File:  [Local Repository] / imach / src / imach.c
Revision 1.151: download - view: text, annotated - select for diffs
Wed Jun 18 16:43:30 2014 UTC (9 years, 11 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
*** empty log message ***

    1: /* $Id: imach.c,v 1.151 2014/06/18 16:43:30 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.151  2014/06/18 16:43:30  brouard
    5:   *** empty log message ***
    6: 
    7:   Revision 1.150  2014/06/18 16:42:35  brouard
    8:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
    9:   Author: brouard
   10: 
   11:   Revision 1.149  2014/06/18 15:51:14  brouard
   12:   Summary: Some fixes in parameter files errors
   13:   Author: Nicolas Brouard
   14: 
   15:   Revision 1.148  2014/06/17 17:38:48  brouard
   16:   Summary: Nothing new
   17:   Author: Brouard
   18: 
   19:   Just a new packaging for OS/X version 0.98nS
   20: 
   21:   Revision 1.147  2014/06/16 10:33:11  brouard
   22:   *** empty log message ***
   23: 
   24:   Revision 1.146  2014/06/16 10:20:28  brouard
   25:   Summary: Merge
   26:   Author: Brouard
   27: 
   28:   Merge, before building revised version.
   29: 
   30:   Revision 1.145  2014/06/10 21:23:15  brouard
   31:   Summary: Debugging with valgrind
   32:   Author: Nicolas Brouard
   33: 
   34:   Lot of changes in order to output the results with some covariates
   35:   After the Edimburgh REVES conference 2014, it seems mandatory to
   36:   improve the code.
   37:   No more memory valgrind error but a lot has to be done in order to
   38:   continue the work of splitting the code into subroutines.
   39:   Also, decodemodel has been improved. Tricode is still not
   40:   optimal. nbcode should be improved. Documentation has been added in
   41:   the source code.
   42: 
   43:   Revision 1.143  2014/01/26 09:45:38  brouard
   44:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   45: 
   46:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   47:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   48: 
   49:   Revision 1.142  2014/01/26 03:57:36  brouard
   50:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   51: 
   52:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   53: 
   54:   Revision 1.141  2014/01/26 02:42:01  brouard
   55:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   56: 
   57:   Revision 1.140  2011/09/02 10:37:54  brouard
   58:   Summary: times.h is ok with mingw32 now.
   59: 
   60:   Revision 1.139  2010/06/14 07:50:17  brouard
   61:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   62:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   63: 
   64:   Revision 1.138  2010/04/30 18:19:40  brouard
   65:   *** empty log message ***
   66: 
   67:   Revision 1.137  2010/04/29 18:11:38  brouard
   68:   (Module): Checking covariates for more complex models
   69:   than V1+V2. A lot of change to be done. Unstable.
   70: 
   71:   Revision 1.136  2010/04/26 20:30:53  brouard
   72:   (Module): merging some libgsl code. Fixing computation
   73:   of likelione (using inter/intrapolation if mle = 0) in order to
   74:   get same likelihood as if mle=1.
   75:   Some cleaning of code and comments added.
   76: 
   77:   Revision 1.135  2009/10/29 15:33:14  brouard
   78:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   79: 
   80:   Revision 1.134  2009/10/29 13:18:53  brouard
   81:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   82: 
   83:   Revision 1.133  2009/07/06 10:21:25  brouard
   84:   just nforces
   85: 
   86:   Revision 1.132  2009/07/06 08:22:05  brouard
   87:   Many tings
   88: 
   89:   Revision 1.131  2009/06/20 16:22:47  brouard
   90:   Some dimensions resccaled
   91: 
   92:   Revision 1.130  2009/05/26 06:44:34  brouard
   93:   (Module): Max Covariate is now set to 20 instead of 8. A
   94:   lot of cleaning with variables initialized to 0. Trying to make
   95:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   96: 
   97:   Revision 1.129  2007/08/31 13:49:27  lievre
   98:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   99: 
  100:   Revision 1.128  2006/06/30 13:02:05  brouard
  101:   (Module): Clarifications on computing e.j
  102: 
  103:   Revision 1.127  2006/04/28 18:11:50  brouard
  104:   (Module): Yes the sum of survivors was wrong since
  105:   imach-114 because nhstepm was no more computed in the age
  106:   loop. Now we define nhstepma in the age loop.
  107:   (Module): In order to speed up (in case of numerous covariates) we
  108:   compute health expectancies (without variances) in a first step
  109:   and then all the health expectancies with variances or standard
  110:   deviation (needs data from the Hessian matrices) which slows the
  111:   computation.
  112:   In the future we should be able to stop the program is only health
  113:   expectancies and graph are needed without standard deviations.
  114: 
  115:   Revision 1.126  2006/04/28 17:23:28  brouard
  116:   (Module): Yes the sum of survivors was wrong since
  117:   imach-114 because nhstepm was no more computed in the age
  118:   loop. Now we define nhstepma in the age loop.
  119:   Version 0.98h
  120: 
  121:   Revision 1.125  2006/04/04 15:20:31  lievre
  122:   Errors in calculation of health expectancies. Age was not initialized.
  123:   Forecasting file added.
  124: 
  125:   Revision 1.124  2006/03/22 17:13:53  lievre
  126:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  127:   The log-likelihood is printed in the log file
  128: 
  129:   Revision 1.123  2006/03/20 10:52:43  brouard
  130:   * imach.c (Module): <title> changed, corresponds to .htm file
  131:   name. <head> headers where missing.
  132: 
  133:   * imach.c (Module): Weights can have a decimal point as for
  134:   English (a comma might work with a correct LC_NUMERIC environment,
  135:   otherwise the weight is truncated).
  136:   Modification of warning when the covariates values are not 0 or
  137:   1.
  138:   Version 0.98g
  139: 
  140:   Revision 1.122  2006/03/20 09:45:41  brouard
  141:   (Module): Weights can have a decimal point as for
  142:   English (a comma might work with a correct LC_NUMERIC environment,
  143:   otherwise the weight is truncated).
  144:   Modification of warning when the covariates values are not 0 or
  145:   1.
  146:   Version 0.98g
  147: 
  148:   Revision 1.121  2006/03/16 17:45:01  lievre
  149:   * imach.c (Module): Comments concerning covariates added
  150: 
  151:   * imach.c (Module): refinements in the computation of lli if
  152:   status=-2 in order to have more reliable computation if stepm is
  153:   not 1 month. Version 0.98f
  154: 
  155:   Revision 1.120  2006/03/16 15:10:38  lievre
  156:   (Module): refinements in the computation of lli if
  157:   status=-2 in order to have more reliable computation if stepm is
  158:   not 1 month. Version 0.98f
  159: 
  160:   Revision 1.119  2006/03/15 17:42:26  brouard
  161:   (Module): Bug if status = -2, the loglikelihood was
  162:   computed as likelihood omitting the logarithm. Version O.98e
  163: 
  164:   Revision 1.118  2006/03/14 18:20:07  brouard
  165:   (Module): varevsij Comments added explaining the second
  166:   table of variances if popbased=1 .
  167:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  168:   (Module): Function pstamp added
  169:   (Module): Version 0.98d
  170: 
  171:   Revision 1.117  2006/03/14 17:16:22  brouard
  172:   (Module): varevsij Comments added explaining the second
  173:   table of variances if popbased=1 .
  174:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  175:   (Module): Function pstamp added
  176:   (Module): Version 0.98d
  177: 
  178:   Revision 1.116  2006/03/06 10:29:27  brouard
  179:   (Module): Variance-covariance wrong links and
  180:   varian-covariance of ej. is needed (Saito).
  181: 
  182:   Revision 1.115  2006/02/27 12:17:45  brouard
  183:   (Module): One freematrix added in mlikeli! 0.98c
  184: 
  185:   Revision 1.114  2006/02/26 12:57:58  brouard
  186:   (Module): Some improvements in processing parameter
  187:   filename with strsep.
  188: 
  189:   Revision 1.113  2006/02/24 14:20:24  brouard
  190:   (Module): Memory leaks checks with valgrind and:
  191:   datafile was not closed, some imatrix were not freed and on matrix
  192:   allocation too.
  193: 
  194:   Revision 1.112  2006/01/30 09:55:26  brouard
  195:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  196: 
  197:   Revision 1.111  2006/01/25 20:38:18  brouard
  198:   (Module): Lots of cleaning and bugs added (Gompertz)
  199:   (Module): Comments can be added in data file. Missing date values
  200:   can be a simple dot '.'.
  201: 
  202:   Revision 1.110  2006/01/25 00:51:50  brouard
  203:   (Module): Lots of cleaning and bugs added (Gompertz)
  204: 
  205:   Revision 1.109  2006/01/24 19:37:15  brouard
  206:   (Module): Comments (lines starting with a #) are allowed in data.
  207: 
  208:   Revision 1.108  2006/01/19 18:05:42  lievre
  209:   Gnuplot problem appeared...
  210:   To be fixed
  211: 
  212:   Revision 1.107  2006/01/19 16:20:37  brouard
  213:   Test existence of gnuplot in imach path
  214: 
  215:   Revision 1.106  2006/01/19 13:24:36  brouard
  216:   Some cleaning and links added in html output
  217: 
  218:   Revision 1.105  2006/01/05 20:23:19  lievre
  219:   *** empty log message ***
  220: 
  221:   Revision 1.104  2005/09/30 16:11:43  lievre
  222:   (Module): sump fixed, loop imx fixed, and simplifications.
  223:   (Module): If the status is missing at the last wave but we know
  224:   that the person is alive, then we can code his/her status as -2
  225:   (instead of missing=-1 in earlier versions) and his/her
  226:   contributions to the likelihood is 1 - Prob of dying from last
  227:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  228:   the healthy state at last known wave). Version is 0.98
  229: 
  230:   Revision 1.103  2005/09/30 15:54:49  lievre
  231:   (Module): sump fixed, loop imx fixed, and simplifications.
  232: 
  233:   Revision 1.102  2004/09/15 17:31:30  brouard
  234:   Add the possibility to read data file including tab characters.
  235: 
  236:   Revision 1.101  2004/09/15 10:38:38  brouard
  237:   Fix on curr_time
  238: 
  239:   Revision 1.100  2004/07/12 18:29:06  brouard
  240:   Add version for Mac OS X. Just define UNIX in Makefile
  241: 
  242:   Revision 1.99  2004/06/05 08:57:40  brouard
  243:   *** empty log message ***
  244: 
  245:   Revision 1.98  2004/05/16 15:05:56  brouard
  246:   New version 0.97 . First attempt to estimate force of mortality
  247:   directly from the data i.e. without the need of knowing the health
  248:   state at each age, but using a Gompertz model: log u =a + b*age .
  249:   This is the basic analysis of mortality and should be done before any
  250:   other analysis, in order to test if the mortality estimated from the
  251:   cross-longitudinal survey is different from the mortality estimated
  252:   from other sources like vital statistic data.
  253: 
  254:   The same imach parameter file can be used but the option for mle should be -3.
  255: 
  256:   Agnès, who wrote this part of the code, tried to keep most of the
  257:   former routines in order to include the new code within the former code.
  258: 
  259:   The output is very simple: only an estimate of the intercept and of
  260:   the slope with 95% confident intervals.
  261: 
  262:   Current limitations:
  263:   A) Even if you enter covariates, i.e. with the
  264:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  265:   B) There is no computation of Life Expectancy nor Life Table.
  266: 
  267:   Revision 1.97  2004/02/20 13:25:42  lievre
  268:   Version 0.96d. Population forecasting command line is (temporarily)
  269:   suppressed.
  270: 
  271:   Revision 1.96  2003/07/15 15:38:55  brouard
  272:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  273:   rewritten within the same printf. Workaround: many printfs.
  274: 
  275:   Revision 1.95  2003/07/08 07:54:34  brouard
  276:   * imach.c (Repository):
  277:   (Repository): Using imachwizard code to output a more meaningful covariance
  278:   matrix (cov(a12,c31) instead of numbers.
  279: 
  280:   Revision 1.94  2003/06/27 13:00:02  brouard
  281:   Just cleaning
  282: 
  283:   Revision 1.93  2003/06/25 16:33:55  brouard
  284:   (Module): On windows (cygwin) function asctime_r doesn't
  285:   exist so I changed back to asctime which exists.
  286:   (Module): Version 0.96b
  287: 
  288:   Revision 1.92  2003/06/25 16:30:45  brouard
  289:   (Module): On windows (cygwin) function asctime_r doesn't
  290:   exist so I changed back to asctime which exists.
  291: 
  292:   Revision 1.91  2003/06/25 15:30:29  brouard
  293:   * imach.c (Repository): Duplicated warning errors corrected.
  294:   (Repository): Elapsed time after each iteration is now output. It
  295:   helps to forecast when convergence will be reached. Elapsed time
  296:   is stamped in powell.  We created a new html file for the graphs
  297:   concerning matrix of covariance. It has extension -cov.htm.
  298: 
  299:   Revision 1.90  2003/06/24 12:34:15  brouard
  300:   (Module): Some bugs corrected for windows. Also, when
  301:   mle=-1 a template is output in file "or"mypar.txt with the design
  302:   of the covariance matrix to be input.
  303: 
  304:   Revision 1.89  2003/06/24 12:30:52  brouard
  305:   (Module): Some bugs corrected for windows. Also, when
  306:   mle=-1 a template is output in file "or"mypar.txt with the design
  307:   of the covariance matrix to be input.
  308: 
  309:   Revision 1.88  2003/06/23 17:54:56  brouard
  310:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  311: 
  312:   Revision 1.87  2003/06/18 12:26:01  brouard
  313:   Version 0.96
  314: 
  315:   Revision 1.86  2003/06/17 20:04:08  brouard
  316:   (Module): Change position of html and gnuplot routines and added
  317:   routine fileappend.
  318: 
  319:   Revision 1.85  2003/06/17 13:12:43  brouard
  320:   * imach.c (Repository): Check when date of death was earlier that
  321:   current date of interview. It may happen when the death was just
  322:   prior to the death. In this case, dh was negative and likelihood
  323:   was wrong (infinity). We still send an "Error" but patch by
  324:   assuming that the date of death was just one stepm after the
  325:   interview.
  326:   (Repository): Because some people have very long ID (first column)
  327:   we changed int to long in num[] and we added a new lvector for
  328:   memory allocation. But we also truncated to 8 characters (left
  329:   truncation)
  330:   (Repository): No more line truncation errors.
  331: 
  332:   Revision 1.84  2003/06/13 21:44:43  brouard
  333:   * imach.c (Repository): Replace "freqsummary" at a correct
  334:   place. It differs from routine "prevalence" which may be called
  335:   many times. Probs is memory consuming and must be used with
  336:   parcimony.
  337:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  338: 
  339:   Revision 1.83  2003/06/10 13:39:11  lievre
  340:   *** empty log message ***
  341: 
  342:   Revision 1.82  2003/06/05 15:57:20  brouard
  343:   Add log in  imach.c and  fullversion number is now printed.
  344: 
  345: */
  346: /*
  347:    Interpolated Markov Chain
  348: 
  349:   Short summary of the programme:
  350:   
  351:   This program computes Healthy Life Expectancies from
  352:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  353:   first survey ("cross") where individuals from different ages are
  354:   interviewed on their health status or degree of disability (in the
  355:   case of a health survey which is our main interest) -2- at least a
  356:   second wave of interviews ("longitudinal") which measure each change
  357:   (if any) in individual health status.  Health expectancies are
  358:   computed from the time spent in each health state according to a
  359:   model. More health states you consider, more time is necessary to reach the
  360:   Maximum Likelihood of the parameters involved in the model.  The
  361:   simplest model is the multinomial logistic model where pij is the
  362:   probability to be observed in state j at the second wave
  363:   conditional to be observed in state i at the first wave. Therefore
  364:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  365:   'age' is age and 'sex' is a covariate. If you want to have a more
  366:   complex model than "constant and age", you should modify the program
  367:   where the markup *Covariates have to be included here again* invites
  368:   you to do it.  More covariates you add, slower the
  369:   convergence.
  370: 
  371:   The advantage of this computer programme, compared to a simple
  372:   multinomial logistic model, is clear when the delay between waves is not
  373:   identical for each individual. Also, if a individual missed an
  374:   intermediate interview, the information is lost, but taken into
  375:   account using an interpolation or extrapolation.  
  376: 
  377:   hPijx is the probability to be observed in state i at age x+h
  378:   conditional to the observed state i at age x. The delay 'h' can be
  379:   split into an exact number (nh*stepm) of unobserved intermediate
  380:   states. This elementary transition (by month, quarter,
  381:   semester or year) is modelled as a multinomial logistic.  The hPx
  382:   matrix is simply the matrix product of nh*stepm elementary matrices
  383:   and the contribution of each individual to the likelihood is simply
  384:   hPijx.
  385: 
  386:   Also this programme outputs the covariance matrix of the parameters but also
  387:   of the life expectancies. It also computes the period (stable) prevalence. 
  388:   
  389:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  390:            Institut national d'études démographiques, Paris.
  391:   This software have been partly granted by Euro-REVES, a concerted action
  392:   from the European Union.
  393:   It is copyrighted identically to a GNU software product, ie programme and
  394:   software can be distributed freely for non commercial use. Latest version
  395:   can be accessed at http://euroreves.ined.fr/imach .
  396: 
  397:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  398:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  399:   
  400:   **********************************************************************/
  401: /*
  402:   main
  403:   read parameterfile
  404:   read datafile
  405:   concatwav
  406:   freqsummary
  407:   if (mle >= 1)
  408:     mlikeli
  409:   print results files
  410:   if mle==1 
  411:      computes hessian
  412:   read end of parameter file: agemin, agemax, bage, fage, estepm
  413:       begin-prev-date,...
  414:   open gnuplot file
  415:   open html file
  416:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  417:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  418:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  419:     freexexit2 possible for memory heap.
  420: 
  421:   h Pij x                         | pij_nom  ficrestpij
  422:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  423:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  424:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  425: 
  426:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  427:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  428:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  429:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  430:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  431: 
  432:   forecasting if prevfcast==1 prevforecast call prevalence()
  433:   health expectancies
  434:   Variance-covariance of DFLE
  435:   prevalence()
  436:    movingaverage()
  437:   varevsij() 
  438:   if popbased==1 varevsij(,popbased)
  439:   total life expectancies
  440:   Variance of period (stable) prevalence
  441:  end
  442: */
  443: 
  444: 
  445: 
  446:  
  447: #include <math.h>
  448: #include <stdio.h>
  449: #include <stdlib.h>
  450: #include <string.h>
  451: #include <unistd.h>
  452: 
  453: #include <limits.h>
  454: #include <sys/types.h>
  455: #include <sys/stat.h>
  456: #include <errno.h>
  457: extern int errno;
  458: 
  459: #ifdef LINUX
  460: #include <time.h>
  461: #include "timeval.h"
  462: #else
  463: #include <sys/time.h>
  464: #endif
  465: 
  466: #ifdef GSL
  467: #include <gsl/gsl_errno.h>
  468: #include <gsl/gsl_multimin.h>
  469: #endif
  470: 
  471: /* #include <libintl.h> */
  472: /* #define _(String) gettext (String) */
  473: 
  474: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  475: 
  476: #define GNUPLOTPROGRAM "gnuplot"
  477: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  478: #define FILENAMELENGTH 132
  479: 
  480: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  481: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  482: 
  483: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  484: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  485: 
  486: #define NINTERVMAX 8
  487: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  488: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  489: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  490: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  491: #define MAXN 20000
  492: #define YEARM 12. /**< Number of months per year */
  493: #define AGESUP 130
  494: #define AGEBASE 40
  495: #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
  496: #ifdef UNIX
  497: #define DIRSEPARATOR '/'
  498: #define CHARSEPARATOR "/"
  499: #define ODIRSEPARATOR '\\'
  500: #else
  501: #define DIRSEPARATOR '\\'
  502: #define CHARSEPARATOR "\\"
  503: #define ODIRSEPARATOR '/'
  504: #endif
  505: 
  506: /* $Id: imach.c,v 1.151 2014/06/18 16:43:30 brouard Exp $ */
  507: /* $State: Exp $ */
  508: 
  509: char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
  510: char fullversion[]="$Revision: 1.151 $ $Date: 2014/06/18 16:43:30 $"; 
  511: char strstart[80];
  512: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  513: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  514: int nvar=0, nforce=0; /* Number of variables, number of forces */
  515: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  516: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  517: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  518: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  519: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  520: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  521: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  522: int cptcov=0; /* Working variable */
  523: int npar=NPARMAX;
  524: int nlstate=2; /* Number of live states */
  525: int ndeath=1; /* Number of dead states */
  526: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  527: int popbased=0;
  528: 
  529: int *wav; /* Number of waves for this individuual 0 is possible */
  530: int maxwav=0; /* Maxim number of waves */
  531: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  532: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  533: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  534: 		   to the likelihood and the sum of weights (done by funcone)*/
  535: int mle=1, weightopt=0;
  536: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  537: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  538: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  539: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  540: double jmean=1; /* Mean space between 2 waves */
  541: double **matprod2(); /* test */
  542: double **oldm, **newm, **savm; /* Working pointers to matrices */
  543: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  544: /*FILE *fic ; */ /* Used in readdata only */
  545: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  546: FILE *ficlog, *ficrespow;
  547: int globpr=0; /* Global variable for printing or not */
  548: double fretone; /* Only one call to likelihood */
  549: long ipmx=0; /* Number of contributions */
  550: double sw; /* Sum of weights */
  551: char filerespow[FILENAMELENGTH];
  552: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  553: FILE *ficresilk;
  554: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  555: FILE *ficresprobmorprev;
  556: FILE *fichtm, *fichtmcov; /* Html File */
  557: FILE *ficreseij;
  558: char filerese[FILENAMELENGTH];
  559: FILE *ficresstdeij;
  560: char fileresstde[FILENAMELENGTH];
  561: FILE *ficrescveij;
  562: char filerescve[FILENAMELENGTH];
  563: FILE  *ficresvij;
  564: char fileresv[FILENAMELENGTH];
  565: FILE  *ficresvpl;
  566: char fileresvpl[FILENAMELENGTH];
  567: char title[MAXLINE];
  568: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  569: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  570: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  571: char command[FILENAMELENGTH];
  572: int  outcmd=0;
  573: 
  574: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  575: 
  576: char filelog[FILENAMELENGTH]; /* Log file */
  577: char filerest[FILENAMELENGTH];
  578: char fileregp[FILENAMELENGTH];
  579: char popfile[FILENAMELENGTH];
  580: 
  581: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  582: 
  583: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  584: struct timezone tzp;
  585: extern int gettimeofday();
  586: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  587: long time_value;
  588: extern long time();
  589: char strcurr[80], strfor[80];
  590: 
  591: char *endptr;
  592: long lval;
  593: double dval;
  594: 
  595: #define NR_END 1
  596: #define FREE_ARG char*
  597: #define FTOL 1.0e-10
  598: 
  599: #define NRANSI 
  600: #define ITMAX 200 
  601: 
  602: #define TOL 2.0e-4 
  603: 
  604: #define CGOLD 0.3819660 
  605: #define ZEPS 1.0e-10 
  606: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  607: 
  608: #define GOLD 1.618034 
  609: #define GLIMIT 100.0 
  610: #define TINY 1.0e-20 
  611: 
  612: static double maxarg1,maxarg2;
  613: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  614: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  615:   
  616: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  617: #define rint(a) floor(a+0.5)
  618: 
  619: static double sqrarg;
  620: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  621: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  622: int agegomp= AGEGOMP;
  623: 
  624: int imx; 
  625: int stepm=1;
  626: /* Stepm, step in month: minimum step interpolation*/
  627: 
  628: int estepm;
  629: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  630: 
  631: int m,nb;
  632: long *num;
  633: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  634: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  635: double **pmmij, ***probs;
  636: double *ageexmed,*agecens;
  637: double dateintmean=0;
  638: 
  639: double *weight;
  640: int **s; /* Status */
  641: double *agedc;
  642: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  643: 		  * covar=matrix(0,NCOVMAX,1,n); 
  644: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  645: double  idx; 
  646: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  647: int *Ndum; /** Freq of modality (tricode */
  648: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  649: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  650: double *lsurv, *lpop, *tpop;
  651: 
  652: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  653: double ftolhess; /**< Tolerance for computing hessian */
  654: 
  655: /**************** split *************************/
  656: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  657: {
  658:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  659:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  660:   */ 
  661:   char	*ss;				/* pointer */
  662:   int	l1, l2;				/* length counters */
  663: 
  664:   l1 = strlen(path );			/* length of path */
  665:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  666:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  667:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  668:     strcpy( name, path );		/* we got the fullname name because no directory */
  669:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  670:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  671:     /* get current working directory */
  672:     /*    extern  char* getcwd ( char *buf , int len);*/
  673:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  674:       return( GLOCK_ERROR_GETCWD );
  675:     }
  676:     /* got dirc from getcwd*/
  677:     printf(" DIRC = %s \n",dirc);
  678:   } else {				/* strip direcotry from path */
  679:     ss++;				/* after this, the filename */
  680:     l2 = strlen( ss );			/* length of filename */
  681:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  682:     strcpy( name, ss );		/* save file name */
  683:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  684:     dirc[l1-l2] = 0;			/* add zero */
  685:     printf(" DIRC2 = %s \n",dirc);
  686:   }
  687:   /* We add a separator at the end of dirc if not exists */
  688:   l1 = strlen( dirc );			/* length of directory */
  689:   if( dirc[l1-1] != DIRSEPARATOR ){
  690:     dirc[l1] =  DIRSEPARATOR;
  691:     dirc[l1+1] = 0; 
  692:     printf(" DIRC3 = %s \n",dirc);
  693:   }
  694:   ss = strrchr( name, '.' );		/* find last / */
  695:   if (ss >0){
  696:     ss++;
  697:     strcpy(ext,ss);			/* save extension */
  698:     l1= strlen( name);
  699:     l2= strlen(ss)+1;
  700:     strncpy( finame, name, l1-l2);
  701:     finame[l1-l2]= 0;
  702:   }
  703: 
  704:   return( 0 );				/* we're done */
  705: }
  706: 
  707: 
  708: /******************************************/
  709: 
  710: void replace_back_to_slash(char *s, char*t)
  711: {
  712:   int i;
  713:   int lg=0;
  714:   i=0;
  715:   lg=strlen(t);
  716:   for(i=0; i<= lg; i++) {
  717:     (s[i] = t[i]);
  718:     if (t[i]== '\\') s[i]='/';
  719:   }
  720: }
  721: 
  722: char *trimbb(char *out, char *in)
  723: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  724:   char *s;
  725:   s=out;
  726:   while (*in != '\0'){
  727:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  728:       in++;
  729:     }
  730:     *out++ = *in++;
  731:   }
  732:   *out='\0';
  733:   return s;
  734: }
  735: 
  736: char *cutl(char *blocc, char *alocc, char *in, char occ)
  737: {
  738:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  739:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  740:      gives blocc="abcdef2ghi" and alocc="j".
  741:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  742:   */
  743:   char *s, *t, *bl;
  744:   t=in;s=in;
  745:   while ((*in != occ) && (*in != '\0')){
  746:     *alocc++ = *in++;
  747:   }
  748:   if( *in == occ){
  749:     *(alocc)='\0';
  750:     s=++in;
  751:   }
  752:  
  753:   if (s == t) {/* occ not found */
  754:     *(alocc-(in-s))='\0';
  755:     in=s;
  756:   }
  757:   while ( *in != '\0'){
  758:     *blocc++ = *in++;
  759:   }
  760: 
  761:   *blocc='\0';
  762:   return t;
  763: }
  764: char *cutv(char *blocc, char *alocc, char *in, char occ)
  765: {
  766:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  767:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  768:      gives blocc="abcdef2ghi" and alocc="j".
  769:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  770:   */
  771:   char *s, *t;
  772:   t=in;s=in;
  773:   while (*in != '\0'){
  774:     while( *in == occ){
  775:       *blocc++ = *in++;
  776:       s=in;
  777:     }
  778:     *blocc++ = *in++;
  779:   }
  780:   if (s == t) /* occ not found */
  781:     *(blocc-(in-s))='\0';
  782:   else
  783:     *(blocc-(in-s)-1)='\0';
  784:   in=s;
  785:   while ( *in != '\0'){
  786:     *alocc++ = *in++;
  787:   }
  788: 
  789:   *alocc='\0';
  790:   return s;
  791: }
  792: 
  793: int nbocc(char *s, char occ)
  794: {
  795:   int i,j=0;
  796:   int lg=20;
  797:   i=0;
  798:   lg=strlen(s);
  799:   for(i=0; i<= lg; i++) {
  800:   if  (s[i] == occ ) j++;
  801:   }
  802:   return j;
  803: }
  804: 
  805: /* void cutv(char *u,char *v, char*t, char occ) */
  806: /* { */
  807: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  808: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  809: /*      gives u="abcdef2ghi" and v="j" *\/ */
  810: /*   int i,lg,j,p=0; */
  811: /*   i=0; */
  812: /*   lg=strlen(t); */
  813: /*   for(j=0; j<=lg-1; j++) { */
  814: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  815: /*   } */
  816: 
  817: /*   for(j=0; j<p; j++) { */
  818: /*     (u[j] = t[j]); */
  819: /*   } */
  820: /*      u[p]='\0'; */
  821: 
  822: /*    for(j=0; j<= lg; j++) { */
  823: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  824: /*   } */
  825: /* } */
  826: 
  827: /********************** nrerror ********************/
  828: 
  829: void nrerror(char error_text[])
  830: {
  831:   fprintf(stderr,"ERREUR ...\n");
  832:   fprintf(stderr,"%s\n",error_text);
  833:   exit(EXIT_FAILURE);
  834: }
  835: /*********************** vector *******************/
  836: double *vector(int nl, int nh)
  837: {
  838:   double *v;
  839:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  840:   if (!v) nrerror("allocation failure in vector");
  841:   return v-nl+NR_END;
  842: }
  843: 
  844: /************************ free vector ******************/
  845: void free_vector(double*v, int nl, int nh)
  846: {
  847:   free((FREE_ARG)(v+nl-NR_END));
  848: }
  849: 
  850: /************************ivector *******************************/
  851: int *ivector(long nl,long nh)
  852: {
  853:   int *v;
  854:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  855:   if (!v) nrerror("allocation failure in ivector");
  856:   return v-nl+NR_END;
  857: }
  858: 
  859: /******************free ivector **************************/
  860: void free_ivector(int *v, long nl, long nh)
  861: {
  862:   free((FREE_ARG)(v+nl-NR_END));
  863: }
  864: 
  865: /************************lvector *******************************/
  866: long *lvector(long nl,long nh)
  867: {
  868:   long *v;
  869:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  870:   if (!v) nrerror("allocation failure in ivector");
  871:   return v-nl+NR_END;
  872: }
  873: 
  874: /******************free lvector **************************/
  875: void free_lvector(long *v, long nl, long nh)
  876: {
  877:   free((FREE_ARG)(v+nl-NR_END));
  878: }
  879: 
  880: /******************* imatrix *******************************/
  881: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  882:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  883: { 
  884:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  885:   int **m; 
  886:   
  887:   /* allocate pointers to rows */ 
  888:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  889:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  890:   m += NR_END; 
  891:   m -= nrl; 
  892:   
  893:   
  894:   /* allocate rows and set pointers to them */ 
  895:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  896:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  897:   m[nrl] += NR_END; 
  898:   m[nrl] -= ncl; 
  899:   
  900:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  901:   
  902:   /* return pointer to array of pointers to rows */ 
  903:   return m; 
  904: } 
  905: 
  906: /****************** free_imatrix *************************/
  907: void free_imatrix(m,nrl,nrh,ncl,nch)
  908:       int **m;
  909:       long nch,ncl,nrh,nrl; 
  910:      /* free an int matrix allocated by imatrix() */ 
  911: { 
  912:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  913:   free((FREE_ARG) (m+nrl-NR_END)); 
  914: } 
  915: 
  916: /******************* matrix *******************************/
  917: double **matrix(long nrl, long nrh, long ncl, long nch)
  918: {
  919:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  920:   double **m;
  921: 
  922:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  923:   if (!m) nrerror("allocation failure 1 in matrix()");
  924:   m += NR_END;
  925:   m -= nrl;
  926: 
  927:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  928:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  929:   m[nrl] += NR_END;
  930:   m[nrl] -= ncl;
  931: 
  932:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  933:   return m;
  934:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
  935: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
  936: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
  937:    */
  938: }
  939: 
  940: /*************************free matrix ************************/
  941: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  942: {
  943:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  944:   free((FREE_ARG)(m+nrl-NR_END));
  945: }
  946: 
  947: /******************* ma3x *******************************/
  948: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  949: {
  950:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  951:   double ***m;
  952: 
  953:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  954:   if (!m) nrerror("allocation failure 1 in matrix()");
  955:   m += NR_END;
  956:   m -= nrl;
  957: 
  958:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  959:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  960:   m[nrl] += NR_END;
  961:   m[nrl] -= ncl;
  962: 
  963:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  964: 
  965:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  966:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  967:   m[nrl][ncl] += NR_END;
  968:   m[nrl][ncl] -= nll;
  969:   for (j=ncl+1; j<=nch; j++) 
  970:     m[nrl][j]=m[nrl][j-1]+nlay;
  971:   
  972:   for (i=nrl+1; i<=nrh; i++) {
  973:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  974:     for (j=ncl+1; j<=nch; j++) 
  975:       m[i][j]=m[i][j-1]+nlay;
  976:   }
  977:   return m; 
  978:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  979:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  980:   */
  981: }
  982: 
  983: /*************************free ma3x ************************/
  984: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  985: {
  986:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  987:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  988:   free((FREE_ARG)(m+nrl-NR_END));
  989: }
  990: 
  991: /*************** function subdirf ***********/
  992: char *subdirf(char fileres[])
  993: {
  994:   /* Caution optionfilefiname is hidden */
  995:   strcpy(tmpout,optionfilefiname);
  996:   strcat(tmpout,"/"); /* Add to the right */
  997:   strcat(tmpout,fileres);
  998:   return tmpout;
  999: }
 1000: 
 1001: /*************** function subdirf2 ***********/
 1002: char *subdirf2(char fileres[], char *preop)
 1003: {
 1004:   
 1005:   /* Caution optionfilefiname is hidden */
 1006:   strcpy(tmpout,optionfilefiname);
 1007:   strcat(tmpout,"/");
 1008:   strcat(tmpout,preop);
 1009:   strcat(tmpout,fileres);
 1010:   return tmpout;
 1011: }
 1012: 
 1013: /*************** function subdirf3 ***********/
 1014: char *subdirf3(char fileres[], char *preop, char *preop2)
 1015: {
 1016:   
 1017:   /* Caution optionfilefiname is hidden */
 1018:   strcpy(tmpout,optionfilefiname);
 1019:   strcat(tmpout,"/");
 1020:   strcat(tmpout,preop);
 1021:   strcat(tmpout,preop2);
 1022:   strcat(tmpout,fileres);
 1023:   return tmpout;
 1024: }
 1025: 
 1026: /***************** f1dim *************************/
 1027: extern int ncom; 
 1028: extern double *pcom,*xicom;
 1029: extern double (*nrfunc)(double []); 
 1030:  
 1031: double f1dim(double x) 
 1032: { 
 1033:   int j; 
 1034:   double f;
 1035:   double *xt; 
 1036:  
 1037:   xt=vector(1,ncom); 
 1038:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1039:   f=(*nrfunc)(xt); 
 1040:   free_vector(xt,1,ncom); 
 1041:   return f; 
 1042: } 
 1043: 
 1044: /*****************brent *************************/
 1045: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1046: { 
 1047:   int iter; 
 1048:   double a,b,d,etemp;
 1049:   double fu,fv,fw,fx;
 1050:   double ftemp;
 1051:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1052:   double e=0.0; 
 1053:  
 1054:   a=(ax < cx ? ax : cx); 
 1055:   b=(ax > cx ? ax : cx); 
 1056:   x=w=v=bx; 
 1057:   fw=fv=fx=(*f)(x); 
 1058:   for (iter=1;iter<=ITMAX;iter++) { 
 1059:     xm=0.5*(a+b); 
 1060:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1061:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1062:     printf(".");fflush(stdout);
 1063:     fprintf(ficlog,".");fflush(ficlog);
 1064: #ifdef DEBUG
 1065:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1066:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1067:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1068: #endif
 1069:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1070:       *xmin=x; 
 1071:       return fx; 
 1072:     } 
 1073:     ftemp=fu;
 1074:     if (fabs(e) > tol1) { 
 1075:       r=(x-w)*(fx-fv); 
 1076:       q=(x-v)*(fx-fw); 
 1077:       p=(x-v)*q-(x-w)*r; 
 1078:       q=2.0*(q-r); 
 1079:       if (q > 0.0) p = -p; 
 1080:       q=fabs(q); 
 1081:       etemp=e; 
 1082:       e=d; 
 1083:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1084: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1085:       else { 
 1086: 	d=p/q; 
 1087: 	u=x+d; 
 1088: 	if (u-a < tol2 || b-u < tol2) 
 1089: 	  d=SIGN(tol1,xm-x); 
 1090:       } 
 1091:     } else { 
 1092:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1093:     } 
 1094:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1095:     fu=(*f)(u); 
 1096:     if (fu <= fx) { 
 1097:       if (u >= x) a=x; else b=x; 
 1098:       SHFT(v,w,x,u) 
 1099: 	SHFT(fv,fw,fx,fu) 
 1100: 	} else { 
 1101: 	  if (u < x) a=u; else b=u; 
 1102: 	  if (fu <= fw || w == x) { 
 1103: 	    v=w; 
 1104: 	    w=u; 
 1105: 	    fv=fw; 
 1106: 	    fw=fu; 
 1107: 	  } else if (fu <= fv || v == x || v == w) { 
 1108: 	    v=u; 
 1109: 	    fv=fu; 
 1110: 	  } 
 1111: 	} 
 1112:   } 
 1113:   nrerror("Too many iterations in brent"); 
 1114:   *xmin=x; 
 1115:   return fx; 
 1116: } 
 1117: 
 1118: /****************** mnbrak ***********************/
 1119: 
 1120: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1121: 	    double (*func)(double)) 
 1122: { 
 1123:   double ulim,u,r,q, dum;
 1124:   double fu; 
 1125:  
 1126:   *fa=(*func)(*ax); 
 1127:   *fb=(*func)(*bx); 
 1128:   if (*fb > *fa) { 
 1129:     SHFT(dum,*ax,*bx,dum) 
 1130:       SHFT(dum,*fb,*fa,dum) 
 1131:       } 
 1132:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1133:   *fc=(*func)(*cx); 
 1134:   while (*fb > *fc) { 
 1135:     r=(*bx-*ax)*(*fb-*fc); 
 1136:     q=(*bx-*cx)*(*fb-*fa); 
 1137:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1138:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 1139:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
 1140:     if ((*bx-u)*(u-*cx) > 0.0) { 
 1141:       fu=(*func)(u); 
 1142:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
 1143:       fu=(*func)(u); 
 1144:       if (fu < *fc) { 
 1145: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1146: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
 1147: 	  } 
 1148:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 1149:       u=ulim; 
 1150:       fu=(*func)(u); 
 1151:     } else { 
 1152:       u=(*cx)+GOLD*(*cx-*bx); 
 1153:       fu=(*func)(u); 
 1154:     } 
 1155:     SHFT(*ax,*bx,*cx,u) 
 1156:       SHFT(*fa,*fb,*fc,fu) 
 1157:       } 
 1158: } 
 1159: 
 1160: /*************** linmin ************************/
 1161: 
 1162: int ncom; 
 1163: double *pcom,*xicom;
 1164: double (*nrfunc)(double []); 
 1165:  
 1166: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1167: { 
 1168:   double brent(double ax, double bx, double cx, 
 1169: 	       double (*f)(double), double tol, double *xmin); 
 1170:   double f1dim(double x); 
 1171:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1172: 	      double *fc, double (*func)(double)); 
 1173:   int j; 
 1174:   double xx,xmin,bx,ax; 
 1175:   double fx,fb,fa;
 1176:  
 1177:   ncom=n; 
 1178:   pcom=vector(1,n); 
 1179:   xicom=vector(1,n); 
 1180:   nrfunc=func; 
 1181:   for (j=1;j<=n;j++) { 
 1182:     pcom[j]=p[j]; 
 1183:     xicom[j]=xi[j]; 
 1184:   } 
 1185:   ax=0.0; 
 1186:   xx=1.0; 
 1187:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 1188:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 1189: #ifdef DEBUG
 1190:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1191:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1192: #endif
 1193:   for (j=1;j<=n;j++) { 
 1194:     xi[j] *= xmin; 
 1195:     p[j] += xi[j]; 
 1196:   } 
 1197:   free_vector(xicom,1,n); 
 1198:   free_vector(pcom,1,n); 
 1199: } 
 1200: 
 1201: char *asc_diff_time(long time_sec, char ascdiff[])
 1202: {
 1203:   long sec_left, days, hours, minutes;
 1204:   days = (time_sec) / (60*60*24);
 1205:   sec_left = (time_sec) % (60*60*24);
 1206:   hours = (sec_left) / (60*60) ;
 1207:   sec_left = (sec_left) %(60*60);
 1208:   minutes = (sec_left) /60;
 1209:   sec_left = (sec_left) % (60);
 1210:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1211:   return ascdiff;
 1212: }
 1213: 
 1214: /*************** powell ************************/
 1215: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1216: 	    double (*func)(double [])) 
 1217: { 
 1218:   void linmin(double p[], double xi[], int n, double *fret, 
 1219: 	      double (*func)(double [])); 
 1220:   int i,ibig,j; 
 1221:   double del,t,*pt,*ptt,*xit;
 1222:   double fp,fptt;
 1223:   double *xits;
 1224:   int niterf, itmp;
 1225: 
 1226:   pt=vector(1,n); 
 1227:   ptt=vector(1,n); 
 1228:   xit=vector(1,n); 
 1229:   xits=vector(1,n); 
 1230:   *fret=(*func)(p); 
 1231:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1232:   for (*iter=1;;++(*iter)) { 
 1233:     fp=(*fret); 
 1234:     ibig=0; 
 1235:     del=0.0; 
 1236:     last_time=curr_time;
 1237:     (void) gettimeofday(&curr_time,&tzp);
 1238:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 1239:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 1240: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 1241:    for (i=1;i<=n;i++) {
 1242:       printf(" %d %.12f",i, p[i]);
 1243:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1244:       fprintf(ficrespow," %.12lf", p[i]);
 1245:     }
 1246:     printf("\n");
 1247:     fprintf(ficlog,"\n");
 1248:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1249:     if(*iter <=3){
 1250:       tm = *localtime(&curr_time.tv_sec);
 1251:       strcpy(strcurr,asctime(&tm));
 1252: /*       asctime_r(&tm,strcurr); */
 1253:       forecast_time=curr_time; 
 1254:       itmp = strlen(strcurr);
 1255:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1256: 	strcurr[itmp-1]='\0';
 1257:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 1258:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 1259:       for(niterf=10;niterf<=30;niterf+=10){
 1260: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 1261: 	tmf = *localtime(&forecast_time.tv_sec);
 1262: /* 	asctime_r(&tmf,strfor); */
 1263: 	strcpy(strfor,asctime(&tmf));
 1264: 	itmp = strlen(strfor);
 1265: 	if(strfor[itmp-1]=='\n')
 1266: 	strfor[itmp-1]='\0';
 1267: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 1268: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 1269:       }
 1270:     }
 1271:     for (i=1;i<=n;i++) { 
 1272:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1273:       fptt=(*fret); 
 1274: #ifdef DEBUG
 1275:       printf("fret=%lf \n",*fret);
 1276:       fprintf(ficlog,"fret=%lf \n",*fret);
 1277: #endif
 1278:       printf("%d",i);fflush(stdout);
 1279:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1280:       linmin(p,xit,n,fret,func); 
 1281:       if (fabs(fptt-(*fret)) > del) { 
 1282: 	del=fabs(fptt-(*fret)); 
 1283: 	ibig=i; 
 1284:       } 
 1285: #ifdef DEBUG
 1286:       printf("%d %.12e",i,(*fret));
 1287:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1288:       for (j=1;j<=n;j++) {
 1289: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1290: 	printf(" x(%d)=%.12e",j,xit[j]);
 1291: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1292:       }
 1293:       for(j=1;j<=n;j++) {
 1294: 	printf(" p=%.12e",p[j]);
 1295: 	fprintf(ficlog," p=%.12e",p[j]);
 1296:       }
 1297:       printf("\n");
 1298:       fprintf(ficlog,"\n");
 1299: #endif
 1300:     } 
 1301:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1302: #ifdef DEBUG
 1303:       int k[2],l;
 1304:       k[0]=1;
 1305:       k[1]=-1;
 1306:       printf("Max: %.12e",(*func)(p));
 1307:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1308:       for (j=1;j<=n;j++) {
 1309: 	printf(" %.12e",p[j]);
 1310: 	fprintf(ficlog," %.12e",p[j]);
 1311:       }
 1312:       printf("\n");
 1313:       fprintf(ficlog,"\n");
 1314:       for(l=0;l<=1;l++) {
 1315: 	for (j=1;j<=n;j++) {
 1316: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1317: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1318: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1319: 	}
 1320: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1321: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1322:       }
 1323: #endif
 1324: 
 1325: 
 1326:       free_vector(xit,1,n); 
 1327:       free_vector(xits,1,n); 
 1328:       free_vector(ptt,1,n); 
 1329:       free_vector(pt,1,n); 
 1330:       return; 
 1331:     } 
 1332:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1333:     for (j=1;j<=n;j++) { 
 1334:       ptt[j]=2.0*p[j]-pt[j]; 
 1335:       xit[j]=p[j]-pt[j]; 
 1336:       pt[j]=p[j]; 
 1337:     } 
 1338:     fptt=(*func)(ptt); 
 1339:     if (fptt < fp) { 
 1340:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 1341:       if (t < 0.0) { 
 1342: 	linmin(p,xit,n,fret,func); 
 1343: 	for (j=1;j<=n;j++) { 
 1344: 	  xi[j][ibig]=xi[j][n]; 
 1345: 	  xi[j][n]=xit[j]; 
 1346: 	}
 1347: #ifdef DEBUG
 1348: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1349: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1350: 	for(j=1;j<=n;j++){
 1351: 	  printf(" %.12e",xit[j]);
 1352: 	  fprintf(ficlog," %.12e",xit[j]);
 1353: 	}
 1354: 	printf("\n");
 1355: 	fprintf(ficlog,"\n");
 1356: #endif
 1357:       }
 1358:     } 
 1359:   } 
 1360: } 
 1361: 
 1362: /**** Prevalence limit (stable or period prevalence)  ****************/
 1363: 
 1364: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1365: {
 1366:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1367:      matrix by transitions matrix until convergence is reached */
 1368: 
 1369:   int i, ii,j,k;
 1370:   double min, max, maxmin, maxmax,sumnew=0.;
 1371:   /* double **matprod2(); */ /* test */
 1372:   double **out, cov[NCOVMAX+1], **pmij();
 1373:   double **newm;
 1374:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1375: 
 1376:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1377:     for (j=1;j<=nlstate+ndeath;j++){
 1378:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1379:     }
 1380: 
 1381:    cov[1]=1.;
 1382:  
 1383:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1384:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1385:     newm=savm;
 1386:     /* Covariates have to be included here again */
 1387:     cov[2]=agefin;
 1388:     
 1389:     for (k=1; k<=cptcovn;k++) {
 1390:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1391:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1392:     }
 1393:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1394:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 1395:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 1396:     
 1397:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1398:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1399:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1400:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1401:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1402:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1403:     
 1404:     savm=oldm;
 1405:     oldm=newm;
 1406:     maxmax=0.;
 1407:     for(j=1;j<=nlstate;j++){
 1408:       min=1.;
 1409:       max=0.;
 1410:       for(i=1; i<=nlstate; i++) {
 1411: 	sumnew=0;
 1412: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1413: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1414:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1415: 	max=FMAX(max,prlim[i][j]);
 1416: 	min=FMIN(min,prlim[i][j]);
 1417:       }
 1418:       maxmin=max-min;
 1419:       maxmax=FMAX(maxmax,maxmin);
 1420:     }
 1421:     if(maxmax < ftolpl){
 1422:       return prlim;
 1423:     }
 1424:   }
 1425: }
 1426: 
 1427: /*************** transition probabilities ***************/ 
 1428: 
 1429: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1430: {
 1431:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1432:      computes the probability to be observed in state j being in state i by appying the
 1433:      model to the ncovmodel covariates (including constant and age).
 1434:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1435:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1436:      ncth covariate in the global vector x is given by the formula:
 1437:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1438:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1439:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1440:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1441:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1442:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1443:   */
 1444:   double s1, lnpijopii;
 1445:   /*double t34;*/
 1446:   int i,j,j1, nc, ii, jj;
 1447: 
 1448:     for(i=1; i<= nlstate; i++){
 1449:       for(j=1; j<i;j++){
 1450: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1451: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1452: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1453: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1454: 	}
 1455: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1456: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1457:       }
 1458:       for(j=i+1; j<=nlstate+ndeath;j++){
 1459: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1460: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1461: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1462: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1463: 	}
 1464: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1465:       }
 1466:     }
 1467:     
 1468:     for(i=1; i<= nlstate; i++){
 1469:       s1=0;
 1470:       for(j=1; j<i; j++){
 1471: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1472: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1473:       }
 1474:       for(j=i+1; j<=nlstate+ndeath; j++){
 1475: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1476: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1477:       }
 1478:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1479:       ps[i][i]=1./(s1+1.);
 1480:       /* Computing other pijs */
 1481:       for(j=1; j<i; j++)
 1482: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1483:       for(j=i+1; j<=nlstate+ndeath; j++)
 1484: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1485:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1486:     } /* end i */
 1487:     
 1488:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1489:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1490: 	ps[ii][jj]=0;
 1491: 	ps[ii][ii]=1;
 1492:       }
 1493:     }
 1494:     
 1495:     
 1496:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1497:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1498:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1499:     /*   } */
 1500:     /*   printf("\n "); */
 1501:     /* } */
 1502:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1503:     /*
 1504:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1505:       goto end;*/
 1506:     return ps;
 1507: }
 1508: 
 1509: /**************** Product of 2 matrices ******************/
 1510: 
 1511: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1512: {
 1513:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1514:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1515:   /* in, b, out are matrice of pointers which should have been initialized 
 1516:      before: only the contents of out is modified. The function returns
 1517:      a pointer to pointers identical to out */
 1518:   int i, j, k;
 1519:   for(i=nrl; i<= nrh; i++)
 1520:     for(k=ncolol; k<=ncoloh; k++){
 1521:       out[i][k]=0.;
 1522:       for(j=ncl; j<=nch; j++)
 1523:   	out[i][k] +=in[i][j]*b[j][k];
 1524:     }
 1525:   return out;
 1526: }
 1527: 
 1528: 
 1529: /************* Higher Matrix Product ***************/
 1530: 
 1531: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1532: {
 1533:   /* Computes the transition matrix starting at age 'age' over 
 1534:      'nhstepm*hstepm*stepm' months (i.e. until
 1535:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1536:      nhstepm*hstepm matrices. 
 1537:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1538:      (typically every 2 years instead of every month which is too big 
 1539:      for the memory).
 1540:      Model is determined by parameters x and covariates have to be 
 1541:      included manually here. 
 1542: 
 1543:      */
 1544: 
 1545:   int i, j, d, h, k;
 1546:   double **out, cov[NCOVMAX+1];
 1547:   double **newm;
 1548: 
 1549:   /* Hstepm could be zero and should return the unit matrix */
 1550:   for (i=1;i<=nlstate+ndeath;i++)
 1551:     for (j=1;j<=nlstate+ndeath;j++){
 1552:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1553:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1554:     }
 1555:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1556:   for(h=1; h <=nhstepm; h++){
 1557:     for(d=1; d <=hstepm; d++){
 1558:       newm=savm;
 1559:       /* Covariates have to be included here again */
 1560:       cov[1]=1.;
 1561:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1562:       for (k=1; k<=cptcovn;k++) 
 1563: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1564:       for (k=1; k<=cptcovage;k++)
 1565: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1566:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1567: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1568: 
 1569: 
 1570:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1571:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1572:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1573: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1574:       savm=oldm;
 1575:       oldm=newm;
 1576:     }
 1577:     for(i=1; i<=nlstate+ndeath; i++)
 1578:       for(j=1;j<=nlstate+ndeath;j++) {
 1579: 	po[i][j][h]=newm[i][j];
 1580: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1581:       }
 1582:     /*printf("h=%d ",h);*/
 1583:   } /* end h */
 1584: /*     printf("\n H=%d \n",h); */
 1585:   return po;
 1586: }
 1587: 
 1588: 
 1589: /*************** log-likelihood *************/
 1590: double func( double *x)
 1591: {
 1592:   int i, ii, j, k, mi, d, kk;
 1593:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1594:   double **out;
 1595:   double sw; /* Sum of weights */
 1596:   double lli; /* Individual log likelihood */
 1597:   int s1, s2;
 1598:   double bbh, survp;
 1599:   long ipmx;
 1600:   /*extern weight */
 1601:   /* We are differentiating ll according to initial status */
 1602:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1603:   /*for(i=1;i<imx;i++) 
 1604:     printf(" %d\n",s[4][i]);
 1605:   */
 1606:   cov[1]=1.;
 1607: 
 1608:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1609: 
 1610:   if(mle==1){
 1611:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1612:       /* Computes the values of the ncovmodel covariates of the model
 1613: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1614: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1615: 	 to be observed in j being in i according to the model.
 1616:        */
 1617:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1618: 	cov[2+k]=covar[Tvar[k]][i];
 1619:       }
 1620:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1621: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1622: 	 has been calculated etc */
 1623:       for(mi=1; mi<= wav[i]-1; mi++){
 1624: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1625: 	  for (j=1;j<=nlstate+ndeath;j++){
 1626: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1627: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1628: 	  }
 1629: 	for(d=0; d<dh[mi][i]; d++){
 1630: 	  newm=savm;
 1631: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1632: 	  for (kk=1; kk<=cptcovage;kk++) {
 1633: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1634: 	  }
 1635: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1636: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1637: 	  savm=oldm;
 1638: 	  oldm=newm;
 1639: 	} /* end mult */
 1640:       
 1641: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1642: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1643: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1644: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1645: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1646: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1647: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1648: 	 * probability in order to take into account the bias as a fraction of the way
 1649: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1650: 	 * -stepm/2 to stepm/2 .
 1651: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1652: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1653: 	 */
 1654: 	s1=s[mw[mi][i]][i];
 1655: 	s2=s[mw[mi+1][i]][i];
 1656: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1657: 	/* bias bh is positive if real duration
 1658: 	 * is higher than the multiple of stepm and negative otherwise.
 1659: 	 */
 1660: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1661: 	if( s2 > nlstate){ 
 1662: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1663: 	     then the contribution to the likelihood is the probability to 
 1664: 	     die between last step unit time and current  step unit time, 
 1665: 	     which is also equal to probability to die before dh 
 1666: 	     minus probability to die before dh-stepm . 
 1667: 	     In version up to 0.92 likelihood was computed
 1668: 	as if date of death was unknown. Death was treated as any other
 1669: 	health state: the date of the interview describes the actual state
 1670: 	and not the date of a change in health state. The former idea was
 1671: 	to consider that at each interview the state was recorded
 1672: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1673: 	introduced the exact date of death then we should have modified
 1674: 	the contribution of an exact death to the likelihood. This new
 1675: 	contribution is smaller and very dependent of the step unit
 1676: 	stepm. It is no more the probability to die between last interview
 1677: 	and month of death but the probability to survive from last
 1678: 	interview up to one month before death multiplied by the
 1679: 	probability to die within a month. Thanks to Chris
 1680: 	Jackson for correcting this bug.  Former versions increased
 1681: 	mortality artificially. The bad side is that we add another loop
 1682: 	which slows down the processing. The difference can be up to 10%
 1683: 	lower mortality.
 1684: 	  */
 1685: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1686: 
 1687: 
 1688: 	} else if  (s2==-2) {
 1689: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1690: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1691: 	  /*survp += out[s1][j]; */
 1692: 	  lli= log(survp);
 1693: 	}
 1694: 	
 1695:  	else if  (s2==-4) { 
 1696: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 1697: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1698:  	  lli= log(survp); 
 1699:  	} 
 1700: 
 1701:  	else if  (s2==-5) { 
 1702:  	  for (j=1,survp=0. ; j<=2; j++)  
 1703: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1704:  	  lli= log(survp); 
 1705:  	} 
 1706: 	
 1707: 	else{
 1708: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1709: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1710: 	} 
 1711: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1712: 	/*if(lli ==000.0)*/
 1713: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1714:   	ipmx +=1;
 1715: 	sw += weight[i];
 1716: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1717:       } /* end of wave */
 1718:     } /* end of individual */
 1719:   }  else if(mle==2){
 1720:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1721:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1722:       for(mi=1; mi<= wav[i]-1; mi++){
 1723: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1724: 	  for (j=1;j<=nlstate+ndeath;j++){
 1725: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1726: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1727: 	  }
 1728: 	for(d=0; d<=dh[mi][i]; d++){
 1729: 	  newm=savm;
 1730: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1731: 	  for (kk=1; kk<=cptcovage;kk++) {
 1732: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1733: 	  }
 1734: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1735: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1736: 	  savm=oldm;
 1737: 	  oldm=newm;
 1738: 	} /* end mult */
 1739:       
 1740: 	s1=s[mw[mi][i]][i];
 1741: 	s2=s[mw[mi+1][i]][i];
 1742: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1743: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1744: 	ipmx +=1;
 1745: 	sw += weight[i];
 1746: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1747:       } /* end of wave */
 1748:     } /* end of individual */
 1749:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1750:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1751:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1752:       for(mi=1; mi<= wav[i]-1; mi++){
 1753: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1754: 	  for (j=1;j<=nlstate+ndeath;j++){
 1755: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1756: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1757: 	  }
 1758: 	for(d=0; d<dh[mi][i]; d++){
 1759: 	  newm=savm;
 1760: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1761: 	  for (kk=1; kk<=cptcovage;kk++) {
 1762: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1763: 	  }
 1764: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1765: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1766: 	  savm=oldm;
 1767: 	  oldm=newm;
 1768: 	} /* end mult */
 1769:       
 1770: 	s1=s[mw[mi][i]][i];
 1771: 	s2=s[mw[mi+1][i]][i];
 1772: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1773: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1774: 	ipmx +=1;
 1775: 	sw += weight[i];
 1776: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1777:       } /* end of wave */
 1778:     } /* end of individual */
 1779:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1780:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1781:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1782:       for(mi=1; mi<= wav[i]-1; mi++){
 1783: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1784: 	  for (j=1;j<=nlstate+ndeath;j++){
 1785: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1786: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1787: 	  }
 1788: 	for(d=0; d<dh[mi][i]; d++){
 1789: 	  newm=savm;
 1790: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1791: 	  for (kk=1; kk<=cptcovage;kk++) {
 1792: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1793: 	  }
 1794: 	
 1795: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1796: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1797: 	  savm=oldm;
 1798: 	  oldm=newm;
 1799: 	} /* end mult */
 1800:       
 1801: 	s1=s[mw[mi][i]][i];
 1802: 	s2=s[mw[mi+1][i]][i];
 1803: 	if( s2 > nlstate){ 
 1804: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1805: 	}else{
 1806: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1807: 	}
 1808: 	ipmx +=1;
 1809: 	sw += weight[i];
 1810: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1811: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1812:       } /* end of wave */
 1813:     } /* end of individual */
 1814:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1815:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1816:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1817:       for(mi=1; mi<= wav[i]-1; mi++){
 1818: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1819: 	  for (j=1;j<=nlstate+ndeath;j++){
 1820: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1821: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1822: 	  }
 1823: 	for(d=0; d<dh[mi][i]; d++){
 1824: 	  newm=savm;
 1825: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1826: 	  for (kk=1; kk<=cptcovage;kk++) {
 1827: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1828: 	  }
 1829: 	
 1830: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1831: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1832: 	  savm=oldm;
 1833: 	  oldm=newm;
 1834: 	} /* end mult */
 1835:       
 1836: 	s1=s[mw[mi][i]][i];
 1837: 	s2=s[mw[mi+1][i]][i];
 1838: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1839: 	ipmx +=1;
 1840: 	sw += weight[i];
 1841: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1842: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1843:       } /* end of wave */
 1844:     } /* end of individual */
 1845:   } /* End of if */
 1846:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1847:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1848:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1849:   return -l;
 1850: }
 1851: 
 1852: /*************** log-likelihood *************/
 1853: double funcone( double *x)
 1854: {
 1855:   /* Same as likeli but slower because of a lot of printf and if */
 1856:   int i, ii, j, k, mi, d, kk;
 1857:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1858:   double **out;
 1859:   double lli; /* Individual log likelihood */
 1860:   double llt;
 1861:   int s1, s2;
 1862:   double bbh, survp;
 1863:   /*extern weight */
 1864:   /* We are differentiating ll according to initial status */
 1865:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1866:   /*for(i=1;i<imx;i++) 
 1867:     printf(" %d\n",s[4][i]);
 1868:   */
 1869:   cov[1]=1.;
 1870: 
 1871:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1872: 
 1873:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1874:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1875:     for(mi=1; mi<= wav[i]-1; mi++){
 1876:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1877: 	for (j=1;j<=nlstate+ndeath;j++){
 1878: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1879: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1880: 	}
 1881:       for(d=0; d<dh[mi][i]; d++){
 1882: 	newm=savm;
 1883: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1884: 	for (kk=1; kk<=cptcovage;kk++) {
 1885: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1886: 	}
 1887: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1888: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1889: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1890: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 1891: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 1892: 	savm=oldm;
 1893: 	oldm=newm;
 1894:       } /* end mult */
 1895:       
 1896:       s1=s[mw[mi][i]][i];
 1897:       s2=s[mw[mi+1][i]][i];
 1898:       bbh=(double)bh[mi][i]/(double)stepm; 
 1899:       /* bias is positive if real duration
 1900:        * is higher than the multiple of stepm and negative otherwise.
 1901:        */
 1902:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1903: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1904:       } else if  (s2==-2) {
 1905: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 1906: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1907: 	lli= log(survp);
 1908:       }else if (mle==1){
 1909: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1910:       } else if(mle==2){
 1911: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1912:       } else if(mle==3){  /* exponential inter-extrapolation */
 1913: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1914:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1915: 	lli=log(out[s1][s2]); /* Original formula */
 1916:       } else{  /* mle=0 back to 1 */
 1917: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1918: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 1919:       } /* End of if */
 1920:       ipmx +=1;
 1921:       sw += weight[i];
 1922:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1923:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1924:       if(globpr){
 1925: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 1926:  %11.6f %11.6f %11.6f ", \
 1927: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1928: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1929: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1930: 	  llt +=ll[k]*gipmx/gsw;
 1931: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1932: 	}
 1933: 	fprintf(ficresilk," %10.6f\n", -llt);
 1934:       }
 1935:     } /* end of wave */
 1936:   } /* end of individual */
 1937:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1938:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1939:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1940:   if(globpr==0){ /* First time we count the contributions and weights */
 1941:     gipmx=ipmx;
 1942:     gsw=sw;
 1943:   }
 1944:   return -l;
 1945: }
 1946: 
 1947: 
 1948: /*************** function likelione ***********/
 1949: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1950: {
 1951:   /* This routine should help understanding what is done with 
 1952:      the selection of individuals/waves and
 1953:      to check the exact contribution to the likelihood.
 1954:      Plotting could be done.
 1955:    */
 1956:   int k;
 1957: 
 1958:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1959:     strcpy(fileresilk,"ilk"); 
 1960:     strcat(fileresilk,fileres);
 1961:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1962:       printf("Problem with resultfile: %s\n", fileresilk);
 1963:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1964:     }
 1965:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1966:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1967:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1968:     for(k=1; k<=nlstate; k++) 
 1969:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1970:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1971:   }
 1972: 
 1973:   *fretone=(*funcone)(p);
 1974:   if(*globpri !=0){
 1975:     fclose(ficresilk);
 1976:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1977:     fflush(fichtm); 
 1978:   } 
 1979:   return;
 1980: }
 1981: 
 1982: 
 1983: /*********** Maximum Likelihood Estimation ***************/
 1984: 
 1985: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1986: {
 1987:   int i,j, iter;
 1988:   double **xi;
 1989:   double fret;
 1990:   double fretone; /* Only one call to likelihood */
 1991:   /*  char filerespow[FILENAMELENGTH];*/
 1992:   xi=matrix(1,npar,1,npar);
 1993:   for (i=1;i<=npar;i++)
 1994:     for (j=1;j<=npar;j++)
 1995:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1996:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1997:   strcpy(filerespow,"pow"); 
 1998:   strcat(filerespow,fileres);
 1999:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2000:     printf("Problem with resultfile: %s\n", filerespow);
 2001:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2002:   }
 2003:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2004:   for (i=1;i<=nlstate;i++)
 2005:     for(j=1;j<=nlstate+ndeath;j++)
 2006:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2007:   fprintf(ficrespow,"\n");
 2008: 
 2009:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2010: 
 2011:   free_matrix(xi,1,npar,1,npar);
 2012:   fclose(ficrespow);
 2013:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 2014:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 2015:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 2016: 
 2017: }
 2018: 
 2019: /**** Computes Hessian and covariance matrix ***/
 2020: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2021: {
 2022:   double  **a,**y,*x,pd;
 2023:   double **hess;
 2024:   int i, j,jk;
 2025:   int *indx;
 2026: 
 2027:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2028:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2029:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2030:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2031:   double gompertz(double p[]);
 2032:   hess=matrix(1,npar,1,npar);
 2033: 
 2034:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2035:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2036:   for (i=1;i<=npar;i++){
 2037:     printf("%d",i);fflush(stdout);
 2038:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2039:    
 2040:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2041:     
 2042:     /*  printf(" %f ",p[i]);
 2043: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2044:   }
 2045:   
 2046:   for (i=1;i<=npar;i++) {
 2047:     for (j=1;j<=npar;j++)  {
 2048:       if (j>i) { 
 2049: 	printf(".%d%d",i,j);fflush(stdout);
 2050: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2051: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2052: 	
 2053: 	hess[j][i]=hess[i][j];    
 2054: 	/*printf(" %lf ",hess[i][j]);*/
 2055:       }
 2056:     }
 2057:   }
 2058:   printf("\n");
 2059:   fprintf(ficlog,"\n");
 2060: 
 2061:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2062:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2063:   
 2064:   a=matrix(1,npar,1,npar);
 2065:   y=matrix(1,npar,1,npar);
 2066:   x=vector(1,npar);
 2067:   indx=ivector(1,npar);
 2068:   for (i=1;i<=npar;i++)
 2069:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2070:   ludcmp(a,npar,indx,&pd);
 2071: 
 2072:   for (j=1;j<=npar;j++) {
 2073:     for (i=1;i<=npar;i++) x[i]=0;
 2074:     x[j]=1;
 2075:     lubksb(a,npar,indx,x);
 2076:     for (i=1;i<=npar;i++){ 
 2077:       matcov[i][j]=x[i];
 2078:     }
 2079:   }
 2080: 
 2081:   printf("\n#Hessian matrix#\n");
 2082:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2083:   for (i=1;i<=npar;i++) { 
 2084:     for (j=1;j<=npar;j++) { 
 2085:       printf("%.3e ",hess[i][j]);
 2086:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2087:     }
 2088:     printf("\n");
 2089:     fprintf(ficlog,"\n");
 2090:   }
 2091: 
 2092:   /* Recompute Inverse */
 2093:   for (i=1;i<=npar;i++)
 2094:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2095:   ludcmp(a,npar,indx,&pd);
 2096: 
 2097:   /*  printf("\n#Hessian matrix recomputed#\n");
 2098: 
 2099:   for (j=1;j<=npar;j++) {
 2100:     for (i=1;i<=npar;i++) x[i]=0;
 2101:     x[j]=1;
 2102:     lubksb(a,npar,indx,x);
 2103:     for (i=1;i<=npar;i++){ 
 2104:       y[i][j]=x[i];
 2105:       printf("%.3e ",y[i][j]);
 2106:       fprintf(ficlog,"%.3e ",y[i][j]);
 2107:     }
 2108:     printf("\n");
 2109:     fprintf(ficlog,"\n");
 2110:   }
 2111:   */
 2112: 
 2113:   free_matrix(a,1,npar,1,npar);
 2114:   free_matrix(y,1,npar,1,npar);
 2115:   free_vector(x,1,npar);
 2116:   free_ivector(indx,1,npar);
 2117:   free_matrix(hess,1,npar,1,npar);
 2118: 
 2119: 
 2120: }
 2121: 
 2122: /*************** hessian matrix ****************/
 2123: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2124: {
 2125:   int i;
 2126:   int l=1, lmax=20;
 2127:   double k1,k2;
 2128:   double p2[MAXPARM+1]; /* identical to x */
 2129:   double res;
 2130:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2131:   double fx;
 2132:   int k=0,kmax=10;
 2133:   double l1;
 2134: 
 2135:   fx=func(x);
 2136:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2137:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2138:     l1=pow(10,l);
 2139:     delts=delt;
 2140:     for(k=1 ; k <kmax; k=k+1){
 2141:       delt = delta*(l1*k);
 2142:       p2[theta]=x[theta] +delt;
 2143:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2144:       p2[theta]=x[theta]-delt;
 2145:       k2=func(p2)-fx;
 2146:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2147:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2148:       
 2149: #ifdef DEBUGHESS
 2150:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2151:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2152: #endif
 2153:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2154:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2155: 	k=kmax;
 2156:       }
 2157:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2158: 	k=kmax; l=lmax*10.;
 2159:       }
 2160:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2161: 	delts=delt;
 2162:       }
 2163:     }
 2164:   }
 2165:   delti[theta]=delts;
 2166:   return res; 
 2167:   
 2168: }
 2169: 
 2170: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2171: {
 2172:   int i;
 2173:   int l=1, l1, lmax=20;
 2174:   double k1,k2,k3,k4,res,fx;
 2175:   double p2[MAXPARM+1];
 2176:   int k;
 2177: 
 2178:   fx=func(x);
 2179:   for (k=1; k<=2; k++) {
 2180:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2181:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2182:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2183:     k1=func(p2)-fx;
 2184:   
 2185:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2186:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2187:     k2=func(p2)-fx;
 2188:   
 2189:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2190:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2191:     k3=func(p2)-fx;
 2192:   
 2193:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2194:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2195:     k4=func(p2)-fx;
 2196:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2197: #ifdef DEBUG
 2198:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2199:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2200: #endif
 2201:   }
 2202:   return res;
 2203: }
 2204: 
 2205: /************** Inverse of matrix **************/
 2206: void ludcmp(double **a, int n, int *indx, double *d) 
 2207: { 
 2208:   int i,imax,j,k; 
 2209:   double big,dum,sum,temp; 
 2210:   double *vv; 
 2211:  
 2212:   vv=vector(1,n); 
 2213:   *d=1.0; 
 2214:   for (i=1;i<=n;i++) { 
 2215:     big=0.0; 
 2216:     for (j=1;j<=n;j++) 
 2217:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2218:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2219:     vv[i]=1.0/big; 
 2220:   } 
 2221:   for (j=1;j<=n;j++) { 
 2222:     for (i=1;i<j;i++) { 
 2223:       sum=a[i][j]; 
 2224:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2225:       a[i][j]=sum; 
 2226:     } 
 2227:     big=0.0; 
 2228:     for (i=j;i<=n;i++) { 
 2229:       sum=a[i][j]; 
 2230:       for (k=1;k<j;k++) 
 2231: 	sum -= a[i][k]*a[k][j]; 
 2232:       a[i][j]=sum; 
 2233:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2234: 	big=dum; 
 2235: 	imax=i; 
 2236:       } 
 2237:     } 
 2238:     if (j != imax) { 
 2239:       for (k=1;k<=n;k++) { 
 2240: 	dum=a[imax][k]; 
 2241: 	a[imax][k]=a[j][k]; 
 2242: 	a[j][k]=dum; 
 2243:       } 
 2244:       *d = -(*d); 
 2245:       vv[imax]=vv[j]; 
 2246:     } 
 2247:     indx[j]=imax; 
 2248:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2249:     if (j != n) { 
 2250:       dum=1.0/(a[j][j]); 
 2251:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2252:     } 
 2253:   } 
 2254:   free_vector(vv,1,n);  /* Doesn't work */
 2255: ;
 2256: } 
 2257: 
 2258: void lubksb(double **a, int n, int *indx, double b[]) 
 2259: { 
 2260:   int i,ii=0,ip,j; 
 2261:   double sum; 
 2262:  
 2263:   for (i=1;i<=n;i++) { 
 2264:     ip=indx[i]; 
 2265:     sum=b[ip]; 
 2266:     b[ip]=b[i]; 
 2267:     if (ii) 
 2268:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2269:     else if (sum) ii=i; 
 2270:     b[i]=sum; 
 2271:   } 
 2272:   for (i=n;i>=1;i--) { 
 2273:     sum=b[i]; 
 2274:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2275:     b[i]=sum/a[i][i]; 
 2276:   } 
 2277: } 
 2278: 
 2279: void pstamp(FILE *fichier)
 2280: {
 2281:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2282: }
 2283: 
 2284: /************ Frequencies ********************/
 2285: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2286: {  /* Some frequencies */
 2287:   
 2288:   int i, m, jk, k1,i1, j1, bool, z1,j;
 2289:   int first;
 2290:   double ***freq; /* Frequencies */
 2291:   double *pp, **prop;
 2292:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2293:   char fileresp[FILENAMELENGTH];
 2294:   
 2295:   pp=vector(1,nlstate);
 2296:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2297:   strcpy(fileresp,"p");
 2298:   strcat(fileresp,fileres);
 2299:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2300:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2301:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2302:     exit(0);
 2303:   }
 2304:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2305:   j1=0;
 2306:   
 2307:   j=cptcoveff;
 2308:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2309: 
 2310:   first=1;
 2311: 
 2312:   /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 2313:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
 2314:   /*    j1++;
 2315: */
 2316:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2317:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2318: 	scanf("%d", i);*/
 2319:       for (i=-5; i<=nlstate+ndeath; i++)  
 2320: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2321: 	  for(m=iagemin; m <= iagemax+3; m++)
 2322: 	    freq[i][jk][m]=0;
 2323:       
 2324:       for (i=1; i<=nlstate; i++)  
 2325: 	for(m=iagemin; m <= iagemax+3; m++)
 2326: 	  prop[i][m]=0;
 2327:       
 2328:       dateintsum=0;
 2329:       k2cpt=0;
 2330:       for (i=1; i<=imx; i++) {
 2331: 	bool=1;
 2332: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2333: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2334:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2335:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2336:               bool=0;
 2337:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2338:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2339:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2340:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2341:             } 
 2342: 	}
 2343:  
 2344: 	if (bool==1){
 2345: 	  for(m=firstpass; m<=lastpass; m++){
 2346: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2347: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2348: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2349: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2350: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2351: 	      if (m<lastpass) {
 2352: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2353: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2354: 	      }
 2355: 	      
 2356: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2357: 		dateintsum=dateintsum+k2;
 2358: 		k2cpt++;
 2359: 	      }
 2360: 	      /*}*/
 2361: 	  }
 2362: 	}
 2363:       } /* end i */
 2364:        
 2365:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2366:       pstamp(ficresp);
 2367:       if  (cptcovn>0) {
 2368: 	fprintf(ficresp, "\n#********** Variable "); 
 2369: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2370: 	fprintf(ficresp, "**********\n#");
 2371: 	fprintf(ficlog, "\n#********** Variable "); 
 2372: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2373: 	fprintf(ficlog, "**********\n#");
 2374:       }
 2375:       for(i=1; i<=nlstate;i++) 
 2376: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2377:       fprintf(ficresp, "\n");
 2378:       
 2379:       for(i=iagemin; i <= iagemax+3; i++){
 2380: 	if(i==iagemax+3){
 2381: 	  fprintf(ficlog,"Total");
 2382: 	}else{
 2383: 	  if(first==1){
 2384: 	    first=0;
 2385: 	    printf("See log file for details...\n");
 2386: 	  }
 2387: 	  fprintf(ficlog,"Age %d", i);
 2388: 	}
 2389: 	for(jk=1; jk <=nlstate ; jk++){
 2390: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2391: 	    pp[jk] += freq[jk][m][i]; 
 2392: 	}
 2393: 	for(jk=1; jk <=nlstate ; jk++){
 2394: 	  for(m=-1, pos=0; m <=0 ; m++)
 2395: 	    pos += freq[jk][m][i];
 2396: 	  if(pp[jk]>=1.e-10){
 2397: 	    if(first==1){
 2398: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2399: 	    }
 2400: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2401: 	  }else{
 2402: 	    if(first==1)
 2403: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2404: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2405: 	  }
 2406: 	}
 2407: 
 2408: 	for(jk=1; jk <=nlstate ; jk++){
 2409: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2410: 	    pp[jk] += freq[jk][m][i];
 2411: 	}	
 2412: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2413: 	  pos += pp[jk];
 2414: 	  posprop += prop[jk][i];
 2415: 	}
 2416: 	for(jk=1; jk <=nlstate ; jk++){
 2417: 	  if(pos>=1.e-5){
 2418: 	    if(first==1)
 2419: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2420: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2421: 	  }else{
 2422: 	    if(first==1)
 2423: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2424: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2425: 	  }
 2426: 	  if( i <= iagemax){
 2427: 	    if(pos>=1.e-5){
 2428: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2429: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2430: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2431: 	    }
 2432: 	    else
 2433: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2434: 	  }
 2435: 	}
 2436: 	
 2437: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2438: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2439: 	    if(freq[jk][m][i] !=0 ) {
 2440: 	    if(first==1)
 2441: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2442: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2443: 	    }
 2444: 	if(i <= iagemax)
 2445: 	  fprintf(ficresp,"\n");
 2446: 	if(first==1)
 2447: 	  printf("Others in log...\n");
 2448: 	fprintf(ficlog,"\n");
 2449:       }
 2450:       /*}*/
 2451:   }
 2452:   dateintmean=dateintsum/k2cpt; 
 2453:  
 2454:   fclose(ficresp);
 2455:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2456:   free_vector(pp,1,nlstate);
 2457:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2458:   /* End of Freq */
 2459: }
 2460: 
 2461: /************ Prevalence ********************/
 2462: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2463: {  
 2464:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2465:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2466:      We still use firstpass and lastpass as another selection.
 2467:   */
 2468:  
 2469:   int i, m, jk, k1, i1, j1, bool, z1,j;
 2470:   double ***freq; /* Frequencies */
 2471:   double *pp, **prop;
 2472:   double pos,posprop; 
 2473:   double  y2; /* in fractional years */
 2474:   int iagemin, iagemax;
 2475:   int first; /** to stop verbosity which is redirected to log file */
 2476: 
 2477:   iagemin= (int) agemin;
 2478:   iagemax= (int) agemax;
 2479:   /*pp=vector(1,nlstate);*/
 2480:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2481:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2482:   j1=0;
 2483:   
 2484:   /*j=cptcoveff;*/
 2485:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2486:   
 2487:   first=1;
 2488:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2489:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2490:       j1++;*/
 2491:       
 2492:       for (i=1; i<=nlstate; i++)  
 2493: 	for(m=iagemin; m <= iagemax+3; m++)
 2494: 	  prop[i][m]=0.0;
 2495:      
 2496:       for (i=1; i<=imx; i++) { /* Each individual */
 2497: 	bool=1;
 2498: 	if  (cptcovn>0) {
 2499: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2500: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2501: 	      bool=0;
 2502: 	} 
 2503: 	if (bool==1) { 
 2504: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2505: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2506: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2507: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2508: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2509: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2510:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2511: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2512:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2513:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2514:  	      } 
 2515: 	    }
 2516: 	  } /* end selection of waves */
 2517: 	}
 2518:       }
 2519:       for(i=iagemin; i <= iagemax+3; i++){  
 2520:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2521:  	  posprop += prop[jk][i]; 
 2522:  	} 
 2523: 	
 2524:  	for(jk=1; jk <=nlstate ; jk++){	    
 2525:  	  if( i <=  iagemax){ 
 2526:  	    if(posprop>=1.e-5){ 
 2527:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2528:  	    } else{
 2529: 	      if(first==1){
 2530: 		first=0;
 2531: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2532: 	      }
 2533: 	    }
 2534:  	  } 
 2535:  	}/* end jk */ 
 2536:       }/* end i */ 
 2537:     /*} *//* end i1 */
 2538:   } /* end j1 */
 2539:   
 2540:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2541:   /*free_vector(pp,1,nlstate);*/
 2542:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2543: }  /* End of prevalence */
 2544: 
 2545: /************* Waves Concatenation ***************/
 2546: 
 2547: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2548: {
 2549:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2550:      Death is a valid wave (if date is known).
 2551:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2552:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2553:      and mw[mi+1][i]. dh depends on stepm.
 2554:      */
 2555: 
 2556:   int i, mi, m;
 2557:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2558:      double sum=0., jmean=0.;*/
 2559:   int first;
 2560:   int j, k=0,jk, ju, jl;
 2561:   double sum=0.;
 2562:   first=0;
 2563:   jmin=1e+5;
 2564:   jmax=-1;
 2565:   jmean=0.;
 2566:   for(i=1; i<=imx; i++){
 2567:     mi=0;
 2568:     m=firstpass;
 2569:     while(s[m][i] <= nlstate){
 2570:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2571: 	mw[++mi][i]=m;
 2572:       if(m >=lastpass)
 2573: 	break;
 2574:       else
 2575: 	m++;
 2576:     }/* end while */
 2577:     if (s[m][i] > nlstate){
 2578:       mi++;	/* Death is another wave */
 2579:       /* if(mi==0)  never been interviewed correctly before death */
 2580: 	 /* Only death is a correct wave */
 2581:       mw[mi][i]=m;
 2582:     }
 2583: 
 2584:     wav[i]=mi;
 2585:     if(mi==0){
 2586:       nbwarn++;
 2587:       if(first==0){
 2588: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2589: 	first=1;
 2590:       }
 2591:       if(first==1){
 2592: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2593:       }
 2594:     } /* end mi==0 */
 2595:   } /* End individuals */
 2596: 
 2597:   for(i=1; i<=imx; i++){
 2598:     for(mi=1; mi<wav[i];mi++){
 2599:       if (stepm <=0)
 2600: 	dh[mi][i]=1;
 2601:       else{
 2602: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2603: 	  if (agedc[i] < 2*AGESUP) {
 2604: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2605: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2606: 	    else if(j<0){
 2607: 	      nberr++;
 2608: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2609: 	      j=1; /* Temporary Dangerous patch */
 2610: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2611: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2612: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2613: 	    }
 2614: 	    k=k+1;
 2615: 	    if (j >= jmax){
 2616: 	      jmax=j;
 2617: 	      ijmax=i;
 2618: 	    }
 2619: 	    if (j <= jmin){
 2620: 	      jmin=j;
 2621: 	      ijmin=i;
 2622: 	    }
 2623: 	    sum=sum+j;
 2624: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2625: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2626: 	  }
 2627: 	}
 2628: 	else{
 2629: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2630: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2631: 
 2632: 	  k=k+1;
 2633: 	  if (j >= jmax) {
 2634: 	    jmax=j;
 2635: 	    ijmax=i;
 2636: 	  }
 2637: 	  else if (j <= jmin){
 2638: 	    jmin=j;
 2639: 	    ijmin=i;
 2640: 	  }
 2641: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2642: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2643: 	  if(j<0){
 2644: 	    nberr++;
 2645: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2646: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2647: 	  }
 2648: 	  sum=sum+j;
 2649: 	}
 2650: 	jk= j/stepm;
 2651: 	jl= j -jk*stepm;
 2652: 	ju= j -(jk+1)*stepm;
 2653: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2654: 	  if(jl==0){
 2655: 	    dh[mi][i]=jk;
 2656: 	    bh[mi][i]=0;
 2657: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2658: 		  * to avoid the price of an extra matrix product in likelihood */
 2659: 	    dh[mi][i]=jk+1;
 2660: 	    bh[mi][i]=ju;
 2661: 	  }
 2662: 	}else{
 2663: 	  if(jl <= -ju){
 2664: 	    dh[mi][i]=jk;
 2665: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2666: 				 * is higher than the multiple of stepm and negative otherwise.
 2667: 				 */
 2668: 	  }
 2669: 	  else{
 2670: 	    dh[mi][i]=jk+1;
 2671: 	    bh[mi][i]=ju;
 2672: 	  }
 2673: 	  if(dh[mi][i]==0){
 2674: 	    dh[mi][i]=1; /* At least one step */
 2675: 	    bh[mi][i]=ju; /* At least one step */
 2676: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2677: 	  }
 2678: 	} /* end if mle */
 2679:       }
 2680:     } /* end wave */
 2681:   }
 2682:   jmean=sum/k;
 2683:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2684:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2685:  }
 2686: 
 2687: /*********** Tricode ****************************/
 2688: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 2689: {
 2690:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 2691:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 2692:   /* Boring subroutine which should only output nbcode[Tvar[j]][k]
 2693:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 2694:   /* nbcode[Tvar[j]][1]= 
 2695:   */
 2696: 
 2697:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 2698:   int modmaxcovj=0; /* Modality max of covariates j */
 2699:   int cptcode=0; /* Modality max of covariates j */
 2700:   int modmincovj=0; /* Modality min of covariates j */
 2701: 
 2702: 
 2703:   cptcoveff=0; 
 2704:  
 2705:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 2706:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 2707: 
 2708:   /* Loop on covariates without age and products */
 2709:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 2710:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 2711: 			       modality of this covariate Vj*/ 
 2712:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 2713: 				    * If product of Vn*Vm, still boolean *:
 2714: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 2715: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 2716:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 2717: 				      modality of the nth covariate of individual i. */
 2718:       if (ij > modmaxcovj)
 2719:         modmaxcovj=ij; 
 2720:       else if (ij < modmincovj) 
 2721: 	modmincovj=ij; 
 2722:       if ((ij < -1) && (ij > NCOVMAX)){
 2723: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 2724: 	exit(1);
 2725:       }else
 2726:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 2727:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 2728:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2729:       /* getting the maximum value of the modality of the covariate
 2730: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 2731: 	 female is 1, then modmaxcovj=1.*/
 2732:     }
 2733:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 2734:     cptcode=modmaxcovj;
 2735:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 2736:    /*for (i=0; i<=cptcode; i++) {*/
 2737:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 2738:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 2739:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 2740: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 2741:       }
 2742:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 2743: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 2744:     } /* Ndum[-1] number of undefined modalities */
 2745: 
 2746:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 2747:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 2748:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 2749:        modmincovj=3; modmaxcovj = 7;
 2750:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 2751:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 2752:        variables V1_1 and V1_2.
 2753:        nbcode[Tvar[j]][ij]=k;
 2754:        nbcode[Tvar[j]][1]=0;
 2755:        nbcode[Tvar[j]][2]=1;
 2756:        nbcode[Tvar[j]][3]=2;
 2757:     */
 2758:     ij=1; /* ij is similar to i but can jumps over null modalities */
 2759:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 2760:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 2761: 	/*recode from 0 */
 2762: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 2763: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 2764: 				     k is a modality. If we have model=V1+V1*sex 
 2765: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2766: 	  ij++;
 2767: 	}
 2768: 	if (ij > ncodemax[j]) break; 
 2769:       }  /* end of loop on */
 2770:     } /* end of loop on modality */ 
 2771:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 2772:   
 2773:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 2774:   
 2775:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 2776:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 2777:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 2778:    Ndum[ij]++; 
 2779:  } 
 2780: 
 2781:  ij=1;
 2782:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 2783:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 2784:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2785:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 2786:      Tvaraff[ij]=i; /*For printing (unclear) */
 2787:      ij++;
 2788:    }else
 2789:        Tvaraff[ij]=0;
 2790:  }
 2791:  ij--;
 2792:  cptcoveff=ij; /*Number of total covariates*/
 2793: 
 2794: }
 2795: 
 2796: 
 2797: /*********** Health Expectancies ****************/
 2798: 
 2799: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 2800: 
 2801: {
 2802:   /* Health expectancies, no variances */
 2803:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 2804:   int nhstepma, nstepma; /* Decreasing with age */
 2805:   double age, agelim, hf;
 2806:   double ***p3mat;
 2807:   double eip;
 2808: 
 2809:   pstamp(ficreseij);
 2810:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 2811:   fprintf(ficreseij,"# Age");
 2812:   for(i=1; i<=nlstate;i++){
 2813:     for(j=1; j<=nlstate;j++){
 2814:       fprintf(ficreseij," e%1d%1d ",i,j);
 2815:     }
 2816:     fprintf(ficreseij," e%1d. ",i);
 2817:   }
 2818:   fprintf(ficreseij,"\n");
 2819: 
 2820:   
 2821:   if(estepm < stepm){
 2822:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2823:   }
 2824:   else  hstepm=estepm;   
 2825:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2826:    * This is mainly to measure the difference between two models: for example
 2827:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2828:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2829:    * progression in between and thus overestimating or underestimating according
 2830:    * to the curvature of the survival function. If, for the same date, we 
 2831:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2832:    * to compare the new estimate of Life expectancy with the same linear 
 2833:    * hypothesis. A more precise result, taking into account a more precise
 2834:    * curvature will be obtained if estepm is as small as stepm. */
 2835: 
 2836:   /* For example we decided to compute the life expectancy with the smallest unit */
 2837:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2838:      nhstepm is the number of hstepm from age to agelim 
 2839:      nstepm is the number of stepm from age to agelin. 
 2840:      Look at hpijx to understand the reason of that which relies in memory size
 2841:      and note for a fixed period like estepm months */
 2842:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2843:      survival function given by stepm (the optimization length). Unfortunately it
 2844:      means that if the survival funtion is printed only each two years of age and if
 2845:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2846:      results. So we changed our mind and took the option of the best precision.
 2847:   */
 2848:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2849: 
 2850:   agelim=AGESUP;
 2851:   /* If stepm=6 months */
 2852:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2853:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2854:     
 2855: /* nhstepm age range expressed in number of stepm */
 2856:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2857:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2858:   /* if (stepm >= YEARM) hstepm=1;*/
 2859:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2860:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2861: 
 2862:   for (age=bage; age<=fage; age ++){ 
 2863:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 2864:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2865:     /* if (stepm >= YEARM) hstepm=1;*/
 2866:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 2867: 
 2868:     /* If stepm=6 months */
 2869:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 2870:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 2871:     
 2872:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 2873:     
 2874:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2875:     
 2876:     printf("%d|",(int)age);fflush(stdout);
 2877:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2878:     
 2879:     /* Computing expectancies */
 2880:     for(i=1; i<=nlstate;i++)
 2881:       for(j=1; j<=nlstate;j++)
 2882: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2883: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2884: 	  
 2885: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2886: 
 2887: 	}
 2888: 
 2889:     fprintf(ficreseij,"%3.0f",age );
 2890:     for(i=1; i<=nlstate;i++){
 2891:       eip=0;
 2892:       for(j=1; j<=nlstate;j++){
 2893: 	eip +=eij[i][j][(int)age];
 2894: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 2895:       }
 2896:       fprintf(ficreseij,"%9.4f", eip );
 2897:     }
 2898:     fprintf(ficreseij,"\n");
 2899:     
 2900:   }
 2901:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2902:   printf("\n");
 2903:   fprintf(ficlog,"\n");
 2904:   
 2905: }
 2906: 
 2907: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 2908: 
 2909: {
 2910:   /* Covariances of health expectancies eij and of total life expectancies according
 2911:    to initial status i, ei. .
 2912:   */
 2913:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 2914:   int nhstepma, nstepma; /* Decreasing with age */
 2915:   double age, agelim, hf;
 2916:   double ***p3matp, ***p3matm, ***varhe;
 2917:   double **dnewm,**doldm;
 2918:   double *xp, *xm;
 2919:   double **gp, **gm;
 2920:   double ***gradg, ***trgradg;
 2921:   int theta;
 2922: 
 2923:   double eip, vip;
 2924: 
 2925:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2926:   xp=vector(1,npar);
 2927:   xm=vector(1,npar);
 2928:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2929:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2930:   
 2931:   pstamp(ficresstdeij);
 2932:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 2933:   fprintf(ficresstdeij,"# Age");
 2934:   for(i=1; i<=nlstate;i++){
 2935:     for(j=1; j<=nlstate;j++)
 2936:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 2937:     fprintf(ficresstdeij," e%1d. ",i);
 2938:   }
 2939:   fprintf(ficresstdeij,"\n");
 2940: 
 2941:   pstamp(ficrescveij);
 2942:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 2943:   fprintf(ficrescveij,"# Age");
 2944:   for(i=1; i<=nlstate;i++)
 2945:     for(j=1; j<=nlstate;j++){
 2946:       cptj= (j-1)*nlstate+i;
 2947:       for(i2=1; i2<=nlstate;i2++)
 2948: 	for(j2=1; j2<=nlstate;j2++){
 2949: 	  cptj2= (j2-1)*nlstate+i2;
 2950: 	  if(cptj2 <= cptj)
 2951: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 2952: 	}
 2953:     }
 2954:   fprintf(ficrescveij,"\n");
 2955:   
 2956:   if(estepm < stepm){
 2957:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2958:   }
 2959:   else  hstepm=estepm;   
 2960:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2961:    * This is mainly to measure the difference between two models: for example
 2962:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2963:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2964:    * progression in between and thus overestimating or underestimating according
 2965:    * to the curvature of the survival function. If, for the same date, we 
 2966:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2967:    * to compare the new estimate of Life expectancy with the same linear 
 2968:    * hypothesis. A more precise result, taking into account a more precise
 2969:    * curvature will be obtained if estepm is as small as stepm. */
 2970: 
 2971:   /* For example we decided to compute the life expectancy with the smallest unit */
 2972:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2973:      nhstepm is the number of hstepm from age to agelim 
 2974:      nstepm is the number of stepm from age to agelin. 
 2975:      Look at hpijx to understand the reason of that which relies in memory size
 2976:      and note for a fixed period like estepm months */
 2977:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2978:      survival function given by stepm (the optimization length). Unfortunately it
 2979:      means that if the survival funtion is printed only each two years of age and if
 2980:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2981:      results. So we changed our mind and took the option of the best precision.
 2982:   */
 2983:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2984: 
 2985:   /* If stepm=6 months */
 2986:   /* nhstepm age range expressed in number of stepm */
 2987:   agelim=AGESUP;
 2988:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 2989:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2990:   /* if (stepm >= YEARM) hstepm=1;*/
 2991:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2992:   
 2993:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2994:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2995:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2996:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2997:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2998:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2999: 
 3000:   for (age=bage; age<=fage; age ++){ 
 3001:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3002:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3003:     /* if (stepm >= YEARM) hstepm=1;*/
 3004:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3005: 
 3006:     /* If stepm=6 months */
 3007:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3008:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3009:     
 3010:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3011: 
 3012:     /* Computing  Variances of health expectancies */
 3013:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3014:        decrease memory allocation */
 3015:     for(theta=1; theta <=npar; theta++){
 3016:       for(i=1; i<=npar; i++){ 
 3017: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3018: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3019:       }
 3020:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3021:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3022:   
 3023:       for(j=1; j<= nlstate; j++){
 3024: 	for(i=1; i<=nlstate; i++){
 3025: 	  for(h=0; h<=nhstepm-1; h++){
 3026: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3027: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3028: 	  }
 3029: 	}
 3030:       }
 3031:      
 3032:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3033: 	for(h=0; h<=nhstepm-1; h++){
 3034: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3035: 	}
 3036:     }/* End theta */
 3037:     
 3038:     
 3039:     for(h=0; h<=nhstepm-1; h++)
 3040:       for(j=1; j<=nlstate*nlstate;j++)
 3041: 	for(theta=1; theta <=npar; theta++)
 3042: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3043:     
 3044: 
 3045:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3046:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3047: 	varhe[ij][ji][(int)age] =0.;
 3048: 
 3049:      printf("%d|",(int)age);fflush(stdout);
 3050:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3051:      for(h=0;h<=nhstepm-1;h++){
 3052:       for(k=0;k<=nhstepm-1;k++){
 3053: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3054: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3055: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3056: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3057: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3058:       }
 3059:     }
 3060: 
 3061:     /* Computing expectancies */
 3062:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3063:     for(i=1; i<=nlstate;i++)
 3064:       for(j=1; j<=nlstate;j++)
 3065: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3066: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3067: 	  
 3068: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3069: 
 3070: 	}
 3071: 
 3072:     fprintf(ficresstdeij,"%3.0f",age );
 3073:     for(i=1; i<=nlstate;i++){
 3074:       eip=0.;
 3075:       vip=0.;
 3076:       for(j=1; j<=nlstate;j++){
 3077: 	eip += eij[i][j][(int)age];
 3078: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3079: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3080: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3081:       }
 3082:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3083:     }
 3084:     fprintf(ficresstdeij,"\n");
 3085: 
 3086:     fprintf(ficrescveij,"%3.0f",age );
 3087:     for(i=1; i<=nlstate;i++)
 3088:       for(j=1; j<=nlstate;j++){
 3089: 	cptj= (j-1)*nlstate+i;
 3090: 	for(i2=1; i2<=nlstate;i2++)
 3091: 	  for(j2=1; j2<=nlstate;j2++){
 3092: 	    cptj2= (j2-1)*nlstate+i2;
 3093: 	    if(cptj2 <= cptj)
 3094: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3095: 	  }
 3096:       }
 3097:     fprintf(ficrescveij,"\n");
 3098:    
 3099:   }
 3100:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3101:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3102:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3103:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3104:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3105:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3106:   printf("\n");
 3107:   fprintf(ficlog,"\n");
 3108: 
 3109:   free_vector(xm,1,npar);
 3110:   free_vector(xp,1,npar);
 3111:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3112:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3113:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3114: }
 3115: 
 3116: /************ Variance ******************/
 3117: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3118: {
 3119:   /* Variance of health expectancies */
 3120:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3121:   /* double **newm;*/
 3122:   double **dnewm,**doldm;
 3123:   double **dnewmp,**doldmp;
 3124:   int i, j, nhstepm, hstepm, h, nstepm ;
 3125:   int k, cptcode;
 3126:   double *xp;
 3127:   double **gp, **gm;  /* for var eij */
 3128:   double ***gradg, ***trgradg; /*for var eij */
 3129:   double **gradgp, **trgradgp; /* for var p point j */
 3130:   double *gpp, *gmp; /* for var p point j */
 3131:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3132:   double ***p3mat;
 3133:   double age,agelim, hf;
 3134:   double ***mobaverage;
 3135:   int theta;
 3136:   char digit[4];
 3137:   char digitp[25];
 3138: 
 3139:   char fileresprobmorprev[FILENAMELENGTH];
 3140: 
 3141:   if(popbased==1){
 3142:     if(mobilav!=0)
 3143:       strcpy(digitp,"-populbased-mobilav-");
 3144:     else strcpy(digitp,"-populbased-nomobil-");
 3145:   }
 3146:   else 
 3147:     strcpy(digitp,"-stablbased-");
 3148: 
 3149:   if (mobilav!=0) {
 3150:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3151:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3152:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3153:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3154:     }
 3155:   }
 3156: 
 3157:   strcpy(fileresprobmorprev,"prmorprev"); 
 3158:   sprintf(digit,"%-d",ij);
 3159:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3160:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3161:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3162:   strcat(fileresprobmorprev,fileres);
 3163:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3164:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3165:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3166:   }
 3167:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3168:  
 3169:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3170:   pstamp(ficresprobmorprev);
 3171:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3172:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3173:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3174:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3175:     for(i=1; i<=nlstate;i++)
 3176:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3177:   }  
 3178:   fprintf(ficresprobmorprev,"\n");
 3179:   fprintf(ficgp,"\n# Routine varevsij");
 3180:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3181:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3182:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3183: /*   } */
 3184:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3185:   pstamp(ficresvij);
 3186:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3187:   if(popbased==1)
 3188:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3189:   else
 3190:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3191:   fprintf(ficresvij,"# Age");
 3192:   for(i=1; i<=nlstate;i++)
 3193:     for(j=1; j<=nlstate;j++)
 3194:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3195:   fprintf(ficresvij,"\n");
 3196: 
 3197:   xp=vector(1,npar);
 3198:   dnewm=matrix(1,nlstate,1,npar);
 3199:   doldm=matrix(1,nlstate,1,nlstate);
 3200:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3201:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3202: 
 3203:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3204:   gpp=vector(nlstate+1,nlstate+ndeath);
 3205:   gmp=vector(nlstate+1,nlstate+ndeath);
 3206:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3207:   
 3208:   if(estepm < stepm){
 3209:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3210:   }
 3211:   else  hstepm=estepm;   
 3212:   /* For example we decided to compute the life expectancy with the smallest unit */
 3213:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3214:      nhstepm is the number of hstepm from age to agelim 
 3215:      nstepm is the number of stepm from age to agelin. 
 3216:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3217:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3218:      survival function given by stepm (the optimization length). Unfortunately it
 3219:      means that if the survival funtion is printed every two years of age and if
 3220:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3221:      results. So we changed our mind and took the option of the best precision.
 3222:   */
 3223:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3224:   agelim = AGESUP;
 3225:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3226:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3227:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3228:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3229:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3230:     gp=matrix(0,nhstepm,1,nlstate);
 3231:     gm=matrix(0,nhstepm,1,nlstate);
 3232: 
 3233: 
 3234:     for(theta=1; theta <=npar; theta++){
 3235:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3236: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3237:       }
 3238:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3239:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3240: 
 3241:       if (popbased==1) {
 3242: 	if(mobilav ==0){
 3243: 	  for(i=1; i<=nlstate;i++)
 3244: 	    prlim[i][i]=probs[(int)age][i][ij];
 3245: 	}else{ /* mobilav */ 
 3246: 	  for(i=1; i<=nlstate;i++)
 3247: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3248: 	}
 3249:       }
 3250:   
 3251:       for(j=1; j<= nlstate; j++){
 3252: 	for(h=0; h<=nhstepm; h++){
 3253: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3254: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3255: 	}
 3256:       }
 3257:       /* This for computing probability of death (h=1 means
 3258:          computed over hstepm matrices product = hstepm*stepm months) 
 3259:          as a weighted average of prlim.
 3260:       */
 3261:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3262: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3263: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3264:       }    
 3265:       /* end probability of death */
 3266: 
 3267:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3268: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3269:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3270:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3271:  
 3272:       if (popbased==1) {
 3273: 	if(mobilav ==0){
 3274: 	  for(i=1; i<=nlstate;i++)
 3275: 	    prlim[i][i]=probs[(int)age][i][ij];
 3276: 	}else{ /* mobilav */ 
 3277: 	  for(i=1; i<=nlstate;i++)
 3278: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3279: 	}
 3280:       }
 3281: 
 3282:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3283: 	for(h=0; h<=nhstepm; h++){
 3284: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3285: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3286: 	}
 3287:       }
 3288:       /* This for computing probability of death (h=1 means
 3289:          computed over hstepm matrices product = hstepm*stepm months) 
 3290:          as a weighted average of prlim.
 3291:       */
 3292:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3293: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3294:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3295:       }    
 3296:       /* end probability of death */
 3297: 
 3298:       for(j=1; j<= nlstate; j++) /* vareij */
 3299: 	for(h=0; h<=nhstepm; h++){
 3300: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3301: 	}
 3302: 
 3303:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3304: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3305:       }
 3306: 
 3307:     } /* End theta */
 3308: 
 3309:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3310: 
 3311:     for(h=0; h<=nhstepm; h++) /* veij */
 3312:       for(j=1; j<=nlstate;j++)
 3313: 	for(theta=1; theta <=npar; theta++)
 3314: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3315: 
 3316:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3317:       for(theta=1; theta <=npar; theta++)
 3318: 	trgradgp[j][theta]=gradgp[theta][j];
 3319:   
 3320: 
 3321:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3322:     for(i=1;i<=nlstate;i++)
 3323:       for(j=1;j<=nlstate;j++)
 3324: 	vareij[i][j][(int)age] =0.;
 3325: 
 3326:     for(h=0;h<=nhstepm;h++){
 3327:       for(k=0;k<=nhstepm;k++){
 3328: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3329: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3330: 	for(i=1;i<=nlstate;i++)
 3331: 	  for(j=1;j<=nlstate;j++)
 3332: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3333:       }
 3334:     }
 3335:   
 3336:     /* pptj */
 3337:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3338:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3339:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3340:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3341: 	varppt[j][i]=doldmp[j][i];
 3342:     /* end ppptj */
 3343:     /*  x centered again */
 3344:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3345:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3346:  
 3347:     if (popbased==1) {
 3348:       if(mobilav ==0){
 3349: 	for(i=1; i<=nlstate;i++)
 3350: 	  prlim[i][i]=probs[(int)age][i][ij];
 3351:       }else{ /* mobilav */ 
 3352: 	for(i=1; i<=nlstate;i++)
 3353: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3354:       }
 3355:     }
 3356:              
 3357:     /* This for computing probability of death (h=1 means
 3358:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3359:        as a weighted average of prlim.
 3360:     */
 3361:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3362:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3363: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3364:     }    
 3365:     /* end probability of death */
 3366: 
 3367:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3368:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3369:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3370:       for(i=1; i<=nlstate;i++){
 3371: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3372:       }
 3373:     } 
 3374:     fprintf(ficresprobmorprev,"\n");
 3375: 
 3376:     fprintf(ficresvij,"%.0f ",age );
 3377:     for(i=1; i<=nlstate;i++)
 3378:       for(j=1; j<=nlstate;j++){
 3379: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3380:       }
 3381:     fprintf(ficresvij,"\n");
 3382:     free_matrix(gp,0,nhstepm,1,nlstate);
 3383:     free_matrix(gm,0,nhstepm,1,nlstate);
 3384:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3385:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3386:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3387:   } /* End age */
 3388:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3389:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3390:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3391:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3392:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3393:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3394:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3395: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3396: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3397: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3398:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3399:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3400:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3401:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3402:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3403:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3404: */
 3405: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3406:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3407: 
 3408:   free_vector(xp,1,npar);
 3409:   free_matrix(doldm,1,nlstate,1,nlstate);
 3410:   free_matrix(dnewm,1,nlstate,1,npar);
 3411:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3412:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3413:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3414:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3415:   fclose(ficresprobmorprev);
 3416:   fflush(ficgp);
 3417:   fflush(fichtm); 
 3418: }  /* end varevsij */
 3419: 
 3420: /************ Variance of prevlim ******************/
 3421: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3422: {
 3423:   /* Variance of prevalence limit */
 3424:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3425:   double **newm;
 3426:   double **dnewm,**doldm;
 3427:   int i, j, nhstepm, hstepm;
 3428:   int k, cptcode;
 3429:   double *xp;
 3430:   double *gp, *gm;
 3431:   double **gradg, **trgradg;
 3432:   double age,agelim;
 3433:   int theta;
 3434:   
 3435:   pstamp(ficresvpl);
 3436:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3437:   fprintf(ficresvpl,"# Age");
 3438:   for(i=1; i<=nlstate;i++)
 3439:       fprintf(ficresvpl," %1d-%1d",i,i);
 3440:   fprintf(ficresvpl,"\n");
 3441: 
 3442:   xp=vector(1,npar);
 3443:   dnewm=matrix(1,nlstate,1,npar);
 3444:   doldm=matrix(1,nlstate,1,nlstate);
 3445:   
 3446:   hstepm=1*YEARM; /* Every year of age */
 3447:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3448:   agelim = AGESUP;
 3449:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3450:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3451:     if (stepm >= YEARM) hstepm=1;
 3452:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3453:     gradg=matrix(1,npar,1,nlstate);
 3454:     gp=vector(1,nlstate);
 3455:     gm=vector(1,nlstate);
 3456: 
 3457:     for(theta=1; theta <=npar; theta++){
 3458:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3459: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3460:       }
 3461:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3462:       for(i=1;i<=nlstate;i++)
 3463: 	gp[i] = prlim[i][i];
 3464:     
 3465:       for(i=1; i<=npar; i++) /* Computes gradient */
 3466: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3467:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3468:       for(i=1;i<=nlstate;i++)
 3469: 	gm[i] = prlim[i][i];
 3470: 
 3471:       for(i=1;i<=nlstate;i++)
 3472: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3473:     } /* End theta */
 3474: 
 3475:     trgradg =matrix(1,nlstate,1,npar);
 3476: 
 3477:     for(j=1; j<=nlstate;j++)
 3478:       for(theta=1; theta <=npar; theta++)
 3479: 	trgradg[j][theta]=gradg[theta][j];
 3480: 
 3481:     for(i=1;i<=nlstate;i++)
 3482:       varpl[i][(int)age] =0.;
 3483:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3484:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3485:     for(i=1;i<=nlstate;i++)
 3486:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3487: 
 3488:     fprintf(ficresvpl,"%.0f ",age );
 3489:     for(i=1; i<=nlstate;i++)
 3490:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3491:     fprintf(ficresvpl,"\n");
 3492:     free_vector(gp,1,nlstate);
 3493:     free_vector(gm,1,nlstate);
 3494:     free_matrix(gradg,1,npar,1,nlstate);
 3495:     free_matrix(trgradg,1,nlstate,1,npar);
 3496:   } /* End age */
 3497: 
 3498:   free_vector(xp,1,npar);
 3499:   free_matrix(doldm,1,nlstate,1,npar);
 3500:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3501: 
 3502: }
 3503: 
 3504: /************ Variance of one-step probabilities  ******************/
 3505: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3506: {
 3507:   int i, j=0,  i1, k1, l1, t, tj;
 3508:   int k2, l2, j1,  z1;
 3509:   int k=0,l, cptcode;
 3510:   int first=1, first1, first2;
 3511:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3512:   double **dnewm,**doldm;
 3513:   double *xp;
 3514:   double *gp, *gm;
 3515:   double **gradg, **trgradg;
 3516:   double **mu;
 3517:   double age,agelim, cov[NCOVMAX+1];
 3518:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3519:   int theta;
 3520:   char fileresprob[FILENAMELENGTH];
 3521:   char fileresprobcov[FILENAMELENGTH];
 3522:   char fileresprobcor[FILENAMELENGTH];
 3523:   double ***varpij;
 3524: 
 3525:   strcpy(fileresprob,"prob"); 
 3526:   strcat(fileresprob,fileres);
 3527:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3528:     printf("Problem with resultfile: %s\n", fileresprob);
 3529:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3530:   }
 3531:   strcpy(fileresprobcov,"probcov"); 
 3532:   strcat(fileresprobcov,fileres);
 3533:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3534:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3535:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3536:   }
 3537:   strcpy(fileresprobcor,"probcor"); 
 3538:   strcat(fileresprobcor,fileres);
 3539:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3540:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3541:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3542:   }
 3543:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3544:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3545:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3546:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3547:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3548:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3549:   pstamp(ficresprob);
 3550:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3551:   fprintf(ficresprob,"# Age");
 3552:   pstamp(ficresprobcov);
 3553:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3554:   fprintf(ficresprobcov,"# Age");
 3555:   pstamp(ficresprobcor);
 3556:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3557:   fprintf(ficresprobcor,"# Age");
 3558: 
 3559: 
 3560:   for(i=1; i<=nlstate;i++)
 3561:     for(j=1; j<=(nlstate+ndeath);j++){
 3562:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3563:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3564:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3565:     }  
 3566:  /* fprintf(ficresprob,"\n");
 3567:   fprintf(ficresprobcov,"\n");
 3568:   fprintf(ficresprobcor,"\n");
 3569:  */
 3570:   xp=vector(1,npar);
 3571:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3572:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3573:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3574:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3575:   first=1;
 3576:   fprintf(ficgp,"\n# Routine varprob");
 3577:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3578:   fprintf(fichtm,"\n");
 3579: 
 3580:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3581:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3582:   file %s<br>\n",optionfilehtmcov);
 3583:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3584: and drawn. It helps understanding how is the covariance between two incidences.\
 3585:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3586:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3587: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3588: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3589: standard deviations wide on each axis. <br>\
 3590:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3591:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3592: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3593: 
 3594:   cov[1]=1;
 3595:   /* tj=cptcoveff; */
 3596:   tj = (int) pow(2,cptcoveff);
 3597:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3598:   j1=0;
 3599:   for(j1=1; j1<=tj;j1++){
 3600:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 3601:     /*j1++;*/
 3602:       if  (cptcovn>0) {
 3603: 	fprintf(ficresprob, "\n#********** Variable "); 
 3604: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3605: 	fprintf(ficresprob, "**********\n#\n");
 3606: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3607: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3608: 	fprintf(ficresprobcov, "**********\n#\n");
 3609: 	
 3610: 	fprintf(ficgp, "\n#********** Variable "); 
 3611: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3612: 	fprintf(ficgp, "**********\n#\n");
 3613: 	
 3614: 	
 3615: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3616: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3617: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3618: 	
 3619: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3620: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3621: 	fprintf(ficresprobcor, "**********\n#");    
 3622:       }
 3623:       
 3624:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3625:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3626:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 3627:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 3628:       for (age=bage; age<=fage; age ++){ 
 3629: 	cov[2]=age;
 3630: 	for (k=1; k<=cptcovn;k++) {
 3631: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 3632: 							 * 1  1 1 1 1
 3633: 							 * 2  2 1 1 1
 3634: 							 * 3  1 2 1 1
 3635: 							 */
 3636: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 3637: 	}
 3638: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3639: 	for (k=1; k<=cptcovprod;k++)
 3640: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3641: 	
 3642:     
 3643: 	for(theta=1; theta <=npar; theta++){
 3644: 	  for(i=1; i<=npar; i++)
 3645: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3646: 	  
 3647: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3648: 	  
 3649: 	  k=0;
 3650: 	  for(i=1; i<= (nlstate); i++){
 3651: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3652: 	      k=k+1;
 3653: 	      gp[k]=pmmij[i][j];
 3654: 	    }
 3655: 	  }
 3656: 	  
 3657: 	  for(i=1; i<=npar; i++)
 3658: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3659:     
 3660: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3661: 	  k=0;
 3662: 	  for(i=1; i<=(nlstate); i++){
 3663: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3664: 	      k=k+1;
 3665: 	      gm[k]=pmmij[i][j];
 3666: 	    }
 3667: 	  }
 3668:      
 3669: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3670: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3671: 	}
 3672: 
 3673: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3674: 	  for(theta=1; theta <=npar; theta++)
 3675: 	    trgradg[j][theta]=gradg[theta][j];
 3676: 	
 3677: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3678: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3679: 
 3680: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3681: 	
 3682: 	k=0;
 3683: 	for(i=1; i<=(nlstate); i++){
 3684: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3685: 	    k=k+1;
 3686: 	    mu[k][(int) age]=pmmij[i][j];
 3687: 	  }
 3688: 	}
 3689:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3690: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3691: 	    varpij[i][j][(int)age] = doldm[i][j];
 3692: 
 3693: 	/*printf("\n%d ",(int)age);
 3694: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3695: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3696: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3697: 	  }*/
 3698: 
 3699: 	fprintf(ficresprob,"\n%d ",(int)age);
 3700: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3701: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3702: 
 3703: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3704: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3705: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3706: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3707: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3708: 	}
 3709: 	i=0;
 3710: 	for (k=1; k<=(nlstate);k++){
 3711:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3712:  	    i++;
 3713: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3714: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3715: 	    for (j=1; j<=i;j++){
 3716: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 3717: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3718: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3719: 	    }
 3720: 	  }
 3721: 	}/* end of loop for state */
 3722:       } /* end of loop for age */
 3723:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3724:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3725:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3726:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3727:       
 3728:       /* Confidence intervalle of pij  */
 3729:       /*
 3730: 	fprintf(ficgp,"\nunset parametric;unset label");
 3731: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3732: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3733: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3734: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3735: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3736: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3737:       */
 3738: 
 3739:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3740:       first1=1;first2=2;
 3741:       for (k2=1; k2<=(nlstate);k2++){
 3742: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3743: 	  if(l2==k2) continue;
 3744: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3745: 	  for (k1=1; k1<=(nlstate);k1++){
 3746: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3747: 	      if(l1==k1) continue;
 3748: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3749: 	      if(i<=j) continue;
 3750: 	      for (age=bage; age<=fage; age ++){ 
 3751: 		if ((int)age %5==0){
 3752: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3753: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3754: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3755: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3756: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3757: 		  c12=cv12/sqrt(v1*v2);
 3758: 		  /* Computing eigen value of matrix of covariance */
 3759: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3760: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3761: 		  if ((lc2 <0) || (lc1 <0) ){
 3762: 		    if(first2==1){
 3763: 		      first1=0;
 3764: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 3765: 		    }
 3766: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 3767: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 3768: 		    /* lc2=fabs(lc2); */
 3769: 		  }
 3770: 
 3771: 		  /* Eigen vectors */
 3772: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3773: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3774: 		  v21=(lc1-v1)/cv12*v11;
 3775: 		  v12=-v21;
 3776: 		  v22=v11;
 3777: 		  tnalp=v21/v11;
 3778: 		  if(first1==1){
 3779: 		    first1=0;
 3780: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3781: 		  }
 3782: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3783: 		  /*printf(fignu*/
 3784: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3785: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3786: 		  if(first==1){
 3787: 		    first=0;
 3788:  		    fprintf(ficgp,"\nset parametric;unset label");
 3789: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3790: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 3791: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3792:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3793: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3794: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3795: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3796: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3797: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3798: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3799: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3800: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3801: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3802: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3803: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3804: 		  }else{
 3805: 		    first=0;
 3806: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3807: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3808: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3809: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3810: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3811: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3812: 		  }/* if first */
 3813: 		} /* age mod 5 */
 3814: 	      } /* end loop age */
 3815: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3816: 	      first=1;
 3817: 	    } /*l12 */
 3818: 	  } /* k12 */
 3819: 	} /*l1 */
 3820:       }/* k1 */
 3821:       /* } /* loop covariates */
 3822:   }
 3823:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3824:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3825:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3826:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 3827:   free_vector(xp,1,npar);
 3828:   fclose(ficresprob);
 3829:   fclose(ficresprobcov);
 3830:   fclose(ficresprobcor);
 3831:   fflush(ficgp);
 3832:   fflush(fichtmcov);
 3833: }
 3834: 
 3835: 
 3836: /******************* Printing html file ***********/
 3837: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3838: 		  int lastpass, int stepm, int weightopt, char model[],\
 3839: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3840: 		  int popforecast, int estepm ,\
 3841: 		  double jprev1, double mprev1,double anprev1, \
 3842: 		  double jprev2, double mprev2,double anprev2){
 3843:   int jj1, k1, i1, cpt;
 3844: 
 3845:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 3846:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 3847: </ul>");
 3848:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 3849:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 3850: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 3851:    fprintf(fichtm,"\
 3852:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 3853: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 3854:    fprintf(fichtm,"\
 3855:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 3856: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 3857:    fprintf(fichtm,"\
 3858:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 3859:    <a href=\"%s\">%s</a> <br>\n",
 3860: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3861:    fprintf(fichtm,"\
 3862:  - Population projections by age and states: \
 3863:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 3864: 
 3865: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3866: 
 3867:  m=pow(2,cptcoveff);
 3868:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3869: 
 3870:  jj1=0;
 3871:  for(k1=1; k1<=m;k1++){
 3872:    for(i1=1; i1<=ncodemax[k1];i1++){
 3873:      jj1++;
 3874:      if (cptcovn > 0) {
 3875:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3876:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3877: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3878:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3879:      }
 3880:      /* Pij */
 3881:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 3882: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3883:      /* Quasi-incidences */
 3884:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3885:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 3886: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3887:        /* Period (stable) prevalence in each health state */
 3888:        for(cpt=1; cpt<nlstate;cpt++){
 3889: 	 fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 3890: <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3891:        }
 3892:      for(cpt=1; cpt<=nlstate;cpt++) {
 3893:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 3894: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3895:      }
 3896:    } /* end i1 */
 3897:  }/* End k1 */
 3898:  fprintf(fichtm,"</ul>");
 3899: 
 3900: 
 3901:  fprintf(fichtm,"\
 3902: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 3903:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 3904: 
 3905:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3906: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 3907:  fprintf(fichtm,"\
 3908:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3909: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 3910: 
 3911:  fprintf(fichtm,"\
 3912:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3913: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 3914:  fprintf(fichtm,"\
 3915:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 3916:    <a href=\"%s\">%s</a> <br>\n</li>",
 3917: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 3918:  fprintf(fichtm,"\
 3919:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 3920:    <a href=\"%s\">%s</a> <br>\n</li>",
 3921: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 3922:  fprintf(fichtm,"\
 3923:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 3924: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 3925:  fprintf(fichtm,"\
 3926:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 3927: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 3928:  fprintf(fichtm,"\
 3929:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3930: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3931: 
 3932: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3933: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3934: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3935: /* 	<br>",fileres,fileres,fileres,fileres); */
 3936: /*  else  */
 3937: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3938:  fflush(fichtm);
 3939:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3940: 
 3941:  m=pow(2,cptcoveff);
 3942:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3943: 
 3944:  jj1=0;
 3945:  for(k1=1; k1<=m;k1++){
 3946:    for(i1=1; i1<=ncodemax[k1];i1++){
 3947:      jj1++;
 3948:      if (cptcovn > 0) {
 3949:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3950:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3951: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3952:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3953:      }
 3954:      for(cpt=1; cpt<=nlstate;cpt++) {
 3955:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 3956: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 3957: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3958:      }
 3959:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3960: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 3961: true period expectancies (those weighted with period prevalences are also\
 3962:  drawn in addition to the population based expectancies computed using\
 3963:  observed and cahotic prevalences: %s%d.png<br>\
 3964: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3965:    } /* end i1 */
 3966:  }/* End k1 */
 3967:  fprintf(fichtm,"</ul>");
 3968:  fflush(fichtm);
 3969: }
 3970: 
 3971: /******************* Gnuplot file **************/
 3972: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3973: 
 3974:   char dirfileres[132],optfileres[132];
 3975:   int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 3976:   int ng=0;
 3977: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3978: /*     printf("Problem with file %s",optionfilegnuplot); */
 3979: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3980: /*   } */
 3981: 
 3982:   /*#ifdef windows */
 3983:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3984:     /*#endif */
 3985:   m=pow(2,cptcoveff);
 3986: 
 3987:   strcpy(dirfileres,optionfilefiname);
 3988:   strcpy(optfileres,"vpl");
 3989:  /* 1eme*/
 3990:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3991:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 3992:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3993:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 3994:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3995: set ylabel \"Probability\" \n\
 3996: set ter png small size 320, 240\n\
 3997: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3998: 
 3999:      for (i=1; i<= nlstate ; i ++) {
 4000:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4001:        else        fprintf(ficgp," \%%*lf (\%%*lf)");
 4002:      }
 4003:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4004:      for (i=1; i<= nlstate ; i ++) {
 4005:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4006:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4007:      } 
 4008:      fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4009:      for (i=1; i<= nlstate ; i ++) {
 4010:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4011:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4012:      }  
 4013:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4014:    }
 4015:   }
 4016:   /*2 eme*/
 4017:   
 4018:   for (k1=1; k1<= m ; k1 ++) { 
 4019:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4020:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4021:     
 4022:     for (i=1; i<= nlstate+1 ; i ++) {
 4023:       k=2*i;
 4024:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4025:       for (j=1; j<= nlstate+1 ; j ++) {
 4026: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4027: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4028:       }   
 4029:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4030:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4031:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4032:       for (j=1; j<= nlstate+1 ; j ++) {
 4033: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4034: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4035:       }   
 4036:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4037:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4038:       for (j=1; j<= nlstate+1 ; j ++) {
 4039: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4040: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4041:       }   
 4042:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4043:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4044:     }
 4045:   }
 4046:   
 4047:   /*3eme*/
 4048:   
 4049:   for (k1=1; k1<= m ; k1 ++) { 
 4050:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4051:       /*       k=2+nlstate*(2*cpt-2); */
 4052:       k=2+(nlstate+1)*(cpt-1);
 4053:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4054:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4055: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4056:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4057: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4058: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4059: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4060: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4061: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4062: 	
 4063:       */
 4064:       for (i=1; i< nlstate ; i ++) {
 4065: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4066: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4067: 	
 4068:       } 
 4069:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4070:     }
 4071:   }
 4072:   
 4073:   /* CV preval stable (period) */
 4074:   for (k1=1; k1<= m ; k1 ++) { 
 4075:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 4076:       k=3;
 4077:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4078:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4079: set ter png small size 320, 240\n\
 4080: unset log y\n\
 4081: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 4082:       
 4083:       for (i=1; i< nlstate ; i ++)
 4084: 	fprintf(ficgp,"+$%d",k+i+1);
 4085:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 4086:       
 4087:       l=3+(nlstate+ndeath)*cpt;
 4088:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 4089:       for (i=1; i< nlstate ; i ++) {
 4090: 	l=3+(nlstate+ndeath)*cpt;
 4091: 	fprintf(ficgp,"+$%d",l+i+1);
 4092:       }
 4093:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 4094:     } 
 4095:   }  
 4096:   
 4097:   /* proba elementaires */
 4098:   for(i=1,jk=1; i <=nlstate; i++){
 4099:     for(k=1; k <=(nlstate+ndeath); k++){
 4100:       if (k != i) {
 4101: 	for(j=1; j <=ncovmodel; j++){
 4102: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4103: 	  jk++; 
 4104: 	  fprintf(ficgp,"\n");
 4105: 	}
 4106:       }
 4107:     }
 4108:    }
 4109:   /*goto avoid;*/
 4110:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4111:      for(jk=1; jk <=m; jk++) {
 4112:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4113:        if (ng==2)
 4114: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4115:        else
 4116: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4117:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4118:        i=1;
 4119:        for(k2=1; k2<=nlstate; k2++) {
 4120: 	 k3=i;
 4121: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4122: 	   if (k != k2){
 4123: 	     if(ng==2)
 4124: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4125: 	     else
 4126: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4127: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4128: 	     for(j=3; j <=ncovmodel; j++) {
 4129: 	       /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
 4130: 	       /* 	 /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
 4131: 	       /* 	 ij++; */
 4132: 	       /* } */
 4133: 	       /* else */
 4134: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4135: 	     }
 4136: 	     fprintf(ficgp,")/(1");
 4137: 	     
 4138: 	     for(k1=1; k1 <=nlstate; k1++){   
 4139: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4140: 	       ij=1;
 4141: 	       for(j=3; j <=ncovmodel; j++){
 4142: 		 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
 4143: 		 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
 4144: 		 /*   ij++; */
 4145: 		 /* } */
 4146: 		 /* else */
 4147: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4148: 	       }
 4149: 	       fprintf(ficgp,")");
 4150: 	     }
 4151: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4152: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4153: 	     i=i+ncovmodel;
 4154: 	   }
 4155: 	 } /* end k */
 4156:        } /* end k2 */
 4157:      } /* end jk */
 4158:    } /* end ng */
 4159:  avoid:
 4160:    fflush(ficgp); 
 4161: }  /* end gnuplot */
 4162: 
 4163: 
 4164: /*************** Moving average **************/
 4165: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4166: 
 4167:   int i, cpt, cptcod;
 4168:   int modcovmax =1;
 4169:   int mobilavrange, mob;
 4170:   double age;
 4171: 
 4172:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4173: 			   a covariate has 2 modalities */
 4174:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4175: 
 4176:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4177:     if(mobilav==1) mobilavrange=5; /* default */
 4178:     else mobilavrange=mobilav;
 4179:     for (age=bage; age<=fage; age++)
 4180:       for (i=1; i<=nlstate;i++)
 4181: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4182: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4183:     /* We keep the original values on the extreme ages bage, fage and for 
 4184:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4185:        we use a 5 terms etc. until the borders are no more concerned. 
 4186:     */ 
 4187:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4188:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4189: 	for (i=1; i<=nlstate;i++){
 4190: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4191: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4192: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4193: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4194: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4195: 	      }
 4196: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4197: 	  }
 4198: 	}
 4199:       }/* end age */
 4200:     }/* end mob */
 4201:   }else return -1;
 4202:   return 0;
 4203: }/* End movingaverage */
 4204: 
 4205: 
 4206: /************** Forecasting ******************/
 4207: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4208:   /* proj1, year, month, day of starting projection 
 4209:      agemin, agemax range of age
 4210:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4211:      anproj2 year of en of projection (same day and month as proj1).
 4212:   */
 4213:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 4214:   int *popage;
 4215:   double agec; /* generic age */
 4216:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4217:   double *popeffectif,*popcount;
 4218:   double ***p3mat;
 4219:   double ***mobaverage;
 4220:   char fileresf[FILENAMELENGTH];
 4221: 
 4222:   agelim=AGESUP;
 4223:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4224:  
 4225:   strcpy(fileresf,"f"); 
 4226:   strcat(fileresf,fileres);
 4227:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4228:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4229:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4230:   }
 4231:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4232:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4233: 
 4234:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4235: 
 4236:   if (mobilav!=0) {
 4237:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4238:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4239:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4240:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4241:     }
 4242:   }
 4243: 
 4244:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4245:   if (stepm<=12) stepsize=1;
 4246:   if(estepm < stepm){
 4247:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4248:   }
 4249:   else  hstepm=estepm;   
 4250: 
 4251:   hstepm=hstepm/stepm; 
 4252:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4253:                                fractional in yp1 */
 4254:   anprojmean=yp;
 4255:   yp2=modf((yp1*12),&yp);
 4256:   mprojmean=yp;
 4257:   yp1=modf((yp2*30.5),&yp);
 4258:   jprojmean=yp;
 4259:   if(jprojmean==0) jprojmean=1;
 4260:   if(mprojmean==0) jprojmean=1;
 4261: 
 4262:   i1=cptcoveff;
 4263:   if (cptcovn < 1){i1=1;}
 4264:   
 4265:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4266:   
 4267:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4268: 
 4269: /* 	      if (h==(int)(YEARM*yearp)){ */
 4270:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4271:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4272:       k=k+1;
 4273:       fprintf(ficresf,"\n#******");
 4274:       for(j=1;j<=cptcoveff;j++) {
 4275: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4276:       }
 4277:       fprintf(ficresf,"******\n");
 4278:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4279:       for(j=1; j<=nlstate+ndeath;j++){ 
 4280: 	for(i=1; i<=nlstate;i++) 	      
 4281:           fprintf(ficresf," p%d%d",i,j);
 4282: 	fprintf(ficresf," p.%d",j);
 4283:       }
 4284:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4285: 	fprintf(ficresf,"\n");
 4286: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4287: 
 4288:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4289: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4290: 	  nhstepm = nhstepm/hstepm; 
 4291: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4292: 	  oldm=oldms;savm=savms;
 4293: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4294: 	
 4295: 	  for (h=0; h<=nhstepm; h++){
 4296: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4297:               fprintf(ficresf,"\n");
 4298:               for(j=1;j<=cptcoveff;j++) 
 4299:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4300: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4301: 	    } 
 4302: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4303: 	      ppij=0.;
 4304: 	      for(i=1; i<=nlstate;i++) {
 4305: 		if (mobilav==1) 
 4306: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4307: 		else {
 4308: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4309: 		}
 4310: 		if (h*hstepm/YEARM*stepm== yearp) {
 4311: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4312: 		}
 4313: 	      } /* end i */
 4314: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4315: 		fprintf(ficresf," %.3f", ppij);
 4316: 	      }
 4317: 	    }/* end j */
 4318: 	  } /* end h */
 4319: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4320: 	} /* end agec */
 4321:       } /* end yearp */
 4322:     } /* end cptcod */
 4323:   } /* end  cptcov */
 4324:        
 4325:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4326: 
 4327:   fclose(ficresf);
 4328: }
 4329: 
 4330: /************** Forecasting *****not tested NB*************/
 4331: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4332:   
 4333:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4334:   int *popage;
 4335:   double calagedatem, agelim, kk1, kk2;
 4336:   double *popeffectif,*popcount;
 4337:   double ***p3mat,***tabpop,***tabpopprev;
 4338:   double ***mobaverage;
 4339:   char filerespop[FILENAMELENGTH];
 4340: 
 4341:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4342:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4343:   agelim=AGESUP;
 4344:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4345:   
 4346:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4347:   
 4348:   
 4349:   strcpy(filerespop,"pop"); 
 4350:   strcat(filerespop,fileres);
 4351:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4352:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4353:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4354:   }
 4355:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4356:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4357: 
 4358:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4359: 
 4360:   if (mobilav!=0) {
 4361:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4362:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4363:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4364:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4365:     }
 4366:   }
 4367: 
 4368:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4369:   if (stepm<=12) stepsize=1;
 4370:   
 4371:   agelim=AGESUP;
 4372:   
 4373:   hstepm=1;
 4374:   hstepm=hstepm/stepm; 
 4375:   
 4376:   if (popforecast==1) {
 4377:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4378:       printf("Problem with population file : %s\n",popfile);exit(0);
 4379:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4380:     } 
 4381:     popage=ivector(0,AGESUP);
 4382:     popeffectif=vector(0,AGESUP);
 4383:     popcount=vector(0,AGESUP);
 4384:     
 4385:     i=1;   
 4386:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4387:    
 4388:     imx=i;
 4389:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4390:   }
 4391: 
 4392:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4393:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4394:       k=k+1;
 4395:       fprintf(ficrespop,"\n#******");
 4396:       for(j=1;j<=cptcoveff;j++) {
 4397: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4398:       }
 4399:       fprintf(ficrespop,"******\n");
 4400:       fprintf(ficrespop,"# Age");
 4401:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4402:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4403:       
 4404:       for (cpt=0; cpt<=0;cpt++) { 
 4405: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4406: 	
 4407:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4408: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4409: 	  nhstepm = nhstepm/hstepm; 
 4410: 	  
 4411: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4412: 	  oldm=oldms;savm=savms;
 4413: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4414: 	
 4415: 	  for (h=0; h<=nhstepm; h++){
 4416: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4417: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4418: 	    } 
 4419: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4420: 	      kk1=0.;kk2=0;
 4421: 	      for(i=1; i<=nlstate;i++) {	      
 4422: 		if (mobilav==1) 
 4423: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4424: 		else {
 4425: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4426: 		}
 4427: 	      }
 4428: 	      if (h==(int)(calagedatem+12*cpt)){
 4429: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4430: 		  /*fprintf(ficrespop," %.3f", kk1);
 4431: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4432: 	      }
 4433: 	    }
 4434: 	    for(i=1; i<=nlstate;i++){
 4435: 	      kk1=0.;
 4436: 		for(j=1; j<=nlstate;j++){
 4437: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4438: 		}
 4439: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4440: 	    }
 4441: 
 4442: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4443: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4444: 	  }
 4445: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4446: 	}
 4447:       }
 4448:  
 4449:   /******/
 4450: 
 4451:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4452: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4453: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4454: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4455: 	  nhstepm = nhstepm/hstepm; 
 4456: 	  
 4457: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4458: 	  oldm=oldms;savm=savms;
 4459: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4460: 	  for (h=0; h<=nhstepm; h++){
 4461: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4462: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4463: 	    } 
 4464: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4465: 	      kk1=0.;kk2=0;
 4466: 	      for(i=1; i<=nlstate;i++) {	      
 4467: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4468: 	      }
 4469: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4470: 	    }
 4471: 	  }
 4472: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4473: 	}
 4474:       }
 4475:    } 
 4476:   }
 4477:  
 4478:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4479: 
 4480:   if (popforecast==1) {
 4481:     free_ivector(popage,0,AGESUP);
 4482:     free_vector(popeffectif,0,AGESUP);
 4483:     free_vector(popcount,0,AGESUP);
 4484:   }
 4485:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4486:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4487:   fclose(ficrespop);
 4488: } /* End of popforecast */
 4489: 
 4490: int fileappend(FILE *fichier, char *optionfich)
 4491: {
 4492:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4493:     printf("Problem with file: %s\n", optionfich);
 4494:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4495:     return (0);
 4496:   }
 4497:   fflush(fichier);
 4498:   return (1);
 4499: }
 4500: 
 4501: 
 4502: /**************** function prwizard **********************/
 4503: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4504: {
 4505: 
 4506:   /* Wizard to print covariance matrix template */
 4507: 
 4508:   char ca[32], cb[32], cc[32];
 4509:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 4510:   int numlinepar;
 4511: 
 4512:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4513:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4514:   for(i=1; i <=nlstate; i++){
 4515:     jj=0;
 4516:     for(j=1; j <=nlstate+ndeath; j++){
 4517:       if(j==i) continue;
 4518:       jj++;
 4519:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4520:       printf("%1d%1d",i,j);
 4521:       fprintf(ficparo,"%1d%1d",i,j);
 4522:       for(k=1; k<=ncovmodel;k++){
 4523: 	/* 	  printf(" %lf",param[i][j][k]); */
 4524: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4525: 	printf(" 0.");
 4526: 	fprintf(ficparo," 0.");
 4527:       }
 4528:       printf("\n");
 4529:       fprintf(ficparo,"\n");
 4530:     }
 4531:   }
 4532:   printf("# Scales (for hessian or gradient estimation)\n");
 4533:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4534:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4535:   for(i=1; i <=nlstate; i++){
 4536:     jj=0;
 4537:     for(j=1; j <=nlstate+ndeath; j++){
 4538:       if(j==i) continue;
 4539:       jj++;
 4540:       fprintf(ficparo,"%1d%1d",i,j);
 4541:       printf("%1d%1d",i,j);
 4542:       fflush(stdout);
 4543:       for(k=1; k<=ncovmodel;k++){
 4544: 	/* 	printf(" %le",delti3[i][j][k]); */
 4545: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4546: 	printf(" 0.");
 4547: 	fprintf(ficparo," 0.");
 4548:       }
 4549:       numlinepar++;
 4550:       printf("\n");
 4551:       fprintf(ficparo,"\n");
 4552:     }
 4553:   }
 4554:   printf("# Covariance matrix\n");
 4555: /* # 121 Var(a12)\n\ */
 4556: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4557: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4558: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4559: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4560: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4561: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4562: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4563:   fflush(stdout);
 4564:   fprintf(ficparo,"# Covariance matrix\n");
 4565:   /* # 121 Var(a12)\n\ */
 4566:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4567:   /* #   ...\n\ */
 4568:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4569:   
 4570:   for(itimes=1;itimes<=2;itimes++){
 4571:     jj=0;
 4572:     for(i=1; i <=nlstate; i++){
 4573:       for(j=1; j <=nlstate+ndeath; j++){
 4574: 	if(j==i) continue;
 4575: 	for(k=1; k<=ncovmodel;k++){
 4576: 	  jj++;
 4577: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4578: 	  if(itimes==1){
 4579: 	    printf("#%1d%1d%d",i,j,k);
 4580: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4581: 	  }else{
 4582: 	    printf("%1d%1d%d",i,j,k);
 4583: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4584: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4585: 	  }
 4586: 	  ll=0;
 4587: 	  for(li=1;li <=nlstate; li++){
 4588: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4589: 	      if(lj==li) continue;
 4590: 	      for(lk=1;lk<=ncovmodel;lk++){
 4591: 		ll++;
 4592: 		if(ll<=jj){
 4593: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4594: 		  if(ll<jj){
 4595: 		    if(itimes==1){
 4596: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4597: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4598: 		    }else{
 4599: 		      printf(" 0.");
 4600: 		      fprintf(ficparo," 0.");
 4601: 		    }
 4602: 		  }else{
 4603: 		    if(itimes==1){
 4604: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4605: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4606: 		    }else{
 4607: 		      printf(" 0.");
 4608: 		      fprintf(ficparo," 0.");
 4609: 		    }
 4610: 		  }
 4611: 		}
 4612: 	      } /* end lk */
 4613: 	    } /* end lj */
 4614: 	  } /* end li */
 4615: 	  printf("\n");
 4616: 	  fprintf(ficparo,"\n");
 4617: 	  numlinepar++;
 4618: 	} /* end k*/
 4619:       } /*end j */
 4620:     } /* end i */
 4621:   } /* end itimes */
 4622: 
 4623: } /* end of prwizard */
 4624: /******************* Gompertz Likelihood ******************************/
 4625: double gompertz(double x[])
 4626: { 
 4627:   double A,B,L=0.0,sump=0.,num=0.;
 4628:   int i,n=0; /* n is the size of the sample */
 4629: 
 4630:   for (i=0;i<=imx-1 ; i++) {
 4631:     sump=sump+weight[i];
 4632:     /*    sump=sump+1;*/
 4633:     num=num+1;
 4634:   }
 4635:  
 4636:  
 4637:   /* for (i=0; i<=imx; i++) 
 4638:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4639: 
 4640:   for (i=1;i<=imx ; i++)
 4641:     {
 4642:       if (cens[i] == 1 && wav[i]>1)
 4643: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4644:       
 4645:       if (cens[i] == 0 && wav[i]>1)
 4646: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4647: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4648:       
 4649:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4650:       if (wav[i] > 1 ) { /* ??? */
 4651: 	L=L+A*weight[i];
 4652: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4653:       }
 4654:     }
 4655: 
 4656:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4657:  
 4658:   return -2*L*num/sump;
 4659: }
 4660: 
 4661: #ifdef GSL
 4662: /******************* Gompertz_f Likelihood ******************************/
 4663: double gompertz_f(const gsl_vector *v, void *params)
 4664: { 
 4665:   double A,B,LL=0.0,sump=0.,num=0.;
 4666:   double *x= (double *) v->data;
 4667:   int i,n=0; /* n is the size of the sample */
 4668: 
 4669:   for (i=0;i<=imx-1 ; i++) {
 4670:     sump=sump+weight[i];
 4671:     /*    sump=sump+1;*/
 4672:     num=num+1;
 4673:   }
 4674:  
 4675:  
 4676:   /* for (i=0; i<=imx; i++) 
 4677:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4678:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 4679:   for (i=1;i<=imx ; i++)
 4680:     {
 4681:       if (cens[i] == 1 && wav[i]>1)
 4682: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 4683:       
 4684:       if (cens[i] == 0 && wav[i]>1)
 4685: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 4686: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 4687:       
 4688:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4689:       if (wav[i] > 1 ) { /* ??? */
 4690: 	LL=LL+A*weight[i];
 4691: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4692:       }
 4693:     }
 4694: 
 4695:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4696:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 4697:  
 4698:   return -2*LL*num/sump;
 4699: }
 4700: #endif
 4701: 
 4702: /******************* Printing html file ***********/
 4703: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4704: 		  int lastpass, int stepm, int weightopt, char model[],\
 4705: 		  int imx,  double p[],double **matcov,double agemortsup){
 4706:   int i,k;
 4707: 
 4708:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4709:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4710:   for (i=1;i<=2;i++) 
 4711:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4712:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4713:   fprintf(fichtm,"</ul>");
 4714: 
 4715: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4716: 
 4717:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4718: 
 4719:  for (k=agegomp;k<(agemortsup-2);k++) 
 4720:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4721: 
 4722:  
 4723:   fflush(fichtm);
 4724: }
 4725: 
 4726: /******************* Gnuplot file **************/
 4727: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4728: 
 4729:   char dirfileres[132],optfileres[132];
 4730:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 4731:   int ng;
 4732: 
 4733: 
 4734:   /*#ifdef windows */
 4735:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4736:     /*#endif */
 4737: 
 4738: 
 4739:   strcpy(dirfileres,optionfilefiname);
 4740:   strcpy(optfileres,"vpl");
 4741:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4742:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4743:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 4744:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 4745:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4746: 
 4747: } 
 4748: 
 4749: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 4750: {
 4751: 
 4752:   /*-------- data file ----------*/
 4753:   FILE *fic;
 4754:   char dummy[]="                         ";
 4755:   int i, j, n;
 4756:   int linei, month, year,iout;
 4757:   char line[MAXLINE], linetmp[MAXLINE];
 4758:   char stra[80], strb[80];
 4759:   char *stratrunc;
 4760:   int lstra;
 4761: 
 4762: 
 4763:   if((fic=fopen(datafile,"r"))==NULL)    {
 4764:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 4765:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 4766:   }
 4767: 
 4768:   i=1;
 4769:   linei=0;
 4770:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 4771:     linei=linei+1;
 4772:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4773:       if(line[j] == '\t')
 4774: 	line[j] = ' ';
 4775:     }
 4776:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 4777:       ;
 4778:     };
 4779:     line[j+1]=0;  /* Trims blanks at end of line */
 4780:     if(line[0]=='#'){
 4781:       fprintf(ficlog,"Comment line\n%s\n",line);
 4782:       printf("Comment line\n%s\n",line);
 4783:       continue;
 4784:     }
 4785:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 4786:     for (j=0; line[j]!='\0';j++){
 4787:       line[j]=linetmp[j];
 4788:     }
 4789:   
 4790: 
 4791:     for (j=maxwav;j>=1;j--){
 4792:       cutv(stra, strb, line, ' '); 
 4793:       if(strb[0]=='.') { /* Missing status */
 4794: 	lval=-1;
 4795:       }else{
 4796: 	errno=0;
 4797: 	lval=strtol(strb,&endptr,10); 
 4798:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 4799: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4800: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 4801: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 4802: 	  return 1;
 4803: 	}
 4804:       }
 4805:       s[j][i]=lval;
 4806:       
 4807:       strcpy(line,stra);
 4808:       cutv(stra, strb,line,' ');
 4809:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4810:       }
 4811:       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4812: 	month=99;
 4813: 	year=9999;
 4814:       }else{
 4815: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 4816: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 4817: 	return 1;
 4818:       }
 4819:       anint[j][i]= (double) year; 
 4820:       mint[j][i]= (double)month; 
 4821:       strcpy(line,stra);
 4822:     } /* ENd Waves */
 4823:     
 4824:     cutv(stra, strb,line,' '); 
 4825:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4826:     }
 4827:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4828:       month=99;
 4829:       year=9999;
 4830:     }else{
 4831:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4832: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4833: 	return 1;
 4834:     }
 4835:     andc[i]=(double) year; 
 4836:     moisdc[i]=(double) month; 
 4837:     strcpy(line,stra);
 4838:     
 4839:     cutv(stra, strb,line,' '); 
 4840:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4841:     }
 4842:     else  if(iout=sscanf(strb,"%s.", dummy) != 0){
 4843:       month=99;
 4844:       year=9999;
 4845:     }else{
 4846:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4847:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4848: 	return 1;
 4849:     }
 4850:     if (year==9999) {
 4851:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 4852:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 4853: 	return 1;
 4854: 
 4855:     }
 4856:     annais[i]=(double)(year);
 4857:     moisnais[i]=(double)(month); 
 4858:     strcpy(line,stra);
 4859:     
 4860:     cutv(stra, strb,line,' '); 
 4861:     errno=0;
 4862:     dval=strtod(strb,&endptr); 
 4863:     if( strb[0]=='\0' || (*endptr != '\0')){
 4864:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 4865:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 4866:       fflush(ficlog);
 4867:       return 1;
 4868:     }
 4869:     weight[i]=dval; 
 4870:     strcpy(line,stra);
 4871:     
 4872:     for (j=ncovcol;j>=1;j--){
 4873:       cutv(stra, strb,line,' '); 
 4874:       if(strb[0]=='.') { /* Missing status */
 4875: 	lval=-1;
 4876:       }else{
 4877: 	errno=0;
 4878: 	lval=strtol(strb,&endptr,10); 
 4879: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4880: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 4881: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 4882: 	  return 1;
 4883: 	}
 4884:       }
 4885:       if(lval <-1 || lval >1){
 4886: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 4887:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 4888:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 4889:  For example, for multinomial values like 1, 2 and 3,\n \
 4890:  build V1=0 V2=0 for the reference value (1),\n \
 4891:         V1=1 V2=0 for (2) \n \
 4892:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 4893:  output of IMaCh is often meaningless.\n \
 4894:  Exiting.\n",lval,linei, i,line,j);
 4895: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 4896:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 4897:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 4898:  For example, for multinomial values like 1, 2 and 3,\n \
 4899:  build V1=0 V2=0 for the reference value (1),\n \
 4900:         V1=1 V2=0 for (2) \n \
 4901:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 4902:  output of IMaCh is often meaningless.\n \
 4903:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 4904: 	return 1;
 4905:       }
 4906:       covar[j][i]=(double)(lval);
 4907:       strcpy(line,stra);
 4908:     }  
 4909:     lstra=strlen(stra);
 4910:      
 4911:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4912:       stratrunc = &(stra[lstra-9]);
 4913:       num[i]=atol(stratrunc);
 4914:     }
 4915:     else
 4916:       num[i]=atol(stra);
 4917:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4918:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4919:     
 4920:     i=i+1;
 4921:   } /* End loop reading  data */
 4922: 
 4923:   *imax=i-1; /* Number of individuals */
 4924:   fclose(fic);
 4925:  
 4926:   return (0);
 4927:   endread:
 4928:     printf("Exiting readdata: ");
 4929:     fclose(fic);
 4930:     return (1);
 4931: 
 4932: 
 4933: 
 4934: }
 4935: void removespace(char *str) {
 4936:   char *p1 = str, *p2 = str;
 4937:   do
 4938:     while (*p2 == ' ')
 4939:       p2++;
 4940:   while (*p1++ = *p2++);
 4941: }
 4942: 
 4943: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 4944:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 4945:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 4946:    * - cptcovn or number of covariates k of the models excluding age*products =6
 4947:    * - cptcovage number of covariates with age*products =2
 4948:    * - cptcovs number of simple covariates
 4949:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 4950:    *     which is a new column after the 9 (ncovcol) variables. 
 4951:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 4952:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 4953:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 4954:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 4955:  */
 4956: {
 4957:   int i, j, k, ks;
 4958:   int i1, j1, k1, k2;
 4959:   char modelsav[80];
 4960:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 4961: 
 4962:   /*removespace(model);*/
 4963:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4964:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 4965:     j=nbocc(model,'+'); /**< j=Number of '+' */
 4966:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 4967:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 4968:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 4969:                   /* including age products which are counted in cptcovage.
 4970: 		  /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 4971:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 4972:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 4973:     strcpy(modelsav,model); 
 4974:     if (strstr(model,"AGE") !=0){
 4975:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 4976:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 4977:       return 1;
 4978:     }
 4979:     if (strstr(model,"v") !=0){
 4980:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 4981:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 4982:       return 1;
 4983:     }
 4984:     
 4985:     /*   Design
 4986:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 4987:      *  <          ncovcol=8                >
 4988:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 4989:      *   k=  1    2      3       4     5       6      7        8
 4990:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 4991:      *  covar[k,i], value of kth covariate if not including age for individual i:
 4992:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 4993:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 4994:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 4995:      *  Tage[++cptcovage]=k
 4996:      *       if products, new covar are created after ncovcol with k1
 4997:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 4998:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 4999:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5000:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5001:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5002:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5003:      *  <          ncovcol=8                >
 5004:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5005:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5006:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5007:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5008:      * p Tprod[1]@2={                         6, 5}
 5009:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5010:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5011:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5012:      *How to reorganize?
 5013:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5014:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5015:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5016:      * Struct []
 5017:      */
 5018: 
 5019:     /* This loop fills the array Tvar from the string 'model'.*/
 5020:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5021:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5022:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5023:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5024:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5025:     /* 	k=1 Tvar[1]=2 (from V2) */
 5026:     /* 	k=5 Tvar[5] */
 5027:     /* for (k=1; k<=cptcovn;k++) { */
 5028:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5029:     /* 	} */
 5030:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 5031:     /*
 5032:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5033:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5034:         Tvar[k]=0;
 5035:     cptcovage=0;
 5036:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5037:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5038: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5039:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5040:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5041:       /*scanf("%d",i);*/
 5042:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5043: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5044: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5045: 	  /* covar is not filled and then is empty */
 5046: 	  cptcovprod--;
 5047: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5048: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5049: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5050: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 5051: 	  /*printf("stre=%s ", stre);*/
 5052: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5053: 	  cptcovprod--;
 5054: 	  cutl(stre,strb,strc,'V');
 5055: 	  Tvar[k]=atoi(stre);
 5056: 	  cptcovage++;
 5057: 	  Tage[cptcovage]=k;
 5058: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5059: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5060: 	  cptcovn++;
 5061: 	  cptcovprodnoage++;k1++;
 5062: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5063: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5064: 				  because this model-covariate is a construction we invent a new column
 5065: 				  ncovcol + k1
 5066: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5067: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5068: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5069: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5070: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5071: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5072: 	  k2=k2+2;
 5073: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5074: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5075: 	  for (i=1; i<=lastobs;i++){
 5076: 	    /* Computes the new covariate which is a product of
 5077: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5078: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5079: 	  }
 5080: 	} /* End age is not in the model */
 5081:       } /* End if model includes a product */
 5082:       else { /* no more sum */
 5083: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5084:        /*  scanf("%d",i);*/
 5085: 	cutl(strd,strc,strb,'V');
 5086: 	ks++; /**< Number of simple covariates */
 5087: 	cptcovn++;
 5088: 	Tvar[k]=atoi(strd);
 5089:       }
 5090:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5091:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5092: 	scanf("%d",i);*/
 5093:     } /* end of loop + */
 5094:   } /* end model */
 5095:   
 5096:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5097:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5098: 
 5099:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5100:   printf("cptcovprod=%d ", cptcovprod);
 5101:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5102: 
 5103:   scanf("%d ",i);*/
 5104: 
 5105: 
 5106:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5107:   endread:
 5108:     printf("Exiting decodemodel: ");
 5109:     return (1);
 5110: }
 5111: 
 5112: calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5113: {
 5114:   int i, m;
 5115: 
 5116:   for (i=1; i<=imx; i++) {
 5117:     for(m=2; (m<= maxwav); m++) {
 5118:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5119: 	anint[m][i]=9999;
 5120: 	s[m][i]=-1;
 5121:       }
 5122:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5123: 	*nberr++;
 5124: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5125: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5126: 	s[m][i]=-1;
 5127:       }
 5128:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5129: 	*nberr++;
 5130: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5131: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5132: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5133:       }
 5134:     }
 5135:   }
 5136: 
 5137:   for (i=1; i<=imx; i++)  {
 5138:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5139:     for(m=firstpass; (m<= lastpass); m++){
 5140:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5141: 	if (s[m][i] >= nlstate+1) {
 5142: 	  if(agedc[i]>0)
 5143: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 5144: 	      agev[m][i]=agedc[i];
 5145: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5146: 	    else {
 5147: 	      if ((int)andc[i]!=9999){
 5148: 		nbwarn++;
 5149: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5150: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5151: 		agev[m][i]=-1;
 5152: 	      }
 5153: 	    }
 5154: 	}
 5155: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5156: 				 years but with the precision of a month */
 5157: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5158: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5159: 	    agev[m][i]=1;
 5160: 	  else if(agev[m][i] < *agemin){ 
 5161: 	    *agemin=agev[m][i];
 5162: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5163: 	  }
 5164: 	  else if(agev[m][i] >*agemax){
 5165: 	    *agemax=agev[m][i];
 5166: 	    printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
 5167: 	  }
 5168: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5169: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5170: 	}
 5171: 	else { /* =9 */
 5172: 	  agev[m][i]=1;
 5173: 	  s[m][i]=-1;
 5174: 	}
 5175:       }
 5176:       else /*= 0 Unknown */
 5177: 	agev[m][i]=1;
 5178:     }
 5179:     
 5180:   }
 5181:   for (i=1; i<=imx; i++)  {
 5182:     for(m=firstpass; (m<=lastpass); m++){
 5183:       if (s[m][i] > (nlstate+ndeath)) {
 5184: 	*nberr++;
 5185: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5186: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5187: 	return 1;
 5188:       }
 5189:     }
 5190:   }
 5191: 
 5192:   /*for (i=1; i<=imx; i++){
 5193:   for (m=firstpass; (m<lastpass); m++){
 5194:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5195: }
 5196: 
 5197: }*/
 5198: 
 5199: 
 5200:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5201:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5202: 
 5203:   return (0);
 5204:   endread:
 5205:     printf("Exiting calandcheckages: ");
 5206:     return (1);
 5207: }
 5208: 
 5209: 
 5210: /***********************************************/
 5211: /**************** Main Program *****************/
 5212: /***********************************************/
 5213: 
 5214: int main(int argc, char *argv[])
 5215: {
 5216: #ifdef GSL
 5217:   const gsl_multimin_fminimizer_type *T;
 5218:   size_t iteri = 0, it;
 5219:   int rval = GSL_CONTINUE;
 5220:   int status = GSL_SUCCESS;
 5221:   double ssval;
 5222: #endif
 5223:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5224:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 5225:   int linei, month, year,iout;
 5226:   int jj, ll, li, lj, lk, imk;
 5227:   int numlinepar=0; /* Current linenumber of parameter file */
 5228:   int itimes;
 5229:   int NDIM=2;
 5230:   int vpopbased=0;
 5231: 
 5232:   char ca[32], cb[32], cc[32];
 5233:   /*  FILE *fichtm; *//* Html File */
 5234:   /* FILE *ficgp;*/ /*Gnuplot File */
 5235:   struct stat info;
 5236:   double agedeb, agefin,hf;
 5237:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5238: 
 5239:   double fret;
 5240:   double **xi,tmp,delta;
 5241: 
 5242:   double dum; /* Dummy variable */
 5243:   double ***p3mat;
 5244:   double ***mobaverage;
 5245:   int *indx;
 5246:   char line[MAXLINE], linepar[MAXLINE];
 5247:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5248:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5249:   char **bp, *tok, *val; /* pathtot */
 5250:   int firstobs=1, lastobs=10;
 5251:   int sdeb, sfin; /* Status at beginning and end */
 5252:   int c,  h , cpt,l;
 5253:   int ju,jl, mi;
 5254:   int i1,j1, jk,aa,bb, stepsize, ij;
 5255:   int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
 5256:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 5257:   int mobilav=0,popforecast=0;
 5258:   int hstepm, nhstepm;
 5259:   int agemortsup;
 5260:   float  sumlpop=0.;
 5261:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5262:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5263: 
 5264:   double bage, fage, age, agelim, agebase;
 5265:   double ftolpl=FTOL;
 5266:   double **prlim;
 5267:   double ***param; /* Matrix of parameters */
 5268:   double  *p;
 5269:   double **matcov; /* Matrix of covariance */
 5270:   double ***delti3; /* Scale */
 5271:   double *delti; /* Scale */
 5272:   double ***eij, ***vareij;
 5273:   double **varpl; /* Variances of prevalence limits by age */
 5274:   double *epj, vepp;
 5275:   double kk1, kk2;
 5276:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5277:   double **ximort;
 5278:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 5279:   int *dcwave;
 5280: 
 5281:   char z[1]="c", occ;
 5282: 
 5283:   /*char  *strt;*/
 5284:   char strtend[80];
 5285: 
 5286:   long total_usecs;
 5287:  
 5288: /*   setlocale (LC_ALL, ""); */
 5289: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5290: /*   textdomain (PACKAGE); */
 5291: /*   setlocale (LC_CTYPE, ""); */
 5292: /*   setlocale (LC_MESSAGES, ""); */
 5293: 
 5294:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5295:   (void) gettimeofday(&start_time,&tzp);
 5296:   curr_time=start_time;
 5297:   tm = *localtime(&start_time.tv_sec);
 5298:   tmg = *gmtime(&start_time.tv_sec);
 5299:   strcpy(strstart,asctime(&tm));
 5300: 
 5301: /*  printf("Localtime (at start)=%s",strstart); */
 5302: /*  tp.tv_sec = tp.tv_sec +86400; */
 5303: /*  tm = *localtime(&start_time.tv_sec); */
 5304: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5305: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5306: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5307: /*   tp.tv_sec = mktime(&tmg); */
 5308: /*   strt=asctime(&tmg); */
 5309: /*   printf("Time(after) =%s",strstart);  */
 5310: /*  (void) time (&time_value);
 5311: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 5312: *  tm = *localtime(&time_value);
 5313: *  strstart=asctime(&tm);
 5314: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 5315: */
 5316: 
 5317:   nberr=0; /* Number of errors and warnings */
 5318:   nbwarn=0;
 5319:   getcwd(pathcd, size);
 5320: 
 5321:   printf("\n%s\n%s",version,fullversion);
 5322:   if(argc <=1){
 5323:     printf("\nEnter the parameter file name: ");
 5324:     fgets(pathr,FILENAMELENGTH,stdin);
 5325:     i=strlen(pathr);
 5326:     if(pathr[i-1]=='\n')
 5327:       pathr[i-1]='\0';
 5328:    for (tok = pathr; tok != NULL; ){
 5329:       printf("Pathr |%s|\n",pathr);
 5330:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 5331:       printf("val= |%s| pathr=%s\n",val,pathr);
 5332:       strcpy (pathtot, val);
 5333:       if(pathr[0] == '\0') break; /* Dirty */
 5334:     }
 5335:   }
 5336:   else{
 5337:     strcpy(pathtot,argv[1]);
 5338:   }
 5339:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 5340:   /*cygwin_split_path(pathtot,path,optionfile);
 5341:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 5342:   /* cutv(path,optionfile,pathtot,'\\');*/
 5343: 
 5344:   /* Split argv[0], imach program to get pathimach */
 5345:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 5346:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5347:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5348:  /*   strcpy(pathimach,argv[0]); */
 5349:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 5350:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 5351:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 5352:   chdir(path); /* Can be a relative path */
 5353:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 5354:     printf("Current directory %s!\n",pathcd);
 5355:   strcpy(command,"mkdir ");
 5356:   strcat(command,optionfilefiname);
 5357:   if((outcmd=system(command)) != 0){
 5358:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 5359:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 5360:     /* fclose(ficlog); */
 5361: /*     exit(1); */
 5362:   }
 5363: /*   if((imk=mkdir(optionfilefiname))<0){ */
 5364: /*     perror("mkdir"); */
 5365: /*   } */
 5366: 
 5367:   /*-------- arguments in the command line --------*/
 5368: 
 5369:   /* Log file */
 5370:   strcat(filelog, optionfilefiname);
 5371:   strcat(filelog,".log");    /* */
 5372:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 5373:     printf("Problem with logfile %s\n",filelog);
 5374:     goto end;
 5375:   }
 5376:   fprintf(ficlog,"Log filename:%s\n",filelog);
 5377:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 5378:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 5379:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 5380:  path=%s \n\
 5381:  optionfile=%s\n\
 5382:  optionfilext=%s\n\
 5383:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 5384: 
 5385:   printf("Local time (at start):%s",strstart);
 5386:   fprintf(ficlog,"Local time (at start): %s",strstart);
 5387:   fflush(ficlog);
 5388: /*   (void) gettimeofday(&curr_time,&tzp); */
 5389: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 5390: 
 5391:   /* */
 5392:   strcpy(fileres,"r");
 5393:   strcat(fileres, optionfilefiname);
 5394:   strcat(fileres,".txt");    /* Other files have txt extension */
 5395: 
 5396:   /*---------arguments file --------*/
 5397: 
 5398:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 5399:     printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
 5400:     fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
 5401:     fflush(ficlog);
 5402:     /* goto end; */
 5403:     exit(70); 
 5404:   }
 5405: 
 5406: 
 5407: 
 5408:   strcpy(filereso,"o");
 5409:   strcat(filereso,fileres);
 5410:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 5411:     printf("Problem with Output resultfile: %s\n", filereso);
 5412:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 5413:     fflush(ficlog);
 5414:     goto end;
 5415:   }
 5416: 
 5417:   /* Reads comments: lines beginning with '#' */
 5418:   numlinepar=0;
 5419:   while((c=getc(ficpar))=='#' && c!= EOF){
 5420:     ungetc(c,ficpar);
 5421:     fgets(line, MAXLINE, ficpar);
 5422:     numlinepar++;
 5423:     fputs(line,stdout);
 5424:     fputs(line,ficparo);
 5425:     fputs(line,ficlog);
 5426:   }
 5427:   ungetc(c,ficpar);
 5428: 
 5429:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 5430:   numlinepar++;
 5431:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 5432:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5433:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5434:   fflush(ficlog);
 5435:   while((c=getc(ficpar))=='#' && c!= EOF){
 5436:     ungetc(c,ficpar);
 5437:     fgets(line, MAXLINE, ficpar);
 5438:     numlinepar++;
 5439:     fputs(line, stdout);
 5440:     //puts(line);
 5441:     fputs(line,ficparo);
 5442:     fputs(line,ficlog);
 5443:   }
 5444:   ungetc(c,ficpar);
 5445: 
 5446:    
 5447:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 5448:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 5449:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 5450:      v1+v2*age+v2*v3 makes cptcovn = 3
 5451:   */
 5452:   if (strlen(model)>1) 
 5453:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 5454:   else
 5455:     ncovmodel=2;
 5456:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 5457:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 5458:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 5459:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 5460:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5461:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5462:     fflush(stdout);
 5463:     fclose (ficlog);
 5464:     goto end;
 5465:   }
 5466:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5467:   delti=delti3[1][1];
 5468:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 5469:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 5470:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5471:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5472:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5473:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5474:     fclose (ficparo);
 5475:     fclose (ficlog);
 5476:     goto end;
 5477:     exit(0);
 5478:   }
 5479:   else if(mle==-3) {
 5480:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5481:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5482:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5483:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5484:     matcov=matrix(1,npar,1,npar);
 5485:   }
 5486:   else{
 5487:     /* Read guessed parameters */
 5488:     /* Reads comments: lines beginning with '#' */
 5489:     while((c=getc(ficpar))=='#' && c!= EOF){
 5490:       ungetc(c,ficpar);
 5491:       fgets(line, MAXLINE, ficpar);
 5492:       numlinepar++;
 5493:       fputs(line,stdout);
 5494:       fputs(line,ficparo);
 5495:       fputs(line,ficlog);
 5496:     }
 5497:     ungetc(c,ficpar);
 5498:     
 5499:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5500:     for(i=1; i <=nlstate; i++){
 5501:       j=0;
 5502:       for(jj=1; jj <=nlstate+ndeath; jj++){
 5503: 	if(jj==i) continue;
 5504: 	j++;
 5505: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5506: 	if ((i1 != i) && (j1 != j)){
 5507: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 5508: It might be a problem of design; if ncovcol and the model are correct\n \
 5509: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 5510: 	  exit(1);
 5511: 	}
 5512: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5513: 	if(mle==1)
 5514: 	  printf("%1d%1d",i,j);
 5515: 	fprintf(ficlog,"%1d%1d",i,j);
 5516: 	for(k=1; k<=ncovmodel;k++){
 5517: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 5518: 	  if(mle==1){
 5519: 	    printf(" %lf",param[i][j][k]);
 5520: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5521: 	  }
 5522: 	  else
 5523: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5524: 	  fprintf(ficparo," %lf",param[i][j][k]);
 5525: 	}
 5526: 	fscanf(ficpar,"\n");
 5527: 	numlinepar++;
 5528: 	if(mle==1)
 5529: 	  printf("\n");
 5530: 	fprintf(ficlog,"\n");
 5531: 	fprintf(ficparo,"\n");
 5532:       }
 5533:     }  
 5534:     fflush(ficlog);
 5535: 
 5536:     /* Reads scales values */
 5537:     p=param[1][1];
 5538:     
 5539:     /* Reads comments: lines beginning with '#' */
 5540:     while((c=getc(ficpar))=='#' && c!= EOF){
 5541:       ungetc(c,ficpar);
 5542:       fgets(line, MAXLINE, ficpar);
 5543:       numlinepar++;
 5544:       fputs(line,stdout);
 5545:       fputs(line,ficparo);
 5546:       fputs(line,ficlog);
 5547:     }
 5548:     ungetc(c,ficpar);
 5549: 
 5550:     for(i=1; i <=nlstate; i++){
 5551:       for(j=1; j <=nlstate+ndeath-1; j++){
 5552: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5553: 	if ((i1-i)*(j1-j)!=0){
 5554: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 5555: 	  exit(1);
 5556: 	}
 5557: 	printf("%1d%1d",i,j);
 5558: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5559: 	fprintf(ficlog,"%1d%1d",i1,j1);
 5560: 	for(k=1; k<=ncovmodel;k++){
 5561: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 5562: 	  printf(" %le",delti3[i][j][k]);
 5563: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 5564: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 5565: 	}
 5566: 	fscanf(ficpar,"\n");
 5567: 	numlinepar++;
 5568: 	printf("\n");
 5569: 	fprintf(ficparo,"\n");
 5570: 	fprintf(ficlog,"\n");
 5571:       }
 5572:     }
 5573:     fflush(ficlog);
 5574: 
 5575:     /* Reads covariance matrix */
 5576:     delti=delti3[1][1];
 5577: 
 5578: 
 5579:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 5580:   
 5581:     /* Reads comments: lines beginning with '#' */
 5582:     while((c=getc(ficpar))=='#' && c!= EOF){
 5583:       ungetc(c,ficpar);
 5584:       fgets(line, MAXLINE, ficpar);
 5585:       numlinepar++;
 5586:       fputs(line,stdout);
 5587:       fputs(line,ficparo);
 5588:       fputs(line,ficlog);
 5589:     }
 5590:     ungetc(c,ficpar);
 5591:   
 5592:     matcov=matrix(1,npar,1,npar);
 5593:     for(i=1; i <=npar; i++)
 5594:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 5595:       
 5596:     for(i=1; i <=npar; i++){
 5597:       fscanf(ficpar,"%s",str);
 5598:       if(mle==1)
 5599: 	printf("%s",str);
 5600:       fprintf(ficlog,"%s",str);
 5601:       fprintf(ficparo,"%s",str);
 5602:       for(j=1; j <=i; j++){
 5603: 	fscanf(ficpar," %le",&matcov[i][j]);
 5604: 	if(mle==1){
 5605: 	  printf(" %.5le",matcov[i][j]);
 5606: 	}
 5607: 	fprintf(ficlog," %.5le",matcov[i][j]);
 5608: 	fprintf(ficparo," %.5le",matcov[i][j]);
 5609:       }
 5610:       fscanf(ficpar,"\n");
 5611:       numlinepar++;
 5612:       if(mle==1)
 5613: 	printf("\n");
 5614:       fprintf(ficlog,"\n");
 5615:       fprintf(ficparo,"\n");
 5616:     }
 5617:     for(i=1; i <=npar; i++)
 5618:       for(j=i+1;j<=npar;j++)
 5619: 	matcov[i][j]=matcov[j][i];
 5620:     
 5621:     if(mle==1)
 5622:       printf("\n");
 5623:     fprintf(ficlog,"\n");
 5624:     
 5625:     fflush(ficlog);
 5626:     
 5627:     /*-------- Rewriting parameter file ----------*/
 5628:     strcpy(rfileres,"r");    /* "Rparameterfile */
 5629:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 5630:     strcat(rfileres,".");    /* */
 5631:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 5632:     if((ficres =fopen(rfileres,"w"))==NULL) {
 5633:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 5634:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 5635:     }
 5636:     fprintf(ficres,"#%s\n",version);
 5637:   }    /* End of mle != -3 */
 5638: 
 5639: 
 5640:   n= lastobs;
 5641:   num=lvector(1,n);
 5642:   moisnais=vector(1,n);
 5643:   annais=vector(1,n);
 5644:   moisdc=vector(1,n);
 5645:   andc=vector(1,n);
 5646:   agedc=vector(1,n);
 5647:   cod=ivector(1,n);
 5648:   weight=vector(1,n);
 5649:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 5650:   mint=matrix(1,maxwav,1,n);
 5651:   anint=matrix(1,maxwav,1,n);
 5652:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 5653:   tab=ivector(1,NCOVMAX);
 5654:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 5655: 
 5656:   /* Reads data from file datafile */
 5657:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 5658:     goto end;
 5659: 
 5660:   /* Calculation of the number of parameters from char model */
 5661:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 5662: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 5663: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 5664: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 5665: 	k=1 Tvar[1]=2 (from V2)
 5666:     */
 5667:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 5668:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 5669:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 5670:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 5671:   */
 5672:   /* For model-covariate k tells which data-covariate to use but
 5673:     because this model-covariate is a construction we invent a new column
 5674:     ncovcol + k1
 5675:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 5676:     Tvar[3=V1*V4]=4+1 etc */
 5677:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 5678:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 5679:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 5680:   */
 5681:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 5682:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 5683: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 5684: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 5685:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 5686: 			 4 covariates (3 plus signs)
 5687: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 5688: 		      */  
 5689: 
 5690:   if(decodemodel(model, lastobs) == 1)
 5691:     goto end;
 5692: 
 5693:   if((double)(lastobs-imx)/(double)imx > 1.10){
 5694:     nbwarn++;
 5695:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5696:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5697:   }
 5698:     /*  if(mle==1){*/
 5699:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 5700:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 5701:   }
 5702: 
 5703:     /*-calculation of age at interview from date of interview and age at death -*/
 5704:   agev=matrix(1,maxwav,1,imx);
 5705: 
 5706:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 5707:     goto end;
 5708: 
 5709: 
 5710:   agegomp=(int)agemin;
 5711:   free_vector(moisnais,1,n);
 5712:   free_vector(annais,1,n);
 5713:   /* free_matrix(mint,1,maxwav,1,n);
 5714:      free_matrix(anint,1,maxwav,1,n);*/
 5715:   free_vector(moisdc,1,n);
 5716:   free_vector(andc,1,n);
 5717:   /* */
 5718:   
 5719:   wav=ivector(1,imx);
 5720:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 5721:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 5722:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 5723:    
 5724:   /* Concatenates waves */
 5725:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 5726:   /* */
 5727:  
 5728:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 5729: 
 5730:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 5731:   ncodemax[1]=1;
 5732:   Ndum =ivector(-1,NCOVMAX);  
 5733:   if (ncovmodel > 2)
 5734:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 5735: 
 5736:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 5737:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 5738:   h=0;
 5739: 
 5740: 
 5741:   /*if (cptcovn > 0) */
 5742:       
 5743:  
 5744:   m=pow(2,cptcoveff);
 5745:  
 5746:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 5747:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 5748:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 5749: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 5750: 	  h++;
 5751: 	  if (h>m) 
 5752: 	    h=1;
 5753: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 5754: 	   *     h     1     2     3     4
 5755: 	   *______________________________  
 5756: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 5757: 	   *     2     2     1     1     1
 5758: 	   *     3 i=2 1     2     1     1
 5759: 	   *     4     2     2     1     1
 5760: 	   *     5 i=3 1 i=2 1     2     1
 5761: 	   *     6     2     1     2     1
 5762: 	   *     7 i=4 1     2     2     1
 5763: 	   *     8     2     2     2     1
 5764: 	   *     9 i=5 1 i=3 1 i=2 1     1
 5765: 	   *    10     2     1     1     1
 5766: 	   *    11 i=6 1     2     1     1
 5767: 	   *    12     2     2     1     1
 5768: 	   *    13 i=7 1 i=4 1     2     1    
 5769: 	   *    14     2     1     2     1
 5770: 	   *    15 i=8 1     2     2     1
 5771: 	   *    16     2     2     2     1
 5772: 	   */
 5773: 	  codtab[h][k]=j;
 5774: 	  /*codtab[h][Tvar[k]]=j;*/
 5775: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 5776: 	} 
 5777:       }
 5778:     }
 5779:   } 
 5780:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 5781:      codtab[1][2]=1;codtab[2][2]=2; */
 5782:   /* for(i=1; i <=m ;i++){ 
 5783:      for(k=1; k <=cptcovn; k++){
 5784:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 5785:      }
 5786:      printf("\n");
 5787:      }
 5788:      scanf("%d",i);*/
 5789: 
 5790:  free_ivector(Ndum,-1,NCOVMAX);
 5791: 
 5792: 
 5793:     
 5794:   /*------------ gnuplot -------------*/
 5795:   strcpy(optionfilegnuplot,optionfilefiname);
 5796:   if(mle==-3)
 5797:     strcat(optionfilegnuplot,"-mort");
 5798:   strcat(optionfilegnuplot,".gp");
 5799: 
 5800:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 5801:     printf("Problem with file %s",optionfilegnuplot);
 5802:   }
 5803:   else{
 5804:     fprintf(ficgp,"\n# %s\n", version); 
 5805:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 5806:     //fprintf(ficgp,"set missing 'NaNq'\n");
 5807:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 5808:   }
 5809:   /*  fclose(ficgp);*/
 5810:   /*--------- index.htm --------*/
 5811: 
 5812:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 5813:   if(mle==-3)
 5814:     strcat(optionfilehtm,"-mort");
 5815:   strcat(optionfilehtm,".htm");
 5816:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 5817:     printf("Problem with %s \n",optionfilehtm);
 5818:     exit(0);
 5819:   }
 5820: 
 5821:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 5822:   strcat(optionfilehtmcov,"-cov.htm");
 5823:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 5824:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 5825:   }
 5826:   else{
 5827:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 5828: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5829: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 5830: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 5831:   }
 5832: 
 5833:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 5834: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 5835: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 5836: \n\
 5837: <hr  size=\"2\" color=\"#EC5E5E\">\
 5838:  <ul><li><h4>Parameter files</h4>\n\
 5839:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 5840:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 5841:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 5842:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 5843:  - Date and time at start: %s</ul>\n",\
 5844: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 5845: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 5846: 	  fileres,fileres,\
 5847: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 5848:   fflush(fichtm);
 5849: 
 5850:   strcpy(pathr,path);
 5851:   strcat(pathr,optionfilefiname);
 5852:   chdir(optionfilefiname); /* Move to directory named optionfile */
 5853:   
 5854:   /* Calculates basic frequencies. Computes observed prevalence at single age
 5855:      and prints on file fileres'p'. */
 5856:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 5857: 
 5858:   fprintf(fichtm,"\n");
 5859:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 5860: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 5861: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 5862: 	  imx,agemin,agemax,jmin,jmax,jmean);
 5863:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5864:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5865:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5866:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 5867:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 5868:     
 5869:    
 5870:   /* For Powell, parameters are in a vector p[] starting at p[1]
 5871:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 5872:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 5873: 
 5874:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 5875: 
 5876:   if (mle==-3){
 5877:     ximort=matrix(1,NDIM,1,NDIM); 
 5878: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 5879:     cens=ivector(1,n);
 5880:     ageexmed=vector(1,n);
 5881:     agecens=vector(1,n);
 5882:     dcwave=ivector(1,n);
 5883:  
 5884:     for (i=1; i<=imx; i++){
 5885:       dcwave[i]=-1;
 5886:       for (m=firstpass; m<=lastpass; m++)
 5887: 	if (s[m][i]>nlstate) {
 5888: 	  dcwave[i]=m;
 5889: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 5890: 	  break;
 5891: 	}
 5892:     }
 5893: 
 5894:     for (i=1; i<=imx; i++) {
 5895:       if (wav[i]>0){
 5896: 	ageexmed[i]=agev[mw[1][i]][i];
 5897: 	j=wav[i];
 5898: 	agecens[i]=1.; 
 5899: 
 5900: 	if (ageexmed[i]> 1 && wav[i] > 0){
 5901: 	  agecens[i]=agev[mw[j][i]][i];
 5902: 	  cens[i]= 1;
 5903: 	}else if (ageexmed[i]< 1) 
 5904: 	  cens[i]= -1;
 5905: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 5906: 	  cens[i]=0 ;
 5907:       }
 5908:       else cens[i]=-1;
 5909:     }
 5910:     
 5911:     for (i=1;i<=NDIM;i++) {
 5912:       for (j=1;j<=NDIM;j++)
 5913: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 5914:     }
 5915:     
 5916:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 5917:     /*printf("%lf %lf", p[1], p[2]);*/
 5918:     
 5919:     
 5920: #ifdef GSL
 5921:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 5922: #elsedef
 5923:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 5924: #endif
 5925:     strcpy(filerespow,"pow-mort"); 
 5926:     strcat(filerespow,fileres);
 5927:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 5928:       printf("Problem with resultfile: %s\n", filerespow);
 5929:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 5930:     }
 5931: #ifdef GSL
 5932:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 5933: #elsedef
 5934:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 5935: #endif
 5936:     /*  for (i=1;i<=nlstate;i++)
 5937: 	for(j=1;j<=nlstate+ndeath;j++)
 5938: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 5939:     */
 5940:     fprintf(ficrespow,"\n");
 5941: #ifdef GSL
 5942:     /* gsl starts here */ 
 5943:     T = gsl_multimin_fminimizer_nmsimplex;
 5944:     gsl_multimin_fminimizer *sfm = NULL;
 5945:     gsl_vector *ss, *x;
 5946:     gsl_multimin_function minex_func;
 5947: 
 5948:     /* Initial vertex size vector */
 5949:     ss = gsl_vector_alloc (NDIM);
 5950:     
 5951:     if (ss == NULL){
 5952:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 5953:     }
 5954:     /* Set all step sizes to 1 */
 5955:     gsl_vector_set_all (ss, 0.001);
 5956: 
 5957:     /* Starting point */
 5958:     
 5959:     x = gsl_vector_alloc (NDIM);
 5960:     
 5961:     if (x == NULL){
 5962:       gsl_vector_free(ss);
 5963:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 5964:     }
 5965:   
 5966:     /* Initialize method and iterate */
 5967:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 5968: /*     gsl_vector_set(x, 0, 0.0268); */
 5969: /*     gsl_vector_set(x, 1, 0.083); */
 5970:     gsl_vector_set(x, 0, p[1]);
 5971:     gsl_vector_set(x, 1, p[2]);
 5972: 
 5973:     minex_func.f = &gompertz_f;
 5974:     minex_func.n = NDIM;
 5975:     minex_func.params = (void *)&p; /* ??? */
 5976:     
 5977:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 5978:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 5979:     
 5980:     printf("Iterations beginning .....\n\n");
 5981:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 5982: 
 5983:     iteri=0;
 5984:     while (rval == GSL_CONTINUE){
 5985:       iteri++;
 5986:       status = gsl_multimin_fminimizer_iterate(sfm);
 5987:       
 5988:       if (status) printf("error: %s\n", gsl_strerror (status));
 5989:       fflush(0);
 5990:       
 5991:       if (status) 
 5992:         break;
 5993:       
 5994:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 5995:       ssval = gsl_multimin_fminimizer_size (sfm);
 5996:       
 5997:       if (rval == GSL_SUCCESS)
 5998:         printf ("converged to a local maximum at\n");
 5999:       
 6000:       printf("%5d ", iteri);
 6001:       for (it = 0; it < NDIM; it++){
 6002: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 6003:       }
 6004:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 6005:     }
 6006:     
 6007:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6008:     
 6009:     gsl_vector_free(x); /* initial values */
 6010:     gsl_vector_free(ss); /* inital step size */
 6011:     for (it=0; it<NDIM; it++){
 6012:       p[it+1]=gsl_vector_get(sfm->x,it);
 6013:       fprintf(ficrespow," %.12lf", p[it]);
 6014:     }
 6015:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6016: #endif
 6017: #ifdef POWELL
 6018:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6019: #endif  
 6020:     fclose(ficrespow);
 6021:     
 6022:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6023: 
 6024:     for(i=1; i <=NDIM; i++)
 6025:       for(j=i+1;j<=NDIM;j++)
 6026: 	matcov[i][j]=matcov[j][i];
 6027:     
 6028:     printf("\nCovariance matrix\n ");
 6029:     for(i=1; i <=NDIM; i++) {
 6030:       for(j=1;j<=NDIM;j++){ 
 6031: 	printf("%f ",matcov[i][j]);
 6032:       }
 6033:       printf("\n ");
 6034:     }
 6035:     
 6036:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6037:     for (i=1;i<=NDIM;i++) 
 6038:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6039: 
 6040:     lsurv=vector(1,AGESUP);
 6041:     lpop=vector(1,AGESUP);
 6042:     tpop=vector(1,AGESUP);
 6043:     lsurv[agegomp]=100000;
 6044:     
 6045:     for (k=agegomp;k<=AGESUP;k++) {
 6046:       agemortsup=k;
 6047:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6048:     }
 6049:     
 6050:     for (k=agegomp;k<agemortsup;k++)
 6051:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6052:     
 6053:     for (k=agegomp;k<agemortsup;k++){
 6054:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6055:       sumlpop=sumlpop+lpop[k];
 6056:     }
 6057:     
 6058:     tpop[agegomp]=sumlpop;
 6059:     for (k=agegomp;k<(agemortsup-3);k++){
 6060:       /*  tpop[k+1]=2;*/
 6061:       tpop[k+1]=tpop[k]-lpop[k];
 6062:     }
 6063:     
 6064:     
 6065:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6066:     for (k=agegomp;k<(agemortsup-2);k++) 
 6067:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6068:     
 6069:     
 6070:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6071:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6072:     
 6073:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6074: 		     stepm, weightopt,\
 6075: 		     model,imx,p,matcov,agemortsup);
 6076:     
 6077:     free_vector(lsurv,1,AGESUP);
 6078:     free_vector(lpop,1,AGESUP);
 6079:     free_vector(tpop,1,AGESUP);
 6080: #ifdef GSL
 6081:     free_ivector(cens,1,n);
 6082:     free_vector(agecens,1,n);
 6083:     free_ivector(dcwave,1,n);
 6084:     free_matrix(ximort,1,NDIM,1,NDIM);
 6085: #endif
 6086:   } /* Endof if mle==-3 */
 6087:   
 6088:   else{ /* For mle >=1 */
 6089:     globpr=0;/* debug */
 6090:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6091:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6092:     for (k=1; k<=npar;k++)
 6093:       printf(" %d %8.5f",k,p[k]);
 6094:     printf("\n");
 6095:     globpr=1; /* to print the contributions */
 6096:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6097:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6098:     for (k=1; k<=npar;k++)
 6099:       printf(" %d %8.5f",k,p[k]);
 6100:     printf("\n");
 6101:     if(mle>=1){ /* Could be 1 or 2 */
 6102:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6103:     }
 6104:     
 6105:     /*--------- results files --------------*/
 6106:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6107:     
 6108:     
 6109:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6110:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6111:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6112:     for(i=1,jk=1; i <=nlstate; i++){
 6113:       for(k=1; k <=(nlstate+ndeath); k++){
 6114: 	if (k != i) {
 6115: 	  printf("%d%d ",i,k);
 6116: 	  fprintf(ficlog,"%d%d ",i,k);
 6117: 	  fprintf(ficres,"%1d%1d ",i,k);
 6118: 	  for(j=1; j <=ncovmodel; j++){
 6119: 	    printf("%lf ",p[jk]);
 6120: 	    fprintf(ficlog,"%lf ",p[jk]);
 6121: 	    fprintf(ficres,"%lf ",p[jk]);
 6122: 	    jk++; 
 6123: 	  }
 6124: 	  printf("\n");
 6125: 	  fprintf(ficlog,"\n");
 6126: 	  fprintf(ficres,"\n");
 6127: 	}
 6128:       }
 6129:     }
 6130:     if(mle!=0){
 6131:       /* Computing hessian and covariance matrix */
 6132:       ftolhess=ftol; /* Usually correct */
 6133:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6134:     }
 6135:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6136:     printf("# Scales (for hessian or gradient estimation)\n");
 6137:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6138:     for(i=1,jk=1; i <=nlstate; i++){
 6139:       for(j=1; j <=nlstate+ndeath; j++){
 6140: 	if (j!=i) {
 6141: 	  fprintf(ficres,"%1d%1d",i,j);
 6142: 	  printf("%1d%1d",i,j);
 6143: 	  fprintf(ficlog,"%1d%1d",i,j);
 6144: 	  for(k=1; k<=ncovmodel;k++){
 6145: 	    printf(" %.5e",delti[jk]);
 6146: 	    fprintf(ficlog," %.5e",delti[jk]);
 6147: 	    fprintf(ficres," %.5e",delti[jk]);
 6148: 	    jk++;
 6149: 	  }
 6150: 	  printf("\n");
 6151: 	  fprintf(ficlog,"\n");
 6152: 	  fprintf(ficres,"\n");
 6153: 	}
 6154:       }
 6155:     }
 6156:     
 6157:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6158:     if(mle>=1)
 6159:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6160:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6161:     /* # 121 Var(a12)\n\ */
 6162:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6163:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6164:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6165:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6166:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6167:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6168:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6169:     
 6170:     
 6171:     /* Just to have a covariance matrix which will be more understandable
 6172:        even is we still don't want to manage dictionary of variables
 6173:     */
 6174:     for(itimes=1;itimes<=2;itimes++){
 6175:       jj=0;
 6176:       for(i=1; i <=nlstate; i++){
 6177: 	for(j=1; j <=nlstate+ndeath; j++){
 6178: 	  if(j==i) continue;
 6179: 	  for(k=1; k<=ncovmodel;k++){
 6180: 	    jj++;
 6181: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6182: 	    if(itimes==1){
 6183: 	      if(mle>=1)
 6184: 		printf("#%1d%1d%d",i,j,k);
 6185: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6186: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6187: 	    }else{
 6188: 	      if(mle>=1)
 6189: 		printf("%1d%1d%d",i,j,k);
 6190: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6191: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6192: 	    }
 6193: 	    ll=0;
 6194: 	    for(li=1;li <=nlstate; li++){
 6195: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6196: 		if(lj==li) continue;
 6197: 		for(lk=1;lk<=ncovmodel;lk++){
 6198: 		  ll++;
 6199: 		  if(ll<=jj){
 6200: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6201: 		    if(ll<jj){
 6202: 		      if(itimes==1){
 6203: 			if(mle>=1)
 6204: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6205: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6206: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6207: 		      }else{
 6208: 			if(mle>=1)
 6209: 			  printf(" %.5e",matcov[jj][ll]); 
 6210: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6211: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6212: 		      }
 6213: 		    }else{
 6214: 		      if(itimes==1){
 6215: 			if(mle>=1)
 6216: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 6217: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 6218: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 6219: 		      }else{
 6220: 			if(mle>=1)
 6221: 			  printf(" %.5e",matcov[jj][ll]); 
 6222: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6223: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6224: 		      }
 6225: 		    }
 6226: 		  }
 6227: 		} /* end lk */
 6228: 	      } /* end lj */
 6229: 	    } /* end li */
 6230: 	    if(mle>=1)
 6231: 	      printf("\n");
 6232: 	    fprintf(ficlog,"\n");
 6233: 	    fprintf(ficres,"\n");
 6234: 	    numlinepar++;
 6235: 	  } /* end k*/
 6236: 	} /*end j */
 6237:       } /* end i */
 6238:     } /* end itimes */
 6239:     
 6240:     fflush(ficlog);
 6241:     fflush(ficres);
 6242:     
 6243:     while((c=getc(ficpar))=='#' && c!= EOF){
 6244:       ungetc(c,ficpar);
 6245:       fgets(line, MAXLINE, ficpar);
 6246:       fputs(line,stdout);
 6247:       fputs(line,ficparo);
 6248:     }
 6249:     ungetc(c,ficpar);
 6250:     
 6251:     estepm=0;
 6252:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 6253:     if (estepm==0 || estepm < stepm) estepm=stepm;
 6254:     if (fage <= 2) {
 6255:       bage = ageminpar;
 6256:       fage = agemaxpar;
 6257:     }
 6258:     
 6259:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 6260:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6261:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6262:     
 6263:     while((c=getc(ficpar))=='#' && c!= EOF){
 6264:       ungetc(c,ficpar);
 6265:       fgets(line, MAXLINE, ficpar);
 6266:       fputs(line,stdout);
 6267:       fputs(line,ficparo);
 6268:     }
 6269:     ungetc(c,ficpar);
 6270:     
 6271:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 6272:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6273:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6274:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6275:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6276:     
 6277:     while((c=getc(ficpar))=='#' && c!= EOF){
 6278:       ungetc(c,ficpar);
 6279:       fgets(line, MAXLINE, ficpar);
 6280:       fputs(line,stdout);
 6281:       fputs(line,ficparo);
 6282:     }
 6283:     ungetc(c,ficpar);
 6284:     
 6285:     
 6286:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 6287:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 6288:     
 6289:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 6290:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 6291:     fprintf(ficres,"pop_based=%d\n",popbased);   
 6292:     
 6293:     while((c=getc(ficpar))=='#' && c!= EOF){
 6294:       ungetc(c,ficpar);
 6295:       fgets(line, MAXLINE, ficpar);
 6296:       fputs(line,stdout);
 6297:       fputs(line,ficparo);
 6298:     }
 6299:     ungetc(c,ficpar);
 6300:     
 6301:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6302:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6303:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6304:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6305:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6306:     /* day and month of proj2 are not used but only year anproj2.*/
 6307:     
 6308:     
 6309:     
 6310:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 6311:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 6312:     
 6313:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6314:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6315:     
 6316:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 6317: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 6318: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 6319:       
 6320:    /*------------ free_vector  -------------*/
 6321:    /*  chdir(path); */
 6322:  
 6323:     free_ivector(wav,1,imx);
 6324:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 6325:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 6326:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 6327:     free_lvector(num,1,n);
 6328:     free_vector(agedc,1,n);
 6329:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 6330:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 6331:     fclose(ficparo);
 6332:     fclose(ficres);
 6333: 
 6334: 
 6335:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6336: #include "prevlim.h"  /* Use ficrespl, ficlog */
 6337:     fclose(ficrespl);
 6338: 
 6339: #ifdef FREEEXIT2
 6340: #include "freeexit2.h"
 6341: #endif
 6342: 
 6343:     /*------------- h Pij x at various ages ------------*/
 6344: #include "hpijx.h"
 6345:     fclose(ficrespij);
 6346: 
 6347:   /*-------------- Variance of one-step probabilities---*/
 6348:     k=1;
 6349:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 6350: 
 6351: 
 6352:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6353:     for(i=1;i<=AGESUP;i++)
 6354:       for(j=1;j<=NCOVMAX;j++)
 6355: 	for(k=1;k<=NCOVMAX;k++)
 6356: 	  probs[i][j][k]=0.;
 6357: 
 6358:     /*---------- Forecasting ------------------*/
 6359:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 6360:     if(prevfcast==1){
 6361:       /*    if(stepm ==1){*/
 6362:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 6363:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 6364:       /*      }  */
 6365:       /*      else{ */
 6366:       /*        erreur=108; */
 6367:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6368:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6369:       /*      } */
 6370:     }
 6371:   
 6372: 
 6373:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 6374: 
 6375:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 6376:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 6377: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 6378:     */
 6379: 
 6380:     if (mobilav!=0) {
 6381:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6382:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 6383: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 6384: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 6385:       }
 6386:     }
 6387: 
 6388: 
 6389:     /*---------- Health expectancies, no variances ------------*/
 6390: 
 6391:     strcpy(filerese,"e");
 6392:     strcat(filerese,fileres);
 6393:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 6394:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6395:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6396:     }
 6397:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 6398:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 6399:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6400:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6401:           
 6402:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6403: 	fprintf(ficreseij,"\n#****** ");
 6404: 	for(j=1;j<=cptcoveff;j++) {
 6405: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6406: 	}
 6407: 	fprintf(ficreseij,"******\n");
 6408: 
 6409: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6410: 	oldm=oldms;savm=savms;
 6411: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 6412:       
 6413: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6414:       /*}*/
 6415:     }
 6416:     fclose(ficreseij);
 6417: 
 6418: 
 6419:     /*---------- Health expectancies and variances ------------*/
 6420: 
 6421: 
 6422:     strcpy(filerest,"t");
 6423:     strcat(filerest,fileres);
 6424:     if((ficrest=fopen(filerest,"w"))==NULL) {
 6425:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 6426:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 6427:     }
 6428:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6429:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6430: 
 6431: 
 6432:     strcpy(fileresstde,"stde");
 6433:     strcat(fileresstde,fileres);
 6434:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 6435:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6436:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6437:     }
 6438:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6439:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6440: 
 6441:     strcpy(filerescve,"cve");
 6442:     strcat(filerescve,fileres);
 6443:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 6444:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6445:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6446:     }
 6447:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6448:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6449: 
 6450:     strcpy(fileresv,"v");
 6451:     strcat(fileresv,fileres);
 6452:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 6453:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 6454:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 6455:     }
 6456:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6457:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6458: 
 6459:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6460:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6461:           
 6462:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6463:     	fprintf(ficrest,"\n#****** ");
 6464: 	for(j=1;j<=cptcoveff;j++) 
 6465: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6466: 	fprintf(ficrest,"******\n");
 6467: 
 6468: 	fprintf(ficresstdeij,"\n#****** ");
 6469: 	fprintf(ficrescveij,"\n#****** ");
 6470: 	for(j=1;j<=cptcoveff;j++) {
 6471: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6472: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6473: 	}
 6474: 	fprintf(ficresstdeij,"******\n");
 6475: 	fprintf(ficrescveij,"******\n");
 6476: 
 6477: 	fprintf(ficresvij,"\n#****** ");
 6478: 	for(j=1;j<=cptcoveff;j++) 
 6479: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6480: 	fprintf(ficresvij,"******\n");
 6481: 
 6482: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6483: 	oldm=oldms;savm=savms;
 6484: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 6485: 	/*
 6486: 	 */
 6487: 	/* goto endfree; */
 6488:  
 6489: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6490: 	pstamp(ficrest);
 6491: 
 6492: 
 6493: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 6494: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 6495: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
 6496: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 6497: 	  if(vpopbased==1)
 6498: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 6499: 	  else
 6500: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 6501: 	  fprintf(ficrest,"# Age e.. (std) ");
 6502: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 6503: 	  fprintf(ficrest,"\n");
 6504: 
 6505: 	  epj=vector(1,nlstate+1);
 6506: 	  for(age=bage; age <=fage ;age++){
 6507: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6508: 	    if (vpopbased==1) {
 6509: 	      if(mobilav ==0){
 6510: 		for(i=1; i<=nlstate;i++)
 6511: 		  prlim[i][i]=probs[(int)age][i][k];
 6512: 	      }else{ /* mobilav */ 
 6513: 		for(i=1; i<=nlstate;i++)
 6514: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 6515: 	      }
 6516: 	    }
 6517: 	
 6518: 	    fprintf(ficrest," %4.0f",age);
 6519: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 6520: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 6521: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 6522: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 6523: 	      }
 6524: 	      epj[nlstate+1] +=epj[j];
 6525: 	    }
 6526: 
 6527: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 6528: 	      for(j=1;j <=nlstate;j++)
 6529: 		vepp += vareij[i][j][(int)age];
 6530: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 6531: 	    for(j=1;j <=nlstate;j++){
 6532: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 6533: 	    }
 6534: 	    fprintf(ficrest,"\n");
 6535: 	  }
 6536: 	}
 6537: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6538: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6539: 	free_vector(epj,1,nlstate+1);
 6540:       /*}*/
 6541:     }
 6542:     free_vector(weight,1,n);
 6543:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 6544:     free_imatrix(s,1,maxwav+1,1,n);
 6545:     free_matrix(anint,1,maxwav,1,n); 
 6546:     free_matrix(mint,1,maxwav,1,n);
 6547:     free_ivector(cod,1,n);
 6548:     free_ivector(tab,1,NCOVMAX);
 6549:     fclose(ficresstdeij);
 6550:     fclose(ficrescveij);
 6551:     fclose(ficresvij);
 6552:     fclose(ficrest);
 6553:     fclose(ficpar);
 6554:   
 6555:     /*------- Variance of period (stable) prevalence------*/   
 6556: 
 6557:     strcpy(fileresvpl,"vpl");
 6558:     strcat(fileresvpl,fileres);
 6559:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 6560:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 6561:       exit(0);
 6562:     }
 6563:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 6564: 
 6565:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6566:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6567:           
 6568:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6569:     	fprintf(ficresvpl,"\n#****** ");
 6570: 	for(j=1;j<=cptcoveff;j++) 
 6571: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6572: 	fprintf(ficresvpl,"******\n");
 6573:       
 6574: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 6575: 	oldm=oldms;savm=savms;
 6576: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 6577: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 6578:       /*}*/
 6579:     }
 6580: 
 6581:     fclose(ficresvpl);
 6582: 
 6583:     /*---------- End : free ----------------*/
 6584:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6585:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6586:   }  /* mle==-3 arrives here for freeing */
 6587:  endfree:
 6588:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 6589:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 6590:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6591:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6592:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6593:     free_matrix(covar,0,NCOVMAX,1,n);
 6594:     free_matrix(matcov,1,npar,1,npar);
 6595:     /*free_vector(delti,1,npar);*/
 6596:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6597:     free_matrix(agev,1,maxwav,1,imx);
 6598:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 6599: 
 6600:     free_ivector(ncodemax,1,NCOVMAX);
 6601:     free_ivector(Tvar,1,NCOVMAX);
 6602:     free_ivector(Tprod,1,NCOVMAX);
 6603:     free_ivector(Tvaraff,1,NCOVMAX);
 6604:     free_ivector(Tage,1,NCOVMAX);
 6605: 
 6606:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 6607:     free_imatrix(codtab,1,100,1,10);
 6608:   fflush(fichtm);
 6609:   fflush(ficgp);
 6610:   
 6611: 
 6612:   if((nberr >0) || (nbwarn>0)){
 6613:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 6614:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 6615:   }else{
 6616:     printf("End of Imach\n");
 6617:     fprintf(ficlog,"End of Imach\n");
 6618:   }
 6619:   printf("See log file on %s\n",filelog);
 6620:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 6621:   (void) gettimeofday(&end_time,&tzp);
 6622:   tm = *localtime(&end_time.tv_sec);
 6623:   tmg = *gmtime(&end_time.tv_sec);
 6624:   strcpy(strtend,asctime(&tm));
 6625:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 6626:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 6627:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 6628: 
 6629:   printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
 6630:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 6631:   fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
 6632:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 6633: /*   if(fileappend(fichtm,optionfilehtm)){ */
 6634:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6635:   fclose(fichtm);
 6636:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6637:   fclose(fichtmcov);
 6638:   fclose(ficgp);
 6639:   fclose(ficlog);
 6640:   /*------ End -----------*/
 6641: 
 6642: 
 6643:    printf("Before Current directory %s!\n",pathcd);
 6644:    if(chdir(pathcd) != 0)
 6645:     printf("Can't move to directory %s!\n",path);
 6646:   if(getcwd(pathcd,MAXLINE) > 0)
 6647:     printf("Current directory %s!\n",pathcd);
 6648:   /*strcat(plotcmd,CHARSEPARATOR);*/
 6649:   sprintf(plotcmd,"gnuplot");
 6650: #ifndef UNIX
 6651:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 6652: #endif
 6653:   if(!stat(plotcmd,&info)){
 6654:     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 6655:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 6656:       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 6657:     }else
 6658:       strcpy(pplotcmd,plotcmd);
 6659: #ifdef UNIX
 6660:     strcpy(plotcmd,GNUPLOTPROGRAM);
 6661:     if(!stat(plotcmd,&info)){
 6662:       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 6663:     }else
 6664:       strcpy(pplotcmd,plotcmd);
 6665: #endif
 6666:   }else
 6667:     strcpy(pplotcmd,plotcmd);
 6668:   
 6669:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 6670:   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
 6671: 
 6672:   if((outcmd=system(plotcmd)) != 0){
 6673:     printf("\n Problem with gnuplot command %s\n", plotcmd);
 6674:     printf("\n Trying on same directory\n");
 6675:     sprintf(plotcmd,"./gnuplot %s", optionfilegnuplot);
 6676:     if((outcmd=system(plotcmd)) != 0)
 6677:       printf("\n Still a problem with gnuplot command %s\n", plotcmd);
 6678:   }
 6679:   printf(" Wait...");
 6680:   while (z[0] != 'q') {
 6681:     /* chdir(path); */
 6682:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 6683:     scanf("%s",z);
 6684: /*     if (z[0] == 'c') system("./imach"); */
 6685:     if (z[0] == 'e') {
 6686:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
 6687:       system(optionfilehtm);
 6688:     }
 6689:     else if (z[0] == 'g') system(plotcmd);
 6690:     else if (z[0] == 'q') exit(0);
 6691:   }
 6692:   end:
 6693:   while (z[0] != 'q') {
 6694:     printf("\nType  q for exiting: ");
 6695:     scanf("%s",z);
 6696:   }
 6697: }
 6698: 
 6699: 
 6700: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>