Annotation of imach/src/imach.c, revision 1.105

1.105   ! lievre      1: /* $Id: imach.c,v 1.104 2005/09/30 16:11:43 lievre Exp $
1.83      lievre      2:   $State: Exp $
                      3:   $Log: imach.c,v $
1.105   ! lievre      4:   Revision 1.104  2005/09/30 16:11:43  lievre
        !             5:   (Module): sump fixed, loop imx fixed, and simplifications.
        !             6:   (Module): If the status is missing at the last wave but we know
        !             7:   that the person is alive, then we can code his/her status as -2
        !             8:   (instead of missing=-1 in earlier versions) and his/her
        !             9:   contributions to the likelihood is 1 - Prob of dying from last
        !            10:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
        !            11:   the healthy state at last known wave). Version is 0.98
        !            12: 
1.104     lievre     13:   Revision 1.103  2005/09/30 15:54:49  lievre
                     14:   (Module): sump fixed, loop imx fixed, and simplifications.
                     15: 
1.103     lievre     16:   Revision 1.102  2004/09/15 17:31:30  brouard
                     17:   Add the possibility to read data file including tab characters.
                     18: 
1.102     brouard    19:   Revision 1.101  2004/09/15 10:38:38  brouard
                     20:   Fix on curr_time
                     21: 
1.101     brouard    22:   Revision 1.100  2004/07/12 18:29:06  brouard
                     23:   Add version for Mac OS X. Just define UNIX in Makefile
                     24: 
1.100     brouard    25:   Revision 1.99  2004/06/05 08:57:40  brouard
                     26:   *** empty log message ***
                     27: 
1.99      brouard    28:   Revision 1.98  2004/05/16 15:05:56  brouard
                     29:   New version 0.97 . First attempt to estimate force of mortality
                     30:   directly from the data i.e. without the need of knowing the health
                     31:   state at each age, but using a Gompertz model: log u =a + b*age .
                     32:   This is the basic analysis of mortality and should be done before any
                     33:   other analysis, in order to test if the mortality estimated from the
                     34:   cross-longitudinal survey is different from the mortality estimated
                     35:   from other sources like vital statistic data.
                     36: 
                     37:   The same imach parameter file can be used but the option for mle should be -3.
                     38: 
                     39:   Agnès, who wrote this part of the code, tried to keep most of the
                     40:   former routines in order to include the new code within the former code.
                     41: 
                     42:   The output is very simple: only an estimate of the intercept and of
                     43:   the slope with 95% confident intervals.
                     44: 
                     45:   Current limitations:
                     46:   A) Even if you enter covariates, i.e. with the
                     47:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
                     48:   B) There is no computation of Life Expectancy nor Life Table.
                     49: 
1.98      brouard    50:   Revision 1.97  2004/02/20 13:25:42  lievre
                     51:   Version 0.96d. Population forecasting command line is (temporarily)
                     52:   suppressed.
                     53: 
1.97      lievre     54:   Revision 1.96  2003/07/15 15:38:55  brouard
                     55:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                     56:   rewritten within the same printf. Workaround: many printfs.
                     57: 
1.96      brouard    58:   Revision 1.95  2003/07/08 07:54:34  brouard
                     59:   * imach.c (Repository):
                     60:   (Repository): Using imachwizard code to output a more meaningful covariance
                     61:   matrix (cov(a12,c31) instead of numbers.
                     62: 
1.95      brouard    63:   Revision 1.94  2003/06/27 13:00:02  brouard
                     64:   Just cleaning
                     65: 
1.94      brouard    66:   Revision 1.93  2003/06/25 16:33:55  brouard
                     67:   (Module): On windows (cygwin) function asctime_r doesn't
                     68:   exist so I changed back to asctime which exists.
                     69:   (Module): Version 0.96b
                     70: 
1.93      brouard    71:   Revision 1.92  2003/06/25 16:30:45  brouard
                     72:   (Module): On windows (cygwin) function asctime_r doesn't
                     73:   exist so I changed back to asctime which exists.
                     74: 
1.92      brouard    75:   Revision 1.91  2003/06/25 15:30:29  brouard
                     76:   * imach.c (Repository): Duplicated warning errors corrected.
                     77:   (Repository): Elapsed time after each iteration is now output. It
                     78:   helps to forecast when convergence will be reached. Elapsed time
                     79:   is stamped in powell.  We created a new html file for the graphs
                     80:   concerning matrix of covariance. It has extension -cov.htm.
                     81: 
1.91      brouard    82:   Revision 1.90  2003/06/24 12:34:15  brouard
                     83:   (Module): Some bugs corrected for windows. Also, when
                     84:   mle=-1 a template is output in file "or"mypar.txt with the design
                     85:   of the covariance matrix to be input.
                     86: 
1.90      brouard    87:   Revision 1.89  2003/06/24 12:30:52  brouard
                     88:   (Module): Some bugs corrected for windows. Also, when
                     89:   mle=-1 a template is output in file "or"mypar.txt with the design
                     90:   of the covariance matrix to be input.
                     91: 
1.89      brouard    92:   Revision 1.88  2003/06/23 17:54:56  brouard
                     93:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                     94: 
1.88      brouard    95:   Revision 1.87  2003/06/18 12:26:01  brouard
                     96:   Version 0.96
                     97: 
1.87      brouard    98:   Revision 1.86  2003/06/17 20:04:08  brouard
                     99:   (Module): Change position of html and gnuplot routines and added
                    100:   routine fileappend.
                    101: 
1.86      brouard   102:   Revision 1.85  2003/06/17 13:12:43  brouard
                    103:   * imach.c (Repository): Check when date of death was earlier that
                    104:   current date of interview. It may happen when the death was just
                    105:   prior to the death. In this case, dh was negative and likelihood
                    106:   was wrong (infinity). We still send an "Error" but patch by
                    107:   assuming that the date of death was just one stepm after the
                    108:   interview.
                    109:   (Repository): Because some people have very long ID (first column)
                    110:   we changed int to long in num[] and we added a new lvector for
                    111:   memory allocation. But we also truncated to 8 characters (left
                    112:   truncation)
                    113:   (Repository): No more line truncation errors.
                    114: 
1.85      brouard   115:   Revision 1.84  2003/06/13 21:44:43  brouard
                    116:   * imach.c (Repository): Replace "freqsummary" at a correct
                    117:   place. It differs from routine "prevalence" which may be called
                    118:   many times. Probs is memory consuming and must be used with
                    119:   parcimony.
1.86      brouard   120:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
1.85      brouard   121: 
1.84      brouard   122:   Revision 1.83  2003/06/10 13:39:11  lievre
                    123:   *** empty log message ***
                    124: 
1.83      lievre    125:   Revision 1.82  2003/06/05 15:57:20  brouard
                    126:   Add log in  imach.c and  fullversion number is now printed.
                    127: 
1.82      brouard   128: */
                    129: /*
1.53      brouard   130:    Interpolated Markov Chain
                    131: 
                    132:   Short summary of the programme:
                    133:   
                    134:   This program computes Healthy Life Expectancies from
                    135:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
                    136:   first survey ("cross") where individuals from different ages are
                    137:   interviewed on their health status or degree of disability (in the
                    138:   case of a health survey which is our main interest) -2- at least a
                    139:   second wave of interviews ("longitudinal") which measure each change
                    140:   (if any) in individual health status.  Health expectancies are
                    141:   computed from the time spent in each health state according to a
                    142:   model. More health states you consider, more time is necessary to reach the
                    143:   Maximum Likelihood of the parameters involved in the model.  The
                    144:   simplest model is the multinomial logistic model where pij is the
                    145:   probability to be observed in state j at the second wave
                    146:   conditional to be observed in state i at the first wave. Therefore
                    147:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
                    148:   'age' is age and 'sex' is a covariate. If you want to have a more
                    149:   complex model than "constant and age", you should modify the program
                    150:   where the markup *Covariates have to be included here again* invites
                    151:   you to do it.  More covariates you add, slower the
                    152:   convergence.
                    153: 
                    154:   The advantage of this computer programme, compared to a simple
                    155:   multinomial logistic model, is clear when the delay between waves is not
                    156:   identical for each individual. Also, if a individual missed an
                    157:   intermediate interview, the information is lost, but taken into
                    158:   account using an interpolation or extrapolation.  
                    159: 
                    160:   hPijx is the probability to be observed in state i at age x+h
                    161:   conditional to the observed state i at age x. The delay 'h' can be
                    162:   split into an exact number (nh*stepm) of unobserved intermediate
1.66      brouard   163:   states. This elementary transition (by month, quarter,
                    164:   semester or year) is modelled as a multinomial logistic.  The hPx
1.53      brouard   165:   matrix is simply the matrix product of nh*stepm elementary matrices
                    166:   and the contribution of each individual to the likelihood is simply
                    167:   hPijx.
                    168: 
                    169:   Also this programme outputs the covariance matrix of the parameters but also
1.54      brouard   170:   of the life expectancies. It also computes the stable prevalence. 
1.53      brouard   171:   
                    172:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                    173:            Institut national d'études démographiques, Paris.
                    174:   This software have been partly granted by Euro-REVES, a concerted action
                    175:   from the European Union.
                    176:   It is copyrighted identically to a GNU software product, ie programme and
                    177:   software can be distributed freely for non commercial use. Latest version
                    178:   can be accessed at http://euroreves.ined.fr/imach .
1.74      brouard   179: 
                    180:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                    181:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                    182:   
1.53      brouard   183:   **********************************************************************/
1.74      brouard   184: /*
                    185:   main
                    186:   read parameterfile
                    187:   read datafile
                    188:   concatwav
1.84      brouard   189:   freqsummary
1.74      brouard   190:   if (mle >= 1)
                    191:     mlikeli
                    192:   print results files
                    193:   if mle==1 
                    194:      computes hessian
                    195:   read end of parameter file: agemin, agemax, bage, fage, estepm
                    196:       begin-prev-date,...
                    197:   open gnuplot file
                    198:   open html file
                    199:   stable prevalence
                    200:    for age prevalim()
                    201:   h Pij x
                    202:   variance of p varprob
                    203:   forecasting if prevfcast==1 prevforecast call prevalence()
                    204:   health expectancies
                    205:   Variance-covariance of DFLE
                    206:   prevalence()
                    207:    movingaverage()
                    208:   varevsij() 
                    209:   if popbased==1 varevsij(,popbased)
                    210:   total life expectancies
                    211:   Variance of stable prevalence
                    212:  end
                    213: */
                    214: 
                    215: 
                    216: 
1.53      brouard   217:  
                    218: #include <math.h>
                    219: #include <stdio.h>
                    220: #include <stdlib.h>
                    221: #include <unistd.h>
                    222: 
1.99      brouard   223: /* #include <sys/time.h> */
1.86      brouard   224: #include <time.h>
                    225: #include "timeval.h"
                    226: 
1.95      brouard   227: /* #include <libintl.h> */
                    228: /* #define _(String) gettext (String) */
                    229: 
1.53      brouard   230: #define MAXLINE 256
                    231: #define GNUPLOTPROGRAM "gnuplot"
                    232: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
1.85      brouard   233: #define FILENAMELENGTH 132
1.53      brouard   234: /*#define DEBUG*/
1.85      brouard   235: /*#define windows*/
1.53      brouard   236: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                    237: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                    238: 
                    239: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
                    240: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
                    241: 
                    242: #define NINTERVMAX 8
                    243: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
                    244: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
                    245: #define NCOVMAX 8 /* Maximum number of covariates */
                    246: #define MAXN 20000
                    247: #define YEARM 12. /* Number of months per year */
                    248: #define AGESUP 130
                    249: #define AGEBASE 40
1.98      brouard   250: #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
1.100     brouard   251: #ifdef UNIX
1.85      brouard   252: #define DIRSEPARATOR '/'
                    253: #define ODIRSEPARATOR '\\'
                    254: #else
1.53      brouard   255: #define DIRSEPARATOR '\\'
                    256: #define ODIRSEPARATOR '/'
                    257: #endif
                    258: 
1.105   ! lievre    259: /* $Id: imach.c,v 1.104 2005/09/30 16:11:43 lievre Exp $ */
1.81      brouard   260: /* $State: Exp $ */
1.80      brouard   261: 
1.104     lievre    262: char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";
1.105   ! lievre    263: char fullversion[]="$Revision: 1.104 $ $Date: 2005/09/30 16:11:43 $"; 
1.91      brouard   264: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.53      brouard   265: int nvar;
                    266: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
                    267: int npar=NPARMAX;
                    268: int nlstate=2; /* Number of live states */
                    269: int ndeath=1; /* Number of dead states */
                    270: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
                    271: int popbased=0;
                    272: 
                    273: int *wav; /* Number of waves for this individuual 0 is possible */
                    274: int maxwav; /* Maxim number of waves */
                    275: int jmin, jmax; /* min, max spacing between 2 waves */
1.87      brouard   276: int gipmx, gsw; /* Global variables on the number of contributions 
                    277:                   to the likelihood and the sum of weights (done by funcone)*/
1.53      brouard   278: int mle, weightopt;
                    279: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                    280: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
1.59      brouard   281: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                    282:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.53      brouard   283: double jmean; /* Mean space between 2 waves */
                    284: double **oldm, **newm, **savm; /* Working pointers to matrices */
                    285: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
                    286: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
1.76      brouard   287: FILE *ficlog, *ficrespow;
1.85      brouard   288: int globpr; /* Global variable for printing or not */
                    289: double fretone; /* Only one call to likelihood */
                    290: long ipmx; /* Number of contributions */
                    291: double sw; /* Sum of weights */
1.98      brouard   292: char filerespow[FILENAMELENGTH];
1.85      brouard   293: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                    294: FILE *ficresilk;
1.53      brouard   295: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                    296: FILE *ficresprobmorprev;
1.91      brouard   297: FILE *fichtm, *fichtmcov; /* Html File */
1.53      brouard   298: FILE *ficreseij;
                    299: char filerese[FILENAMELENGTH];
                    300: FILE  *ficresvij;
                    301: char fileresv[FILENAMELENGTH];
                    302: FILE  *ficresvpl;
                    303: char fileresvpl[FILENAMELENGTH];
                    304: char title[MAXLINE];
                    305: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
                    306: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
1.96      brouard   307: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
1.88      brouard   308: char command[FILENAMELENGTH];
                    309: int  outcmd=0;
1.53      brouard   310: 
                    311: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
1.94      brouard   312: 
1.53      brouard   313: char filelog[FILENAMELENGTH]; /* Log file */
                    314: char filerest[FILENAMELENGTH];
                    315: char fileregp[FILENAMELENGTH];
                    316: char popfile[FILENAMELENGTH];
                    317: 
1.91      brouard   318: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                    319: 
                    320: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
                    321: struct timezone tzp;
                    322: extern int gettimeofday();
                    323: struct tm tmg, tm, tmf, *gmtime(), *localtime();
                    324: long time_value;
                    325: extern long time();
                    326: char strcurr[80], strfor[80];
1.53      brouard   327: 
                    328: #define NR_END 1
                    329: #define FREE_ARG char*
                    330: #define FTOL 1.0e-10
                    331: 
                    332: #define NRANSI 
                    333: #define ITMAX 200 
                    334: 
                    335: #define TOL 2.0e-4 
                    336: 
                    337: #define CGOLD 0.3819660 
                    338: #define ZEPS 1.0e-10 
                    339: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                    340: 
                    341: #define GOLD 1.618034 
                    342: #define GLIMIT 100.0 
                    343: #define TINY 1.0e-20 
                    344: 
                    345: static double maxarg1,maxarg2;
                    346: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                    347: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                    348:   
                    349: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                    350: #define rint(a) floor(a+0.5)
                    351: 
                    352: static double sqrarg;
                    353: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                    354: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
1.98      brouard   355: int agegomp= AGEGOMP;
1.53      brouard   356: 
                    357: int imx; 
1.98      brouard   358: int stepm=1;
1.53      brouard   359: /* Stepm, step in month: minimum step interpolation*/
                    360: 
                    361: int estepm;
                    362: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                    363: 
                    364: int m,nb;
1.85      brouard   365: long *num;
1.98      brouard   366: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
1.53      brouard   367: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.55      lievre    368: double **pmmij, ***probs;
1.98      brouard   369: double *ageexmed,*agecens;
1.53      brouard   370: double dateintmean=0;
                    371: 
                    372: double *weight;
                    373: int **s; /* Status */
                    374: double *agedc, **covar, idx;
                    375: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
1.105   ! lievre    376: double *lsurv, *lpop, *tpop;
1.53      brouard   377: 
                    378: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
                    379: double ftolhess; /* Tolerance for computing hessian */
                    380: 
                    381: /**************** split *************************/
                    382: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                    383: {
1.99      brouard   384:   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
                    385:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
                    386:   */ 
1.59      brouard   387:   char *ss;                            /* pointer */
                    388:   int  l1, l2;                         /* length counters */
1.53      brouard   389: 
1.59      brouard   390:   l1 = strlen(path );                  /* length of path */
                    391:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                    392:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                    393:   if ( ss == NULL ) {                  /* no directory, so use current */
                    394:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                    395:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
1.74      brouard   396:     /* get current working directory */
                    397:     /*    extern  char* getcwd ( char *buf , int len);*/
1.59      brouard   398:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
                    399:       return( GLOCK_ERROR_GETCWD );
                    400:     }
                    401:     strcpy( name, path );              /* we've got it */
                    402:   } else {                             /* strip direcotry from path */
                    403:     ss++;                              /* after this, the filename */
                    404:     l2 = strlen( ss );                 /* length of filename */
                    405:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                    406:     strcpy( name, ss );                /* save file name */
                    407:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
                    408:     dirc[l1-l2] = 0;                   /* add zero */
                    409:   }
                    410:   l1 = strlen( dirc );                 /* length of directory */
1.85      brouard   411:   /*#ifdef windows
1.59      brouard   412:   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
1.53      brouard   413: #else
1.59      brouard   414:   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
1.53      brouard   415: #endif
1.85      brouard   416:   */
1.59      brouard   417:   ss = strrchr( name, '.' );           /* find last / */
1.99      brouard   418:   if (ss >0){
                    419:     ss++;
                    420:     strcpy(ext,ss);                    /* save extension */
                    421:     l1= strlen( name);
                    422:     l2= strlen(ss)+1;
                    423:     strncpy( finame, name, l1-l2);
                    424:     finame[l1-l2]= 0;
                    425:   }
1.59      brouard   426:   return( 0 );                         /* we're done */
1.53      brouard   427: }
                    428: 
                    429: 
                    430: /******************************************/
                    431: 
1.89      brouard   432: void replace_back_to_slash(char *s, char*t)
1.53      brouard   433: {
                    434:   int i;
1.89      brouard   435:   int lg=0;
1.53      brouard   436:   i=0;
                    437:   lg=strlen(t);
                    438:   for(i=0; i<= lg; i++) {
                    439:     (s[i] = t[i]);
                    440:     if (t[i]== '\\') s[i]='/';
                    441:   }
                    442: }
                    443: 
                    444: int nbocc(char *s, char occ)
                    445: {
                    446:   int i,j=0;
                    447:   int lg=20;
                    448:   i=0;
                    449:   lg=strlen(s);
                    450:   for(i=0; i<= lg; i++) {
                    451:   if  (s[i] == occ ) j++;
                    452:   }
                    453:   return j;
                    454: }
                    455: 
                    456: void cutv(char *u,char *v, char*t, char occ)
                    457: {
1.102     brouard   458:   /* cuts string t into u and v where u ends before first occurence of char 'occ' 
                    459:      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
1.53      brouard   460:      gives u="abcedf" and v="ghi2j" */
                    461:   int i,lg,j,p=0;
                    462:   i=0;
                    463:   for(j=0; j<=strlen(t)-1; j++) {
                    464:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
                    465:   }
                    466: 
                    467:   lg=strlen(t);
                    468:   for(j=0; j<p; j++) {
                    469:     (u[j] = t[j]);
                    470:   }
                    471:      u[p]='\0';
                    472: 
                    473:    for(j=0; j<= lg; j++) {
                    474:     if (j>=(p+1))(v[j-p-1] = t[j]);
                    475:   }
                    476: }
                    477: 
                    478: /********************** nrerror ********************/
                    479: 
                    480: void nrerror(char error_text[])
                    481: {
                    482:   fprintf(stderr,"ERREUR ...\n");
                    483:   fprintf(stderr,"%s\n",error_text);
1.59      brouard   484:   exit(EXIT_FAILURE);
1.53      brouard   485: }
                    486: /*********************** vector *******************/
                    487: double *vector(int nl, int nh)
                    488: {
                    489:   double *v;
                    490:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                    491:   if (!v) nrerror("allocation failure in vector");
                    492:   return v-nl+NR_END;
                    493: }
                    494: 
                    495: /************************ free vector ******************/
                    496: void free_vector(double*v, int nl, int nh)
                    497: {
                    498:   free((FREE_ARG)(v+nl-NR_END));
                    499: }
                    500: 
                    501: /************************ivector *******************************/
1.85      brouard   502: int *ivector(long nl,long nh)
1.76      brouard   503: {
1.85      brouard   504:   int *v;
                    505:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                    506:   if (!v) nrerror("allocation failure in ivector");
1.76      brouard   507:   return v-nl+NR_END;
                    508: }
                    509: 
                    510: /******************free ivector **************************/
1.85      brouard   511: void free_ivector(int *v, long nl, long nh)
1.76      brouard   512: {
                    513:   free((FREE_ARG)(v+nl-NR_END));
                    514: }
                    515: 
1.85      brouard   516: /************************lvector *******************************/
                    517: long *lvector(long nl,long nh)
1.53      brouard   518: {
1.85      brouard   519:   long *v;
                    520:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
1.53      brouard   521:   if (!v) nrerror("allocation failure in ivector");
                    522:   return v-nl+NR_END;
                    523: }
                    524: 
1.85      brouard   525: /******************free lvector **************************/
                    526: void free_lvector(long *v, long nl, long nh)
1.53      brouard   527: {
                    528:   free((FREE_ARG)(v+nl-NR_END));
                    529: }
                    530: 
                    531: /******************* imatrix *******************************/
                    532: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                    533:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                    534: { 
                    535:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                    536:   int **m; 
                    537:   
                    538:   /* allocate pointers to rows */ 
                    539:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                    540:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                    541:   m += NR_END; 
                    542:   m -= nrl; 
                    543:   
                    544:   
                    545:   /* allocate rows and set pointers to them */ 
                    546:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                    547:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                    548:   m[nrl] += NR_END; 
                    549:   m[nrl] -= ncl; 
                    550:   
                    551:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                    552:   
                    553:   /* return pointer to array of pointers to rows */ 
                    554:   return m; 
                    555: } 
                    556: 
                    557: /****************** free_imatrix *************************/
                    558: void free_imatrix(m,nrl,nrh,ncl,nch)
                    559:       int **m;
                    560:       long nch,ncl,nrh,nrl; 
                    561:      /* free an int matrix allocated by imatrix() */ 
                    562: { 
                    563:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                    564:   free((FREE_ARG) (m+nrl-NR_END)); 
                    565: } 
                    566: 
                    567: /******************* matrix *******************************/
                    568: double **matrix(long nrl, long nrh, long ncl, long nch)
                    569: {
                    570:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                    571:   double **m;
                    572: 
                    573:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                    574:   if (!m) nrerror("allocation failure 1 in matrix()");
                    575:   m += NR_END;
                    576:   m -= nrl;
                    577: 
                    578:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                    579:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                    580:   m[nrl] += NR_END;
                    581:   m[nrl] -= ncl;
                    582: 
                    583:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                    584:   return m;
1.85      brouard   585:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
1.74      brouard   586:    */
1.53      brouard   587: }
                    588: 
                    589: /*************************free matrix ************************/
                    590: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                    591: {
                    592:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                    593:   free((FREE_ARG)(m+nrl-NR_END));
                    594: }
                    595: 
                    596: /******************* ma3x *******************************/
                    597: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                    598: {
                    599:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                    600:   double ***m;
                    601: 
                    602:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                    603:   if (!m) nrerror("allocation failure 1 in matrix()");
                    604:   m += NR_END;
                    605:   m -= nrl;
                    606: 
                    607:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                    608:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                    609:   m[nrl] += NR_END;
                    610:   m[nrl] -= ncl;
                    611: 
                    612:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                    613: 
                    614:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                    615:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                    616:   m[nrl][ncl] += NR_END;
                    617:   m[nrl][ncl] -= nll;
                    618:   for (j=ncl+1; j<=nch; j++) 
                    619:     m[nrl][j]=m[nrl][j-1]+nlay;
                    620:   
                    621:   for (i=nrl+1; i<=nrh; i++) {
                    622:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                    623:     for (j=ncl+1; j<=nch; j++) 
                    624:       m[i][j]=m[i][j-1]+nlay;
                    625:   }
1.74      brouard   626:   return m; 
                    627:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                    628:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                    629:   */
1.53      brouard   630: }
                    631: 
                    632: /*************************free ma3x ************************/
                    633: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                    634: {
                    635:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                    636:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                    637:   free((FREE_ARG)(m+nrl-NR_END));
                    638: }
                    639: 
1.94      brouard   640: /*************** function subdirf ***********/
                    641: char *subdirf(char fileres[])
                    642: {
                    643:   /* Caution optionfilefiname is hidden */
                    644:   strcpy(tmpout,optionfilefiname);
                    645:   strcat(tmpout,"/"); /* Add to the right */
                    646:   strcat(tmpout,fileres);
                    647:   return tmpout;
                    648: }
                    649: 
                    650: /*************** function subdirf2 ***********/
                    651: char *subdirf2(char fileres[], char *preop)
                    652: {
                    653:   
                    654:   /* Caution optionfilefiname is hidden */
                    655:   strcpy(tmpout,optionfilefiname);
                    656:   strcat(tmpout,"/");
                    657:   strcat(tmpout,preop);
                    658:   strcat(tmpout,fileres);
                    659:   return tmpout;
                    660: }
                    661: 
                    662: /*************** function subdirf3 ***********/
                    663: char *subdirf3(char fileres[], char *preop, char *preop2)
                    664: {
                    665:   
                    666:   /* Caution optionfilefiname is hidden */
                    667:   strcpy(tmpout,optionfilefiname);
                    668:   strcat(tmpout,"/");
                    669:   strcat(tmpout,preop);
                    670:   strcat(tmpout,preop2);
                    671:   strcat(tmpout,fileres);
                    672:   return tmpout;
                    673: }
                    674: 
1.53      brouard   675: /***************** f1dim *************************/
                    676: extern int ncom; 
                    677: extern double *pcom,*xicom;
                    678: extern double (*nrfunc)(double []); 
                    679:  
                    680: double f1dim(double x) 
                    681: { 
                    682:   int j; 
                    683:   double f;
                    684:   double *xt; 
                    685:  
                    686:   xt=vector(1,ncom); 
                    687:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                    688:   f=(*nrfunc)(xt); 
                    689:   free_vector(xt,1,ncom); 
                    690:   return f; 
                    691: } 
                    692: 
                    693: /*****************brent *************************/
                    694: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
                    695: { 
                    696:   int iter; 
                    697:   double a,b,d,etemp;
                    698:   double fu,fv,fw,fx;
                    699:   double ftemp;
                    700:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                    701:   double e=0.0; 
                    702:  
                    703:   a=(ax < cx ? ax : cx); 
                    704:   b=(ax > cx ? ax : cx); 
                    705:   x=w=v=bx; 
                    706:   fw=fv=fx=(*f)(x); 
                    707:   for (iter=1;iter<=ITMAX;iter++) { 
                    708:     xm=0.5*(a+b); 
                    709:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                    710:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                    711:     printf(".");fflush(stdout);
                    712:     fprintf(ficlog,".");fflush(ficlog);
                    713: #ifdef DEBUG
                    714:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                    715:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                    716:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                    717: #endif
                    718:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                    719:       *xmin=x; 
                    720:       return fx; 
                    721:     } 
                    722:     ftemp=fu;
                    723:     if (fabs(e) > tol1) { 
                    724:       r=(x-w)*(fx-fv); 
                    725:       q=(x-v)*(fx-fw); 
                    726:       p=(x-v)*q-(x-w)*r; 
                    727:       q=2.0*(q-r); 
                    728:       if (q > 0.0) p = -p; 
                    729:       q=fabs(q); 
                    730:       etemp=e; 
                    731:       e=d; 
                    732:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                    733:        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    734:       else { 
                    735:        d=p/q; 
                    736:        u=x+d; 
                    737:        if (u-a < tol2 || b-u < tol2) 
                    738:          d=SIGN(tol1,xm-x); 
                    739:       } 
                    740:     } else { 
                    741:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    742:     } 
                    743:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                    744:     fu=(*f)(u); 
                    745:     if (fu <= fx) { 
                    746:       if (u >= x) a=x; else b=x; 
                    747:       SHFT(v,w,x,u) 
                    748:        SHFT(fv,fw,fx,fu) 
                    749:        } else { 
                    750:          if (u < x) a=u; else b=u; 
                    751:          if (fu <= fw || w == x) { 
                    752:            v=w; 
                    753:            w=u; 
                    754:            fv=fw; 
                    755:            fw=fu; 
                    756:          } else if (fu <= fv || v == x || v == w) { 
                    757:            v=u; 
                    758:            fv=fu; 
                    759:          } 
                    760:        } 
                    761:   } 
                    762:   nrerror("Too many iterations in brent"); 
                    763:   *xmin=x; 
                    764:   return fx; 
                    765: } 
                    766: 
                    767: /****************** mnbrak ***********************/
                    768: 
                    769: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                    770:            double (*func)(double)) 
                    771: { 
                    772:   double ulim,u,r,q, dum;
                    773:   double fu; 
                    774:  
                    775:   *fa=(*func)(*ax); 
                    776:   *fb=(*func)(*bx); 
                    777:   if (*fb > *fa) { 
                    778:     SHFT(dum,*ax,*bx,dum) 
                    779:       SHFT(dum,*fb,*fa,dum) 
                    780:       } 
                    781:   *cx=(*bx)+GOLD*(*bx-*ax); 
                    782:   *fc=(*func)(*cx); 
                    783:   while (*fb > *fc) { 
                    784:     r=(*bx-*ax)*(*fb-*fc); 
                    785:     q=(*bx-*cx)*(*fb-*fa); 
                    786:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
                    787:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
                    788:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
                    789:     if ((*bx-u)*(u-*cx) > 0.0) { 
                    790:       fu=(*func)(u); 
                    791:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
                    792:       fu=(*func)(u); 
                    793:       if (fu < *fc) { 
                    794:        SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                    795:          SHFT(*fb,*fc,fu,(*func)(u)) 
                    796:          } 
                    797:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
                    798:       u=ulim; 
                    799:       fu=(*func)(u); 
                    800:     } else { 
                    801:       u=(*cx)+GOLD*(*cx-*bx); 
                    802:       fu=(*func)(u); 
                    803:     } 
                    804:     SHFT(*ax,*bx,*cx,u) 
                    805:       SHFT(*fa,*fb,*fc,fu) 
                    806:       } 
                    807: } 
                    808: 
                    809: /*************** linmin ************************/
                    810: 
                    811: int ncom; 
                    812: double *pcom,*xicom;
                    813: double (*nrfunc)(double []); 
                    814:  
                    815: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
                    816: { 
                    817:   double brent(double ax, double bx, double cx, 
                    818:               double (*f)(double), double tol, double *xmin); 
                    819:   double f1dim(double x); 
                    820:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                    821:              double *fc, double (*func)(double)); 
                    822:   int j; 
                    823:   double xx,xmin,bx,ax; 
                    824:   double fx,fb,fa;
                    825:  
                    826:   ncom=n; 
                    827:   pcom=vector(1,n); 
                    828:   xicom=vector(1,n); 
                    829:   nrfunc=func; 
                    830:   for (j=1;j<=n;j++) { 
                    831:     pcom[j]=p[j]; 
                    832:     xicom[j]=xi[j]; 
                    833:   } 
                    834:   ax=0.0; 
                    835:   xx=1.0; 
                    836:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
                    837:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
                    838: #ifdef DEBUG
                    839:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                    840:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                    841: #endif
                    842:   for (j=1;j<=n;j++) { 
                    843:     xi[j] *= xmin; 
                    844:     p[j] += xi[j]; 
                    845:   } 
                    846:   free_vector(xicom,1,n); 
                    847:   free_vector(pcom,1,n); 
                    848: } 
                    849: 
1.91      brouard   850: char *asc_diff_time(long time_sec, char ascdiff[])
                    851: {
                    852:   long sec_left, days, hours, minutes;
                    853:   days = (time_sec) / (60*60*24);
                    854:   sec_left = (time_sec) % (60*60*24);
                    855:   hours = (sec_left) / (60*60) ;
                    856:   sec_left = (sec_left) %(60*60);
                    857:   minutes = (sec_left) /60;
                    858:   sec_left = (sec_left) % (60);
                    859:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
                    860:   return ascdiff;
                    861: }
                    862: 
1.53      brouard   863: /*************** powell ************************/
                    864: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                    865:            double (*func)(double [])) 
                    866: { 
                    867:   void linmin(double p[], double xi[], int n, double *fret, 
                    868:              double (*func)(double [])); 
                    869:   int i,ibig,j; 
                    870:   double del,t,*pt,*ptt,*xit;
                    871:   double fp,fptt;
                    872:   double *xits;
1.91      brouard   873:   int niterf, itmp;
                    874: 
1.53      brouard   875:   pt=vector(1,n); 
                    876:   ptt=vector(1,n); 
                    877:   xit=vector(1,n); 
                    878:   xits=vector(1,n); 
                    879:   *fret=(*func)(p); 
                    880:   for (j=1;j<=n;j++) pt[j]=p[j]; 
                    881:   for (*iter=1;;++(*iter)) { 
                    882:     fp=(*fret); 
                    883:     ibig=0; 
                    884:     del=0.0; 
1.91      brouard   885:     last_time=curr_time;
                    886:     (void) gettimeofday(&curr_time,&tzp);
                    887:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
1.98      brouard   888:     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
1.91      brouard   889:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
1.98      brouard   890:     */
                    891:    for (i=1;i<=n;i++) {
1.53      brouard   892:       printf(" %d %.12f",i, p[i]);
1.76      brouard   893:       fprintf(ficlog," %d %.12lf",i, p[i]);
                    894:       fprintf(ficrespow," %.12lf", p[i]);
                    895:     }
1.53      brouard   896:     printf("\n");
                    897:     fprintf(ficlog,"\n");
1.91      brouard   898:     fprintf(ficrespow,"\n");fflush(ficrespow);
                    899:     if(*iter <=3){
                    900:       tm = *localtime(&curr_time.tv_sec);
1.101     brouard   901:       strcpy(strcurr,asctime(&tm));
1.92      brouard   902: /*       asctime_r(&tm,strcurr); */
1.101     brouard   903:       forecast_time=curr_time; 
1.91      brouard   904:       itmp = strlen(strcurr);
1.101     brouard   905:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
1.91      brouard   906:        strcurr[itmp-1]='\0';
                    907:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                    908:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                    909:       for(niterf=10;niterf<=30;niterf+=10){
                    910:        forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                    911:        tmf = *localtime(&forecast_time.tv_sec);
1.92      brouard   912: /*     asctime_r(&tmf,strfor); */
                    913:        strcpy(strfor,asctime(&tmf));
1.91      brouard   914:        itmp = strlen(strfor);
                    915:        if(strfor[itmp-1]=='\n')
                    916:        strfor[itmp-1]='\0';
1.101     brouard   917:        printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                    918:        fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
1.91      brouard   919:       }
                    920:     }
1.53      brouard   921:     for (i=1;i<=n;i++) { 
                    922:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                    923:       fptt=(*fret); 
                    924: #ifdef DEBUG
                    925:       printf("fret=%lf \n",*fret);
                    926:       fprintf(ficlog,"fret=%lf \n",*fret);
                    927: #endif
                    928:       printf("%d",i);fflush(stdout);
                    929:       fprintf(ficlog,"%d",i);fflush(ficlog);
                    930:       linmin(p,xit,n,fret,func); 
                    931:       if (fabs(fptt-(*fret)) > del) { 
                    932:        del=fabs(fptt-(*fret)); 
                    933:        ibig=i; 
                    934:       } 
                    935: #ifdef DEBUG
                    936:       printf("%d %.12e",i,(*fret));
                    937:       fprintf(ficlog,"%d %.12e",i,(*fret));
                    938:       for (j=1;j<=n;j++) {
                    939:        xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                    940:        printf(" x(%d)=%.12e",j,xit[j]);
                    941:        fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
                    942:       }
                    943:       for(j=1;j<=n;j++) {
                    944:        printf(" p=%.12e",p[j]);
                    945:        fprintf(ficlog," p=%.12e",p[j]);
                    946:       }
                    947:       printf("\n");
                    948:       fprintf(ficlog,"\n");
                    949: #endif
                    950:     } 
                    951:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
                    952: #ifdef DEBUG
                    953:       int k[2],l;
                    954:       k[0]=1;
                    955:       k[1]=-1;
                    956:       printf("Max: %.12e",(*func)(p));
                    957:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                    958:       for (j=1;j<=n;j++) {
                    959:        printf(" %.12e",p[j]);
                    960:        fprintf(ficlog," %.12e",p[j]);
                    961:       }
                    962:       printf("\n");
                    963:       fprintf(ficlog,"\n");
                    964:       for(l=0;l<=1;l++) {
                    965:        for (j=1;j<=n;j++) {
                    966:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                    967:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    968:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    969:        }
                    970:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                    971:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                    972:       }
                    973: #endif
                    974: 
                    975: 
                    976:       free_vector(xit,1,n); 
                    977:       free_vector(xits,1,n); 
                    978:       free_vector(ptt,1,n); 
                    979:       free_vector(pt,1,n); 
                    980:       return; 
                    981:     } 
                    982:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
                    983:     for (j=1;j<=n;j++) { 
                    984:       ptt[j]=2.0*p[j]-pt[j]; 
                    985:       xit[j]=p[j]-pt[j]; 
                    986:       pt[j]=p[j]; 
                    987:     } 
                    988:     fptt=(*func)(ptt); 
                    989:     if (fptt < fp) { 
                    990:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
                    991:       if (t < 0.0) { 
                    992:        linmin(p,xit,n,fret,func); 
                    993:        for (j=1;j<=n;j++) { 
                    994:          xi[j][ibig]=xi[j][n]; 
                    995:          xi[j][n]=xit[j]; 
                    996:        }
                    997: #ifdef DEBUG
                    998:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                    999:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   1000:        for(j=1;j<=n;j++){
                   1001:          printf(" %.12e",xit[j]);
                   1002:          fprintf(ficlog," %.12e",xit[j]);
                   1003:        }
                   1004:        printf("\n");
                   1005:        fprintf(ficlog,"\n");
                   1006: #endif
1.54      brouard  1007:       }
1.53      brouard  1008:     } 
                   1009:   } 
                   1010: } 
                   1011: 
1.54      brouard  1012: /**** Prevalence limit (stable prevalence)  ****************/
1.53      brouard  1013: 
                   1014: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
                   1015: {
                   1016:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
                   1017:      matrix by transitions matrix until convergence is reached */
                   1018: 
                   1019:   int i, ii,j,k;
                   1020:   double min, max, maxmin, maxmax,sumnew=0.;
                   1021:   double **matprod2();
                   1022:   double **out, cov[NCOVMAX], **pmij();
                   1023:   double **newm;
                   1024:   double agefin, delaymax=50 ; /* Max number of years to converge */
                   1025: 
                   1026:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   1027:     for (j=1;j<=nlstate+ndeath;j++){
                   1028:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1029:     }
                   1030: 
                   1031:    cov[1]=1.;
                   1032:  
                   1033:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1034:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                   1035:     newm=savm;
                   1036:     /* Covariates have to be included here again */
                   1037:      cov[2]=agefin;
                   1038:   
                   1039:       for (k=1; k<=cptcovn;k++) {
                   1040:        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                   1041:        /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
                   1042:       }
                   1043:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   1044:       for (k=1; k<=cptcovprod;k++)
                   1045:        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   1046: 
                   1047:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   1048:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   1049:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                   1050:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
                   1051: 
                   1052:     savm=oldm;
                   1053:     oldm=newm;
                   1054:     maxmax=0.;
                   1055:     for(j=1;j<=nlstate;j++){
                   1056:       min=1.;
                   1057:       max=0.;
                   1058:       for(i=1; i<=nlstate; i++) {
                   1059:        sumnew=0;
                   1060:        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   1061:        prlim[i][j]= newm[i][j]/(1-sumnew);
                   1062:        max=FMAX(max,prlim[i][j]);
                   1063:        min=FMIN(min,prlim[i][j]);
                   1064:       }
                   1065:       maxmin=max-min;
                   1066:       maxmax=FMAX(maxmax,maxmin);
                   1067:     }
                   1068:     if(maxmax < ftolpl){
                   1069:       return prlim;
                   1070:     }
                   1071:   }
                   1072: }
                   1073: 
                   1074: /*************** transition probabilities ***************/ 
                   1075: 
                   1076: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   1077: {
                   1078:   double s1, s2;
                   1079:   /*double t34;*/
                   1080:   int i,j,j1, nc, ii, jj;
                   1081: 
                   1082:     for(i=1; i<= nlstate; i++){
1.99      brouard  1083:       for(j=1; j<i;j++){
                   1084:        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                   1085:          /*s2 += param[i][j][nc]*cov[nc];*/
                   1086:          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                   1087: /*      printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
                   1088:        }
                   1089:        ps[i][j]=s2;
                   1090: /*     printf("s1=%.17e, s2=%.17e\n",s1,s2); */
                   1091:       }
                   1092:       for(j=i+1; j<=nlstate+ndeath;j++){
                   1093:        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                   1094:          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                   1095: /*       printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
                   1096:        }
                   1097:        ps[i][j]=s2;
1.53      brouard  1098:       }
                   1099:     }
                   1100:     /*ps[3][2]=1;*/
1.99      brouard  1101:     
                   1102:     for(i=1; i<= nlstate; i++){
                   1103:       s1=0;
                   1104:       for(j=1; j<i; j++)
                   1105:        s1+=exp(ps[i][j]);
                   1106:       for(j=i+1; j<=nlstate+ndeath; j++)
                   1107:        s1+=exp(ps[i][j]);
                   1108:       ps[i][i]=1./(s1+1.);
                   1109:       for(j=1; j<i; j++)
                   1110:        ps[i][j]= exp(ps[i][j])*ps[i][i];
                   1111:       for(j=i+1; j<=nlstate+ndeath; j++)
                   1112:        ps[i][j]= exp(ps[i][j])*ps[i][i];
                   1113:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   1114:     } /* end i */
                   1115:     
                   1116:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   1117:       for(jj=1; jj<= nlstate+ndeath; jj++){
                   1118:        ps[ii][jj]=0;
                   1119:        ps[ii][ii]=1;
                   1120:       }
1.53      brouard  1121:     }
1.99      brouard  1122:     
1.53      brouard  1123: 
1.99      brouard  1124: /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   1125: /*      for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   1126: /*        printf("ddd %lf ",ps[ii][jj]); */
                   1127: /*      } */
                   1128: /*      printf("\n "); */
                   1129: /*        } */
                   1130: /*        printf("\n ");printf("%lf ",cov[2]); */
                   1131:        /*
                   1132:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   1133:       goto end;*/
1.53      brouard  1134:     return ps;
                   1135: }
                   1136: 
                   1137: /**************** Product of 2 matrices ******************/
                   1138: 
                   1139: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
                   1140: {
                   1141:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   1142:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   1143:   /* in, b, out are matrice of pointers which should have been initialized 
                   1144:      before: only the contents of out is modified. The function returns
                   1145:      a pointer to pointers identical to out */
                   1146:   long i, j, k;
                   1147:   for(i=nrl; i<= nrh; i++)
                   1148:     for(k=ncolol; k<=ncoloh; k++)
                   1149:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
                   1150:        out[i][k] +=in[i][j]*b[j][k];
                   1151: 
                   1152:   return out;
                   1153: }
                   1154: 
                   1155: 
                   1156: /************* Higher Matrix Product ***************/
                   1157: 
                   1158: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                   1159: {
1.66      brouard  1160:   /* Computes the transition matrix starting at age 'age' over 
                   1161:      'nhstepm*hstepm*stepm' months (i.e. until
                   1162:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   1163:      nhstepm*hstepm matrices. 
1.53      brouard  1164:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
1.66      brouard  1165:      (typically every 2 years instead of every month which is too big 
                   1166:      for the memory).
1.53      brouard  1167:      Model is determined by parameters x and covariates have to be 
                   1168:      included manually here. 
                   1169: 
                   1170:      */
                   1171: 
                   1172:   int i, j, d, h, k;
                   1173:   double **out, cov[NCOVMAX];
                   1174:   double **newm;
                   1175: 
                   1176:   /* Hstepm could be zero and should return the unit matrix */
                   1177:   for (i=1;i<=nlstate+ndeath;i++)
                   1178:     for (j=1;j<=nlstate+ndeath;j++){
                   1179:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   1180:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   1181:     }
                   1182:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1183:   for(h=1; h <=nhstepm; h++){
                   1184:     for(d=1; d <=hstepm; d++){
                   1185:       newm=savm;
                   1186:       /* Covariates have to be included here again */
                   1187:       cov[1]=1.;
                   1188:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                   1189:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                   1190:       for (k=1; k<=cptcovage;k++)
                   1191:        cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   1192:       for (k=1; k<=cptcovprod;k++)
                   1193:        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   1194: 
                   1195: 
                   1196:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   1197:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                   1198:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   1199:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1200:       savm=oldm;
                   1201:       oldm=newm;
                   1202:     }
                   1203:     for(i=1; i<=nlstate+ndeath; i++)
                   1204:       for(j=1;j<=nlstate+ndeath;j++) {
                   1205:        po[i][j][h]=newm[i][j];
                   1206:        /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                   1207:         */
                   1208:       }
                   1209:   } /* end h */
                   1210:   return po;
                   1211: }
                   1212: 
                   1213: 
                   1214: /*************** log-likelihood *************/
                   1215: double func( double *x)
                   1216: {
                   1217:   int i, ii, j, k, mi, d, kk;
                   1218:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
                   1219:   double **out;
                   1220:   double sw; /* Sum of weights */
                   1221:   double lli; /* Individual log likelihood */
1.59      brouard  1222:   int s1, s2;
1.68      lievre   1223:   double bbh, survp;
1.53      brouard  1224:   long ipmx;
                   1225:   /*extern weight */
                   1226:   /* We are differentiating ll according to initial status */
                   1227:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   1228:   /*for(i=1;i<imx;i++) 
                   1229:     printf(" %d\n",s[4][i]);
                   1230:   */
                   1231:   cov[1]=1.;
                   1232: 
                   1233:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.61      brouard  1234: 
                   1235:   if(mle==1){
                   1236:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1237:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1238:       for(mi=1; mi<= wav[i]-1; mi++){
                   1239:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1240:          for (j=1;j<=nlstate+ndeath;j++){
                   1241:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1242:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1243:          }
                   1244:        for(d=0; d<dh[mi][i]; d++){
                   1245:          newm=savm;
                   1246:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1247:          for (kk=1; kk<=cptcovage;kk++) {
                   1248:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1249:          }
                   1250:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1251:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1252:          savm=oldm;
                   1253:          oldm=newm;
                   1254:        } /* end mult */
1.53      brouard  1255:       
1.61      brouard  1256:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
1.101     brouard  1257:        /* But now since version 0.9 we anticipate for bias at large stepm.
1.61      brouard  1258:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   1259:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   1260:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   1261:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
1.101     brouard  1262:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
1.61      brouard  1263:         * probability in order to take into account the bias as a fraction of the way
1.101     brouard  1264:         * from savm to out if bh is negative or even beyond if bh is positive. bh varies
1.61      brouard  1265:         * -stepm/2 to stepm/2 .
                   1266:         * For stepm=1 the results are the same as for previous versions of Imach.
                   1267:         * For stepm > 1 the results are less biased than in previous versions. 
                   1268:         */
                   1269:        s1=s[mw[mi][i]][i];
                   1270:        s2=s[mw[mi+1][i]][i];
1.64      lievre   1271:        bbh=(double)bh[mi][i]/(double)stepm; 
1.101     brouard  1272:        /* bias bh is positive if real duration
1.64      lievre   1273:         * is higher than the multiple of stepm and negative otherwise.
                   1274:         */
                   1275:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
1.71      brouard  1276:        if( s2 > nlstate){ 
1.104     lievre   1277:          /* i.e. if s2 is a death state and if the date of death is known 
                   1278:             then the contribution to the likelihood is the probability to 
                   1279:             die between last step unit time and current  step unit time, 
                   1280:             which is also equal to probability to die before dh 
1.101     brouard  1281:             minus probability to die before dh-stepm . 
1.71      brouard  1282:             In version up to 0.92 likelihood was computed
                   1283:        as if date of death was unknown. Death was treated as any other
                   1284:        health state: the date of the interview describes the actual state
                   1285:        and not the date of a change in health state. The former idea was
                   1286:        to consider that at each interview the state was recorded
                   1287:        (healthy, disable or death) and IMaCh was corrected; but when we
                   1288:        introduced the exact date of death then we should have modified
                   1289:        the contribution of an exact death to the likelihood. This new
                   1290:        contribution is smaller and very dependent of the step unit
                   1291:        stepm. It is no more the probability to die between last interview
                   1292:        and month of death but the probability to survive from last
                   1293:        interview up to one month before death multiplied by the
                   1294:        probability to die within a month. Thanks to Chris
                   1295:        Jackson for correcting this bug.  Former versions increased
                   1296:        mortality artificially. The bad side is that we add another loop
                   1297:        which slows down the processing. The difference can be up to 10%
                   1298:        lower mortality.
                   1299:          */
                   1300:          lli=log(out[s1][s2] - savm[s1][s2]);
1.104     lievre   1301: 
                   1302: 
                   1303:        } else if  (s2==-2) {
                   1304:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   1305:            survp += out[s1][j];
                   1306:          lli= survp;
                   1307:        }
1.105   ! lievre   1308:        
        !          1309:        else if  (s2==-4) {
        !          1310:          for (j=3,survp=0. ; j<=nlstate; j++) 
        !          1311:            survp += out[s1][j];
        !          1312:          lli= survp;
        !          1313:        }
        !          1314:        
        !          1315:        else if  (s2==-5) {
        !          1316:          for (j=1,survp=0. ; j<=2; j++) 
        !          1317:            survp += out[s1][j];
        !          1318:          lli= survp;
        !          1319:        }
1.104     lievre   1320: 
                   1321: 
                   1322:        else{
1.71      brouard  1323:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   1324:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   1325:        } 
1.64      lievre   1326:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   1327:        /*if(lli ==000.0)*/
                   1328:        /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
1.71      brouard  1329:        ipmx +=1;
1.64      lievre   1330:        sw += weight[i];
                   1331:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1332:       } /* end of wave */
                   1333:     } /* end of individual */
                   1334:   }  else if(mle==2){
                   1335:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1336:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1337:       for(mi=1; mi<= wav[i]-1; mi++){
                   1338:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1339:          for (j=1;j<=nlstate+ndeath;j++){
                   1340:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1341:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1342:          }
                   1343:        for(d=0; d<=dh[mi][i]; d++){
                   1344:          newm=savm;
                   1345:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1346:          for (kk=1; kk<=cptcovage;kk++) {
                   1347:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1348:          }
                   1349:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1350:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1351:          savm=oldm;
                   1352:          oldm=newm;
                   1353:        } /* end mult */
                   1354:       
                   1355:        s1=s[mw[mi][i]][i];
                   1356:        s2=s[mw[mi+1][i]][i];
                   1357:        bbh=(double)bh[mi][i]/(double)stepm; 
1.63      lievre   1358:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
1.64      lievre   1359:        ipmx +=1;
                   1360:        sw += weight[i];
                   1361:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1362:       } /* end of wave */
                   1363:     } /* end of individual */
                   1364:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   1365:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1366:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1367:       for(mi=1; mi<= wav[i]-1; mi++){
                   1368:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1369:          for (j=1;j<=nlstate+ndeath;j++){
                   1370:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1371:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1372:          }
                   1373:        for(d=0; d<dh[mi][i]; d++){
                   1374:          newm=savm;
                   1375:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1376:          for (kk=1; kk<=cptcovage;kk++) {
                   1377:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1378:          }
                   1379:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1380:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1381:          savm=oldm;
                   1382:          oldm=newm;
                   1383:        } /* end mult */
                   1384:       
                   1385:        s1=s[mw[mi][i]][i];
                   1386:        s2=s[mw[mi+1][i]][i];
                   1387:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1388:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
1.61      brouard  1389:        ipmx +=1;
                   1390:        sw += weight[i];
                   1391:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1392:       } /* end of wave */
                   1393:     } /* end of individual */
1.84      brouard  1394:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
1.61      brouard  1395:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1396:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1397:       for(mi=1; mi<= wav[i]-1; mi++){
                   1398:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1399:          for (j=1;j<=nlstate+ndeath;j++){
                   1400:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1401:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1402:          }
                   1403:        for(d=0; d<dh[mi][i]; d++){
                   1404:          newm=savm;
                   1405:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1406:          for (kk=1; kk<=cptcovage;kk++) {
                   1407:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1408:          }
                   1409:        
                   1410:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1411:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1412:          savm=oldm;
                   1413:          oldm=newm;
                   1414:        } /* end mult */
                   1415:       
1.84      brouard  1416:        s1=s[mw[mi][i]][i];
                   1417:        s2=s[mw[mi+1][i]][i];
                   1418:        if( s2 > nlstate){ 
                   1419:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1420:        }else{
                   1421:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   1422:        }
                   1423:        ipmx +=1;
                   1424:        sw += weight[i];
                   1425:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.85      brouard  1426: /*     printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
1.84      brouard  1427:       } /* end of wave */
                   1428:     } /* end of individual */
                   1429:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   1430:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1431:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1432:       for(mi=1; mi<= wav[i]-1; mi++){
                   1433:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1434:          for (j=1;j<=nlstate+ndeath;j++){
                   1435:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1436:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1437:          }
                   1438:        for(d=0; d<dh[mi][i]; d++){
                   1439:          newm=savm;
                   1440:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1441:          for (kk=1; kk<=cptcovage;kk++) {
                   1442:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1443:          }
                   1444:        
                   1445:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1446:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1447:          savm=oldm;
                   1448:          oldm=newm;
                   1449:        } /* end mult */
                   1450:       
                   1451:        s1=s[mw[mi][i]][i];
                   1452:        s2=s[mw[mi+1][i]][i];
1.61      brouard  1453:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   1454:        ipmx +=1;
                   1455:        sw += weight[i];
                   1456:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.84      brouard  1457:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
1.61      brouard  1458:       } /* end of wave */
                   1459:     } /* end of individual */
                   1460:   } /* End of if */
1.53      brouard  1461:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   1462:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   1463:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
1.85      brouard  1464:   return -l;
                   1465: }
                   1466: 
                   1467: /*************** log-likelihood *************/
                   1468: double funcone( double *x)
                   1469: {
1.87      brouard  1470:   /* Same as likeli but slower because of a lot of printf and if */
1.85      brouard  1471:   int i, ii, j, k, mi, d, kk;
                   1472:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
                   1473:   double **out;
                   1474:   double lli; /* Individual log likelihood */
1.87      brouard  1475:   double llt;
1.85      brouard  1476:   int s1, s2;
                   1477:   double bbh, survp;
                   1478:   /*extern weight */
                   1479:   /* We are differentiating ll according to initial status */
                   1480:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   1481:   /*for(i=1;i<imx;i++) 
                   1482:     printf(" %d\n",s[4][i]);
                   1483:   */
                   1484:   cov[1]=1.;
                   1485: 
                   1486:   for(k=1; k<=nlstate; k++) ll[k]=0.;
                   1487: 
                   1488:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1489:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1490:     for(mi=1; mi<= wav[i]-1; mi++){
                   1491:       for (ii=1;ii<=nlstate+ndeath;ii++)
                   1492:        for (j=1;j<=nlstate+ndeath;j++){
                   1493:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1494:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1495:        }
                   1496:       for(d=0; d<dh[mi][i]; d++){
                   1497:        newm=savm;
                   1498:        cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1499:        for (kk=1; kk<=cptcovage;kk++) {
                   1500:          cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1501:        }
                   1502:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1503:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1504:        savm=oldm;
                   1505:        oldm=newm;
                   1506:       } /* end mult */
                   1507:       
                   1508:       s1=s[mw[mi][i]][i];
                   1509:       s2=s[mw[mi+1][i]][i];
                   1510:       bbh=(double)bh[mi][i]/(double)stepm; 
                   1511:       /* bias is positive if real duration
                   1512:        * is higher than the multiple of stepm and negative otherwise.
                   1513:        */
                   1514:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
                   1515:        lli=log(out[s1][s2] - savm[s1][s2]);
                   1516:       } else if (mle==1){
                   1517:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   1518:       } else if(mle==2){
                   1519:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   1520:       } else if(mle==3){  /* exponential inter-extrapolation */
                   1521:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   1522:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
                   1523:        lli=log(out[s1][s2]); /* Original formula */
                   1524:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
                   1525:        lli=log(out[s1][s2]); /* Original formula */
                   1526:       } /* End of if */
                   1527:       ipmx +=1;
                   1528:       sw += weight[i];
                   1529:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1530: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   1531:       if(globpr){
1.88      brouard  1532:        fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
1.86      brouard  1533:  %10.6f %10.6f %10.6f ", \
                   1534:                num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   1535:                2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
1.87      brouard  1536:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   1537:          llt +=ll[k]*gipmx/gsw;
                   1538:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                   1539:        }
                   1540:        fprintf(ficresilk," %10.6f\n", -llt);
1.85      brouard  1541:       }
                   1542:     } /* end of wave */
                   1543:   } /* end of individual */
                   1544:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   1545:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   1546:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
1.87      brouard  1547:   if(globpr==0){ /* First time we count the contributions and weights */
                   1548:     gipmx=ipmx;
                   1549:     gsw=sw;
                   1550:   }
1.53      brouard  1551:   return -l;
                   1552: }
                   1553: 
                   1554: 
1.94      brouard  1555: /*************** function likelione ***********/
1.87      brouard  1556: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
1.85      brouard  1557: {
1.87      brouard  1558:   /* This routine should help understanding what is done with 
                   1559:      the selection of individuals/waves and
1.85      brouard  1560:      to check the exact contribution to the likelihood.
                   1561:      Plotting could be done.
                   1562:    */
                   1563:   int k;
1.87      brouard  1564: 
1.88      brouard  1565:   if(*globpri !=0){ /* Just counts and sums, no printings */
1.85      brouard  1566:     strcpy(fileresilk,"ilk"); 
                   1567:     strcat(fileresilk,fileres);
                   1568:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   1569:       printf("Problem with resultfile: %s\n", fileresilk);
                   1570:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   1571:     }
1.87      brouard  1572:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
1.88      brouard  1573:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
1.85      brouard  1574:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   1575:     for(k=1; k<=nlstate; k++) 
1.87      brouard  1576:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                   1577:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
1.85      brouard  1578:   }
                   1579: 
                   1580:   *fretone=(*funcone)(p);
1.87      brouard  1581:   if(*globpri !=0){
1.85      brouard  1582:     fclose(ficresilk);
1.88      brouard  1583:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
1.87      brouard  1584:     fflush(fichtm); 
                   1585:   } 
1.85      brouard  1586:   return;
                   1587: }
                   1588: 
1.88      brouard  1589: 
1.53      brouard  1590: /*********** Maximum Likelihood Estimation ***************/
                   1591: 
                   1592: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   1593: {
                   1594:   int i,j, iter;
1.74      brouard  1595:   double **xi;
1.53      brouard  1596:   double fret;
1.85      brouard  1597:   double fretone; /* Only one call to likelihood */
1.98      brouard  1598:   /*  char filerespow[FILENAMELENGTH];*/
1.53      brouard  1599:   xi=matrix(1,npar,1,npar);
                   1600:   for (i=1;i<=npar;i++)
                   1601:     for (j=1;j<=npar;j++)
                   1602:       xi[i][j]=(i==j ? 1.0 : 0.0);
                   1603:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.76      brouard  1604:   strcpy(filerespow,"pow"); 
                   1605:   strcat(filerespow,fileres);
                   1606:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   1607:     printf("Problem with resultfile: %s\n", filerespow);
                   1608:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   1609:   }
                   1610:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   1611:   for (i=1;i<=nlstate;i++)
                   1612:     for(j=1;j<=nlstate+ndeath;j++)
                   1613:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   1614:   fprintf(ficrespow,"\n");
1.85      brouard  1615: 
1.53      brouard  1616:   powell(p,xi,npar,ftol,&iter,&fret,func);
                   1617: 
1.76      brouard  1618:   fclose(ficrespow);
                   1619:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
1.65      lievre   1620:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
1.53      brouard  1621:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
                   1622: 
                   1623: }
                   1624: 
                   1625: /**** Computes Hessian and covariance matrix ***/
                   1626: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                   1627: {
                   1628:   double  **a,**y,*x,pd;
                   1629:   double **hess;
                   1630:   int i, j,jk;
                   1631:   int *indx;
                   1632: 
1.98      brouard  1633:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                   1634:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
1.53      brouard  1635:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   1636:   void ludcmp(double **a, int npar, int *indx, double *d) ;
1.98      brouard  1637:   double gompertz(double p[]);
1.53      brouard  1638:   hess=matrix(1,npar,1,npar);
                   1639: 
                   1640:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   1641:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   1642:   for (i=1;i<=npar;i++){
                   1643:     printf("%d",i);fflush(stdout);
                   1644:     fprintf(ficlog,"%d",i);fflush(ficlog);
1.98      brouard  1645:    
                   1646:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   1647:     
                   1648:     /*  printf(" %f ",p[i]);
                   1649:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
1.53      brouard  1650:   }
                   1651:   
                   1652:   for (i=1;i<=npar;i++) {
                   1653:     for (j=1;j<=npar;j++)  {
                   1654:       if (j>i) { 
                   1655:        printf(".%d%d",i,j);fflush(stdout);
                   1656:        fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
1.98      brouard  1657:        hess[i][j]=hessij(p,delti,i,j,func,npar);
                   1658:        
1.53      brouard  1659:        hess[j][i]=hess[i][j];    
                   1660:        /*printf(" %lf ",hess[i][j]);*/
                   1661:       }
                   1662:     }
                   1663:   }
                   1664:   printf("\n");
                   1665:   fprintf(ficlog,"\n");
                   1666: 
                   1667:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   1668:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   1669:   
                   1670:   a=matrix(1,npar,1,npar);
                   1671:   y=matrix(1,npar,1,npar);
                   1672:   x=vector(1,npar);
                   1673:   indx=ivector(1,npar);
                   1674:   for (i=1;i<=npar;i++)
                   1675:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   1676:   ludcmp(a,npar,indx,&pd);
                   1677: 
                   1678:   for (j=1;j<=npar;j++) {
                   1679:     for (i=1;i<=npar;i++) x[i]=0;
                   1680:     x[j]=1;
                   1681:     lubksb(a,npar,indx,x);
                   1682:     for (i=1;i<=npar;i++){ 
                   1683:       matcov[i][j]=x[i];
                   1684:     }
                   1685:   }
                   1686: 
                   1687:   printf("\n#Hessian matrix#\n");
                   1688:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   1689:   for (i=1;i<=npar;i++) { 
                   1690:     for (j=1;j<=npar;j++) { 
                   1691:       printf("%.3e ",hess[i][j]);
                   1692:       fprintf(ficlog,"%.3e ",hess[i][j]);
                   1693:     }
                   1694:     printf("\n");
                   1695:     fprintf(ficlog,"\n");
                   1696:   }
                   1697: 
                   1698:   /* Recompute Inverse */
                   1699:   for (i=1;i<=npar;i++)
                   1700:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                   1701:   ludcmp(a,npar,indx,&pd);
                   1702: 
                   1703:   /*  printf("\n#Hessian matrix recomputed#\n");
                   1704: 
                   1705:   for (j=1;j<=npar;j++) {
                   1706:     for (i=1;i<=npar;i++) x[i]=0;
                   1707:     x[j]=1;
                   1708:     lubksb(a,npar,indx,x);
                   1709:     for (i=1;i<=npar;i++){ 
                   1710:       y[i][j]=x[i];
                   1711:       printf("%.3e ",y[i][j]);
                   1712:       fprintf(ficlog,"%.3e ",y[i][j]);
                   1713:     }
                   1714:     printf("\n");
                   1715:     fprintf(ficlog,"\n");
                   1716:   }
                   1717:   */
                   1718: 
                   1719:   free_matrix(a,1,npar,1,npar);
                   1720:   free_matrix(y,1,npar,1,npar);
                   1721:   free_vector(x,1,npar);
                   1722:   free_ivector(indx,1,npar);
                   1723:   free_matrix(hess,1,npar,1,npar);
                   1724: 
                   1725: 
                   1726: }
                   1727: 
                   1728: /*************** hessian matrix ****************/
1.98      brouard  1729: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
1.53      brouard  1730: {
                   1731:   int i;
                   1732:   int l=1, lmax=20;
                   1733:   double k1,k2;
                   1734:   double p2[NPARMAX+1];
                   1735:   double res;
1.98      brouard  1736:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
1.53      brouard  1737:   double fx;
                   1738:   int k=0,kmax=10;
                   1739:   double l1;
                   1740: 
                   1741:   fx=func(x);
                   1742:   for (i=1;i<=npar;i++) p2[i]=x[i];
                   1743:   for(l=0 ; l <=lmax; l++){
                   1744:     l1=pow(10,l);
                   1745:     delts=delt;
                   1746:     for(k=1 ; k <kmax; k=k+1){
                   1747:       delt = delta*(l1*k);
                   1748:       p2[theta]=x[theta] +delt;
                   1749:       k1=func(p2)-fx;
                   1750:       p2[theta]=x[theta]-delt;
                   1751:       k2=func(p2)-fx;
                   1752:       /*res= (k1-2.0*fx+k2)/delt/delt; */
                   1753:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                   1754:       
                   1755: #ifdef DEBUG
                   1756:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   1757:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   1758: #endif
                   1759:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   1760:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   1761:        k=kmax;
                   1762:       }
                   1763:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                   1764:        k=kmax; l=lmax*10.;
                   1765:       }
                   1766:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   1767:        delts=delt;
                   1768:       }
                   1769:     }
                   1770:   }
                   1771:   delti[theta]=delts;
                   1772:   return res; 
                   1773:   
                   1774: }
                   1775: 
1.98      brouard  1776: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
1.53      brouard  1777: {
                   1778:   int i;
                   1779:   int l=1, l1, lmax=20;
                   1780:   double k1,k2,k3,k4,res,fx;
                   1781:   double p2[NPARMAX+1];
                   1782:   int k;
                   1783: 
                   1784:   fx=func(x);
                   1785:   for (k=1; k<=2; k++) {
                   1786:     for (i=1;i<=npar;i++) p2[i]=x[i];
                   1787:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   1788:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   1789:     k1=func(p2)-fx;
                   1790:   
                   1791:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   1792:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   1793:     k2=func(p2)-fx;
                   1794:   
                   1795:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   1796:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   1797:     k3=func(p2)-fx;
                   1798:   
                   1799:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   1800:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   1801:     k4=func(p2)-fx;
                   1802:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                   1803: #ifdef DEBUG
                   1804:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   1805:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   1806: #endif
                   1807:   }
                   1808:   return res;
                   1809: }
                   1810: 
                   1811: /************** Inverse of matrix **************/
                   1812: void ludcmp(double **a, int n, int *indx, double *d) 
                   1813: { 
                   1814:   int i,imax,j,k; 
                   1815:   double big,dum,sum,temp; 
                   1816:   double *vv; 
                   1817:  
                   1818:   vv=vector(1,n); 
                   1819:   *d=1.0; 
                   1820:   for (i=1;i<=n;i++) { 
                   1821:     big=0.0; 
                   1822:     for (j=1;j<=n;j++) 
                   1823:       if ((temp=fabs(a[i][j])) > big) big=temp; 
                   1824:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                   1825:     vv[i]=1.0/big; 
                   1826:   } 
                   1827:   for (j=1;j<=n;j++) { 
                   1828:     for (i=1;i<j;i++) { 
                   1829:       sum=a[i][j]; 
                   1830:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   1831:       a[i][j]=sum; 
                   1832:     } 
                   1833:     big=0.0; 
                   1834:     for (i=j;i<=n;i++) { 
                   1835:       sum=a[i][j]; 
                   1836:       for (k=1;k<j;k++) 
                   1837:        sum -= a[i][k]*a[k][j]; 
                   1838:       a[i][j]=sum; 
                   1839:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   1840:        big=dum; 
                   1841:        imax=i; 
                   1842:       } 
                   1843:     } 
                   1844:     if (j != imax) { 
                   1845:       for (k=1;k<=n;k++) { 
                   1846:        dum=a[imax][k]; 
                   1847:        a[imax][k]=a[j][k]; 
                   1848:        a[j][k]=dum; 
                   1849:       } 
                   1850:       *d = -(*d); 
                   1851:       vv[imax]=vv[j]; 
                   1852:     } 
                   1853:     indx[j]=imax; 
                   1854:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   1855:     if (j != n) { 
                   1856:       dum=1.0/(a[j][j]); 
                   1857:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   1858:     } 
                   1859:   } 
                   1860:   free_vector(vv,1,n);  /* Doesn't work */
                   1861: ;
                   1862: } 
                   1863: 
                   1864: void lubksb(double **a, int n, int *indx, double b[]) 
                   1865: { 
                   1866:   int i,ii=0,ip,j; 
                   1867:   double sum; 
                   1868:  
                   1869:   for (i=1;i<=n;i++) { 
                   1870:     ip=indx[i]; 
                   1871:     sum=b[ip]; 
                   1872:     b[ip]=b[i]; 
                   1873:     if (ii) 
                   1874:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   1875:     else if (sum) ii=i; 
                   1876:     b[i]=sum; 
                   1877:   } 
                   1878:   for (i=n;i>=1;i--) { 
                   1879:     sum=b[i]; 
                   1880:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   1881:     b[i]=sum/a[i][i]; 
                   1882:   } 
                   1883: } 
                   1884: 
                   1885: /************ Frequencies ********************/
1.105   ! lievre   1886: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
1.53      brouard  1887: {  /* Some frequencies */
                   1888:   
                   1889:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
                   1890:   int first;
                   1891:   double ***freq; /* Frequencies */
1.73      lievre   1892:   double *pp, **prop;
                   1893:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
1.53      brouard  1894:   FILE *ficresp;
                   1895:   char fileresp[FILENAMELENGTH];
                   1896:   
                   1897:   pp=vector(1,nlstate);
1.74      brouard  1898:   prop=matrix(1,nlstate,iagemin,iagemax+3);
1.53      brouard  1899:   strcpy(fileresp,"p");
                   1900:   strcat(fileresp,fileres);
                   1901:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   1902:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   1903:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   1904:     exit(0);
                   1905:   }
1.105   ! lievre   1906:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
1.53      brouard  1907:   j1=0;
                   1908:   
                   1909:   j=cptcoveff;
                   1910:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   1911: 
                   1912:   first=1;
                   1913: 
                   1914:   for(k1=1; k1<=j;k1++){
                   1915:     for(i1=1; i1<=ncodemax[k1];i1++){
                   1916:       j1++;
                   1917:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                   1918:        scanf("%d", i);*/
1.105   ! lievre   1919:       for (i=-5; i<=nlstate+ndeath; i++)  
        !          1920:        for (jk=-5; jk<=nlstate+ndeath; jk++)  
1.74      brouard  1921:          for(m=iagemin; m <= iagemax+3; m++)
1.53      brouard  1922:            freq[i][jk][m]=0;
1.73      lievre   1923: 
                   1924:     for (i=1; i<=nlstate; i++)  
1.74      brouard  1925:       for(m=iagemin; m <= iagemax+3; m++)
1.73      lievre   1926:        prop[i][m]=0;
1.53      brouard  1927:       
                   1928:       dateintsum=0;
                   1929:       k2cpt=0;
                   1930:       for (i=1; i<=imx; i++) {
                   1931:        bool=1;
                   1932:        if  (cptcovn>0) {
                   1933:          for (z1=1; z1<=cptcoveff; z1++) 
                   1934:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   1935:              bool=0;
                   1936:        }
1.58      lievre   1937:        if (bool==1){
1.53      brouard  1938:          for(m=firstpass; m<=lastpass; m++){
                   1939:            k2=anint[m][i]+(mint[m][i]/12.);
1.84      brouard  1940:            /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
1.74      brouard  1941:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   1942:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
1.73      lievre   1943:              if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
1.53      brouard  1944:              if (m<lastpass) {
                   1945:                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
1.74      brouard  1946:                freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
1.53      brouard  1947:              }
                   1948:              
1.74      brouard  1949:              if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
1.53      brouard  1950:                dateintsum=dateintsum+k2;
                   1951:                k2cpt++;
                   1952:              }
1.84      brouard  1953:              /*}*/
1.53      brouard  1954:          }
                   1955:        }
                   1956:       }
                   1957:        
1.84      brouard  1958:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
1.105   ! lievre   1959: fprintf(ficresp, "#Local time at start: %s", strstart);
1.53      brouard  1960:       if  (cptcovn>0) {
                   1961:        fprintf(ficresp, "\n#********** Variable "); 
                   1962:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   1963:        fprintf(ficresp, "**********\n#");
                   1964:       }
                   1965:       for(i=1; i<=nlstate;i++) 
                   1966:        fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   1967:       fprintf(ficresp, "\n");
                   1968:       
1.74      brouard  1969:       for(i=iagemin; i <= iagemax+3; i++){
                   1970:        if(i==iagemax+3){
1.53      brouard  1971:          fprintf(ficlog,"Total");
                   1972:        }else{
                   1973:          if(first==1){
                   1974:            first=0;
                   1975:            printf("See log file for details...\n");
                   1976:          }
                   1977:          fprintf(ficlog,"Age %d", i);
                   1978:        }
                   1979:        for(jk=1; jk <=nlstate ; jk++){
                   1980:          for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   1981:            pp[jk] += freq[jk][m][i]; 
                   1982:        }
                   1983:        for(jk=1; jk <=nlstate ; jk++){
                   1984:          for(m=-1, pos=0; m <=0 ; m++)
                   1985:            pos += freq[jk][m][i];
                   1986:          if(pp[jk]>=1.e-10){
                   1987:            if(first==1){
                   1988:            printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   1989:            }
                   1990:            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   1991:          }else{
                   1992:            if(first==1)
                   1993:              printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   1994:            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   1995:          }
                   1996:        }
                   1997: 
                   1998:        for(jk=1; jk <=nlstate ; jk++){
                   1999:          for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   2000:            pp[jk] += freq[jk][m][i];
1.73      lievre   2001:        }       
                   2002:        for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   2003:          pos += pp[jk];
                   2004:          posprop += prop[jk][i];
1.53      brouard  2005:        }
                   2006:        for(jk=1; jk <=nlstate ; jk++){
                   2007:          if(pos>=1.e-5){
                   2008:            if(first==1)
                   2009:              printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   2010:            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   2011:          }else{
                   2012:            if(first==1)
                   2013:              printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   2014:            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   2015:          }
1.74      brouard  2016:          if( i <= iagemax){
1.53      brouard  2017:            if(pos>=1.e-5){
1.73      lievre   2018:              fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
1.84      brouard  2019:              /*probs[i][jk][j1]= pp[jk]/pos;*/
1.53      brouard  2020:              /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   2021:            }
                   2022:            else
1.73      lievre   2023:              fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
1.53      brouard  2024:          }
                   2025:        }
                   2026:        
1.69      brouard  2027:        for(jk=-1; jk <=nlstate+ndeath; jk++)
                   2028:          for(m=-1; m <=nlstate+ndeath; m++)
1.53      brouard  2029:            if(freq[jk][m][i] !=0 ) {
                   2030:            if(first==1)
                   2031:              printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   2032:              fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                   2033:            }
1.74      brouard  2034:        if(i <= iagemax)
1.53      brouard  2035:          fprintf(ficresp,"\n");
                   2036:        if(first==1)
                   2037:          printf("Others in log...\n");
                   2038:        fprintf(ficlog,"\n");
                   2039:       }
                   2040:     }
                   2041:   }
                   2042:   dateintmean=dateintsum/k2cpt; 
                   2043:  
                   2044:   fclose(ficresp);
1.105   ! lievre   2045:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
1.53      brouard  2046:   free_vector(pp,1,nlstate);
1.74      brouard  2047:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
1.53      brouard  2048:   /* End of Freq */
                   2049: }
                   2050: 
                   2051: /************ Prevalence ********************/
1.84      brouard  2052: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
1.69      brouard  2053: {  
                   2054:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   2055:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   2056:      We still use firstpass and lastpass as another selection.
                   2057:   */
1.53      brouard  2058:  
                   2059:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                   2060:   double ***freq; /* Frequencies */
1.73      lievre   2061:   double *pp, **prop;
                   2062:   double pos,posprop; 
1.69      brouard  2063:   double  y2; /* in fractional years */
1.74      brouard  2064:   int iagemin, iagemax;
1.53      brouard  2065: 
1.74      brouard  2066:   iagemin= (int) agemin;
                   2067:   iagemax= (int) agemax;
                   2068:   /*pp=vector(1,nlstate);*/
                   2069:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   2070:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
1.53      brouard  2071:   j1=0;
                   2072:   
                   2073:   j=cptcoveff;
                   2074:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   2075:   
                   2076:   for(k1=1; k1<=j;k1++){
                   2077:     for(i1=1; i1<=ncodemax[k1];i1++){
                   2078:       j1++;
                   2079:       
1.73      lievre   2080:       for (i=1; i<=nlstate; i++)  
1.74      brouard  2081:        for(m=iagemin; m <= iagemax+3; m++)
                   2082:          prop[i][m]=0.0;
1.53      brouard  2083:      
1.69      brouard  2084:       for (i=1; i<=imx; i++) { /* Each individual */
1.53      brouard  2085:        bool=1;
                   2086:        if  (cptcovn>0) {
                   2087:          for (z1=1; z1<=cptcoveff; z1++) 
                   2088:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   2089:              bool=0;
                   2090:        } 
                   2091:        if (bool==1) { 
1.69      brouard  2092:          for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                   2093:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   2094:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
1.74      brouard  2095:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   2096:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   2097:              if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                   2098:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   2099:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   2100:                prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   2101:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   2102:              } 
1.53      brouard  2103:            }
1.69      brouard  2104:          } /* end selection of waves */
1.53      brouard  2105:        }
                   2106:       }
1.74      brouard  2107:       for(i=iagemin; i <= iagemax+3; i++){  
1.53      brouard  2108:        
1.74      brouard  2109:        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   2110:          posprop += prop[jk][i]; 
                   2111:        } 
                   2112: 
                   2113:        for(jk=1; jk <=nlstate ; jk++){     
                   2114:          if( i <=  iagemax){ 
                   2115:            if(posprop>=1.e-5){ 
                   2116:              probs[i][jk][j1]= prop[jk][i]/posprop;
                   2117:            } 
                   2118:          } 
                   2119:        }/* end jk */ 
                   2120:       }/* end i */ 
1.53      brouard  2121:     } /* end i1 */
                   2122:   } /* end k1 */
                   2123:   
1.74      brouard  2124:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   2125:   /*free_vector(pp,1,nlstate);*/
                   2126:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   2127: }  /* End of prevalence */
1.53      brouard  2128: 
                   2129: /************* Waves Concatenation ***************/
                   2130: 
1.59      brouard  2131: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
1.53      brouard  2132: {
                   2133:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   2134:      Death is a valid wave (if date is known).
                   2135:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
1.59      brouard  2136:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
1.53      brouard  2137:      and mw[mi+1][i]. dh depends on stepm.
                   2138:      */
                   2139: 
                   2140:   int i, mi, m;
                   2141:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   2142:      double sum=0., jmean=0.;*/
                   2143:   int first;
                   2144:   int j, k=0,jk, ju, jl;
                   2145:   double sum=0.;
                   2146:   first=0;
                   2147:   jmin=1e+5;
                   2148:   jmax=-1;
                   2149:   jmean=0.;
                   2150:   for(i=1; i<=imx; i++){
                   2151:     mi=0;
                   2152:     m=firstpass;
                   2153:     while(s[m][i] <= nlstate){
1.105   ! lievre   2154:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
1.53      brouard  2155:        mw[++mi][i]=m;
                   2156:       if(m >=lastpass)
                   2157:        break;
                   2158:       else
                   2159:        m++;
                   2160:     }/* end while */
                   2161:     if (s[m][i] > nlstate){
                   2162:       mi++;    /* Death is another wave */
                   2163:       /* if(mi==0)  never been interviewed correctly before death */
                   2164:         /* Only death is a correct wave */
                   2165:       mw[mi][i]=m;
                   2166:     }
                   2167: 
                   2168:     wav[i]=mi;
                   2169:     if(mi==0){
1.91      brouard  2170:       nbwarn++;
1.53      brouard  2171:       if(first==0){
1.85      brouard  2172:        printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
1.53      brouard  2173:        first=1;
                   2174:       }
                   2175:       if(first==1){
1.85      brouard  2176:        fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
1.53      brouard  2177:       }
                   2178:     } /* end mi==0 */
1.77      brouard  2179:   } /* End individuals */
1.53      brouard  2180: 
                   2181:   for(i=1; i<=imx; i++){
                   2182:     for(mi=1; mi<wav[i];mi++){
                   2183:       if (stepm <=0)
                   2184:        dh[mi][i]=1;
                   2185:       else{
1.77      brouard  2186:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
1.53      brouard  2187:          if (agedc[i] < 2*AGESUP) {
1.85      brouard  2188:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   2189:            if(j==0) j=1;  /* Survives at least one month after exam */
                   2190:            else if(j<0){
1.91      brouard  2191:              nberr++;
1.85      brouard  2192:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.91      brouard  2193:              j=1; /* Temporary Dangerous patch */
1.105   ! lievre   2194:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
1.91      brouard  2195:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.105   ! lievre   2196:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
1.85      brouard  2197:            }
                   2198:            k=k+1;
                   2199:            if (j >= jmax) jmax=j;
                   2200:            if (j <= jmin) jmin=j;
                   2201:            sum=sum+j;
                   2202:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   2203:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
1.53      brouard  2204:          }
                   2205:        }
                   2206:        else{
                   2207:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1.104     lievre   2208: /*       if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                   2209: 
1.53      brouard  2210:          k=k+1;
                   2211:          if (j >= jmax) jmax=j;
                   2212:          else if (j <= jmin)jmin=j;
                   2213:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
1.73      lievre   2214:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
1.85      brouard  2215:          if(j<0){
1.91      brouard  2216:            nberr++;
1.85      brouard  2217:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2218:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2219:          }
1.53      brouard  2220:          sum=sum+j;
                   2221:        }
                   2222:        jk= j/stepm;
                   2223:        jl= j -jk*stepm;
                   2224:        ju= j -(jk+1)*stepm;
1.85      brouard  2225:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
1.64      lievre   2226:          if(jl==0){
                   2227:            dh[mi][i]=jk;
                   2228:            bh[mi][i]=0;
                   2229:          }else{ /* We want a negative bias in order to only have interpolation ie
                   2230:                  * at the price of an extra matrix product in likelihood */
                   2231:            dh[mi][i]=jk+1;
                   2232:            bh[mi][i]=ju;
                   2233:          }
                   2234:        }else{
                   2235:          if(jl <= -ju){
                   2236:            dh[mi][i]=jk;
                   2237:            bh[mi][i]=jl;       /* bias is positive if real duration
                   2238:                                 * is higher than the multiple of stepm and negative otherwise.
                   2239:                                 */
                   2240:          }
                   2241:          else{
                   2242:            dh[mi][i]=jk+1;
                   2243:            bh[mi][i]=ju;
                   2244:          }
                   2245:          if(dh[mi][i]==0){
                   2246:            dh[mi][i]=1; /* At least one step */
                   2247:            bh[mi][i]=ju; /* At least one step */
1.71      brouard  2248:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
1.64      lievre   2249:          }
1.85      brouard  2250:        } /* end if mle */
                   2251:       }
1.64      lievre   2252:     } /* end wave */
1.53      brouard  2253:   }
                   2254:   jmean=sum/k;
                   2255:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   2256:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   2257:  }
                   2258: 
                   2259: /*********** Tricode ****************************/
                   2260: void tricode(int *Tvar, int **nbcode, int imx)
                   2261: {
1.58      lievre   2262:   
                   2263:   int Ndum[20],ij=1, k, j, i, maxncov=19;
1.53      brouard  2264:   int cptcode=0;
                   2265:   cptcoveff=0; 
                   2266:  
1.58      lievre   2267:   for (k=0; k<maxncov; k++) Ndum[k]=0;
1.53      brouard  2268:   for (k=1; k<=7; k++) ncodemax[k]=0;
                   2269: 
                   2270:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
1.58      lievre   2271:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                   2272:                               modality*/ 
                   2273:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                   2274:       Ndum[ij]++; /*store the modality */
1.53      brouard  2275:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
1.58      lievre   2276:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                   2277:                                       Tvar[j]. If V=sex and male is 0 and 
                   2278:                                       female is 1, then  cptcode=1.*/
1.53      brouard  2279:     }
                   2280: 
                   2281:     for (i=0; i<=cptcode; i++) {
1.58      lievre   2282:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
1.53      brouard  2283:     }
1.58      lievre   2284: 
1.53      brouard  2285:     ij=1; 
                   2286:     for (i=1; i<=ncodemax[j]; i++) {
1.58      lievre   2287:       for (k=0; k<= maxncov; k++) {
1.53      brouard  2288:        if (Ndum[k] != 0) {
                   2289:          nbcode[Tvar[j]][ij]=k; 
1.58      lievre   2290:          /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
1.53      brouard  2291:          
                   2292:          ij++;
                   2293:        }
                   2294:        if (ij > ncodemax[j]) break; 
                   2295:       }  
                   2296:     } 
                   2297:   }  
                   2298: 
1.58      lievre   2299:  for (k=0; k< maxncov; k++) Ndum[k]=0;
1.53      brouard  2300: 
1.58      lievre   2301:  for (i=1; i<=ncovmodel-2; i++) { 
1.104     lievre   2302:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
1.53      brouard  2303:    ij=Tvar[i];
1.58      lievre   2304:    Ndum[ij]++;
1.53      brouard  2305:  }
                   2306: 
                   2307:  ij=1;
1.58      lievre   2308:  for (i=1; i<= maxncov; i++) {
1.53      brouard  2309:    if((Ndum[i]!=0) && (i<=ncovcol)){
1.58      lievre   2310:      Tvaraff[ij]=i; /*For printing */
1.53      brouard  2311:      ij++;
                   2312:    }
                   2313:  }
                   2314:  
1.58      lievre   2315:  cptcoveff=ij-1; /*Number of simple covariates*/
1.53      brouard  2316: }
                   2317: 
                   2318: /*********** Health Expectancies ****************/
                   2319: 
1.105   ! lievre   2320: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
1.53      brouard  2321: 
                   2322: {
                   2323:   /* Health expectancies */
                   2324:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
                   2325:   double age, agelim, hf;
                   2326:   double ***p3mat,***varhe;
                   2327:   double **dnewm,**doldm;
                   2328:   double *xp;
                   2329:   double **gp, **gm;
                   2330:   double ***gradg, ***trgradg;
                   2331:   int theta;
                   2332: 
1.74      brouard  2333:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
1.53      brouard  2334:   xp=vector(1,npar);
1.74      brouard  2335:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   2336:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
1.53      brouard  2337:   
1.105   ! lievre   2338:   fprintf(ficreseij,"# Local time at start: %s", strstart);
1.53      brouard  2339:   fprintf(ficreseij,"# Health expectancies\n");
                   2340:   fprintf(ficreseij,"# Age");
                   2341:   for(i=1; i<=nlstate;i++)
                   2342:     for(j=1; j<=nlstate;j++)
                   2343:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
                   2344:   fprintf(ficreseij,"\n");
                   2345: 
                   2346:   if(estepm < stepm){
                   2347:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   2348:   }
                   2349:   else  hstepm=estepm;   
                   2350:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   2351:    * This is mainly to measure the difference between two models: for example
                   2352:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   2353:    * we are calculating an estimate of the Life Expectancy assuming a linear 
1.66      brouard  2354:    * progression in between and thus overestimating or underestimating according
1.53      brouard  2355:    * to the curvature of the survival function. If, for the same date, we 
                   2356:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   2357:    * to compare the new estimate of Life expectancy with the same linear 
                   2358:    * hypothesis. A more precise result, taking into account a more precise
                   2359:    * curvature will be obtained if estepm is as small as stepm. */
                   2360: 
                   2361:   /* For example we decided to compute the life expectancy with the smallest unit */
                   2362:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   2363:      nhstepm is the number of hstepm from age to agelim 
                   2364:      nstepm is the number of stepm from age to agelin. 
                   2365:      Look at hpijx to understand the reason of that which relies in memory size
                   2366:      and note for a fixed period like estepm months */
                   2367:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   2368:      survival function given by stepm (the optimization length). Unfortunately it
                   2369:      means that if the survival funtion is printed only each two years of age and if
                   2370:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   2371:      results. So we changed our mind and took the option of the best precision.
                   2372:   */
                   2373:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   2374: 
                   2375:   agelim=AGESUP;
                   2376:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2377:     /* nhstepm age range expressed in number of stepm */
                   2378:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                   2379:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   2380:     /* if (stepm >= YEARM) hstepm=1;*/
                   2381:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   2382:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.74      brouard  2383:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   2384:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   2385:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
1.53      brouard  2386: 
                   2387:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   2388:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   2389:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                   2390:  
                   2391: 
                   2392:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   2393: 
1.95      brouard  2394:     /* Computing  Variances of health expectancies */
1.53      brouard  2395: 
                   2396:      for(theta=1; theta <=npar; theta++){
                   2397:       for(i=1; i<=npar; i++){ 
                   2398:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2399:       }
                   2400:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2401:   
                   2402:       cptj=0;
                   2403:       for(j=1; j<= nlstate; j++){
                   2404:        for(i=1; i<=nlstate; i++){
                   2405:          cptj=cptj+1;
                   2406:          for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                   2407:            gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   2408:          }
                   2409:        }
                   2410:       }
                   2411:      
                   2412:      
                   2413:       for(i=1; i<=npar; i++) 
                   2414:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2415:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2416:       
                   2417:       cptj=0;
                   2418:       for(j=1; j<= nlstate; j++){
                   2419:        for(i=1;i<=nlstate;i++){
                   2420:          cptj=cptj+1;
                   2421:          for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
1.77      brouard  2422: 
1.53      brouard  2423:            gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   2424:          }
                   2425:        }
                   2426:       }
1.74      brouard  2427:       for(j=1; j<= nlstate*nlstate; j++)
1.53      brouard  2428:        for(h=0; h<=nhstepm-1; h++){
                   2429:          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   2430:        }
                   2431:      } 
                   2432:    
                   2433: /* End theta */
                   2434: 
1.74      brouard  2435:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
1.53      brouard  2436: 
                   2437:      for(h=0; h<=nhstepm-1; h++)
1.74      brouard  2438:       for(j=1; j<=nlstate*nlstate;j++)
1.53      brouard  2439:        for(theta=1; theta <=npar; theta++)
                   2440:          trgradg[h][j][theta]=gradg[h][theta][j];
                   2441:      
                   2442: 
1.74      brouard  2443:      for(i=1;i<=nlstate*nlstate;i++)
                   2444:       for(j=1;j<=nlstate*nlstate;j++)
1.53      brouard  2445:        varhe[i][j][(int)age] =0.;
                   2446: 
                   2447:      printf("%d|",(int)age);fflush(stdout);
                   2448:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   2449:      for(h=0;h<=nhstepm-1;h++){
                   2450:       for(k=0;k<=nhstepm-1;k++){
1.74      brouard  2451:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   2452:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   2453:        for(i=1;i<=nlstate*nlstate;i++)
                   2454:          for(j=1;j<=nlstate*nlstate;j++)
1.53      brouard  2455:            varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                   2456:       }
                   2457:     }
                   2458:     /* Computing expectancies */
                   2459:     for(i=1; i<=nlstate;i++)
                   2460:       for(j=1; j<=nlstate;j++)
                   2461:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   2462:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   2463:          
                   2464: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   2465: 
                   2466:        }
                   2467: 
                   2468:     fprintf(ficreseij,"%3.0f",age );
                   2469:     cptj=0;
                   2470:     for(i=1; i<=nlstate;i++)
                   2471:       for(j=1; j<=nlstate;j++){
                   2472:        cptj++;
                   2473:        fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                   2474:       }
                   2475:     fprintf(ficreseij,"\n");
                   2476:    
1.74      brouard  2477:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   2478:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   2479:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   2480:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
1.53      brouard  2481:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2482:   }
                   2483:   printf("\n");
                   2484:   fprintf(ficlog,"\n");
                   2485: 
                   2486:   free_vector(xp,1,npar);
1.74      brouard  2487:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   2488:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   2489:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
1.53      brouard  2490: }
                   2491: 
                   2492: /************ Variance ******************/
1.105   ! lievre   2493: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
1.53      brouard  2494: {
                   2495:   /* Variance of health expectancies */
                   2496:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   2497:   /* double **newm;*/
                   2498:   double **dnewm,**doldm;
                   2499:   double **dnewmp,**doldmp;
                   2500:   int i, j, nhstepm, hstepm, h, nstepm ;
                   2501:   int k, cptcode;
                   2502:   double *xp;
                   2503:   double **gp, **gm;  /* for var eij */
                   2504:   double ***gradg, ***trgradg; /*for var eij */
                   2505:   double **gradgp, **trgradgp; /* for var p point j */
                   2506:   double *gpp, *gmp; /* for var p point j */
                   2507:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   2508:   double ***p3mat;
                   2509:   double age,agelim, hf;
                   2510:   double ***mobaverage;
                   2511:   int theta;
                   2512:   char digit[4];
1.55      lievre   2513:   char digitp[25];
1.53      brouard  2514: 
                   2515:   char fileresprobmorprev[FILENAMELENGTH];
                   2516: 
1.55      lievre   2517:   if(popbased==1){
1.58      lievre   2518:     if(mobilav!=0)
1.55      lievre   2519:       strcpy(digitp,"-populbased-mobilav-");
                   2520:     else strcpy(digitp,"-populbased-nomobil-");
                   2521:   }
                   2522:   else 
1.53      brouard  2523:     strcpy(digitp,"-stablbased-");
1.56      lievre   2524: 
1.54      brouard  2525:   if (mobilav!=0) {
1.53      brouard  2526:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  2527:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   2528:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   2529:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   2530:     }
1.53      brouard  2531:   }
                   2532: 
                   2533:   strcpy(fileresprobmorprev,"prmorprev"); 
                   2534:   sprintf(digit,"%-d",ij);
                   2535:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   2536:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   2537:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   2538:   strcat(fileresprobmorprev,fileres);
                   2539:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   2540:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   2541:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   2542:   }
                   2543:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
1.105   ! lievre   2544:  
1.53      brouard  2545:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
1.105   ! lievre   2546:   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
1.66      brouard  2547:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
1.53      brouard  2548:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   2549:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   2550:     fprintf(ficresprobmorprev," p.%-d SE",j);
                   2551:     for(i=1; i<=nlstate;i++)
                   2552:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   2553:   }  
                   2554:   fprintf(ficresprobmorprev,"\n");
1.88      brouard  2555:   fprintf(ficgp,"\n# Routine varevsij");
1.105   ! lievre   2556:  fprintf(fichtm, "#Local time at start: %s", strstart);
1.87      brouard  2557:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   2558:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   2559: /*   } */
1.53      brouard  2560:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
1.105   ! lievre   2561:  fprintf(ficresvij, "#Local time at start: %s", strstart);
1.53      brouard  2562:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                   2563:   fprintf(ficresvij,"# Age");
                   2564:   for(i=1; i<=nlstate;i++)
                   2565:     for(j=1; j<=nlstate;j++)
                   2566:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                   2567:   fprintf(ficresvij,"\n");
                   2568: 
                   2569:   xp=vector(1,npar);
                   2570:   dnewm=matrix(1,nlstate,1,npar);
                   2571:   doldm=matrix(1,nlstate,1,nlstate);
                   2572:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   2573:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   2574: 
                   2575:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   2576:   gpp=vector(nlstate+1,nlstate+ndeath);
                   2577:   gmp=vector(nlstate+1,nlstate+ndeath);
                   2578:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   2579:   
                   2580:   if(estepm < stepm){
                   2581:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   2582:   }
                   2583:   else  hstepm=estepm;   
                   2584:   /* For example we decided to compute the life expectancy with the smallest unit */
                   2585:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   2586:      nhstepm is the number of hstepm from age to agelim 
                   2587:      nstepm is the number of stepm from age to agelin. 
                   2588:      Look at hpijx to understand the reason of that which relies in memory size
                   2589:      and note for a fixed period like k years */
                   2590:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   2591:      survival function given by stepm (the optimization length). Unfortunately it
1.66      brouard  2592:      means that if the survival funtion is printed every two years of age and if
1.53      brouard  2593:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   2594:      results. So we changed our mind and took the option of the best precision.
                   2595:   */
                   2596:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   2597:   agelim = AGESUP;
                   2598:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2599:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   2600:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   2601:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2602:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   2603:     gp=matrix(0,nhstepm,1,nlstate);
                   2604:     gm=matrix(0,nhstepm,1,nlstate);
                   2605: 
                   2606: 
                   2607:     for(theta=1; theta <=npar; theta++){
1.66      brouard  2608:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
1.53      brouard  2609:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2610:       }
                   2611:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2612:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2613: 
                   2614:       if (popbased==1) {
1.54      brouard  2615:        if(mobilav ==0){
1.53      brouard  2616:          for(i=1; i<=nlstate;i++)
                   2617:            prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2618:        }else{ /* mobilav */ 
1.53      brouard  2619:          for(i=1; i<=nlstate;i++)
                   2620:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   2621:        }
                   2622:       }
                   2623:   
                   2624:       for(j=1; j<= nlstate; j++){
                   2625:        for(h=0; h<=nhstepm; h++){
                   2626:          for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   2627:            gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   2628:        }
                   2629:       }
1.66      brouard  2630:       /* This for computing probability of death (h=1 means
                   2631:          computed over hstepm matrices product = hstepm*stepm months) 
                   2632:          as a weighted average of prlim.
                   2633:       */
1.69      brouard  2634:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
1.68      lievre   2635:        for(i=1,gpp[j]=0.; i<= nlstate; i++)
1.53      brouard  2636:          gpp[j] += prlim[i][i]*p3mat[i][j][1];
                   2637:       }    
1.66      brouard  2638:       /* end probability of death */
1.53      brouard  2639: 
1.66      brouard  2640:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
1.53      brouard  2641:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2642:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2643:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2644:  
                   2645:       if (popbased==1) {
1.54      brouard  2646:        if(mobilav ==0){
1.53      brouard  2647:          for(i=1; i<=nlstate;i++)
                   2648:            prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2649:        }else{ /* mobilav */ 
1.53      brouard  2650:          for(i=1; i<=nlstate;i++)
                   2651:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   2652:        }
                   2653:       }
                   2654: 
                   2655:       for(j=1; j<= nlstate; j++){
                   2656:        for(h=0; h<=nhstepm; h++){
                   2657:          for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   2658:            gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   2659:        }
                   2660:       }
1.66      brouard  2661:       /* This for computing probability of death (h=1 means
                   2662:          computed over hstepm matrices product = hstepm*stepm months) 
                   2663:          as a weighted average of prlim.
                   2664:       */
1.69      brouard  2665:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
1.68      lievre   2666:        for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   2667:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
1.53      brouard  2668:       }    
1.66      brouard  2669:       /* end probability of death */
1.53      brouard  2670: 
                   2671:       for(j=1; j<= nlstate; j++) /* vareij */
                   2672:        for(h=0; h<=nhstepm; h++){
                   2673:          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   2674:        }
1.68      lievre   2675: 
1.53      brouard  2676:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   2677:        gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   2678:       }
                   2679: 
                   2680:     } /* End theta */
                   2681: 
                   2682:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   2683: 
                   2684:     for(h=0; h<=nhstepm; h++) /* veij */
                   2685:       for(j=1; j<=nlstate;j++)
                   2686:        for(theta=1; theta <=npar; theta++)
                   2687:          trgradg[h][j][theta]=gradg[h][theta][j];
                   2688: 
                   2689:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
1.69      brouard  2690:       for(theta=1; theta <=npar; theta++)
1.53      brouard  2691:        trgradgp[j][theta]=gradgp[theta][j];
1.69      brouard  2692:   
1.53      brouard  2693: 
                   2694:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   2695:     for(i=1;i<=nlstate;i++)
                   2696:       for(j=1;j<=nlstate;j++)
                   2697:        vareij[i][j][(int)age] =0.;
                   2698: 
                   2699:     for(h=0;h<=nhstepm;h++){
                   2700:       for(k=0;k<=nhstepm;k++){
                   2701:        matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   2702:        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   2703:        for(i=1;i<=nlstate;i++)
                   2704:          for(j=1;j<=nlstate;j++)
                   2705:            vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   2706:       }
                   2707:     }
1.70      brouard  2708:   
1.53      brouard  2709:     /* pptj */
                   2710:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   2711:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
1.70      brouard  2712:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   2713:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
1.53      brouard  2714:        varppt[j][i]=doldmp[j][i];
                   2715:     /* end ppptj */
1.66      brouard  2716:     /*  x centered again */
1.53      brouard  2717:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                   2718:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   2719:  
                   2720:     if (popbased==1) {
1.54      brouard  2721:       if(mobilav ==0){
1.53      brouard  2722:        for(i=1; i<=nlstate;i++)
                   2723:          prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2724:       }else{ /* mobilav */ 
1.53      brouard  2725:        for(i=1; i<=nlstate;i++)
                   2726:          prlim[i][i]=mobaverage[(int)age][i][ij];
                   2727:       }
                   2728:     }
1.70      brouard  2729:              
1.66      brouard  2730:     /* This for computing probability of death (h=1 means
                   2731:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   2732:        as a weighted average of prlim.
                   2733:     */
1.68      lievre   2734:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   2735:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
1.53      brouard  2736:        gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   2737:     }    
1.66      brouard  2738:     /* end probability of death */
1.53      brouard  2739: 
                   2740:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   2741:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   2742:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   2743:       for(i=1; i<=nlstate;i++){
                   2744:        fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   2745:       }
                   2746:     } 
                   2747:     fprintf(ficresprobmorprev,"\n");
                   2748: 
                   2749:     fprintf(ficresvij,"%.0f ",age );
                   2750:     for(i=1; i<=nlstate;i++)
                   2751:       for(j=1; j<=nlstate;j++){
                   2752:        fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   2753:       }
                   2754:     fprintf(ficresvij,"\n");
                   2755:     free_matrix(gp,0,nhstepm,1,nlstate);
                   2756:     free_matrix(gm,0,nhstepm,1,nlstate);
                   2757:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   2758:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   2759:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2760:   } /* End age */
                   2761:   free_vector(gpp,nlstate+1,nlstate+ndeath);
                   2762:   free_vector(gmp,nlstate+1,nlstate+ndeath);
                   2763:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   2764:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   2765:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                   2766:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   2767:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
1.67      brouard  2768: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   2769: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   2770: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
1.88      brouard  2771:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                   2772:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                   2773:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                   2774:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   2775:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
1.53      brouard  2776:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                   2777: */
1.88      brouard  2778: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
1.89      brouard  2779:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
1.53      brouard  2780: 
                   2781:   free_vector(xp,1,npar);
                   2782:   free_matrix(doldm,1,nlstate,1,nlstate);
                   2783:   free_matrix(dnewm,1,nlstate,1,npar);
                   2784:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   2785:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   2786:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
1.55      lievre   2787:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  2788:   fclose(ficresprobmorprev);
1.88      brouard  2789:   fflush(ficgp);
                   2790:   fflush(fichtm); 
1.84      brouard  2791: }  /* end varevsij */
1.53      brouard  2792: 
                   2793: /************ Variance of prevlim ******************/
1.105   ! lievre   2794: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
1.53      brouard  2795: {
                   2796:   /* Variance of prevalence limit */
1.59      brouard  2797:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.53      brouard  2798:   double **newm;
                   2799:   double **dnewm,**doldm;
                   2800:   int i, j, nhstepm, hstepm;
                   2801:   int k, cptcode;
                   2802:   double *xp;
                   2803:   double *gp, *gm;
                   2804:   double **gradg, **trgradg;
                   2805:   double age,agelim;
                   2806:   int theta;
1.105   ! lievre   2807:   fprintf(ficresvpl, "#Local time at start: %s", strstart); 
1.54      brouard  2808:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
1.53      brouard  2809:   fprintf(ficresvpl,"# Age");
                   2810:   for(i=1; i<=nlstate;i++)
                   2811:       fprintf(ficresvpl," %1d-%1d",i,i);
                   2812:   fprintf(ficresvpl,"\n");
                   2813: 
                   2814:   xp=vector(1,npar);
                   2815:   dnewm=matrix(1,nlstate,1,npar);
                   2816:   doldm=matrix(1,nlstate,1,nlstate);
                   2817:   
                   2818:   hstepm=1*YEARM; /* Every year of age */
                   2819:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   2820:   agelim = AGESUP;
                   2821:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2822:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   2823:     if (stepm >= YEARM) hstepm=1;
                   2824:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   2825:     gradg=matrix(1,npar,1,nlstate);
                   2826:     gp=vector(1,nlstate);
                   2827:     gm=vector(1,nlstate);
                   2828: 
                   2829:     for(theta=1; theta <=npar; theta++){
                   2830:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   2831:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2832:       }
                   2833:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2834:       for(i=1;i<=nlstate;i++)
                   2835:        gp[i] = prlim[i][i];
                   2836:     
                   2837:       for(i=1; i<=npar; i++) /* Computes gradient */
                   2838:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2839:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2840:       for(i=1;i<=nlstate;i++)
                   2841:        gm[i] = prlim[i][i];
                   2842: 
                   2843:       for(i=1;i<=nlstate;i++)
                   2844:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   2845:     } /* End theta */
                   2846: 
                   2847:     trgradg =matrix(1,nlstate,1,npar);
                   2848: 
                   2849:     for(j=1; j<=nlstate;j++)
                   2850:       for(theta=1; theta <=npar; theta++)
                   2851:        trgradg[j][theta]=gradg[theta][j];
                   2852: 
                   2853:     for(i=1;i<=nlstate;i++)
                   2854:       varpl[i][(int)age] =0.;
                   2855:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   2856:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                   2857:     for(i=1;i<=nlstate;i++)
                   2858:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   2859: 
                   2860:     fprintf(ficresvpl,"%.0f ",age );
                   2861:     for(i=1; i<=nlstate;i++)
                   2862:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   2863:     fprintf(ficresvpl,"\n");
                   2864:     free_vector(gp,1,nlstate);
                   2865:     free_vector(gm,1,nlstate);
                   2866:     free_matrix(gradg,1,npar,1,nlstate);
                   2867:     free_matrix(trgradg,1,nlstate,1,npar);
                   2868:   } /* End age */
                   2869: 
                   2870:   free_vector(xp,1,npar);
                   2871:   free_matrix(doldm,1,nlstate,1,npar);
                   2872:   free_matrix(dnewm,1,nlstate,1,nlstate);
                   2873: 
                   2874: }
                   2875: 
                   2876: /************ Variance of one-step probabilities  ******************/
1.105   ! lievre   2877: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
1.53      brouard  2878: {
                   2879:   int i, j=0,  i1, k1, l1, t, tj;
                   2880:   int k2, l2, j1,  z1;
                   2881:   int k=0,l, cptcode;
                   2882:   int first=1, first1;
                   2883:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   2884:   double **dnewm,**doldm;
                   2885:   double *xp;
                   2886:   double *gp, *gm;
                   2887:   double **gradg, **trgradg;
                   2888:   double **mu;
                   2889:   double age,agelim, cov[NCOVMAX];
                   2890:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   2891:   int theta;
                   2892:   char fileresprob[FILENAMELENGTH];
                   2893:   char fileresprobcov[FILENAMELENGTH];
                   2894:   char fileresprobcor[FILENAMELENGTH];
                   2895: 
                   2896:   double ***varpij;
                   2897: 
                   2898:   strcpy(fileresprob,"prob"); 
                   2899:   strcat(fileresprob,fileres);
                   2900:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   2901:     printf("Problem with resultfile: %s\n", fileresprob);
                   2902:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   2903:   }
                   2904:   strcpy(fileresprobcov,"probcov"); 
                   2905:   strcat(fileresprobcov,fileres);
                   2906:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   2907:     printf("Problem with resultfile: %s\n", fileresprobcov);
                   2908:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   2909:   }
                   2910:   strcpy(fileresprobcor,"probcor"); 
                   2911:   strcat(fileresprobcor,fileres);
                   2912:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   2913:     printf("Problem with resultfile: %s\n", fileresprobcor);
                   2914:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   2915:   }
                   2916:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   2917:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   2918:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   2919:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   2920:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   2921:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
1.105   ! lievre   2922:   fprintf(ficresprob, "#Local time at start: %s", strstart);
1.53      brouard  2923:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   2924:   fprintf(ficresprob,"# Age");
1.105   ! lievre   2925:   fprintf(ficresprobcov, "#Local time at start: %s", strstart);
1.53      brouard  2926:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   2927:   fprintf(ficresprobcov,"# Age");
1.105   ! lievre   2928:   fprintf(ficresprobcor, "#Local time at start: %s", strstart);
1.53      brouard  2929:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   2930:   fprintf(ficresprobcov,"# Age");
                   2931: 
                   2932: 
                   2933:   for(i=1; i<=nlstate;i++)
                   2934:     for(j=1; j<=(nlstate+ndeath);j++){
                   2935:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   2936:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   2937:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   2938:     }  
1.69      brouard  2939:  /* fprintf(ficresprob,"\n");
1.53      brouard  2940:   fprintf(ficresprobcov,"\n");
                   2941:   fprintf(ficresprobcor,"\n");
1.69      brouard  2942:  */
                   2943:  xp=vector(1,npar);
1.53      brouard  2944:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   2945:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   2946:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   2947:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   2948:   first=1;
1.88      brouard  2949:   fprintf(ficgp,"\n# Routine varprob");
                   2950:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   2951:   fprintf(fichtm,"\n");
                   2952: 
1.95      brouard  2953:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                   2954:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
1.91      brouard  2955:   file %s<br>\n",optionfilehtmcov);
                   2956:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                   2957: and drawn. It helps understanding how is the covariance between two incidences.\
                   2958:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                   2959:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   2960: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   2961: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   2962: standard deviations wide on each axis. <br>\
                   2963:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   2964:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   2965: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
1.53      brouard  2966: 
                   2967:   cov[1]=1;
                   2968:   tj=cptcoveff;
                   2969:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   2970:   j1=0;
                   2971:   for(t=1; t<=tj;t++){
                   2972:     for(i1=1; i1<=ncodemax[t];i1++){ 
                   2973:       j1++;
                   2974:       if  (cptcovn>0) {
                   2975:        fprintf(ficresprob, "\n#********** Variable "); 
                   2976:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2977:        fprintf(ficresprob, "**********\n#\n");
1.53      brouard  2978:        fprintf(ficresprobcov, "\n#********** Variable "); 
                   2979:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2980:        fprintf(ficresprobcov, "**********\n#\n");
1.53      brouard  2981:        
                   2982:        fprintf(ficgp, "\n#********** Variable "); 
1.69      brouard  2983:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   2984:        fprintf(ficgp, "**********\n#\n");
1.53      brouard  2985:        
                   2986:        
1.96      brouard  2987:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
1.53      brouard  2988:        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.96      brouard  2989:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
1.53      brouard  2990:        
                   2991:        fprintf(ficresprobcor, "\n#********** Variable ");    
                   2992:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2993:        fprintf(ficresprobcor, "**********\n#");    
1.53      brouard  2994:       }
                   2995:       
                   2996:       for (age=bage; age<=fage; age ++){ 
                   2997:        cov[2]=age;
                   2998:        for (k=1; k<=cptcovn;k++) {
                   2999:          cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                   3000:        }
                   3001:        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   3002:        for (k=1; k<=cptcovprod;k++)
                   3003:          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   3004:        
                   3005:        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   3006:        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   3007:        gp=vector(1,(nlstate)*(nlstate+ndeath));
                   3008:        gm=vector(1,(nlstate)*(nlstate+ndeath));
                   3009:     
                   3010:        for(theta=1; theta <=npar; theta++){
                   3011:          for(i=1; i<=npar; i++)
1.74      brouard  3012:            xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
1.53      brouard  3013:          
                   3014:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   3015:          
                   3016:          k=0;
                   3017:          for(i=1; i<= (nlstate); i++){
                   3018:            for(j=1; j<=(nlstate+ndeath);j++){
                   3019:              k=k+1;
                   3020:              gp[k]=pmmij[i][j];
                   3021:            }
                   3022:          }
                   3023:          
                   3024:          for(i=1; i<=npar; i++)
1.74      brouard  3025:            xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
1.53      brouard  3026:     
                   3027:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   3028:          k=0;
                   3029:          for(i=1; i<=(nlstate); i++){
                   3030:            for(j=1; j<=(nlstate+ndeath);j++){
                   3031:              k=k+1;
                   3032:              gm[k]=pmmij[i][j];
                   3033:            }
                   3034:          }
                   3035:      
                   3036:          for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
1.74      brouard  3037:            gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
1.53      brouard  3038:        }
                   3039: 
                   3040:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   3041:          for(theta=1; theta <=npar; theta++)
                   3042:            trgradg[j][theta]=gradg[theta][j];
                   3043:        
                   3044:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   3045:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
1.59      brouard  3046:        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   3047:        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   3048:        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   3049:        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   3050: 
1.53      brouard  3051:        pmij(pmmij,cov,ncovmodel,x,nlstate);
                   3052:        
                   3053:        k=0;
                   3054:        for(i=1; i<=(nlstate); i++){
                   3055:          for(j=1; j<=(nlstate+ndeath);j++){
                   3056:            k=k+1;
                   3057:            mu[k][(int) age]=pmmij[i][j];
                   3058:          }
                   3059:        }
                   3060:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   3061:          for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   3062:            varpij[i][j][(int)age] = doldm[i][j];
                   3063: 
                   3064:        /*printf("\n%d ",(int)age);
1.59      brouard  3065:          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3066:          printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3067:          fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3068:          }*/
1.53      brouard  3069: 
                   3070:        fprintf(ficresprob,"\n%d ",(int)age);
                   3071:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   3072:        fprintf(ficresprobcor,"\n%d ",(int)age);
                   3073: 
                   3074:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   3075:          fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   3076:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3077:          fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   3078:          fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   3079:        }
                   3080:        i=0;
                   3081:        for (k=1; k<=(nlstate);k++){
                   3082:          for (l=1; l<=(nlstate+ndeath);l++){ 
                   3083:            i=i++;
                   3084:            fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   3085:            fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   3086:            for (j=1; j<=i;j++){
                   3087:              fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   3088:              fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   3089:            }
                   3090:          }
                   3091:        }/* end of loop for state */
                   3092:       } /* end of loop for age */
                   3093: 
                   3094:       /* Confidence intervalle of pij  */
                   3095:       /*
1.59      brouard  3096:        fprintf(ficgp,"\nset noparametric;unset label");
                   3097:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   3098:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   3099:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   3100:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   3101:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   3102:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
1.53      brouard  3103:       */
                   3104: 
                   3105:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   3106:       first1=1;
                   3107:       for (k2=1; k2<=(nlstate);k2++){
                   3108:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   3109:          if(l2==k2) continue;
                   3110:          j=(k2-1)*(nlstate+ndeath)+l2;
                   3111:          for (k1=1; k1<=(nlstate);k1++){
                   3112:            for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   3113:              if(l1==k1) continue;
                   3114:              i=(k1-1)*(nlstate+ndeath)+l1;
                   3115:              if(i<=j) continue;
                   3116:              for (age=bage; age<=fage; age ++){ 
                   3117:                if ((int)age %5==0){
                   3118:                  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   3119:                  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3120:                  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3121:                  mu1=mu[i][(int) age]/stepm*YEARM ;
                   3122:                  mu2=mu[j][(int) age]/stepm*YEARM;
                   3123:                  c12=cv12/sqrt(v1*v2);
                   3124:                  /* Computing eigen value of matrix of covariance */
                   3125:                  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   3126:                  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   3127:                  /* Eigen vectors */
                   3128:                  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   3129:                  /*v21=sqrt(1.-v11*v11); *//* error */
                   3130:                  v21=(lc1-v1)/cv12*v11;
                   3131:                  v12=-v21;
                   3132:                  v22=v11;
                   3133:                  tnalp=v21/v11;
                   3134:                  if(first1==1){
                   3135:                    first1=0;
                   3136:                    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   3137:                  }
                   3138:                  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   3139:                  /*printf(fignu*/
                   3140:                  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   3141:                  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   3142:                  if(first==1){
                   3143:                    first=0;
                   3144:                    fprintf(ficgp,"\nset parametric;unset label");
                   3145:                    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                   3146:                    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
1.91      brouard  3147:                    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
1.88      brouard  3148:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                   3149: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                   3150:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                   3151:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.91      brouard  3152:                    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   3153:                    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
1.88      brouard  3154:                    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.53      brouard  3155:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   3156:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   3157:                    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   3158:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   3159:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   3160:                  }else{
                   3161:                    first=0;
1.91      brouard  3162:                    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
1.53      brouard  3163:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   3164:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   3165:                    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   3166:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   3167:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   3168:                  }/* if first */
                   3169:                } /* age mod 5 */
                   3170:              } /* end loop age */
1.88      brouard  3171:              fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.53      brouard  3172:              first=1;
                   3173:            } /*l12 */
                   3174:          } /* k12 */
                   3175:        } /*l1 */
                   3176:       }/* k1 */
                   3177:     } /* loop covariates */
                   3178:   }
1.59      brouard  3179:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   3180:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
1.53      brouard  3181:   free_vector(xp,1,npar);
                   3182:   fclose(ficresprob);
                   3183:   fclose(ficresprobcov);
                   3184:   fclose(ficresprobcor);
1.91      brouard  3185:   fflush(ficgp);
                   3186:   fflush(fichtmcov);
1.53      brouard  3187: }
                   3188: 
                   3189: 
                   3190: /******************* Printing html file ***********/
                   3191: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                   3192:                  int lastpass, int stepm, int weightopt, char model[],\
                   3193:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   3194:                  int popforecast, int estepm ,\
                   3195:                  double jprev1, double mprev1,double anprev1, \
                   3196:                  double jprev2, double mprev2,double anprev2){
                   3197:   int jj1, k1, i1, cpt;
                   3198: 
1.85      brouard  3199:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
1.96      brouard  3200:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                   3201:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                   3202:    fprintf(fichtm,"\
                   3203:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   3204:           stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                   3205:    fprintf(fichtm,"\
                   3206:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                   3207:           subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
                   3208:    fprintf(fichtm,"\
1.85      brouard  3209:  - Life expectancies by age and initial health status (estepm=%2d months): \
1.96      brouard  3210:    <a href=\"%s\">%s</a> <br>\n</li>",
1.88      brouard  3211:           estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
1.53      brouard  3212: 
                   3213: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                   3214: 
                   3215:  m=cptcoveff;
                   3216:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   3217: 
                   3218:  jj1=0;
                   3219:  for(k1=1; k1<=m;k1++){
                   3220:    for(i1=1; i1<=ncodemax[k1];i1++){
                   3221:      jj1++;
                   3222:      if (cptcovn > 0) {
                   3223:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   3224:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   3225:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   3226:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   3227:      }
                   3228:      /* Pij */
1.88      brouard  3229:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
                   3230: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
1.53      brouard  3231:      /* Quasi-incidences */
1.85      brouard  3232:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.88      brouard  3233:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
                   3234: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
1.53      brouard  3235:        /* Stable prevalence in each health state */
                   3236:        for(cpt=1; cpt<nlstate;cpt++){
1.85      brouard  3237:         fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
1.88      brouard  3238: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
1.53      brouard  3239:        }
                   3240:      for(cpt=1; cpt<=nlstate;cpt++) {
1.88      brouard  3241:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
1.89      brouard  3242: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
1.53      brouard  3243:      }
                   3244:    } /* end i1 */
                   3245:  }/* End k1 */
                   3246:  fprintf(fichtm,"</ul>");
                   3247: 
                   3248: 
1.96      brouard  3249:  fprintf(fichtm,"\
                   3250: \n<br><li><h4> Result files (second order: variances)</h4>\n\
                   3251:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                   3252: 
                   3253:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3254:         subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
                   3255:  fprintf(fichtm,"\
                   3256:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3257:         subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                   3258: 
                   3259:  fprintf(fichtm,"\
                   3260:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3261:         subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                   3262:  fprintf(fichtm,"\
                   3263:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                   3264:         estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                   3265:  fprintf(fichtm,"\
                   3266:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
                   3267:         subdirf2(fileres,"t"),subdirf2(fileres,"t"));
                   3268:  fprintf(fichtm,"\
1.88      brouard  3269:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
                   3270:         subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
1.53      brouard  3271: 
1.76      brouard  3272: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   3273: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   3274: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   3275: /*     <br>",fileres,fileres,fileres,fileres); */
                   3276: /*  else  */
                   3277: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
1.96      brouard  3278:  fflush(fichtm);
                   3279:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
1.53      brouard  3280: 
                   3281:  m=cptcoveff;
                   3282:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   3283: 
                   3284:  jj1=0;
                   3285:  for(k1=1; k1<=m;k1++){
                   3286:    for(i1=1; i1<=ncodemax[k1];i1++){
                   3287:      jj1++;
                   3288:      if (cptcovn > 0) {
                   3289:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   3290:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   3291:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   3292:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   3293:      }
                   3294:      for(cpt=1; cpt<=nlstate;cpt++) {
1.95      brouard  3295:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
                   3296: prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
1.90      brouard  3297: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
1.53      brouard  3298:      }
1.96      brouard  3299:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
                   3300: health expectancies in states (1) and (2): %s%d.png<br>\
                   3301: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
1.53      brouard  3302:    } /* end i1 */
                   3303:  }/* End k1 */
                   3304:  fprintf(fichtm,"</ul>");
1.87      brouard  3305:  fflush(fichtm);
1.53      brouard  3306: }
                   3307: 
                   3308: /******************* Gnuplot file **************/
1.89      brouard  3309: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
1.53      brouard  3310: 
1.88      brouard  3311:   char dirfileres[132],optfileres[132];
1.53      brouard  3312:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
                   3313:   int ng;
1.88      brouard  3314: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   3315: /*     printf("Problem with file %s",optionfilegnuplot); */
                   3316: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   3317: /*   } */
1.53      brouard  3318: 
1.54      brouard  3319:   /*#ifdef windows */
1.89      brouard  3320:   fprintf(ficgp,"cd \"%s\" \n",pathc);
1.54      brouard  3321:     /*#endif */
1.88      brouard  3322:   m=pow(2,cptcoveff);
                   3323: 
                   3324:   strcpy(dirfileres,optionfilefiname);
                   3325:   strcpy(optfileres,"vpl");
1.53      brouard  3326:  /* 1eme*/
                   3327:   for (cpt=1; cpt<= nlstate ; cpt ++) {
                   3328:    for (k1=1; k1<= m ; k1 ++) {
1.88      brouard  3329:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
                   3330:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
                   3331:      fprintf(ficgp,"set xlabel \"Age\" \n\
                   3332: set ylabel \"Probability\" \n\
                   3333: set ter png small\n\
                   3334: set size 0.65,0.65\n\
                   3335: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
1.53      brouard  3336: 
                   3337:      for (i=1; i<= nlstate ; i ++) {
                   3338:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3339:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3340:      }
1.88      brouard  3341:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
1.53      brouard  3342:      for (i=1; i<= nlstate ; i ++) {
                   3343:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3344:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3345:      } 
1.88      brouard  3346:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
1.53      brouard  3347:      for (i=1; i<= nlstate ; i ++) {
                   3348:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3349:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3350:      }  
1.88      brouard  3351:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
1.53      brouard  3352:    }
                   3353:   }
                   3354:   /*2 eme*/
                   3355:   
                   3356:   for (k1=1; k1<= m ; k1 ++) { 
1.88      brouard  3357:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
1.53      brouard  3358:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
                   3359:     
                   3360:     for (i=1; i<= nlstate+1 ; i ++) {
                   3361:       k=2*i;
1.88      brouard  3362:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3363:       for (j=1; j<= nlstate+1 ; j ++) {
                   3364:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3365:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3366:       }   
                   3367:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                   3368:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
1.88      brouard  3369:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3370:       for (j=1; j<= nlstate+1 ; j ++) {
                   3371:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3372:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3373:       }   
                   3374:       fprintf(ficgp,"\" t\"\" w l 0,");
1.88      brouard  3375:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3376:       for (j=1; j<= nlstate+1 ; j ++) {
                   3377:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3378:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3379:       }   
                   3380:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
                   3381:       else fprintf(ficgp,"\" t\"\" w l 0,");
                   3382:     }
                   3383:   }
                   3384:   
                   3385:   /*3eme*/
                   3386:   
                   3387:   for (k1=1; k1<= m ; k1 ++) { 
                   3388:     for (cpt=1; cpt<= nlstate ; cpt ++) {
                   3389:       k=2+nlstate*(2*cpt-2);
1.88      brouard  3390:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
                   3391:       fprintf(ficgp,"set ter png small\n\
                   3392: set size 0.65,0.65\n\
                   3393: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
1.53      brouard  3394:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   3395:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   3396:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   3397:        fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   3398:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   3399:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   3400:        
                   3401:       */
                   3402:       for (i=1; i< nlstate ; i ++) {
1.88      brouard  3403:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
1.53      brouard  3404:        
                   3405:       } 
                   3406:     }
                   3407:   }
                   3408:   
1.76      brouard  3409:   /* CV preval stable (period) */
1.53      brouard  3410:   for (k1=1; k1<= m ; k1 ++) { 
1.76      brouard  3411:     for (cpt=1; cpt<=nlstate ; cpt ++) {
1.53      brouard  3412:       k=3;
1.88      brouard  3413:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
                   3414:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
                   3415: set ter png small\nset size 0.65,0.65\n\
1.89      brouard  3416: unset log y\n\
1.88      brouard  3417: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
1.53      brouard  3418:       
1.83      lievre   3419:       for (i=1; i< nlstate ; i ++)
1.53      brouard  3420:        fprintf(ficgp,"+$%d",k+i+1);
                   3421:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
                   3422:       
                   3423:       l=3+(nlstate+ndeath)*cpt;
1.88      brouard  3424:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
1.53      brouard  3425:       for (i=1; i< nlstate ; i ++) {
                   3426:        l=3+(nlstate+ndeath)*cpt;
                   3427:        fprintf(ficgp,"+$%d",l+i+1);
                   3428:       }
                   3429:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
                   3430:     } 
                   3431:   }  
                   3432:   
                   3433:   /* proba elementaires */
                   3434:   for(i=1,jk=1; i <=nlstate; i++){
                   3435:     for(k=1; k <=(nlstate+ndeath); k++){
                   3436:       if (k != i) {
                   3437:        for(j=1; j <=ncovmodel; j++){
                   3438:          fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                   3439:          jk++; 
                   3440:          fprintf(ficgp,"\n");
                   3441:        }
                   3442:       }
                   3443:     }
                   3444:    }
                   3445: 
                   3446:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                   3447:      for(jk=1; jk <=m; jk++) {
1.88      brouard  3448:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
1.53      brouard  3449:        if (ng==2)
                   3450:         fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   3451:        else
                   3452:         fprintf(ficgp,"\nset title \"Probability\"\n");
                   3453:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                   3454:        i=1;
                   3455:        for(k2=1; k2<=nlstate; k2++) {
                   3456:         k3=i;
                   3457:         for(k=1; k<=(nlstate+ndeath); k++) {
                   3458:           if (k != k2){
                   3459:             if(ng==2)
                   3460:               fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   3461:             else
                   3462:               fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   3463:             ij=1;
                   3464:             for(j=3; j <=ncovmodel; j++) {
                   3465:               if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                   3466:                 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                   3467:                 ij++;
                   3468:               }
                   3469:               else
                   3470:                 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   3471:             }
                   3472:             fprintf(ficgp,")/(1");
                   3473:             
                   3474:             for(k1=1; k1 <=nlstate; k1++){   
                   3475:               fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   3476:               ij=1;
                   3477:               for(j=3; j <=ncovmodel; j++){
                   3478:                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                   3479:                   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                   3480:                   ij++;
                   3481:                 }
                   3482:                 else
                   3483:                   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   3484:               }
                   3485:               fprintf(ficgp,")");
                   3486:             }
                   3487:             fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                   3488:             if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   3489:             i=i+ncovmodel;
                   3490:           }
                   3491:         } /* end k */
                   3492:        } /* end k2 */
                   3493:      } /* end jk */
                   3494:    } /* end ng */
1.88      brouard  3495:    fflush(ficgp); 
1.53      brouard  3496: }  /* end gnuplot */
                   3497: 
                   3498: 
                   3499: /*************** Moving average **************/
1.54      brouard  3500: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
1.53      brouard  3501: 
                   3502:   int i, cpt, cptcod;
1.58      lievre   3503:   int modcovmax =1;
1.54      brouard  3504:   int mobilavrange, mob;
1.53      brouard  3505:   double age;
1.58      lievre   3506: 
                   3507:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                   3508:                           a covariate has 2 modalities */
                   3509:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                   3510: 
1.54      brouard  3511:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   3512:     if(mobilav==1) mobilavrange=5; /* default */
                   3513:     else mobilavrange=mobilav;
                   3514:     for (age=bage; age<=fage; age++)
                   3515:       for (i=1; i<=nlstate;i++)
1.58      lievre   3516:        for (cptcod=1;cptcod<=modcovmax;cptcod++)
1.54      brouard  3517:          mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   3518:     /* We keep the original values on the extreme ages bage, fage and for 
                   3519:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   3520:        we use a 5 terms etc. until the borders are no more concerned. 
                   3521:     */ 
                   3522:     for (mob=3;mob <=mobilavrange;mob=mob+2){
                   3523:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                   3524:        for (i=1; i<=nlstate;i++){
1.58      lievre   3525:          for (cptcod=1;cptcod<=modcovmax;cptcod++){
1.54      brouard  3526:            mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   3527:              for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   3528:                mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   3529:                mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   3530:              }
                   3531:            mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                   3532:          }
1.53      brouard  3533:        }
1.54      brouard  3534:       }/* end age */
                   3535:     }/* end mob */
                   3536:   }else return -1;
                   3537:   return 0;
                   3538: }/* End movingaverage */
1.53      brouard  3539: 
                   3540: 
                   3541: /************** Forecasting ******************/
1.70      brouard  3542: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
1.69      brouard  3543:   /* proj1, year, month, day of starting projection 
                   3544:      agemin, agemax range of age
                   3545:      dateprev1 dateprev2 range of dates during which prevalence is computed
1.70      brouard  3546:      anproj2 year of en of projection (same day and month as proj1).
1.69      brouard  3547:   */
1.73      lievre   3548:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
1.53      brouard  3549:   int *popage;
1.70      brouard  3550:   double agec; /* generic age */
                   3551:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
1.53      brouard  3552:   double *popeffectif,*popcount;
                   3553:   double ***p3mat;
1.55      lievre   3554:   double ***mobaverage;
1.53      brouard  3555:   char fileresf[FILENAMELENGTH];
                   3556: 
1.69      brouard  3557:   agelim=AGESUP;
1.84      brouard  3558:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.53      brouard  3559:  
                   3560:   strcpy(fileresf,"f"); 
                   3561:   strcat(fileresf,fileres);
                   3562:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   3563:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   3564:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   3565:   }
                   3566:   printf("Computing forecasting: result on file '%s' \n", fileresf);
                   3567:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
                   3568: 
                   3569:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   3570: 
1.54      brouard  3571:   if (mobilav!=0) {
1.53      brouard  3572:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  3573:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   3574:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   3575:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   3576:     }
1.53      brouard  3577:   }
                   3578: 
                   3579:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   3580:   if (stepm<=12) stepsize=1;
1.74      brouard  3581:   if(estepm < stepm){
                   3582:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3583:   }
                   3584:   else  hstepm=estepm;   
                   3585: 
1.53      brouard  3586:   hstepm=hstepm/stepm; 
1.69      brouard  3587:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                   3588:                                fractional in yp1 */
1.53      brouard  3589:   anprojmean=yp;
                   3590:   yp2=modf((yp1*12),&yp);
                   3591:   mprojmean=yp;
                   3592:   yp1=modf((yp2*30.5),&yp);
                   3593:   jprojmean=yp;
                   3594:   if(jprojmean==0) jprojmean=1;
                   3595:   if(mprojmean==0) jprojmean=1;
1.73      lievre   3596: 
                   3597:   i1=cptcoveff;
                   3598:   if (cptcovn < 1){i1=1;}
1.53      brouard  3599:   
1.70      brouard  3600:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
1.53      brouard  3601:   
1.70      brouard  3602:   fprintf(ficresf,"#****** Routine prevforecast **\n");
1.73      lievre   3603: 
1.75      brouard  3604: /*           if (h==(int)(YEARM*yearp)){ */
1.73      lievre   3605:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
1.53      brouard  3606:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   3607:       k=k+1;
                   3608:       fprintf(ficresf,"\n#******");
                   3609:       for(j=1;j<=cptcoveff;j++) {
1.70      brouard  3610:        fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.53      brouard  3611:       }
                   3612:       fprintf(ficresf,"******\n");
1.70      brouard  3613:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
                   3614:       for(j=1; j<=nlstate+ndeath;j++){ 
                   3615:        for(i=1; i<=nlstate;i++)              
                   3616:           fprintf(ficresf," p%d%d",i,j);
                   3617:        fprintf(ficresf," p.%d",j);
                   3618:       }
1.74      brouard  3619:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
1.53      brouard  3620:        fprintf(ficresf,"\n");
1.70      brouard  3621:        fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
1.53      brouard  3622: 
1.71      brouard  3623:        for (agec=fage; agec>=(ageminpar-1); agec--){ 
1.70      brouard  3624:          nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
1.53      brouard  3625:          nhstepm = nhstepm/hstepm; 
                   3626:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3627:          oldm=oldms;savm=savms;
1.70      brouard  3628:          hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
1.53      brouard  3629:        
                   3630:          for (h=0; h<=nhstepm; h++){
1.75      brouard  3631:            if (h*hstepm/YEARM*stepm ==yearp) {
1.69      brouard  3632:               fprintf(ficresf,"\n");
                   3633:               for(j=1;j<=cptcoveff;j++) 
                   3634:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.70      brouard  3635:              fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
1.53      brouard  3636:            } 
                   3637:            for(j=1; j<=nlstate+ndeath;j++) {
1.70      brouard  3638:              ppij=0.;
1.71      brouard  3639:              for(i=1; i<=nlstate;i++) {
1.53      brouard  3640:                if (mobilav==1) 
1.71      brouard  3641:                  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
1.53      brouard  3642:                else {
1.71      brouard  3643:                  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
1.53      brouard  3644:                }
1.75      brouard  3645:                if (h*hstepm/YEARM*stepm== yearp) {
1.70      brouard  3646:                  fprintf(ficresf," %.3f", p3mat[i][j][h]);
1.75      brouard  3647:                }
                   3648:              } /* end i */
                   3649:              if (h*hstepm/YEARM*stepm==yearp) {
1.70      brouard  3650:                fprintf(ficresf," %.3f", ppij);
1.53      brouard  3651:              }
1.75      brouard  3652:            }/* end j */
                   3653:          } /* end h */
1.53      brouard  3654:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.75      brouard  3655:        } /* end agec */
                   3656:       } /* end yearp */
                   3657:     } /* end cptcod */
                   3658:   } /* end  cptcov */
1.53      brouard  3659:        
1.54      brouard  3660:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  3661: 
                   3662:   fclose(ficresf);
                   3663: }
1.70      brouard  3664: 
                   3665: /************** Forecasting *****not tested NB*************/
1.53      brouard  3666: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
                   3667:   
                   3668:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                   3669:   int *popage;
1.69      brouard  3670:   double calagedatem, agelim, kk1, kk2;
1.53      brouard  3671:   double *popeffectif,*popcount;
                   3672:   double ***p3mat,***tabpop,***tabpopprev;
1.55      lievre   3673:   double ***mobaverage;
1.53      brouard  3674:   char filerespop[FILENAMELENGTH];
                   3675: 
                   3676:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3677:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3678:   agelim=AGESUP;
1.69      brouard  3679:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
1.53      brouard  3680:   
1.84      brouard  3681:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.53      brouard  3682:   
                   3683:   
                   3684:   strcpy(filerespop,"pop"); 
                   3685:   strcat(filerespop,fileres);
                   3686:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
                   3687:     printf("Problem with forecast resultfile: %s\n", filerespop);
                   3688:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                   3689:   }
                   3690:   printf("Computing forecasting: result on file '%s' \n", filerespop);
                   3691:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
                   3692: 
                   3693:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   3694: 
1.54      brouard  3695:   if (mobilav!=0) {
1.53      brouard  3696:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  3697:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   3698:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   3699:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   3700:     }
1.53      brouard  3701:   }
                   3702: 
                   3703:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   3704:   if (stepm<=12) stepsize=1;
                   3705:   
                   3706:   agelim=AGESUP;
                   3707:   
                   3708:   hstepm=1;
                   3709:   hstepm=hstepm/stepm; 
                   3710:   
                   3711:   if (popforecast==1) {
                   3712:     if((ficpop=fopen(popfile,"r"))==NULL) {
                   3713:       printf("Problem with population file : %s\n",popfile);exit(0);
                   3714:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   3715:     } 
                   3716:     popage=ivector(0,AGESUP);
                   3717:     popeffectif=vector(0,AGESUP);
                   3718:     popcount=vector(0,AGESUP);
                   3719:     
                   3720:     i=1;   
                   3721:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
                   3722:    
                   3723:     imx=i;
                   3724:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
                   3725:   }
                   3726: 
1.69      brouard  3727:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
1.53      brouard  3728:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   3729:       k=k+1;
                   3730:       fprintf(ficrespop,"\n#******");
                   3731:       for(j=1;j<=cptcoveff;j++) {
                   3732:        fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   3733:       }
                   3734:       fprintf(ficrespop,"******\n");
                   3735:       fprintf(ficrespop,"# Age");
                   3736:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
                   3737:       if (popforecast==1)  fprintf(ficrespop," [Population]");
                   3738:       
                   3739:       for (cpt=0; cpt<=0;cpt++) { 
                   3740:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   3741:        
1.69      brouard  3742:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
1.53      brouard  3743:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   3744:          nhstepm = nhstepm/hstepm; 
                   3745:          
                   3746:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3747:          oldm=oldms;savm=savms;
                   3748:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   3749:        
                   3750:          for (h=0; h<=nhstepm; h++){
1.69      brouard  3751:            if (h==(int) (calagedatem+YEARM*cpt)) {
1.53      brouard  3752:              fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   3753:            } 
                   3754:            for(j=1; j<=nlstate+ndeath;j++) {
                   3755:              kk1=0.;kk2=0;
                   3756:              for(i=1; i<=nlstate;i++) {              
                   3757:                if (mobilav==1) 
                   3758:                  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   3759:                else {
                   3760:                  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   3761:                }
                   3762:              }
1.69      brouard  3763:              if (h==(int)(calagedatem+12*cpt)){
1.53      brouard  3764:                tabpop[(int)(agedeb)][j][cptcod]=kk1;
                   3765:                  /*fprintf(ficrespop," %.3f", kk1);
                   3766:                    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                   3767:              }
                   3768:            }
                   3769:            for(i=1; i<=nlstate;i++){
                   3770:              kk1=0.;
                   3771:                for(j=1; j<=nlstate;j++){
                   3772:                  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   3773:                }
1.69      brouard  3774:                  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
1.53      brouard  3775:            }
                   3776: 
1.69      brouard  3777:            if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
1.53      brouard  3778:              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
                   3779:          }
                   3780:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3781:        }
                   3782:       }
                   3783:  
                   3784:   /******/
                   3785: 
                   3786:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
                   3787:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
1.69      brouard  3788:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
1.53      brouard  3789:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   3790:          nhstepm = nhstepm/hstepm; 
                   3791:          
                   3792:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3793:          oldm=oldms;savm=savms;
                   3794:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   3795:          for (h=0; h<=nhstepm; h++){
1.69      brouard  3796:            if (h==(int) (calagedatem+YEARM*cpt)) {
1.53      brouard  3797:              fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   3798:            } 
                   3799:            for(j=1; j<=nlstate+ndeath;j++) {
                   3800:              kk1=0.;kk2=0;
                   3801:              for(i=1; i<=nlstate;i++) {              
                   3802:                kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                   3803:              }
1.69      brouard  3804:              if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
1.53      brouard  3805:            }
                   3806:          }
                   3807:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3808:        }
                   3809:       }
                   3810:    } 
                   3811:   }
                   3812:  
1.54      brouard  3813:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  3814: 
                   3815:   if (popforecast==1) {
                   3816:     free_ivector(popage,0,AGESUP);
                   3817:     free_vector(popeffectif,0,AGESUP);
                   3818:     free_vector(popcount,0,AGESUP);
                   3819:   }
                   3820:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3821:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3822:   fclose(ficrespop);
1.84      brouard  3823: } /* End of popforecast */
1.53      brouard  3824: 
1.87      brouard  3825: int fileappend(FILE *fichier, char *optionfich)
1.86      brouard  3826: {
1.87      brouard  3827:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   3828:     printf("Problem with file: %s\n", optionfich);
                   3829:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   3830:     return (0);
1.86      brouard  3831:   }
1.87      brouard  3832:   fflush(fichier);
                   3833:   return (1);
1.86      brouard  3834: }
1.94      brouard  3835: 
                   3836: 
                   3837: /**************** function prwizard **********************/
1.88      brouard  3838: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   3839: {
                   3840: 
1.94      brouard  3841:   /* Wizard to print covariance matrix template */
                   3842: 
1.88      brouard  3843:   char ca[32], cb[32], cc[32];
                   3844:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
                   3845:   int numlinepar;
                   3846: 
                   3847:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   3848:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   3849:   for(i=1; i <=nlstate; i++){
                   3850:     jj=0;
                   3851:     for(j=1; j <=nlstate+ndeath; j++){
                   3852:       if(j==i) continue;
                   3853:       jj++;
                   3854:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   3855:       printf("%1d%1d",i,j);
                   3856:       fprintf(ficparo,"%1d%1d",i,j);
                   3857:       for(k=1; k<=ncovmodel;k++){
                   3858:        /*        printf(" %lf",param[i][j][k]); */
                   3859:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   3860:        printf(" 0.");
                   3861:        fprintf(ficparo," 0.");
                   3862:       }
                   3863:       printf("\n");
                   3864:       fprintf(ficparo,"\n");
                   3865:     }
                   3866:   }
                   3867:   printf("# Scales (for hessian or gradient estimation)\n");
                   3868:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   3869:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   3870:   for(i=1; i <=nlstate; i++){
                   3871:     jj=0;
                   3872:     for(j=1; j <=nlstate+ndeath; j++){
                   3873:       if(j==i) continue;
                   3874:       jj++;
                   3875:       fprintf(ficparo,"%1d%1d",i,j);
                   3876:       printf("%1d%1d",i,j);
                   3877:       fflush(stdout);
                   3878:       for(k=1; k<=ncovmodel;k++){
                   3879:        /*      printf(" %le",delti3[i][j][k]); */
                   3880:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   3881:        printf(" 0.");
                   3882:        fprintf(ficparo," 0.");
                   3883:       }
                   3884:       numlinepar++;
                   3885:       printf("\n");
                   3886:       fprintf(ficparo,"\n");
                   3887:     }
                   3888:   }
                   3889:   printf("# Covariance matrix\n");
                   3890: /* # 121 Var(a12)\n\ */
                   3891: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   3892: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   3893: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   3894: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   3895: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   3896: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   3897: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   3898:   fflush(stdout);
                   3899:   fprintf(ficparo,"# Covariance matrix\n");
                   3900:   /* # 121 Var(a12)\n\ */
                   3901:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   3902:   /* #   ...\n\ */
                   3903:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   3904:   
                   3905:   for(itimes=1;itimes<=2;itimes++){
                   3906:     jj=0;
                   3907:     for(i=1; i <=nlstate; i++){
                   3908:       for(j=1; j <=nlstate+ndeath; j++){
                   3909:        if(j==i) continue;
                   3910:        for(k=1; k<=ncovmodel;k++){
                   3911:          jj++;
                   3912:          ca[0]= k+'a'-1;ca[1]='\0';
                   3913:          if(itimes==1){
                   3914:            printf("#%1d%1d%d",i,j,k);
                   3915:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   3916:          }else{
                   3917:            printf("%1d%1d%d",i,j,k);
                   3918:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   3919:            /*  printf(" %.5le",matcov[i][j]); */
                   3920:          }
                   3921:          ll=0;
                   3922:          for(li=1;li <=nlstate; li++){
                   3923:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   3924:              if(lj==li) continue;
                   3925:              for(lk=1;lk<=ncovmodel;lk++){
                   3926:                ll++;
                   3927:                if(ll<=jj){
                   3928:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   3929:                  if(ll<jj){
                   3930:                    if(itimes==1){
                   3931:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   3932:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   3933:                    }else{
                   3934:                      printf(" 0.");
                   3935:                      fprintf(ficparo," 0.");
                   3936:                    }
                   3937:                  }else{
                   3938:                    if(itimes==1){
                   3939:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   3940:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   3941:                    }else{
                   3942:                      printf(" 0.");
                   3943:                      fprintf(ficparo," 0.");
                   3944:                    }
                   3945:                  }
                   3946:                }
                   3947:              } /* end lk */
                   3948:            } /* end lj */
                   3949:          } /* end li */
                   3950:          printf("\n");
                   3951:          fprintf(ficparo,"\n");
                   3952:          numlinepar++;
                   3953:        } /* end k*/
                   3954:       } /*end j */
                   3955:     } /* end i */
1.95      brouard  3956:   } /* end itimes */
1.88      brouard  3957: 
                   3958: } /* end of prwizard */
1.98      brouard  3959: /******************* Gompertz Likelihood ******************************/
                   3960: double gompertz(double x[])
                   3961: { 
                   3962:   double A,B,L=0.0,sump=0.,num=0.;
                   3963:   int i,n=0; /* n is the size of the sample */
                   3964:   for (i=0;i<=imx-1 ; i++) {
                   3965:     sump=sump+weight[i];
1.103     lievre   3966:     /*    sump=sump+1;*/
1.98      brouard  3967:     num=num+1;
                   3968:   }
                   3969:  
                   3970:  
1.103     lievre   3971:   /* for (i=0; i<=imx; i++) 
1.98      brouard  3972:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   3973: 
1.103     lievre   3974:   for (i=1;i<=imx ; i++)
1.98      brouard  3975:     {
                   3976:       if (cens[i]==1 & wav[i]>1)
1.103     lievre   3977:        A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
1.98      brouard  3978:       
                   3979:       if (cens[i]==0 & wav[i]>1)
1.103     lievre   3980:        A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                   3981:             +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
1.98      brouard  3982:       
                   3983:       if (wav[i]>1 & agecens[i]>15) {
                   3984:        L=L+A*weight[i];
                   3985:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   3986:       }
                   3987:     }
                   3988: 
                   3989:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   3990:  
                   3991:   return -2*L*num/sump;
                   3992: }
                   3993: 
                   3994: /******************* Printing html file ***********/
                   3995: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                   3996:                  int lastpass, int stepm, int weightopt, char model[],\
1.105   ! lievre   3997:                  int imx,  double p[],double **matcov,double agemortsup){
        !          3998:   int i,k;
1.98      brouard  3999: 
                   4000:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   4001:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   4002:   for (i=1;i<=2;i++) 
                   4003:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   4004:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
                   4005:   fprintf(fichtm,"</ul>");
1.105   ! lievre   4006: 
        !          4007: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
        !          4008: 
        !          4009:  fprintf(fichtm,"\nAge   lx     qx    dx    Lx     Tx     e(x)<br>");
        !          4010: 
        !          4011:  for (k=agegomp;k<(agemortsup-2);k++) 
        !          4012:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
        !          4013: 
        !          4014:  
1.98      brouard  4015:   fflush(fichtm);
                   4016: }
                   4017: 
                   4018: /******************* Gnuplot file **************/
                   4019: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   4020: 
                   4021:   char dirfileres[132],optfileres[132];
                   4022:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
                   4023:   int ng;
                   4024: 
                   4025: 
                   4026:   /*#ifdef windows */
                   4027:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   4028:     /*#endif */
                   4029: 
                   4030: 
                   4031:   strcpy(dirfileres,optionfilefiname);
                   4032:   strcpy(optfileres,"vpl");
                   4033:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
                   4034:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
                   4035:   fprintf(ficgp, "set ter png small\n set log y\n"); 
                   4036:   fprintf(ficgp, "set size 0.65,0.65\n");
                   4037:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   4038: 
                   4039: } 
                   4040: 
                   4041: 
1.88      brouard  4042: 
1.91      brouard  4043: 
1.53      brouard  4044: /***********************************************/
                   4045: /**************** Main Program *****************/
                   4046: /***********************************************/
                   4047: 
                   4048: int main(int argc, char *argv[])
                   4049: {
1.61      brouard  4050:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.74      brouard  4051:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
1.95      brouard  4052:   int jj, ll, li, lj, lk, imk;
1.85      brouard  4053:   int numlinepar=0; /* Current linenumber of parameter file */
1.95      brouard  4054:   int itimes;
1.98      brouard  4055:   int NDIM=2;
1.95      brouard  4056: 
                   4057:   char ca[32], cb[32], cc[32];
1.87      brouard  4058:   /*  FILE *fichtm; *//* Html File */
                   4059:   /* FILE *ficgp;*/ /*Gnuplot File */
1.53      brouard  4060:   double agedeb, agefin,hf;
                   4061:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
                   4062: 
                   4063:   double fret;
                   4064:   double **xi,tmp,delta;
                   4065: 
                   4066:   double dum; /* Dummy variable */
                   4067:   double ***p3mat;
                   4068:   double ***mobaverage;
                   4069:   int *indx;
                   4070:   char line[MAXLINE], linepar[MAXLINE];
1.88      brouard  4071:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
1.99      brouard  4072:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.53      brouard  4073:   int firstobs=1, lastobs=10;
                   4074:   int sdeb, sfin; /* Status at beginning and end */
                   4075:   int c,  h , cpt,l;
                   4076:   int ju,jl, mi;
                   4077:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
1.59      brouard  4078:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
1.69      brouard  4079:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
1.53      brouard  4080:   int mobilav=0,popforecast=0;
                   4081:   int hstepm, nhstepm;
1.105   ! lievre   4082:   int agemortsup;
        !          4083:   float  sumlpop=0.;
1.74      brouard  4084:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   4085:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
1.53      brouard  4086: 
                   4087:   double bage, fage, age, agelim, agebase;
                   4088:   double ftolpl=FTOL;
                   4089:   double **prlim;
                   4090:   double *severity;
                   4091:   double ***param; /* Matrix of parameters */
                   4092:   double  *p;
                   4093:   double **matcov; /* Matrix of covariance */
                   4094:   double ***delti3; /* Scale */
                   4095:   double *delti; /* Scale */
                   4096:   double ***eij, ***vareij;
                   4097:   double **varpl; /* Variances of prevalence limits by age */
                   4098:   double *epj, vepp;
                   4099:   double kk1, kk2;
1.74      brouard  4100:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
1.98      brouard  4101:   double **ximort;
1.53      brouard  4102:   char *alph[]={"a","a","b","c","d","e"}, str[4];
1.98      brouard  4103:   int *dcwave;
1.53      brouard  4104: 
                   4105:   char z[1]="c", occ;
1.86      brouard  4106: 
1.53      brouard  4107:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
1.88      brouard  4108:   char strstart[80], *strt, strtend[80];
1.85      brouard  4109:   char *stratrunc;
                   4110:   int lstra;
                   4111: 
                   4112:   long total_usecs;
1.53      brouard  4113:  
1.95      brouard  4114: /*   setlocale (LC_ALL, ""); */
                   4115: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   4116: /*   textdomain (PACKAGE); */
                   4117: /*   setlocale (LC_CTYPE, ""); */
                   4118: /*   setlocale (LC_MESSAGES, ""); */
                   4119: 
1.85      brouard  4120:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
                   4121:   (void) gettimeofday(&start_time,&tzp);
1.91      brouard  4122:   curr_time=start_time;
1.85      brouard  4123:   tm = *localtime(&start_time.tv_sec);
                   4124:   tmg = *gmtime(&start_time.tv_sec);
1.88      brouard  4125:   strcpy(strstart,asctime(&tm));
1.86      brouard  4126: 
1.88      brouard  4127: /*  printf("Localtime (at start)=%s",strstart); */
1.85      brouard  4128: /*  tp.tv_sec = tp.tv_sec +86400; */
                   4129: /*  tm = *localtime(&start_time.tv_sec); */
                   4130: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   4131: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   4132: /*   tmg.tm_hour=tmg.tm_hour + 1; */
                   4133: /*   tp.tv_sec = mktime(&tmg); */
                   4134: /*   strt=asctime(&tmg); */
1.88      brouard  4135: /*   printf("Time(after) =%s",strstart);  */
1.85      brouard  4136: /*  (void) time (&time_value);
                   4137: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   4138: *  tm = *localtime(&time_value);
1.88      brouard  4139: *  strstart=asctime(&tm);
                   4140: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
1.85      brouard  4141: */
                   4142: 
1.91      brouard  4143:   nberr=0; /* Number of errors and warnings */
                   4144:   nbwarn=0;
1.53      brouard  4145:   getcwd(pathcd, size);
                   4146: 
1.81      brouard  4147:   printf("\n%s\n%s",version,fullversion);
1.53      brouard  4148:   if(argc <=1){
                   4149:     printf("\nEnter the parameter file name: ");
                   4150:     scanf("%s",pathtot);
                   4151:   }
                   4152:   else{
                   4153:     strcpy(pathtot,argv[1]);
                   4154:   }
1.88      brouard  4155:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
1.53      brouard  4156:   /*cygwin_split_path(pathtot,path,optionfile);
                   4157:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   4158:   /* cutv(path,optionfile,pathtot,'\\');*/
                   4159: 
1.99      brouard  4160:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   4161:  /*   strcpy(pathimach,argv[0]); */
1.53      brouard  4162:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
1.99      brouard  4163:   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.53      brouard  4164:   chdir(path);
1.88      brouard  4165:   strcpy(command,"mkdir ");
                   4166:   strcat(command,optionfilefiname);
                   4167:   if((outcmd=system(command)) != 0){
                   4168:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
                   4169:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   4170:     /* fclose(ficlog); */
                   4171: /*     exit(1); */
                   4172:   }
                   4173: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   4174: /*     perror("mkdir"); */
                   4175: /*   } */
1.53      brouard  4176: 
1.59      brouard  4177:   /*-------- arguments in the command line --------*/
1.53      brouard  4178: 
                   4179:   /* Log file */
                   4180:   strcat(filelog, optionfilefiname);
                   4181:   strcat(filelog,".log");    /* */
                   4182:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   4183:     printf("Problem with logfile %s\n",filelog);
                   4184:     goto end;
                   4185:   }
                   4186:   fprintf(ficlog,"Log filename:%s\n",filelog);
1.85      brouard  4187:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
1.99      brouard  4188:   fprintf(ficlog,"\nEnter the parameter file name: \n");
                   4189:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
1.88      brouard  4190:  path=%s \n\
                   4191:  optionfile=%s\n\
                   4192:  optionfilext=%s\n\
1.99      brouard  4193:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.86      brouard  4194: 
1.94      brouard  4195:   printf("Local time (at start):%s",strstart);
                   4196:   fprintf(ficlog,"Local time (at start): %s",strstart);
1.53      brouard  4197:   fflush(ficlog);
1.91      brouard  4198: /*   (void) gettimeofday(&curr_time,&tzp); */
                   4199: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
1.53      brouard  4200: 
                   4201:   /* */
                   4202:   strcpy(fileres,"r");
                   4203:   strcat(fileres, optionfilefiname);
                   4204:   strcat(fileres,".txt");    /* Other files have txt extension */
                   4205: 
                   4206:   /*---------arguments file --------*/
                   4207: 
                   4208:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
                   4209:     printf("Problem with optionfile %s\n",optionfile);
                   4210:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
1.85      brouard  4211:     fflush(ficlog);
1.53      brouard  4212:     goto end;
                   4213:   }
                   4214: 
1.88      brouard  4215: 
                   4216: 
1.53      brouard  4217:   strcpy(filereso,"o");
                   4218:   strcat(filereso,fileres);
1.88      brouard  4219:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
1.53      brouard  4220:     printf("Problem with Output resultfile: %s\n", filereso);
                   4221:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
1.85      brouard  4222:     fflush(ficlog);
1.53      brouard  4223:     goto end;
                   4224:   }
                   4225: 
                   4226:   /* Reads comments: lines beginning with '#' */
1.85      brouard  4227:   numlinepar=0;
1.53      brouard  4228:   while((c=getc(ficpar))=='#' && c!= EOF){
                   4229:     ungetc(c,ficpar);
                   4230:     fgets(line, MAXLINE, ficpar);
1.85      brouard  4231:     numlinepar++;
1.53      brouard  4232:     puts(line);
                   4233:     fputs(line,ficparo);
1.85      brouard  4234:     fputs(line,ficlog);
1.53      brouard  4235:   }
                   4236:   ungetc(c,ficpar);
                   4237: 
                   4238:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
1.85      brouard  4239:   numlinepar++;
1.53      brouard  4240:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
                   4241:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
1.85      brouard  4242:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
                   4243:   fflush(ficlog);
1.59      brouard  4244:   while((c=getc(ficpar))=='#' && c!= EOF){
1.53      brouard  4245:     ungetc(c,ficpar);
                   4246:     fgets(line, MAXLINE, ficpar);
1.85      brouard  4247:     numlinepar++;
1.53      brouard  4248:     puts(line);
                   4249:     fputs(line,ficparo);
1.85      brouard  4250:     fputs(line,ficlog);
1.53      brouard  4251:   }
                   4252:   ungetc(c,ficpar);
1.85      brouard  4253: 
1.53      brouard  4254:    
                   4255:   covar=matrix(0,NCOVMAX,1,n); 
1.58      lievre   4256:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
1.53      brouard  4257:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
                   4258: 
1.58      lievre   4259:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
1.53      brouard  4260:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
1.98      brouard  4261:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
                   4262: 
                   4263:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4264:   delti=delti3[1][1];
                   4265:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
1.88      brouard  4266:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
                   4267:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   4268:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   4269:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
1.98      brouard  4270:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
1.88      brouard  4271:     fclose (ficparo);
                   4272:     fclose (ficlog);
                   4273:     exit(0);
                   4274:   }
1.98      brouard  4275:   else if(mle==-3) {
                   4276:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   4277:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   4278:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   4279:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4280:     matcov=matrix(1,npar,1,npar);
1.53      brouard  4281:   }
1.98      brouard  4282:   else{
                   4283:     /* Read guess parameters */
                   4284:     /* Reads comments: lines beginning with '#' */
                   4285:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4286:       ungetc(c,ficpar);
                   4287:       fgets(line, MAXLINE, ficpar);
1.85      brouard  4288:       numlinepar++;
1.98      brouard  4289:       puts(line);
                   4290:       fputs(line,ficparo);
                   4291:       fputs(line,ficlog);
1.53      brouard  4292:     }
1.98      brouard  4293:     ungetc(c,ficpar);
                   4294:     
                   4295:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4296:     for(i=1; i <=nlstate; i++){
                   4297:       j=0;
                   4298:       for(jj=1; jj <=nlstate+ndeath; jj++){
                   4299:        if(jj==i) continue;
                   4300:        j++;
                   4301:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   4302:        if ((i1 != i) && (j1 != j)){
                   4303:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   4304:          exit(1);
                   4305:        }
                   4306:        fprintf(ficparo,"%1d%1d",i1,j1);
                   4307:        if(mle==1)
                   4308:          printf("%1d%1d",i,j);
                   4309:        fprintf(ficlog,"%1d%1d",i,j);
                   4310:        for(k=1; k<=ncovmodel;k++){
                   4311:          fscanf(ficpar," %lf",&param[i][j][k]);
                   4312:          if(mle==1){
                   4313:            printf(" %lf",param[i][j][k]);
                   4314:            fprintf(ficlog," %lf",param[i][j][k]);
                   4315:          }
                   4316:          else
                   4317:            fprintf(ficlog," %lf",param[i][j][k]);
                   4318:          fprintf(ficparo," %lf",param[i][j][k]);
                   4319:        }
                   4320:        fscanf(ficpar,"\n");
                   4321:        numlinepar++;
                   4322:        if(mle==1)
                   4323:          printf("\n");
                   4324:        fprintf(ficlog,"\n");
                   4325:        fprintf(ficparo,"\n");
                   4326:       }
                   4327:     }  
                   4328:     fflush(ficlog);
1.85      brouard  4329: 
1.53      brouard  4330: 
1.98      brouard  4331:     p=param[1][1];
                   4332:     
                   4333:     /* Reads comments: lines beginning with '#' */
                   4334:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4335:       ungetc(c,ficpar);
                   4336:       fgets(line, MAXLINE, ficpar);
                   4337:       numlinepar++;
                   4338:       puts(line);
                   4339:       fputs(line,ficparo);
                   4340:       fputs(line,ficlog);
                   4341:     }
1.53      brouard  4342:     ungetc(c,ficpar);
                   4343: 
1.98      brouard  4344:     for(i=1; i <=nlstate; i++){
                   4345:       for(j=1; j <=nlstate+ndeath-1; j++){
                   4346:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   4347:        if ((i1-i)*(j1-j)!=0){
                   4348:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   4349:          exit(1);
                   4350:        }
                   4351:        printf("%1d%1d",i,j);
                   4352:        fprintf(ficparo,"%1d%1d",i1,j1);
                   4353:        fprintf(ficlog,"%1d%1d",i1,j1);
                   4354:        for(k=1; k<=ncovmodel;k++){
                   4355:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   4356:          printf(" %le",delti3[i][j][k]);
                   4357:          fprintf(ficparo," %le",delti3[i][j][k]);
                   4358:          fprintf(ficlog," %le",delti3[i][j][k]);
                   4359:        }
                   4360:        fscanf(ficpar,"\n");
                   4361:        numlinepar++;
                   4362:        printf("\n");
                   4363:        fprintf(ficparo,"\n");
                   4364:        fprintf(ficlog,"\n");
1.85      brouard  4365:       }
1.53      brouard  4366:     }
1.98      brouard  4367:     fflush(ficlog);
1.85      brouard  4368: 
1.98      brouard  4369:     delti=delti3[1][1];
1.74      brouard  4370: 
                   4371: 
1.98      brouard  4372:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
1.53      brouard  4373:   
1.98      brouard  4374:     /* Reads comments: lines beginning with '#' */
                   4375:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4376:       ungetc(c,ficpar);
                   4377:       fgets(line, MAXLINE, ficpar);
                   4378:       numlinepar++;
                   4379:       puts(line);
                   4380:       fputs(line,ficparo);
                   4381:       fputs(line,ficlog);
                   4382:     }
1.53      brouard  4383:     ungetc(c,ficpar);
                   4384:   
1.98      brouard  4385:     matcov=matrix(1,npar,1,npar);
                   4386:     for(i=1; i <=npar; i++){
                   4387:       fscanf(ficpar,"%s",&str);
                   4388:       if(mle==1)
                   4389:        printf("%s",str);
                   4390:       fprintf(ficlog,"%s",str);
                   4391:       fprintf(ficparo,"%s",str);
                   4392:       for(j=1; j <=i; j++){
                   4393:        fscanf(ficpar," %le",&matcov[i][j]);
                   4394:        if(mle==1){
                   4395:          printf(" %.5le",matcov[i][j]);
                   4396:        }
                   4397:        fprintf(ficlog," %.5le",matcov[i][j]);
                   4398:        fprintf(ficparo," %.5le",matcov[i][j]);
1.53      brouard  4399:       }
1.98      brouard  4400:       fscanf(ficpar,"\n");
                   4401:       numlinepar++;
                   4402:       if(mle==1)
                   4403:        printf("\n");
                   4404:       fprintf(ficlog,"\n");
                   4405:       fprintf(ficparo,"\n");
1.53      brouard  4406:     }
1.98      brouard  4407:     for(i=1; i <=npar; i++)
                   4408:       for(j=i+1;j<=npar;j++)
                   4409:        matcov[i][j]=matcov[j][i];
                   4410:     
1.53      brouard  4411:     if(mle==1)
                   4412:       printf("\n");
                   4413:     fprintf(ficlog,"\n");
1.98      brouard  4414:     
                   4415:     fflush(ficlog);
                   4416:     
                   4417:     /*-------- Rewriting parameter file ----------*/
                   4418:     strcpy(rfileres,"r");    /* "Rparameterfile */
                   4419:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
                   4420:     strcat(rfileres,".");    /* */
                   4421:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   4422:     if((ficres =fopen(rfileres,"w"))==NULL) {
                   4423:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
                   4424:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
                   4425:     }
                   4426:     fprintf(ficres,"#%s\n",version);
                   4427:   }    /* End of mle != -3 */
1.53      brouard  4428: 
1.59      brouard  4429:   /*-------- data file ----------*/
                   4430:   if((fic=fopen(datafile,"r"))==NULL)    {
                   4431:     printf("Problem with datafile: %s\n", datafile);goto end;
                   4432:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
                   4433:   }
                   4434: 
                   4435:   n= lastobs;
                   4436:   severity = vector(1,maxwav);
                   4437:   outcome=imatrix(1,maxwav+1,1,n);
1.85      brouard  4438:   num=lvector(1,n);
1.59      brouard  4439:   moisnais=vector(1,n);
                   4440:   annais=vector(1,n);
                   4441:   moisdc=vector(1,n);
                   4442:   andc=vector(1,n);
                   4443:   agedc=vector(1,n);
                   4444:   cod=ivector(1,n);
                   4445:   weight=vector(1,n);
                   4446:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
                   4447:   mint=matrix(1,maxwav,1,n);
                   4448:   anint=matrix(1,maxwav,1,n);
                   4449:   s=imatrix(1,maxwav+1,1,n);
                   4450:   tab=ivector(1,NCOVMAX);
                   4451:   ncodemax=ivector(1,8);
                   4452: 
                   4453:   i=1;
                   4454:   while (fgets(line, MAXLINE, fic) != NULL)    {
                   4455:     if ((i >= firstobs) && (i <=lastobs)) {
1.102     brouard  4456:       for(j=0; line[j] != '\n';j++){  /* Untabifies line */
                   4457:        if(line[j] == '\t')
                   4458:          line[j] = ' ';
                   4459:       }
1.59      brouard  4460:       for (j=maxwav;j>=1;j--){
                   4461:        cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
                   4462:        strcpy(line,stra);
                   4463:        cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4464:        cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4465:       }
1.53      brouard  4466:        
1.59      brouard  4467:       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4468:       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
1.53      brouard  4469: 
1.59      brouard  4470:       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4471:       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
1.53      brouard  4472: 
1.59      brouard  4473:       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4474:       for (j=ncovcol;j>=1;j--){
                   4475:        cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4476:       } 
1.85      brouard  4477:       lstra=strlen(stra);
                   4478:       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   4479:        stratrunc = &(stra[lstra-9]);
                   4480:        num[i]=atol(stratrunc);
                   4481:       }
                   4482:       else
                   4483:        num[i]=atol(stra);
1.53      brouard  4484:        
1.59      brouard  4485:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
1.85      brouard  4486:        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
1.53      brouard  4487: 
1.59      brouard  4488:       i=i+1;
                   4489:     }
                   4490:   }
                   4491:   /* printf("ii=%d", ij);
                   4492:      scanf("%d",i);*/
1.53      brouard  4493:   imx=i-1; /* Number of individuals */
                   4494: 
                   4495:   /* for (i=1; i<=imx; i++){
                   4496:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
                   4497:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
                   4498:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
                   4499:     }*/
                   4500:    /*  for (i=1; i<=imx; i++){
                   4501:      if (s[4][i]==9)  s[4][i]=-1; 
1.85      brouard  4502:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
1.53      brouard  4503:   
1.71      brouard  4504:  for (i=1; i<=imx; i++)
1.53      brouard  4505:  
1.71      brouard  4506:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
                   4507:      else weight[i]=1;*/
                   4508: 
1.53      brouard  4509:   /* Calculation of the number of parameter from char model*/
                   4510:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
                   4511:   Tprod=ivector(1,15); 
                   4512:   Tvaraff=ivector(1,15); 
                   4513:   Tvard=imatrix(1,15,1,2);
                   4514:   Tage=ivector(1,15);      
                   4515:    
1.58      lievre   4516:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.53      brouard  4517:     j=0, j1=0, k1=1, k2=1;
1.58      lievre   4518:     j=nbocc(model,'+'); /* j=Number of '+' */
                   4519:     j1=nbocc(model,'*'); /* j1=Number of '*' */
                   4520:     cptcovn=j+1; 
                   4521:     cptcovprod=j1; /*Number of products */
1.53      brouard  4522:     
                   4523:     strcpy(modelsav,model); 
                   4524:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
                   4525:       printf("Error. Non available option model=%s ",model);
                   4526:       fprintf(ficlog,"Error. Non available option model=%s ",model);
                   4527:       goto end;
                   4528:     }
                   4529:     
1.59      brouard  4530:     /* This loop fills the array Tvar from the string 'model'.*/
1.58      lievre   4531: 
1.53      brouard  4532:     for(i=(j+1); i>=1;i--){
                   4533:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
1.59      brouard  4534:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
1.53      brouard  4535:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   4536:       /*scanf("%d",i);*/
                   4537:       if (strchr(strb,'*')) {  /* Model includes a product */
                   4538:        cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
                   4539:        if (strcmp(strc,"age")==0) { /* Vn*age */
                   4540:          cptcovprod--;
                   4541:          cutv(strb,stre,strd,'V');
                   4542:          Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
                   4543:          cptcovage++;
                   4544:            Tage[cptcovage]=i;
                   4545:            /*printf("stre=%s ", stre);*/
                   4546:        }
                   4547:        else if (strcmp(strd,"age")==0) { /* or age*Vn */
                   4548:          cptcovprod--;
                   4549:          cutv(strb,stre,strc,'V');
                   4550:          Tvar[i]=atoi(stre);
                   4551:          cptcovage++;
                   4552:          Tage[cptcovage]=i;
                   4553:        }
                   4554:        else {  /* Age is not in the model */
                   4555:          cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
                   4556:          Tvar[i]=ncovcol+k1;
                   4557:          cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
                   4558:          Tprod[k1]=i;
                   4559:          Tvard[k1][1]=atoi(strc); /* m*/
                   4560:          Tvard[k1][2]=atoi(stre); /* n */
                   4561:          Tvar[cptcovn+k2]=Tvard[k1][1];
                   4562:          Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
                   4563:          for (k=1; k<=lastobs;k++) 
                   4564:            covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                   4565:          k1++;
                   4566:          k2=k2+2;
                   4567:        }
                   4568:       }
                   4569:       else { /* no more sum */
                   4570:        /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   4571:        /*  scanf("%d",i);*/
                   4572:       cutv(strd,strc,strb,'V');
                   4573:       Tvar[i]=atoi(strc);
                   4574:       }
                   4575:       strcpy(modelsav,stra);  
                   4576:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                   4577:        scanf("%d",i);*/
                   4578:     } /* end of loop + */
                   4579:   } /* end model */
                   4580:   
1.58      lievre   4581:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   4582:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
                   4583: 
1.53      brouard  4584:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
                   4585:   printf("cptcovprod=%d ", cptcovprod);
                   4586:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
1.58      lievre   4587: 
                   4588:   scanf("%d ",i);
                   4589:   fclose(fic);*/
1.53      brouard  4590: 
                   4591:     /*  if(mle==1){*/
1.59      brouard  4592:   if (weightopt != 1) { /* Maximisation without weights*/
                   4593:     for(i=1;i<=n;i++) weight[i]=1.0;
                   4594:   }
1.53      brouard  4595:     /*-calculation of age at interview from date of interview and age at death -*/
1.59      brouard  4596:   agev=matrix(1,maxwav,1,imx);
1.53      brouard  4597: 
1.59      brouard  4598:   for (i=1; i<=imx; i++) {
                   4599:     for(m=2; (m<= maxwav); m++) {
1.76      brouard  4600:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
1.59      brouard  4601:        anint[m][i]=9999;
                   4602:        s[m][i]=-1;
                   4603:       }
1.76      brouard  4604:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
1.91      brouard  4605:        nberr++;
1.85      brouard  4606:        printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                   4607:        fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
1.76      brouard  4608:        s[m][i]=-1;
                   4609:       }
                   4610:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
1.91      brouard  4611:        nberr++;
1.85      brouard  4612:        printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
                   4613:        fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
1.84      brouard  4614:        s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
1.76      brouard  4615:       }
1.53      brouard  4616:     }
1.59      brouard  4617:   }
1.53      brouard  4618: 
1.59      brouard  4619:   for (i=1; i<=imx; i++)  {
                   4620:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
1.71      brouard  4621:     for(m=firstpass; (m<= lastpass); m++){
1.105   ! lievre   4622:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
1.59      brouard  4623:        if (s[m][i] >= nlstate+1) {
                   4624:          if(agedc[i]>0)
1.76      brouard  4625:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
1.69      brouard  4626:              agev[m][i]=agedc[i];
1.59      brouard  4627:          /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                   4628:            else {
1.76      brouard  4629:              if ((int)andc[i]!=9999){
1.91      brouard  4630:                nbwarn++;
1.85      brouard  4631:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   4632:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
1.59      brouard  4633:                agev[m][i]=-1;
1.53      brouard  4634:              }
                   4635:            }
1.70      brouard  4636:        }
1.69      brouard  4637:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   4638:                                 years but with the precision of a
                   4639:                                 month */
1.59      brouard  4640:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
1.76      brouard  4641:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
1.59      brouard  4642:            agev[m][i]=1;
                   4643:          else if(agev[m][i] <agemin){ 
                   4644:            agemin=agev[m][i];
                   4645:            /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
1.53      brouard  4646:          }
1.59      brouard  4647:          else if(agev[m][i] >agemax){
                   4648:            agemax=agev[m][i];
                   4649:            /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
1.53      brouard  4650:          }
1.59      brouard  4651:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   4652:          /*     agev[m][i] = age[i]+2*m;*/
1.53      brouard  4653:        }
1.59      brouard  4654:        else { /* =9 */
1.53      brouard  4655:          agev[m][i]=1;
1.59      brouard  4656:          s[m][i]=-1;
                   4657:        }
1.53      brouard  4658:       }
1.59      brouard  4659:       else /*= 0 Unknown */
                   4660:        agev[m][i]=1;
                   4661:     }
1.53      brouard  4662:     
1.59      brouard  4663:   }
                   4664:   for (i=1; i<=imx; i++)  {
1.71      brouard  4665:     for(m=firstpass; (m<=lastpass); m++){
1.59      brouard  4666:       if (s[m][i] > (nlstate+ndeath)) {
1.91      brouard  4667:        nberr++;
1.59      brouard  4668:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   4669:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   4670:        goto end;
1.53      brouard  4671:       }
                   4672:     }
1.59      brouard  4673:   }
1.53      brouard  4674: 
1.71      brouard  4675:   /*for (i=1; i<=imx; i++){
                   4676:   for (m=firstpass; (m<lastpass); m++){
1.85      brouard  4677:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
1.71      brouard  4678: }
                   4679: 
                   4680: }*/
                   4681: 
1.97      lievre   4682: 
1.59      brouard  4683:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
                   4684:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
                   4685: 
1.98      brouard  4686:   agegomp=(int)agemin;
1.59      brouard  4687:   free_vector(severity,1,maxwav);
                   4688:   free_imatrix(outcome,1,maxwav+1,1,n);
                   4689:   free_vector(moisnais,1,n);
                   4690:   free_vector(annais,1,n);
                   4691:   /* free_matrix(mint,1,maxwav,1,n);
                   4692:      free_matrix(anint,1,maxwav,1,n);*/
                   4693:   free_vector(moisdc,1,n);
                   4694:   free_vector(andc,1,n);
1.53      brouard  4695: 
                   4696:    
1.59      brouard  4697:   wav=ivector(1,imx);
                   4698:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
                   4699:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
                   4700:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
1.69      brouard  4701:    
1.59      brouard  4702:   /* Concatenates waves */
                   4703:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.53      brouard  4704: 
1.59      brouard  4705:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
1.53      brouard  4706: 
1.59      brouard  4707:   Tcode=ivector(1,100);
                   4708:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   4709:   ncodemax[1]=1;
                   4710:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
1.53      brouard  4711:       
1.59      brouard  4712:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                   4713:                                 the estimations*/
                   4714:   h=0;
                   4715:   m=pow(2,cptcoveff);
1.53      brouard  4716:  
1.59      brouard  4717:   for(k=1;k<=cptcoveff; k++){
                   4718:     for(i=1; i <=(m/pow(2,k));i++){
                   4719:       for(j=1; j <= ncodemax[k]; j++){
                   4720:        for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
                   4721:          h++;
                   4722:          if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
                   4723:          /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
                   4724:        } 
                   4725:       }
                   4726:     }
                   4727:   } 
                   4728:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
                   4729:      codtab[1][2]=1;codtab[2][2]=2; */
                   4730:   /* for(i=1; i <=m ;i++){ 
                   4731:      for(k=1; k <=cptcovn; k++){
                   4732:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
                   4733:      }
                   4734:      printf("\n");
1.53      brouard  4735:      }
1.59      brouard  4736:      scanf("%d",i);*/
1.53      brouard  4737:     
1.86      brouard  4738:   /*------------ gnuplot -------------*/
                   4739:   strcpy(optionfilegnuplot,optionfilefiname);
1.98      brouard  4740:   if(mle==-3)
                   4741:     strcat(optionfilegnuplot,"-mort");
1.86      brouard  4742:   strcat(optionfilegnuplot,".gp");
1.98      brouard  4743: 
1.86      brouard  4744:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   4745:     printf("Problem with file %s",optionfilegnuplot);
                   4746:   }
                   4747:   else{
                   4748:     fprintf(ficgp,"\n# %s\n", version); 
                   4749:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
                   4750:     fprintf(ficgp,"set missing 'NaNq'\n");
                   4751:   }
1.88      brouard  4752:   /*  fclose(ficgp);*/
1.86      brouard  4753:   /*--------- index.htm --------*/
                   4754: 
1.91      brouard  4755:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
1.98      brouard  4756:   if(mle==-3)
                   4757:     strcat(optionfilehtm,"-mort");
1.86      brouard  4758:   strcat(optionfilehtm,".htm");
                   4759:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
                   4760:     printf("Problem with %s \n",optionfilehtm), exit(0);
                   4761:   }
                   4762: 
1.91      brouard  4763:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   4764:   strcat(optionfilehtmcov,"-cov.htm");
                   4765:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   4766:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   4767:   }
                   4768:   else{
                   4769:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
                   4770: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   4771: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
                   4772:          fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   4773:   }
                   4774: 
1.87      brouard  4775:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
1.86      brouard  4776: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   4777: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                   4778: \n\
                   4779: <hr  size=\"2\" color=\"#EC5E5E\">\
                   4780:  <ul><li><h4>Parameter files</h4>\n\
                   4781:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   4782:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
1.87      brouard  4783:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
1.86      brouard  4784:  - Date and time at start: %s</ul>\n",\
1.91      brouard  4785:          fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                   4786:          fileres,fileres,\
1.88      brouard  4787:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
1.87      brouard  4788:   fflush(fichtm);
1.86      brouard  4789: 
1.88      brouard  4790:   strcpy(pathr,path);
                   4791:   strcat(pathr,optionfilefiname);
                   4792:   chdir(optionfilefiname); /* Move to directory named optionfile */
                   4793:   
1.59      brouard  4794:   /* Calculates basic frequencies. Computes observed prevalence at single age
                   4795:      and prints on file fileres'p'. */
1.105   ! lievre   4796:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
1.53      brouard  4797: 
1.88      brouard  4798:   fprintf(fichtm,"\n");
                   4799:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
1.86      brouard  4800: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   4801: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
1.88      brouard  4802:          imx,agemin,agemax,jmin,jmax,jmean);
                   4803:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.60      brouard  4804:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4805:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4806:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4807:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.53      brouard  4808:     
                   4809:    
1.59      brouard  4810:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   4811:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   4812:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
1.53      brouard  4813: 
1.86      brouard  4814:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
1.98      brouard  4815:   if (mle==-3){
                   4816:     ximort=matrix(1,NDIM,1,NDIM);
                   4817:     cens=ivector(1,n);
                   4818:     ageexmed=vector(1,n);
                   4819:     agecens=vector(1,n);
                   4820:     dcwave=ivector(1,n);
                   4821:  
                   4822:     for (i=1; i<=imx; i++){
                   4823:       dcwave[i]=-1;
                   4824:       for (j=1; j<=lastpass; j++)
                   4825:        if (s[j][i]>nlstate) {
                   4826:          dcwave[i]=j;
                   4827:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   4828:          break;
                   4829:        }
                   4830:     }
                   4831: 
                   4832:     for (i=1; i<=imx; i++) {
                   4833:       if (wav[i]>0){
                   4834:        ageexmed[i]=agev[mw[1][i]][i];
                   4835:        j=wav[i];agecens[i]=1.; 
                   4836:        if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
                   4837:        cens[i]=1;
                   4838:        
                   4839:        if (ageexmed[i]<1) cens[i]=-1;
                   4840:        if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
                   4841:       }
                   4842:       else cens[i]=-1;
                   4843:     }
                   4844:     
                   4845:     for (i=1;i<=NDIM;i++) {
                   4846:       for (j=1;j<=NDIM;j++)
                   4847:        ximort[i][j]=(i == j ? 1.0 : 0.0);
                   4848:     }
                   4849: 
                   4850:     p[1]=0.1; p[2]=0.1;
                   4851:     /*printf("%lf %lf", p[1], p[2]);*/
                   4852:     
                   4853:     
                   4854:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
                   4855:   strcpy(filerespow,"pow-mort"); 
                   4856:   strcat(filerespow,fileres);
                   4857:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   4858:     printf("Problem with resultfile: %s\n", filerespow);
                   4859:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
1.59      brouard  4860:   }
1.98      brouard  4861:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   4862:   /*  for (i=1;i<=nlstate;i++)
                   4863:     for(j=1;j<=nlstate+ndeath;j++)
                   4864:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   4865:   */
                   4866:   fprintf(ficrespow,"\n");
                   4867: 
                   4868:     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   4869:     fclose(ficrespow);
1.53      brouard  4870:     
1.98      brouard  4871:     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
1.53      brouard  4872: 
1.98      brouard  4873:     for(i=1; i <=NDIM; i++)
                   4874:       for(j=i+1;j<=NDIM;j++)
                   4875:        matcov[i][j]=matcov[j][i];
                   4876:     
                   4877:     printf("\nCovariance matrix\n ");
                   4878:     for(i=1; i <=NDIM; i++) {
                   4879:       for(j=1;j<=NDIM;j++){ 
                   4880:        printf("%f ",matcov[i][j]);
1.95      brouard  4881:       }
1.98      brouard  4882:       printf("\n ");
                   4883:     }
                   4884:     
                   4885:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
                   4886:     for (i=1;i<=NDIM;i++) 
                   4887:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.105   ! lievre   4888: 
        !          4889: lsurv=vector(1,AGESUP);
        !          4890:     lpop=vector(1,AGESUP);
        !          4891:     tpop=vector(1,AGESUP);
        !          4892:     lsurv[agegomp]=100000;
        !          4893:    
        !          4894:      for (k=agegomp;k<=AGESUP;k++) {
        !          4895:       agemortsup=k;
        !          4896:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
        !          4897:     }
        !          4898:    
        !          4899:       for (k=agegomp;k<agemortsup;k++)
        !          4900:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
        !          4901: 
        !          4902:     for (k=agegomp;k<agemortsup;k++){
        !          4903:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
        !          4904:       sumlpop=sumlpop+lpop[k];
        !          4905:     }
        !          4906: 
        !          4907:  tpop[agegomp]=sumlpop;
        !          4908:     for (k=agegomp;k<(agemortsup-3);k++){
        !          4909:       /*  tpop[k+1]=2;*/
        !          4910:       tpop[k+1]=tpop[k]-lpop[k];
        !          4911:        }
        !          4912:    
        !          4913:    
        !          4914:        printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
        !          4915:     for (k=agegomp;k<(agemortsup-2);k++) 
        !          4916:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
        !          4917: 
        !          4918: 
1.98      brouard  4919:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
                   4920:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   4921:     
                   4922:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                   4923:                     stepm, weightopt,\
1.105   ! lievre   4924:                     model,imx,p,matcov,agemortsup);
        !          4925: 
        !          4926:     free_vector(lsurv,1,AGESUP);
        !          4927:     free_vector(lpop,1,AGESUP);
        !          4928:     free_vector(tpop,1,AGESUP);
1.98      brouard  4929:   } /* Endof if mle==-3 */
                   4930: 
                   4931:   else{ /* For mle >=1 */
                   4932:   
                   4933:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   4934:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   4935:     for (k=1; k<=npar;k++)
                   4936:       printf(" %d %8.5f",k,p[k]);
                   4937:     printf("\n");
                   4938:     globpr=1; /* to print the contributions */
                   4939:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   4940:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   4941:     for (k=1; k<=npar;k++)
                   4942:       printf(" %d %8.5f",k,p[k]);
                   4943:     printf("\n");
                   4944:     if(mle>=1){ /* Could be 1 or 2 */
                   4945:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
1.59      brouard  4946:     }
1.98      brouard  4947:     
                   4948:     /*--------- results files --------------*/
                   4949:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
                   4950:     
                   4951:     
                   4952:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4953:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4954:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4955:     for(i=1,jk=1; i <=nlstate; i++){
                   4956:       for(k=1; k <=(nlstate+ndeath); k++){
                   4957:        if (k != i) {
                   4958:          printf("%d%d ",i,k);
                   4959:          fprintf(ficlog,"%d%d ",i,k);
                   4960:          fprintf(ficres,"%1d%1d ",i,k);
                   4961:          for(j=1; j <=ncovmodel; j++){
                   4962:            printf("%f ",p[jk]);
                   4963:            fprintf(ficlog,"%f ",p[jk]);
                   4964:            fprintf(ficres,"%f ",p[jk]);
                   4965:            jk++; 
                   4966:          }
                   4967:          printf("\n");
                   4968:          fprintf(ficlog,"\n");
                   4969:          fprintf(ficres,"\n");
1.59      brouard  4970:        }
                   4971:       }
                   4972:     }
1.98      brouard  4973:     if(mle!=0){
                   4974:       /* Computing hessian and covariance matrix */
                   4975:       ftolhess=ftol; /* Usually correct */
                   4976:       hesscov(matcov, p, npar, delti, ftolhess, func);
                   4977:     }
                   4978:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   4979:     printf("# Scales (for hessian or gradient estimation)\n");
                   4980:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   4981:     for(i=1,jk=1; i <=nlstate; i++){
1.95      brouard  4982:       for(j=1; j <=nlstate+ndeath; j++){
1.98      brouard  4983:        if (j!=i) {
                   4984:          fprintf(ficres,"%1d%1d",i,j);
                   4985:          printf("%1d%1d",i,j);
                   4986:          fprintf(ficlog,"%1d%1d",i,j);
                   4987:          for(k=1; k<=ncovmodel;k++){
                   4988:            printf(" %.5e",delti[jk]);
                   4989:            fprintf(ficlog," %.5e",delti[jk]);
                   4990:            fprintf(ficres," %.5e",delti[jk]);
                   4991:            jk++;
1.95      brouard  4992:          }
1.98      brouard  4993:          printf("\n");
                   4994:          fprintf(ficlog,"\n");
                   4995:          fprintf(ficres,"\n");
                   4996:        }
                   4997:       }
                   4998:     }
                   4999:     
                   5000:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   5001:     if(mle>=1)
                   5002:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   5003:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   5004:     /* # 121 Var(a12)\n\ */
                   5005:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   5006:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   5007:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   5008:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   5009:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   5010:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   5011:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   5012:     
                   5013:     
                   5014:     /* Just to have a covariance matrix which will be more understandable
                   5015:        even is we still don't want to manage dictionary of variables
                   5016:     */
                   5017:     for(itimes=1;itimes<=2;itimes++){
                   5018:       jj=0;
                   5019:       for(i=1; i <=nlstate; i++){
                   5020:        for(j=1; j <=nlstate+ndeath; j++){
                   5021:          if(j==i) continue;
                   5022:          for(k=1; k<=ncovmodel;k++){
                   5023:            jj++;
                   5024:            ca[0]= k+'a'-1;ca[1]='\0';
                   5025:            if(itimes==1){
                   5026:              if(mle>=1)
                   5027:                printf("#%1d%1d%d",i,j,k);
                   5028:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   5029:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   5030:            }else{
                   5031:              if(mle>=1)
                   5032:                printf("%1d%1d%d",i,j,k);
                   5033:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   5034:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   5035:            }
                   5036:            ll=0;
                   5037:            for(li=1;li <=nlstate; li++){
                   5038:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   5039:                if(lj==li) continue;
                   5040:                for(lk=1;lk<=ncovmodel;lk++){
                   5041:                  ll++;
                   5042:                  if(ll<=jj){
                   5043:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   5044:                    if(ll<jj){
                   5045:                      if(itimes==1){
                   5046:                        if(mle>=1)
                   5047:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   5048:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   5049:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   5050:                      }else{
                   5051:                        if(mle>=1)
                   5052:                          printf(" %.5e",matcov[jj][ll]); 
                   5053:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   5054:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   5055:                      }
1.95      brouard  5056:                    }else{
1.98      brouard  5057:                      if(itimes==1){
                   5058:                        if(mle>=1)
                   5059:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   5060:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   5061:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   5062:                      }else{
                   5063:                        if(mle>=1)
                   5064:                          printf(" %.5e",matcov[jj][ll]); 
                   5065:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   5066:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   5067:                      }
1.95      brouard  5068:                    }
                   5069:                  }
1.98      brouard  5070:                } /* end lk */
                   5071:              } /* end lj */
                   5072:            } /* end li */
                   5073:            if(mle>=1)
                   5074:              printf("\n");
                   5075:            fprintf(ficlog,"\n");
                   5076:            fprintf(ficres,"\n");
                   5077:            numlinepar++;
                   5078:          } /* end k*/
                   5079:        } /*end j */
                   5080:       } /* end i */
                   5081:     } /* end itimes */
                   5082:     
                   5083:     fflush(ficlog);
                   5084:     fflush(ficres);
                   5085:     
                   5086:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5087:       ungetc(c,ficpar);
                   5088:       fgets(line, MAXLINE, ficpar);
                   5089:       puts(line);
                   5090:       fputs(line,ficparo);
                   5091:     }
1.59      brouard  5092:     ungetc(c,ficpar);
1.98      brouard  5093:     
                   5094:     estepm=0;
                   5095:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
                   5096:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   5097:     if (fage <= 2) {
                   5098:       bage = ageminpar;
                   5099:       fage = agemaxpar;
                   5100:     }
                   5101:     
                   5102:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
                   5103:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   5104:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   5105:     
                   5106:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5107:       ungetc(c,ficpar);
                   5108:       fgets(line, MAXLINE, ficpar);
                   5109:       puts(line);
                   5110:       fputs(line,ficparo);
                   5111:     }
1.59      brouard  5112:     ungetc(c,ficpar);
1.98      brouard  5113:     
                   5114:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
                   5115:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5116:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5117:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5118:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5119:     
                   5120:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5121:       ungetc(c,ficpar);
                   5122:       fgets(line, MAXLINE, ficpar);
                   5123:       puts(line);
                   5124:       fputs(line,ficparo);
                   5125:     }
1.59      brouard  5126:     ungetc(c,ficpar);
1.98      brouard  5127:     
                   5128:     
                   5129:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   5130:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   5131:     
                   5132:     fscanf(ficpar,"pop_based=%d\n",&popbased);
                   5133:     fprintf(ficparo,"pop_based=%d\n",popbased);   
                   5134:     fprintf(ficres,"pop_based=%d\n",popbased);   
                   5135:     
                   5136:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5137:       ungetc(c,ficpar);
                   5138:       fgets(line, MAXLINE, ficpar);
                   5139:       puts(line);
                   5140:       fputs(line,ficparo);
                   5141:     }
1.53      brouard  5142:     ungetc(c,ficpar);
1.98      brouard  5143:     
                   5144:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
                   5145:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5146:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5147:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5148:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5149:     /* day and month of proj2 are not used but only year anproj2.*/
                   5150:     
                   5151:     
                   5152:     
                   5153:     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
                   5154:     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   5155:     
                   5156:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
                   5157:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   5158:     
                   5159:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                   5160:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                   5161:                 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
                   5162:       
                   5163:    /*------------ free_vector  -------------*/
                   5164:    /*  chdir(path); */
1.53      brouard  5165:  
1.98      brouard  5166:     free_ivector(wav,1,imx);
                   5167:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
                   5168:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
                   5169:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
                   5170:     free_lvector(num,1,n);
                   5171:     free_vector(agedc,1,n);
                   5172:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   5173:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   5174:     fclose(ficparo);
                   5175:     fclose(ficres);
                   5176: 
                   5177: 
                   5178:     /*--------------- Prevalence limit  (stable prevalence) --------------*/
                   5179:   
                   5180:     strcpy(filerespl,"pl");
                   5181:     strcat(filerespl,fileres);
                   5182:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
                   5183:       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
                   5184:       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
                   5185:     }
                   5186:     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
                   5187:     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
1.105   ! lievre   5188:     fprintf(ficrespl, "#Local time at start: %s", strstart);
1.98      brouard  5189:     fprintf(ficrespl,"#Stable prevalence \n");
                   5190:     fprintf(ficrespl,"#Age ");
                   5191:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
                   5192:     fprintf(ficrespl,"\n");
                   5193:   
                   5194:     prlim=matrix(1,nlstate,1,nlstate);
                   5195: 
                   5196:     agebase=ageminpar;
                   5197:     agelim=agemaxpar;
                   5198:     ftolpl=1.e-10;
                   5199:     i1=cptcoveff;
                   5200:     if (cptcovn < 1){i1=1;}
                   5201: 
                   5202:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5203:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5204:        k=k+1;
                   5205:        /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
                   5206:        fprintf(ficrespl,"\n#******");
                   5207:        printf("\n#******");
                   5208:        fprintf(ficlog,"\n#******");
                   5209:        for(j=1;j<=cptcoveff;j++) {
                   5210:          fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5211:          printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5212:          fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5213:        }
                   5214:        fprintf(ficrespl,"******\n");
                   5215:        printf("******\n");
                   5216:        fprintf(ficlog,"******\n");
1.53      brouard  5217:        
1.98      brouard  5218:        for (age=agebase; age<=agelim; age++){
                   5219:          prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                   5220:          fprintf(ficrespl,"%.0f ",age );
                   5221:          for(j=1;j<=cptcoveff;j++)
                   5222:            fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5223:          for(i=1; i<=nlstate;i++)
                   5224:            fprintf(ficrespl," %.5f", prlim[i][i]);
                   5225:          fprintf(ficrespl,"\n");
                   5226:        }
1.53      brouard  5227:       }
                   5228:     }
1.98      brouard  5229:     fclose(ficrespl);
1.53      brouard  5230: 
1.98      brouard  5231:     /*------------- h Pij x at various ages ------------*/
1.53      brouard  5232:   
1.98      brouard  5233:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
                   5234:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
                   5235:       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
                   5236:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
                   5237:     }
                   5238:     printf("Computing pij: result on file '%s' \n", filerespij);
                   5239:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
1.53      brouard  5240:   
1.98      brouard  5241:     stepsize=(int) (stepm+YEARM-1)/YEARM;
                   5242:     /*if (stepm<=24) stepsize=2;*/
1.53      brouard  5243: 
1.98      brouard  5244:     agelim=AGESUP;
                   5245:     hstepm=stepsize*YEARM; /* Every year of age */
                   5246:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
1.53      brouard  5247: 
1.98      brouard  5248:     /* hstepm=1;   aff par mois*/
1.105   ! lievre   5249:     fprintf(ficrespij, "#Local time at start: %s", strstart);
1.98      brouard  5250:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
                   5251:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5252:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5253:        k=k+1;
                   5254:        fprintf(ficrespij,"\n#****** ");
                   5255:        for(j=1;j<=cptcoveff;j++) 
                   5256:          fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5257:        fprintf(ficrespij,"******\n");
1.53      brouard  5258:        
1.98      brouard  5259:        for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
                   5260:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   5261:          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
1.59      brouard  5262: 
1.98      brouard  5263:          /*      nhstepm=nhstepm*YEARM; aff par mois*/
1.59      brouard  5264: 
1.98      brouard  5265:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5266:          oldm=oldms;savm=savms;
                   5267:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   5268:          fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
1.53      brouard  5269:          for(i=1; i<=nlstate;i++)
                   5270:            for(j=1; j<=nlstate+ndeath;j++)
1.98      brouard  5271:              fprintf(ficrespij," %1d-%1d",i,j);
                   5272:          fprintf(ficrespij,"\n");
                   5273:          for (h=0; h<=nhstepm; h++){
                   5274:            fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
                   5275:            for(i=1; i<=nlstate;i++)
                   5276:              for(j=1; j<=nlstate+ndeath;j++)
                   5277:                fprintf(ficrespij," %.5f", p3mat[i][j][h]);
                   5278:            fprintf(ficrespij,"\n");
                   5279:          }
                   5280:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.53      brouard  5281:          fprintf(ficrespij,"\n");
                   5282:        }
1.59      brouard  5283:       }
1.53      brouard  5284:     }
                   5285: 
1.105   ! lievre   5286:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
1.53      brouard  5287: 
1.98      brouard  5288:     fclose(ficrespij);
1.53      brouard  5289: 
1.98      brouard  5290:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5291:     for(i=1;i<=AGESUP;i++)
                   5292:       for(j=1;j<=NCOVMAX;j++)
                   5293:        for(k=1;k<=NCOVMAX;k++)
                   5294:          probs[i][j][k]=0.;
                   5295: 
                   5296:     /*---------- Forecasting ------------------*/
                   5297:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
                   5298:     if(prevfcast==1){
                   5299:       /*    if(stepm ==1){*/
1.70      brouard  5300:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
1.74      brouard  5301:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
1.98      brouard  5302:       /*      }  */
                   5303:       /*      else{ */
                   5304:       /*        erreur=108; */
                   5305:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   5306:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   5307:       /*      } */
                   5308:     }
1.53      brouard  5309:   
                   5310: 
1.98      brouard  5311:     /*---------- Health expectancies and variances ------------*/
1.53      brouard  5312: 
1.98      brouard  5313:     strcpy(filerest,"t");
                   5314:     strcat(filerest,fileres);
                   5315:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   5316:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   5317:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   5318:     }
                   5319:     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
                   5320:     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
1.53      brouard  5321: 
                   5322: 
1.98      brouard  5323:     strcpy(filerese,"e");
                   5324:     strcat(filerese,fileres);
                   5325:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   5326:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   5327:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   5328:     }
                   5329:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
                   5330:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
1.68      lievre   5331: 
1.98      brouard  5332:     strcpy(fileresv,"v");
                   5333:     strcat(fileresv,fileres);
                   5334:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   5335:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   5336:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   5337:     }
                   5338:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
                   5339:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
1.58      lievre   5340: 
1.98      brouard  5341:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
                   5342:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   5343:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
                   5344:        ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
                   5345:     */
1.58      lievre   5346: 
1.98      brouard  5347:     if (mobilav!=0) {
                   5348:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5349:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   5350:        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   5351:        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   5352:       }
1.54      brouard  5353:     }
1.53      brouard  5354: 
1.98      brouard  5355:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5356:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5357:        k=k+1; 
                   5358:        fprintf(ficrest,"\n#****** ");
                   5359:        for(j=1;j<=cptcoveff;j++) 
                   5360:          fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5361:        fprintf(ficrest,"******\n");
                   5362: 
                   5363:        fprintf(ficreseij,"\n#****** ");
                   5364:        for(j=1;j<=cptcoveff;j++) 
                   5365:          fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5366:        fprintf(ficreseij,"******\n");
                   5367: 
                   5368:        fprintf(ficresvij,"\n#****** ");
                   5369:        for(j=1;j<=cptcoveff;j++) 
                   5370:          fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5371:        fprintf(ficresvij,"******\n");
                   5372: 
                   5373:        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   5374:        oldm=oldms;savm=savms;
1.105   ! lievre   5375:        evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
1.53      brouard  5376:  
1.98      brouard  5377:        vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   5378:        oldm=oldms;savm=savms;
1.105   ! lievre   5379:        varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
1.98      brouard  5380:        if(popbased==1){
1.105   ! lievre   5381:          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
1.98      brouard  5382:        }
1.53      brouard  5383: 
1.105   ! lievre   5384:        fprintf(ficrest, "#Local time at start: %s", strstart);
1.98      brouard  5385:        fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
                   5386:        for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   5387:        fprintf(ficrest,"\n");
                   5388: 
                   5389:        epj=vector(1,nlstate+1);
                   5390:        for(age=bage; age <=fage ;age++){
                   5391:          prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                   5392:          if (popbased==1) {
                   5393:            if(mobilav ==0){
                   5394:              for(i=1; i<=nlstate;i++)
                   5395:                prlim[i][i]=probs[(int)age][i][k];
                   5396:            }else{ /* mobilav */ 
                   5397:              for(i=1; i<=nlstate;i++)
                   5398:                prlim[i][i]=mobaverage[(int)age][i][k];
                   5399:            }
1.53      brouard  5400:          }
                   5401:        
1.98      brouard  5402:          fprintf(ficrest," %4.0f",age);
                   5403:          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   5404:            for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   5405:              epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   5406:              /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   5407:            }
                   5408:            epj[nlstate+1] +=epj[j];
1.53      brouard  5409:          }
                   5410: 
1.98      brouard  5411:          for(i=1, vepp=0.;i <=nlstate;i++)
                   5412:            for(j=1;j <=nlstate;j++)
                   5413:              vepp += vareij[i][j][(int)age];
                   5414:          fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   5415:          for(j=1;j <=nlstate;j++){
                   5416:            fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   5417:          }
                   5418:          fprintf(ficrest,"\n");
1.53      brouard  5419:        }
1.98      brouard  5420:        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   5421:        free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   5422:        free_vector(epj,1,nlstate+1);
                   5423:       }
                   5424:     }
                   5425:     free_vector(weight,1,n);
                   5426:     free_imatrix(Tvard,1,15,1,2);
                   5427:     free_imatrix(s,1,maxwav+1,1,n);
                   5428:     free_matrix(anint,1,maxwav,1,n); 
                   5429:     free_matrix(mint,1,maxwav,1,n);
                   5430:     free_ivector(cod,1,n);
                   5431:     free_ivector(tab,1,NCOVMAX);
                   5432:     fclose(ficreseij);
                   5433:     fclose(ficresvij);
                   5434:     fclose(ficrest);
                   5435:     fclose(ficpar);
                   5436:   
                   5437:     /*------- Variance of stable prevalence------*/   
                   5438: 
                   5439:     strcpy(fileresvpl,"vpl");
                   5440:     strcat(fileresvpl,fileres);
                   5441:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
                   5442:       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
                   5443:       exit(0);
                   5444:     }
                   5445:     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
                   5446: 
                   5447:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5448:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5449:        k=k+1;
                   5450:        fprintf(ficresvpl,"\n#****** ");
                   5451:        for(j=1;j<=cptcoveff;j++) 
                   5452:          fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5453:        fprintf(ficresvpl,"******\n");
                   5454:       
                   5455:        varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   5456:        oldm=oldms;savm=savms;
1.105   ! lievre   5457:        varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
1.98      brouard  5458:        free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
1.53      brouard  5459:       }
1.98      brouard  5460:     }
1.53      brouard  5461: 
1.98      brouard  5462:     fclose(ficresvpl);
1.53      brouard  5463: 
1.98      brouard  5464:     /*---------- End : free ----------------*/
                   5465:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5466:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5467: 
                   5468:   }  /* mle==-3 arrives here for freeing */
                   5469:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
                   5470:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5471:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5472:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5473:   
                   5474:     free_matrix(covar,0,NCOVMAX,1,n);
                   5475:     free_matrix(matcov,1,npar,1,npar);
                   5476:     /*free_vector(delti,1,npar);*/
                   5477:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   5478:     free_matrix(agev,1,maxwav,1,imx);
                   5479:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   5480: 
                   5481:     free_ivector(ncodemax,1,8);
                   5482:     free_ivector(Tvar,1,15);
                   5483:     free_ivector(Tprod,1,15);
                   5484:     free_ivector(Tvaraff,1,15);
                   5485:     free_ivector(Tage,1,15);
                   5486:     free_ivector(Tcode,1,100);
1.74      brouard  5487: 
1.53      brouard  5488: 
1.88      brouard  5489:   fflush(fichtm);
                   5490:   fflush(ficgp);
1.53      brouard  5491:   
                   5492: 
1.91      brouard  5493:   if((nberr >0) || (nbwarn>0)){
1.95      brouard  5494:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
1.91      brouard  5495:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
1.53      brouard  5496:   }else{
1.91      brouard  5497:     printf("End of Imach\n");
                   5498:     fprintf(ficlog,"End of Imach\n");
1.53      brouard  5499:   }
                   5500:   printf("See log file on %s\n",filelog);
                   5501:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.85      brouard  5502:   (void) gettimeofday(&end_time,&tzp);
                   5503:   tm = *localtime(&end_time.tv_sec);
                   5504:   tmg = *gmtime(&end_time.tv_sec);
1.88      brouard  5505:   strcpy(strtend,asctime(&tm));
1.105   ! lievre   5506:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
1.94      brouard  5507:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.91      brouard  5508:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
1.85      brouard  5509: 
1.91      brouard  5510:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
                   5511:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
                   5512:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
1.85      brouard  5513:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
1.87      brouard  5514: /*   if(fileappend(fichtm,optionfilehtm)){ */
1.88      brouard  5515:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
1.87      brouard  5516:   fclose(fichtm);
1.91      brouard  5517:   fclose(fichtmcov);
1.88      brouard  5518:   fclose(ficgp);
1.91      brouard  5519:   fclose(ficlog);
1.53      brouard  5520:   /*------ End -----------*/
                   5521: 
1.88      brouard  5522:   chdir(path);
1.99      brouard  5523:   strcpy(plotcmd,"\"");
                   5524:   strcat(plotcmd,pathimach);
                   5525:   strcat(plotcmd,GNUPLOTPROGRAM);
                   5526:   strcat(plotcmd,"\"");
1.59      brouard  5527:   strcat(plotcmd," ");
                   5528:   strcat(plotcmd,optionfilegnuplot);
1.75      brouard  5529:   printf("Starting graphs with: %s",plotcmd);fflush(stdout);
1.91      brouard  5530:   if((outcmd=system(plotcmd)) != 0){
                   5531:     printf(" Problem with gnuplot\n");
                   5532:   }
1.75      brouard  5533:   printf(" Wait...");
1.53      brouard  5534:   while (z[0] != 'q') {
                   5535:     /* chdir(path); */
1.91      brouard  5536:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
1.53      brouard  5537:     scanf("%s",z);
1.91      brouard  5538: /*     if (z[0] == 'c') system("./imach"); */
1.99      brouard  5539:     if (z[0] == 'e') {
                   5540:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
                   5541:       system(optionfilehtm);
                   5542:     }
1.53      brouard  5543:     else if (z[0] == 'g') system(plotcmd);
                   5544:     else if (z[0] == 'q') exit(0);
                   5545:   }
1.91      brouard  5546:   end:
                   5547:   while (z[0] != 'q') {
                   5548:     printf("\nType  q for exiting: ");
                   5549:     scanf("%s",z);
                   5550:   }
1.53      brouard  5551: }
1.88      brouard  5552: 
1.53      brouard  5553: 
                   5554: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>