Diff for /imach/src/imach.c between versions 1.9 and 1.136

version 1.9, 2001/05/02 18:44:18 version 1.136, 2010/04/26 20:30:53
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.136  2010/04/26 20:30:53  brouard
   individuals from different ages are interviewed on their health status    (Module): merging some libgsl code. Fixing computation
   or degree of  disability. At least a second wave of interviews    of likelione (using inter/intrapolation if mle = 0) in order to
   ("longitudinal") should  measure each new individual health status.    get same likelihood as if mle=1.
   Health expectancies are computed from the transistions observed between    Some cleaning of code and comments added.
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.135  2009/10/29 15:33:14  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.134  2009/10/29 13:18:53  brouard
   to be observed in state i at the first wave. Therefore the model is:    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.133  2009/07/06 10:21:25  brouard
   age", you should modify the program where the markup    just nforces
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.131  2009/06/20 16:22:47  brouard
   individual missed an interview, the information is not rounded or lost, but    Some dimensions resccaled
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.130  2009/05/26 06:44:34  brouard
   observed in state i at age x+h conditional to the observed state i at age    (Module): Max Covariate is now set to 20 instead of 8. A
   x. The delay 'h' can be split into an exact number (nh*stepm) of    lot of cleaning with variables initialized to 0. Trying to make
   unobserved intermediate  states. This elementary transition (by month or    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.129  2007/08/31 13:49:27  lievre
   and the contribution of each individual to the likelihood is simply hPijx.    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.128  2006/06/30 13:02:05  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Clarifications on computing e.j
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.127  2006/04/28 18:11:50  brouard
            Institut national d'études démographiques, Paris.    (Module): Yes the sum of survivors was wrong since
   This software have been partly granted by Euro-REVES, a concerted action    imach-114 because nhstepm was no more computed in the age
   from the European Union.    loop. Now we define nhstepma in the age loop.
   It is copyrighted identically to a GNU software product, ie programme and    (Module): In order to speed up (in case of numerous covariates) we
   software can be distributed freely for non commercial use. Latest version    compute health expectancies (without variances) in a first step
   can be accessed at http://euroreves.ined.fr/imach .    and then all the health expectancies with variances or standard
   **********************************************************************/    deviation (needs data from the Hessian matrices) which slows the
      computation.
 #include <math.h>    In the future we should be able to stop the program is only health
 #include <stdio.h>    expectancies and graph are needed without standard deviations.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
 #define MAXLINE 256    imach-114 because nhstepm was no more computed in the age
 #define FILENAMELENGTH 80    loop. Now we define nhstepma in the age loop.
 /*#define DEBUG*/    Version 0.98h
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.125  2006/04/04 15:20:31  lievre
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define NINTERVMAX 8    The log-likelihood is printed in the log file
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.123  2006/03/20 10:52:43  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): <title> changed, corresponds to .htm file
 #define MAXN 20000    name. <head> headers where missing.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    * imach.c (Module): Weights can have a decimal point as for
 #define AGEBASE 40    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 int nvar;    1.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Version 0.98g
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.122  2006/03/20 09:45:41  brouard
 int ndeath=1; /* Number of dead states */    (Module): Weights can have a decimal point as for
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 int *wav; /* Number of waves for this individuual 0 is possible */    Modification of warning when the covariates values are not 0 or
 int maxwav; /* Maxim number of waves */    1.
 int jmin, jmax; /* min, max spacing between 2 waves */    Version 0.98g
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.121  2006/03/16 17:45:01  lievre
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Module): Comments concerning covariates added
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    * imach.c (Module): refinements in the computation of lli if
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    status=-2 in order to have more reliable computation if stepm is
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    not 1 month. Version 0.98f
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.120  2006/03/16 15:10:38  lievre
   char filerese[FILENAMELENGTH];    (Module): refinements in the computation of lli if
  FILE  *ficresvij;    status=-2 in order to have more reliable computation if stepm is
   char fileresv[FILENAMELENGTH];    not 1 month. Version 0.98f
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 #define NR_END 1    computed as likelihood omitting the logarithm. Version O.98e
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 #define NRANSI    table of variances if popbased=1 .
 #define ITMAX 200    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 #define TOL 2.0e-4    (Module): Version 0.98d
   
 #define CGOLD 0.3819660    Revision 1.117  2006/03/14 17:16:22  brouard
 #define ZEPS 1.0e-10    (Module): varevsij Comments added explaining the second
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define GOLD 1.618034    (Module): Function pstamp added
 #define GLIMIT 100.0    (Module): Version 0.98d
 #define TINY 1.0e-20  
     Revision 1.116  2006/03/06 10:29:27  brouard
 static double maxarg1,maxarg2;    (Module): Variance-covariance wrong links and
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    varian-covariance of ej. is needed (Saito).
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.115  2006/02/27 12:17:45  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): One freematrix added in mlikeli! 0.98c
 #define rint(a) floor(a+0.5)  
     Revision 1.114  2006/02/26 12:57:58  brouard
 static double sqrarg;    (Module): Some improvements in processing parameter
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    filename with strsep.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.113  2006/02/24 14:20:24  brouard
 int imx;    (Module): Memory leaks checks with valgrind and:
 int stepm;    datafile was not closed, some imatrix were not freed and on matrix
 /* Stepm, step in month: minimum step interpolation*/    allocation too.
   
 int m,nb;    Revision 1.112  2006/01/30 09:55:26  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij;    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 double *weight;    (Module): Comments can be added in data file. Missing date values
 int **s; /* Status */    can be a simple dot '.'.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )    Revision 1.108  2006/01/19 18:05:42  lievre
 {    Gnuplot problem appeared...
    char *s;                             /* pointer */    To be fixed
    int  l1, l2;                         /* length counters */  
     Revision 1.107  2006/01/19 16:20:37  brouard
    l1 = strlen( path );                 /* length of path */    Test existence of gnuplot in imach path
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.106  2006/01/19 13:24:36  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Some cleaning and links added in html output
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.104  2005/09/30 16:11:43  lievre
       extern char       *getcwd( );    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    that the person is alive, then we can code his/her status as -2
 #endif    (instead of missing=-1 in earlier versions) and his/her
          return( GLOCK_ERROR_GETCWD );    contributions to the likelihood is 1 - Prob of dying from last
       }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       strcpy( name, path );             /* we've got it */    the healthy state at last known wave). Version is 0.98
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.103  2005/09/30 15:54:49  lievre
       l2 = strlen( s );                 /* length of filename */    (Module): sump fixed, loop imx fixed, and simplifications.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.102  2004/09/15 17:31:30  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Add the possibility to read data file including tab characters.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.101  2004/09/15 10:38:38  brouard
    l1 = strlen( dirc );                 /* length of directory */    Fix on curr_time
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */    Revision 1.100  2004/07/12 18:29:06  brouard
 }    Add version for Mac OS X. Just define UNIX in Makefile
   
     Revision 1.99  2004/06/05 08:57:40  brouard
 /******************************************/    *** empty log message ***
   
 void replace(char *s, char*t)    Revision 1.98  2004/05/16 15:05:56  brouard
 {    New version 0.97 . First attempt to estimate force of mortality
   int i;    directly from the data i.e. without the need of knowing the health
   int lg=20;    state at each age, but using a Gompertz model: log u =a + b*age .
   i=0;    This is the basic analysis of mortality and should be done before any
   lg=strlen(t);    other analysis, in order to test if the mortality estimated from the
   for(i=0; i<= lg; i++) {    cross-longitudinal survey is different from the mortality estimated
     (s[i] = t[i]);    from other sources like vital statistic data.
     if (t[i]== '\\') s[i]='/';  
   }    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 int nbocc(char *s, char occ)    former routines in order to include the new code within the former code.
 {  
   int i,j=0;    The output is very simple: only an estimate of the intercept and of
   int lg=20;    the slope with 95% confident intervals.
   i=0;  
   lg=strlen(s);    Current limitations:
   for(i=0; i<= lg; i++) {    A) Even if you enter covariates, i.e. with the
   if  (s[i] == occ ) j++;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   }    B) There is no computation of Life Expectancy nor Life Table.
   return j;  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 void cutv(char *u,char *v, char*t, char occ)    suppressed.
 {  
   int i,lg,j,p=0;    Revision 1.96  2003/07/15 15:38:55  brouard
   i=0;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   for(j=0; j<=strlen(t)-1; j++) {    rewritten within the same printf. Workaround: many printfs.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   lg=strlen(t);    (Repository): Using imachwizard code to output a more meaningful covariance
   for(j=0; j<p; j++) {    matrix (cov(a12,c31) instead of numbers.
     (u[j] = t[j]);  
   }    Revision 1.94  2003/06/27 13:00:02  brouard
      u[p]='\0';    Just cleaning
   
    for(j=0; j<= lg; j++) {    Revision 1.93  2003/06/25 16:33:55  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
 /********************** nrerror ********************/    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 void nrerror(char error_text[])    exist so I changed back to asctime which exists.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.91  2003/06/25 15:30:29  brouard
   fprintf(stderr,"%s\n",error_text);    * imach.c (Repository): Duplicated warning errors corrected.
   exit(1);    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
 /*********************** vector *******************/    is stamped in powell.  We created a new html file for the graphs
 double *vector(int nl, int nh)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   double *v;    Revision 1.90  2003/06/24 12:34:15  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Some bugs corrected for windows. Also, when
   if (!v) nrerror("allocation failure in vector");    mle=-1 a template is output in file "or"mypar.txt with the design
   return v-nl+NR_END;    of the covariance matrix to be input.
 }  
     Revision 1.89  2003/06/24 12:30:52  brouard
 /************************ free vector ******************/    (Module): Some bugs corrected for windows. Also, when
 void free_vector(double*v, int nl, int nh)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.86  2003/06/17 20:04:08  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): Change position of html and gnuplot routines and added
   return v-nl+NR_END;    routine fileappend.
 }  
     Revision 1.85  2003/06/17 13:12:43  brouard
 /******************free ivector **************************/    * imach.c (Repository): Check when date of death was earlier that
 void free_ivector(int *v, long nl, long nh)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   free((FREE_ARG)(v+nl-NR_END));    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /******************* imatrix *******************************/    (Repository): Because some people have very long ID (first column)
 int **imatrix(long nrl, long nrh, long ncl, long nch)    we changed int to long in num[] and we added a new lvector for
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Repository): No more line truncation errors.
   int **m;  
      Revision 1.84  2003/06/13 21:44:43  brouard
   /* allocate pointers to rows */    * imach.c (Repository): Replace "freqsummary" at a correct
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    place. It differs from routine "prevalence" which may be called
   if (!m) nrerror("allocation failure 1 in matrix()");    many times. Probs is memory consuming and must be used with
   m += NR_END;    parcimony.
   m -= nrl;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
      Revision 1.83  2003/06/10 13:39:11  lievre
   /* allocate rows and set pointers to them */    *** empty log message ***
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.82  2003/06/05 15:57:20  brouard
   m[nrl] += NR_END;    Add log in  imach.c and  fullversion number is now printed.
   m[nrl] -= ncl;  
    */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /*
       Interpolated Markov Chain
   /* return pointer to array of pointers to rows */  
   return m;    Short summary of the programme:
 }    
     This program computes Healthy Life Expectancies from
 /****************** free_imatrix *************************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 void free_imatrix(m,nrl,nrh,ncl,nch)    first survey ("cross") where individuals from different ages are
       int **m;    interviewed on their health status or degree of disability (in the
       long nch,ncl,nrh,nrl;    case of a health survey which is our main interest) -2- at least a
      /* free an int matrix allocated by imatrix() */    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    computed from the time spent in each health state according to a
   free((FREE_ARG) (m+nrl-NR_END));    model. More health states you consider, more time is necessary to reach the
 }    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 /******************* matrix *******************************/    probability to be observed in state j at the second wave
 double **matrix(long nrl, long nrh, long ncl, long nch)    conditional to be observed in state i at the first wave. Therefore
 {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    'age' is age and 'sex' is a covariate. If you want to have a more
   double **m;    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    you to do it.  More covariates you add, slower the
   if (!m) nrerror("allocation failure 1 in matrix()");    convergence.
   m += NR_END;  
   m -= nrl;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    identical for each individual. Also, if a individual missed an
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    intermediate interview, the information is lost, but taken into
   m[nrl] += NR_END;    account using an interpolation or extrapolation.  
   m[nrl] -= ncl;  
     hPijx is the probability to be observed in state i at age x+h
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    conditional to the observed state i at age x. The delay 'h' can be
   return m;    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /*************************free matrix ************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence. 
     
 /******************* ma3x *******************************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    from the European Union.
   double ***m;    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    can be accessed at http://euroreves.ined.fr/imach .
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m -= nrl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    **********************************************************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*
   m[nrl] += NR_END;    main
   m[nrl] -= ncl;    read parameterfile
     read datafile
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    concatwav
     freqsummary
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if (mle >= 1)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      mlikeli
   m[nrl][ncl] += NR_END;    print results files
   m[nrl][ncl] -= nll;    if mle==1 
   for (j=ncl+1; j<=nch; j++)       computes hessian
     m[nrl][j]=m[nrl][j-1]+nlay;    read end of parameter file: agemin, agemax, bage, fage, estepm
          begin-prev-date,...
   for (i=nrl+1; i<=nrh; i++) {    open gnuplot file
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    open html file
     for (j=ncl+1; j<=nch; j++)    period (stable) prevalence
       m[i][j]=m[i][j-1]+nlay;     for age prevalim()
   }    h Pij x
   return m;    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /*************************free ma3x ************************/    Variance-covariance of DFLE
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    prevalence()
 {     movingaverage()
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    varevsij() 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if popbased==1 varevsij(,popbased)
   free((FREE_ARG)(m+nrl-NR_END));    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /***************** f1dim *************************/  */
 extern int ncom;  
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  
     
 double f1dim(double x)  #include <math.h>
 {  #include <stdio.h>
   int j;  #include <stdlib.h>
   double f;  #include <string.h>
   double *xt;  #include <unistd.h>
    
   xt=vector(1,ncom);  #include <limits.h>
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <sys/types.h>
   f=(*nrfunc)(xt);  #include <sys/stat.h>
   free_vector(xt,1,ncom);  #include <errno.h>
   return f;  extern int errno;
 }  
   /* #include <sys/time.h> */
 /*****************brent *************************/  #include <time.h>
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #include "timeval.h"
 {  
   int iter;  #ifdef GSL
   double a,b,d,etemp;  #include <gsl/gsl_errno.h>
   double fu,fv,fw,fx;  #include <gsl/gsl_multimin.h>
   double ftemp;  #endif
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  /* #include <libintl.h> */
    /* #define _(String) gettext (String) */
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #define MAXLINE 256
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  #define GNUPLOTPROGRAM "gnuplot"
   for (iter=1;iter<=ITMAX;iter++) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     xm=0.5*(a+b);  #define FILENAMELENGTH 132
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     printf(".");fflush(stdout);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define NINTERVMAX 8
       *xmin=x;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       return fx;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     }  #define NCOVMAX 20 /* Maximum number of covariates */
     ftemp=fu;  #define MAXN 20000
     if (fabs(e) > tol1) {  #define YEARM 12. /* Number of months per year */
       r=(x-w)*(fx-fv);  #define AGESUP 130
       q=(x-v)*(fx-fw);  #define AGEBASE 40
       p=(x-v)*q-(x-w)*r;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
       q=2.0*(q-r);  #ifdef UNIX
       if (q > 0.0) p = -p;  #define DIRSEPARATOR '/'
       q=fabs(q);  #define CHARSEPARATOR "/"
       etemp=e;  #define ODIRSEPARATOR '\\'
       e=d;  #else
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define DIRSEPARATOR '\\'
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define CHARSEPARATOR "\\"
       else {  #define ODIRSEPARATOR '/'
         d=p/q;  #endif
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  /* $Id$ */
           d=SIGN(tol1,xm-x);  /* $State$ */
       }  
     } else {  char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fullversion[]="$Revision$ $Date$"; 
     }  char strstart[80];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     fu=(*f)(u);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     if (fu <= fx) {  int nvar=0, nforce=0; /* Number of variables, number of forces */
       if (u >= x) a=x; else b=x;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
       SHFT(v,w,x,u)  int npar=NPARMAX;
         SHFT(fv,fw,fx,fu)  int nlstate=2; /* Number of live states */
         } else {  int ndeath=1; /* Number of dead states */
           if (u < x) a=u; else b=u;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
           if (fu <= fw || w == x) {  int popbased=0;
             v=w;  
             w=u;  int *wav; /* Number of waves for this individuual 0 is possible */
             fv=fw;  int maxwav=0; /* Maxim number of waves */
             fw=fu;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
           } else if (fu <= fv || v == x || v == w) {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
             v=u;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
             fv=fu;                     to the likelihood and the sum of weights (done by funcone)*/
           }  int mle=1, weightopt=0;
         }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   nrerror("Too many iterations in brent");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   *xmin=x;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   return fx;  double jmean=1; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /****************** mnbrak ***********************/  /*FILE *fic ; */ /* Used in readdata only */
   FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  FILE *ficlog, *ficrespow;
             double (*func)(double))  int globpr=0; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   double ulim,u,r,q, dum;  long ipmx=0; /* Number of contributions */
   double fu;  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   *fa=(*func)(*ax);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   *fb=(*func)(*bx);  FILE *ficresilk;
   if (*fb > *fa) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     SHFT(dum,*ax,*bx,dum)  FILE *ficresprobmorprev;
       SHFT(dum,*fb,*fa,dum)  FILE *fichtm, *fichtmcov; /* Html File */
       }  FILE *ficreseij;
   *cx=(*bx)+GOLD*(*bx-*ax);  char filerese[FILENAMELENGTH];
   *fc=(*func)(*cx);  FILE *ficresstdeij;
   while (*fb > *fc) {  char fileresstde[FILENAMELENGTH];
     r=(*bx-*ax)*(*fb-*fc);  FILE *ficrescveij;
     q=(*bx-*cx)*(*fb-*fa);  char filerescve[FILENAMELENGTH];
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  FILE  *ficresvij;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char fileresv[FILENAMELENGTH];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  FILE  *ficresvpl;
     if ((*bx-u)*(u-*cx) > 0.0) {  char fileresvpl[FILENAMELENGTH];
       fu=(*func)(u);  char title[MAXLINE];
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       fu=(*func)(u);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       if (fu < *fc) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char command[FILENAMELENGTH];
           SHFT(*fb,*fc,fu,(*func)(u))  int  outcmd=0;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       u=ulim;  
       fu=(*func)(u);  char filelog[FILENAMELENGTH]; /* Log file */
     } else {  char filerest[FILENAMELENGTH];
       u=(*cx)+GOLD*(*cx-*bx);  char fileregp[FILENAMELENGTH];
       fu=(*func)(u);  char popfile[FILENAMELENGTH];
     }  
     SHFT(*ax,*bx,*cx,u)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       SHFT(*fa,*fb,*fc,fu)  
       }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /*************** linmin ************************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 int ncom;  extern long time();
 double *pcom,*xicom;  char strcurr[80], strfor[80];
 double (*nrfunc)(double []);  
    char *endptr;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  long lval;
 {  double dval;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  #define NR_END 1
   double f1dim(double x);  #define FREE_ARG char*
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define FTOL 1.0e-10
               double *fc, double (*func)(double));  
   int j;  #define NRANSI 
   double xx,xmin,bx,ax;  #define ITMAX 200 
   double fx,fb,fa;  
    #define TOL 2.0e-4 
   ncom=n;  
   pcom=vector(1,n);  #define CGOLD 0.3819660 
   xicom=vector(1,n);  #define ZEPS 1.0e-10 
   nrfunc=func;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  #define GOLD 1.618034 
     xicom[j]=xi[j];  #define GLIMIT 100.0 
   }  #define TINY 1.0e-20 
   ax=0.0;  
   xx=1.0;  static double maxarg1,maxarg2;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 #ifdef DEBUG    
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #endif  #define rint(a) floor(a+0.5)
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  static double sqrarg;
     p[j] += xi[j];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free_vector(xicom,1,n);  int agegomp= AGEGOMP;
   free_vector(pcom,1,n);  
 }  int imx; 
   int stepm=1;
 /*************** powell ************************/  /* Stepm, step in month: minimum step interpolation*/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  int m,nb;
   int i,ibig,j;  long *num;
   double del,t,*pt,*ptt,*xit;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double fp,fptt;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double *xits;  double **pmmij, ***probs;
   pt=vector(1,n);  double *ageexmed,*agecens;
   ptt=vector(1,n);  double dateintmean=0;
   xit=vector(1,n);  
   xits=vector(1,n);  double *weight;
   *fret=(*func)(p);  int **s; /* Status */
   for (j=1;j<=n;j++) pt[j]=p[j];  double *agedc, **covar, idx;
   for (*iter=1;;++(*iter)) {  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     fp=(*fret);  double *lsurv, *lpop, *tpop;
     ibig=0;  
     del=0.0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double ftolhess; /* Tolerance for computing hessian */
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /**************** split *************************/
     printf("\n");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       fptt=(*fret);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
       printf("fret=%lf \n",*fret);    char  *ss;                            /* pointer */
 #endif    int   l1, l2;                         /* length counters */
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    l1 = strlen(path );                   /* length of path */
       if (fabs(fptt-(*fret)) > del) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         del=fabs(fptt-(*fret));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         ibig=i;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       }      strcpy( name, path );               /* we got the fullname name because no directory */
 #ifdef DEBUG      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("%d %.12e",i,(*fret));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       for (j=1;j<=n;j++) {      /* get current working directory */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      /*    extern  char* getcwd ( char *buf , int len);*/
         printf(" x(%d)=%.12e",j,xit[j]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       }        return( GLOCK_ERROR_GETCWD );
       for(j=1;j<=n;j++)      }
         printf(" p=%.12e",p[j]);      /* got dirc from getcwd*/
       printf("\n");      printf(" DIRC = %s \n",dirc);
 #endif    } else {                              /* strip direcotry from path */
     }      ss++;                               /* after this, the filename */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      l2 = strlen( ss );                  /* length of filename */
 #ifdef DEBUG      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       int k[2],l;      strcpy( name, ss );         /* save file name */
       k[0]=1;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       k[1]=-1;      dirc[l1-l2] = 0;                    /* add zero */
       printf("Max: %.12e",(*func)(p));      printf(" DIRC2 = %s \n",dirc);
       for (j=1;j<=n;j++)    }
         printf(" %.12e",p[j]);    /* We add a separator at the end of dirc if not exists */
       printf("\n");    l1 = strlen( dirc );                  /* length of directory */
       for(l=0;l<=1;l++) {    if( dirc[l1-1] != DIRSEPARATOR ){
         for (j=1;j<=n;j++) {      dirc[l1] =  DIRSEPARATOR;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      dirc[l1+1] = 0; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      printf(" DIRC3 = %s \n",dirc);
         }    }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    ss = strrchr( name, '.' );            /* find last / */
       }    if (ss >0){
 #endif      ss++;
       strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
       free_vector(xit,1,n);      l2= strlen(ss)+1;
       free_vector(xits,1,n);      strncpy( finame, name, l1-l2);
       free_vector(ptt,1,n);      finame[l1-l2]= 0;
       free_vector(pt,1,n);    }
       return;  
     }    return( 0 );                          /* we're done */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /******************************************/
       pt[j]=p[j];  
     }  void replace_back_to_slash(char *s, char*t)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    int i;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    int lg=0;
       if (t < 0.0) {    i=0;
         linmin(p,xit,n,fret,func);    lg=strlen(t);
         for (j=1;j<=n;j++) {    for(i=0; i<= lg; i++) {
           xi[j][ibig]=xi[j][n];      (s[i] = t[i]);
           xi[j][n]=xit[j];      if (t[i]== '\\') s[i]='/';
         }    }
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  char *trimbb(char *out, char *in)
           printf(" %.12e",xit[j]);  { /* Trim multiple blanks in line */
         printf("\n");    char *s;
 #endif    s=out;
       }    while (*in != '\0'){
     }      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
   }        in++;
 }      }
       *out++ = *in++;
 /**** Prevalence limit ****************/    }
     *out='\0';
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return s;
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  int nbocc(char *s, char occ)
   {
   int i, ii,j,k;    int i,j=0;
   double min, max, maxmin, maxmax,sumnew=0.;    int lg=20;
   double **matprod2();    i=0;
   double **out, cov[NCOVMAX], **pmij();    lg=strlen(s);
   double **newm;    for(i=0; i<= lg; i++) {
   double agefin, delaymax=50 ; /* Max number of years to converge */    if  (s[i] == occ ) j++;
     }
   for (ii=1;ii<=nlstate+ndeath;ii++)    return j;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  void cutv(char *u,char *v, char*t, char occ)
   {
    cov[1]=1.;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */       gives u="abcedf" and v="ghi2j" */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    int i,lg,j,p=0;
     newm=savm;    i=0;
     /* Covariates have to be included here again */    for(j=0; j<=strlen(t)-1; j++) {
      cov[2]=agefin;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    lg=strlen(t);
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    for(j=0; j<p; j++) {
       }      (u[j] = t[j]);
       for (k=1; k<=cptcovage;k++)    }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       u[p]='\0';
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  }
   
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /********************** nrerror ********************/
   
     savm=oldm;  void nrerror(char error_text[])
     oldm=newm;  {
     maxmax=0.;    fprintf(stderr,"ERREUR ...\n");
     for(j=1;j<=nlstate;j++){    fprintf(stderr,"%s\n",error_text);
       min=1.;    exit(EXIT_FAILURE);
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  /*********************** vector *******************/
         sumnew=0;  double *vector(int nl, int nh)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    double *v;
         max=FMAX(max,prlim[i][j]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         min=FMIN(min,prlim[i][j]);    if (!v) nrerror("allocation failure in vector");
       }    return v-nl+NR_END;
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /************************ free vector ******************/
     if(maxmax < ftolpl){  void free_vector(double*v, int nl, int nh)
       return prlim;  {
     }    free((FREE_ARG)(v+nl-NR_END));
   }  }
 }  
   /************************ivector *******************************/
 /*************** transition probabilities **********/  int *ivector(long nl,long nh)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double s1, s2;    if (!v) nrerror("allocation failure in ivector");
   /*double t34;*/    return v-nl+NR_END;
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /******************free ivector **************************/
     for(j=1; j<i;j++){  void free_ivector(int *v, long nl, long nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    free((FREE_ARG)(v+nl-NR_END));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /************************lvector *******************************/
       ps[i][j]=s2;  long *lvector(long nl,long nh)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    long *v;
     for(j=i+1; j<=nlstate+ndeath;j++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!v) nrerror("allocation failure in ivector");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return v-nl+NR_END;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
   }  {
   for(i=1; i<= nlstate; i++){    free((FREE_ARG)(v+nl-NR_END));
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /******************* imatrix *******************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       s1+=exp(ps[i][j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     ps[i][i]=1./(s1+1.);  { 
     for(j=1; j<i; j++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int **m; 
     for(j=i+1; j<=nlstate+ndeath; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* allocate pointers to rows */ 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   } /* end i */    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m -= nrl; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    
       ps[ii][jj]=0;    
       ps[ii][ii]=1;    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m[nrl] -= ncl; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    
      printf("%lf ",ps[ii][jj]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
    }    
     printf("\n ");    /* return pointer to array of pointers to rows */ 
     }    return m; 
     printf("\n ");printf("%lf ",cov[2]);*/  } 
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /****************** free_imatrix *************************/
   goto end;*/  void free_imatrix(m,nrl,nrh,ncl,nch)
     return ps;        int **m;
 }        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 /**************** Product of 2 matrices ******************/  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /******************* matrix *******************************/
   /* in, b, out are matrice of pointers which should have been initialized  double **matrix(long nrl, long nrh, long ncl, long nch)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   long i, j, k;    double **m;
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if (!m) nrerror("allocation failure 1 in matrix()");
         out[i][k] +=in[i][j]*b[j][k];    m += NR_END;
     m -= nrl;
   return out;  
 }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /************* Higher Matrix Product ***************/    m[nrl] -= ncl;
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      duration (i.e. until     */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /*************************free matrix ************************/
      Model is determined by parameters x and covariates have to be  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
      included manually here.  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
      */    free((FREE_ARG)(m+nrl-NR_END));
   }
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /******************* ma3x *******************************/
   double **newm;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   /* Hstepm could be zero and should return the unit matrix */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   for (i=1;i<=nlstate+ndeath;i++)    double ***m;
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       po[i][j][0]=(i==j ? 1.0 : 0.0);    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m -= nrl;
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       /* Covariates have to be included here again */    m[nrl] += NR_END;
       cov[1]=1.;    m[nrl] -= ncl;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
    for (k=1; k<=cptcovprod;k++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      m[nrl][j]=m[nrl][j-1]+nlay;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (i=nrl+1; i<=nrh; i++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       savm=oldm;      for (j=ncl+1; j<=nch; j++) 
       oldm=newm;        m[i][j]=m[i][j-1]+nlay;
     }    }
     for(i=1; i<=nlstate+ndeath; i++)    return m; 
       for(j=1;j<=nlstate+ndeath;j++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         po[i][j][h]=newm[i][j];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    */
          */  }
       }  
   } /* end h */  /*************************free ma3x ************************/
   return po;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /*************** log-likelihood *************/    free((FREE_ARG)(m+nrl-NR_END));
 double func( double *x)  }
 {  
   int i, ii, j, k, mi, d, kk;  /*************** function subdirf ***********/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  char *subdirf(char fileres[])
   double **out;  {
   double sw; /* Sum of weights */    /* Caution optionfilefiname is hidden */
   double lli; /* Individual log likelihood */    strcpy(tmpout,optionfilefiname);
   long ipmx;    strcat(tmpout,"/"); /* Add to the right */
   /*extern weight */    strcat(tmpout,fileres);
   /* We are differentiating ll according to initial status */    return tmpout;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  }
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  /*************** function subdirf2 ***********/
   */  char *subdirf2(char fileres[], char *preop)
   cov[1]=1.;  {
     
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /* Caution optionfilefiname is hidden */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    strcpy(tmpout,optionfilefiname);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    strcat(tmpout,"/");
     for(mi=1; mi<= wav[i]-1; mi++){    strcat(tmpout,preop);
       for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,fileres);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return tmpout;
       for(d=0; d<dh[mi][i]; d++){  }
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*************** function subdirf3 ***********/
         for (kk=1; kk<=cptcovage;kk++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
         }    
            /* Caution optionfilefiname is hidden */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    strcpy(tmpout,optionfilefiname);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,"/");
         savm=oldm;    strcat(tmpout,preop);
         oldm=newm;    strcat(tmpout,preop2);
            strcat(tmpout,fileres);
            return tmpout;
       } /* end mult */  }
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /***************** f1dim *************************/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  extern int ncom; 
       ipmx +=1;  extern double *pcom,*xicom;
       sw += weight[i];  extern double (*nrfunc)(double []); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;   
     } /* end of wave */  double f1dim(double x) 
   } /* end of individual */  { 
     int j; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double f;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double *xt; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */   
   return -l;    xt=vector(1,ncom); 
 }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /*********** Maximum Likelihood Estimation ***************/    return f; 
   } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /*****************brent *************************/
   int i,j, iter;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double **xi,*delti;  { 
   double fret;    int iter; 
   xi=matrix(1,npar,1,npar);    double a,b,d,etemp;
   for (i=1;i<=npar;i++)    double fu,fv,fw,fx;
     for (j=1;j<=npar;j++)    double ftemp;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   printf("Powell\n");    double e=0.0; 
   powell(p,xi,npar,ftol,&iter,&fret,func);   
     a=(ax < cx ? ax : cx); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    b=(ax > cx ? ax : cx); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 }    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 /**** Computes Hessian and covariance matrix ***/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   double  **a,**y,*x,pd;      fprintf(ficlog,".");fflush(ficlog);
   double **hess;  #ifdef DEBUG
   int i, j,jk;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int *indx;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double hessii(double p[], double delta, int theta, double delti[]);  #endif
   double hessij(double p[], double delti[], int i, int j);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        *xmin=x; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        return fx; 
       } 
       ftemp=fu;
   hess=matrix(1,npar,1,npar);      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   printf("\nCalculation of the hessian matrix. Wait...\n");        q=(x-v)*(fx-fw); 
   for (i=1;i<=npar;i++){        p=(x-v)*q-(x-w)*r; 
     printf("%d",i);fflush(stdout);        q=2.0*(q-r); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        if (q > 0.0) p = -p; 
     /*printf(" %f ",p[i]);*/        q=fabs(q); 
   }        etemp=e; 
         e=d; 
   for (i=1;i<=npar;i++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for (j=1;j<=npar;j++)  {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       if (j>i) {        else { 
         printf(".%d%d",i,j);fflush(stdout);          d=p/q; 
         hess[i][j]=hessij(p,delti,i,j);          u=x+d; 
         hess[j][i]=hess[i][j];          if (u-a < tol2 || b-u < tol2) 
       }            d=SIGN(tol1,xm-x); 
     }        } 
   }      } else { 
   printf("\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
        fu=(*f)(u); 
   a=matrix(1,npar,1,npar);      if (fu <= fx) { 
   y=matrix(1,npar,1,npar);        if (u >= x) a=x; else b=x; 
   x=vector(1,npar);        SHFT(v,w,x,u) 
   indx=ivector(1,npar);          SHFT(fv,fw,fx,fu) 
   for (i=1;i<=npar;i++)          } else { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            if (u < x) a=u; else b=u; 
   ludcmp(a,npar,indx,&pd);            if (fu <= fw || w == x) { 
               v=w; 
   for (j=1;j<=npar;j++) {              w=u; 
     for (i=1;i<=npar;i++) x[i]=0;              fv=fw; 
     x[j]=1;              fw=fu; 
     lubksb(a,npar,indx,x);            } else if (fu <= fv || v == x || v == w) { 
     for (i=1;i<=npar;i++){              v=u; 
       matcov[i][j]=x[i];              fv=fu; 
     }            } 
   }          } 
     } 
   printf("\n#Hessian matrix#\n");    nrerror("Too many iterations in brent"); 
   for (i=1;i<=npar;i++) {    *xmin=x; 
     for (j=1;j<=npar;j++) {    return fx; 
       printf("%.3e ",hess[i][j]);  } 
     }  
     printf("\n");  /****************** mnbrak ***********************/
   }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /* Recompute Inverse */              double (*func)(double)) 
   for (i=1;i<=npar;i++)  { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double ulim,u,r,q, dum;
   ludcmp(a,npar,indx,&pd);    double fu; 
    
   /*  printf("\n#Hessian matrix recomputed#\n");    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   for (j=1;j<=npar;j++) {    if (*fb > *fa) { 
     for (i=1;i<=npar;i++) x[i]=0;      SHFT(dum,*ax,*bx,dum) 
     x[j]=1;        SHFT(dum,*fb,*fa,dum) 
     lubksb(a,npar,indx,x);        } 
     for (i=1;i<=npar;i++){    *cx=(*bx)+GOLD*(*bx-*ax); 
       y[i][j]=x[i];    *fc=(*func)(*cx); 
       printf("%.3e ",y[i][j]);    while (*fb > *fc) { 
     }      r=(*bx-*ax)*(*fb-*fc); 
     printf("\n");      q=(*bx-*cx)*(*fb-*fa); 
   }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   free_matrix(a,1,npar,1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
   free_matrix(y,1,npar,1,npar);        fu=(*func)(u); 
   free_vector(x,1,npar);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   free_ivector(indx,1,npar);        fu=(*func)(u); 
   free_matrix(hess,1,npar,1,npar);        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 /*************** hessian matrix ****************/        u=ulim; 
 double hessii( double x[], double delta, int theta, double delti[])        fu=(*func)(u); 
 {      } else { 
   int i;        u=(*cx)+GOLD*(*cx-*bx); 
   int l=1, lmax=20;        fu=(*func)(u); 
   double k1,k2;      } 
   double p2[NPARMAX+1];      SHFT(*ax,*bx,*cx,u) 
   double res;        SHFT(*fa,*fb,*fc,fu) 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        } 
   double fx;  } 
   int k=0,kmax=10;  
   double l1;  /*************** linmin ************************/
   
   fx=func(x);  int ncom; 
   for (i=1;i<=npar;i++) p2[i]=x[i];  double *pcom,*xicom;
   for(l=0 ; l <=lmax; l++){  double (*nrfunc)(double []); 
     l1=pow(10,l);   
     delts=delt;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(k=1 ; k <kmax; k=k+1){  { 
       delt = delta*(l1*k);    double brent(double ax, double bx, double cx, 
       p2[theta]=x[theta] +delt;                 double (*f)(double), double tol, double *xmin); 
       k1=func(p2)-fx;    double f1dim(double x); 
       p2[theta]=x[theta]-delt;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       k2=func(p2)-fx;                double *fc, double (*func)(double)); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int j; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double xx,xmin,bx,ax; 
          double fx,fb,fa;
 #ifdef DEBUG   
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    ncom=n; 
 #endif    pcom=vector(1,n); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    xicom=vector(1,n); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    nrfunc=func; 
         k=kmax;    for (j=1;j<=n;j++) { 
       }      pcom[j]=p[j]; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      xicom[j]=xi[j]; 
         k=kmax; l=lmax*10.;    } 
       }    ax=0.0; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    xx=1.0; 
         delts=delt;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
   }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   delti[theta]=delts;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   return res;  #endif
      for (j=1;j<=n;j++) { 
 }      xi[j] *= xmin; 
       p[j] += xi[j]; 
 double hessij( double x[], double delti[], int thetai,int thetaj)    } 
 {    free_vector(xicom,1,n); 
   int i;    free_vector(pcom,1,n); 
   int l=1, l1, lmax=20;  } 
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  char *asc_diff_time(long time_sec, char ascdiff[])
   int k;  {
     long sec_left, days, hours, minutes;
   fx=func(x);    days = (time_sec) / (60*60*24);
   for (k=1; k<=2; k++) {    sec_left = (time_sec) % (60*60*24);
     for (i=1;i<=npar;i++) p2[i]=x[i];    hours = (sec_left) / (60*60) ;
     p2[thetai]=x[thetai]+delti[thetai]/k;    sec_left = (sec_left) %(60*60);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    minutes = (sec_left) /60;
     k1=func(p2)-fx;    sec_left = (sec_left) % (60);
      sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     p2[thetai]=x[thetai]+delti[thetai]/k;    return ascdiff;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k2=func(p2)-fx;  
    /*************** powell ************************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              double (*func)(double [])) 
     k3=func(p2)-fx;  { 
      void linmin(double p[], double xi[], int n, double *fret, 
     p2[thetai]=x[thetai]-delti[thetai]/k;                double (*func)(double [])); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    int i,ibig,j; 
     k4=func(p2)-fx;    double del,t,*pt,*ptt,*xit;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double fp,fptt;
 #ifdef DEBUG    double *xits;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int niterf, itmp;
 #endif  
   }    pt=vector(1,n); 
   return res;    ptt=vector(1,n); 
 }    xit=vector(1,n); 
     xits=vector(1,n); 
 /************** Inverse of matrix **************/    *fret=(*func)(p); 
 void ludcmp(double **a, int n, int *indx, double *d)    for (j=1;j<=n;j++) pt[j]=p[j]; 
 {    for (*iter=1;;++(*iter)) { 
   int i,imax,j,k;      fp=(*fret); 
   double big,dum,sum,temp;      ibig=0; 
   double *vv;      del=0.0; 
        last_time=curr_time;
   vv=vector(1,n);      (void) gettimeofday(&curr_time,&tzp);
   *d=1.0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for (i=1;i<=n;i++) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     big=0.0;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     for (j=1;j<=n;j++)     for (i=1;i<=n;i++) {
       if ((temp=fabs(a[i][j])) > big) big=temp;        printf(" %d %.12f",i, p[i]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        fprintf(ficlog," %d %.12lf",i, p[i]);
     vv[i]=1.0/big;        fprintf(ficrespow," %.12lf", p[i]);
   }      }
   for (j=1;j<=n;j++) {      printf("\n");
     for (i=1;i<j;i++) {      fprintf(ficlog,"\n");
       sum=a[i][j];      fprintf(ficrespow,"\n");fflush(ficrespow);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      if(*iter <=3){
       a[i][j]=sum;        tm = *localtime(&curr_time.tv_sec);
     }        strcpy(strcurr,asctime(&tm));
     big=0.0;  /*       asctime_r(&tm,strcurr); */
     for (i=j;i<=n;i++) {        forecast_time=curr_time; 
       sum=a[i][j];        itmp = strlen(strcurr);
       for (k=1;k<j;k++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         sum -= a[i][k]*a[k][j];          strcurr[itmp-1]='\0';
       a[i][j]=sum;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         big=dum;        for(niterf=10;niterf<=30;niterf+=10){
         imax=i;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       }          tmf = *localtime(&forecast_time.tv_sec);
     }  /*      asctime_r(&tmf,strfor); */
     if (j != imax) {          strcpy(strfor,asctime(&tmf));
       for (k=1;k<=n;k++) {          itmp = strlen(strfor);
         dum=a[imax][k];          if(strfor[itmp-1]=='\n')
         a[imax][k]=a[j][k];          strfor[itmp-1]='\0';
         a[j][k]=dum;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       *d = -(*d);        }
       vv[imax]=vv[j];      }
     }      for (i=1;i<=n;i++) { 
     indx[j]=imax;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     if (a[j][j] == 0.0) a[j][j]=TINY;        fptt=(*fret); 
     if (j != n) {  #ifdef DEBUG
       dum=1.0/(a[j][j]);        printf("fret=%lf \n",*fret);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
   }        printf("%d",i);fflush(stdout);
   free_vector(vv,1,n);  /* Doesn't work */        fprintf(ficlog,"%d",i);fflush(ficlog);
 ;        linmin(p,xit,n,fret,func); 
 }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 void lubksb(double **a, int n, int *indx, double b[])          ibig=i; 
 {        } 
   int i,ii=0,ip,j;  #ifdef DEBUG
   double sum;        printf("%d %.12e",i,(*fret));
          fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=n;i++) {        for (j=1;j<=n;j++) {
     ip=indx[i];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     sum=b[ip];          printf(" x(%d)=%.12e",j,xit[j]);
     b[ip]=b[i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     if (ii)        }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=1;j<=n;j++) {
     else if (sum) ii=i;          printf(" p=%.12e",p[j]);
     b[i]=sum;          fprintf(ficlog," p=%.12e",p[j]);
   }        }
   for (i=n;i>=1;i--) {        printf("\n");
     sum=b[i];        fprintf(ficlog,"\n");
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  #endif
     b[i]=sum/a[i][i];      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 }  #ifdef DEBUG
         int k[2],l;
 /************ Frequencies ********************/        k[0]=1;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        k[1]=-1;
 {  /* Some frequencies */        printf("Max: %.12e",(*func)(p));
          fprintf(ficlog,"Max: %.12e",(*func)(p));
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for (j=1;j<=n;j++) {
   double ***freq; /* Frequencies */          printf(" %.12e",p[j]);
   double *pp;          fprintf(ficlog," %.12e",p[j]);
   double pos;        }
   FILE *ficresp;        printf("\n");
   char fileresp[FILENAMELENGTH];        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   pp=vector(1,nlstate);          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   strcpy(fileresp,"p");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   strcat(fileresp,fileres);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {          }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     exit(0);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  #endif
   j1=0;  
   
   j=cptcoveff;        free_vector(xit,1,n); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   for(k1=1; k1<=j;k1++){        free_vector(pt,1,n); 
    for(i1=1; i1<=ncodemax[k1];i1++){        return; 
        j1++;      } 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
          scanf("%d", i);*/      for (j=1;j<=n;j++) { 
         for (i=-1; i<=nlstate+ndeath; i++)          ptt[j]=2.0*p[j]-pt[j]; 
          for (jk=-1; jk<=nlstate+ndeath; jk++)          xit[j]=p[j]-pt[j]; 
            for(m=agemin; m <= agemax+3; m++)        pt[j]=p[j]; 
              freq[i][jk][m]=0;      } 
              fptt=(*func)(ptt); 
        for (i=1; i<=imx; i++) {      if (fptt < fp) { 
          bool=1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if  (cptcovn>0) {        if (t < 0.0) { 
            for (z1=1; z1<=cptcoveff; z1++)          linmin(p,xit,n,fret,func); 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (j=1;j<=n;j++) { 
                bool=0;            xi[j][ibig]=xi[j][n]; 
          }            xi[j][n]=xit[j]; 
           if (bool==1) {          }
            for(m=firstpass; m<=lastpass-1; m++){  #ifdef DEBUG
              if(agev[m][i]==0) agev[m][i]=agemax+1;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
              if(agev[m][i]==1) agev[m][i]=agemax+2;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for(j=1;j<=n;j++){
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            printf(" %.12e",xit[j]);
            }            fprintf(ficlog," %.12e",xit[j]);
          }          }
        }          printf("\n");
         if  (cptcovn>0) {          fprintf(ficlog,"\n");
          fprintf(ficresp, "\n#********** Variable ");  #endif
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
        fprintf(ficresp, "**********\n#");      } 
         }    } 
        for(i=1; i<=nlstate;i++)  } 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
        fprintf(ficresp, "\n");  /**** Prevalence limit (stable or period prevalence)  ****************/
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     if(i==(int)agemax+3)  {
       printf("Total");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     else       matrix by transitions matrix until convergence is reached */
       printf("Age %d", i);  
     for(jk=1; jk <=nlstate ; jk++){    int i, ii,j,k;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double min, max, maxmin, maxmax,sumnew=0.;
         pp[jk] += freq[jk][m][i];    double **matprod2();
     }    double **out, cov[NCOVMAX+1], **pmij();
     for(jk=1; jk <=nlstate ; jk++){    double **newm;
       for(m=-1, pos=0; m <=0 ; m++)    double agefin, delaymax=50 ; /* Max number of years to converge */
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)    for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for (j=1;j<=nlstate+ndeath;j++){
       else        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
     }  
     for(jk=1; jk <=nlstate ; jk++){     cov[1]=1.;
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)   
         pp[jk] += freq[jk][m][i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for(jk=1,pos=0; jk <=nlstate ; jk++)      newm=savm;
       pos += pp[jk];      /* Covariates have to be included here again */
     for(jk=1; jk <=nlstate ; jk++){       cov[2]=agefin;
       if(pos>=1.e-5)    
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (k=1; k<=cptcovn;k++) {
       else          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       if( i <= (int) agemax){        }
         if(pos>=1.e-5)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for (k=1; k<=cptcovprod;k++)
       else          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
       }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for(jk=-1; jk <=nlstate+ndeath; jk++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for(m=-1; m <=nlstate+ndeath; m++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
     if(i <= (int) agemax)      savm=oldm;
       fprintf(ficresp,"\n");      oldm=newm;
     printf("\n");      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
     }        min=1.;
  }        max=0.;
          for(i=1; i<=nlstate; i++) {
   fclose(ficresp);          sumnew=0;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   free_vector(pp,1,nlstate);          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
 }  /* End of Freq */          min=FMIN(min,prlim[i][j]);
         }
 /************* Waves Concatenation ***************/        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      }
 {      if(maxmax < ftolpl){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        return prlim;
      Death is a valid wave (if date is known).      }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  }
      and mw[mi+1][i]. dh depends on stepm.  
      */  /*************** transition probabilities ***************/ 
   
   int i, mi, m;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  {
      double sum=0., jmean=0.;*/    double s1, s2;
     /*double t34;*/
 int j, k=0,jk, ju, jl;    int i,j,j1, nc, ii, jj;
      double sum=0.;  
 jmin=1e+5;      for(i=1; i<= nlstate; i++){
  jmax=-1;        for(j=1; j<i;j++){
 jmean=0.;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for(i=1; i<=imx; i++){            /*s2 += param[i][j][nc]*cov[nc];*/
     mi=0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     m=firstpass;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)          ps[i][j]=s2;
         mw[++mi][i]=m;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       if(m >=lastpass)        }
         break;        for(j=i+1; j<=nlstate+ndeath;j++){
       else          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         m++;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }/* end while */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     if (s[m][i] > nlstate){          }
       mi++;     /* Death is another wave */          ps[i][j]=s2;
       /* if(mi==0)  never been interviewed correctly before death */        }
          /* Only death is a correct wave */      }
       mw[mi][i]=m;      /*ps[3][2]=1;*/
     }      
       for(i=1; i<= nlstate; i++){
     wav[i]=mi;        s1=0;
     if(mi==0)        for(j=1; j<i; j++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s1+=exp(ps[i][j]);
   }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
   for(i=1; i<=imx; i++){        for(j=i+1; j<=nlstate+ndeath; j++){
     for(mi=1; mi<wav[i];mi++){          s1+=exp(ps[i][j]);
       if (stepm <=0)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         dh[mi][i]=1;        }
       else{        ps[i][i]=1./(s1+1.);
         if (s[mw[mi+1][i]][i] > nlstate) {        for(j=1; j<i; j++)
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ps[i][j]= exp(ps[i][j])*ps[i][i];
           /*if ((j<0) || (j>28)) printf("j=%d num=%d ",j,i);*/        for(j=i+1; j<=nlstate+ndeath; j++)
           if(j==0) j=1;  /* Survives at least one month after exam */          ps[i][j]= exp(ps[i][j])*ps[i][i];
           k=k+1;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           if (j >= jmax) jmax=j;      } /* end i */
           else if (j <= jmin)jmin=j;      
           sum=sum+j;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         }        for(jj=1; jj<= nlstate+ndeath; jj++){
         else{          ps[ii][jj]=0;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          ps[ii][ii]=1;
           /*if ((j<0) || (j>28)) printf("j=%d num=%d ",j,i);*/        }
           k=k+1;      }
           if (j >= jmax) jmax=j;      
           else if (j <= jmin)jmin=j;  
           sum=sum+j;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         jk= j/stepm;  /*         printf("ddd %lf ",ps[ii][jj]); */
         jl= j -jk*stepm;  /*       } */
         ju= j -(jk+1)*stepm;  /*       printf("\n "); */
         if(jl <= -ju)  /*        } */
           dh[mi][i]=jk;  /*        printf("\n ");printf("%lf ",cov[2]); */
         else         /*
           dh[mi][i]=jk+1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         if(dh[mi][i]==0)        goto end;*/
           dh[mi][i]=1; /* At least one step */      return ps;
       }  }
     }  
   }  /**************** Product of 2 matrices ******************/
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 }  {
 /*********** Tricode ****************************/    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 void tricode(int *Tvar, int **nbcode, int imx)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 {    /* in, b, out are matrice of pointers which should have been initialized 
   int Ndum[20],ij=1, k, j, i;       before: only the contents of out is modified. The function returns
   int cptcode=0;       a pointer to pointers identical to out */
   cptcoveff=0;    long i, j, k;
      for(i=nrl; i<= nrh; i++)
   for (k=0; k<19; k++) Ndum[k]=0;      for(k=ncolol; k<=ncoloh; k++)
   for (k=1; k<=7; k++) ncodemax[k]=0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    return out;
       ij=(int)(covar[Tvar[j]][i]);  }
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  /************* Higher Matrix Product ***************/
     }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for (i=0; i<=cptcode; i++) {  {
       if(Ndum[i]!=0) ncodemax[j]++;    /* Computes the transition matrix starting at age 'age' over 
     }       'nhstepm*hstepm*stepm' months (i.e. until
     ij=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for (i=1; i<=ncodemax[j]; i++) {       (typically every 2 years instead of every month which is too big 
       for (k=0; k<=19; k++) {       for the memory).
         if (Ndum[k] != 0) {       Model is determined by parameters x and covariates have to be 
           nbcode[Tvar[j]][ij]=k;       included manually here. 
           ij++;  
         }       */
         if (ij > ncodemax[j]) break;  
       }      int i, j, d, h, k;
     }    double **out, cov[NCOVMAX+1];
   }      double **newm;
   
  for (k=0; k<19; k++) Ndum[k]=0;    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
  for (i=1; i<=ncovmodel; i++) {      for (j=1;j<=nlstate+ndeath;j++){
       ij=Tvar[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
       Ndum[ij]++;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  ij=1;    for(h=1; h <=nhstepm; h++){
  for (i=1; i<=10; i++) {      for(d=1; d <=hstepm; d++){
    if((Ndum[i]!=0) && (i<=ncov)){        newm=savm;
      Tvaraff[ij]=i;        /* Covariates have to be included here again */
      ij++;        cov[1]=1.;
    }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
  }        for (k=1; k<=cptcovn;k++) 
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     cptcoveff=ij-1;        for (k=1; k<=cptcovage;k++)
 }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 /*********** Health Expectancies ****************/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  
 {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   /* Health expectancies */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int i, j, nhstepm, hstepm, h;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double age, agelim,hf;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***p3mat;        savm=oldm;
          oldm=newm;
   fprintf(ficreseij,"# Health expectancies\n");      }
   fprintf(ficreseij,"# Age");      for(i=1; i<=nlstate+ndeath; i++)
   for(i=1; i<=nlstate;i++)        for(j=1;j<=nlstate+ndeath;j++) {
     for(j=1; j<=nlstate;j++)          po[i][j][h]=newm[i][j];
       fprintf(ficreseij," %1d-%1d",i,j);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   fprintf(ficreseij,"\n");        }
       /*printf("h=%d ",h);*/
   hstepm=1*YEARM; /*  Every j years of age (in month) */    } /* end h */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /*     printf("\n H=%d \n",h); */
     return po;
   agelim=AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  /*************** log-likelihood *************/
     /* Typically if 20 years = 20*12/6=40 stepm */  double func( double *x)
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    int i, ii, j, k, mi, d, kk;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double **out;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double sw; /* Sum of weights */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double lli; /* Individual log likelihood */
     int s1, s2;
     double bbh, survp;
     for(i=1; i<=nlstate;i++)    long ipmx;
       for(j=1; j<=nlstate;j++)    /*extern weight */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    /* We are differentiating ll according to initial status */
           eij[i][j][(int)age] +=p3mat[i][j][h];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
          printf(" %d\n",s[4][i]);
     hf=1;    */
     if (stepm >= YEARM) hf=stepm/YEARM;    cov[1]=1.;
     fprintf(ficreseij,"%.0f",age );  
     for(i=1; i<=nlstate;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    if(mle==1){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance ******************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Variance of health expectancies */            newm=savm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **newm;            for (kk=1; kk<=cptcovage;kk++) {
   double **dnewm,**doldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j, nhstepm, hstepm, h;            }
   int k, cptcode;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    double *xp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **gp, **gm;            savm=oldm;
   double ***gradg, ***trgradg;            oldm=newm;
   double ***p3mat;          } /* end mult */
   double age,agelim;        
   int theta;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
    fprintf(ficresvij,"# Covariances of life expectancies\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   fprintf(ficresvij,"# Age");           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for(i=1; i<=nlstate;i++)           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(j=1; j<=nlstate;j++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   fprintf(ficresvij,"\n");           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   xp=vector(1,npar);           * -stepm/2 to stepm/2 .
   dnewm=matrix(1,nlstate,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
   doldm=matrix(1,nlstate,1,nlstate);           * For stepm > 1 the results are less biased than in previous versions. 
             */
   hstepm=1*YEARM; /* Every year of age */          s1=s[mw[mi][i]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          s2=s[mw[mi+1][i]][i];
   agelim = AGESUP;          bbh=(double)bh[mi][i]/(double)stepm; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          /* bias bh is positive if real duration
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           * is higher than the multiple of stepm and negative otherwise.
     if (stepm >= YEARM) hstepm=1;           */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if( s2 > nlstate){ 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            /* i.e. if s2 is a death state and if the date of death is known 
     gp=matrix(0,nhstepm,1,nlstate);               then the contribution to the likelihood is the probability to 
     gm=matrix(0,nhstepm,1,nlstate);               die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
     for(theta=1; theta <=npar; theta++){               minus probability to die before dh-stepm . 
       for(i=1; i<=npar; i++){ /* Computes gradient */               In version up to 0.92 likelihood was computed
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          as if date of death was unknown. Death was treated as any other
       }          health state: the date of the interview describes the actual state
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            and not the date of a change in health state. The former idea was
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          to consider that at each interview the state was recorded
       for(j=1; j<= nlstate; j++){          (healthy, disable or death) and IMaCh was corrected; but when we
         for(h=0; h<=nhstepm; h++){          introduced the exact date of death then we should have modified
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          the contribution of an exact death to the likelihood. This new
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
              interview up to one month before death multiplied by the
       for(i=1; i<=npar; i++) /* Computes gradient */          probability to die within a month. Thanks to Chris
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          Jackson for correcting this bug.  Former versions increased
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            mortality artificially. The bad side is that we add another loop
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          which slows down the processing. The difference can be up to 10%
       for(j=1; j<= nlstate; j++){          lower mortality.
         for(h=0; h<=nhstepm; h++){            */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }          } else if  (s2==-2) {
       for(j=1; j<= nlstate; j++)            for (j=1,survp=0. ; j<=nlstate; j++) 
         for(h=0; h<=nhstepm; h++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            /*survp += out[s1][j]; */
         }            lli= log(survp);
     } /* End theta */          }
           
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
     for(h=0; h<=nhstepm; h++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<=nlstate;j++)            lli= log(survp); 
         for(theta=1; theta <=npar; theta++)          } 
           trgradg[h][j][theta]=gradg[h][theta][j];  
           else if  (s2==-5) { 
     for(i=1;i<=nlstate;i++)            for (j=1,survp=0. ; j<=2; j++)  
       for(j=1;j<=nlstate;j++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         vareij[i][j][(int)age] =0.;            lli= log(survp); 
     for(h=0;h<=nhstepm;h++){          } 
       for(k=0;k<=nhstepm;k++){          
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          else{
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(i=1;i<=nlstate;i++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           for(j=1;j<=nlstate;j++)          } 
             vareij[i][j][(int)age] += doldm[i][j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       }          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     h=1;          ipmx +=1;
     if (stepm >= YEARM) h=stepm/YEARM;          sw += weight[i];
     fprintf(ficresvij,"%.0f ",age );          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1; i<=nlstate;i++)        } /* end of wave */
       for(j=1; j<=nlstate;j++){      } /* end of individual */
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresvij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_matrix(gp,0,nhstepm,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     free_matrix(gm,0,nhstepm,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* End age */            }
            for(d=0; d<=dh[mi][i]; d++){
   free_vector(xp,1,npar);            newm=savm;
   free_matrix(doldm,1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(dnewm,1,nlstate,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance of prevlim ******************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            savm=oldm;
 {            oldm=newm;
   /* Variance of prevalence limit */          } /* end mult */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;          s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;          s2=s[mw[mi+1][i]][i];
   int i, j, nhstepm, hstepm;          bbh=(double)bh[mi][i]/(double)stepm; 
   int k, cptcode;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double *xp;          ipmx +=1;
   double *gp, *gm;          sw += weight[i];
   double **gradg, **trgradg;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age,agelim;        } /* end of wave */
   int theta;      } /* end of individual */
        }  else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresvpl,"# Age");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresvpl," %1d-%1d",i,i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvpl,"\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   xp=vector(1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);            }
   doldm=matrix(1,nlstate,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   hstepm=1*YEARM; /* Every year of age */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (kk=1; kk<=cptcovage;kk++) {
   agelim = AGESUP;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (stepm >= YEARM) hstepm=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            savm=oldm;
     gradg=matrix(1,npar,1,nlstate);            oldm=newm;
     gp=vector(1,nlstate);          } /* end mult */
     gm=vector(1,nlstate);        
           s1=s[mw[mi][i]][i];
     for(theta=1; theta <=npar; theta++){          s2=s[mw[mi+1][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          bbh=(double)bh[mi][i]/(double)stepm; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }          ipmx +=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          sw += weight[i];
       for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gp[i] = prlim[i][i];        } /* end of wave */
          } /* end of individual */
       for(i=1; i<=npar; i++) /* Computes gradient */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1;i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
         gm[i] = prlim[i][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
       for(i=1;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* End theta */            }
           for(d=0; d<dh[mi][i]; d++){
     trgradg =matrix(1,nlstate,1,npar);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(j=1; j<=nlstate;j++)            for (kk=1; kk<=cptcovage;kk++) {
       for(theta=1; theta <=npar; theta++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         trgradg[j][theta]=gradg[theta][j];            }
           
     for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       varpl[i][(int)age] =0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            savm=oldm;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            oldm=newm;
     for(i=1;i<=nlstate;i++)          } /* end mult */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        
           s1=s[mw[mi][i]][i];
     fprintf(ficresvpl,"%.0f ",age );          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          if( s2 > nlstate){ 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            lli=log(out[s1][s2] - savm[s1][s2]);
     fprintf(ficresvpl,"\n");          }else{
     free_vector(gp,1,nlstate);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     free_vector(gm,1,nlstate);          }
     free_matrix(gradg,1,npar,1,nlstate);          ipmx +=1;
     free_matrix(trgradg,1,nlstate,1,npar);          sw += weight[i];
   } /* End age */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_vector(xp,1,npar);        } /* end of wave */
   free_matrix(doldm,1,nlstate,1,npar);      } /* end of individual */
   free_matrix(dnewm,1,nlstate,1,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /***********************************************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /**************** Main Program *****************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /***********************************************/            }
           for(d=0; d<dh[mi][i]; d++){
 /*int main(int argc, char *argv[])*/            newm=savm;
 int main()            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            }
   double agedeb, agefin,hf;          
   double agemin=1.e20, agemax=-1.e20;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double fret;            savm=oldm;
   double **xi,tmp,delta;            oldm=newm;
           } /* end mult */
   double dum; /* Dummy variable */        
   double ***p3mat;          s1=s[mw[mi][i]][i];
   int *indx;          s2=s[mw[mi+1][i]][i];
   char line[MAXLINE], linepar[MAXLINE];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   char title[MAXLINE];          ipmx +=1;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];          sw += weight[i];
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char filerest[FILENAMELENGTH];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   char fileregp[FILENAMELENGTH];        } /* end of wave */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      } /* end of individual */
   int firstobs=1, lastobs=10;    } /* End of if */
   int sdeb, sfin; /* Status at beginning and end */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int c,  h , cpt,l;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int ju,jl, mi;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    return -l;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  }
    
   int hstepm, nhstepm;  /*************** log-likelihood *************/
   double bage, fage, age, agelim, agebase;  double funcone( double *x)
   double ftolpl=FTOL;  {
   double **prlim;    /* Same as likeli but slower because of a lot of printf and if */
   double *severity;    int i, ii, j, k, mi, d, kk;
   double ***param; /* Matrix of parameters */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double  *p;    double **out;
   double **matcov; /* Matrix of covariance */    double lli; /* Individual log likelihood */
   double ***delti3; /* Scale */    double llt;
   double *delti; /* Scale */    int s1, s2;
   double ***eij, ***vareij;    double bbh, survp;
   double **varpl; /* Variances of prevalence limits by age */    /*extern weight */
   double *epj, vepp;    /* We are differentiating ll according to initial status */
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   char z[1]="c", occ;    */
 #include <sys/time.h>    cov[1]=1.;
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   /* long total_usecs;  
   struct timeval start_time, end_time;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
   printf("\nIMACH, Version 0.64b");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\nEnter the parameter file name: ");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 #ifdef windows        for(d=0; d<dh[mi][i]; d++){
   scanf("%s",pathtot);          newm=savm;
   getcwd(pathcd, size);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /*cygwin_split_path(pathtot,path,optionfile);          for (kk=1; kk<=cptcovage;kk++) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* cutv(path,optionfile,pathtot,'\\');*/          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 split(pathtot, path,optionfile);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   chdir(path);          savm=oldm;
   replace(pathc,path);          oldm=newm;
 #endif        } /* end mult */
 #ifdef unix        
   scanf("%s",optionfile);        s1=s[mw[mi][i]][i];
 #endif        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
 /*-------- arguments in the command line --------*/        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
   strcpy(fileres,"r");         */
   strcat(fileres, optionfile);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   /*---------arguments file --------*/        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     printf("Problem with optionfile %s\n",optionfile);          lli= log(survp);
     goto end;        }else if (mle==1){
   }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   strcpy(filereso,"o");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   strcat(filereso,fileres);        } else if(mle==3){  /* exponential inter-extrapolation */
   if((ficparo=fopen(filereso,"w"))==NULL) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* mle=0 back to 1 */
   /* Reads comments: lines beginning with '#' */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   while((c=getc(ficpar))=='#' && c!= EOF){          /*lli=log(out[s1][s2]); */ /* Original formula */
     ungetc(c,ficpar);        } /* End of if */
     fgets(line, MAXLINE, ficpar);        ipmx +=1;
     puts(line);        sw += weight[i];
     fputs(line,ficparo);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   ungetc(c,ficpar);        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   %11.6f %11.6f %11.6f ", \
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   covar=matrix(0,NCOVMAX,1,n);            llt +=ll[k]*gipmx/gsw;
   cptcovn=0;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          }
           fprintf(ficresilk," %10.6f\n", -llt);
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      } /* end of wave */
      } /* end of individual */
   /* Read guess parameters */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* Reads comments: lines beginning with '#' */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   while((c=getc(ficpar))=='#' && c!= EOF){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     ungetc(c,ficpar);    if(globpr==0){ /* First time we count the contributions and weights */
     fgets(line, MAXLINE, ficpar);      gipmx=ipmx;
     puts(line);      gsw=sw;
     fputs(line,ficparo);    }
   }    return -l;
   ungetc(c,ficpar);  }
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)  /*************** function likelione ***********/
     for(j=1; j <=nlstate+ndeath-1; j++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       fscanf(ficpar,"%1d%1d",&i1,&j1);  {
       fprintf(ficparo,"%1d%1d",i1,j1);    /* This routine should help understanding what is done with 
       printf("%1d%1d",i,j);       the selection of individuals/waves and
       for(k=1; k<=ncovmodel;k++){       to check the exact contribution to the likelihood.
         fscanf(ficpar," %lf",&param[i][j][k]);       Plotting could be done.
         printf(" %lf",param[i][j][k]);     */
         fprintf(ficparo," %lf",param[i][j][k]);    int k;
       }  
       fscanf(ficpar,"\n");    if(*globpri !=0){ /* Just counts and sums, no printings */
       printf("\n");      strcpy(fileresilk,"ilk"); 
       fprintf(ficparo,"\n");      strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresilk);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   p=param[1][1];      }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   /* Reads comments: lines beginning with '#' */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   while((c=getc(ficpar))=='#' && c!= EOF){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     ungetc(c,ficpar);      for(k=1; k<=nlstate; k++) 
     fgets(line, MAXLINE, ficpar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     puts(line);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    *fretone=(*funcone)(p);
     if(*globpri !=0){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fclose(ficresilk);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   for(i=1; i <=nlstate; i++){      fflush(fichtm); 
     for(j=1; j <=nlstate+ndeath-1; j++){    } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    return;
       printf("%1d%1d",i,j);  }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /*********** Maximum Likelihood Estimation ***************/
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       }  {
       fscanf(ficpar,"\n");    int i,j, iter;
       printf("\n");    double **xi;
       fprintf(ficparo,"\n");    double fret;
     }    double fretone; /* Only one call to likelihood */
   }    /*  char filerespow[FILENAMELENGTH];*/
   delti=delti3[1][1];    xi=matrix(1,npar,1,npar);
      for (i=1;i<=npar;i++)
   /* Reads comments: lines beginning with '#' */      for (j=1;j<=npar;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){        xi[i][j]=(i==j ? 1.0 : 0.0);
     ungetc(c,ficpar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fgets(line, MAXLINE, ficpar);    strcpy(filerespow,"pow"); 
     puts(line);    strcat(filerespow,fileres);
     fputs(line,ficparo);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", filerespow);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
   matcov=matrix(1,npar,1,npar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for(i=1; i <=npar; i++){    for (i=1;i<=nlstate;i++)
     fscanf(ficpar,"%s",&str);      for(j=1;j<=nlstate+ndeath;j++)
     printf("%s",str);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficparo,"%s",str);    fprintf(ficrespow,"\n");
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    powell(p,xi,npar,ftol,&iter,&fret,func);
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);    free_matrix(xi,1,npar,1,npar);
     }    fclose(ficrespow);
     fscanf(ficpar,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     printf("\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficparo,"\n");    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }  
   for(i=1; i <=npar; i++)  }
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];  /**** Computes Hessian and covariance matrix ***/
      void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   printf("\n");  {
     double  **a,**y,*x,pd;
     double **hess;
     /*-------- data file ----------*/    int i, j,jk;
     if((ficres =fopen(fileres,"w"))==NULL) {    int *indx;
       printf("Problem with resultfile: %s\n", fileres);goto end;  
     }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     fprintf(ficres,"#%s\n",version);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
        void lubksb(double **a, int npar, int *indx, double b[]) ;
     if((fic=fopen(datafile,"r"))==NULL)    {    void ludcmp(double **a, int npar, int *indx, double *d) ;
       printf("Problem with datafile: %s\n", datafile);goto end;    double gompertz(double p[]);
     }    hess=matrix(1,npar,1,npar);
   
     n= lastobs;    printf("\nCalculation of the hessian matrix. Wait...\n");
     severity = vector(1,maxwav);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     outcome=imatrix(1,maxwav+1,1,n);    for (i=1;i<=npar;i++){
     num=ivector(1,n);      printf("%d",i);fflush(stdout);
     moisnais=vector(1,n);      fprintf(ficlog,"%d",i);fflush(ficlog);
     annais=vector(1,n);     
     moisdc=vector(1,n);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     andc=vector(1,n);      
     agedc=vector(1,n);      /*  printf(" %f ",p[i]);
     cod=ivector(1,n);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     weight=vector(1,n);    }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    for (i=1;i<=npar;i++) {
     anint=matrix(1,maxwav,1,n);      for (j=1;j<=npar;j++)  {
     s=imatrix(1,maxwav+1,1,n);        if (j>i) { 
     adl=imatrix(1,maxwav+1,1,n);              printf(".%d%d",i,j);fflush(stdout);
     tab=ivector(1,NCOVMAX);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     ncodemax=ivector(1,8);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
     i=1;          hess[j][i]=hess[i][j];    
     while (fgets(line, MAXLINE, fic) != NULL)    {          /*printf(" %lf ",hess[i][j]);*/
       if ((i >= firstobs) && (i <=lastobs)) {        }
              }
         for (j=maxwav;j>=1;j--){    }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    printf("\n");
           strcpy(line,stra);    fprintf(ficlog,"\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
            
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    a=matrix(1,npar,1,npar);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    indx=ivector(1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    ludcmp(a,npar,indx,&pd);
         for (j=ncov;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
         num[i]=atol(stra);      x[j]=1;
       lubksb(a,npar,indx,x);
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
         i=i+1;      }
       }    }
     }  
     printf("\n#Hessian matrix#\n");
     /*scanf("%d",i);*/    fprintf(ficlog,"\n#Hessian matrix#\n");
   imx=i-1; /* Number of individuals */    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   /* Calculation of the number of parameter from char model*/        printf("%.3e ",hess[i][j]);
   Tvar=ivector(1,15);        fprintf(ficlog,"%.3e ",hess[i][j]);
   Tprod=ivector(1,15);      }
   Tvaraff=ivector(1,15);      printf("\n");
   Tvard=imatrix(1,15,1,2);      fprintf(ficlog,"\n");
   Tage=ivector(1,15);          }
      
   if (strlen(model) >1){    /* Recompute Inverse */
     j=0, j1=0, k1=1, k2=1;    for (i=1;i<=npar;i++)
     j=nbocc(model,'+');      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     j1=nbocc(model,'*');    ludcmp(a,npar,indx,&pd);
     cptcovn=j+1;  
     cptcovprod=j1;    /*  printf("\n#Hessian matrix recomputed#\n");
      
        for (j=1;j<=npar;j++) {
     strcpy(modelsav,model);      for (i=1;i<=npar;i++) x[i]=0;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      x[j]=1;
       printf("Error. Non available option model=%s ",model);      lubksb(a,npar,indx,x);
       goto end;      for (i=1;i<=npar;i++){ 
     }        y[i][j]=x[i];
            printf("%.3e ",y[i][j]);
     for(i=(j+1); i>=1;i--){        fprintf(ficlog,"%.3e ",y[i][j]);
       cutv(stra,strb,modelsav,'+');      }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      printf("\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      fprintf(ficlog,"\n");
       /*scanf("%d",i);*/    }
       if (strchr(strb,'*')) {    */
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {    free_matrix(a,1,npar,1,npar);
           cptcovprod--;    free_matrix(y,1,npar,1,npar);
           cutv(strb,stre,strd,'V');    free_vector(x,1,npar);
           Tvar[i]=atoi(stre);    free_ivector(indx,1,npar);
           cptcovage++;    free_matrix(hess,1,npar,1,npar);
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/  
         }  }
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;  /*************** hessian matrix ****************/
           cutv(strb,stre,strc,'V');  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           Tvar[i]=atoi(stre);  {
           cptcovage++;    int i;
           Tage[cptcovage]=i;    int l=1, lmax=20;
         }    double k1,k2;
         else {    double p2[MAXPARM+1]; /* identical to x */
           cutv(strb,stre,strc,'V');    double res;
           Tvar[i]=ncov+k1;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           cutv(strb,strc,strd,'V');    double fx;
           Tprod[k1]=i;    int k=0,kmax=10;
           Tvard[k1][1]=atoi(strc);    double l1;
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];    fx=func(x);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    for (i=1;i<=npar;i++) p2[i]=x[i];
           for (k=1; k<=lastobs;k++)    for(l=0 ; l <=lmax; l++){
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      l1=pow(10,l);
           k1++;      delts=delt;
           k2=k2+2;      for(k=1 ; k <kmax; k=k+1){
         }        delt = delta*(l1*k);
       }        p2[theta]=x[theta] +delt;
       else {        k1=func(p2)-fx;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        p2[theta]=x[theta]-delt;
        /*  scanf("%d",i);*/        k2=func(p2)-fx;
       cutv(strd,strc,strb,'V');        /*res= (k1-2.0*fx+k2)/delt/delt; */
       Tvar[i]=atoi(strc);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
       strcpy(modelsav,stra);    #ifdef DEBUGHESS
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         scanf("%d",i);*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }  #endif
 }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          k=kmax;
   printf("cptcovprod=%d ", cptcovprod);        }
   scanf("%d ",i);*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fclose(fic);          k=kmax; l=lmax*10.;
         }
     /*  if(mle==1){*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     if (weightopt != 1) { /* Maximisation without weights*/          delts=delt;
       for(i=1;i<=n;i++) weight[i]=1.0;        }
     }      }
     /*-calculation of age at interview from date of interview and age at death -*/    }
     agev=matrix(1,maxwav,1,imx);    delti[theta]=delts;
        return res; 
     for (i=1; i<=imx; i++)  {    
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  }
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           if (s[m][i] == nlstate+1) {  {
             if(agedc[i]>0)    int i;
               if(moisdc[i]!=99 && andc[i]!=9999)    int l=1, l1, lmax=20;
               agev[m][i]=agedc[i];    double k1,k2,k3,k4,res,fx;
             else {    double p2[MAXPARM+1];
               if (andc[i]!=9999){    int k;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;    fx=func(x);
               }    for (k=1; k<=2; k++) {
             }      for (i=1;i<=npar;i++) p2[i]=x[i];
           }      p2[thetai]=x[thetai]+delti[thetai]/k;
           else if(s[m][i] !=9){ /* Should no more exist */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      k1=func(p2)-fx;
             if(mint[m][i]==99 || anint[m][i]==9999)    
               agev[m][i]=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
             else if(agev[m][i] <agemin){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               agemin=agev[m][i];      k2=func(p2)-fx;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    
             }      p2[thetai]=x[thetai]-delti[thetai]/k;
             else if(agev[m][i] >agemax){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               agemax=agev[m][i];      k3=func(p2)-fx;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    
             }      p2[thetai]=x[thetai]-delti[thetai]/k;
             /*agev[m][i]=anint[m][i]-annais[i];*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             /*   agev[m][i] = age[i]+2*m;*/      k4=func(p2)-fx;
           }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           else { /* =9 */  #ifdef DEBUG
             agev[m][i]=1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             s[m][i]=-1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           }  #endif
         }    }
         else /*= 0 Unknown */    return res;
           agev[m][i]=1;  }
       }  
      /************** Inverse of matrix **************/
     }  void ludcmp(double **a, int n, int *indx, double *d) 
     for (i=1; i<=imx; i++)  {  { 
       for(m=1; (m<= maxwav); m++){    int i,imax,j,k; 
         if (s[m][i] > (nlstate+ndeath)) {    double big,dum,sum,temp; 
           printf("Error: Wrong value in nlstate or ndeath\n");      double *vv; 
           goto end;   
         }    vv=vector(1,n); 
       }    *d=1.0; 
     }    for (i=1;i<=n;i++) { 
       big=0.0; 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     free_vector(severity,1,maxwav);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     free_imatrix(outcome,1,maxwav+1,1,n);      vv[i]=1.0/big; 
     free_vector(moisnais,1,n);    } 
     free_vector(annais,1,n);    for (j=1;j<=n;j++) { 
     free_matrix(mint,1,maxwav,1,n);      for (i=1;i<j;i++) { 
     free_matrix(anint,1,maxwav,1,n);        sum=a[i][j]; 
     free_vector(moisdc,1,n);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_vector(andc,1,n);        a[i][j]=sum; 
       } 
          big=0.0; 
     wav=ivector(1,imx);      for (i=j;i<=n;i++) { 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        sum=a[i][j]; 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for (k=1;k<j;k++) 
              sum -= a[i][k]*a[k][j]; 
     /* Concatenates waves */        a[i][j]=sum; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
           imax=i; 
       Tcode=ivector(1,100);        } 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      } 
       ncodemax[1]=1;      if (j != imax) { 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for (k=1;k<=n;k++) { 
                dum=a[imax][k]; 
    codtab=imatrix(1,100,1,10);          a[imax][k]=a[j][k]; 
    h=0;          a[j][k]=dum; 
    m=pow(2,cptcoveff);        } 
          *d = -(*d); 
    for(k=1;k<=cptcoveff; k++){        vv[imax]=vv[j]; 
      for(i=1; i <=(m/pow(2,k));i++){      } 
        for(j=1; j <= ncodemax[k]; j++){      indx[j]=imax; 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
            h++;      if (j != n) { 
            if (h>m) h=1;codtab[h][k]=j;        dum=1.0/(a[j][j]); 
          }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        }      } 
      }    } 
    }    free_vector(vv,1,n);  /* Doesn't work */
   ;
   } 
    /*for(i=1; i <=m ;i++){  
      for(k=1; k <=cptcovn; k++){  void lubksb(double **a, int n, int *indx, double b[]) 
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);  { 
      }    int i,ii=0,ip,j; 
      printf("\n");    double sum; 
    }   
    scanf("%d",i);*/    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
    /* Calculates basic frequencies. Computes observed prevalence at single age      sum=b[ip]; 
        and prints on file fileres'p'. */      b[ip]=b[i]; 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      else if (sum) ii=i; 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      b[i]=sum; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (i=n;i>=1;i--) { 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      sum=b[i]; 
          for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     /* For Powell, parameters are in a vector p[] starting at p[1]      b[i]=sum/a[i][i]; 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    } 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  } 
   
     if(mle==1){  void pstamp(FILE *fichier)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  {
     }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
      }
     /*--------- results files --------------*/  
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    jk=1;  {  /* Some frequencies */
    fprintf(ficres,"# Parameters\n");    
    printf("# Parameters\n");    int i, m, jk, k1,i1, j1, bool, z1,j;
    for(i=1,jk=1; i <=nlstate; i++){    int first;
      for(k=1; k <=(nlstate+ndeath); k++){    double ***freq; /* Frequencies */
        if (k != i)    double *pp, **prop;
          {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
            printf("%d%d ",i,k);    char fileresp[FILENAMELENGTH];
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){    pp=vector(1,nlstate);
              printf("%f ",p[jk]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
              fprintf(ficres,"%f ",p[jk]);    strcpy(fileresp,"p");
              jk++;    strcat(fileresp,fileres);
            }    if((ficresp=fopen(fileresp,"w"))==NULL) {
            printf("\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
            fprintf(ficres,"\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          }      exit(0);
      }    }
    }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
  if(mle==1){    j1=0;
     /* Computing hessian and covariance matrix */    
     ftolhess=ftol; /* Usually correct */    j=cptcoveff;
     hesscov(matcov, p, npar, delti, ftolhess, func);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  }  
     fprintf(ficres,"# Scales\n");    first=1;
     printf("# Scales\n");  
      for(i=1,jk=1; i <=nlstate; i++){    for(k1=1; k1<=j;k1++){
       for(j=1; j <=nlstate+ndeath; j++){      for(i1=1; i1<=ncodemax[k1];i1++){
         if (j!=i) {        j1++;
           fprintf(ficres,"%1d%1d",i,j);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           printf("%1d%1d",i,j);          scanf("%d", i);*/
           for(k=1; k<=ncovmodel;k++){        for (i=-5; i<=nlstate+ndeath; i++)  
             printf(" %.5e",delti[jk]);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             fprintf(ficres," %.5e",delti[jk]);            for(m=iagemin; m <= iagemax+3; m++)
             jk++;              freq[i][jk][m]=0;
           }  
           printf("\n");      for (i=1; i<=nlstate; i++)  
           fprintf(ficres,"\n");        for(m=iagemin; m <= iagemax+3; m++)
         }          prop[i][m]=0;
       }        
       }        dateintsum=0;
            k2cpt=0;
     k=1;        for (i=1; i<=imx; i++) {
     fprintf(ficres,"# Covariance\n");          bool=1;
     printf("# Covariance\n");          if  (cptcovn>0) {
     for(i=1;i<=npar;i++){            for (z1=1; z1<=cptcoveff; z1++) 
       /*  if (k>nlstate) k=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       i1=(i-1)/(ncovmodel*nlstate)+1;                bool=0;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          }
       printf("%s%d%d",alph[k],i1,tab[i]);*/          if (bool==1){
       fprintf(ficres,"%3d",i);            for(m=firstpass; m<=lastpass; m++){
       printf("%3d",i);              k2=anint[m][i]+(mint[m][i]/12.);
       for(j=1; j<=i;j++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         fprintf(ficres," %.5e",matcov[i][j]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         printf(" %.5e",matcov[i][j]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficres,"\n");                if (m<lastpass) {
       printf("\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       k++;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     }                }
                    
     while((c=getc(ficpar))=='#' && c!= EOF){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       ungetc(c,ficpar);                  dateintsum=dateintsum+k2;
       fgets(line, MAXLINE, ficpar);                  k2cpt++;
       puts(line);                }
       fputs(line,ficparo);                /*}*/
     }            }
     ungetc(c,ficpar);          }
          }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);         
            /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     if (fage <= 2) {        pstamp(ficresp);
       bage = agemin;        if  (cptcovn>0) {
       fage = agemax;          fprintf(ficresp, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
            fprintf(ficresp, "\n");
 /*------------ gnuplot -------------*/        
 chdir(pathcd);        for(i=iagemin; i <= iagemax+3; i++){
   if((ficgp=fopen("graph.plt","w"))==NULL) {          if(i==iagemax+3){
     printf("Problem with file graph.gp");goto end;            fprintf(ficlog,"Total");
   }          }else{
 #ifdef windows            if(first==1){
   fprintf(ficgp,"cd \"%s\" \n",pathc);              first=0;
 #endif              printf("See log file for details...\n");
 m=pow(2,cptcoveff);            }
              fprintf(ficlog,"Age %d", i);
  /* 1eme*/          }
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for(jk=1; jk <=nlstate ; jk++){
    for (k1=1; k1<= m ; k1 ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
 #ifdef windows          }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
 #endif            for(m=-1, pos=0; m <=0 ; m++)
 #ifdef unix              pos += freq[jk][m][i];
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            if(pp[jk]>=1.e-10){
 #endif              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }else{
 }              if(first==1)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<= nlstate ; i ++) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
      for (i=1; i<= nlstate ; i ++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              pp[jk] += freq[jk][m][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }       
 }            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            pos += pp[jk];
 #ifdef unix            posprop += prop[jk][i];
 fprintf(ficgp,"\nset ter gif small size 400,300");          }
 #endif          for(jk=1; jk <=nlstate ; jk++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if(pos>=1.e-5){
    }              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*2 eme*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
   for (k1=1; k1<= m ; k1 ++) {              if(first==1)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;            if( i <= iagemax){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              if(pos>=1.e-5){
       for (j=1; j<= nlstate+1 ; j ++) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                /*probs[i][jk][j1]= pp[jk]/pos;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 }                }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              else
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=-1; jk <=nlstate+ndeath; jk++)
 }              for(m=-1; m <=nlstate+ndeath; m++)
       fprintf(ficgp,"\" t\"\" w l 0,");              if(freq[jk][m][i] !=0 ) {
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              if(first==1)
       for (j=1; j<= nlstate+1 ; j ++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }            if(i <= iagemax)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            fprintf(ficresp,"\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");          if(first==1)
     }            printf("Others in log...\n");
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          fprintf(ficlog,"\n");
   }        }
        }
   /*3eme*/    }
     dateintmean=dateintsum/k2cpt; 
   for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fclose(ficresp);
       k=2+nlstate*(cpt-1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    free_vector(pp,1,nlstate);
       for (i=1; i< nlstate ; i ++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    /* End of Freq */
       }  }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
   /* CV preval stat */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   for (k1=1; k1<= m ; k1 ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for (cpt=1; cpt<nlstate ; cpt ++) {       We still use firstpass and lastpass as another selection.
       k=3;    */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);   
       for (i=1; i< nlstate ; i ++)    int i, m, jk, k1, i1, j1, bool, z1,j;
         fprintf(ficgp,"+$%d",k+i+1);    double ***freq; /* Frequencies */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double *pp, **prop;
          double pos,posprop; 
       l=3+(nlstate+ndeath)*cpt;    double  y2; /* in fractional years */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    int iagemin, iagemax;
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;    iagemin= (int) agemin;
         fprintf(ficgp,"+$%d",l+i+1);    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }    j1=0;
   }    
     j=cptcoveff;
   /* proba elementaires */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    for(i=1,jk=1; i <=nlstate; i++){    
     for(k=1; k <=(nlstate+ndeath); k++){    for(k1=1; k1<=j;k1++){
       if (k != i) {      for(i1=1; i1<=ncodemax[k1];i1++){
         for(j=1; j <=ncovmodel; j++){        j1++;
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/        
           /*fprintf(ficgp,"%s",alph[1]);*/        for (i=1; i<=nlstate; i++)  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(m=iagemin; m <= iagemax+3; m++)
           jk++;            prop[i][m]=0.0;
           fprintf(ficgp,"\n");       
         }        for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
     }          if  (cptcovn>0) {
     }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for(jk=1; jk <=m; jk++) {                bool=0;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          } 
    i=1;          if (bool==1) { 
    for(k2=1; k2<=nlstate; k2++) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      k3=i;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      for(k=1; k<=(nlstate+ndeath); k++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        if (k != k2){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 ij=1;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         for(j=3; j <=ncovmodel; j++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             ij++;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           }                } 
           else              }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            } /* end selection of waves */
         }          }
           fprintf(ficgp,")/(1");        }
                for(i=iagemin; i <= iagemax+3; i++){  
         for(k1=1; k1 <=nlstate; k1++){            
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 ij=1;            posprop += prop[jk][i]; 
           for(j=3; j <=ncovmodel; j++){          } 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(jk=1; jk <=nlstate ; jk++){     
             ij++;            if( i <=  iagemax){ 
           }              if(posprop>=1.e-5){ 
           else                probs[i][jk][j1]= prop[jk][i]/posprop;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              } else
           }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           fprintf(ficgp,")");            } 
         }          }/* end jk */ 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }/* end i */ 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      } /* end i1 */
         i=i+ncovmodel;    } /* end k1 */
        }    
      }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    }    /*free_vector(pp,1,nlstate);*/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  }  /* End of prevalence */
      
   fclose(ficgp);  /************* Waves Concatenation ***************/
      
 chdir(path);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_matrix(agev,1,maxwav,1,imx);  {
     free_ivector(wav,1,imx);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       Death is a valid wave (if date is known).
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_imatrix(s,1,maxwav+1,1,n);       and mw[mi+1][i]. dh depends on stepm.
           */
      
     free_ivector(num,1,n);    int i, mi, m;
     free_vector(agedc,1,n);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_vector(weight,1,n);       double sum=0., jmean=0.;*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    int first;
     fclose(ficparo);    int j, k=0,jk, ju, jl;
     fclose(ficres);    double sum=0.;
     /*  }*/    first=0;
        jmin=1e+5;
    /*________fin mle=1_________*/    jmax=-1;
        jmean=0.;
     for(i=1; i<=imx; i++){
        mi=0;
     /* No more information from the sample is required now */      m=firstpass;
   /* Reads comments: lines beginning with '#' */      while(s[m][i] <= nlstate){
   while((c=getc(ficpar))=='#' && c!= EOF){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     ungetc(c,ficpar);          mw[++mi][i]=m;
     fgets(line, MAXLINE, ficpar);        if(m >=lastpass)
     puts(line);          break;
     fputs(line,ficparo);        else
   }          m++;
   ungetc(c,ficpar);      }/* end while */
        if (s[m][i] > nlstate){
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        mi++;     /* Death is another wave */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        /* if(mi==0)  never been interviewed correctly before death */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);           /* Only death is a correct wave */
 /*--------- index.htm --------*/        mw[mi][i]=m;
       }
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");      wav[i]=mi;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      if(mi==0){
     printf("Problem with %s \n",optionfilehtm);goto end;        nbwarn++;
   }        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">          first=1;
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        }
 Total number of observations=%d <br>        if(first==1){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 <hr  size=\"2\" color=\"#EC5E5E\">        }
 <li>Outputs files<br><br>\n      } /* end mi==0 */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    } /* End individuals */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    for(i=1; i<=imx; i++){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      for(mi=1; mi<wav[i];mi++){
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        if (stepm <=0)
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          dh[mi][i]=1;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        else{
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  fprintf(fichtm," <li>Graphs</li><p>");              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
  m=cptcoveff;                nberr++;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
  j1=0;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  for(k1=1; k1<=m;k1++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    for(i1=1; i1<=ncodemax[k1];i1++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        j1++;              }
        if (cptcovn > 0) {              k=k+1;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              if (j >= jmax){
          for (cpt=1; cpt<=cptcoveff;cpt++)                jmax=j;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);                ijmax=i;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              }
        }              if (j <= jmin){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                jmin=j;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                    ijmin=i;
        for(cpt=1; cpt<nlstate;cpt++){              }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              sum=sum+j;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for(cpt=1; cpt<=nlstate;cpt++) {            }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          }
 interval) in state (%d): v%s%d%d.gif <br>          else{
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            k=k+1;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            if (j >= jmax) {
      }              jmax=j;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              ijmax=i;
 health expectancies in states (1) and (2): e%s%d.gif<br>            }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            else if (j <= jmin){
 fprintf(fichtm,"\n</body>");              jmin=j;
    }              ijmin=i;
  }            }
 fclose(fichtm);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   /*--------------- Prevalence limit --------------*/            if(j<0){
                nberr++;
   strcpy(filerespl,"pl");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcat(filerespl,fileres);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            sum=sum+j;
   }          }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          jk= j/stepm;
   fprintf(ficrespl,"#Prevalence limit\n");          jl= j -jk*stepm;
   fprintf(ficrespl,"#Age ");          ju= j -(jk+1)*stepm;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fprintf(ficrespl,"\n");            if(jl==0){
                dh[mi][i]=jk;
   prlim=matrix(1,nlstate,1,nlstate);              bh[mi][i]=0;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }else{ /* We want a negative bias in order to only have interpolation ie
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    * to avoid the price of an extra matrix product in likelihood */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk+1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=ju;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
   k=0;          }else{
   agebase=agemin;            if(jl <= -ju){
   agelim=agemax;              dh[mi][i]=jk;
   ftolpl=1.e-10;              bh[mi][i]=jl;       /* bias is positive if real duration
   i1=cptcoveff;                                   * is higher than the multiple of stepm and negative otherwise.
   if (cptcovn < 1){i1=1;}                                   */
             }
   for(cptcov=1;cptcov<=i1;cptcov++){            else{
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              dh[mi][i]=jk+1;
         k=k+1;              bh[mi][i]=ju;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            }
         fprintf(ficrespl,"\n#******");            if(dh[mi][i]==0){
         for(j=1;j<=cptcoveff;j++)              dh[mi][i]=1; /* At least one step */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              bh[mi][i]=ju; /* At least one step */
         fprintf(ficrespl,"******\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                    }
         for (age=agebase; age<=agelim; age++){          } /* end if mle */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
           fprintf(ficrespl,"%.0f",age );      } /* end wave */
           for(i=1; i<=nlstate;i++)    }
           fprintf(ficrespl," %.5f", prlim[i][i]);    jmean=sum/k;
           fprintf(ficrespl,"\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       }   }
     }  
   fclose(ficrespl);  /*********** Tricode ****************************/
   /*------------- h Pij x at various ages ------------*/  void tricode(int *Tvar, int **nbcode, int imx)
    {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /* Uses cptcovn+2*cptcovprod as the number of covariates */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   printf("Computing pij: result on file '%s' \n", filerespij);    int modmaxcovj=0; /* Modality max of covariates j */
      cptcoveff=0; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;   
   if (stepm<=24) stepsize=2;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
                                   modality of this covariate Vj*/ 
   k=0;        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
   for(cptcov=1;cptcov<=i1;cptcov++){                                        modality of the nth covariate of individual i. */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       k=k+1;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         fprintf(ficrespij,"\n#****** ");        if (ij > modmaxcovj) modmaxcovj=ij; 
         for(j=1;j<=cptcoveff;j++)        /* getting the maximum value of the modality of the covariate
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         fprintf(ficrespij,"******\n");           female is 1, then modmaxcovj=1.*/
              }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if( Ndum[i] != 0 )
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ncodemax[j]++; 
           oldm=oldms;savm=savms;        /* Number of modalities of the j th covariate. In fact
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             ncodemax[j]=2 (dichotom. variables only) but it could be more for
           fprintf(ficrespij,"# Age");           historical reasons */
           for(i=1; i<=nlstate;i++)      } /* Ndum[-1] number of undefined modalities */
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
           fprintf(ficrespij,"\n");      ij=1; 
           for (h=0; h<=nhstepm; h++){      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for (k=0; k<= maxncov; k++) { /* k=-1 ? NCOVMAX*/
             for(i=1; i<=nlstate;i++)          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
               for(j=1; j<=nlstate+ndeath;j++)            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                                       k is a modality. If we have model=V1+V1*sex 
             fprintf(ficrespij,"\n");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           }            ij++;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           fprintf(ficrespij,"\n");          if (ij > ncodemax[j]) break; 
         }        }  
     }      } 
   }    }  
   
   fclose(ficrespij);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   /*---------- Health expectancies and variances ------------*/   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   strcpy(filerest,"t");     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   strcat(filerest,fileres);     Ndum[ij]++;
   if((ficrest=fopen(filerest,"w"))==NULL) {   }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }   ij=1;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   strcpy(filerese,"e");       ij++;
   strcat(filerese,fileres);     }
   if((ficreseij=fopen(filerese,"w"))==NULL) {   }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   ij--;
   }   cptcoveff=ij; /*Number of simple covariates*/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  }
   
  strcpy(fileresv,"v");  /*********** Health Expectancies ****************/
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }  {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   k=0;    int nhstepma, nstepma; /* Decreasing with age */
   for(cptcov=1;cptcov<=i1;cptcov++){    double age, agelim, hf;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***p3mat;
       k=k+1;    double eip;
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    pstamp(ficreseij);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficrest,"******\n");    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       fprintf(ficreseij,"\n#****** ");      for(j=1; j<=nlstate;j++){
       for(j=1;j<=cptcoveff;j++)        fprintf(ficreseij," e%1d%1d ",i,j);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      }
       fprintf(ficreseij,"******\n");      fprintf(ficreseij," e%1d. ",i);
     }
       fprintf(ficresvij,"\n#****** ");    fprintf(ficreseij,"\n");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    
       fprintf(ficresvij,"******\n");    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    else  hstepm=estepm;   
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      /* We compute the life expectancy from trapezoids spaced every estepm months
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * This is mainly to measure the difference between two models: for example
       oldm=oldms;savm=savms;     * if stepm=24 months pijx are given only every 2 years and by summing them
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           * progression in between and thus overestimating or underestimating according
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     * to the curvature of the survival function. If, for the same date, we 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficrest,"\n");     * to compare the new estimate of Life expectancy with the same linear 
             * hypothesis. A more precise result, taking into account a more precise
       hf=1;     * curvature will be obtained if estepm is as small as stepm. */
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);    /* For example we decided to compute the life expectancy with the smallest unit */
       for(age=bage; age <=fage ;age++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficrest," %.0f",age);       nstepm is the number of stepm from age to agelin. 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       Look at hpijx to understand the reason of that which relies in memory size
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       and note for a fixed period like estepm months */
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           epj[nlstate+1] +=epj[j];       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for(i=1, vepp=0.;i <=nlstate;i++)       results. So we changed our mind and took the option of the best precision.
           for(j=1;j <=nlstate;j++)    */
             vepp += vareij[i][j][(int)age];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    agelim=AGESUP;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    /* If stepm=6 months */
         }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         fprintf(ficrest,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }      
     }  /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
            /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  fclose(ficreseij);    /* if (stepm >= YEARM) hstepm=1;*/
  fclose(ficresvij);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficrest);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    for (age=bage; age<=fage; age ++){ 
   /*  scanf("%d ",i); */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /*------- Variance limit prevalence------*/        /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);      /* If stepm=6 months */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     exit(0);      
   }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  k=0;      
  for(cptcov=1;cptcov<=i1;cptcov++){      printf("%d|",(int)age);fflush(stdout);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      k=k+1;      
      fprintf(ficresvpl,"\n#****** ");      /* Computing expectancies */
      for(j=1;j<=cptcoveff;j++)      for(i=1; i<=nlstate;i++)
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<=nlstate;j++)
      fprintf(ficresvpl,"******\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            
      oldm=oldms;savm=savms;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }          }
  }  
       fprintf(ficreseij,"%3.0f",age );
   fclose(ficresvpl);      for(i=1; i<=nlstate;i++){
         eip=0;
   /*---------- End : free ----------------*/        for(j=1; j<=nlstate;j++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          eip +=eij[i][j][(int)age];
            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficreseij,"%9.4f", eip );
        }
        fprintf(ficreseij,"\n");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    printf("\n");
      fprintf(ficlog,"\n");
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);  }
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   printf("End of Imach\n");  {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    /* Covariances of health expectancies eij and of total life expectancies according
       to initial status i, ei. .
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   /*------ End -----------*/    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
  end:    double ***p3matp, ***p3matm, ***varhe;
 #ifdef windows    double **dnewm,**doldm;
  chdir(pathcd);    double *xp, *xm;
 #endif    double **gp, **gm;
  /*system("wgnuplot graph.plt");*/    double ***gradg, ***trgradg;
  system("../gp37mgw/wgnuplot graph.plt");    int theta;
   
 #ifdef windows    double eip, vip;
   while (z[0] != 'q') {  
     chdir(pathcd);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    xp=vector(1,npar);
     scanf("%s",z);    xm=vector(1,npar);
     if (z[0] == 'c') system("./imach");    dnewm=matrix(1,nlstate*nlstate,1,npar);
     else if (z[0] == 'e') {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       chdir(path);    
       system("index.htm");    pstamp(ficresstdeij);
     }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     else if (z[0] == 'q') exit(0);    fprintf(ficresstdeij,"# Age");
   }    for(i=1; i<=nlstate;i++){
 #endif      for(j=1; j<=nlstate;j++)
 }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*    modelsav=V3*age+V2+V1+V4 strb=V3*age stra=V2+V1+V4 
           i=1 Tvar[1]=3 Tage[1]=1  
           i=2 Tvar[2]=2
           i=3 Tvar[3]=1
           i=4 Tvar[4]= 4
           i=5 Tvar[5]
         for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
        */
       for(k=1; k<=(j+1);k++){
         cutv(strb,stra,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V3*age+V2+V1+V4 strb=V3*age stra=V2+V1+V4 
                                       */ 
         /* if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);*/ /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V3*age+V2+V1+V4 strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3, and Tvar[3]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (i=1; i<=lastobs;i++) /* Computes the new covariate which is a product of covar[n][i]* covar[m][i]
                                        and is stored at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0);
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) {
               h=1;
               codtab[h][k]=j;
               codtab[h][Tvar[k]]=j;
             }
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.9  
changed lines
  Added in v.1.136


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>