure each change    This is the basic analysis of mortality and should be done before any
   (if any) in individual health status.  Health expectancies are    other analysis, in order to test if the mortality estimated from the
   computed from the time spent in each health state according to a    cross-longitudinal survey is different from the mortality estimated
   model. More health states you consider, more time is necessary to reach the    from other sources like vital statistic data.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    The same imach parameter file can be used but the option for mle should be -3.
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Agnès, who wrote this part of the code, tried to keep most of the
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    former routines in order to include the new code within the former code.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    The output is very simple: only an estimate of the intercept and of
   where the markup *Covariates have to be included here again* invites    the slope with 95% confident intervals.
   you to do it.  More covariates you add, slower the  
   convergence.    Current limitations:
     A) Even if you enter covariates, i.e. with the
   The advantage of this computer programme, compared to a simple    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   multinomial logistic model, is clear when the delay between waves is not    B) There is no computation of Life Expectancy nor Life Table.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.97  2004/02/20 13:25:42  lievre
   account using an interpolation or extrapolation.      Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.96  2003/07/15 15:38:55  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   states. This elementary transition (by month or quarter trimester,    rewritten within the same printf. Workaround: many printfs.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.95  2003/07/08 07:54:34  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Repository):
   hPijx.    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.93  2003/06/25 16:33:55  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): On windows (cygwin) function asctime_r doesn't
   from the European Union.    exist so I changed back to asctime which exists.
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.96b
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.92  2003/06/25 16:30:45  brouard
   **********************************************************************/    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
 #include <math.h>  
 #include <stdio.h>    Revision 1.91  2003/06/25 15:30:29  brouard
 #include <stdlib.h>    * imach.c (Repository): Duplicated warning errors corrected.
 #include <unistd.h>    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define MAXLINE 256    is stamped in powell.  We created a new html file for the graphs
 #define GNUPLOTPROGRAM "wgnuplot"    concerning matrix of covariance. It has extension -cov.htm.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.90  2003/06/24 12:34:15  brouard
 /*#define DEBUG*/    (Module): Some bugs corrected for windows. Also, when
 #define windows    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    of the covariance matrix to be input.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Some bugs corrected for windows. Also, when
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.88  2003/06/23 17:54:56  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.87  2003/06/18 12:26:01  brouard
 #define YEARM 12. /* Number of months per year */    Version 0.96
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 int erreur; /* Error number */  
 int nvar;    Revision 1.85  2003/06/17 13:12:43  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    * imach.c (Repository): Check when date of death was earlier that
 int npar=NPARMAX;    current date of interview. It may happen when the death was just
 int nlstate=2; /* Number of live states */    prior to the death. In this case, dh was negative and likelihood
 int ndeath=1; /* Number of dead states */    was wrong (infinity). We still send an "Error" but patch by
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    assuming that the date of death was just one stepm after the
 int popbased=0;    interview.
     (Repository): Because some people have very long ID (first column)
 int *wav; /* Number of waves for this individuual 0 is possible */    we changed int to long in num[] and we added a new lvector for
 int maxwav; /* Maxim number of waves */    memory allocation. But we also truncated to 8 characters (left
 int jmin, jmax; /* min, max spacing between 2 waves */    truncation)
 int mle, weightopt;    (Repository): No more line truncation errors.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.84  2003/06/13 21:44:43  brouard
 double jmean; /* Mean space between 2 waves */    * imach.c (Repository): Replace "freqsummary" at a correct
 double **oldm, **newm, **savm; /* Working pointers to matrices */    place. It differs from routine "prevalence" which may be called
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    many times. Probs is memory consuming and must be used with
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    parcimony.
 FILE *ficgp,*ficresprob,*ficpop;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.83  2003/06/10 13:39:11  lievre
  FILE  *ficresvij;    *** empty log message ***
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.82  2003/06/05 15:57:20  brouard
   char fileresvpl[FILENAMELENGTH];    Add log in  imach.c and  fullversion number is now printed.
   
 #define NR_END 1  */
 #define FREE_ARG char*  /*
 #define FTOL 1.0e-10     Interpolated Markov Chain
   
 #define NRANSI    Short summary of the programme:
 #define ITMAX 200    
     This program computes Healthy Life Expectancies from
 #define TOL 2.0e-4    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define CGOLD 0.3819660    interviewed on their health status or degree of disability (in the
 #define ZEPS 1.0e-10    case of a health survey which is our main interest) -2- at least a
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define GOLD 1.618034    computed from the time spent in each health state according to a
 #define GLIMIT 100.0    model. More health states you consider, more time is necessary to reach the
 #define TINY 1.0e-20    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 static double maxarg1,maxarg2;    probability to be observed in state j at the second wave
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    conditional to be observed in state i at the first wave. Therefore
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
      'age' is age and 'sex' is a covariate. If you want to have a more
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    complex model than "constant and age", you should modify the program
 #define rint(a) floor(a+0.5)    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 static double sqrarg;    convergence.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 int imx;    identical for each individual. Also, if a individual missed an
 int stepm;    intermediate interview, the information is lost, but taken into
 /* Stepm, step in month: minimum step interpolation*/    account using an interpolation or extrapolation.  
   
 int estepm;    hPijx is the probability to be observed in state i at age x+h
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 int m,nb;    states. This elementary transition (by month, quarter,
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    semester or year) is modelled as a multinomial logistic.  The hPx
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    matrix is simply the matrix product of nh*stepm elementary matrices
 double **pmmij, ***probs, ***mobaverage;    and the contribution of each individual to the likelihood is simply
 double dateintmean=0;    hPijx.
   
 double *weight;    Also this programme outputs the covariance matrix of the parameters but also
 int **s; /* Status */    of the life expectancies. It also computes the stable prevalence. 
 double *agedc, **covar, idx;    
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    This software have been partly granted by Euro-REVES, a concerted action
 double ftolhess; /* Tolerance for computing hessian */    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /**************** split *************************/    software can be distributed freely for non commercial use. Latest version
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    can be accessed at http://euroreves.ined.fr/imach .
 {  
    char *s;                             /* pointer */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    int  l1, l2;                         /* length counters */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
    l1 = strlen( path );                 /* length of path */    **********************************************************************/
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  /*
 #ifdef windows    main
    s = strrchr( path, '\\' );           /* find last / */    read parameterfile
 #else    read datafile
    s = strrchr( path, '/' );            /* find last / */    concatwav
 #endif    freqsummary
    if ( s == NULL ) {                   /* no directory, so use current */    if (mle >= 1)
 #if     defined(__bsd__)                /* get current working directory */      mlikeli
       extern char       *getwd( );    print results files
     if mle==1 
       if ( getwd( dirc ) == NULL ) {       computes hessian
 #else    read end of parameter file: agemin, agemax, bage, fage, estepm
       extern char       *getcwd( );        begin-prev-date,...
     open gnuplot file
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    open html file
 #endif    stable prevalence
          return( GLOCK_ERROR_GETCWD );     for age prevalim()
       }    h Pij x
       strcpy( name, path );             /* we've got it */    variance of p varprob
    } else {                             /* strip direcotry from path */    forecasting if prevfcast==1 prevforecast call prevalence()
       s++;                              /* after this, the filename */    health expectancies
       l2 = strlen( s );                 /* length of filename */    Variance-covariance of DFLE
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    prevalence()
       strcpy( name, s );                /* save file name */     movingaverage()
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    varevsij() 
       dirc[l1-l2] = 0;                  /* add zero */    if popbased==1 varevsij(,popbased)
    }    total life expectancies
    l1 = strlen( dirc );                 /* length of directory */    Variance of stable prevalence
 #ifdef windows   end
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  */
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  
    s = strrchr( name, '.' );            /* find last / */   
    s++;  #include <math.h>
    strcpy(ext,s);                       /* save extension */  #include <stdio.h>
    l1= strlen( name);  #include <stdlib.h>
    l2= strlen( s)+1;  #include <unistd.h>
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  /* #include <sys/time.h> */
    return( 0 );                         /* we're done */  #include <time.h>
 }  #include "timeval.h"
   
   /* #include <libintl.h> */
 /******************************************/  /* #define _(String) gettext (String) */
   
 void replace(char *s, char*t)  #define MAXLINE 256
 {  #define GNUPLOTPROGRAM "gnuplot"
   int i;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int lg=20;  #define FILENAMELENGTH 132
   i=0;  /*#define DEBUG*/
   lg=strlen(t);  /*#define windows*/
   for(i=0; i<= lg; i++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     (s[i] = t[i]);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     if (t[i]== '\\') s[i]='/';  
   }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 int nbocc(char *s, char occ)  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   int i,j=0;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int lg=20;  #define NCOVMAX 8 /* Maximum number of covariates */
   i=0;  #define MAXN 20000
   lg=strlen(s);  #define YEARM 12. /* Number of months per year */
   for(i=0; i<= lg; i++) {  #define AGESUP 130
   if  (s[i] == occ ) j++;  #define AGEBASE 40
   }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   return j;  #ifdef unix
 }  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 void cutv(char *u,char *v, char*t, char occ)  #else
 {  #define DIRSEPARATOR '\\'
   int i,lg,j,p=0;  #define ODIRSEPARATOR '/'
   i=0;  #endif
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* $Id$ */
   }  /* $State$ */
   
   lg=strlen(t);  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   for(j=0; j<p; j++) {  char fullversion[]="$Revision$ $Date$"; 
     (u[j] = t[j]);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   }  int nvar;
      u[p]='\0';  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
    for(j=0; j<= lg; j++) {  int nlstate=2; /* Number of live states */
     if (j>=(p+1))(v[j-p-1] = t[j]);  int ndeath=1; /* Number of dead states */
   }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /********************** nrerror ********************/  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 void nrerror(char error_text[])  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   fprintf(stderr,"ERREUR ...\n");                     to the likelihood and the sum of weights (done by funcone)*/
   fprintf(stderr,"%s\n",error_text);  int mle, weightopt;
   exit(1);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /*********************** vector *******************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double *vector(int nl, int nh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   double *v;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!v) nrerror("allocation failure in vector");  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   return v-nl+NR_END;  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /************************ free vector ******************/  long ipmx; /* Number of contributions */
 void free_vector(double*v, int nl, int nh)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /************************ivector *******************************/  FILE *ficresprobmorprev;
 int *ivector(long nl,long nh)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   int *v;  char filerese[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  FILE  *ficresvij;
   if (!v) nrerror("allocation failure in ivector");  char fileresv[FILENAMELENGTH];
   return v-nl+NR_END;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /******************free ivector **************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free((FREE_ARG)(v+nl-NR_END));  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /******************* imatrix *******************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char fileregp[FILENAMELENGTH];
   int **m;  char popfile[FILENAMELENGTH];
    
   /* allocate pointers to rows */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m += NR_END;  struct timezone tzp;
   m -= nrl;  extern int gettimeofday();
    struct tm tmg, tm, tmf, *gmtime(), *localtime();
    long time_value;
   /* allocate rows and set pointers to them */  extern long time();
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char strcurr[80], strfor[80];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NR_END 1
   m[nrl] -= ncl;  #define FREE_ARG char*
    #define FTOL 1.0e-10
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    #define NRANSI 
   /* return pointer to array of pointers to rows */  #define ITMAX 200 
   return m;  
 }  #define TOL 2.0e-4 
   
 /****************** free_imatrix *************************/  #define CGOLD 0.3819660 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define ZEPS 1.0e-10 
       int **m;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define TINY 1.0e-20 
   free((FREE_ARG) (m+nrl-NR_END));  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /******************* matrix *******************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double **matrix(long nrl, long nrh, long ncl, long nch)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define rint(a) floor(a+0.5)
   double **m;  
   static double sqrarg;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m += NR_END;  int agegomp= AGEGOMP;
   m -= nrl;  
   int imx; 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int stepm=1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* Stepm, step in month: minimum step interpolation*/
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /*************************free matrix ************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double dateintmean=0;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  double *weight;
   int **s; /* Status */
 /******************* ma3x *******************************/  double *agedc, **covar, idx;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ***m;  double ftolhess; /* Tolerance for computing hessian */
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /**************** split *************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m += NR_END;  {
   m -= nrl;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    */ 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    char  *ss;                            /* pointer */
   m[nrl] += NR_END;    int   l1, l2;                         /* length counters */
   m[nrl] -= ncl;  
     l1 = strlen(path );                   /* length of path */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl][ncl] += NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl][ncl] -= nll;      /* get current working directory */
   for (j=ncl+1; j<=nch; j++)      /*    extern  char* getcwd ( char *buf , int len);*/
     m[nrl][j]=m[nrl][j-1]+nlay;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
   for (i=nrl+1; i<=nrh; i++) {      }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      strcpy( name, path );               /* we've got it */
     for (j=ncl+1; j<=nch; j++)    } else {                              /* strip direcotry from path */
       m[i][j]=m[i][j-1]+nlay;      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
   return m;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /*************************free ma3x ************************/      dirc[l1-l2] = 0;                    /* add zero */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    /*#ifdef windows
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG)(m+nrl-NR_END));  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /***************** f1dim *************************/    */
 extern int ncom;    ss = strrchr( name, '.' );            /* find last / */
 extern double *pcom,*xicom;    if (ss >0){
 extern double (*nrfunc)(double []);      ss++;
        strcpy(ext,ss);                     /* save extension */
 double f1dim(double x)      l1= strlen( name);
 {      l2= strlen(ss)+1;
   int j;      strncpy( finame, name, l1-l2);
   double f;      finame[l1-l2]= 0;
   double *xt;    }
      return( 0 );                          /* we're done */
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /******************************************/
   return f;  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /*****************brent *************************/    int i;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    int lg=0;
 {    i=0;
   int iter;    lg=strlen(t);
   double a,b,d,etemp;    for(i=0; i<= lg; i++) {
   double fu,fv,fw,fx;      (s[i] = t[i]);
   double ftemp;      if (t[i]== '\\') s[i]='/';
   double p,q,r,tol1,tol2,u,v,w,x,xm;    }
   double e=0.0;  }
    
   a=(ax < cx ? ax : cx);  int nbocc(char *s, char occ)
   b=(ax > cx ? ax : cx);  {
   x=w=v=bx;    int i,j=0;
   fw=fv=fx=(*f)(x);    int lg=20;
   for (iter=1;iter<=ITMAX;iter++) {    i=0;
     xm=0.5*(a+b);    lg=strlen(s);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    for(i=0; i<= lg; i++) {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if  (s[i] == occ ) j++;
     printf(".");fflush(stdout);    }
 #ifdef DEBUG    return j;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  void cutv(char *u,char *v, char*t, char occ)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    /* cuts string t into u and v where u is ended by char occ excluding it
       return fx;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     }       gives u="abcedf" and v="ghi2j" */
     ftemp=fu;    int i,lg,j,p=0;
     if (fabs(e) > tol1) {    i=0;
       r=(x-w)*(fx-fv);    for(j=0; j<=strlen(t)-1; j++) {
       q=(x-v)*(fx-fw);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    lg=strlen(t);
       q=fabs(q);    for(j=0; j<p; j++) {
       etemp=e;      (u[j] = t[j]);
       e=d;    }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       u[p]='\0';
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {     for(j=0; j<= lg; j++) {
         d=p/q;      if (j>=(p+1))(v[j-p-1] = t[j]);
         u=x+d;    }
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  
       }  /********************** nrerror ********************/
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  void nrerror(char error_text[])
     }  {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    fprintf(stderr,"ERREUR ...\n");
     fu=(*f)(u);    fprintf(stderr,"%s\n",error_text);
     if (fu <= fx) {    exit(EXIT_FAILURE);
       if (u >= x) a=x; else b=x;  }
       SHFT(v,w,x,u)  /*********************** vector *******************/
         SHFT(fv,fw,fx,fu)  double *vector(int nl, int nh)
         } else {  {
           if (u < x) a=u; else b=u;    double *v;
           if (fu <= fw || w == x) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
             v=w;    if (!v) nrerror("allocation failure in vector");
             w=u;    return v-nl+NR_END;
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /************************ free vector ******************/
             v=u;  void free_vector(double*v, int nl, int nh)
             fv=fu;  {
           }    free((FREE_ARG)(v+nl-NR_END));
         }  }
   }  
   nrerror("Too many iterations in brent");  /************************ivector *******************************/
   *xmin=x;  int *ivector(long nl,long nh)
   return fx;  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 /****************** mnbrak ***********************/    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /******************free ivector **************************/
   double ulim,u,r,q, dum;  void free_ivector(int *v, long nl, long nh)
   double fu;  {
      free((FREE_ARG)(v+nl-NR_END));
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /************************lvector *******************************/
     SHFT(dum,*ax,*bx,dum)  long *lvector(long nl,long nh)
       SHFT(dum,*fb,*fa,dum)  {
       }    long *v;
   *cx=(*bx)+GOLD*(*bx-*ax);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   *fc=(*func)(*cx);    if (!v) nrerror("allocation failure in ivector");
   while (*fb > *fc) {    return v-nl+NR_END;
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /******************free lvector **************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void free_lvector(long *v, long nl, long nh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /******************* imatrix *******************************/
       if (fu < *fc) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
           SHFT(*fb,*fc,fu,(*func)(u))  { 
           }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    int **m; 
       u=ulim;    
       fu=(*func)(u);    /* allocate pointers to rows */ 
     } else {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       u=(*cx)+GOLD*(*cx-*bx);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       fu=(*func)(u);    m += NR_END; 
     }    m -= nrl; 
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)    
       }    /* allocate rows and set pointers to them */ 
 }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 /*************** linmin ************************/    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 int ncom;    
 double *pcom,*xicom;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 double (*nrfunc)(double []);    
      /* return pointer to array of pointers to rows */ 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    return m; 
 {  } 
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /****************** free_imatrix *************************/
   double f1dim(double x);  void free_imatrix(m,nrl,nrh,ncl,nch)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        int **m;
               double *fc, double (*func)(double));        long nch,ncl,nrh,nrl; 
   int j;       /* free an int matrix allocated by imatrix() */ 
   double xx,xmin,bx,ax;  { 
   double fx,fb,fa;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      free((FREE_ARG) (m+nrl-NR_END)); 
   ncom=n;  } 
   pcom=vector(1,n);  
   xicom=vector(1,n);  /******************* matrix *******************************/
   nrfunc=func;  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=n;j++) {  {
     pcom[j]=p[j];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     xicom[j]=xi[j];    double **m;
   }  
   ax=0.0;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   xx=1.0;    if (!m) nrerror("allocation failure 1 in matrix()");
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m += NR_END;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m -= nrl;
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (j=1;j<=n;j++) {    m[nrl] += NR_END;
     xi[j] *= xmin;    m[nrl] -= ncl;
     p[j] += xi[j];  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   free_vector(xicom,1,n);    return m;
   free_vector(pcom,1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 }     */
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /*************************free matrix ************************/
             double (*func)(double []))  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG)(m[nrl]+ncl-NR_END));
               double (*func)(double []));    free((FREE_ARG)(m+nrl-NR_END));
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************* ma3x *******************************/
   double *xits;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   xit=vector(1,n);    double ***m;
   xits=vector(1,n);  
   *fret=(*func)(p);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=1;j<=n;j++) pt[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()");
   for (*iter=1;;++(*iter)) {    m += NR_END;
     fp=(*fret);    m -= nrl;
     ibig=0;  
     del=0.0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (i=1;i<=n;i++)    m[nrl] += NR_END;
       printf(" %d %.12f",i, p[i]);    m[nrl] -= ncl;
     printf("\n");  
     for (i=1;i<=n;i++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       printf("fret=%lf \n",*fret);    m[nrl][ncl] += NR_END;
 #endif    m[nrl][ncl] -= nll;
       printf("%d",i);fflush(stdout);    for (j=ncl+1; j<=nch; j++) 
       linmin(p,xit,n,fret,func);      m[nrl][j]=m[nrl][j-1]+nlay;
       if (fabs(fptt-(*fret)) > del) {    
         del=fabs(fptt-(*fret));    for (i=nrl+1; i<=nrh; i++) {
         ibig=i;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG        m[i][j]=m[i][j-1]+nlay;
       printf("%d %.12e",i,(*fret));    }
       for (j=1;j<=n;j++) {    return m; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         printf(" x(%d)=%.12e",j,xit[j]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       }    */
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /*************************free ma3x ************************/
 #endif  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       int k[2],l;    free((FREE_ARG)(m+nrl-NR_END));
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /*************** function subdirf ***********/
       for (j=1;j<=n;j++)  char *subdirf(char fileres[])
         printf(" %.12e",p[j]);  {
       printf("\n");    /* Caution optionfilefiname is hidden */
       for(l=0;l<=1;l++) {    strcpy(tmpout,optionfilefiname);
         for (j=1;j<=n;j++) {    strcat(tmpout,"/"); /* Add to the right */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcat(tmpout,fileres);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return tmpout;
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /*************** function subdirf2 ***********/
 #endif  char *subdirf2(char fileres[], char *preop)
   {
     
       free_vector(xit,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(xits,1,n);    strcpy(tmpout,optionfilefiname);
       free_vector(ptt,1,n);    strcat(tmpout,"/");
       free_vector(pt,1,n);    strcat(tmpout,preop);
       return;    strcat(tmpout,fileres);
     }    return tmpout;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /*************** function subdirf3 ***********/
       xit[j]=p[j]-pt[j];  char *subdirf3(char fileres[], char *preop, char *preop2)
       pt[j]=p[j];  {
     }    
     fptt=(*func)(ptt);    /* Caution optionfilefiname is hidden */
     if (fptt < fp) {    strcpy(tmpout,optionfilefiname);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcat(tmpout,"/");
       if (t < 0.0) {    strcat(tmpout,preop);
         linmin(p,xit,n,fret,func);    strcat(tmpout,preop2);
         for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
           xi[j][ibig]=xi[j][n];    return tmpout;
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /***************** f1dim *************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  extern int ncom; 
         for(j=1;j<=n;j++)  extern double *pcom,*xicom;
           printf(" %.12e",xit[j]);  extern double (*nrfunc)(double []); 
         printf("\n");   
 #endif  double f1dim(double x) 
       }  { 
     }    int j; 
   }    double f;
 }    double *xt; 
    
 /**** Prevalence limit ****************/    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    return f; 
      matrix by transitions matrix until convergence is reached */  } 
   
   int i, ii,j,k;  /*****************brent *************************/
   double min, max, maxmin, maxmax,sumnew=0.;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double **matprod2();  { 
   double **out, cov[NCOVMAX], **pmij();    int iter; 
   double **newm;    double a,b,d,etemp;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double fu,fv,fw,fx;
     double ftemp;
   for (ii=1;ii<=nlstate+ndeath;ii++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for (j=1;j<=nlstate+ndeath;j++){    double e=0.0; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);   
     }    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
    cov[1]=1.;    x=w=v=bx; 
      fw=fv=fx=(*f)(x); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (iter=1;iter<=ITMAX;iter++) { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      xm=0.5*(a+b); 
     newm=savm;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     /* Covariates have to be included here again */      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      cov[2]=agefin;      printf(".");fflush(stdout);
        fprintf(ficlog,".");fflush(ficlog);
       for (k=1; k<=cptcovn;k++) {  #ifdef DEBUG
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
       for (k=1; k<=cptcovprod;k++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        *xmin=x; 
         return fx; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      ftemp=fu;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      if (fabs(e) > tol1) { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
     savm=oldm;        p=(x-v)*q-(x-w)*r; 
     oldm=newm;        q=2.0*(q-r); 
     maxmax=0.;        if (q > 0.0) p = -p; 
     for(j=1;j<=nlstate;j++){        q=fabs(q); 
       min=1.;        etemp=e; 
       max=0.;        e=d; 
       for(i=1; i<=nlstate; i++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         sumnew=0;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        else { 
         prlim[i][j]= newm[i][j]/(1-sumnew);          d=p/q; 
         max=FMAX(max,prlim[i][j]);          u=x+d; 
         min=FMIN(min,prlim[i][j]);          if (u-a < tol2 || b-u < tol2) 
       }            d=SIGN(tol1,xm-x); 
       maxmin=max-min;        } 
       maxmax=FMAX(maxmax,maxmin);      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if(maxmax < ftolpl){      } 
       return prlim;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
   }      if (fu <= fx) { 
 }        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 /*************** transition probabilities ***************/          SHFT(fv,fw,fx,fu) 
           } else { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            if (u < x) a=u; else b=u; 
 {            if (fu <= fw || w == x) { 
   double s1, s2;              v=w; 
   /*double t34;*/              w=u; 
   int i,j,j1, nc, ii, jj;              fv=fw; 
               fw=fu; 
     for(i=1; i<= nlstate; i++){            } else if (fu <= fv || v == x || v == w) { 
     for(j=1; j<i;j++){              v=u; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              fv=fu; 
         /*s2 += param[i][j][nc]*cov[nc];*/            } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    } 
       }    nrerror("Too many iterations in brent"); 
       ps[i][j]=s2;    *xmin=x; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    return fx; 
     }  } 
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /****************** mnbrak ***********************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
       ps[i][j]=s2;  { 
     }    double ulim,u,r,q, dum;
   }    double fu; 
     /*ps[3][2]=1;*/   
     *fa=(*func)(*ax); 
   for(i=1; i<= nlstate; i++){    *fb=(*func)(*bx); 
      s1=0;    if (*fb > *fa) { 
     for(j=1; j<i; j++)      SHFT(dum,*ax,*bx,dum) 
       s1+=exp(ps[i][j]);        SHFT(dum,*fb,*fa,dum) 
     for(j=i+1; j<=nlstate+ndeath; j++)        } 
       s1+=exp(ps[i][j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
     ps[i][i]=1./(s1+1.);    *fc=(*func)(*cx); 
     for(j=1; j<i; j++)    while (*fb > *fc) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      r=(*bx-*ax)*(*fb-*fc); 
     for(j=i+1; j<=nlstate+ndeath; j++)      q=(*bx-*cx)*(*fb-*fa); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   } /* end i */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       ps[ii][jj]=0;        fu=(*func)(u); 
       ps[ii][ii]=1;        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        u=ulim; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fu=(*func)(u); 
      printf("%lf ",ps[ii][jj]);      } else { 
    }        u=(*cx)+GOLD*(*cx-*bx); 
     printf("\n ");        fu=(*func)(u); 
     }      } 
     printf("\n ");printf("%lf ",cov[2]);*/      SHFT(*ax,*bx,*cx,u) 
 /*        SHFT(*fa,*fb,*fc,fu) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        } 
   goto end;*/  } 
     return ps;  
 }  /*************** linmin ************************/
   
 /**************** Product of 2 matrices ******************/  int ncom; 
   double *pcom,*xicom;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double (*nrfunc)(double []); 
 {   
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  { 
   /* in, b, out are matrice of pointers which should have been initialized    double brent(double ax, double bx, double cx, 
      before: only the contents of out is modified. The function returns                 double (*f)(double), double tol, double *xmin); 
      a pointer to pointers identical to out */    double f1dim(double x); 
   long i, j, k;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for(i=nrl; i<= nrh; i++)                double *fc, double (*func)(double)); 
     for(k=ncolol; k<=ncoloh; k++)    int j; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double xx,xmin,bx,ax; 
         out[i][k] +=in[i][j]*b[j][k];    double fx,fb,fa;
    
   return out;    ncom=n; 
 }    pcom=vector(1,n); 
     xicom=vector(1,n); 
     nrfunc=func; 
 /************* Higher Matrix Product ***************/    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      xicom[j]=xi[j]; 
 {    } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    ax=0.0; 
      duration (i.e. until    xx=1.0; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
      (typically every 2 years instead of every month which is too big).  #ifdef DEBUG
      Model is determined by parameters x and covariates have to be    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      included manually here.    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
      */    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
   int i, j, d, h, k;      p[j] += xi[j]; 
   double **out, cov[NCOVMAX];    } 
   double **newm;    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   /* Hstepm could be zero and should return the unit matrix */  } 
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  char *asc_diff_time(long time_sec, char ascdiff[])
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    long sec_left, days, hours, minutes;
     }    days = (time_sec) / (60*60*24);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    sec_left = (time_sec) % (60*60*24);
   for(h=1; h <=nhstepm; h++){    hours = (sec_left) / (60*60) ;
     for(d=1; d <=hstepm; d++){    sec_left = (sec_left) %(60*60);
       newm=savm;    minutes = (sec_left) /60;
       /* Covariates have to be included here again */    sec_left = (sec_left) % (60);
       cov[1]=1.;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    return ascdiff;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** powell ************************/
       for (k=1; k<=cptcovprod;k++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              double (*func)(double [])) 
   { 
     void linmin(double p[], double xi[], int n, double *fret, 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/                double (*func)(double [])); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    int i,ibig,j; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double del,t,*pt,*ptt,*xit;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double fp,fptt;
       savm=oldm;    double *xits;
       oldm=newm;    int niterf, itmp;
     }  
     for(i=1; i<=nlstate+ndeath; i++)    pt=vector(1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {    ptt=vector(1,n); 
         po[i][j][h]=newm[i][j];    xit=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    xits=vector(1,n); 
          */    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
   } /* end h */    for (*iter=1;;++(*iter)) { 
   return po;      fp=(*fret); 
 }      ibig=0; 
       del=0.0; 
       last_time=curr_time;
 /*************** log-likelihood *************/      (void) gettimeofday(&curr_time,&tzp);
 double func( double *x)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 {      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   int i, ii, j, k, mi, d, kk;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      */
   double **out;     for (i=1;i<=n;i++) {
   double sw; /* Sum of weights */        printf(" %d %.12f",i, p[i]);
   double lli; /* Individual log likelihood */        fprintf(ficlog," %d %.12lf",i, p[i]);
   long ipmx;        fprintf(ficrespow," %.12lf", p[i]);
   /*extern weight */      }
   /* We are differentiating ll according to initial status */      printf("\n");
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      fprintf(ficlog,"\n");
   /*for(i=1;i<imx;i++)      fprintf(ficrespow,"\n");fflush(ficrespow);
     printf(" %d\n",s[4][i]);      if(*iter <=3){
   */        tm = *localtime(&curr_time.tv_sec);
   cov[1]=1.;        strcpy(strcurr,asctime(&tmf));
   /*       asctime_r(&tm,strcurr); */
   for(k=1; k<=nlstate; k++) ll[k]=0.;        forecast_time=curr_time;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        itmp = strlen(strcurr);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        if(strcurr[itmp-1]=='\n')
     for(mi=1; mi<= wav[i]-1; mi++){          strcurr[itmp-1]='\0';
       for (ii=1;ii<=nlstate+ndeath;ii++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for(d=0; d<dh[mi][i]; d++){        for(niterf=10;niterf<=30;niterf+=10){
         newm=savm;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          tmf = *localtime(&forecast_time.tv_sec);
         for (kk=1; kk<=cptcovage;kk++) {  /*      asctime_r(&tmf,strfor); */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          strcpy(strfor,asctime(&tmf));
         }          itmp = strlen(strfor);
                  if(strfor[itmp-1]=='\n')
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          strfor[itmp-1]='\0';
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         savm=oldm;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         oldm=newm;        }
              }
              for (i=1;i<=n;i++) { 
       } /* end mult */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
              fptt=(*fret); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  #ifdef DEBUG
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        printf("fret=%lf \n",*fret);
       ipmx +=1;        fprintf(ficlog,"fret=%lf \n",*fret);
       sw += weight[i];  #endif
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        printf("%d",i);fflush(stdout);
     } /* end of wave */        fprintf(ficlog,"%d",i);fflush(ficlog);
   } /* end of individual */        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          del=fabs(fptt-(*fret)); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          ibig=i; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        } 
   return -l;  #ifdef DEBUG
 }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 /*********** Maximum Likelihood Estimation ***************/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 {        }
   int i,j, iter;        for(j=1;j<=n;j++) {
   double **xi,*delti;          printf(" p=%.12e",p[j]);
   double fret;          fprintf(ficlog," p=%.12e",p[j]);
   xi=matrix(1,npar,1,npar);        }
   for (i=1;i<=npar;i++)        printf("\n");
     for (j=1;j<=npar;j++)        fprintf(ficlog,"\n");
       xi[i][j]=(i==j ? 1.0 : 0.0);  #endif
   printf("Powell\n");      } 
   powell(p,xi,npar,ftol,&iter,&fret,func);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        int k[2],l;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        k[0]=1;
         k[1]=-1;
 }        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
 /**** Computes Hessian and covariance matrix ***/        for (j=1;j<=n;j++) {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          printf(" %.12e",p[j]);
 {          fprintf(ficlog," %.12e",p[j]);
   double  **a,**y,*x,pd;        }
   double **hess;        printf("\n");
   int i, j,jk;        fprintf(ficlog,"\n");
   int *indx;        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   double hessii(double p[], double delta, int theta, double delti[]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double hessij(double p[], double delti[], int i, int j);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   hess=matrix(1,npar,1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   printf("\nCalculation of the hessian matrix. Wait...\n");  #endif
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);        free_vector(xit,1,n); 
     /*printf(" %f ",p[i]);*/        free_vector(xits,1,n); 
     /*printf(" %lf ",hess[i][i]);*/        free_vector(ptt,1,n); 
   }        free_vector(pt,1,n); 
          return; 
   for (i=1;i<=npar;i++) {      } 
     for (j=1;j<=npar;j++)  {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       if (j>i) {      for (j=1;j<=n;j++) { 
         printf(".%d%d",i,j);fflush(stdout);        ptt[j]=2.0*p[j]-pt[j]; 
         hess[i][j]=hessij(p,delti,i,j);        xit[j]=p[j]-pt[j]; 
         hess[j][i]=hess[i][j];            pt[j]=p[j]; 
         /*printf(" %lf ",hess[i][j]);*/      } 
       }      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   printf("\n");        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for (j=1;j<=n;j++) { 
              xi[j][ibig]=xi[j][n]; 
   a=matrix(1,npar,1,npar);            xi[j][n]=xit[j]; 
   y=matrix(1,npar,1,npar);          }
   x=vector(1,npar);  #ifdef DEBUG
   indx=ivector(1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          for(j=1;j<=n;j++){
   ludcmp(a,npar,indx,&pd);            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   for (j=1;j<=npar;j++) {          }
     for (i=1;i<=npar;i++) x[i]=0;          printf("\n");
     x[j]=1;          fprintf(ficlog,"\n");
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){        }
       matcov[i][j]=x[i];      } 
     }    } 
   }  } 
   
   printf("\n#Hessian matrix#\n");  /**** Prevalence limit (stable prevalence)  ****************/
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       printf("%.3e ",hess[i][j]);  {
     }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     printf("\n");       matrix by transitions matrix until convergence is reached */
   }  
     int i, ii,j,k;
   /* Recompute Inverse */    double min, max, maxmin, maxmax,sumnew=0.;
   for (i=1;i<=npar;i++)    double **matprod2();
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double **out, cov[NCOVMAX], **pmij();
   ludcmp(a,npar,indx,&pd);    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   /*  printf("\n#Hessian matrix recomputed#\n");  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1;j<=npar;j++) {      for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++) x[i]=0;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     x[j]=1;      }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){     cov[1]=1.;
       y[i][j]=x[i];   
       printf("%.3e ",y[i][j]);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     printf("\n");      newm=savm;
   }      /* Covariates have to be included here again */
   */       cov[2]=agefin;
     
   free_matrix(a,1,npar,1,npar);        for (k=1; k<=cptcovn;k++) {
   free_matrix(y,1,npar,1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_vector(x,1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   free_ivector(indx,1,npar);        }
   free_matrix(hess,1,npar,1,npar);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 /*************** hessian matrix ****************/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 double hessii( double x[], double delta, int theta, double delti[])        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int i;  
   int l=1, lmax=20;      savm=oldm;
   double k1,k2;      oldm=newm;
   double p2[NPARMAX+1];      maxmax=0.;
   double res;      for(j=1;j<=nlstate;j++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        min=1.;
   double fx;        max=0.;
   int k=0,kmax=10;        for(i=1; i<=nlstate; i++) {
   double l1;          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   fx=func(x);          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (i=1;i<=npar;i++) p2[i]=x[i];          max=FMAX(max,prlim[i][j]);
   for(l=0 ; l <=lmax; l++){          min=FMIN(min,prlim[i][j]);
     l1=pow(10,l);        }
     delts=delt;        maxmin=max-min;
     for(k=1 ; k <kmax; k=k+1){        maxmax=FMAX(maxmax,maxmin);
       delt = delta*(l1*k);      }
       p2[theta]=x[theta] +delt;      if(maxmax < ftolpl){
       k1=func(p2)-fx;        return prlim;
       p2[theta]=x[theta]-delt;      }
       k2=func(p2)-fx;    }
       /*res= (k1-2.0*fx+k2)/delt/delt; */  }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        /*************** transition probabilities ***************/ 
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 #endif  {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double s1, s2;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /*double t34;*/
         k=kmax;    int i,j,j1, nc, ii, jj;
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for(i=1; i<= nlstate; i++){
         k=kmax; l=lmax*10.;        for(j=1; j<i;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            /*s2 += param[i][j][nc]*cov[nc];*/
         delts=delt;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     }          }
   }          ps[i][j]=s2;
   delti[theta]=delts;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   return res;        }
          for(j=i+1; j<=nlstate+ndeath;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 {          }
   int i;          ps[i][j]=s2;
   int l=1, l1, lmax=20;        }
   double k1,k2,k3,k4,res,fx;      }
   double p2[NPARMAX+1];      /*ps[3][2]=1;*/
   int k;      
       for(i=1; i<= nlstate; i++){
   fx=func(x);        s1=0;
   for (k=1; k<=2; k++) {        for(j=1; j<i; j++)
     for (i=1;i<=npar;i++) p2[i]=x[i];          s1+=exp(ps[i][j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          s1+=exp(ps[i][j]);
     k1=func(p2)-fx;        ps[i][i]=1./(s1+1.);
          for(j=1; j<i; j++)
     p2[thetai]=x[thetai]+delti[thetai]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     k2=func(p2)-fx;          ps[i][j]= exp(ps[i][j])*ps[i][i];
          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     p2[thetai]=x[thetai]-delti[thetai]/k;      } /* end i */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      
     k3=func(p2)-fx;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[ii][jj]=0;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[ii][ii]=1;
     k4=func(p2)-fx;        }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      }
 #ifdef DEBUG      
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   return res;  /*         printf("ddd %lf ",ps[ii][jj]); */
 }  /*       } */
   /*       printf("\n "); */
 /************** Inverse of matrix **************/  /*        } */
 void ludcmp(double **a, int n, int *indx, double *d)  /*        printf("\n ");printf("%lf ",cov[2]); */
 {         /*
   int i,imax,j,k;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double big,dum,sum,temp;        goto end;*/
   double *vv;      return ps;
    }
   vv=vector(1,n);  
   *d=1.0;  /**************** Product of 2 matrices ******************/
   for (i=1;i<=n;i++) {  
     big=0.0;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (j=1;j<=n;j++)  {
       if ((temp=fabs(a[i][j])) > big) big=temp;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     vv[i]=1.0/big;    /* in, b, out are matrice of pointers which should have been initialized 
   }       before: only the contents of out is modified. The function returns
   for (j=1;j<=n;j++) {       a pointer to pointers identical to out */
     for (i=1;i<j;i++) {    long i, j, k;
       sum=a[i][j];    for(i=nrl; i<= nrh; i++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for(k=ncolol; k<=ncoloh; k++)
       a[i][j]=sum;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     }          out[i][k] +=in[i][j]*b[j][k];
     big=0.0;  
     for (i=j;i<=n;i++) {    return out;
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /************* Higher Matrix Product ***************/
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         imax=i;  {
       }    /* Computes the transition matrix starting at age 'age' over 
     }       'nhstepm*hstepm*stepm' months (i.e. until
     if (j != imax) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for (k=1;k<=n;k++) {       nhstepm*hstepm matrices. 
         dum=a[imax][k];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         a[imax][k]=a[j][k];       (typically every 2 years instead of every month which is too big 
         a[j][k]=dum;       for the memory).
       }       Model is determined by parameters x and covariates have to be 
       *d = -(*d);       included manually here. 
       vv[imax]=vv[j];  
     }       */
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;    int i, j, d, h, k;
     if (j != n) {    double **out, cov[NCOVMAX];
       dum=1.0/(a[j][j]);    double **newm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }    /* Hstepm could be zero and should return the unit matrix */
   }    for (i=1;i<=nlstate+ndeath;i++)
   free_vector(vv,1,n);  /* Doesn't work */      for (j=1;j<=nlstate+ndeath;j++){
 ;        oldm[i][j]=(i==j ? 1.0 : 0.0);
 }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
 void lubksb(double **a, int n, int *indx, double b[])    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 {    for(h=1; h <=nhstepm; h++){
   int i,ii=0,ip,j;      for(d=1; d <=hstepm; d++){
   double sum;        newm=savm;
          /* Covariates have to be included here again */
   for (i=1;i<=n;i++) {        cov[1]=1.;
     ip=indx[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     sum=b[ip];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     b[ip]=b[i];        for (k=1; k<=cptcovage;k++)
     if (ii)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovprod;k++)
     else if (sum) ii=i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     b[i]=sum;  
   }  
   for (i=n;i>=1;i--) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     sum=b[i];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     b[i]=sum/a[i][i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   }        savm=oldm;
 }        oldm=newm;
       }
 /************ Frequencies ********************/      for(i=1; i<=nlstate+ndeath; i++)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(j=1;j<=nlstate+ndeath;j++) {
 {  /* Some frequencies */          po[i][j][h]=newm[i][j];
            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           */
   double ***freq; /* Frequencies */        }
   double *pp;    } /* end h */
   double pos, k2, dateintsum=0,k2cpt=0;    return po;
   FILE *ficresp;  }
   char fileresp[FILENAMELENGTH];  
    
   pp=vector(1,nlstate);  /*************** log-likelihood *************/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  double func( double *x)
   strcpy(fileresp,"p");  {
   strcat(fileresp,fileres);    int i, ii, j, k, mi, d, kk;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double **out;
     exit(0);    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int s1, s2;
   j1=0;    double bbh, survp;
      long ipmx;
   j=cptcoveff;    /*extern weight */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for(k1=1; k1<=j;k1++){    /*for(i=1;i<imx;i++) 
     for(i1=1; i1<=ncodemax[k1];i1++){      printf(" %d\n",s[4][i]);
       j1++;    */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    cov[1]=1.;
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)      for(k=1; k<=nlstate; k++) ll[k]=0.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    if(mle==1){
             freq[i][jk][m]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       dateintsum=0;        for(mi=1; mi<= wav[i]-1; mi++){
       k2cpt=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {            for (j=1;j<=nlstate+ndeath;j++){
         bool=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for(d=0; d<dh[mi][i]; d++){
               bool=0;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (bool==1) {            for (kk=1; kk<=cptcovage;kk++) {
           for(m=firstpass; m<=lastpass; m++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             k2=anint[m][i]+(mint[m][i]/12.);            }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if(agev[m][i]==0) agev[m][i]=agemax+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==1) agev[m][i]=agemax+2;            savm=oldm;
               if (m<lastpass) {            oldm=newm;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          } /* end mult */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        
               }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                        /* But now since version 0.9 we anticipate for bias and large stepm.
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                 dateintsum=dateintsum+k2;           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 k2cpt++;           * the nearest (and in case of equal distance, to the lowest) interval but now
               }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
           }           * probability in order to take into account the bias as a fraction of the way
         }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       }           * -stepm/2 to stepm/2 .
                   * For stepm=1 the results are the same as for previous versions of Imach.
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           * For stepm > 1 the results are less biased than in previous versions. 
            */
       if  (cptcovn>0) {          s1=s[mw[mi][i]][i];
         fprintf(ficresp, "\n#********** Variable ");          s2=s[mw[mi+1][i]][i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficresp, "**********\n#");          /* bias is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
       for(i=1; i<=nlstate;i++)           */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       fprintf(ficresp, "\n");          if( s2 > nlstate){ 
                  /* i.e. if s2 is a death state and if the date of death is known then the contribution
       for(i=(int)agemin; i <= (int)agemax+3; i++){               to the likelihood is the probability to die between last step unit time and current 
         if(i==(int)agemax+3)               step unit time, which is also the differences between probability to die before dh 
           printf("Total");               and probability to die before dh-stepm . 
         else               In version up to 0.92 likelihood was computed
           printf("Age %d", i);          as if date of death was unknown. Death was treated as any other
         for(jk=1; jk <=nlstate ; jk++){          health state: the date of the interview describes the actual state
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          and not the date of a change in health state. The former idea was
             pp[jk] += freq[jk][m][i];          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
         for(jk=1; jk <=nlstate ; jk++){          introduced the exact date of death then we should have modified
           for(m=-1, pos=0; m <=0 ; m++)          the contribution of an exact death to the likelihood. This new
             pos += freq[jk][m][i];          contribution is smaller and very dependent of the step unit
           if(pp[jk]>=1.e-10)          stepm. It is no more the probability to die between last interview
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          and month of death but the probability to survive from last
           else          interview up to one month before death multiplied by the
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
         for(jk=1; jk <=nlstate ; jk++){          which slows down the processing. The difference can be up to 10%
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          lower mortality.
             pp[jk] += freq[jk][m][i];            */
         }            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
         for(jk=1,pos=0; jk <=nlstate ; jk++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           pos += pp[jk];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){          } 
           if(pos>=1.e-5)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*if(lli ==000.0)*/
           else          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ipmx +=1;
           if( i <= (int) agemax){          sw += weight[i];
             if(pos>=1.e-5){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        } /* end of wave */
               probs[i][jk][j1]= pp[jk]/pos;      } /* end of individual */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    }  else if(mle==2){
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=-1; jk <=nlstate+ndeath; jk++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1; m <=nlstate+ndeath; m++)            }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          for(d=0; d<=dh[mi][i]; d++){
         if(i <= (int) agemax)            newm=savm;
           fprintf(ficresp,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         printf("\n");            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   dateintmean=dateintsum/k2cpt;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   fclose(ficresp);            oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } /* end mult */
   free_vector(pp,1,nlstate);        
            s1=s[mw[mi][i]][i];
   /* End of Freq */          s2=s[mw[mi+1][i]][i];
 }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 /************ Prevalence ********************/          ipmx +=1;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          sw += weight[i];
 {  /* Some frequencies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      } /* end of individual */
   double ***freq; /* Frequencies */    }  else if(mle==3){  /* exponential inter-extrapolation */
   double *pp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double pos, k2;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   j1=0;            }
            for(d=0; d<dh[mi][i]; d++){
   j=cptcoveff;            newm=savm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
  for(k1=1; k1<=j;k1++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i1=1; i1<=ncodemax[k1];i1++){            }
       j1++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=-1; i<=nlstate+ndeath; i++)              savm=oldm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)              oldm=newm;
           for(m=agemin; m <= agemax+3; m++)          } /* end mult */
             freq[i][jk][m]=0;        
                s1=s[mw[mi][i]][i];
       for (i=1; i<=imx; i++) {          s2=s[mw[mi+1][i]][i];
         bool=1;          bbh=(double)bh[mi][i]/(double)stepm; 
         if  (cptcovn>0) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for (z1=1; z1<=cptcoveff; z1++)          ipmx +=1;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          sw += weight[i];
               bool=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         if (bool==1) {      } /* end of individual */
           for(m=firstpass; m<=lastpass; m++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             k2=anint[m][i]+(mint[m][i]/12.);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(mi=1; mi<= wav[i]-1; mi++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;          for (ii=1;ii<=nlstate+ndeath;ii++)
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            for (j=1;j<=nlstate+ndeath;j++){
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
         for(i=(int)agemin; i <= (int)agemax+3; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               pp[jk] += freq[jk][m][i];            }
           }          
           for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(m=-1, pos=0; m <=0 ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             pos += freq[jk][m][i];            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
          for(jk=1; jk <=nlstate ; jk++){        
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
              pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
          }          if( s2 > nlstate){ 
                      lli=log(out[s1][s2] - savm[s1][s2]);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          for(jk=1; jk <=nlstate ; jk++){                    }
            if( i <= (int) agemax){          ipmx +=1;
              if(pos>=1.e-5){          sw += weight[i];
                probs[i][jk][j1]= pp[jk]/pos;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            }        } /* end of wave */
          }      } /* end of individual */
              }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
 }  /* End of Freq */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************* Waves Concatenation ***************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          
      Death is a valid wave (if date is known).            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            savm=oldm;
      and mw[mi+1][i]. dh depends on stepm.            oldm=newm;
      */          } /* end mult */
         
   int i, mi, m;          s1=s[mw[mi][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          s2=s[mw[mi+1][i]][i];
      double sum=0., jmean=0.;*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   int j, k=0,jk, ju, jl;          sw += weight[i];
   double sum=0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmin=1e+5;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   jmax=-1;        } /* end of wave */
   jmean=0.;      } /* end of individual */
   for(i=1; i<=imx; i++){    } /* End of if */
     mi=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     m=firstpass;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     while(s[m][i] <= nlstate){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if(s[m][i]>=1)    return -l;
         mw[++mi][i]=m;  }
       if(m >=lastpass)  
         break;  /*************** log-likelihood *************/
       else  double funcone( double *x)
         m++;  {
     }/* end while */    /* Same as likeli but slower because of a lot of printf and if */
     if (s[m][i] > nlstate){    int i, ii, j, k, mi, d, kk;
       mi++;     /* Death is another wave */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       /* if(mi==0)  never been interviewed correctly before death */    double **out;
          /* Only death is a correct wave */    double lli; /* Individual log likelihood */
       mw[mi][i]=m;    double llt;
     }    int s1, s2;
     double bbh, survp;
     wav[i]=mi;    /*extern weight */
     if(mi==0)    /* We are differentiating ll according to initial status */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   for(i=1; i<=imx; i++){    */
     for(mi=1; mi<wav[i];mi++){    cov[1]=1.;
       if (stepm <=0)  
         dh[mi][i]=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (agedc[i] < 2*AGESUP) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for(mi=1; mi<= wav[i]-1; mi++){
           if(j==0) j=1;  /* Survives at least one month after exam */        for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;          for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j <= jmin) jmin=j;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;          }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for(d=0; d<dh[mi][i]; d++){
           }          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else{          for (kk=1; kk<=cptcovage;kk++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;          }
           if (j >= jmax) jmax=j;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           else if (j <= jmin)jmin=j;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          savm=oldm;
           sum=sum+j;          oldm=newm;
         }        } /* end mult */
         jk= j/stepm;        
         jl= j -jk*stepm;        s1=s[mw[mi][i]][i];
         ju= j -(jk+1)*stepm;        s2=s[mw[mi+1][i]][i];
         if(jl <= -ju)        bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=jk;        /* bias is positive if real duration
         else         * is higher than the multiple of stepm and negative otherwise.
           dh[mi][i]=jk+1;         */
         if(dh[mi][i]==0)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           dh[mi][i]=1; /* At least one step */          lli=log(out[s1][s2] - savm[s1][s2]);
       }        } else if (mle==1){
     }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }        } else if(mle==2){
   jmean=sum/k;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } else if(mle==3){  /* exponential inter-extrapolation */
  }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /*********** Tricode ****************************/        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 void tricode(int *Tvar, int **nbcode, int imx)          lli=log(out[s1][s2]); /* Original formula */
 {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   int Ndum[20],ij=1, k, j, i;          lli=log(out[s1][s2]); /* Original formula */
   int cptcode=0;        } /* End of if */
   cptcoveff=0;        ipmx +=1;
          sw += weight[i];
   for (k=0; k<19; k++) Ndum[k]=0;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=1; k<=7; k++) ncodemax[k]=0;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     for (i=1; i<=imx; i++) {   %10.6f %10.6f %10.6f ", \
       ij=(int)(covar[Tvar[j]][i]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       Ndum[ij]++;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       if (ij > cptcode) cptcode=ij;            llt +=ll[k]*gipmx/gsw;
     }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     for (i=0; i<=cptcode; i++) {          fprintf(ficresilk," %10.6f\n", -llt);
       if(Ndum[i]!=0) ncodemax[j]++;        }
     }      } /* end of wave */
     ij=1;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (i=1; i<=ncodemax[j]; i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for (k=0; k<=19; k++) {    if(globpr==0){ /* First time we count the contributions and weights */
         if (Ndum[k] != 0) {      gipmx=ipmx;
           nbcode[Tvar[j]][ij]=k;      gsw=sw;
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/    }
           ij++;    return -l;
         }  }
         if (ij > ncodemax[j]) break;  
       }    
     }  /*************** function likelione ***********/
   }    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
  for (k=0; k<19; k++) Ndum[k]=0;    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
  for (i=1; i<=ncovmodel-2; i++) {       to check the exact contribution to the likelihood.
       ij=Tvar[i];       Plotting could be done.
       Ndum[ij]++;     */
     }    int k;
   
  ij=1;    if(*globpri !=0){ /* Just counts and sums, no printings */
  for (i=1; i<=10; i++) {      strcpy(fileresilk,"ilk"); 
    if((Ndum[i]!=0) && (i<=ncovcol)){      strcat(fileresilk,fileres);
      Tvaraff[ij]=i;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      ij++;        printf("Problem with resultfile: %s\n", fileresilk);
    }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
  }      }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     cptcoveff=ij-1;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
 /*********** Health Expectancies ****************/        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)    }
 {  
   /* Health expectancies */    *fretone=(*funcone)(p);
   int i, j, nhstepm, hstepm, h, nstepm;    if(*globpri !=0){
   double age, agelim, hf;      fclose(ficresilk);
   double ***p3mat;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm); 
   fprintf(ficreseij,"# Health expectancies\n");    } 
   fprintf(ficreseij,"# Age");    return;
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);  
   fprintf(ficreseij,"\n");  /*********** Maximum Likelihood Estimation ***************/
   
   if(estepm < stepm){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    int i,j, iter;
   else  hstepm=estepm;      double **xi;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double fret;
    * This is mainly to measure the difference between two models: for example    double fretone; /* Only one call to likelihood */
    * if stepm=24 months pijx are given only every 2 years and by summing them    /*  char filerespow[FILENAMELENGTH];*/
    * we are calculating an estimate of the Life Expectancy assuming a linear    xi=matrix(1,npar,1,npar);
    * progression inbetween and thus overestimating or underestimating according    for (i=1;i<=npar;i++)
    * to the curvature of the survival function. If, for the same date, we      for (j=1;j<=npar;j++)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        xi[i][j]=(i==j ? 1.0 : 0.0);
    * to compare the new estimate of Life expectancy with the same linear    printf("Powell\n");  fprintf(ficlog,"Powell\n");
    * hypothesis. A more precise result, taking into account a more precise    strcpy(filerespow,"pow"); 
    * curvature will be obtained if estepm is as small as stepm. */    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   /* For example we decided to compute the life expectancy with the smallest unit */      printf("Problem with resultfile: %s\n", filerespow);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      nhstepm is the number of hstepm from age to agelim    }
      nstepm is the number of stepm from age to agelin.    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      Look at hpijx to understand the reason of that which relies in memory size    for (i=1;i<=nlstate;i++)
      and note for a fixed period like estepm months */      for(j=1;j<=nlstate+ndeath;j++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      survival function given by stepm (the optimization length). Unfortunately it    fprintf(ficrespow,"\n");
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    powell(p,xi,npar,ftol,&iter,&fret,func);
      results. So we changed our mind and took the option of the best precision.  
   */    fclose(ficrespow);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   agelim=AGESUP;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /**** Computes Hessian and covariance matrix ***/
     /* if (stepm >= YEARM) hstepm=1;*/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double  **a,**y,*x,pd;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double **hess;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int i, j,jk;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      int *indx;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1; i<=nlstate;i++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for(j=1; j<=nlstate;j++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    void ludcmp(double **a, int npar, int *indx, double *d) ;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double gompertz(double p[]);
         }    hess=matrix(1,npar,1,npar);
     fprintf(ficreseij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
       for(j=1; j<=nlstate;j++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
     fprintf(ficreseij,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
   }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 }      
       /*  printf(" %f ",p[i]);
 /************ Variance ******************/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    }
 {    
   /* Variance of health expectancies */    for (i=1;i<=npar;i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++)  {
   double **newm;        if (j>i) { 
   double **dnewm,**doldm;          printf(".%d%d",i,j);fflush(stdout);
   int i, j, nhstepm, hstepm, h, nstepm ;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int k, cptcode;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double *xp;          
   double **gp, **gm;          hess[j][i]=hess[i][j];    
   double ***gradg, ***trgradg;          /*printf(" %lf ",hess[i][j]);*/
   double ***p3mat;        }
   double age,agelim, hf;      }
   int theta;    }
     printf("\n");
    fprintf(ficresvij,"# Covariances of life expectancies\n");    fprintf(ficlog,"\n");
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   xp=vector(1,npar);    x=vector(1,npar);
   dnewm=matrix(1,nlstate,1,npar);    indx=ivector(1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   if(estepm < stepm){    ludcmp(a,npar,indx,&pd);
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    for (j=1;j<=npar;j++) {
   else  hstepm=estepm;        for (i=1;i<=npar;i++) x[i]=0;
   /* For example we decided to compute the life expectancy with the smallest unit */      x[j]=1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      lubksb(a,npar,indx,x);
      nhstepm is the number of hstepm from age to agelim      for (i=1;i<=npar;i++){ 
      nstepm is the number of stepm from age to agelin.        matcov[i][j]=x[i];
      Look at hpijx to understand the reason of that which relies in memory size      }
      and note for a fixed period like k years */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    printf("\n#Hessian matrix#\n");
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficlog,"\n#Hessian matrix#\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++) { 
      results. So we changed our mind and took the option of the best precision.      for (j=1;j<=npar;j++) { 
   */        printf("%.3e ",hess[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficlog,"%.3e ",hess[i][j]);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* Recompute Inverse */
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++)
     gm=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*  printf("\n#Hessian matrix recomputed#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (j=1;j<=npar;j++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++) x[i]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      x[j]=1;
       lubksb(a,npar,indx,x);
       if (popbased==1) {      for (i=1;i<=npar;i++){ 
         for(i=1; i<=nlstate;i++)        y[i][j]=x[i];
           prlim[i][i]=probs[(int)age][i][ij];        printf("%.3e ",y[i][j]);
       }        fprintf(ficlog,"%.3e ",y[i][j]);
        }
       for(j=1; j<= nlstate; j++){      printf("\n");
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    */
         }  
       }    free_matrix(a,1,npar,1,npar);
        free_matrix(y,1,npar,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    free_vector(x,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_ivector(indx,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(hess,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
    
       if (popbased==1) {  }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
       for(j=1; j<= nlstate; j++){    int i;
         for(h=0; h<=nhstepm; h++){    int l=1, lmax=20;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double k1,k2;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double p2[NPARMAX+1];
         }    double res;
       }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
       for(j=1; j<= nlstate; j++)    int k=0,kmax=10;
         for(h=0; h<=nhstepm; h++){    double l1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    fx=func(x);
     } /* End theta */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      l1=pow(10,l);
       delts=delt;
     for(h=0; h<=nhstepm; h++)      for(k=1 ; k <kmax; k=k+1){
       for(j=1; j<=nlstate;j++)        delt = delta*(l1*k);
         for(theta=1; theta <=npar; theta++)        p2[theta]=x[theta] +delt;
           trgradg[h][j][theta]=gradg[h][theta][j];        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        k2=func(p2)-fx;
     for(i=1;i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(j=1;j<=nlstate;j++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         vareij[i][j][(int)age] =0.;        
   #ifdef DEBUG
     for(h=0;h<=nhstepm;h++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(k=0;k<=nhstepm;k++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  #endif
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for(i=1;i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           for(j=1;j<=nlstate;j++)          k=kmax;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10.;
         }
     fprintf(ficresvij,"%.0f ",age );        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(i=1; i<=nlstate;i++)          delts=delt;
       for(j=1; j<=nlstate;j++){        }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      }
       }    }
     fprintf(ficresvij,"\n");    delti[theta]=delts;
     free_matrix(gp,0,nhstepm,1,nlstate);    return res; 
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   } /* End age */  {
      int i;
   free_vector(xp,1,npar);    int l=1, l1, lmax=20;
   free_matrix(doldm,1,nlstate,1,npar);    double k1,k2,k3,k4,res,fx;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double p2[NPARMAX+1];
     int k;
 }  
     fx=func(x);
 /************ Variance of prevlim ******************/    for (k=1; k<=2; k++) {
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (i=1;i<=npar;i++) p2[i]=x[i];
 {      p2[thetai]=x[thetai]+delti[thetai]/k;
   /* Variance of prevalence limit */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      k1=func(p2)-fx;
   double **newm;    
   double **dnewm,**doldm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int i, j, nhstepm, hstepm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int k, cptcode;      k2=func(p2)-fx;
   double *xp;    
   double *gp, *gm;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double **gradg, **trgradg;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double age,agelim;      k3=func(p2)-fx;
   int theta;    
          p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresvpl,"# Age");      k4=func(p2)-fx;
   for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       fprintf(ficresvpl," %1d-%1d",i,i);  #ifdef DEBUG
   fprintf(ficresvpl,"\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   xp=vector(1,npar);  #endif
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);    return res;
    }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /************** Inverse of matrix **************/
   agelim = AGESUP;  void ludcmp(double **a, int n, int *indx, double *d) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  { 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int i,imax,j,k; 
     if (stepm >= YEARM) hstepm=1;    double big,dum,sum,temp; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double *vv; 
     gradg=matrix(1,npar,1,nlstate);   
     gp=vector(1,nlstate);    vv=vector(1,n); 
     gm=vector(1,nlstate);    *d=1.0; 
     for (i=1;i<=n;i++) { 
     for(theta=1; theta <=npar; theta++){      big=0.0; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=n;j++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      vv[i]=1.0/big; 
       for(i=1;i<=nlstate;i++)    } 
         gp[i] = prlim[i][i];    for (j=1;j<=n;j++) { 
          for (i=1;i<j;i++) { 
       for(i=1; i<=npar; i++) /* Computes gradient */        sum=a[i][j]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        a[i][j]=sum; 
       for(i=1;i<=nlstate;i++)      } 
         gm[i] = prlim[i][i];      big=0.0; 
       for (i=j;i<=n;i++) { 
       for(i=1;i<=nlstate;i++)        sum=a[i][j]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        for (k=1;k<j;k++) 
     } /* End theta */          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     trgradg =matrix(1,nlstate,1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     for(j=1; j<=nlstate;j++)          imax=i; 
       for(theta=1; theta <=npar; theta++)        } 
         trgradg[j][theta]=gradg[theta][j];      } 
       if (j != imax) { 
     for(i=1;i<=nlstate;i++)        for (k=1;k<=n;k++) { 
       varpl[i][(int)age] =0.;          dum=a[imax][k]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          a[imax][k]=a[j][k]; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          a[j][k]=dum; 
     for(i=1;i<=nlstate;i++)        } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        *d = -(*d); 
         vv[imax]=vv[j]; 
     fprintf(ficresvpl,"%.0f ",age );      } 
     for(i=1; i<=nlstate;i++)      indx[j]=imax; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fprintf(ficresvpl,"\n");      if (j != n) { 
     free_vector(gp,1,nlstate);        dum=1.0/(a[j][j]); 
     free_vector(gm,1,nlstate);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     free_matrix(gradg,1,npar,1,nlstate);      } 
     free_matrix(trgradg,1,nlstate,1,npar);    } 
   } /* End age */    free_vector(vv,1,n);  /* Doesn't work */
   ;
   free_vector(xp,1,npar);  } 
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
 }    int i,ii=0,ip,j; 
     double sum; 
 /************ Variance of one-step probabilities  ******************/   
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    for (i=1;i<=n;i++) { 
 {      ip=indx[i]; 
   int i, j;      sum=b[ip]; 
   int k=0, cptcode;      b[ip]=b[i]; 
   double **dnewm,**doldm;      if (ii) 
   double *xp;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   double *gp, *gm;      else if (sum) ii=i; 
   double **gradg, **trgradg;      b[i]=sum; 
   double age,agelim, cov[NCOVMAX];    } 
   int theta;    for (i=n;i>=1;i--) { 
   char fileresprob[FILENAMELENGTH];      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   strcpy(fileresprob,"prob");      b[i]=sum/a[i][i]; 
   strcat(fileresprob,fileres);    } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  } 
     printf("Problem with resultfile: %s\n", fileresprob);  
   }  /************ Frequencies ********************/
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
    {  /* Some frequencies */
     
   xp=vector(1,npar);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int first;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    double ***freq; /* Frequencies */
      double *pp, **prop;
   cov[1]=1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   for (age=bage; age<=fage; age ++){    FILE *ficresp;
     cov[2]=age;    char fileresp[FILENAMELENGTH];
     gradg=matrix(1,npar,1,9);    
     trgradg=matrix(1,9,1,npar);    pp=vector(1,nlstate);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    prop=matrix(1,nlstate,iagemin,iagemax+3);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
     for(theta=1; theta <=npar; theta++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
       for(i=1; i<=npar; i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
            exit(0);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
        freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       k=0;    j1=0;
       for(i=1; i<= (nlstate+ndeath); i++){    
         for(j=1; j<=(nlstate+ndeath);j++){    j=cptcoveff;
            k=k+1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           gp[k]=pmmij[i][j];  
         }    first=1;
       }  
     for(k1=1; k1<=j;k1++){
       for(i=1; i<=npar; i++)      for(i1=1; i1<=ncodemax[k1];i1++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        j1++;
            /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        for (i=-1; i<=nlstate+ndeath; i++)  
       k=0;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       for(i=1; i<=(nlstate+ndeath); i++){            for(m=iagemin; m <= iagemax+3; m++)
         for(j=1; j<=(nlstate+ndeath);j++){              freq[i][jk][m]=0;
           k=k+1;  
           gm[k]=pmmij[i][j];      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
       }          prop[i][m]=0;
              
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        dateintsum=0;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          k2cpt=0;
     }        for (i=1; i<=imx; i++) {
           bool=1;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          if  (cptcovn>0) {
       for(theta=1; theta <=npar; theta++)            for (z1=1; z1<=cptcoveff; z1++) 
       trgradg[j][theta]=gradg[theta][j];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
      pmij(pmmij,cov,ncovmodel,x,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
      k=0;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      for(i=1; i<=(nlstate+ndeath); i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        for(j=1; j<=(nlstate+ndeath);j++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
          k=k+1;                if (m<lastpass) {
          gm[k]=pmmij[i][j];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      }                }
                      
      /*printf("\n%d ",(int)age);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                  dateintsum=dateintsum+k2;
                          k2cpt++;
                 }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                /*}*/
      }*/            }
           }
   fprintf(ficresprob,"\n%d ",(int)age);        }
          
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        if  (cptcovn>0) {
   }          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(ficresp, "**********\n#");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(i=1; i<=nlstate;i++) 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 }        fprintf(ficresp, "\n");
  free_vector(xp,1,npar);        
 fclose(ficresprob);        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
 }            fprintf(ficlog,"Total");
           }else{
 /******************* Printing html file ***********/            if(first==1){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              first=0;
  int lastpass, int stepm, int weightopt, char model[],\              printf("See log file for details...\n");
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \            }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\            fprintf(ficlog,"Age %d", i);
  char version[], int popforecast, int estepm ){          }
   int jj1, k1, i1, cpt;          for(jk=1; jk <=nlstate ; jk++){
   FILE *fichtm;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   /*char optionfilehtm[FILENAMELENGTH];*/              pp[jk] += freq[jk][m][i]; 
           }
   strcpy(optionfilehtm,optionfile);          for(jk=1; jk <=nlstate ; jk++){
   strcat(optionfilehtm,".htm");            for(m=-1, pos=0; m <=0 ; m++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              pos += freq[jk][m][i];
     printf("Problem with %s \n",optionfilehtm), exit(0);            if(pp[jk]>=1.e-10){
   }              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 \n            }else{
 Total number of observations=%d <br>\n              if(first==1)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 <hr  size=\"2\" color=\"#EC5E5E\">              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  <ul><li>Outputs files<br>\n            }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          for(jk=1; jk <=nlstate ; jk++){
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n              pp[jk] += freq[jk][m][i];
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,estepm);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
  fprintf(fichtm,"\n            pos += pp[jk];
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n            posprop += prop[jk][i];
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          for(jk=1; jk <=nlstate ; jk++){
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            if(pos>=1.e-5){
               if(first==1)
  if(popforecast==1) fprintf(fichtm,"\n                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            }else{
         <br>",fileres,fileres,fileres,fileres);              if(first==1)
  else                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 fprintf(fichtm," <li>Graphs</li><p>");            }
             if( i <= iagemax){
  m=cptcoveff;              if(pos>=1.e-5){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
  jj1=0;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
  for(k1=1; k1<=m;k1++){              }
    for(i1=1; i1<=ncodemax[k1];i1++){              else
        jj1++;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
        if (cptcovn > 0) {            }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }
          for (cpt=1; cpt<=cptcoveff;cpt++)          
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for(jk=-1; jk <=nlstate+ndeath; jk++)
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            for(m=-1; m <=nlstate+ndeath; m++)
        }              if(freq[jk][m][i] !=0 ) {
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              if(first==1)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
        for(cpt=1; cpt<nlstate;cpt++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(i <= iagemax)
        }            fprintf(ficresp,"\n");
     for(cpt=1; cpt<=nlstate;cpt++) {          if(first==1)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            printf("Others in log...\n");
 interval) in state (%d): v%s%d%d.gif <br>          fprintf(ficlog,"\n");
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
      }      }
      for(cpt=1; cpt<=nlstate;cpt++) {    }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    dateintmean=dateintsum/k2cpt; 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   
      }    fclose(ficresp);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
 health expectancies in states (1) and (2): e%s%d.gif<br>    free_vector(pp,1,nlstate);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 fprintf(fichtm,"\n</body>");    /* End of Freq */
    }  }
    }  
 fclose(fichtm);  /************ Prevalence ********************/
 }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
 /******************* Gnuplot file **************/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    */
    
   strcpy(optionfilegnuplot,optionfilefiname);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   strcat(optionfilegnuplot,".gp.txt");    double ***freq; /* Frequencies */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    double *pp, **prop;
     printf("Problem with file %s",optionfilegnuplot);    double pos,posprop; 
   }    double  y2; /* in fractional years */
     int iagemin, iagemax;
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);    iagemin= (int) agemin;
 #endif    iagemax= (int) agemax;
 m=pow(2,cptcoveff);    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
  /* 1eme*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {    j1=0;
    for (k1=1; k1<= m ; k1 ++) {    
     j=cptcoveff;
 #ifdef windows    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    
 #endif    for(k1=1; k1<=j;k1++){
 #ifdef unix      for(i1=1; i1<=ncodemax[k1];i1++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        j1++;
 #endif        
         for (i=1; i<=nlstate; i++)  
 for (i=1; i<= nlstate ; i ++) {          for(m=iagemin; m <= iagemax+3; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            prop[i][m]=0.0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");       
 }        for (i=1; i<=imx; i++) { /* Each individual */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          bool=1;
     for (i=1; i<= nlstate ; i ++) {          if  (cptcovn>0) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for (z1=1; z1<=cptcoveff; z1++) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 }                bool=0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          } 
      for (i=1; i<= nlstate ; i ++) {          if (bool==1) { 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 }                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 #ifdef unix                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 fprintf(ficgp,"\nset ter gif small size 400,300");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 #endif                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
    }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                  prop[s[m][i]][iagemax+3] += weight[i]; 
   /*2 eme*/                } 
               }
   for (k1=1; k1<= m ; k1 ++) {            } /* end selection of waves */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          }
            }
     for (i=1; i<= nlstate+1 ; i ++) {        for(i=iagemin; i <= iagemax+3; i++){  
       k=2*i;          
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for (j=1; j<= nlstate+1 ; j ++) {            posprop += prop[jk][i]; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }            for(jk=1; jk <=nlstate ; jk++){     
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            if( i <=  iagemax){ 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              if(posprop>=1.e-5){ 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                probs[i][jk][j1]= prop[jk][i]/posprop;
       for (j=1; j<= nlstate+1 ; j ++) {              } 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            } 
         else fprintf(ficgp," \%%*lf (\%%*lf)");          }/* end jk */ 
 }          }/* end i */ 
       fprintf(ficgp,"\" t\"\" w l 0,");      } /* end i1 */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    } /* end k1 */
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*free_vector(pp,1,nlstate);*/
 }      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  }  /* End of prevalence */
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }  /************* Waves Concatenation ***************/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
   /*3eme*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
   for (k1=1; k1<= m ; k1 ++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     for (cpt=1; cpt<= nlstate ; cpt ++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       k=2+nlstate*(cpt-1);       and mw[mi+1][i]. dh depends on stepm.
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       */
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    int i, mi, m;
       }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       double sum=0., jmean=0.;*/
     }    int first;
     }    int j, k=0,jk, ju, jl;
      double sum=0.;
   /* CV preval stat */    first=0;
     for (k1=1; k1<= m ; k1 ++) {    jmin=1e+5;
     for (cpt=1; cpt<nlstate ; cpt ++) {    jmax=-1;
       k=3;    jmean=0.;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    for(i=1; i<=imx; i++){
       mi=0;
       for (i=1; i< nlstate ; i ++)      m=firstpass;
         fprintf(ficgp,"+$%d",k+i+1);      while(s[m][i] <= nlstate){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        if(s[m][i]>=1)
                mw[++mi][i]=m;
       l=3+(nlstate+ndeath)*cpt;        if(m >=lastpass)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          break;
       for (i=1; i< nlstate ; i ++) {        else
         l=3+(nlstate+ndeath)*cpt;          m++;
         fprintf(ficgp,"+$%d",l+i+1);      }/* end while */
       }      if (s[m][i] > nlstate){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          mi++;     /* Death is another wave */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
   }          mw[mi][i]=m;
        }
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){      wav[i]=mi;
     for(k=1; k <=(nlstate+ndeath); k++){      if(mi==0){
       if (k != i) {        nbwarn++;
         for(j=1; j <=ncovmodel; j++){        if(first==0){
                  printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          first=1;
           jk++;        }
           fprintf(ficgp,"\n");        if(first==1){
         }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       }        }
     }      } /* end mi==0 */
     }    } /* End individuals */
   
     for(jk=1; jk <=m; jk++) {    for(i=1; i<=imx; i++){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      for(mi=1; mi<wav[i];mi++){
    i=1;        if (stepm <=0)
    for(k2=1; k2<=nlstate; k2++) {          dh[mi][i]=1;
      k3=i;        else{
      for(k=1; k<=(nlstate+ndeath); k++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
        if (k != k2){            if (agedc[i] < 2*AGESUP) {
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 ij=1;              if(j==0) j=1;  /* Survives at least one month after exam */
         for(j=3; j <=ncovmodel; j++) {              else if(j<0){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                nberr++;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             ij++;                j=1; /* Temporary Dangerous patch */
           }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           else                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         }              }
           fprintf(ficgp,")/(1");              k=k+1;
                      if (j >= jmax) jmax=j;
         for(k1=1; k1 <=nlstate; k1++){                if (j <= jmin) jmin=j;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              sum=sum+j;
 ij=1;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for(j=3; j <=ncovmodel; j++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;          else{
           }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           else            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            k=k+1;
           }            if (j >= jmax) jmax=j;
           fprintf(ficgp,")");            else if (j <= jmin)jmin=j;
         }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            if(j<0){
         i=i+ncovmodel;              nberr++;
        }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }            }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            sum=sum+j;
    }          }
              jk= j/stepm;
   fclose(ficgp);          jl= j -jk*stepm;
 }  /* end gnuplot */          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
 /*************** Moving average **************/              dh[mi][i]=jk;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   int i, cpt, cptcod;                    * at the price of an extra matrix product in likelihood */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              dh[mi][i]=jk+1;
       for (i=1; i<=nlstate;i++)              bh[mi][i]=ju;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            }
           mobaverage[(int)agedeb][i][cptcod]=0.;          }else{
                if(jl <= -ju){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              dh[mi][i]=jk;
       for (i=1; i<=nlstate;i++){              bh[mi][i]=jl;       /* bias is positive if real duration
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                   * is higher than the multiple of stepm and negative otherwise.
           for (cpt=0;cpt<=4;cpt++){                                   */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            }
           }            else{
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
       }            }
     }            if(dh[mi][i]==0){
                  dh[mi][i]=1; /* At least one step */
 }              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
 /************** Forecasting ******************/          } /* end if mle */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
        } /* end wave */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;    jmean=sum/k;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double *popeffectif,*popcount;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double ***p3mat;   }
   char fileresf[FILENAMELENGTH];  
   /*********** Tricode ****************************/
  agelim=AGESUP;  void tricode(int *Tvar, int **nbcode, int imx)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  {
     
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int Ndum[20],ij=1, k, j, i, maxncov=19;
      int cptcode=0;
      cptcoveff=0; 
   strcpy(fileresf,"f");   
   strcat(fileresf,fileres);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    for (k=1; k<=7; k++) ncodemax[k]=0;
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   printf("Computing forecasting: result on file '%s' \n", fileresf);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
   if (mobilav==1) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     movingaverage(agedeb, fage, ageminpar, mobaverage);                                         Tvar[j]. If V=sex and male is 0 and 
   }                                         female is 1, then  cptcode=1.*/
       }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;      for (i=0; i<=cptcode; i++) {
          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   agelim=AGESUP;      }
    
   hstepm=1;      ij=1; 
   hstepm=hstepm/stepm;      for (i=1; i<=ncodemax[j]; i++) {
   yp1=modf(dateintmean,&yp);        for (k=0; k<= maxncov; k++) {
   anprojmean=yp;          if (Ndum[k] != 0) {
   yp2=modf((yp1*12),&yp);            nbcode[Tvar[j]][ij]=k; 
   mprojmean=yp;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   yp1=modf((yp2*30.5),&yp);            
   jprojmean=yp;            ij++;
   if(jprojmean==0) jprojmean=1;          }
   if(mprojmean==0) jprojmean=1;          if (ij > ncodemax[j]) break; 
          }  
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      } 
      }  
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
       k=k+1;  
       fprintf(ficresf,"\n#******");   for (i=1; i<=ncovmodel-2; i++) { 
       for(j=1;j<=cptcoveff;j++) {     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     ij=Tvar[i];
       }     Ndum[ij]++;
       fprintf(ficresf,"******\n");   }
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);   ij=1;
         for (i=1; i<= maxncov; i++) {
           if((Ndum[i]!=0) && (i<=ncovcol)){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {       Tvaraff[ij]=i; /*For printing */
         fprintf(ficresf,"\n");       ij++;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);       }
    }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   cptcoveff=ij-1; /*Number of simple covariates*/
           nhstepm = nhstepm/hstepm;  }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*********** Health Expectancies ****************/
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
          
           for (h=0; h<=nhstepm; h++){  {
             if (h==(int) (calagedate+YEARM*cpt)) {    /* Health expectancies */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
             }    double age, agelim, hf;
             for(j=1; j<=nlstate+ndeath;j++) {    double ***p3mat,***varhe;
               kk1=0.;kk2=0;    double **dnewm,**doldm;
               for(i=1; i<=nlstate;i++) {                  double *xp;
                 if (mobilav==1)    double **gp, **gm;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double ***gradg, ***trgradg;
                 else {    int theta;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                    xp=vector(1,npar);
               }    dnewm=matrix(1,nlstate*nlstate,1,npar);
               if (h==(int)(calagedate+12*cpt)){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                 fprintf(ficresf," %.3f", kk1);    
                            fprintf(ficreseij,"# Health expectancies\n");
               }    fprintf(ficreseij,"# Age");
             }    for(i=1; i<=nlstate;i++)
           }      for(j=1; j<=nlstate;j++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         }    fprintf(ficreseij,"\n");
       }  
     }    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
            }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   fclose(ficresf);     * This is mainly to measure the difference between two models: for example
 }     * if stepm=24 months pijx are given only every 2 years and by summing them
 /************** Forecasting ******************/     * we are calculating an estimate of the Life Expectancy assuming a linear 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   int *popage;     * to compare the new estimate of Life expectancy with the same linear 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     * hypothesis. A more precise result, taking into account a more precise
   double *popeffectif,*popcount;     * curvature will be obtained if estepm is as small as stepm. */
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       nhstepm is the number of hstepm from age to agelim 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       nstepm is the number of stepm from age to agelin. 
   agelim=AGESUP;       Look at hpijx to understand the reason of that which relies in memory size
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       and note for a fixed period like estepm months */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcpy(filerespop,"pop");       results. So we changed our mind and took the option of the best precision.
   strcat(filerespop,fileres);    */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }    agelim=AGESUP;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (mobilav==1) {      /* if (stepm >= YEARM) hstepm=1;*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   if (stepm<=12) stepsize=1;  
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   agelim=AGESUP;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   hstepm=1;   
   hstepm=hstepm/stepm;  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      /* Computing  Variances of health expectancies */
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }       for(theta=1; theta <=npar; theta++){
     popage=ivector(0,AGESUP);        for(i=1; i<=npar; i++){ 
     popeffectif=vector(0,AGESUP);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     popcount=vector(0,AGESUP);        }
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        cptj=0;
            for(j=1; j<= nlstate; j++){
     imx=i;          for(i=1; i<=nlstate; i++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            cptj=cptj+1;
   }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   for(cptcov=1;cptcov<=i2;cptcov++){            }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
       k=k+1;        }
       fprintf(ficrespop,"\n#******");       
       for(j=1;j<=cptcoveff;j++) {       
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=npar; i++) 
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficrespop,"******\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficrespop,"# Age");        
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        cptj=0;
       if (popforecast==1)  fprintf(ficrespop," [Population]");        for(j=1; j<= nlstate; j++){
                for(i=1;i<=nlstate;i++){
       for (cpt=0; cpt<=0;cpt++) {            cptj=cptj+1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;          }
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<= nlstate*nlstate; j++)
           oldm=oldms;savm=savms;          for(h=0; h<=nhstepm-1; h++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  }
           for (h=0; h<=nhstepm; h++){       } 
             if (h==(int) (calagedate+YEARM*cpt)) {     
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /* End theta */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                     for(h=0; h<=nhstepm-1; h++)
                 if (mobilav==1)        for(j=1; j<=nlstate*nlstate;j++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(theta=1; theta <=npar; theta++)
                 else {            trgradg[h][j][theta]=gradg[h][theta][j];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       
                 }  
               }       for(i=1;i<=nlstate*nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){        for(j=1;j<=nlstate*nlstate;j++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          varhe[i][j][(int)age] =0.;
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/       printf("%d|",(int)age);fflush(stdout);
               }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             }       for(h=0;h<=nhstepm-1;h++){
             for(i=1; i<=nlstate;i++){        for(k=0;k<=nhstepm-1;k++){
               kk1=0.;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                 for(j=1; j<=nlstate;j++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          for(i=1;i<=nlstate*nlstate;i++)
                 }            for(j=1;j<=nlstate*nlstate;j++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
             }        }
       }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      /* Computing expectancies */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      for(i=1; i<=nlstate;i++)
           }        for(j=1; j<=nlstate;j++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /******/  
           }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficreseij,"%3.0f",age );
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      cptj=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;        for(j=1; j<=nlstate;j++){
                    cptj++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficreseij,"\n");
           for (h=0; h<=nhstepm; h++){     
             if (h==(int) (calagedate+YEARM*cpt)) {      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
             }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
               kk1=0.;kk2=0;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               for(i=1; i<=nlstate;i++) {                  }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        printf("\n");
               }    fprintf(ficlog,"\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }    free_vector(xp,1,npar);
           }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       }  }
    }  
   }  /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
     /* Variance of health expectancies */
   if (popforecast==1) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     free_ivector(popage,0,AGESUP);    /* double **newm;*/
     free_vector(popeffectif,0,AGESUP);    double **dnewm,**doldm;
     free_vector(popcount,0,AGESUP);    double **dnewmp,**doldmp;
   }    int i, j, nhstepm, hstepm, h, nstepm ;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int k, cptcode;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp;
   fclose(ficrespop);    double **gp, **gm;  /* for var eij */
 }    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
 /***********************************************/    double *gpp, *gmp; /* for var p point j */
 /**************** Main Program *****************/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 /***********************************************/    double ***p3mat;
     double age,agelim, hf;
 int main(int argc, char *argv[])    double ***mobaverage;
 {    int theta;
     char digit[4];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    char digitp[25];
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    char fileresprobmorprev[FILENAMELENGTH];
   
   double fret;    if(popbased==1){
   double **xi,tmp,delta;      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   double dum; /* Dummy variable */      else strcpy(digitp,"-populbased-nomobil-");
   double ***p3mat;    }
   int *indx;    else 
   char line[MAXLINE], linepar[MAXLINE];      strcpy(digitp,"-stablbased-");
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    if (mobilav!=0) {
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   char filerest[FILENAMELENGTH];      }
   char fileregp[FILENAMELENGTH];    }
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    strcpy(fileresprobmorprev,"prmorprev"); 
   int firstobs=1, lastobs=10;    sprintf(digit,"%-d",ij);
   int sdeb, sfin; /* Status at beginning and end */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   int c,  h , cpt,l;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   int ju,jl, mi;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    strcat(fileresprobmorprev,fileres);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   int mobilav=0,popforecast=0;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   int hstepm, nhstepm;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double bage, fage, age, agelim, agebase;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double ftolpl=FTOL;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   double **prlim;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   double *severity;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double ***param; /* Matrix of parameters */      fprintf(ficresprobmorprev," p.%-d SE",j);
   double  *p;      for(i=1; i<=nlstate;i++)
   double **matcov; /* Matrix of covariance */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double ***delti3; /* Scale */    }  
   double *delti; /* Scale */    fprintf(ficresprobmorprev,"\n");
   double ***eij, ***vareij;    fprintf(ficgp,"\n# Routine varevsij");
   double **varpl; /* Variances of prevalence limits by age */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double *epj, vepp;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double kk1, kk2;  /*   } */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";    fprintf(ficresvij,"# Age");
   char *alph[]={"a","a","b","c","d","e"}, str[4];    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   char z[1]="c", occ;    fprintf(ficresvij,"\n");
 #include <sys/time.h>  
 #include <time.h>    xp=vector(1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   /* long total_usecs;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   struct timeval start_time, end_time;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   getcwd(pathcd, size);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   printf("\n%s",version);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if(argc <=1){    
     printf("\nEnter the parameter file name: ");    if(estepm < stepm){
     scanf("%s",pathtot);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   else{    else  hstepm=estepm;   
     strcpy(pathtot,argv[1]);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       nhstepm is the number of hstepm from age to agelim 
   /*cygwin_split_path(pathtot,path,optionfile);       nstepm is the number of stepm from age to agelin. 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       Look at hpijx to understand the reason of that which relies in memory size
   /* cutv(path,optionfile,pathtot,'\\');*/       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       survival function given by stepm (the optimization length). Unfortunately it
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       means that if the survival funtion is printed every two years of age and if
   chdir(path);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   replace(pathc,path);       results. So we changed our mind and took the option of the best precision.
     */
 /*-------- arguments in the command line --------*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
   strcpy(fileres,"r");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcat(fileres, optionfilefiname);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   strcat(fileres,".txt");    /* Other files have txt extension */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------arguments file --------*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      gm=matrix(0,nhstepm,1,nlstate);
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;  
   }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   strcpy(filereso,"o");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcat(filereso,fileres);        }
   if((ficparo=fopen(filereso,"w"))==NULL) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }  
         if (popbased==1) {
   /* Reads comments: lines beginning with '#' */          if(mobilav ==0){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }else{ /* mobilav */ 
     puts(line);            for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   ungetc(c,ficpar);        }
     
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for(j=1; j<= nlstate; j++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          for(h=0; h<=nhstepm; h++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        /* This for computing probability of death (h=1 means
     fputs(line,ficparo);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   ungetc(c,ficpar);        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gpp[j]=0.; i<= nlstate; i++)
   covar=matrix(0,NCOVMAX,1,n);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   cptcovn=0;        }    
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        /* end probability of death */
   
   ncovmodel=2+cptcovn;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /* Read guess parameters */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */   
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popbased==1) {
     ungetc(c,ficpar);          if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){        for(j=1; j<= nlstate; j++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(h=0; h<=nhstepm; h++){
       fprintf(ficparo,"%1d%1d",i1,j1);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       printf("%1d%1d",i,j);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(k=1; k<=ncovmodel;k++){          }
         fscanf(ficpar," %lf",&param[i][j][k]);        }
         printf(" %lf",param[i][j][k]);        /* This for computing probability of death (h=1 means
         fprintf(ficparo," %lf",param[i][j][k]);           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
       fscanf(ficpar,"\n");        */
       printf("\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficparo,"\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        /* end probability of death */
   
   p=param[1][1];        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
   /* Reads comments: lines beginning with '#' */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     puts(line);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fputs(line,ficparo);        }
   }  
   ungetc(c,ficpar);      } /* End theta */
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){      for(h=0; h<=nhstepm; h++) /* veij */
     for(j=1; j <=nlstate+ndeath-1; j++){        for(j=1; j<=nlstate;j++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(theta=1; theta <=npar; theta++)
       printf("%1d%1d",i,j);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         fscanf(ficpar,"%le",&delti3[i][j][k]);        for(theta=1; theta <=npar; theta++)
         printf(" %le",delti3[i][j][k]);          trgradgp[j][theta]=gradgp[theta][j];
         fprintf(ficparo," %le",delti3[i][j][k]);    
       }  
       fscanf(ficpar,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       printf("\n");      for(i=1;i<=nlstate;i++)
       fprintf(ficparo,"\n");        for(j=1;j<=nlstate;j++)
     }          vareij[i][j][(int)age] =0.;
   }  
   delti=delti3[1][1];      for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
   /* Reads comments: lines beginning with '#' */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     ungetc(c,ficpar);          for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);            for(j=1;j<=nlstate;j++)
     puts(line);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     fputs(line,ficparo);        }
   }      }
   ungetc(c,ficpar);    
        /* pptj */
   matcov=matrix(1,npar,1,npar);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   for(i=1; i <=npar; i++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     fscanf(ficpar,"%s",&str);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     printf("%s",str);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fprintf(ficparo,"%s",str);          varppt[j][i]=doldmp[j][i];
     for(j=1; j <=i; j++){      /* end ppptj */
       fscanf(ficpar," %le",&matcov[i][j]);      /*  x centered again */
       printf(" %.5le",matcov[i][j]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficparo," %.5le",matcov[i][j]);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     }   
     fscanf(ficpar,"\n");      if (popbased==1) {
     printf("\n");        if(mobilav ==0){
     fprintf(ficparo,"\n");          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=probs[(int)age][i][ij];
   for(i=1; i <=npar; i++)        }else{ /* mobilav */ 
     for(j=i+1;j<=npar;j++)          for(i=1; i<=nlstate;i++)
       matcov[i][j]=matcov[j][i];            prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   printf("\n");      }
                
       /* This for computing probability of death (h=1 means
     /*-------- Rewriting paramater file ----------*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      strcpy(rfileres,"r");    /* "Rparameterfile */         as a weighted average of prlim.
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      */
      strcat(rfileres,".");    /* */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     if((ficres =fopen(rfileres,"w"))==NULL) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      }    
     }      /* end probability of death */
     fprintf(ficres,"#%s\n",version);  
          fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     /*-------- data file ----------*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     if((fic=fopen(datafile,"r"))==NULL)    {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       printf("Problem with datafile: %s\n", datafile);goto end;        for(i=1; i<=nlstate;i++){
     }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
     n= lastobs;      } 
     severity = vector(1,maxwav);      fprintf(ficresprobmorprev,"\n");
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);      fprintf(ficresvij,"%.0f ",age );
     moisnais=vector(1,n);      for(i=1; i<=nlstate;i++)
     annais=vector(1,n);        for(j=1; j<=nlstate;j++){
     moisdc=vector(1,n);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     andc=vector(1,n);        }
     agedc=vector(1,n);      fprintf(ficresvij,"\n");
     cod=ivector(1,n);      free_matrix(gp,0,nhstepm,1,nlstate);
     weight=vector(1,n);      free_matrix(gm,0,nhstepm,1,nlstate);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     mint=matrix(1,maxwav,1,n);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     anint=matrix(1,maxwav,1,n);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     s=imatrix(1,maxwav+1,1,n);    } /* End age */
     adl=imatrix(1,maxwav+1,1,n);        free_vector(gpp,nlstate+1,nlstate+ndeath);
     tab=ivector(1,NCOVMAX);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     ncodemax=ivector(1,8);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     i=1;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     while (fgets(line, MAXLINE, fic) != NULL)    {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
          /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         for (j=maxwav;j>=1;j--){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           strcpy(line,stra);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
            fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     free_vector(xp,1,npar);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(doldm,1,nlstate,1,nlstate);
         for (j=ncovcol;j>=1;j--){    free_matrix(dnewm,1,nlstate,1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         num[i]=atol(stra);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fclose(ficresprobmorprev);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fflush(ficgp);
     fflush(fichtm); 
         i=i+1;  }  /* end varevsij */
       }  
     }  /************ Variance of prevlim ******************/
     /* printf("ii=%d", ij);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
        scanf("%d",i);*/  {
   imx=i-1; /* Number of individuals */    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /* for (i=1; i<=imx; i++){    double **newm;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    double **dnewm,**doldm;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int i, j, nhstepm, hstepm;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int k, cptcode;
     }*/    double *xp;
      double *gp, *gm;
   /* for (i=1; i<=imx; i++){    double **gradg, **trgradg;
      if (s[4][i]==9)  s[4][i]=-1;    double age,agelim;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}    int theta;
   */     
      fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   /* Calculation of the number of parameter from char model*/    fprintf(ficresvpl,"# Age");
   Tvar=ivector(1,15);    for(i=1; i<=nlstate;i++)
   Tprod=ivector(1,15);        fprintf(ficresvpl," %1d-%1d",i,i);
   Tvaraff=ivector(1,15);    fprintf(ficresvpl,"\n");
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          xp=vector(1,npar);
        dnewm=matrix(1,nlstate,1,npar);
   if (strlen(model) >1){    doldm=matrix(1,nlstate,1,nlstate);
     j=0, j1=0, k1=1, k2=1;    
     j=nbocc(model,'+');    hstepm=1*YEARM; /* Every year of age */
     j1=nbocc(model,'*');    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     cptcovn=j+1;    agelim = AGESUP;
     cptcovprod=j1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     strcpy(modelsav,model);      if (stepm >= YEARM) hstepm=1;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       printf("Error. Non available option model=%s ",model);      gradg=matrix(1,npar,1,nlstate);
       goto end;      gp=vector(1,nlstate);
     }      gm=vector(1,nlstate);
      
     for(i=(j+1); i>=1;i--){      for(theta=1; theta <=npar; theta++){
       cutv(stra,strb,modelsav,'+');        for(i=1; i<=npar; i++){ /* Computes gradient */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        }
       /*scanf("%d",i);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       if (strchr(strb,'*')) {        for(i=1;i<=nlstate;i++)
         cutv(strd,strc,strb,'*');          gp[i] = prlim[i][i];
         if (strcmp(strc,"age")==0) {      
           cptcovprod--;        for(i=1; i<=npar; i++) /* Computes gradient */
           cutv(strb,stre,strd,'V');          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           Tvar[i]=atoi(stre);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cptcovage++;        for(i=1;i<=nlstate;i++)
             Tage[cptcovage]=i;          gm[i] = prlim[i][i];
             /*printf("stre=%s ", stre);*/  
         }        for(i=1;i<=nlstate;i++)
         else if (strcmp(strd,"age")==0) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           cptcovprod--;      } /* End theta */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);      trgradg =matrix(1,nlstate,1,npar);
           cptcovage++;  
           Tage[cptcovage]=i;      for(j=1; j<=nlstate;j++)
         }        for(theta=1; theta <=npar; theta++)
         else {          trgradg[j][theta]=gradg[theta][j];
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;      for(i=1;i<=nlstate;i++)
           cutv(strb,strc,strd,'V');        varpl[i][(int)age] =0.;
           Tprod[k1]=i;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           Tvard[k1][1]=atoi(strc);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           Tvard[k1][2]=atoi(stre);      for(i=1;i<=nlstate;i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)      fprintf(ficresvpl,"%.0f ",age );
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for(i=1; i<=nlstate;i++)
           k1++;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           k2=k2+2;      fprintf(ficresvpl,"\n");
         }      free_vector(gp,1,nlstate);
       }      free_vector(gm,1,nlstate);
       else {      free_matrix(gradg,1,npar,1,nlstate);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      free_matrix(trgradg,1,nlstate,1,npar);
        /*  scanf("%d",i);*/    } /* End age */
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,npar);
       strcpy(modelsav,stra);      free_matrix(dnewm,1,nlstate,1,nlstate);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/  }
     }  
 }  /************ Variance of one-step probabilities  ******************/
    void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  {
   printf("cptcovprod=%d ", cptcovprod);    int i, j=0,  i1, k1, l1, t, tj;
   scanf("%d ",i);*/    int k2, l2, j1,  z1;
     fclose(fic);    int k=0,l, cptcode;
     int first=1, first1;
     /*  if(mle==1){*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     if (weightopt != 1) { /* Maximisation without weights*/    double **dnewm,**doldm;
       for(i=1;i<=n;i++) weight[i]=1.0;    double *xp;
     }    double *gp, *gm;
     /*-calculation of age at interview from date of interview and age at death -*/    double **gradg, **trgradg;
     agev=matrix(1,maxwav,1,imx);    double **mu;
     double age,agelim, cov[NCOVMAX];
     for (i=1; i<=imx; i++) {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       for(m=2; (m<= maxwav); m++) {    int theta;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    char fileresprob[FILENAMELENGTH];
          anint[m][i]=9999;    char fileresprobcov[FILENAMELENGTH];
          s[m][i]=-1;    char fileresprobcor[FILENAMELENGTH];
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    double ***varpij;
       }  
     }    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     for (i=1; i<=imx; i++)  {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      printf("Problem with resultfile: %s\n", fileresprob);
       for(m=1; (m<= maxwav); m++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         if(s[m][i] >0){    }
           if (s[m][i] >= nlstate+1) {    strcpy(fileresprobcov,"probcov"); 
             if(agedc[i]>0)    strcat(fileresprobcov,fileres);
               if(moisdc[i]!=99 && andc[i]!=9999)    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                 agev[m][i]=agedc[i];      printf("Problem with resultfile: %s\n", fileresprobcov);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
            else {    }
               if (andc[i]!=9999){    strcpy(fileresprobcor,"probcor"); 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    strcat(fileresprobcor,fileres);
               agev[m][i]=-1;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               }      printf("Problem with resultfile: %s\n", fileresprobcor);
             }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           }    }
           else if(s[m][i] !=9){ /* Should no more exist */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             if(mint[m][i]==99 || anint[m][i]==9999)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               agev[m][i]=1;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             else if(agev[m][i] <agemin){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               agemin=agev[m][i];    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    
             }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             else if(agev[m][i] >agemax){    fprintf(ficresprob,"# Age");
               agemax=agev[m][i];    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    fprintf(ficresprobcov,"# Age");
             }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(ficresprobcov,"# Age");
             /*   agev[m][i] = age[i]+2*m;*/  
           }  
           else { /* =9 */    for(i=1; i<=nlstate;i++)
             agev[m][i]=1;      for(j=1; j<=(nlstate+ndeath);j++){
             s[m][i]=-1;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         else /*= 0 Unknown */      }  
           agev[m][i]=1;   /* fprintf(ficresprob,"\n");
       }    fprintf(ficresprobcov,"\n");
        fprintf(ficresprobcor,"\n");
     }   */
     for (i=1; i<=imx; i++)  {   xp=vector(1,npar);
       for(m=1; (m<= maxwav); m++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         if (s[m][i] > (nlstate+ndeath)) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           printf("Error: Wrong value in nlstate or ndeath\n");      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           goto end;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         }    first=1;
       }    fprintf(ficgp,"\n# Routine varprob");
     }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     free_vector(severity,1,maxwav);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     free_imatrix(outcome,1,maxwav+1,1,n);    file %s<br>\n",optionfilehtmcov);
     free_vector(moisnais,1,n);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     free_vector(annais,1,n);  and drawn. It helps understanding how is the covariance between two incidences.\
     /* free_matrix(mint,1,maxwav,1,n);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
        free_matrix(anint,1,maxwav,1,n);*/    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     free_vector(moisdc,1,n);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     free_vector(andc,1,n);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
       Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     wav=ivector(1,imx);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
        cov[1]=1;
     /* Concatenates waves */    tj=cptcoveff;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       Tcode=ivector(1,100);      for(i1=1; i1<=ncodemax[t];i1++){ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        j1++;
       ncodemax[1]=1;        if  (cptcovn>0) {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(ficresprob, "\n#********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    codtab=imatrix(1,100,1,10);          fprintf(ficresprob, "**********\n#\n");
    h=0;          fprintf(ficresprobcov, "\n#********** Variable "); 
    m=pow(2,cptcoveff);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcov, "**********\n#\n");
    for(k=1;k<=cptcoveff; k++){          
      for(i=1; i <=(m/pow(2,k));i++){          fprintf(ficgp, "\n#********** Variable "); 
        for(j=1; j <= ncodemax[k]; j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          fprintf(ficgp, "**********\n#\n");
            h++;          
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
          }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
      }          
    }          fprintf(ficresprobcor, "\n#********** Variable ");    
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficresprobcor, "**********\n#");    
    /* for(i=1; i <=m ;i++){        }
       for(k=1; k <=cptcovn; k++){        
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for (age=bage; age<=fage; age ++){ 
       }          cov[2]=age;
       printf("\n");          for (k=1; k<=cptcovn;k++) {
       }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       scanf("%d",i);*/          }
              for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    /* Calculates basic frequencies. Computes observed prevalence at single age          for (k=1; k<=cptcovprod;k++)
        and prints on file fileres'p'. */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
              gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
              trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gp=vector(1,(nlstate)*(nlstate+ndeath));
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gm=vector(1,(nlstate)*(nlstate+ndeath));
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(theta=1; theta <=npar; theta++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for(i=1; i<=npar; i++)
                    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     /* For Powell, parameters are in a vector p[] starting at p[1]            
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            
             k=0;
     if(mle==1){            for(i=1; i<= (nlstate); i++){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
                    gp[k]=pmmij[i][j];
     /*--------- results files --------------*/              }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            }
              
             for(i=1; i<=npar; i++)
    jk=1;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    for(i=1,jk=1; i <=nlstate; i++){            k=0;
      for(k=1; k <=(nlstate+ndeath); k++){            for(i=1; i<=(nlstate); i++){
        if (k != i)              for(j=1; j<=(nlstate+ndeath);j++){
          {                k=k+1;
            printf("%d%d ",i,k);                gm[k]=pmmij[i][j];
            fprintf(ficres,"%1d%1d ",i,k);              }
            for(j=1; j <=ncovmodel; j++){            }
              printf("%f ",p[jk]);       
              fprintf(ficres,"%f ",p[jk]);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
              jk++;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }          }
            printf("\n");  
            fprintf(ficres,"\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
          }            for(theta=1; theta <=npar; theta++)
      }              trgradg[j][theta]=gradg[theta][j];
    }          
  if(mle==1){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     /* Computing hessian and covariance matrix */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     ftolhess=ftol; /* Usually correct */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     hesscov(matcov, p, npar, delti, ftolhess, func);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
       for(j=1; j <=nlstate+ndeath; j++){          
         if (j!=i) {          k=0;
           fprintf(ficres,"%1d%1d",i,j);          for(i=1; i<=(nlstate); i++){
           printf("%1d%1d",i,j);            for(j=1; j<=(nlstate+ndeath);j++){
           for(k=1; k<=ncovmodel;k++){              k=k+1;
             printf(" %.5e",delti[jk]);              mu[k][(int) age]=pmmij[i][j];
             fprintf(ficres," %.5e",delti[jk]);            }
             jk++;          }
           }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           printf("\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           fprintf(ficres,"\n");              varpij[i][j][(int)age] = doldm[i][j];
         }  
       }          /*printf("\n%d ",(int)age);
      }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     k=1;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            }*/
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){          fprintf(ficresprob,"\n%d ",(int)age);
       /*  if (k>nlstate) k=1;          fprintf(ficresprobcov,"\n%d ",(int)age);
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficresprobcor,"\n%d ",(int)age);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficres,"%3d",i);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       printf("%3d",i);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       for(j=1; j<=i;j++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         fprintf(ficres," %.5e",matcov[i][j]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         printf(" %.5e",matcov[i][j]);          }
       }          i=0;
       fprintf(ficres,"\n");          for (k=1; k<=(nlstate);k++){
       printf("\n");            for (l=1; l<=(nlstate+ndeath);l++){ 
       k++;              i=i++;
     }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                  fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     while((c=getc(ficpar))=='#' && c!= EOF){              for (j=1; j<=i;j++){
       ungetc(c,ficpar);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       fgets(line, MAXLINE, ficpar);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       puts(line);              }
       fputs(line,ficparo);            }
     }          }/* end of loop for state */
     ungetc(c,ficpar);        } /* end of loop for age */
     estepm=0;  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        /* Confidence intervalle of pij  */
     if (estepm==0 || estepm < stepm) estepm=stepm;        /*
     if (fage <= 2) {          fprintf(ficgp,"\nset noparametric;unset label");
       bage = ageminpar;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       fage = agemaxpar;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
              fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        */
    
     while((c=getc(ficpar))=='#' && c!= EOF){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     ungetc(c,ficpar);        first1=1;
     fgets(line, MAXLINE, ficpar);        for (k2=1; k2<=(nlstate);k2++){
     puts(line);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     fputs(line,ficparo);            if(l2==k2) continue;
   }            j=(k2-1)*(nlstate+ndeath)+l2;
   ungetc(c,ficpar);            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                if(l1==k1) continue;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                i=(k1-1)*(nlstate+ndeath)+l1;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                if(i<=j) continue;
                      for (age=bage; age<=fage; age ++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){                  if ((int)age %5==0){
     ungetc(c,ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     fgets(line, MAXLINE, ficpar);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     puts(line);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fputs(line,ficparo);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   }                    mu2=mu[j][(int) age]/stepm*YEARM;
   ungetc(c,ficpar);                    c12=cv12/sqrt(v1*v2);
                      /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   fscanf(ficpar,"pop_based=%d\n",&popbased);                    /*v21=sqrt(1.-v11*v11); *//* error */
   fprintf(ficparo,"pop_based=%d\n",popbased);                      v21=(lc1-v1)/cv12*v11;
   fprintf(ficres,"pop_based=%d\n",popbased);                      v12=-v21;
                      v22=v11;
   while((c=getc(ficpar))=='#' && c!= EOF){                    tnalp=v21/v11;
     ungetc(c,ficpar);                    if(first1==1){
     fgets(line, MAXLINE, ficpar);                      first1=0;
     puts(line);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fputs(line,ficparo);                    }
   }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   ungetc(c,ficpar);                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    if(first==1){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     fgets(line, MAXLINE, ficpar);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     puts(line);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     fputs(line,ficparo);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 /*------------ gnuplot -------------*/                    }else{
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);                      first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 /*------------ free_vector  -------------*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  chdir(path);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  free_ivector(wav,1,imx);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      }/* if first */
  free_ivector(num,1,n);                  } /* age mod 5 */
  free_vector(agedc,1,n);                } /* end loop age */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  fclose(ficparo);                first=1;
  fclose(ficres);              } /*l12 */
             } /* k12 */
 /*--------- index.htm --------*/          } /*l1 */
         }/* k1 */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);      } /* loop covariates */
     }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /*--------------- Prevalence limit --------------*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_vector(xp,1,npar);
   strcpy(filerespl,"pl");    fclose(ficresprob);
   strcat(filerespl,fileres);    fclose(ficresprobcov);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fclose(ficresprobcor);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fflush(ficgp);
   }    fflush(fichtmcov);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  }
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /******************* Printing html file ***********/
   fprintf(ficrespl,"\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
   prlim=matrix(1,nlstate,1,nlstate);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    int popforecast, int estepm ,\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    double jprev1, double mprev1,double anprev1, \
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    double jprev2, double mprev2,double anprev2){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int jj1, k1, i1, cpt;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   agebase=ageminpar;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   agelim=agemaxpar;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   ftolpl=1.e-10;     fprintf(fichtm,"\
   i1=cptcoveff;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   if (cptcovn < 1){i1=1;}             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   for(cptcov=1;cptcov<=i1;cptcov++){   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         k=k+1;     fprintf(fichtm,"\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   - Life expectancies by age and initial health status (estepm=%2d months): \
         fprintf(ficrespl,"\n#******");     <a href=\"%s\">%s</a> <br>\n</li>",
         for(j=1;j<=cptcoveff;j++)             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
          
         for (age=agebase; age<=agelim; age++){   m=cptcoveff;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)   jj1=0;
           fprintf(ficrespl," %.5f", prlim[i][i]);   for(k1=1; k1<=m;k1++){
           fprintf(ficrespl,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
       }       if (cptcovn > 0) {
     }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   fclose(ficrespl);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /*------------- h Pij x at various ages ------------*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       /* Pij */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   }       /* Quasi-incidences */
   printf("Computing pij: result on file '%s' \n", filerespij);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   stepsize=(int) (stepm+YEARM-1)/YEARM;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   /*if (stepm<=24) stepsize=2;*/         /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
   agelim=AGESUP;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   hstepm=stepsize*YEARM; /* Every year of age */  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         }
         for(cpt=1; cpt<=nlstate;cpt++) {
   k=0;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   for(cptcov=1;cptcov<=i1;cptcov++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }
       k=k+1;     } /* end i1 */
         fprintf(ficrespij,"\n#****** ");   }/* End k1 */
         for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"</ul>");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  
           fprintf(fichtm,"\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  \n<br><li><h4> Result files (second order: variances)</h4>\n\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           oldm=oldms;savm=savms;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     fprintf(fichtm,"\
           fprintf(ficrespij,"# Age");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           for(i=1; i<=nlstate;i++)           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);   fprintf(fichtm,"\
           fprintf(ficrespij,"\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           for (h=0; h<=nhstepm; h++){           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   fprintf(fichtm,"\
             for(i=1; i<=nlstate;i++)   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
               for(j=1; j<=nlstate+ndeath;j++)           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   fprintf(fichtm,"\
             fprintf(ficrespij,"\n");   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
           }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm,"\
           fprintf(ficrespij,"\n");   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
         }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     }  
   }  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   fclose(ficrespij);  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
   /*---------- Forecasting ------------------*/   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   m=cptcoveff;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   jj1=0;
     free_vector(weight,1,n);}   for(k1=1; k1<=m;k1++){
   else{     for(i1=1; i1<=ncodemax[k1];i1++){
     erreur=108;       jj1++;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /*---------- Health expectancies and variances ------------*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   strcpy(filerest,"t");       for(cpt=1; cpt<=nlstate;cpt++) {
   strcat(filerest,fileres);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   if((ficrest=fopen(filerest,"w"))==NULL) {  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   }       }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   strcpy(filerese,"e");     } /* end i1 */
   strcat(filerese,fileres);   }/* End k1 */
   if((ficreseij=fopen(filerese,"w"))==NULL) {   fprintf(fichtm,"</ul>");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   fflush(fichtm);
   }  }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   /******************* Gnuplot file **************/
  strcpy(fileresv,"v");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    char dirfileres[132],optfileres[132];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   k=0;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   } */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    /*#ifdef windows */
       fprintf(ficrest,"\n#****** ");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       for(j=1;j<=cptcoveff;j++)      /*#endif */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    m=pow(2,cptcoveff);
       fprintf(ficrest,"******\n");  
     strcpy(dirfileres,optionfilefiname);
       fprintf(ficreseij,"\n#****** ");    strcpy(optfileres,"vpl");
       for(j=1;j<=cptcoveff;j++)   /* 1eme*/
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficreseij,"******\n");     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       fprintf(ficresvij,"\n#****** ");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"set xlabel \"Age\" \n\
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  set ylabel \"Probability\" \n\
       fprintf(ficresvij,"******\n");  set ter png small\n\
   set size 0.65,0.65\n\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);         for (i=1; i<= nlstate ; i ++) {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       oldm=oldms;savm=savms;         else fprintf(ficgp," \%%*lf (\%%*lf)");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);       }
           fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       } 
       fprintf(ficrest,"\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
       epj=vector(1,nlstate+1);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for(age=bage; age <=fage ;age++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       }  
         if (popbased==1) {       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           for(i=1; i<=nlstate;i++)     }
             prlim[i][i]=probs[(int)age][i][k];    }
         }    /*2 eme*/
            
         fprintf(ficrest," %4.0f",age);    for (k1=1; k1<= m ; k1 ++) { 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      
           }      for (i=1; i<= nlstate+1 ; i ++) {
           epj[nlstate+1] +=epj[j];        k=2*i;
         }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for(i=1, vepp=0.;i <=nlstate;i++)        for (j=1; j<= nlstate+1 ; j ++) {
           for(j=1;j <=nlstate;j++)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             vepp += vareij[i][j][(int)age];          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));        }   
         for(j=1;j <=nlstate;j++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficrest,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }   
         fprintf(ficgp,"\" t\"\" w l 0,");
   fclose(ficreseij);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fclose(ficresvij);        for (j=1; j<= nlstate+1 ; j ++) {
   fclose(ficrest);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_vector(epj,1,nlstate+1);        }   
          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   /*------- Variance limit prevalence------*/          else fprintf(ficgp,"\" t\"\" w l 0,");
       }
   strcpy(fileresvpl,"vpl");    }
   strcat(fileresvpl,fileres);    
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /*3eme*/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    
     exit(0);    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<= nlstate ; cpt ++) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   k=0;        fprintf(ficgp,"set ter png small\n\
   for(cptcov=1;cptcov<=i1;cptcov++){  set size 0.65,0.65\n\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       k=k+1;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficresvpl,"\n#****** ");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficresvpl,"******\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          
       oldm=oldms;savm=savms;        */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for (i=1; i< nlstate ; i ++) {
     }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
  }          
         } 
   fclose(ficresvpl);      }
     }
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /* CV preval stable (period) */
      for (k1=1; k1<= m ; k1 ++) { 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        k=3;
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  set ter png small\nset size 0.65,0.65\n\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  unset log y\n\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        
          for (i=1; i< nlstate ; i ++)
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficgp,"+$%d",k+i+1);
   free_vector(delti,1,npar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   free_matrix(agev,1,maxwav,1,imx);        
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   if(erreur >0)        for (i=1; i< nlstate ; i ++) {
     printf("End of Imach with error or warning %d\n",erreur);          l=3+(nlstate+ndeath)*cpt;
   else   printf("End of Imach\n");          fprintf(ficgp,"+$%d",l+i+1);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      } 
   /*printf("Total time was %d uSec.\n", total_usecs);*/    }  
   /*------ End -----------*/    
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
  end:      for(k=1; k <=(nlstate+ndeath); k++){
 #ifdef windows        if (k != i) {
   /* chdir(pathcd);*/          for(j=1; j <=ncovmodel; j++){
 #endif            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
  /*system("wgnuplot graph.plt");*/            jk++; 
  /*system("../gp37mgw/wgnuplot graph.plt");*/            fprintf(ficgp,"\n");
  /*system("cd ../gp37mgw");*/          }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        }
  strcpy(plotcmd,GNUPLOTPROGRAM);      }
  strcat(plotcmd," ");     }
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
 #ifdef windows         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   while (z[0] != 'q') {         if (ng==2)
     /* chdir(path); */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");         else
     scanf("%s",z);           fprintf(ficgp,"\nset title \"Probability\"\n");
     if (z[0] == 'c') system("./imach");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     else if (z[0] == 'e') system(optionfilehtm);         i=1;
     else if (z[0] == 'g') system(plotcmd);         for(k2=1; k2<=nlstate; k2++) {
     else if (z[0] == 'q') exit(0);           k3=i;
   }           for(k=1; k<=(nlstate+ndeath); k++) {
 #endif             if (k != k2){
 }               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.36  
changed lines
  Added in v.1.99


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>