File:  [Local Repository] / imach / src / imach.c
Revision 1.109: download - view: text, annotated - select for diffs
Tue Jan 24 19:37:15 2006 UTC (18 years, 4 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
(Module): Comments (lines starting with a #) are allowed in data.

    1: /* $Id: imach.c,v 1.109 2006/01/24 19:37:15 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.109  2006/01/24 19:37:15  brouard
    5:   (Module): Comments (lines starting with a #) are allowed in data.
    6: 
    7:   Revision 1.108  2006/01/19 18:05:42  lievre
    8:   Gnuplot problem appeared...
    9:   To be fixed
   10: 
   11:   Revision 1.107  2006/01/19 16:20:37  brouard
   12:   Test existence of gnuplot in imach path
   13: 
   14:   Revision 1.106  2006/01/19 13:24:36  brouard
   15:   Some cleaning and links added in html output
   16: 
   17:   Revision 1.105  2006/01/05 20:23:19  lievre
   18:   *** empty log message ***
   19: 
   20:   Revision 1.104  2005/09/30 16:11:43  lievre
   21:   (Module): sump fixed, loop imx fixed, and simplifications.
   22:   (Module): If the status is missing at the last wave but we know
   23:   that the person is alive, then we can code his/her status as -2
   24:   (instead of missing=-1 in earlier versions) and his/her
   25:   contributions to the likelihood is 1 - Prob of dying from last
   26:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
   27:   the healthy state at last known wave). Version is 0.98
   28: 
   29:   Revision 1.103  2005/09/30 15:54:49  lievre
   30:   (Module): sump fixed, loop imx fixed, and simplifications.
   31: 
   32:   Revision 1.102  2004/09/15 17:31:30  brouard
   33:   Add the possibility to read data file including tab characters.
   34: 
   35:   Revision 1.101  2004/09/15 10:38:38  brouard
   36:   Fix on curr_time
   37: 
   38:   Revision 1.100  2004/07/12 18:29:06  brouard
   39:   Add version for Mac OS X. Just define UNIX in Makefile
   40: 
   41:   Revision 1.99  2004/06/05 08:57:40  brouard
   42:   *** empty log message ***
   43: 
   44:   Revision 1.98  2004/05/16 15:05:56  brouard
   45:   New version 0.97 . First attempt to estimate force of mortality
   46:   directly from the data i.e. without the need of knowing the health
   47:   state at each age, but using a Gompertz model: log u =a + b*age .
   48:   This is the basic analysis of mortality and should be done before any
   49:   other analysis, in order to test if the mortality estimated from the
   50:   cross-longitudinal survey is different from the mortality estimated
   51:   from other sources like vital statistic data.
   52: 
   53:   The same imach parameter file can be used but the option for mle should be -3.
   54: 
   55:   Agnès, who wrote this part of the code, tried to keep most of the
   56:   former routines in order to include the new code within the former code.
   57: 
   58:   The output is very simple: only an estimate of the intercept and of
   59:   the slope with 95% confident intervals.
   60: 
   61:   Current limitations:
   62:   A) Even if you enter covariates, i.e. with the
   63:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   64:   B) There is no computation of Life Expectancy nor Life Table.
   65: 
   66:   Revision 1.97  2004/02/20 13:25:42  lievre
   67:   Version 0.96d. Population forecasting command line is (temporarily)
   68:   suppressed.
   69: 
   70:   Revision 1.96  2003/07/15 15:38:55  brouard
   71:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   72:   rewritten within the same printf. Workaround: many printfs.
   73: 
   74:   Revision 1.95  2003/07/08 07:54:34  brouard
   75:   * imach.c (Repository):
   76:   (Repository): Using imachwizard code to output a more meaningful covariance
   77:   matrix (cov(a12,c31) instead of numbers.
   78: 
   79:   Revision 1.94  2003/06/27 13:00:02  brouard
   80:   Just cleaning
   81: 
   82:   Revision 1.93  2003/06/25 16:33:55  brouard
   83:   (Module): On windows (cygwin) function asctime_r doesn't
   84:   exist so I changed back to asctime which exists.
   85:   (Module): Version 0.96b
   86: 
   87:   Revision 1.92  2003/06/25 16:30:45  brouard
   88:   (Module): On windows (cygwin) function asctime_r doesn't
   89:   exist so I changed back to asctime which exists.
   90: 
   91:   Revision 1.91  2003/06/25 15:30:29  brouard
   92:   * imach.c (Repository): Duplicated warning errors corrected.
   93:   (Repository): Elapsed time after each iteration is now output. It
   94:   helps to forecast when convergence will be reached. Elapsed time
   95:   is stamped in powell.  We created a new html file for the graphs
   96:   concerning matrix of covariance. It has extension -cov.htm.
   97: 
   98:   Revision 1.90  2003/06/24 12:34:15  brouard
   99:   (Module): Some bugs corrected for windows. Also, when
  100:   mle=-1 a template is output in file "or"mypar.txt with the design
  101:   of the covariance matrix to be input.
  102: 
  103:   Revision 1.89  2003/06/24 12:30:52  brouard
  104:   (Module): Some bugs corrected for windows. Also, when
  105:   mle=-1 a template is output in file "or"mypar.txt with the design
  106:   of the covariance matrix to be input.
  107: 
  108:   Revision 1.88  2003/06/23 17:54:56  brouard
  109:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  110: 
  111:   Revision 1.87  2003/06/18 12:26:01  brouard
  112:   Version 0.96
  113: 
  114:   Revision 1.86  2003/06/17 20:04:08  brouard
  115:   (Module): Change position of html and gnuplot routines and added
  116:   routine fileappend.
  117: 
  118:   Revision 1.85  2003/06/17 13:12:43  brouard
  119:   * imach.c (Repository): Check when date of death was earlier that
  120:   current date of interview. It may happen when the death was just
  121:   prior to the death. In this case, dh was negative and likelihood
  122:   was wrong (infinity). We still send an "Error" but patch by
  123:   assuming that the date of death was just one stepm after the
  124:   interview.
  125:   (Repository): Because some people have very long ID (first column)
  126:   we changed int to long in num[] and we added a new lvector for
  127:   memory allocation. But we also truncated to 8 characters (left
  128:   truncation)
  129:   (Repository): No more line truncation errors.
  130: 
  131:   Revision 1.84  2003/06/13 21:44:43  brouard
  132:   * imach.c (Repository): Replace "freqsummary" at a correct
  133:   place. It differs from routine "prevalence" which may be called
  134:   many times. Probs is memory consuming and must be used with
  135:   parcimony.
  136:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  137: 
  138:   Revision 1.83  2003/06/10 13:39:11  lievre
  139:   *** empty log message ***
  140: 
  141:   Revision 1.82  2003/06/05 15:57:20  brouard
  142:   Add log in  imach.c and  fullversion number is now printed.
  143: 
  144: */
  145: /*
  146:    Interpolated Markov Chain
  147: 
  148:   Short summary of the programme:
  149:   
  150:   This program computes Healthy Life Expectancies from
  151:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  152:   first survey ("cross") where individuals from different ages are
  153:   interviewed on their health status or degree of disability (in the
  154:   case of a health survey which is our main interest) -2- at least a
  155:   second wave of interviews ("longitudinal") which measure each change
  156:   (if any) in individual health status.  Health expectancies are
  157:   computed from the time spent in each health state according to a
  158:   model. More health states you consider, more time is necessary to reach the
  159:   Maximum Likelihood of the parameters involved in the model.  The
  160:   simplest model is the multinomial logistic model where pij is the
  161:   probability to be observed in state j at the second wave
  162:   conditional to be observed in state i at the first wave. Therefore
  163:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  164:   'age' is age and 'sex' is a covariate. If you want to have a more
  165:   complex model than "constant and age", you should modify the program
  166:   where the markup *Covariates have to be included here again* invites
  167:   you to do it.  More covariates you add, slower the
  168:   convergence.
  169: 
  170:   The advantage of this computer programme, compared to a simple
  171:   multinomial logistic model, is clear when the delay between waves is not
  172:   identical for each individual. Also, if a individual missed an
  173:   intermediate interview, the information is lost, but taken into
  174:   account using an interpolation or extrapolation.  
  175: 
  176:   hPijx is the probability to be observed in state i at age x+h
  177:   conditional to the observed state i at age x. The delay 'h' can be
  178:   split into an exact number (nh*stepm) of unobserved intermediate
  179:   states. This elementary transition (by month, quarter,
  180:   semester or year) is modelled as a multinomial logistic.  The hPx
  181:   matrix is simply the matrix product of nh*stepm elementary matrices
  182:   and the contribution of each individual to the likelihood is simply
  183:   hPijx.
  184: 
  185:   Also this programme outputs the covariance matrix of the parameters but also
  186:   of the life expectancies. It also computes the stable prevalence. 
  187:   
  188:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  189:            Institut national d'études démographiques, Paris.
  190:   This software have been partly granted by Euro-REVES, a concerted action
  191:   from the European Union.
  192:   It is copyrighted identically to a GNU software product, ie programme and
  193:   software can be distributed freely for non commercial use. Latest version
  194:   can be accessed at http://euroreves.ined.fr/imach .
  195: 
  196:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  197:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  198:   
  199:   **********************************************************************/
  200: /*
  201:   main
  202:   read parameterfile
  203:   read datafile
  204:   concatwav
  205:   freqsummary
  206:   if (mle >= 1)
  207:     mlikeli
  208:   print results files
  209:   if mle==1 
  210:      computes hessian
  211:   read end of parameter file: agemin, agemax, bage, fage, estepm
  212:       begin-prev-date,...
  213:   open gnuplot file
  214:   open html file
  215:   stable prevalence
  216:    for age prevalim()
  217:   h Pij x
  218:   variance of p varprob
  219:   forecasting if prevfcast==1 prevforecast call prevalence()
  220:   health expectancies
  221:   Variance-covariance of DFLE
  222:   prevalence()
  223:    movingaverage()
  224:   varevsij() 
  225:   if popbased==1 varevsij(,popbased)
  226:   total life expectancies
  227:   Variance of stable prevalence
  228:  end
  229: */
  230: 
  231: 
  232: 
  233:  
  234: #include <math.h>
  235: #include <stdio.h>
  236: #include <stdlib.h>
  237: #include <string.h>
  238: #include <unistd.h>
  239: 
  240: #include <limits.h>
  241: #include <sys/types.h>
  242: #include <sys/stat.h>
  243: #include <errno.h>
  244: extern int errno;
  245: 
  246: /* #include <sys/time.h> */
  247: #include <time.h>
  248: #include "timeval.h"
  249: 
  250: /* #include <libintl.h> */
  251: /* #define _(String) gettext (String) */
  252: 
  253: #define MAXLINE 256
  254: 
  255: #define GNUPLOTPROGRAM "gnuplot"
  256: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  257: #define FILENAMELENGTH 132
  258: 
  259: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  260: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  261: 
  262: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
  263: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  264: 
  265: #define NINTERVMAX 8
  266: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
  267: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
  268: #define NCOVMAX 8 /* Maximum number of covariates */
  269: #define MAXN 20000
  270: #define YEARM 12. /* Number of months per year */
  271: #define AGESUP 130
  272: #define AGEBASE 40
  273: #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
  274: #ifdef UNIX
  275: #define DIRSEPARATOR '/'
  276: #define CHARSEPARATOR "/"
  277: #define ODIRSEPARATOR '\\'
  278: #else
  279: #define DIRSEPARATOR '\\'
  280: #define CHARSEPARATOR "\\"
  281: #define ODIRSEPARATOR '/'
  282: #endif
  283: 
  284: /* $Id: imach.c,v 1.109 2006/01/24 19:37:15 brouard Exp $ */
  285: /* $State: Exp $ */
  286: 
  287: char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
  288: char fullversion[]="$Revision: 1.109 $ $Date: 2006/01/24 19:37:15 $"; 
  289: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  290: int nvar;
  291: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
  292: int npar=NPARMAX;
  293: int nlstate=2; /* Number of live states */
  294: int ndeath=1; /* Number of dead states */
  295: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  296: int popbased=0;
  297: 
  298: int *wav; /* Number of waves for this individuual 0 is possible */
  299: int maxwav; /* Maxim number of waves */
  300: int jmin, jmax; /* min, max spacing between 2 waves */
  301: int gipmx, gsw; /* Global variables on the number of contributions 
  302: 		   to the likelihood and the sum of weights (done by funcone)*/
  303: int mle, weightopt;
  304: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  305: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  306: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  307: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  308: double jmean; /* Mean space between 2 waves */
  309: double **oldm, **newm, **savm; /* Working pointers to matrices */
  310: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  311: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  312: FILE *ficlog, *ficrespow;
  313: int globpr; /* Global variable for printing or not */
  314: double fretone; /* Only one call to likelihood */
  315: long ipmx; /* Number of contributions */
  316: double sw; /* Sum of weights */
  317: char filerespow[FILENAMELENGTH];
  318: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  319: FILE *ficresilk;
  320: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  321: FILE *ficresprobmorprev;
  322: FILE *fichtm, *fichtmcov; /* Html File */
  323: FILE *ficreseij;
  324: char filerese[FILENAMELENGTH];
  325: FILE  *ficresvij;
  326: char fileresv[FILENAMELENGTH];
  327: FILE  *ficresvpl;
  328: char fileresvpl[FILENAMELENGTH];
  329: char title[MAXLINE];
  330: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  331: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
  332: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  333: char command[FILENAMELENGTH];
  334: int  outcmd=0;
  335: 
  336: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  337: 
  338: char filelog[FILENAMELENGTH]; /* Log file */
  339: char filerest[FILENAMELENGTH];
  340: char fileregp[FILENAMELENGTH];
  341: char popfile[FILENAMELENGTH];
  342: 
  343: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  344: 
  345: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  346: struct timezone tzp;
  347: extern int gettimeofday();
  348: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  349: long time_value;
  350: extern long time();
  351: char strcurr[80], strfor[80];
  352: 
  353: char *endptr;
  354: long lval;
  355: 
  356: #define NR_END 1
  357: #define FREE_ARG char*
  358: #define FTOL 1.0e-10
  359: 
  360: #define NRANSI 
  361: #define ITMAX 200 
  362: 
  363: #define TOL 2.0e-4 
  364: 
  365: #define CGOLD 0.3819660 
  366: #define ZEPS 1.0e-10 
  367: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  368: 
  369: #define GOLD 1.618034 
  370: #define GLIMIT 100.0 
  371: #define TINY 1.0e-20 
  372: 
  373: static double maxarg1,maxarg2;
  374: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  375: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  376:   
  377: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  378: #define rint(a) floor(a+0.5)
  379: 
  380: static double sqrarg;
  381: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  382: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  383: int agegomp= AGEGOMP;
  384: 
  385: int imx; 
  386: int stepm=1;
  387: /* Stepm, step in month: minimum step interpolation*/
  388: 
  389: int estepm;
  390: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  391: 
  392: int m,nb;
  393: long *num;
  394: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  395: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  396: double **pmmij, ***probs;
  397: double *ageexmed,*agecens;
  398: double dateintmean=0;
  399: 
  400: double *weight;
  401: int **s; /* Status */
  402: double *agedc, **covar, idx;
  403: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  404: double *lsurv, *lpop, *tpop;
  405: 
  406: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  407: double ftolhess; /* Tolerance for computing hessian */
  408: 
  409: /**************** split *************************/
  410: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  411: {
  412:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  413:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  414:   */ 
  415:   char	*ss;				/* pointer */
  416:   int	l1, l2;				/* length counters */
  417: 
  418:   l1 = strlen(path );			/* length of path */
  419:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  420:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  421:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  422:     strcpy( name, path );		/* we got the fullname name because no directory */
  423:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  424:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  425:     /* get current working directory */
  426:     /*    extern  char* getcwd ( char *buf , int len);*/
  427:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  428:       return( GLOCK_ERROR_GETCWD );
  429:     }
  430:     /* got dirc from getcwd*/
  431:     printf(" DIRC = %s \n",dirc);
  432:   } else {				/* strip direcotry from path */
  433:     ss++;				/* after this, the filename */
  434:     l2 = strlen( ss );			/* length of filename */
  435:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  436:     strcpy( name, ss );		/* save file name */
  437:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  438:     dirc[l1-l2] = 0;			/* add zero */
  439:     printf(" DIRC2 = %s \n",dirc);
  440:   }
  441:   /* We add a separator at the end of dirc if not exists */
  442:   l1 = strlen( dirc );			/* length of directory */
  443:   if( dirc[l1-1] != DIRSEPARATOR ){
  444:     dirc[l1] =  DIRSEPARATOR;
  445:     dirc[l1+1] = 0; 
  446:     printf(" DIRC3 = %s \n",dirc);
  447:   }
  448:   ss = strrchr( name, '.' );		/* find last / */
  449:   if (ss >0){
  450:     ss++;
  451:     strcpy(ext,ss);			/* save extension */
  452:     l1= strlen( name);
  453:     l2= strlen(ss)+1;
  454:     strncpy( finame, name, l1-l2);
  455:     finame[l1-l2]= 0;
  456:   }
  457: 
  458:   return( 0 );				/* we're done */
  459: }
  460: 
  461: 
  462: /******************************************/
  463: 
  464: void replace_back_to_slash(char *s, char*t)
  465: {
  466:   int i;
  467:   int lg=0;
  468:   i=0;
  469:   lg=strlen(t);
  470:   for(i=0; i<= lg; i++) {
  471:     (s[i] = t[i]);
  472:     if (t[i]== '\\') s[i]='/';
  473:   }
  474: }
  475: 
  476: int nbocc(char *s, char occ)
  477: {
  478:   int i,j=0;
  479:   int lg=20;
  480:   i=0;
  481:   lg=strlen(s);
  482:   for(i=0; i<= lg; i++) {
  483:   if  (s[i] == occ ) j++;
  484:   }
  485:   return j;
  486: }
  487: 
  488: void cutv(char *u,char *v, char*t, char occ)
  489: {
  490:   /* cuts string t into u and v where u ends before first occurence of char 'occ' 
  491:      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
  492:      gives u="abcedf" and v="ghi2j" */
  493:   int i,lg,j,p=0;
  494:   i=0;
  495:   for(j=0; j<=strlen(t)-1; j++) {
  496:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  497:   }
  498: 
  499:   lg=strlen(t);
  500:   for(j=0; j<p; j++) {
  501:     (u[j] = t[j]);
  502:   }
  503:      u[p]='\0';
  504: 
  505:    for(j=0; j<= lg; j++) {
  506:     if (j>=(p+1))(v[j-p-1] = t[j]);
  507:   }
  508: }
  509: 
  510: /********************** nrerror ********************/
  511: 
  512: void nrerror(char error_text[])
  513: {
  514:   fprintf(stderr,"ERREUR ...\n");
  515:   fprintf(stderr,"%s\n",error_text);
  516:   exit(EXIT_FAILURE);
  517: }
  518: /*********************** vector *******************/
  519: double *vector(int nl, int nh)
  520: {
  521:   double *v;
  522:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  523:   if (!v) nrerror("allocation failure in vector");
  524:   return v-nl+NR_END;
  525: }
  526: 
  527: /************************ free vector ******************/
  528: void free_vector(double*v, int nl, int nh)
  529: {
  530:   free((FREE_ARG)(v+nl-NR_END));
  531: }
  532: 
  533: /************************ivector *******************************/
  534: int *ivector(long nl,long nh)
  535: {
  536:   int *v;
  537:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  538:   if (!v) nrerror("allocation failure in ivector");
  539:   return v-nl+NR_END;
  540: }
  541: 
  542: /******************free ivector **************************/
  543: void free_ivector(int *v, long nl, long nh)
  544: {
  545:   free((FREE_ARG)(v+nl-NR_END));
  546: }
  547: 
  548: /************************lvector *******************************/
  549: long *lvector(long nl,long nh)
  550: {
  551:   long *v;
  552:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  553:   if (!v) nrerror("allocation failure in ivector");
  554:   return v-nl+NR_END;
  555: }
  556: 
  557: /******************free lvector **************************/
  558: void free_lvector(long *v, long nl, long nh)
  559: {
  560:   free((FREE_ARG)(v+nl-NR_END));
  561: }
  562: 
  563: /******************* imatrix *******************************/
  564: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  565:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  566: { 
  567:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  568:   int **m; 
  569:   
  570:   /* allocate pointers to rows */ 
  571:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  572:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  573:   m += NR_END; 
  574:   m -= nrl; 
  575:   
  576:   
  577:   /* allocate rows and set pointers to them */ 
  578:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  579:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  580:   m[nrl] += NR_END; 
  581:   m[nrl] -= ncl; 
  582:   
  583:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  584:   
  585:   /* return pointer to array of pointers to rows */ 
  586:   return m; 
  587: } 
  588: 
  589: /****************** free_imatrix *************************/
  590: void free_imatrix(m,nrl,nrh,ncl,nch)
  591:       int **m;
  592:       long nch,ncl,nrh,nrl; 
  593:      /* free an int matrix allocated by imatrix() */ 
  594: { 
  595:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  596:   free((FREE_ARG) (m+nrl-NR_END)); 
  597: } 
  598: 
  599: /******************* matrix *******************************/
  600: double **matrix(long nrl, long nrh, long ncl, long nch)
  601: {
  602:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  603:   double **m;
  604: 
  605:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  606:   if (!m) nrerror("allocation failure 1 in matrix()");
  607:   m += NR_END;
  608:   m -= nrl;
  609: 
  610:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  611:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  612:   m[nrl] += NR_END;
  613:   m[nrl] -= ncl;
  614: 
  615:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  616:   return m;
  617:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
  618:    */
  619: }
  620: 
  621: /*************************free matrix ************************/
  622: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  623: {
  624:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  625:   free((FREE_ARG)(m+nrl-NR_END));
  626: }
  627: 
  628: /******************* ma3x *******************************/
  629: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  630: {
  631:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  632:   double ***m;
  633: 
  634:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  635:   if (!m) nrerror("allocation failure 1 in matrix()");
  636:   m += NR_END;
  637:   m -= nrl;
  638: 
  639:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  640:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  641:   m[nrl] += NR_END;
  642:   m[nrl] -= ncl;
  643: 
  644:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  645: 
  646:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  647:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  648:   m[nrl][ncl] += NR_END;
  649:   m[nrl][ncl] -= nll;
  650:   for (j=ncl+1; j<=nch; j++) 
  651:     m[nrl][j]=m[nrl][j-1]+nlay;
  652:   
  653:   for (i=nrl+1; i<=nrh; i++) {
  654:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  655:     for (j=ncl+1; j<=nch; j++) 
  656:       m[i][j]=m[i][j-1]+nlay;
  657:   }
  658:   return m; 
  659:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  660:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  661:   */
  662: }
  663: 
  664: /*************************free ma3x ************************/
  665: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  666: {
  667:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  668:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  669:   free((FREE_ARG)(m+nrl-NR_END));
  670: }
  671: 
  672: /*************** function subdirf ***********/
  673: char *subdirf(char fileres[])
  674: {
  675:   /* Caution optionfilefiname is hidden */
  676:   strcpy(tmpout,optionfilefiname);
  677:   strcat(tmpout,"/"); /* Add to the right */
  678:   strcat(tmpout,fileres);
  679:   return tmpout;
  680: }
  681: 
  682: /*************** function subdirf2 ***********/
  683: char *subdirf2(char fileres[], char *preop)
  684: {
  685:   
  686:   /* Caution optionfilefiname is hidden */
  687:   strcpy(tmpout,optionfilefiname);
  688:   strcat(tmpout,"/");
  689:   strcat(tmpout,preop);
  690:   strcat(tmpout,fileres);
  691:   return tmpout;
  692: }
  693: 
  694: /*************** function subdirf3 ***********/
  695: char *subdirf3(char fileres[], char *preop, char *preop2)
  696: {
  697:   
  698:   /* Caution optionfilefiname is hidden */
  699:   strcpy(tmpout,optionfilefiname);
  700:   strcat(tmpout,"/");
  701:   strcat(tmpout,preop);
  702:   strcat(tmpout,preop2);
  703:   strcat(tmpout,fileres);
  704:   return tmpout;
  705: }
  706: 
  707: /***************** f1dim *************************/
  708: extern int ncom; 
  709: extern double *pcom,*xicom;
  710: extern double (*nrfunc)(double []); 
  711:  
  712: double f1dim(double x) 
  713: { 
  714:   int j; 
  715:   double f;
  716:   double *xt; 
  717:  
  718:   xt=vector(1,ncom); 
  719:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  720:   f=(*nrfunc)(xt); 
  721:   free_vector(xt,1,ncom); 
  722:   return f; 
  723: } 
  724: 
  725: /*****************brent *************************/
  726: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  727: { 
  728:   int iter; 
  729:   double a,b,d,etemp;
  730:   double fu,fv,fw,fx;
  731:   double ftemp;
  732:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  733:   double e=0.0; 
  734:  
  735:   a=(ax < cx ? ax : cx); 
  736:   b=(ax > cx ? ax : cx); 
  737:   x=w=v=bx; 
  738:   fw=fv=fx=(*f)(x); 
  739:   for (iter=1;iter<=ITMAX;iter++) { 
  740:     xm=0.5*(a+b); 
  741:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  742:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  743:     printf(".");fflush(stdout);
  744:     fprintf(ficlog,".");fflush(ficlog);
  745: #ifdef DEBUG
  746:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  747:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  748:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  749: #endif
  750:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  751:       *xmin=x; 
  752:       return fx; 
  753:     } 
  754:     ftemp=fu;
  755:     if (fabs(e) > tol1) { 
  756:       r=(x-w)*(fx-fv); 
  757:       q=(x-v)*(fx-fw); 
  758:       p=(x-v)*q-(x-w)*r; 
  759:       q=2.0*(q-r); 
  760:       if (q > 0.0) p = -p; 
  761:       q=fabs(q); 
  762:       etemp=e; 
  763:       e=d; 
  764:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  765: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  766:       else { 
  767: 	d=p/q; 
  768: 	u=x+d; 
  769: 	if (u-a < tol2 || b-u < tol2) 
  770: 	  d=SIGN(tol1,xm-x); 
  771:       } 
  772:     } else { 
  773:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  774:     } 
  775:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  776:     fu=(*f)(u); 
  777:     if (fu <= fx) { 
  778:       if (u >= x) a=x; else b=x; 
  779:       SHFT(v,w,x,u) 
  780: 	SHFT(fv,fw,fx,fu) 
  781: 	} else { 
  782: 	  if (u < x) a=u; else b=u; 
  783: 	  if (fu <= fw || w == x) { 
  784: 	    v=w; 
  785: 	    w=u; 
  786: 	    fv=fw; 
  787: 	    fw=fu; 
  788: 	  } else if (fu <= fv || v == x || v == w) { 
  789: 	    v=u; 
  790: 	    fv=fu; 
  791: 	  } 
  792: 	} 
  793:   } 
  794:   nrerror("Too many iterations in brent"); 
  795:   *xmin=x; 
  796:   return fx; 
  797: } 
  798: 
  799: /****************** mnbrak ***********************/
  800: 
  801: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  802: 	    double (*func)(double)) 
  803: { 
  804:   double ulim,u,r,q, dum;
  805:   double fu; 
  806:  
  807:   *fa=(*func)(*ax); 
  808:   *fb=(*func)(*bx); 
  809:   if (*fb > *fa) { 
  810:     SHFT(dum,*ax,*bx,dum) 
  811:       SHFT(dum,*fb,*fa,dum) 
  812:       } 
  813:   *cx=(*bx)+GOLD*(*bx-*ax); 
  814:   *fc=(*func)(*cx); 
  815:   while (*fb > *fc) { 
  816:     r=(*bx-*ax)*(*fb-*fc); 
  817:     q=(*bx-*cx)*(*fb-*fa); 
  818:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  819:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  820:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  821:     if ((*bx-u)*(u-*cx) > 0.0) { 
  822:       fu=(*func)(u); 
  823:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  824:       fu=(*func)(u); 
  825:       if (fu < *fc) { 
  826: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  827: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  828: 	  } 
  829:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  830:       u=ulim; 
  831:       fu=(*func)(u); 
  832:     } else { 
  833:       u=(*cx)+GOLD*(*cx-*bx); 
  834:       fu=(*func)(u); 
  835:     } 
  836:     SHFT(*ax,*bx,*cx,u) 
  837:       SHFT(*fa,*fb,*fc,fu) 
  838:       } 
  839: } 
  840: 
  841: /*************** linmin ************************/
  842: 
  843: int ncom; 
  844: double *pcom,*xicom;
  845: double (*nrfunc)(double []); 
  846:  
  847: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  848: { 
  849:   double brent(double ax, double bx, double cx, 
  850: 	       double (*f)(double), double tol, double *xmin); 
  851:   double f1dim(double x); 
  852:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  853: 	      double *fc, double (*func)(double)); 
  854:   int j; 
  855:   double xx,xmin,bx,ax; 
  856:   double fx,fb,fa;
  857:  
  858:   ncom=n; 
  859:   pcom=vector(1,n); 
  860:   xicom=vector(1,n); 
  861:   nrfunc=func; 
  862:   for (j=1;j<=n;j++) { 
  863:     pcom[j]=p[j]; 
  864:     xicom[j]=xi[j]; 
  865:   } 
  866:   ax=0.0; 
  867:   xx=1.0; 
  868:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  869:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  870: #ifdef DEBUG
  871:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  872:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  873: #endif
  874:   for (j=1;j<=n;j++) { 
  875:     xi[j] *= xmin; 
  876:     p[j] += xi[j]; 
  877:   } 
  878:   free_vector(xicom,1,n); 
  879:   free_vector(pcom,1,n); 
  880: } 
  881: 
  882: char *asc_diff_time(long time_sec, char ascdiff[])
  883: {
  884:   long sec_left, days, hours, minutes;
  885:   days = (time_sec) / (60*60*24);
  886:   sec_left = (time_sec) % (60*60*24);
  887:   hours = (sec_left) / (60*60) ;
  888:   sec_left = (sec_left) %(60*60);
  889:   minutes = (sec_left) /60;
  890:   sec_left = (sec_left) % (60);
  891:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
  892:   return ascdiff;
  893: }
  894: 
  895: /*************** powell ************************/
  896: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  897: 	    double (*func)(double [])) 
  898: { 
  899:   void linmin(double p[], double xi[], int n, double *fret, 
  900: 	      double (*func)(double [])); 
  901:   int i,ibig,j; 
  902:   double del,t,*pt,*ptt,*xit;
  903:   double fp,fptt;
  904:   double *xits;
  905:   int niterf, itmp;
  906: 
  907:   pt=vector(1,n); 
  908:   ptt=vector(1,n); 
  909:   xit=vector(1,n); 
  910:   xits=vector(1,n); 
  911:   *fret=(*func)(p); 
  912:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  913:   for (*iter=1;;++(*iter)) { 
  914:     fp=(*fret); 
  915:     ibig=0; 
  916:     del=0.0; 
  917:     last_time=curr_time;
  918:     (void) gettimeofday(&curr_time,&tzp);
  919:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
  920:     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
  921:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
  922:     */
  923:    for (i=1;i<=n;i++) {
  924:       printf(" %d %.12f",i, p[i]);
  925:       fprintf(ficlog," %d %.12lf",i, p[i]);
  926:       fprintf(ficrespow," %.12lf", p[i]);
  927:     }
  928:     printf("\n");
  929:     fprintf(ficlog,"\n");
  930:     fprintf(ficrespow,"\n");fflush(ficrespow);
  931:     if(*iter <=3){
  932:       tm = *localtime(&curr_time.tv_sec);
  933:       strcpy(strcurr,asctime(&tm));
  934: /*       asctime_r(&tm,strcurr); */
  935:       forecast_time=curr_time; 
  936:       itmp = strlen(strcurr);
  937:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
  938: 	strcurr[itmp-1]='\0';
  939:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  940:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  941:       for(niterf=10;niterf<=30;niterf+=10){
  942: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
  943: 	tmf = *localtime(&forecast_time.tv_sec);
  944: /* 	asctime_r(&tmf,strfor); */
  945: 	strcpy(strfor,asctime(&tmf));
  946: 	itmp = strlen(strfor);
  947: 	if(strfor[itmp-1]=='\n')
  948: 	strfor[itmp-1]='\0';
  949: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  950: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  951:       }
  952:     }
  953:     for (i=1;i<=n;i++) { 
  954:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  955:       fptt=(*fret); 
  956: #ifdef DEBUG
  957:       printf("fret=%lf \n",*fret);
  958:       fprintf(ficlog,"fret=%lf \n",*fret);
  959: #endif
  960:       printf("%d",i);fflush(stdout);
  961:       fprintf(ficlog,"%d",i);fflush(ficlog);
  962:       linmin(p,xit,n,fret,func); 
  963:       if (fabs(fptt-(*fret)) > del) { 
  964: 	del=fabs(fptt-(*fret)); 
  965: 	ibig=i; 
  966:       } 
  967: #ifdef DEBUG
  968:       printf("%d %.12e",i,(*fret));
  969:       fprintf(ficlog,"%d %.12e",i,(*fret));
  970:       for (j=1;j<=n;j++) {
  971: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  972: 	printf(" x(%d)=%.12e",j,xit[j]);
  973: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  974:       }
  975:       for(j=1;j<=n;j++) {
  976: 	printf(" p=%.12e",p[j]);
  977: 	fprintf(ficlog," p=%.12e",p[j]);
  978:       }
  979:       printf("\n");
  980:       fprintf(ficlog,"\n");
  981: #endif
  982:     } 
  983:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  984: #ifdef DEBUG
  985:       int k[2],l;
  986:       k[0]=1;
  987:       k[1]=-1;
  988:       printf("Max: %.12e",(*func)(p));
  989:       fprintf(ficlog,"Max: %.12e",(*func)(p));
  990:       for (j=1;j<=n;j++) {
  991: 	printf(" %.12e",p[j]);
  992: 	fprintf(ficlog," %.12e",p[j]);
  993:       }
  994:       printf("\n");
  995:       fprintf(ficlog,"\n");
  996:       for(l=0;l<=1;l++) {
  997: 	for (j=1;j<=n;j++) {
  998: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  999: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1000: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1001: 	}
 1002: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1003: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1004:       }
 1005: #endif
 1006: 
 1007: 
 1008:       free_vector(xit,1,n); 
 1009:       free_vector(xits,1,n); 
 1010:       free_vector(ptt,1,n); 
 1011:       free_vector(pt,1,n); 
 1012:       return; 
 1013:     } 
 1014:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1015:     for (j=1;j<=n;j++) { 
 1016:       ptt[j]=2.0*p[j]-pt[j]; 
 1017:       xit[j]=p[j]-pt[j]; 
 1018:       pt[j]=p[j]; 
 1019:     } 
 1020:     fptt=(*func)(ptt); 
 1021:     if (fptt < fp) { 
 1022:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 1023:       if (t < 0.0) { 
 1024: 	linmin(p,xit,n,fret,func); 
 1025: 	for (j=1;j<=n;j++) { 
 1026: 	  xi[j][ibig]=xi[j][n]; 
 1027: 	  xi[j][n]=xit[j]; 
 1028: 	}
 1029: #ifdef DEBUG
 1030: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1031: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1032: 	for(j=1;j<=n;j++){
 1033: 	  printf(" %.12e",xit[j]);
 1034: 	  fprintf(ficlog," %.12e",xit[j]);
 1035: 	}
 1036: 	printf("\n");
 1037: 	fprintf(ficlog,"\n");
 1038: #endif
 1039:       }
 1040:     } 
 1041:   } 
 1042: } 
 1043: 
 1044: /**** Prevalence limit (stable prevalence)  ****************/
 1045: 
 1046: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1047: {
 1048:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1049:      matrix by transitions matrix until convergence is reached */
 1050: 
 1051:   int i, ii,j,k;
 1052:   double min, max, maxmin, maxmax,sumnew=0.;
 1053:   double **matprod2();
 1054:   double **out, cov[NCOVMAX], **pmij();
 1055:   double **newm;
 1056:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1057: 
 1058:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1059:     for (j=1;j<=nlstate+ndeath;j++){
 1060:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1061:     }
 1062: 
 1063:    cov[1]=1.;
 1064:  
 1065:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1066:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1067:     newm=savm;
 1068:     /* Covariates have to be included here again */
 1069:      cov[2]=agefin;
 1070:   
 1071:       for (k=1; k<=cptcovn;k++) {
 1072: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1073: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 1074:       }
 1075:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1076:       for (k=1; k<=cptcovprod;k++)
 1077: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1078: 
 1079:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1080:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1081:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1082:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 1083: 
 1084:     savm=oldm;
 1085:     oldm=newm;
 1086:     maxmax=0.;
 1087:     for(j=1;j<=nlstate;j++){
 1088:       min=1.;
 1089:       max=0.;
 1090:       for(i=1; i<=nlstate; i++) {
 1091: 	sumnew=0;
 1092: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1093: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1094: 	max=FMAX(max,prlim[i][j]);
 1095: 	min=FMIN(min,prlim[i][j]);
 1096:       }
 1097:       maxmin=max-min;
 1098:       maxmax=FMAX(maxmax,maxmin);
 1099:     }
 1100:     if(maxmax < ftolpl){
 1101:       return prlim;
 1102:     }
 1103:   }
 1104: }
 1105: 
 1106: /*************** transition probabilities ***************/ 
 1107: 
 1108: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1109: {
 1110:   double s1, s2;
 1111:   /*double t34;*/
 1112:   int i,j,j1, nc, ii, jj;
 1113: 
 1114:     for(i=1; i<= nlstate; i++){
 1115:       for(j=1; j<i;j++){
 1116: 	for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1117: 	  /*s2 += param[i][j][nc]*cov[nc];*/
 1118: 	  s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1119: /* 	 printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 1120: 	}
 1121: 	ps[i][j]=s2;
 1122: /* 	printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 1123:       }
 1124:       for(j=i+1; j<=nlstate+ndeath;j++){
 1125: 	for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1126: 	  s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1127: /* 	  printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 1128: 	}
 1129: 	ps[i][j]=s2;
 1130:       }
 1131:     }
 1132:     /*ps[3][2]=1;*/
 1133:     
 1134:     for(i=1; i<= nlstate; i++){
 1135:       s1=0;
 1136:       for(j=1; j<i; j++)
 1137: 	s1+=exp(ps[i][j]);
 1138:       for(j=i+1; j<=nlstate+ndeath; j++)
 1139: 	s1+=exp(ps[i][j]);
 1140:       ps[i][i]=1./(s1+1.);
 1141:       for(j=1; j<i; j++)
 1142: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1143:       for(j=i+1; j<=nlstate+ndeath; j++)
 1144: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1145:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1146:     } /* end i */
 1147:     
 1148:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1149:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1150: 	ps[ii][jj]=0;
 1151: 	ps[ii][ii]=1;
 1152:       }
 1153:     }
 1154:     
 1155: 
 1156: /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1157: /* 	 for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1158: /* 	   printf("ddd %lf ",ps[ii][jj]); */
 1159: /* 	 } */
 1160: /* 	 printf("\n "); */
 1161: /*        } */
 1162: /*        printf("\n ");printf("%lf ",cov[2]); */
 1163:        /*
 1164:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1165:       goto end;*/
 1166:     return ps;
 1167: }
 1168: 
 1169: /**************** Product of 2 matrices ******************/
 1170: 
 1171: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 1172: {
 1173:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1174:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1175:   /* in, b, out are matrice of pointers which should have been initialized 
 1176:      before: only the contents of out is modified. The function returns
 1177:      a pointer to pointers identical to out */
 1178:   long i, j, k;
 1179:   for(i=nrl; i<= nrh; i++)
 1180:     for(k=ncolol; k<=ncoloh; k++)
 1181:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
 1182: 	out[i][k] +=in[i][j]*b[j][k];
 1183: 
 1184:   return out;
 1185: }
 1186: 
 1187: 
 1188: /************* Higher Matrix Product ***************/
 1189: 
 1190: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1191: {
 1192:   /* Computes the transition matrix starting at age 'age' over 
 1193:      'nhstepm*hstepm*stepm' months (i.e. until
 1194:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1195:      nhstepm*hstepm matrices. 
 1196:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1197:      (typically every 2 years instead of every month which is too big 
 1198:      for the memory).
 1199:      Model is determined by parameters x and covariates have to be 
 1200:      included manually here. 
 1201: 
 1202:      */
 1203: 
 1204:   int i, j, d, h, k;
 1205:   double **out, cov[NCOVMAX];
 1206:   double **newm;
 1207: 
 1208:   /* Hstepm could be zero and should return the unit matrix */
 1209:   for (i=1;i<=nlstate+ndeath;i++)
 1210:     for (j=1;j<=nlstate+ndeath;j++){
 1211:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1212:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1213:     }
 1214:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1215:   for(h=1; h <=nhstepm; h++){
 1216:     for(d=1; d <=hstepm; d++){
 1217:       newm=savm;
 1218:       /* Covariates have to be included here again */
 1219:       cov[1]=1.;
 1220:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1221:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1222:       for (k=1; k<=cptcovage;k++)
 1223: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1224:       for (k=1; k<=cptcovprod;k++)
 1225: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1226: 
 1227: 
 1228:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1229:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1230:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1231: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1232:       savm=oldm;
 1233:       oldm=newm;
 1234:     }
 1235:     for(i=1; i<=nlstate+ndeath; i++)
 1236:       for(j=1;j<=nlstate+ndeath;j++) {
 1237: 	po[i][j][h]=newm[i][j];
 1238: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 1239: 	 */
 1240:       }
 1241:   } /* end h */
 1242:   return po;
 1243: }
 1244: 
 1245: 
 1246: /*************** log-likelihood *************/
 1247: double func( double *x)
 1248: {
 1249:   int i, ii, j, k, mi, d, kk;
 1250:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1251:   double **out;
 1252:   double sw; /* Sum of weights */
 1253:   double lli; /* Individual log likelihood */
 1254:   int s1, s2;
 1255:   double bbh, survp;
 1256:   long ipmx;
 1257:   /*extern weight */
 1258:   /* We are differentiating ll according to initial status */
 1259:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1260:   /*for(i=1;i<imx;i++) 
 1261:     printf(" %d\n",s[4][i]);
 1262:   */
 1263:   cov[1]=1.;
 1264: 
 1265:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1266: 
 1267:   if(mle==1){
 1268:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1269:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1270:       for(mi=1; mi<= wav[i]-1; mi++){
 1271: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1272: 	  for (j=1;j<=nlstate+ndeath;j++){
 1273: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1274: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1275: 	  }
 1276: 	for(d=0; d<dh[mi][i]; d++){
 1277: 	  newm=savm;
 1278: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1279: 	  for (kk=1; kk<=cptcovage;kk++) {
 1280: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1281: 	  }
 1282: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1283: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1284: 	  savm=oldm;
 1285: 	  oldm=newm;
 1286: 	} /* end mult */
 1287:       
 1288: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1289: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1290: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1291: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1292: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1293: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1294: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1295: 	 * probability in order to take into account the bias as a fraction of the way
 1296: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1297: 	 * -stepm/2 to stepm/2 .
 1298: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1299: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1300: 	 */
 1301: 	s1=s[mw[mi][i]][i];
 1302: 	s2=s[mw[mi+1][i]][i];
 1303: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1304: 	/* bias bh is positive if real duration
 1305: 	 * is higher than the multiple of stepm and negative otherwise.
 1306: 	 */
 1307: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1308: 	if( s2 > nlstate){ 
 1309: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1310: 	     then the contribution to the likelihood is the probability to 
 1311: 	     die between last step unit time and current  step unit time, 
 1312: 	     which is also equal to probability to die before dh 
 1313: 	     minus probability to die before dh-stepm . 
 1314: 	     In version up to 0.92 likelihood was computed
 1315: 	as if date of death was unknown. Death was treated as any other
 1316: 	health state: the date of the interview describes the actual state
 1317: 	and not the date of a change in health state. The former idea was
 1318: 	to consider that at each interview the state was recorded
 1319: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1320: 	introduced the exact date of death then we should have modified
 1321: 	the contribution of an exact death to the likelihood. This new
 1322: 	contribution is smaller and very dependent of the step unit
 1323: 	stepm. It is no more the probability to die between last interview
 1324: 	and month of death but the probability to survive from last
 1325: 	interview up to one month before death multiplied by the
 1326: 	probability to die within a month. Thanks to Chris
 1327: 	Jackson for correcting this bug.  Former versions increased
 1328: 	mortality artificially. The bad side is that we add another loop
 1329: 	which slows down the processing. The difference can be up to 10%
 1330: 	lower mortality.
 1331: 	  */
 1332: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1333: 
 1334: 
 1335: 	} else if  (s2==-2) {
 1336: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1337: 	    survp += out[s1][j];
 1338: 	  lli= survp;
 1339: 	}
 1340: 	
 1341: 	else if  (s2==-4) {
 1342: 	  for (j=3,survp=0. ; j<=nlstate; j++) 
 1343: 	    survp += out[s1][j];
 1344: 	  lli= survp;
 1345: 	}
 1346: 	
 1347: 	else if  (s2==-5) {
 1348: 	  for (j=1,survp=0. ; j<=2; j++) 
 1349: 	    survp += out[s1][j];
 1350: 	  lli= survp;
 1351: 	}
 1352: 
 1353: 
 1354: 	else{
 1355: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1356: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1357: 	} 
 1358: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1359: 	/*if(lli ==000.0)*/
 1360: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1361:   	ipmx +=1;
 1362: 	sw += weight[i];
 1363: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1364:       } /* end of wave */
 1365:     } /* end of individual */
 1366:   }  else if(mle==2){
 1367:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1368:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1369:       for(mi=1; mi<= wav[i]-1; mi++){
 1370: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1371: 	  for (j=1;j<=nlstate+ndeath;j++){
 1372: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1373: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1374: 	  }
 1375: 	for(d=0; d<=dh[mi][i]; d++){
 1376: 	  newm=savm;
 1377: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1378: 	  for (kk=1; kk<=cptcovage;kk++) {
 1379: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1380: 	  }
 1381: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1382: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1383: 	  savm=oldm;
 1384: 	  oldm=newm;
 1385: 	} /* end mult */
 1386:       
 1387: 	s1=s[mw[mi][i]][i];
 1388: 	s2=s[mw[mi+1][i]][i];
 1389: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1390: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1391: 	ipmx +=1;
 1392: 	sw += weight[i];
 1393: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1394:       } /* end of wave */
 1395:     } /* end of individual */
 1396:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1397:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1398:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1399:       for(mi=1; mi<= wav[i]-1; mi++){
 1400: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1401: 	  for (j=1;j<=nlstate+ndeath;j++){
 1402: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1403: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1404: 	  }
 1405: 	for(d=0; d<dh[mi][i]; d++){
 1406: 	  newm=savm;
 1407: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1408: 	  for (kk=1; kk<=cptcovage;kk++) {
 1409: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1410: 	  }
 1411: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1412: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1413: 	  savm=oldm;
 1414: 	  oldm=newm;
 1415: 	} /* end mult */
 1416:       
 1417: 	s1=s[mw[mi][i]][i];
 1418: 	s2=s[mw[mi+1][i]][i];
 1419: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1420: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1421: 	ipmx +=1;
 1422: 	sw += weight[i];
 1423: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1424:       } /* end of wave */
 1425:     } /* end of individual */
 1426:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1427:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1428:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1429:       for(mi=1; mi<= wav[i]-1; mi++){
 1430: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1431: 	  for (j=1;j<=nlstate+ndeath;j++){
 1432: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1433: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1434: 	  }
 1435: 	for(d=0; d<dh[mi][i]; d++){
 1436: 	  newm=savm;
 1437: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1438: 	  for (kk=1; kk<=cptcovage;kk++) {
 1439: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1440: 	  }
 1441: 	
 1442: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1443: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1444: 	  savm=oldm;
 1445: 	  oldm=newm;
 1446: 	} /* end mult */
 1447:       
 1448: 	s1=s[mw[mi][i]][i];
 1449: 	s2=s[mw[mi+1][i]][i];
 1450: 	if( s2 > nlstate){ 
 1451: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1452: 	}else{
 1453: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1454: 	}
 1455: 	ipmx +=1;
 1456: 	sw += weight[i];
 1457: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1458: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1459:       } /* end of wave */
 1460:     } /* end of individual */
 1461:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1462:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1463:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1464:       for(mi=1; mi<= wav[i]-1; mi++){
 1465: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1466: 	  for (j=1;j<=nlstate+ndeath;j++){
 1467: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1468: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1469: 	  }
 1470: 	for(d=0; d<dh[mi][i]; d++){
 1471: 	  newm=savm;
 1472: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1473: 	  for (kk=1; kk<=cptcovage;kk++) {
 1474: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1475: 	  }
 1476: 	
 1477: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1478: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1479: 	  savm=oldm;
 1480: 	  oldm=newm;
 1481: 	} /* end mult */
 1482:       
 1483: 	s1=s[mw[mi][i]][i];
 1484: 	s2=s[mw[mi+1][i]][i];
 1485: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1486: 	ipmx +=1;
 1487: 	sw += weight[i];
 1488: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1489: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1490:       } /* end of wave */
 1491:     } /* end of individual */
 1492:   } /* End of if */
 1493:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1494:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1495:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1496:   return -l;
 1497: }
 1498: 
 1499: /*************** log-likelihood *************/
 1500: double funcone( double *x)
 1501: {
 1502:   /* Same as likeli but slower because of a lot of printf and if */
 1503:   int i, ii, j, k, mi, d, kk;
 1504:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1505:   double **out;
 1506:   double lli; /* Individual log likelihood */
 1507:   double llt;
 1508:   int s1, s2;
 1509:   double bbh, survp;
 1510:   /*extern weight */
 1511:   /* We are differentiating ll according to initial status */
 1512:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1513:   /*for(i=1;i<imx;i++) 
 1514:     printf(" %d\n",s[4][i]);
 1515:   */
 1516:   cov[1]=1.;
 1517: 
 1518:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1519: 
 1520:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1521:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1522:     for(mi=1; mi<= wav[i]-1; mi++){
 1523:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1524: 	for (j=1;j<=nlstate+ndeath;j++){
 1525: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1526: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1527: 	}
 1528:       for(d=0; d<dh[mi][i]; d++){
 1529: 	newm=savm;
 1530: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1531: 	for (kk=1; kk<=cptcovage;kk++) {
 1532: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1533: 	}
 1534: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1535: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1536: 	savm=oldm;
 1537: 	oldm=newm;
 1538:       } /* end mult */
 1539:       
 1540:       s1=s[mw[mi][i]][i];
 1541:       s2=s[mw[mi+1][i]][i];
 1542:       bbh=(double)bh[mi][i]/(double)stepm; 
 1543:       /* bias is positive if real duration
 1544:        * is higher than the multiple of stepm and negative otherwise.
 1545:        */
 1546:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1547: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1548:       } else if (mle==1){
 1549: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1550:       } else if(mle==2){
 1551: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1552:       } else if(mle==3){  /* exponential inter-extrapolation */
 1553: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1554:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1555: 	lli=log(out[s1][s2]); /* Original formula */
 1556:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 1557: 	lli=log(out[s1][s2]); /* Original formula */
 1558:       } /* End of if */
 1559:       ipmx +=1;
 1560:       sw += weight[i];
 1561:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1562: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1563:       if(globpr){
 1564: 	fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 1565:  %10.6f %10.6f %10.6f ", \
 1566: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1567: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1568: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1569: 	  llt +=ll[k]*gipmx/gsw;
 1570: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1571: 	}
 1572: 	fprintf(ficresilk," %10.6f\n", -llt);
 1573:       }
 1574:     } /* end of wave */
 1575:   } /* end of individual */
 1576:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1577:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1578:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1579:   if(globpr==0){ /* First time we count the contributions and weights */
 1580:     gipmx=ipmx;
 1581:     gsw=sw;
 1582:   }
 1583:   return -l;
 1584: }
 1585: 
 1586: 
 1587: /*************** function likelione ***********/
 1588: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1589: {
 1590:   /* This routine should help understanding what is done with 
 1591:      the selection of individuals/waves and
 1592:      to check the exact contribution to the likelihood.
 1593:      Plotting could be done.
 1594:    */
 1595:   int k;
 1596: 
 1597:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1598:     strcpy(fileresilk,"ilk"); 
 1599:     strcat(fileresilk,fileres);
 1600:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1601:       printf("Problem with resultfile: %s\n", fileresilk);
 1602:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1603:     }
 1604:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1605:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1606:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1607:     for(k=1; k<=nlstate; k++) 
 1608:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1609:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1610:   }
 1611: 
 1612:   *fretone=(*funcone)(p);
 1613:   if(*globpri !=0){
 1614:     fclose(ficresilk);
 1615:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1616:     fflush(fichtm); 
 1617:   } 
 1618:   return;
 1619: }
 1620: 
 1621: 
 1622: /*********** Maximum Likelihood Estimation ***************/
 1623: 
 1624: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1625: {
 1626:   int i,j, iter;
 1627:   double **xi;
 1628:   double fret;
 1629:   double fretone; /* Only one call to likelihood */
 1630:   /*  char filerespow[FILENAMELENGTH];*/
 1631:   xi=matrix(1,npar,1,npar);
 1632:   for (i=1;i<=npar;i++)
 1633:     for (j=1;j<=npar;j++)
 1634:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1635:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1636:   strcpy(filerespow,"pow"); 
 1637:   strcat(filerespow,fileres);
 1638:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1639:     printf("Problem with resultfile: %s\n", filerespow);
 1640:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1641:   }
 1642:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1643:   for (i=1;i<=nlstate;i++)
 1644:     for(j=1;j<=nlstate+ndeath;j++)
 1645:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 1646:   fprintf(ficrespow,"\n");
 1647: 
 1648:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1649: 
 1650:   fclose(ficrespow);
 1651:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1652:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1653:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1654: 
 1655: }
 1656: 
 1657: /**** Computes Hessian and covariance matrix ***/
 1658: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1659: {
 1660:   double  **a,**y,*x,pd;
 1661:   double **hess;
 1662:   int i, j,jk;
 1663:   int *indx;
 1664: 
 1665:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 1666:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 1667:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1668:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1669:   double gompertz(double p[]);
 1670:   hess=matrix(1,npar,1,npar);
 1671: 
 1672:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1673:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1674:   for (i=1;i<=npar;i++){
 1675:     printf("%d",i);fflush(stdout);
 1676:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1677:    
 1678:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 1679:     
 1680:     /*  printf(" %f ",p[i]);
 1681: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 1682:   }
 1683:   
 1684:   for (i=1;i<=npar;i++) {
 1685:     for (j=1;j<=npar;j++)  {
 1686:       if (j>i) { 
 1687: 	printf(".%d%d",i,j);fflush(stdout);
 1688: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1689: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 1690: 	
 1691: 	hess[j][i]=hess[i][j];    
 1692: 	/*printf(" %lf ",hess[i][j]);*/
 1693:       }
 1694:     }
 1695:   }
 1696:   printf("\n");
 1697:   fprintf(ficlog,"\n");
 1698: 
 1699:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1700:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1701:   
 1702:   a=matrix(1,npar,1,npar);
 1703:   y=matrix(1,npar,1,npar);
 1704:   x=vector(1,npar);
 1705:   indx=ivector(1,npar);
 1706:   for (i=1;i<=npar;i++)
 1707:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1708:   ludcmp(a,npar,indx,&pd);
 1709: 
 1710:   for (j=1;j<=npar;j++) {
 1711:     for (i=1;i<=npar;i++) x[i]=0;
 1712:     x[j]=1;
 1713:     lubksb(a,npar,indx,x);
 1714:     for (i=1;i<=npar;i++){ 
 1715:       matcov[i][j]=x[i];
 1716:     }
 1717:   }
 1718: 
 1719:   printf("\n#Hessian matrix#\n");
 1720:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1721:   for (i=1;i<=npar;i++) { 
 1722:     for (j=1;j<=npar;j++) { 
 1723:       printf("%.3e ",hess[i][j]);
 1724:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1725:     }
 1726:     printf("\n");
 1727:     fprintf(ficlog,"\n");
 1728:   }
 1729: 
 1730:   /* Recompute Inverse */
 1731:   for (i=1;i<=npar;i++)
 1732:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1733:   ludcmp(a,npar,indx,&pd);
 1734: 
 1735:   /*  printf("\n#Hessian matrix recomputed#\n");
 1736: 
 1737:   for (j=1;j<=npar;j++) {
 1738:     for (i=1;i<=npar;i++) x[i]=0;
 1739:     x[j]=1;
 1740:     lubksb(a,npar,indx,x);
 1741:     for (i=1;i<=npar;i++){ 
 1742:       y[i][j]=x[i];
 1743:       printf("%.3e ",y[i][j]);
 1744:       fprintf(ficlog,"%.3e ",y[i][j]);
 1745:     }
 1746:     printf("\n");
 1747:     fprintf(ficlog,"\n");
 1748:   }
 1749:   */
 1750: 
 1751:   free_matrix(a,1,npar,1,npar);
 1752:   free_matrix(y,1,npar,1,npar);
 1753:   free_vector(x,1,npar);
 1754:   free_ivector(indx,1,npar);
 1755:   free_matrix(hess,1,npar,1,npar);
 1756: 
 1757: 
 1758: }
 1759: 
 1760: /*************** hessian matrix ****************/
 1761: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 1762: {
 1763:   int i;
 1764:   int l=1, lmax=20;
 1765:   double k1,k2;
 1766:   double p2[NPARMAX+1];
 1767:   double res;
 1768:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1769:   double fx;
 1770:   int k=0,kmax=10;
 1771:   double l1;
 1772: 
 1773:   fx=func(x);
 1774:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1775:   for(l=0 ; l <=lmax; l++){
 1776:     l1=pow(10,l);
 1777:     delts=delt;
 1778:     for(k=1 ; k <kmax; k=k+1){
 1779:       delt = delta*(l1*k);
 1780:       p2[theta]=x[theta] +delt;
 1781:       k1=func(p2)-fx;
 1782:       p2[theta]=x[theta]-delt;
 1783:       k2=func(p2)-fx;
 1784:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1785:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1786:       
 1787: #ifdef DEBUG
 1788:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1789:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1790: #endif
 1791:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1792:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1793: 	k=kmax;
 1794:       }
 1795:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1796: 	k=kmax; l=lmax*10.;
 1797:       }
 1798:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1799: 	delts=delt;
 1800:       }
 1801:     }
 1802:   }
 1803:   delti[theta]=delts;
 1804:   return res; 
 1805:   
 1806: }
 1807: 
 1808: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 1809: {
 1810:   int i;
 1811:   int l=1, l1, lmax=20;
 1812:   double k1,k2,k3,k4,res,fx;
 1813:   double p2[NPARMAX+1];
 1814:   int k;
 1815: 
 1816:   fx=func(x);
 1817:   for (k=1; k<=2; k++) {
 1818:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1819:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1820:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1821:     k1=func(p2)-fx;
 1822:   
 1823:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1824:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1825:     k2=func(p2)-fx;
 1826:   
 1827:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1828:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1829:     k3=func(p2)-fx;
 1830:   
 1831:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1832:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1833:     k4=func(p2)-fx;
 1834:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1835: #ifdef DEBUG
 1836:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1837:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1838: #endif
 1839:   }
 1840:   return res;
 1841: }
 1842: 
 1843: /************** Inverse of matrix **************/
 1844: void ludcmp(double **a, int n, int *indx, double *d) 
 1845: { 
 1846:   int i,imax,j,k; 
 1847:   double big,dum,sum,temp; 
 1848:   double *vv; 
 1849:  
 1850:   vv=vector(1,n); 
 1851:   *d=1.0; 
 1852:   for (i=1;i<=n;i++) { 
 1853:     big=0.0; 
 1854:     for (j=1;j<=n;j++) 
 1855:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1856:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1857:     vv[i]=1.0/big; 
 1858:   } 
 1859:   for (j=1;j<=n;j++) { 
 1860:     for (i=1;i<j;i++) { 
 1861:       sum=a[i][j]; 
 1862:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1863:       a[i][j]=sum; 
 1864:     } 
 1865:     big=0.0; 
 1866:     for (i=j;i<=n;i++) { 
 1867:       sum=a[i][j]; 
 1868:       for (k=1;k<j;k++) 
 1869: 	sum -= a[i][k]*a[k][j]; 
 1870:       a[i][j]=sum; 
 1871:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1872: 	big=dum; 
 1873: 	imax=i; 
 1874:       } 
 1875:     } 
 1876:     if (j != imax) { 
 1877:       for (k=1;k<=n;k++) { 
 1878: 	dum=a[imax][k]; 
 1879: 	a[imax][k]=a[j][k]; 
 1880: 	a[j][k]=dum; 
 1881:       } 
 1882:       *d = -(*d); 
 1883:       vv[imax]=vv[j]; 
 1884:     } 
 1885:     indx[j]=imax; 
 1886:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1887:     if (j != n) { 
 1888:       dum=1.0/(a[j][j]); 
 1889:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1890:     } 
 1891:   } 
 1892:   free_vector(vv,1,n);  /* Doesn't work */
 1893: ;
 1894: } 
 1895: 
 1896: void lubksb(double **a, int n, int *indx, double b[]) 
 1897: { 
 1898:   int i,ii=0,ip,j; 
 1899:   double sum; 
 1900:  
 1901:   for (i=1;i<=n;i++) { 
 1902:     ip=indx[i]; 
 1903:     sum=b[ip]; 
 1904:     b[ip]=b[i]; 
 1905:     if (ii) 
 1906:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1907:     else if (sum) ii=i; 
 1908:     b[i]=sum; 
 1909:   } 
 1910:   for (i=n;i>=1;i--) { 
 1911:     sum=b[i]; 
 1912:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1913:     b[i]=sum/a[i][i]; 
 1914:   } 
 1915: } 
 1916: 
 1917: /************ Frequencies ********************/
 1918: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 1919: {  /* Some frequencies */
 1920:   
 1921:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1922:   int first;
 1923:   double ***freq; /* Frequencies */
 1924:   double *pp, **prop;
 1925:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 1926:   FILE *ficresp;
 1927:   char fileresp[FILENAMELENGTH];
 1928:   
 1929:   pp=vector(1,nlstate);
 1930:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 1931:   strcpy(fileresp,"p");
 1932:   strcat(fileresp,fileres);
 1933:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1934:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1935:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1936:     exit(0);
 1937:   }
 1938:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 1939:   j1=0;
 1940:   
 1941:   j=cptcoveff;
 1942:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1943: 
 1944:   first=1;
 1945: 
 1946:   for(k1=1; k1<=j;k1++){
 1947:     for(i1=1; i1<=ncodemax[k1];i1++){
 1948:       j1++;
 1949:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1950: 	scanf("%d", i);*/
 1951:       for (i=-5; i<=nlstate+ndeath; i++)  
 1952: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 1953: 	  for(m=iagemin; m <= iagemax+3; m++)
 1954: 	    freq[i][jk][m]=0;
 1955: 
 1956:     for (i=1; i<=nlstate; i++)  
 1957:       for(m=iagemin; m <= iagemax+3; m++)
 1958: 	prop[i][m]=0;
 1959:       
 1960:       dateintsum=0;
 1961:       k2cpt=0;
 1962:       for (i=1; i<=imx; i++) {
 1963: 	bool=1;
 1964: 	if  (cptcovn>0) {
 1965: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1966: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1967: 	      bool=0;
 1968: 	}
 1969: 	if (bool==1){
 1970: 	  for(m=firstpass; m<=lastpass; m++){
 1971: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1972: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 1973: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 1974: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 1975: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 1976: 	      if (m<lastpass) {
 1977: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1978: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 1979: 	      }
 1980: 	      
 1981: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 1982: 		dateintsum=dateintsum+k2;
 1983: 		k2cpt++;
 1984: 	      }
 1985: 	      /*}*/
 1986: 	  }
 1987: 	}
 1988:       }
 1989:        
 1990:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 1991: fprintf(ficresp, "#Local time at start: %s", strstart);
 1992:       if  (cptcovn>0) {
 1993: 	fprintf(ficresp, "\n#********** Variable "); 
 1994: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 1995: 	fprintf(ficresp, "**********\n#");
 1996:       }
 1997:       for(i=1; i<=nlstate;i++) 
 1998: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1999:       fprintf(ficresp, "\n");
 2000:       
 2001:       for(i=iagemin; i <= iagemax+3; i++){
 2002: 	if(i==iagemax+3){
 2003: 	  fprintf(ficlog,"Total");
 2004: 	}else{
 2005: 	  if(first==1){
 2006: 	    first=0;
 2007: 	    printf("See log file for details...\n");
 2008: 	  }
 2009: 	  fprintf(ficlog,"Age %d", i);
 2010: 	}
 2011: 	for(jk=1; jk <=nlstate ; jk++){
 2012: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2013: 	    pp[jk] += freq[jk][m][i]; 
 2014: 	}
 2015: 	for(jk=1; jk <=nlstate ; jk++){
 2016: 	  for(m=-1, pos=0; m <=0 ; m++)
 2017: 	    pos += freq[jk][m][i];
 2018: 	  if(pp[jk]>=1.e-10){
 2019: 	    if(first==1){
 2020: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2021: 	    }
 2022: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2023: 	  }else{
 2024: 	    if(first==1)
 2025: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2026: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2027: 	  }
 2028: 	}
 2029: 
 2030: 	for(jk=1; jk <=nlstate ; jk++){
 2031: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2032: 	    pp[jk] += freq[jk][m][i];
 2033: 	}	
 2034: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2035: 	  pos += pp[jk];
 2036: 	  posprop += prop[jk][i];
 2037: 	}
 2038: 	for(jk=1; jk <=nlstate ; jk++){
 2039: 	  if(pos>=1.e-5){
 2040: 	    if(first==1)
 2041: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2042: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2043: 	  }else{
 2044: 	    if(first==1)
 2045: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2046: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2047: 	  }
 2048: 	  if( i <= iagemax){
 2049: 	    if(pos>=1.e-5){
 2050: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2051: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2052: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2053: 	    }
 2054: 	    else
 2055: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2056: 	  }
 2057: 	}
 2058: 	
 2059: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2060: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2061: 	    if(freq[jk][m][i] !=0 ) {
 2062: 	    if(first==1)
 2063: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2064: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2065: 	    }
 2066: 	if(i <= iagemax)
 2067: 	  fprintf(ficresp,"\n");
 2068: 	if(first==1)
 2069: 	  printf("Others in log...\n");
 2070: 	fprintf(ficlog,"\n");
 2071:       }
 2072:     }
 2073:   }
 2074:   dateintmean=dateintsum/k2cpt; 
 2075:  
 2076:   fclose(ficresp);
 2077:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2078:   free_vector(pp,1,nlstate);
 2079:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2080:   /* End of Freq */
 2081: }
 2082: 
 2083: /************ Prevalence ********************/
 2084: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2085: {  
 2086:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2087:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2088:      We still use firstpass and lastpass as another selection.
 2089:   */
 2090:  
 2091:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 2092:   double ***freq; /* Frequencies */
 2093:   double *pp, **prop;
 2094:   double pos,posprop; 
 2095:   double  y2; /* in fractional years */
 2096:   int iagemin, iagemax;
 2097: 
 2098:   iagemin= (int) agemin;
 2099:   iagemax= (int) agemax;
 2100:   /*pp=vector(1,nlstate);*/
 2101:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2102:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2103:   j1=0;
 2104:   
 2105:   j=cptcoveff;
 2106:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2107:   
 2108:   for(k1=1; k1<=j;k1++){
 2109:     for(i1=1; i1<=ncodemax[k1];i1++){
 2110:       j1++;
 2111:       
 2112:       for (i=1; i<=nlstate; i++)  
 2113: 	for(m=iagemin; m <= iagemax+3; m++)
 2114: 	  prop[i][m]=0.0;
 2115:      
 2116:       for (i=1; i<=imx; i++) { /* Each individual */
 2117: 	bool=1;
 2118: 	if  (cptcovn>0) {
 2119: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2120: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2121: 	      bool=0;
 2122: 	} 
 2123: 	if (bool==1) { 
 2124: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2125: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2126: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2127: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2128: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2129: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2130:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2131: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2132:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2133:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2134:  	      } 
 2135: 	    }
 2136: 	  } /* end selection of waves */
 2137: 	}
 2138:       }
 2139:       for(i=iagemin; i <= iagemax+3; i++){  
 2140: 	
 2141:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2142:  	  posprop += prop[jk][i]; 
 2143:  	} 
 2144: 
 2145:  	for(jk=1; jk <=nlstate ; jk++){	    
 2146:  	  if( i <=  iagemax){ 
 2147:  	    if(posprop>=1.e-5){ 
 2148:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2149:  	    } 
 2150:  	  } 
 2151:  	}/* end jk */ 
 2152:       }/* end i */ 
 2153:     } /* end i1 */
 2154:   } /* end k1 */
 2155:   
 2156:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2157:   /*free_vector(pp,1,nlstate);*/
 2158:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2159: }  /* End of prevalence */
 2160: 
 2161: /************* Waves Concatenation ***************/
 2162: 
 2163: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2164: {
 2165:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2166:      Death is a valid wave (if date is known).
 2167:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2168:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2169:      and mw[mi+1][i]. dh depends on stepm.
 2170:      */
 2171: 
 2172:   int i, mi, m;
 2173:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2174:      double sum=0., jmean=0.;*/
 2175:   int first;
 2176:   int j, k=0,jk, ju, jl;
 2177:   double sum=0.;
 2178:   first=0;
 2179:   jmin=1e+5;
 2180:   jmax=-1;
 2181:   jmean=0.;
 2182:   for(i=1; i<=imx; i++){
 2183:     mi=0;
 2184:     m=firstpass;
 2185:     while(s[m][i] <= nlstate){
 2186:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2187: 	mw[++mi][i]=m;
 2188:       if(m >=lastpass)
 2189: 	break;
 2190:       else
 2191: 	m++;
 2192:     }/* end while */
 2193:     if (s[m][i] > nlstate){
 2194:       mi++;	/* Death is another wave */
 2195:       /* if(mi==0)  never been interviewed correctly before death */
 2196: 	 /* Only death is a correct wave */
 2197:       mw[mi][i]=m;
 2198:     }
 2199: 
 2200:     wav[i]=mi;
 2201:     if(mi==0){
 2202:       nbwarn++;
 2203:       if(first==0){
 2204: 	printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2205: 	first=1;
 2206:       }
 2207:       if(first==1){
 2208: 	fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 2209:       }
 2210:     } /* end mi==0 */
 2211:   } /* End individuals */
 2212: 
 2213:   for(i=1; i<=imx; i++){
 2214:     for(mi=1; mi<wav[i];mi++){
 2215:       if (stepm <=0)
 2216: 	dh[mi][i]=1;
 2217:       else{
 2218: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2219: 	  if (agedc[i] < 2*AGESUP) {
 2220: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2221: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2222: 	    else if(j<0){
 2223: 	      nberr++;
 2224: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2225: 	      j=1; /* Temporary Dangerous patch */
 2226: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2227: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2228: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2229: 	    }
 2230: 	    k=k+1;
 2231: 	    if (j >= jmax) jmax=j;
 2232: 	    if (j <= jmin) jmin=j;
 2233: 	    sum=sum+j;
 2234: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2235: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2236: 	  }
 2237: 	}
 2238: 	else{
 2239: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2240: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2241: 
 2242: 	  k=k+1;
 2243: 	  if (j >= jmax) jmax=j;
 2244: 	  else if (j <= jmin)jmin=j;
 2245: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2246: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2247: 	  if(j<0){
 2248: 	    nberr++;
 2249: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2250: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2251: 	  }
 2252: 	  sum=sum+j;
 2253: 	}
 2254: 	jk= j/stepm;
 2255: 	jl= j -jk*stepm;
 2256: 	ju= j -(jk+1)*stepm;
 2257: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2258: 	  if(jl==0){
 2259: 	    dh[mi][i]=jk;
 2260: 	    bh[mi][i]=0;
 2261: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2262: 		  * at the price of an extra matrix product in likelihood */
 2263: 	    dh[mi][i]=jk+1;
 2264: 	    bh[mi][i]=ju;
 2265: 	  }
 2266: 	}else{
 2267: 	  if(jl <= -ju){
 2268: 	    dh[mi][i]=jk;
 2269: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2270: 				 * is higher than the multiple of stepm and negative otherwise.
 2271: 				 */
 2272: 	  }
 2273: 	  else{
 2274: 	    dh[mi][i]=jk+1;
 2275: 	    bh[mi][i]=ju;
 2276: 	  }
 2277: 	  if(dh[mi][i]==0){
 2278: 	    dh[mi][i]=1; /* At least one step */
 2279: 	    bh[mi][i]=ju; /* At least one step */
 2280: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2281: 	  }
 2282: 	} /* end if mle */
 2283:       }
 2284:     } /* end wave */
 2285:   }
 2286:   jmean=sum/k;
 2287:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2288:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2289:  }
 2290: 
 2291: /*********** Tricode ****************************/
 2292: void tricode(int *Tvar, int **nbcode, int imx)
 2293: {
 2294:   
 2295:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 2296:   int cptcode=0;
 2297:   cptcoveff=0; 
 2298:  
 2299:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 2300:   for (k=1; k<=7; k++) ncodemax[k]=0;
 2301: 
 2302:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 2303:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 2304: 			       modality*/ 
 2305:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 2306:       Ndum[ij]++; /*store the modality */
 2307:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2308:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 2309: 				       Tvar[j]. If V=sex and male is 0 and 
 2310: 				       female is 1, then  cptcode=1.*/
 2311:     }
 2312: 
 2313:     for (i=0; i<=cptcode; i++) {
 2314:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 2315:     }
 2316: 
 2317:     ij=1; 
 2318:     for (i=1; i<=ncodemax[j]; i++) {
 2319:       for (k=0; k<= maxncov; k++) {
 2320: 	if (Ndum[k] != 0) {
 2321: 	  nbcode[Tvar[j]][ij]=k; 
 2322: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2323: 	  
 2324: 	  ij++;
 2325: 	}
 2326: 	if (ij > ncodemax[j]) break; 
 2327:       }  
 2328:     } 
 2329:   }  
 2330: 
 2331:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 2332: 
 2333:  for (i=1; i<=ncovmodel-2; i++) { 
 2334:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 2335:    ij=Tvar[i];
 2336:    Ndum[ij]++;
 2337:  }
 2338: 
 2339:  ij=1;
 2340:  for (i=1; i<= maxncov; i++) {
 2341:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2342:      Tvaraff[ij]=i; /*For printing */
 2343:      ij++;
 2344:    }
 2345:  }
 2346:  
 2347:  cptcoveff=ij-1; /*Number of simple covariates*/
 2348: }
 2349: 
 2350: /*********** Health Expectancies ****************/
 2351: 
 2352: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
 2353: 
 2354: {
 2355:   /* Health expectancies */
 2356:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 2357:   double age, agelim, hf;
 2358:   double ***p3mat,***varhe;
 2359:   double **dnewm,**doldm;
 2360:   double *xp;
 2361:   double **gp, **gm;
 2362:   double ***gradg, ***trgradg;
 2363:   int theta;
 2364: 
 2365:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2366:   xp=vector(1,npar);
 2367:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2368:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2369:   
 2370:   fprintf(ficreseij,"# Local time at start: %s", strstart);
 2371:   fprintf(ficreseij,"# Health expectancies\n");
 2372:   fprintf(ficreseij,"# Age");
 2373:   for(i=1; i<=nlstate;i++)
 2374:     for(j=1; j<=nlstate;j++)
 2375:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
 2376:   fprintf(ficreseij,"\n");
 2377: 
 2378:   if(estepm < stepm){
 2379:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2380:   }
 2381:   else  hstepm=estepm;   
 2382:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2383:    * This is mainly to measure the difference between two models: for example
 2384:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2385:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2386:    * progression in between and thus overestimating or underestimating according
 2387:    * to the curvature of the survival function. If, for the same date, we 
 2388:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2389:    * to compare the new estimate of Life expectancy with the same linear 
 2390:    * hypothesis. A more precise result, taking into account a more precise
 2391:    * curvature will be obtained if estepm is as small as stepm. */
 2392: 
 2393:   /* For example we decided to compute the life expectancy with the smallest unit */
 2394:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2395:      nhstepm is the number of hstepm from age to agelim 
 2396:      nstepm is the number of stepm from age to agelin. 
 2397:      Look at hpijx to understand the reason of that which relies in memory size
 2398:      and note for a fixed period like estepm months */
 2399:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2400:      survival function given by stepm (the optimization length). Unfortunately it
 2401:      means that if the survival funtion is printed only each two years of age and if
 2402:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2403:      results. So we changed our mind and took the option of the best precision.
 2404:   */
 2405:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2406: 
 2407:   agelim=AGESUP;
 2408:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2409:     /* nhstepm age range expressed in number of stepm */
 2410:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 2411:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2412:     /* if (stepm >= YEARM) hstepm=1;*/
 2413:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2414:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2415:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2416:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2417:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2418: 
 2419:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2420:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2421:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 2422:  
 2423: 
 2424:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2425: 
 2426:     /* Computing  Variances of health expectancies */
 2427: 
 2428:      for(theta=1; theta <=npar; theta++){
 2429:       for(i=1; i<=npar; i++){ 
 2430: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2431:       }
 2432:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2433:   
 2434:       cptj=0;
 2435:       for(j=1; j<= nlstate; j++){
 2436: 	for(i=1; i<=nlstate; i++){
 2437: 	  cptj=cptj+1;
 2438: 	  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 2439: 	    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2440: 	  }
 2441: 	}
 2442:       }
 2443:      
 2444:      
 2445:       for(i=1; i<=npar; i++) 
 2446: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2447:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2448:       
 2449:       cptj=0;
 2450:       for(j=1; j<= nlstate; j++){
 2451: 	for(i=1;i<=nlstate;i++){
 2452: 	  cptj=cptj+1;
 2453: 	  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 2454: 
 2455: 	    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2456: 	  }
 2457: 	}
 2458:       }
 2459:       for(j=1; j<= nlstate*nlstate; j++)
 2460: 	for(h=0; h<=nhstepm-1; h++){
 2461: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2462: 	}
 2463:      } 
 2464:    
 2465: /* End theta */
 2466: 
 2467:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2468: 
 2469:      for(h=0; h<=nhstepm-1; h++)
 2470:       for(j=1; j<=nlstate*nlstate;j++)
 2471: 	for(theta=1; theta <=npar; theta++)
 2472: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2473:      
 2474: 
 2475:      for(i=1;i<=nlstate*nlstate;i++)
 2476:       for(j=1;j<=nlstate*nlstate;j++)
 2477: 	varhe[i][j][(int)age] =0.;
 2478: 
 2479:      printf("%d|",(int)age);fflush(stdout);
 2480:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2481:      for(h=0;h<=nhstepm-1;h++){
 2482:       for(k=0;k<=nhstepm-1;k++){
 2483: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 2484: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 2485: 	for(i=1;i<=nlstate*nlstate;i++)
 2486: 	  for(j=1;j<=nlstate*nlstate;j++)
 2487: 	    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 2488:       }
 2489:     }
 2490:     /* Computing expectancies */
 2491:     for(i=1; i<=nlstate;i++)
 2492:       for(j=1; j<=nlstate;j++)
 2493: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2494: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2495: 	  
 2496: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2497: 
 2498: 	}
 2499: 
 2500:     fprintf(ficreseij,"%3.0f",age );
 2501:     cptj=0;
 2502:     for(i=1; i<=nlstate;i++)
 2503:       for(j=1; j<=nlstate;j++){
 2504: 	cptj++;
 2505: 	fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 2506:       }
 2507:     fprintf(ficreseij,"\n");
 2508:    
 2509:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 2510:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 2511:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 2512:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 2513:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2514:   }
 2515:   printf("\n");
 2516:   fprintf(ficlog,"\n");
 2517: 
 2518:   free_vector(xp,1,npar);
 2519:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 2520:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 2521:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 2522: }
 2523: 
 2524: /************ Variance ******************/
 2525: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 2526: {
 2527:   /* Variance of health expectancies */
 2528:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2529:   /* double **newm;*/
 2530:   double **dnewm,**doldm;
 2531:   double **dnewmp,**doldmp;
 2532:   int i, j, nhstepm, hstepm, h, nstepm ;
 2533:   int k, cptcode;
 2534:   double *xp;
 2535:   double **gp, **gm;  /* for var eij */
 2536:   double ***gradg, ***trgradg; /*for var eij */
 2537:   double **gradgp, **trgradgp; /* for var p point j */
 2538:   double *gpp, *gmp; /* for var p point j */
 2539:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2540:   double ***p3mat;
 2541:   double age,agelim, hf;
 2542:   double ***mobaverage;
 2543:   int theta;
 2544:   char digit[4];
 2545:   char digitp[25];
 2546: 
 2547:   char fileresprobmorprev[FILENAMELENGTH];
 2548: 
 2549:   if(popbased==1){
 2550:     if(mobilav!=0)
 2551:       strcpy(digitp,"-populbased-mobilav-");
 2552:     else strcpy(digitp,"-populbased-nomobil-");
 2553:   }
 2554:   else 
 2555:     strcpy(digitp,"-stablbased-");
 2556: 
 2557:   if (mobilav!=0) {
 2558:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2559:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2560:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2561:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2562:     }
 2563:   }
 2564: 
 2565:   strcpy(fileresprobmorprev,"prmorprev"); 
 2566:   sprintf(digit,"%-d",ij);
 2567:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2568:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2569:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2570:   strcat(fileresprobmorprev,fileres);
 2571:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2572:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2573:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2574:   }
 2575:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2576:  
 2577:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2578:   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
 2579:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2580:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2581:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2582:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2583:     for(i=1; i<=nlstate;i++)
 2584:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2585:   }  
 2586:   fprintf(ficresprobmorprev,"\n");
 2587:   fprintf(ficgp,"\n# Routine varevsij");
 2588:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 2589:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2590:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 2591: /*   } */
 2592:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2593:  fprintf(ficresvij, "#Local time at start: %s", strstart);
 2594:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 2595:   fprintf(ficresvij,"# Age");
 2596:   for(i=1; i<=nlstate;i++)
 2597:     for(j=1; j<=nlstate;j++)
 2598:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 2599:   fprintf(ficresvij,"\n");
 2600: 
 2601:   xp=vector(1,npar);
 2602:   dnewm=matrix(1,nlstate,1,npar);
 2603:   doldm=matrix(1,nlstate,1,nlstate);
 2604:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 2605:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2606: 
 2607:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 2608:   gpp=vector(nlstate+1,nlstate+ndeath);
 2609:   gmp=vector(nlstate+1,nlstate+ndeath);
 2610:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2611:   
 2612:   if(estepm < stepm){
 2613:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2614:   }
 2615:   else  hstepm=estepm;   
 2616:   /* For example we decided to compute the life expectancy with the smallest unit */
 2617:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2618:      nhstepm is the number of hstepm from age to agelim 
 2619:      nstepm is the number of stepm from age to agelin. 
 2620:      Look at hpijx to understand the reason of that which relies in memory size
 2621:      and note for a fixed period like k years */
 2622:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2623:      survival function given by stepm (the optimization length). Unfortunately it
 2624:      means that if the survival funtion is printed every two years of age and if
 2625:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2626:      results. So we changed our mind and took the option of the best precision.
 2627:   */
 2628:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2629:   agelim = AGESUP;
 2630:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2631:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2632:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2633:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2634:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 2635:     gp=matrix(0,nhstepm,1,nlstate);
 2636:     gm=matrix(0,nhstepm,1,nlstate);
 2637: 
 2638: 
 2639:     for(theta=1; theta <=npar; theta++){
 2640:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 2641: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2642:       }
 2643:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2644:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2645: 
 2646:       if (popbased==1) {
 2647: 	if(mobilav ==0){
 2648: 	  for(i=1; i<=nlstate;i++)
 2649: 	    prlim[i][i]=probs[(int)age][i][ij];
 2650: 	}else{ /* mobilav */ 
 2651: 	  for(i=1; i<=nlstate;i++)
 2652: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2653: 	}
 2654:       }
 2655:   
 2656:       for(j=1; j<= nlstate; j++){
 2657: 	for(h=0; h<=nhstepm; h++){
 2658: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 2659: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 2660: 	}
 2661:       }
 2662:       /* This for computing probability of death (h=1 means
 2663:          computed over hstepm matrices product = hstepm*stepm months) 
 2664:          as a weighted average of prlim.
 2665:       */
 2666:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2667: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 2668: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 2669:       }    
 2670:       /* end probability of death */
 2671: 
 2672:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 2673: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2674:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2675:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2676:  
 2677:       if (popbased==1) {
 2678: 	if(mobilav ==0){
 2679: 	  for(i=1; i<=nlstate;i++)
 2680: 	    prlim[i][i]=probs[(int)age][i][ij];
 2681: 	}else{ /* mobilav */ 
 2682: 	  for(i=1; i<=nlstate;i++)
 2683: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2684: 	}
 2685:       }
 2686: 
 2687:       for(j=1; j<= nlstate; j++){
 2688: 	for(h=0; h<=nhstepm; h++){
 2689: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 2690: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 2691: 	}
 2692:       }
 2693:       /* This for computing probability of death (h=1 means
 2694:          computed over hstepm matrices product = hstepm*stepm months) 
 2695:          as a weighted average of prlim.
 2696:       */
 2697:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2698: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 2699:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 2700:       }    
 2701:       /* end probability of death */
 2702: 
 2703:       for(j=1; j<= nlstate; j++) /* vareij */
 2704: 	for(h=0; h<=nhstepm; h++){
 2705: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2706: 	}
 2707: 
 2708:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 2709: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 2710:       }
 2711: 
 2712:     } /* End theta */
 2713: 
 2714:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2715: 
 2716:     for(h=0; h<=nhstepm; h++) /* veij */
 2717:       for(j=1; j<=nlstate;j++)
 2718: 	for(theta=1; theta <=npar; theta++)
 2719: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2720: 
 2721:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2722:       for(theta=1; theta <=npar; theta++)
 2723: 	trgradgp[j][theta]=gradgp[theta][j];
 2724:   
 2725: 
 2726:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2727:     for(i=1;i<=nlstate;i++)
 2728:       for(j=1;j<=nlstate;j++)
 2729: 	vareij[i][j][(int)age] =0.;
 2730: 
 2731:     for(h=0;h<=nhstepm;h++){
 2732:       for(k=0;k<=nhstepm;k++){
 2733: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2734: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2735: 	for(i=1;i<=nlstate;i++)
 2736: 	  for(j=1;j<=nlstate;j++)
 2737: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2738:       }
 2739:     }
 2740:   
 2741:     /* pptj */
 2742:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2743:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2744:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2745:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2746: 	varppt[j][i]=doldmp[j][i];
 2747:     /* end ppptj */
 2748:     /*  x centered again */
 2749:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2750:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2751:  
 2752:     if (popbased==1) {
 2753:       if(mobilav ==0){
 2754: 	for(i=1; i<=nlstate;i++)
 2755: 	  prlim[i][i]=probs[(int)age][i][ij];
 2756:       }else{ /* mobilav */ 
 2757: 	for(i=1; i<=nlstate;i++)
 2758: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2759:       }
 2760:     }
 2761:              
 2762:     /* This for computing probability of death (h=1 means
 2763:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 2764:        as a weighted average of prlim.
 2765:     */
 2766:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2767:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 2768: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2769:     }    
 2770:     /* end probability of death */
 2771: 
 2772:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2773:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2774:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2775:       for(i=1; i<=nlstate;i++){
 2776: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2777:       }
 2778:     } 
 2779:     fprintf(ficresprobmorprev,"\n");
 2780: 
 2781:     fprintf(ficresvij,"%.0f ",age );
 2782:     for(i=1; i<=nlstate;i++)
 2783:       for(j=1; j<=nlstate;j++){
 2784: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2785:       }
 2786:     fprintf(ficresvij,"\n");
 2787:     free_matrix(gp,0,nhstepm,1,nlstate);
 2788:     free_matrix(gm,0,nhstepm,1,nlstate);
 2789:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2790:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2791:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2792:   } /* End age */
 2793:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2794:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2795:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 2796:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2797:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 2798:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 2799:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 2800: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 2801: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2802: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2803:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 2804:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 2805:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 2806:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 2807:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2808:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 2809: */
 2810: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 2811:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2812: 
 2813:   free_vector(xp,1,npar);
 2814:   free_matrix(doldm,1,nlstate,1,nlstate);
 2815:   free_matrix(dnewm,1,nlstate,1,npar);
 2816:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2817:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 2818:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2819:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2820:   fclose(ficresprobmorprev);
 2821:   fflush(ficgp);
 2822:   fflush(fichtm); 
 2823: }  /* end varevsij */
 2824: 
 2825: /************ Variance of prevlim ******************/
 2826: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 2827: {
 2828:   /* Variance of prevalence limit */
 2829:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 2830:   double **newm;
 2831:   double **dnewm,**doldm;
 2832:   int i, j, nhstepm, hstepm;
 2833:   int k, cptcode;
 2834:   double *xp;
 2835:   double *gp, *gm;
 2836:   double **gradg, **trgradg;
 2837:   double age,agelim;
 2838:   int theta;
 2839:   fprintf(ficresvpl, "#Local time at start: %s", strstart); 
 2840:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 2841:   fprintf(ficresvpl,"# Age");
 2842:   for(i=1; i<=nlstate;i++)
 2843:       fprintf(ficresvpl," %1d-%1d",i,i);
 2844:   fprintf(ficresvpl,"\n");
 2845: 
 2846:   xp=vector(1,npar);
 2847:   dnewm=matrix(1,nlstate,1,npar);
 2848:   doldm=matrix(1,nlstate,1,nlstate);
 2849:   
 2850:   hstepm=1*YEARM; /* Every year of age */
 2851:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 2852:   agelim = AGESUP;
 2853:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2854:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2855:     if (stepm >= YEARM) hstepm=1;
 2856:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2857:     gradg=matrix(1,npar,1,nlstate);
 2858:     gp=vector(1,nlstate);
 2859:     gm=vector(1,nlstate);
 2860: 
 2861:     for(theta=1; theta <=npar; theta++){
 2862:       for(i=1; i<=npar; i++){ /* Computes gradient */
 2863: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2864:       }
 2865:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2866:       for(i=1;i<=nlstate;i++)
 2867: 	gp[i] = prlim[i][i];
 2868:     
 2869:       for(i=1; i<=npar; i++) /* Computes gradient */
 2870: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2871:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2872:       for(i=1;i<=nlstate;i++)
 2873: 	gm[i] = prlim[i][i];
 2874: 
 2875:       for(i=1;i<=nlstate;i++)
 2876: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 2877:     } /* End theta */
 2878: 
 2879:     trgradg =matrix(1,nlstate,1,npar);
 2880: 
 2881:     for(j=1; j<=nlstate;j++)
 2882:       for(theta=1; theta <=npar; theta++)
 2883: 	trgradg[j][theta]=gradg[theta][j];
 2884: 
 2885:     for(i=1;i<=nlstate;i++)
 2886:       varpl[i][(int)age] =0.;
 2887:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 2888:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 2889:     for(i=1;i<=nlstate;i++)
 2890:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 2891: 
 2892:     fprintf(ficresvpl,"%.0f ",age );
 2893:     for(i=1; i<=nlstate;i++)
 2894:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 2895:     fprintf(ficresvpl,"\n");
 2896:     free_vector(gp,1,nlstate);
 2897:     free_vector(gm,1,nlstate);
 2898:     free_matrix(gradg,1,npar,1,nlstate);
 2899:     free_matrix(trgradg,1,nlstate,1,npar);
 2900:   } /* End age */
 2901: 
 2902:   free_vector(xp,1,npar);
 2903:   free_matrix(doldm,1,nlstate,1,npar);
 2904:   free_matrix(dnewm,1,nlstate,1,nlstate);
 2905: 
 2906: }
 2907: 
 2908: /************ Variance of one-step probabilities  ******************/
 2909: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 2910: {
 2911:   int i, j=0,  i1, k1, l1, t, tj;
 2912:   int k2, l2, j1,  z1;
 2913:   int k=0,l, cptcode;
 2914:   int first=1, first1;
 2915:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 2916:   double **dnewm,**doldm;
 2917:   double *xp;
 2918:   double *gp, *gm;
 2919:   double **gradg, **trgradg;
 2920:   double **mu;
 2921:   double age,agelim, cov[NCOVMAX];
 2922:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 2923:   int theta;
 2924:   char fileresprob[FILENAMELENGTH];
 2925:   char fileresprobcov[FILENAMELENGTH];
 2926:   char fileresprobcor[FILENAMELENGTH];
 2927: 
 2928:   double ***varpij;
 2929: 
 2930:   strcpy(fileresprob,"prob"); 
 2931:   strcat(fileresprob,fileres);
 2932:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 2933:     printf("Problem with resultfile: %s\n", fileresprob);
 2934:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 2935:   }
 2936:   strcpy(fileresprobcov,"probcov"); 
 2937:   strcat(fileresprobcov,fileres);
 2938:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 2939:     printf("Problem with resultfile: %s\n", fileresprobcov);
 2940:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 2941:   }
 2942:   strcpy(fileresprobcor,"probcor"); 
 2943:   strcat(fileresprobcor,fileres);
 2944:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 2945:     printf("Problem with resultfile: %s\n", fileresprobcor);
 2946:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 2947:   }
 2948:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2949:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2950:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2951:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2952:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2953:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2954:   fprintf(ficresprob, "#Local time at start: %s", strstart);
 2955:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 2956:   fprintf(ficresprob,"# Age");
 2957:   fprintf(ficresprobcov, "#Local time at start: %s", strstart);
 2958:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 2959:   fprintf(ficresprobcov,"# Age");
 2960:   fprintf(ficresprobcor, "#Local time at start: %s", strstart);
 2961:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 2962:   fprintf(ficresprobcov,"# Age");
 2963: 
 2964: 
 2965:   for(i=1; i<=nlstate;i++)
 2966:     for(j=1; j<=(nlstate+ndeath);j++){
 2967:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 2968:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 2969:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 2970:     }  
 2971:  /* fprintf(ficresprob,"\n");
 2972:   fprintf(ficresprobcov,"\n");
 2973:   fprintf(ficresprobcor,"\n");
 2974:  */
 2975:  xp=vector(1,npar);
 2976:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2977:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 2978:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 2979:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 2980:   first=1;
 2981:   fprintf(ficgp,"\n# Routine varprob");
 2982:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 2983:   fprintf(fichtm,"\n");
 2984: 
 2985:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 2986:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 2987:   file %s<br>\n",optionfilehtmcov);
 2988:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 2989: and drawn. It helps understanding how is the covariance between two incidences.\
 2990:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 2991:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 2992: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 2993: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 2994: standard deviations wide on each axis. <br>\
 2995:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 2996:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 2997: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 2998: 
 2999:   cov[1]=1;
 3000:   tj=cptcoveff;
 3001:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3002:   j1=0;
 3003:   for(t=1; t<=tj;t++){
 3004:     for(i1=1; i1<=ncodemax[t];i1++){ 
 3005:       j1++;
 3006:       if  (cptcovn>0) {
 3007: 	fprintf(ficresprob, "\n#********** Variable "); 
 3008: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3009: 	fprintf(ficresprob, "**********\n#\n");
 3010: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3011: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3012: 	fprintf(ficresprobcov, "**********\n#\n");
 3013: 	
 3014: 	fprintf(ficgp, "\n#********** Variable "); 
 3015: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3016: 	fprintf(ficgp, "**********\n#\n");
 3017: 	
 3018: 	
 3019: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3020: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3021: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3022: 	
 3023: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3024: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3025: 	fprintf(ficresprobcor, "**********\n#");    
 3026:       }
 3027:       
 3028:       for (age=bage; age<=fage; age ++){ 
 3029: 	cov[2]=age;
 3030: 	for (k=1; k<=cptcovn;k++) {
 3031: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 3032: 	}
 3033: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3034: 	for (k=1; k<=cptcovprod;k++)
 3035: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3036: 	
 3037: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3038: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3039: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 3040: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 3041:     
 3042: 	for(theta=1; theta <=npar; theta++){
 3043: 	  for(i=1; i<=npar; i++)
 3044: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3045: 	  
 3046: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3047: 	  
 3048: 	  k=0;
 3049: 	  for(i=1; i<= (nlstate); i++){
 3050: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3051: 	      k=k+1;
 3052: 	      gp[k]=pmmij[i][j];
 3053: 	    }
 3054: 	  }
 3055: 	  
 3056: 	  for(i=1; i<=npar; i++)
 3057: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3058:     
 3059: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3060: 	  k=0;
 3061: 	  for(i=1; i<=(nlstate); i++){
 3062: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3063: 	      k=k+1;
 3064: 	      gm[k]=pmmij[i][j];
 3065: 	    }
 3066: 	  }
 3067:      
 3068: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3069: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3070: 	}
 3071: 
 3072: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3073: 	  for(theta=1; theta <=npar; theta++)
 3074: 	    trgradg[j][theta]=gradg[theta][j];
 3075: 	
 3076: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3077: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3078: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3079: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3080: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3081: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3082: 
 3083: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3084: 	
 3085: 	k=0;
 3086: 	for(i=1; i<=(nlstate); i++){
 3087: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3088: 	    k=k+1;
 3089: 	    mu[k][(int) age]=pmmij[i][j];
 3090: 	  }
 3091: 	}
 3092:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3093: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3094: 	    varpij[i][j][(int)age] = doldm[i][j];
 3095: 
 3096: 	/*printf("\n%d ",(int)age);
 3097: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3098: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3099: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3100: 	  }*/
 3101: 
 3102: 	fprintf(ficresprob,"\n%d ",(int)age);
 3103: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3104: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3105: 
 3106: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3107: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3108: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3109: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3110: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3111: 	}
 3112: 	i=0;
 3113: 	for (k=1; k<=(nlstate);k++){
 3114:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3115:  	    i=i++;
 3116: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3117: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3118: 	    for (j=1; j<=i;j++){
 3119: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3120: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3121: 	    }
 3122: 	  }
 3123: 	}/* end of loop for state */
 3124:       } /* end of loop for age */
 3125: 
 3126:       /* Confidence intervalle of pij  */
 3127:       /*
 3128: 	fprintf(ficgp,"\nset noparametric;unset label");
 3129: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3130: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3131: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3132: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3133: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3134: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3135:       */
 3136: 
 3137:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3138:       first1=1;
 3139:       for (k2=1; k2<=(nlstate);k2++){
 3140: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3141: 	  if(l2==k2) continue;
 3142: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3143: 	  for (k1=1; k1<=(nlstate);k1++){
 3144: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3145: 	      if(l1==k1) continue;
 3146: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3147: 	      if(i<=j) continue;
 3148: 	      for (age=bage; age<=fage; age ++){ 
 3149: 		if ((int)age %5==0){
 3150: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3151: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3152: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3153: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3154: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3155: 		  c12=cv12/sqrt(v1*v2);
 3156: 		  /* Computing eigen value of matrix of covariance */
 3157: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3158: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3159: 		  /* Eigen vectors */
 3160: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3161: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3162: 		  v21=(lc1-v1)/cv12*v11;
 3163: 		  v12=-v21;
 3164: 		  v22=v11;
 3165: 		  tnalp=v21/v11;
 3166: 		  if(first1==1){
 3167: 		    first1=0;
 3168: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3169: 		  }
 3170: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3171: 		  /*printf(fignu*/
 3172: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3173: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3174: 		  if(first==1){
 3175: 		    first=0;
 3176:  		    fprintf(ficgp,"\nset parametric;unset label");
 3177: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3178: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3179: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3180:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3181: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3182: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3183: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3184: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3185: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3186: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3187: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3188: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3189: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3190: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3191: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3192: 		  }else{
 3193: 		    first=0;
 3194: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3195: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3196: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3197: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3198: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3199: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3200: 		  }/* if first */
 3201: 		} /* age mod 5 */
 3202: 	      } /* end loop age */
 3203: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3204: 	      first=1;
 3205: 	    } /*l12 */
 3206: 	  } /* k12 */
 3207: 	} /*l1 */
 3208:       }/* k1 */
 3209:     } /* loop covariates */
 3210:   }
 3211:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3212:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3213:   free_vector(xp,1,npar);
 3214:   fclose(ficresprob);
 3215:   fclose(ficresprobcov);
 3216:   fclose(ficresprobcor);
 3217:   fflush(ficgp);
 3218:   fflush(fichtmcov);
 3219: }
 3220: 
 3221: 
 3222: /******************* Printing html file ***********/
 3223: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3224: 		  int lastpass, int stepm, int weightopt, char model[],\
 3225: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3226: 		  int popforecast, int estepm ,\
 3227: 		  double jprev1, double mprev1,double anprev1, \
 3228: 		  double jprev2, double mprev2,double anprev2){
 3229:   int jj1, k1, i1, cpt;
 3230: 
 3231:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 3232:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 3233: </ul>");
 3234:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 3235:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 3236: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 3237:    fprintf(fichtm,"\
 3238:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 3239: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 3240:    fprintf(fichtm,"\
 3241:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 3242: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 3243:    fprintf(fichtm,"\
 3244:  - Life expectancies by age and initial health status (estepm=%2d months): \
 3245:    <a href=\"%s\">%s</a> <br>\n</li>",
 3246: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3247: 
 3248: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3249: 
 3250:  m=cptcoveff;
 3251:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3252: 
 3253:  jj1=0;
 3254:  for(k1=1; k1<=m;k1++){
 3255:    for(i1=1; i1<=ncodemax[k1];i1++){
 3256:      jj1++;
 3257:      if (cptcovn > 0) {
 3258:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3259:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3260: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3261:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3262:      }
 3263:      /* Pij */
 3264:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
 3265: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3266:      /* Quasi-incidences */
 3267:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3268:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
 3269: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3270:        /* Stable prevalence in each health state */
 3271:        for(cpt=1; cpt<nlstate;cpt++){
 3272: 	 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
 3273: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3274:        }
 3275:      for(cpt=1; cpt<=nlstate;cpt++) {
 3276:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
 3277: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3278:      }
 3279:    } /* end i1 */
 3280:  }/* End k1 */
 3281:  fprintf(fichtm,"</ul>");
 3282: 
 3283: 
 3284:  fprintf(fichtm,"\
 3285: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 3286:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 3287: 
 3288:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3289: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 3290:  fprintf(fichtm,"\
 3291:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3292: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 3293: 
 3294:  fprintf(fichtm,"\
 3295:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3296: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 3297:  fprintf(fichtm,"\
 3298:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 3299: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 3300:  fprintf(fichtm,"\
 3301:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
 3302: 	 subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 3303:  fprintf(fichtm,"\
 3304:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3305: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3306: 
 3307: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3308: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3309: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3310: /* 	<br>",fileres,fileres,fileres,fileres); */
 3311: /*  else  */
 3312: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3313:  fflush(fichtm);
 3314:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3315: 
 3316:  m=cptcoveff;
 3317:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3318: 
 3319:  jj1=0;
 3320:  for(k1=1; k1<=m;k1++){
 3321:    for(i1=1; i1<=ncodemax[k1];i1++){
 3322:      jj1++;
 3323:      if (cptcovn > 0) {
 3324:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3325:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3326: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3327:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3328:      }
 3329:      for(cpt=1; cpt<=nlstate;cpt++) {
 3330:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 3331: prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 3332: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3333:      }
 3334:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3335: health expectancies in states (1) and (2): %s%d.png<br>\
 3336: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3337:    } /* end i1 */
 3338:  }/* End k1 */
 3339:  fprintf(fichtm,"</ul>");
 3340:  fflush(fichtm);
 3341: }
 3342: 
 3343: /******************* Gnuplot file **************/
 3344: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3345: 
 3346:   char dirfileres[132],optfileres[132];
 3347:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 3348:   int ng;
 3349: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3350: /*     printf("Problem with file %s",optionfilegnuplot); */
 3351: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3352: /*   } */
 3353: 
 3354:   /*#ifdef windows */
 3355:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3356:     /*#endif */
 3357:   m=pow(2,cptcoveff);
 3358: 
 3359:   strcpy(dirfileres,optionfilefiname);
 3360:   strcpy(optfileres,"vpl");
 3361:  /* 1eme*/
 3362:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3363:    for (k1=1; k1<= m ; k1 ++) {
 3364:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3365:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 3366:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3367: set ylabel \"Probability\" \n\
 3368: set ter png small\n\
 3369: set size 0.65,0.65\n\
 3370: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3371: 
 3372:      for (i=1; i<= nlstate ; i ++) {
 3373:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3374:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3375:      }
 3376:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3377:      for (i=1; i<= nlstate ; i ++) {
 3378:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3379:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3380:      } 
 3381:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 3382:      for (i=1; i<= nlstate ; i ++) {
 3383:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3384:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3385:      }  
 3386:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 3387:    }
 3388:   }
 3389:   /*2 eme*/
 3390:   
 3391:   for (k1=1; k1<= m ; k1 ++) { 
 3392:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 3393:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 3394:     
 3395:     for (i=1; i<= nlstate+1 ; i ++) {
 3396:       k=2*i;
 3397:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3398:       for (j=1; j<= nlstate+1 ; j ++) {
 3399: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3400: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3401:       }   
 3402:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 3403:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 3404:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3405:       for (j=1; j<= nlstate+1 ; j ++) {
 3406: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3407: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3408:       }   
 3409:       fprintf(ficgp,"\" t\"\" w l 0,");
 3410:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3411:       for (j=1; j<= nlstate+1 ; j ++) {
 3412: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3413: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3414:       }   
 3415:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 3416:       else fprintf(ficgp,"\" t\"\" w l 0,");
 3417:     }
 3418:   }
 3419:   
 3420:   /*3eme*/
 3421:   
 3422:   for (k1=1; k1<= m ; k1 ++) { 
 3423:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 3424:       k=2+nlstate*(2*cpt-2);
 3425:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 3426:       fprintf(ficgp,"set ter png small\n\
 3427: set size 0.65,0.65\n\
 3428: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 3429:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3430: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3431: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3432: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3433: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3434: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3435: 	
 3436:       */
 3437:       for (i=1; i< nlstate ; i ++) {
 3438: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
 3439: 	
 3440:       } 
 3441:     }
 3442:   }
 3443:   
 3444:   /* CV preval stable (period) */
 3445:   for (k1=1; k1<= m ; k1 ++) { 
 3446:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 3447:       k=3;
 3448:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 3449:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 3450: set ter png small\nset size 0.65,0.65\n\
 3451: unset log y\n\
 3452: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 3453:       
 3454:       for (i=1; i< nlstate ; i ++)
 3455: 	fprintf(ficgp,"+$%d",k+i+1);
 3456:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 3457:       
 3458:       l=3+(nlstate+ndeath)*cpt;
 3459:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 3460:       for (i=1; i< nlstate ; i ++) {
 3461: 	l=3+(nlstate+ndeath)*cpt;
 3462: 	fprintf(ficgp,"+$%d",l+i+1);
 3463:       }
 3464:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 3465:     } 
 3466:   }  
 3467:   
 3468:   /* proba elementaires */
 3469:   for(i=1,jk=1; i <=nlstate; i++){
 3470:     for(k=1; k <=(nlstate+ndeath); k++){
 3471:       if (k != i) {
 3472: 	for(j=1; j <=ncovmodel; j++){
 3473: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 3474: 	  jk++; 
 3475: 	  fprintf(ficgp,"\n");
 3476: 	}
 3477:       }
 3478:     }
 3479:    }
 3480: 
 3481:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 3482:      for(jk=1; jk <=m; jk++) {
 3483:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 3484:        if (ng==2)
 3485: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 3486:        else
 3487: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 3488:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 3489:        i=1;
 3490:        for(k2=1; k2<=nlstate; k2++) {
 3491: 	 k3=i;
 3492: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 3493: 	   if (k != k2){
 3494: 	     if(ng==2)
 3495: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 3496: 	     else
 3497: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 3498: 	     ij=1;
 3499: 	     for(j=3; j <=ncovmodel; j++) {
 3500: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3501: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3502: 		 ij++;
 3503: 	       }
 3504: 	       else
 3505: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3506: 	     }
 3507: 	     fprintf(ficgp,")/(1");
 3508: 	     
 3509: 	     for(k1=1; k1 <=nlstate; k1++){   
 3510: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 3511: 	       ij=1;
 3512: 	       for(j=3; j <=ncovmodel; j++){
 3513: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3514: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3515: 		   ij++;
 3516: 		 }
 3517: 		 else
 3518: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3519: 	       }
 3520: 	       fprintf(ficgp,")");
 3521: 	     }
 3522: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 3523: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 3524: 	     i=i+ncovmodel;
 3525: 	   }
 3526: 	 } /* end k */
 3527:        } /* end k2 */
 3528:      } /* end jk */
 3529:    } /* end ng */
 3530:    fflush(ficgp); 
 3531: }  /* end gnuplot */
 3532: 
 3533: 
 3534: /*************** Moving average **************/
 3535: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 3536: 
 3537:   int i, cpt, cptcod;
 3538:   int modcovmax =1;
 3539:   int mobilavrange, mob;
 3540:   double age;
 3541: 
 3542:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 3543: 			   a covariate has 2 modalities */
 3544:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 3545: 
 3546:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 3547:     if(mobilav==1) mobilavrange=5; /* default */
 3548:     else mobilavrange=mobilav;
 3549:     for (age=bage; age<=fage; age++)
 3550:       for (i=1; i<=nlstate;i++)
 3551: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 3552: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 3553:     /* We keep the original values on the extreme ages bage, fage and for 
 3554:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 3555:        we use a 5 terms etc. until the borders are no more concerned. 
 3556:     */ 
 3557:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 3558:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 3559: 	for (i=1; i<=nlstate;i++){
 3560: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 3561: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 3562: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 3563: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 3564: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 3565: 	      }
 3566: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 3567: 	  }
 3568: 	}
 3569:       }/* end age */
 3570:     }/* end mob */
 3571:   }else return -1;
 3572:   return 0;
 3573: }/* End movingaverage */
 3574: 
 3575: 
 3576: /************** Forecasting ******************/
 3577: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 3578:   /* proj1, year, month, day of starting projection 
 3579:      agemin, agemax range of age
 3580:      dateprev1 dateprev2 range of dates during which prevalence is computed
 3581:      anproj2 year of en of projection (same day and month as proj1).
 3582:   */
 3583:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 3584:   int *popage;
 3585:   double agec; /* generic age */
 3586:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 3587:   double *popeffectif,*popcount;
 3588:   double ***p3mat;
 3589:   double ***mobaverage;
 3590:   char fileresf[FILENAMELENGTH];
 3591: 
 3592:   agelim=AGESUP;
 3593:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3594:  
 3595:   strcpy(fileresf,"f"); 
 3596:   strcat(fileresf,fileres);
 3597:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 3598:     printf("Problem with forecast resultfile: %s\n", fileresf);
 3599:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 3600:   }
 3601:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 3602:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 3603: 
 3604:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3605: 
 3606:   if (mobilav!=0) {
 3607:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3608:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3609:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3610:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3611:     }
 3612:   }
 3613: 
 3614:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3615:   if (stepm<=12) stepsize=1;
 3616:   if(estepm < stepm){
 3617:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3618:   }
 3619:   else  hstepm=estepm;   
 3620: 
 3621:   hstepm=hstepm/stepm; 
 3622:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 3623:                                fractional in yp1 */
 3624:   anprojmean=yp;
 3625:   yp2=modf((yp1*12),&yp);
 3626:   mprojmean=yp;
 3627:   yp1=modf((yp2*30.5),&yp);
 3628:   jprojmean=yp;
 3629:   if(jprojmean==0) jprojmean=1;
 3630:   if(mprojmean==0) jprojmean=1;
 3631: 
 3632:   i1=cptcoveff;
 3633:   if (cptcovn < 1){i1=1;}
 3634:   
 3635:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 3636:   
 3637:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 3638: 
 3639: /* 	      if (h==(int)(YEARM*yearp)){ */
 3640:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 3641:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3642:       k=k+1;
 3643:       fprintf(ficresf,"\n#******");
 3644:       for(j=1;j<=cptcoveff;j++) {
 3645: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3646:       }
 3647:       fprintf(ficresf,"******\n");
 3648:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 3649:       for(j=1; j<=nlstate+ndeath;j++){ 
 3650: 	for(i=1; i<=nlstate;i++) 	      
 3651:           fprintf(ficresf," p%d%d",i,j);
 3652: 	fprintf(ficresf," p.%d",j);
 3653:       }
 3654:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 3655: 	fprintf(ficresf,"\n");
 3656: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 3657: 
 3658:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 3659: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 3660: 	  nhstepm = nhstepm/hstepm; 
 3661: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3662: 	  oldm=oldms;savm=savms;
 3663: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3664: 	
 3665: 	  for (h=0; h<=nhstepm; h++){
 3666: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 3667:               fprintf(ficresf,"\n");
 3668:               for(j=1;j<=cptcoveff;j++) 
 3669:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3670: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 3671: 	    } 
 3672: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3673: 	      ppij=0.;
 3674: 	      for(i=1; i<=nlstate;i++) {
 3675: 		if (mobilav==1) 
 3676: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 3677: 		else {
 3678: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 3679: 		}
 3680: 		if (h*hstepm/YEARM*stepm== yearp) {
 3681: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 3682: 		}
 3683: 	      } /* end i */
 3684: 	      if (h*hstepm/YEARM*stepm==yearp) {
 3685: 		fprintf(ficresf," %.3f", ppij);
 3686: 	      }
 3687: 	    }/* end j */
 3688: 	  } /* end h */
 3689: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3690: 	} /* end agec */
 3691:       } /* end yearp */
 3692:     } /* end cptcod */
 3693:   } /* end  cptcov */
 3694:        
 3695:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3696: 
 3697:   fclose(ficresf);
 3698: }
 3699: 
 3700: /************** Forecasting *****not tested NB*************/
 3701: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 3702:   
 3703:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3704:   int *popage;
 3705:   double calagedatem, agelim, kk1, kk2;
 3706:   double *popeffectif,*popcount;
 3707:   double ***p3mat,***tabpop,***tabpopprev;
 3708:   double ***mobaverage;
 3709:   char filerespop[FILENAMELENGTH];
 3710: 
 3711:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3712:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3713:   agelim=AGESUP;
 3714:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 3715:   
 3716:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3717:   
 3718:   
 3719:   strcpy(filerespop,"pop"); 
 3720:   strcat(filerespop,fileres);
 3721:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 3722:     printf("Problem with forecast resultfile: %s\n", filerespop);
 3723:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 3724:   }
 3725:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 3726:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 3727: 
 3728:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3729: 
 3730:   if (mobilav!=0) {
 3731:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3732:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3733:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3734:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3735:     }
 3736:   }
 3737: 
 3738:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3739:   if (stepm<=12) stepsize=1;
 3740:   
 3741:   agelim=AGESUP;
 3742:   
 3743:   hstepm=1;
 3744:   hstepm=hstepm/stepm; 
 3745:   
 3746:   if (popforecast==1) {
 3747:     if((ficpop=fopen(popfile,"r"))==NULL) {
 3748:       printf("Problem with population file : %s\n",popfile);exit(0);
 3749:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 3750:     } 
 3751:     popage=ivector(0,AGESUP);
 3752:     popeffectif=vector(0,AGESUP);
 3753:     popcount=vector(0,AGESUP);
 3754:     
 3755:     i=1;   
 3756:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 3757:    
 3758:     imx=i;
 3759:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 3760:   }
 3761: 
 3762:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 3763:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3764:       k=k+1;
 3765:       fprintf(ficrespop,"\n#******");
 3766:       for(j=1;j<=cptcoveff;j++) {
 3767: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3768:       }
 3769:       fprintf(ficrespop,"******\n");
 3770:       fprintf(ficrespop,"# Age");
 3771:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 3772:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3773:       
 3774:       for (cpt=0; cpt<=0;cpt++) { 
 3775: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3776: 	
 3777:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3778: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3779: 	  nhstepm = nhstepm/hstepm; 
 3780: 	  
 3781: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3782: 	  oldm=oldms;savm=savms;
 3783: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3784: 	
 3785: 	  for (h=0; h<=nhstepm; h++){
 3786: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3787: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3788: 	    } 
 3789: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3790: 	      kk1=0.;kk2=0;
 3791: 	      for(i=1; i<=nlstate;i++) {	      
 3792: 		if (mobilav==1) 
 3793: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3794: 		else {
 3795: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3796: 		}
 3797: 	      }
 3798: 	      if (h==(int)(calagedatem+12*cpt)){
 3799: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 3800: 		  /*fprintf(ficrespop," %.3f", kk1);
 3801: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 3802: 	      }
 3803: 	    }
 3804: 	    for(i=1; i<=nlstate;i++){
 3805: 	      kk1=0.;
 3806: 		for(j=1; j<=nlstate;j++){
 3807: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 3808: 		}
 3809: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 3810: 	    }
 3811: 
 3812: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 3813: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 3814: 	  }
 3815: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3816: 	}
 3817:       }
 3818:  
 3819:   /******/
 3820: 
 3821:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 3822: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3823: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3824: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3825: 	  nhstepm = nhstepm/hstepm; 
 3826: 	  
 3827: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3828: 	  oldm=oldms;savm=savms;
 3829: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3830: 	  for (h=0; h<=nhstepm; h++){
 3831: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3832: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3833: 	    } 
 3834: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3835: 	      kk1=0.;kk2=0;
 3836: 	      for(i=1; i<=nlstate;i++) {	      
 3837: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 3838: 	      }
 3839: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 3840: 	    }
 3841: 	  }
 3842: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3843: 	}
 3844:       }
 3845:    } 
 3846:   }
 3847:  
 3848:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3849: 
 3850:   if (popforecast==1) {
 3851:     free_ivector(popage,0,AGESUP);
 3852:     free_vector(popeffectif,0,AGESUP);
 3853:     free_vector(popcount,0,AGESUP);
 3854:   }
 3855:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3856:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3857:   fclose(ficrespop);
 3858: } /* End of popforecast */
 3859: 
 3860: int fileappend(FILE *fichier, char *optionfich)
 3861: {
 3862:   if((fichier=fopen(optionfich,"a"))==NULL) {
 3863:     printf("Problem with file: %s\n", optionfich);
 3864:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 3865:     return (0);
 3866:   }
 3867:   fflush(fichier);
 3868:   return (1);
 3869: }
 3870: 
 3871: 
 3872: /**************** function prwizard **********************/
 3873: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 3874: {
 3875: 
 3876:   /* Wizard to print covariance matrix template */
 3877: 
 3878:   char ca[32], cb[32], cc[32];
 3879:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 3880:   int numlinepar;
 3881: 
 3882:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3883:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3884:   for(i=1; i <=nlstate; i++){
 3885:     jj=0;
 3886:     for(j=1; j <=nlstate+ndeath; j++){
 3887:       if(j==i) continue;
 3888:       jj++;
 3889:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 3890:       printf("%1d%1d",i,j);
 3891:       fprintf(ficparo,"%1d%1d",i,j);
 3892:       for(k=1; k<=ncovmodel;k++){
 3893: 	/* 	  printf(" %lf",param[i][j][k]); */
 3894: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 3895: 	printf(" 0.");
 3896: 	fprintf(ficparo," 0.");
 3897:       }
 3898:       printf("\n");
 3899:       fprintf(ficparo,"\n");
 3900:     }
 3901:   }
 3902:   printf("# Scales (for hessian or gradient estimation)\n");
 3903:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 3904:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 3905:   for(i=1; i <=nlstate; i++){
 3906:     jj=0;
 3907:     for(j=1; j <=nlstate+ndeath; j++){
 3908:       if(j==i) continue;
 3909:       jj++;
 3910:       fprintf(ficparo,"%1d%1d",i,j);
 3911:       printf("%1d%1d",i,j);
 3912:       fflush(stdout);
 3913:       for(k=1; k<=ncovmodel;k++){
 3914: 	/* 	printf(" %le",delti3[i][j][k]); */
 3915: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 3916: 	printf(" 0.");
 3917: 	fprintf(ficparo," 0.");
 3918:       }
 3919:       numlinepar++;
 3920:       printf("\n");
 3921:       fprintf(ficparo,"\n");
 3922:     }
 3923:   }
 3924:   printf("# Covariance matrix\n");
 3925: /* # 121 Var(a12)\n\ */
 3926: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3927: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 3928: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 3929: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 3930: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 3931: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 3932: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 3933:   fflush(stdout);
 3934:   fprintf(ficparo,"# Covariance matrix\n");
 3935:   /* # 121 Var(a12)\n\ */
 3936:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3937:   /* #   ...\n\ */
 3938:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 3939:   
 3940:   for(itimes=1;itimes<=2;itimes++){
 3941:     jj=0;
 3942:     for(i=1; i <=nlstate; i++){
 3943:       for(j=1; j <=nlstate+ndeath; j++){
 3944: 	if(j==i) continue;
 3945: 	for(k=1; k<=ncovmodel;k++){
 3946: 	  jj++;
 3947: 	  ca[0]= k+'a'-1;ca[1]='\0';
 3948: 	  if(itimes==1){
 3949: 	    printf("#%1d%1d%d",i,j,k);
 3950: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 3951: 	  }else{
 3952: 	    printf("%1d%1d%d",i,j,k);
 3953: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 3954: 	    /* 	printf(" %.5le",matcov[i][j]); */
 3955: 	  }
 3956: 	  ll=0;
 3957: 	  for(li=1;li <=nlstate; li++){
 3958: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 3959: 	      if(lj==li) continue;
 3960: 	      for(lk=1;lk<=ncovmodel;lk++){
 3961: 		ll++;
 3962: 		if(ll<=jj){
 3963: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 3964: 		  if(ll<jj){
 3965: 		    if(itimes==1){
 3966: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3967: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3968: 		    }else{
 3969: 		      printf(" 0.");
 3970: 		      fprintf(ficparo," 0.");
 3971: 		    }
 3972: 		  }else{
 3973: 		    if(itimes==1){
 3974: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 3975: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 3976: 		    }else{
 3977: 		      printf(" 0.");
 3978: 		      fprintf(ficparo," 0.");
 3979: 		    }
 3980: 		  }
 3981: 		}
 3982: 	      } /* end lk */
 3983: 	    } /* end lj */
 3984: 	  } /* end li */
 3985: 	  printf("\n");
 3986: 	  fprintf(ficparo,"\n");
 3987: 	  numlinepar++;
 3988: 	} /* end k*/
 3989:       } /*end j */
 3990:     } /* end i */
 3991:   } /* end itimes */
 3992: 
 3993: } /* end of prwizard */
 3994: /******************* Gompertz Likelihood ******************************/
 3995: double gompertz(double x[])
 3996: { 
 3997:   double A,B,L=0.0,sump=0.,num=0.;
 3998:   int i,n=0; /* n is the size of the sample */
 3999:   for (i=0;i<=imx-1 ; i++) {
 4000:     sump=sump+weight[i];
 4001:     /*    sump=sump+1;*/
 4002:     num=num+1;
 4003:   }
 4004:  
 4005:  
 4006:   /* for (i=0; i<=imx; i++) 
 4007:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4008: 
 4009:   for (i=1;i<=imx ; i++)
 4010:     {
 4011:       if (cens[i]==1 & wav[i]>1)
 4012: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4013:       
 4014:       if (cens[i]==0 & wav[i]>1)
 4015: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4016: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4017:       
 4018:       if (wav[i]>1 & agecens[i]>15) {
 4019: 	L=L+A*weight[i];
 4020: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4021:       }
 4022:     }
 4023: 
 4024:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4025:  
 4026:   return -2*L*num/sump;
 4027: }
 4028: 
 4029: /******************* Printing html file ***********/
 4030: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4031: 		  int lastpass, int stepm, int weightopt, char model[],\
 4032: 		  int imx,  double p[],double **matcov,double agemortsup){
 4033:   int i,k;
 4034: 
 4035:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4036:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4037:   for (i=1;i<=2;i++) 
 4038:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4039:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4040:   fprintf(fichtm,"</ul>");
 4041: 
 4042: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4043: 
 4044:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4045: 
 4046:  for (k=agegomp;k<(agemortsup-2);k++) 
 4047:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4048: 
 4049:  
 4050:   fflush(fichtm);
 4051: }
 4052: 
 4053: /******************* Gnuplot file **************/
 4054: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4055: 
 4056:   char dirfileres[132],optfileres[132];
 4057:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 4058:   int ng;
 4059: 
 4060: 
 4061:   /*#ifdef windows */
 4062:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4063:     /*#endif */
 4064: 
 4065: 
 4066:   strcpy(dirfileres,optionfilefiname);
 4067:   strcpy(optfileres,"vpl");
 4068:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4069:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4070:   fprintf(ficgp, "set ter png small\n set log y\n"); 
 4071:   fprintf(ficgp, "set size 0.65,0.65\n");
 4072:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4073: 
 4074: } 
 4075: 
 4076: 
 4077: 
 4078: 
 4079: /***********************************************/
 4080: /**************** Main Program *****************/
 4081: /***********************************************/
 4082: 
 4083: int main(int argc, char *argv[])
 4084: {
 4085:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 4086:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 4087:   int linei;
 4088:   int jj, ll, li, lj, lk, imk;
 4089:   int numlinepar=0; /* Current linenumber of parameter file */
 4090:   int itimes;
 4091:   int NDIM=2;
 4092: 
 4093:   char ca[32], cb[32], cc[32];
 4094:   /*  FILE *fichtm; *//* Html File */
 4095:   /* FILE *ficgp;*/ /*Gnuplot File */
 4096:   struct stat info;
 4097:   double agedeb, agefin,hf;
 4098:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 4099: 
 4100:   double fret;
 4101:   double **xi,tmp,delta;
 4102: 
 4103:   double dum; /* Dummy variable */
 4104:   double ***p3mat;
 4105:   double ***mobaverage;
 4106:   int *indx;
 4107:   char line[MAXLINE], linepar[MAXLINE];
 4108:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 4109:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 4110:   int firstobs=1, lastobs=10;
 4111:   int sdeb, sfin; /* Status at beginning and end */
 4112:   int c,  h , cpt,l;
 4113:   int ju,jl, mi;
 4114:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 4115:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
 4116:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 4117:   int mobilav=0,popforecast=0;
 4118:   int hstepm, nhstepm;
 4119:   int agemortsup;
 4120:   float  sumlpop=0.;
 4121:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 4122:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 4123: 
 4124:   double bage, fage, age, agelim, agebase;
 4125:   double ftolpl=FTOL;
 4126:   double **prlim;
 4127:   double *severity;
 4128:   double ***param; /* Matrix of parameters */
 4129:   double  *p;
 4130:   double **matcov; /* Matrix of covariance */
 4131:   double ***delti3; /* Scale */
 4132:   double *delti; /* Scale */
 4133:   double ***eij, ***vareij;
 4134:   double **varpl; /* Variances of prevalence limits by age */
 4135:   double *epj, vepp;
 4136:   double kk1, kk2;
 4137:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 4138:   double **ximort;
 4139:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 4140:   int *dcwave;
 4141: 
 4142:   char z[1]="c", occ;
 4143: 
 4144:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 4145:   char strstart[80], *strt, strtend[80];
 4146:   char *stratrunc;
 4147:   int lstra;
 4148: 
 4149:   long total_usecs;
 4150:  
 4151: /*   setlocale (LC_ALL, ""); */
 4152: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 4153: /*   textdomain (PACKAGE); */
 4154: /*   setlocale (LC_CTYPE, ""); */
 4155: /*   setlocale (LC_MESSAGES, ""); */
 4156: 
 4157:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 4158:   (void) gettimeofday(&start_time,&tzp);
 4159:   curr_time=start_time;
 4160:   tm = *localtime(&start_time.tv_sec);
 4161:   tmg = *gmtime(&start_time.tv_sec);
 4162:   strcpy(strstart,asctime(&tm));
 4163: 
 4164: /*  printf("Localtime (at start)=%s",strstart); */
 4165: /*  tp.tv_sec = tp.tv_sec +86400; */
 4166: /*  tm = *localtime(&start_time.tv_sec); */
 4167: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 4168: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 4169: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 4170: /*   tp.tv_sec = mktime(&tmg); */
 4171: /*   strt=asctime(&tmg); */
 4172: /*   printf("Time(after) =%s",strstart);  */
 4173: /*  (void) time (&time_value);
 4174: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 4175: *  tm = *localtime(&time_value);
 4176: *  strstart=asctime(&tm);
 4177: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 4178: */
 4179: 
 4180:   nberr=0; /* Number of errors and warnings */
 4181:   nbwarn=0;
 4182:   getcwd(pathcd, size);
 4183: 
 4184:   printf("\n%s\n%s",version,fullversion);
 4185:   if(argc <=1){
 4186:     printf("\nEnter the parameter file name: ");
 4187:     scanf("%s",pathtot);
 4188:   }
 4189:   else{
 4190:     strcpy(pathtot,argv[1]);
 4191:   }
 4192:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 4193:   /*cygwin_split_path(pathtot,path,optionfile);
 4194:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 4195:   /* cutv(path,optionfile,pathtot,'\\');*/
 4196: 
 4197:   /* Split argv[0], imach program to get pathimach */
 4198:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 4199:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 4200:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 4201:  /*   strcpy(pathimach,argv[0]); */
 4202:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 4203:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 4204:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 4205:   chdir(path);
 4206:   strcpy(command,"mkdir ");
 4207:   strcat(command,optionfilefiname);
 4208:   if((outcmd=system(command)) != 0){
 4209:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 4210:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 4211:     /* fclose(ficlog); */
 4212: /*     exit(1); */
 4213:   }
 4214: /*   if((imk=mkdir(optionfilefiname))<0){ */
 4215: /*     perror("mkdir"); */
 4216: /*   } */
 4217: 
 4218:   /*-------- arguments in the command line --------*/
 4219: 
 4220:   /* Log file */
 4221:   strcat(filelog, optionfilefiname);
 4222:   strcat(filelog,".log");    /* */
 4223:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 4224:     printf("Problem with logfile %s\n",filelog);
 4225:     goto end;
 4226:   }
 4227:   fprintf(ficlog,"Log filename:%s\n",filelog);
 4228:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 4229:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 4230:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 4231:  path=%s \n\
 4232:  optionfile=%s\n\
 4233:  optionfilext=%s\n\
 4234:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 4235: 
 4236:   printf("Local time (at start):%s",strstart);
 4237:   fprintf(ficlog,"Local time (at start): %s",strstart);
 4238:   fflush(ficlog);
 4239: /*   (void) gettimeofday(&curr_time,&tzp); */
 4240: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 4241: 
 4242:   /* */
 4243:   strcpy(fileres,"r");
 4244:   strcat(fileres, optionfilefiname);
 4245:   strcat(fileres,".txt");    /* Other files have txt extension */
 4246: 
 4247:   /*---------arguments file --------*/
 4248: 
 4249:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 4250:     printf("Problem with optionfile %s\n",optionfile);
 4251:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 4252:     fflush(ficlog);
 4253:     goto end;
 4254:   }
 4255: 
 4256: 
 4257: 
 4258:   strcpy(filereso,"o");
 4259:   strcat(filereso,fileres);
 4260:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 4261:     printf("Problem with Output resultfile: %s\n", filereso);
 4262:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 4263:     fflush(ficlog);
 4264:     goto end;
 4265:   }
 4266: 
 4267:   /* Reads comments: lines beginning with '#' */
 4268:   numlinepar=0;
 4269:   while((c=getc(ficpar))=='#' && c!= EOF){
 4270:     ungetc(c,ficpar);
 4271:     fgets(line, MAXLINE, ficpar);
 4272:     numlinepar++;
 4273:     puts(line);
 4274:     fputs(line,ficparo);
 4275:     fputs(line,ficlog);
 4276:   }
 4277:   ungetc(c,ficpar);
 4278: 
 4279:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 4280:   numlinepar++;
 4281:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 4282:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4283:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4284:   fflush(ficlog);
 4285:   while((c=getc(ficpar))=='#' && c!= EOF){
 4286:     ungetc(c,ficpar);
 4287:     fgets(line, MAXLINE, ficpar);
 4288:     numlinepar++;
 4289:     puts(line);
 4290:     fputs(line,ficparo);
 4291:     fputs(line,ficlog);
 4292:   }
 4293:   ungetc(c,ficpar);
 4294: 
 4295:    
 4296:   covar=matrix(0,NCOVMAX,1,n); 
 4297:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 4298:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 4299: 
 4300:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 4301:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 4302:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 4303: 
 4304:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4305:   delti=delti3[1][1];
 4306:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 4307:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 4308:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4309:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4310:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4311:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 4312:     fclose (ficparo);
 4313:     fclose (ficlog);
 4314:     exit(0);
 4315:   }
 4316:   else if(mle==-3) {
 4317:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4318:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 4319:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 4320:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4321:     matcov=matrix(1,npar,1,npar);
 4322:   }
 4323:   else{
 4324:     /* Read guess parameters */
 4325:     /* Reads comments: lines beginning with '#' */
 4326:     while((c=getc(ficpar))=='#' && c!= EOF){
 4327:       ungetc(c,ficpar);
 4328:       fgets(line, MAXLINE, ficpar);
 4329:       numlinepar++;
 4330:       puts(line);
 4331:       fputs(line,ficparo);
 4332:       fputs(line,ficlog);
 4333:     }
 4334:     ungetc(c,ficpar);
 4335:     
 4336:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4337:     for(i=1; i <=nlstate; i++){
 4338:       j=0;
 4339:       for(jj=1; jj <=nlstate+ndeath; jj++){
 4340: 	if(jj==i) continue;
 4341: 	j++;
 4342: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 4343: 	if ((i1 != i) && (j1 != j)){
 4344: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4345: 	  exit(1);
 4346: 	}
 4347: 	fprintf(ficparo,"%1d%1d",i1,j1);
 4348: 	if(mle==1)
 4349: 	  printf("%1d%1d",i,j);
 4350: 	fprintf(ficlog,"%1d%1d",i,j);
 4351: 	for(k=1; k<=ncovmodel;k++){
 4352: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 4353: 	  if(mle==1){
 4354: 	    printf(" %lf",param[i][j][k]);
 4355: 	    fprintf(ficlog," %lf",param[i][j][k]);
 4356: 	  }
 4357: 	  else
 4358: 	    fprintf(ficlog," %lf",param[i][j][k]);
 4359: 	  fprintf(ficparo," %lf",param[i][j][k]);
 4360: 	}
 4361: 	fscanf(ficpar,"\n");
 4362: 	numlinepar++;
 4363: 	if(mle==1)
 4364: 	  printf("\n");
 4365: 	fprintf(ficlog,"\n");
 4366: 	fprintf(ficparo,"\n");
 4367:       }
 4368:     }  
 4369:     fflush(ficlog);
 4370: 
 4371:     p=param[1][1];
 4372:     
 4373:     /* Reads comments: lines beginning with '#' */
 4374:     while((c=getc(ficpar))=='#' && c!= EOF){
 4375:       ungetc(c,ficpar);
 4376:       fgets(line, MAXLINE, ficpar);
 4377:       numlinepar++;
 4378:       puts(line);
 4379:       fputs(line,ficparo);
 4380:       fputs(line,ficlog);
 4381:     }
 4382:     ungetc(c,ficpar);
 4383: 
 4384:     for(i=1; i <=nlstate; i++){
 4385:       for(j=1; j <=nlstate+ndeath-1; j++){
 4386: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 4387: 	if ((i1-i)*(j1-j)!=0){
 4388: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4389: 	  exit(1);
 4390: 	}
 4391: 	printf("%1d%1d",i,j);
 4392: 	fprintf(ficparo,"%1d%1d",i1,j1);
 4393: 	fprintf(ficlog,"%1d%1d",i1,j1);
 4394: 	for(k=1; k<=ncovmodel;k++){
 4395: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 4396: 	  printf(" %le",delti3[i][j][k]);
 4397: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 4398: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 4399: 	}
 4400: 	fscanf(ficpar,"\n");
 4401: 	numlinepar++;
 4402: 	printf("\n");
 4403: 	fprintf(ficparo,"\n");
 4404: 	fprintf(ficlog,"\n");
 4405:       }
 4406:     }
 4407:     fflush(ficlog);
 4408: 
 4409:     delti=delti3[1][1];
 4410: 
 4411: 
 4412:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 4413:   
 4414:     /* Reads comments: lines beginning with '#' */
 4415:     while((c=getc(ficpar))=='#' && c!= EOF){
 4416:       ungetc(c,ficpar);
 4417:       fgets(line, MAXLINE, ficpar);
 4418:       numlinepar++;
 4419:       puts(line);
 4420:       fputs(line,ficparo);
 4421:       fputs(line,ficlog);
 4422:     }
 4423:     ungetc(c,ficpar);
 4424:   
 4425:     matcov=matrix(1,npar,1,npar);
 4426:     for(i=1; i <=npar; i++){
 4427:       fscanf(ficpar,"%s",&str);
 4428:       if(mle==1)
 4429: 	printf("%s",str);
 4430:       fprintf(ficlog,"%s",str);
 4431:       fprintf(ficparo,"%s",str);
 4432:       for(j=1; j <=i; j++){
 4433: 	fscanf(ficpar," %le",&matcov[i][j]);
 4434: 	if(mle==1){
 4435: 	  printf(" %.5le",matcov[i][j]);
 4436: 	}
 4437: 	fprintf(ficlog," %.5le",matcov[i][j]);
 4438: 	fprintf(ficparo," %.5le",matcov[i][j]);
 4439:       }
 4440:       fscanf(ficpar,"\n");
 4441:       numlinepar++;
 4442:       if(mle==1)
 4443: 	printf("\n");
 4444:       fprintf(ficlog,"\n");
 4445:       fprintf(ficparo,"\n");
 4446:     }
 4447:     for(i=1; i <=npar; i++)
 4448:       for(j=i+1;j<=npar;j++)
 4449: 	matcov[i][j]=matcov[j][i];
 4450:     
 4451:     if(mle==1)
 4452:       printf("\n");
 4453:     fprintf(ficlog,"\n");
 4454:     
 4455:     fflush(ficlog);
 4456:     
 4457:     /*-------- Rewriting parameter file ----------*/
 4458:     strcpy(rfileres,"r");    /* "Rparameterfile */
 4459:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 4460:     strcat(rfileres,".");    /* */
 4461:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 4462:     if((ficres =fopen(rfileres,"w"))==NULL) {
 4463:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 4464:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 4465:     }
 4466:     fprintf(ficres,"#%s\n",version);
 4467:   }    /* End of mle != -3 */
 4468: 
 4469:   /*-------- data file ----------*/
 4470:   if((fic=fopen(datafile,"r"))==NULL)    {
 4471:     printf("Problem with datafile: %s\n", datafile);goto end;
 4472:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 4473:   }
 4474: 
 4475:   n= lastobs;
 4476:   severity = vector(1,maxwav);
 4477:   outcome=imatrix(1,maxwav+1,1,n);
 4478:   num=lvector(1,n);
 4479:   moisnais=vector(1,n);
 4480:   annais=vector(1,n);
 4481:   moisdc=vector(1,n);
 4482:   andc=vector(1,n);
 4483:   agedc=vector(1,n);
 4484:   cod=ivector(1,n);
 4485:   weight=vector(1,n);
 4486:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 4487:   mint=matrix(1,maxwav,1,n);
 4488:   anint=matrix(1,maxwav,1,n);
 4489:   s=imatrix(1,maxwav+1,1,n);
 4490:   tab=ivector(1,NCOVMAX);
 4491:   ncodemax=ivector(1,8);
 4492: 
 4493:   i=1;
 4494:   linei=0;
 4495:   while ((fgets(line, MAXLINE, fic) != NULL) ||((i >= firstobs) && (i <=lastobs)))    {
 4496:     linei=linei+1;
 4497:     printf("IIIII= %d linei=%d\n",i,linei);
 4498:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4499: 	if(line[j] == '\t')
 4500: 	  line[j] = ' ';
 4501:       }
 4502:       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10);j--){;};line[j+1]=0;  /* Trims blanks at end of line */
 4503:       if(line[0]=='#'){
 4504: 	fprintf(ficlog,"Comment line\n%s\n",line);
 4505: 	printf("Comment line\n%s\n",line);
 4506: 	continue;
 4507:       }
 4508:       for (j=maxwav;j>=1;j--){
 4509: 	cutv(stra, strb,line,' '); 
 4510:         errno=0;
 4511:         lval=strtol(strb,&endptr,10); 
 4512: 	/*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 4513: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4514: 	  printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
 4515: 	  exit(1);
 4516: 	}
 4517: 	s[j][i]=lval;
 4518: 
 4519: 	strcpy(line,stra);
 4520: 	cutv(stra, strb,line,'/');
 4521:         errno=0;
 4522:         lval=strtol(strb,&endptr,10); 
 4523: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4524: 	  printf("Error reading data around '%d'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",lval, i,line,linei,j);
 4525: 	  exit(1);
 4526: 	}
 4527: 	anint[j][i]=(double)(lval); 
 4528: 
 4529: 	strcpy(line,stra);
 4530: 	cutv(stra, strb,line,' ');
 4531:         errno=0;
 4532:         lval=strtol(strb,&endptr,10); 
 4533: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4534: 	  printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of exam at wave %d.  Exiting.\n",lval, i,line, linei,j);
 4535: 	  exit(1);
 4536: 	}
 4537: 	mint[j][i]=(double)(lval); 
 4538: 	strcpy(line,stra);
 4539:       }
 4540: 	
 4541:       cutv(stra, strb,line,'/'); 
 4542:       errno=0;
 4543:       lval=strtol(strb,&endptr,10); 
 4544:       if( strb[0]=='\0' || (*endptr != '\0')){
 4545: 	printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of death.  Exiting.\n",lval, i,line,linei);
 4546: 	exit(1);
 4547:       }
 4548:       andc[i]=(double)(lval); 
 4549:       strcpy(line,stra);
 4550: 
 4551:       cutv(stra, strb,line,' '); 
 4552:       errno=0;
 4553:       lval=strtol(strb,&endptr,10); 
 4554:       if( strb[0]=='\0' || (*endptr != '\0')){
 4555: 	printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of death.  Exiting.\n",lval,i,line, linei);
 4556: 	exit(1);
 4557:       }
 4558:       moisdc[i]=(double)(lval); 
 4559: 
 4560:       strcpy(line,stra);
 4561:       cutv(stra, strb,line,'/'); 
 4562:       errno=0;
 4563:       lval=strtol(strb,&endptr,10); 
 4564:       if( strb[0]=='\0' || (*endptr != '\0')){
 4565: 	printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of birth.  Exiting.\n",lval, i,line, linei);
 4566: 	exit(1);
 4567:       }
 4568:       annais[i]=(double)(lval);
 4569: 
 4570:       strcpy(line,stra);
 4571:       cutv(stra, strb,line,' ');
 4572:       errno=0;
 4573:       lval=strtol(strb,&endptr,10); 
 4574:       if( strb[0]=='\0' || (*endptr != '\0')){
 4575: 	printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of birth.  Exiting.\n",lval,i,line,linei);
 4576: 	exit(1);
 4577:       }
 4578:       moisnais[i]=(double)(lval); 
 4579:       strcpy(line,stra);
 4580: 
 4581:       cutv(stra, strb,line,' '); 
 4582:       errno=0;
 4583:       lval=strtol(strb,&endptr,10); 
 4584:       if( strb[0]=='\0' || (*endptr != '\0')){
 4585: 	printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
 4586: 	exit(1);
 4587:       }
 4588:       weight[i]=(double)(lval); 
 4589:       strcpy(line,stra);
 4590: 
 4591:       for (j=ncovcol;j>=1;j--){
 4592: 	cutv(stra, strb,line,' '); 
 4593: 	errno=0;
 4594: 	lval=strtol(strb,&endptr,10); 
 4595: 	if( strb[0]=='\0' || (*endptr != '\0')){
 4596: 	  printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
 4597: 	  exit(1);
 4598: 	}
 4599: 	if(lval <0 || lval >1){
 4600: 	  printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
 4601: 	  exit(1);
 4602: 	}
 4603: 	covar[j][i]=(double)(lval);
 4604: 	strcpy(line,stra);
 4605:       } 
 4606:       lstra=strlen(stra);
 4607: 
 4608:       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4609: 	stratrunc = &(stra[lstra-9]);
 4610: 	num[i]=atol(stratrunc);
 4611:       }
 4612:       else
 4613: 	num[i]=atol(stra);
 4614:       printf ("num [i] %ld %d\n",i, num[i]);fflush(stdout);
 4615:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4616: 	printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4617: 
 4618:       i=i+1;
 4619:   } /* End loop reading  data */
 4620:   /* printf("ii=%d", ij);
 4621:      scanf("%d",i);*/
 4622:   imx=i-1; /* Number of individuals */
 4623: 
 4624:   /* for (i=1; i<=imx; i++){
 4625:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 4626:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 4627:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 4628:     }*/
 4629:    /*  for (i=1; i<=imx; i++){
 4630:      if (s[4][i]==9)  s[4][i]=-1; 
 4631:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 4632:   
 4633:   /* for (i=1; i<=imx; i++) */
 4634:  
 4635:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 4636:      else weight[i]=1;*/
 4637: 
 4638:   /* Calculation of the number of parameters from char model */
 4639:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 4640:   Tprod=ivector(1,15); 
 4641:   Tvaraff=ivector(1,15); 
 4642:   Tvard=imatrix(1,15,1,2);
 4643:   Tage=ivector(1,15);      
 4644:    
 4645:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4646:     j=0, j1=0, k1=1, k2=1;
 4647:     j=nbocc(model,'+'); /* j=Number of '+' */
 4648:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 4649:     cptcovn=j+1; 
 4650:     cptcovprod=j1; /*Number of products */
 4651:     
 4652:     strcpy(modelsav,model); 
 4653:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 4654:       printf("Error. Non available option model=%s ",model);
 4655:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 4656:       goto end;
 4657:     }
 4658:     
 4659:     /* This loop fills the array Tvar from the string 'model'.*/
 4660: 
 4661:     for(i=(j+1); i>=1;i--){
 4662:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 4663:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 4664:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 4665:       /*scanf("%d",i);*/
 4666:       if (strchr(strb,'*')) {  /* Model includes a product */
 4667: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 4668: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 4669: 	  cptcovprod--;
 4670: 	  cutv(strb,stre,strd,'V');
 4671: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 4672: 	  cptcovage++;
 4673: 	    Tage[cptcovage]=i;
 4674: 	    /*printf("stre=%s ", stre);*/
 4675: 	}
 4676: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 4677: 	  cptcovprod--;
 4678: 	  cutv(strb,stre,strc,'V');
 4679: 	  Tvar[i]=atoi(stre);
 4680: 	  cptcovage++;
 4681: 	  Tage[cptcovage]=i;
 4682: 	}
 4683: 	else {  /* Age is not in the model */
 4684: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 4685: 	  Tvar[i]=ncovcol+k1;
 4686: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 4687: 	  Tprod[k1]=i;
 4688: 	  Tvard[k1][1]=atoi(strc); /* m*/
 4689: 	  Tvard[k1][2]=atoi(stre); /* n */
 4690: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 4691: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 4692: 	  for (k=1; k<=lastobs;k++) 
 4693: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 4694: 	  k1++;
 4695: 	  k2=k2+2;
 4696: 	}
 4697:       }
 4698:       else { /* no more sum */
 4699: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 4700:        /*  scanf("%d",i);*/
 4701:       cutv(strd,strc,strb,'V');
 4702:       Tvar[i]=atoi(strc);
 4703:       }
 4704:       strcpy(modelsav,stra);  
 4705:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 4706: 	scanf("%d",i);*/
 4707:     } /* end of loop + */
 4708:   } /* end model */
 4709:   
 4710:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 4711:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 4712: 
 4713:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 4714:   printf("cptcovprod=%d ", cptcovprod);
 4715:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 4716: 
 4717:   scanf("%d ",i);
 4718:   fclose(fic);*/
 4719: 
 4720:     /*  if(mle==1){*/
 4721:   if (weightopt != 1) { /* Maximisation without weights*/
 4722:     for(i=1;i<=n;i++) weight[i]=1.0;
 4723:   }
 4724:     /*-calculation of age at interview from date of interview and age at death -*/
 4725:   agev=matrix(1,maxwav,1,imx);
 4726: 
 4727:   for (i=1; i<=imx; i++) {
 4728:     for(m=2; (m<= maxwav); m++) {
 4729:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 4730: 	anint[m][i]=9999;
 4731: 	s[m][i]=-1;
 4732:       }
 4733:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 4734: 	nberr++;
 4735: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4736: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4737: 	s[m][i]=-1;
 4738:       }
 4739:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 4740: 	nberr++;
 4741: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 4742: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 4743: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 4744:       }
 4745:     }
 4746:   }
 4747: 
 4748:   for (i=1; i<=imx; i++)  {
 4749:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 4750:     for(m=firstpass; (m<= lastpass); m++){
 4751:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 4752: 	if (s[m][i] >= nlstate+1) {
 4753: 	  if(agedc[i]>0)
 4754: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 4755: 	      agev[m][i]=agedc[i];
 4756: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 4757: 	    else {
 4758: 	      if ((int)andc[i]!=9999){
 4759: 		nbwarn++;
 4760: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 4761: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 4762: 		agev[m][i]=-1;
 4763: 	      }
 4764: 	    }
 4765: 	}
 4766: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 4767: 				 years but with the precision of a month */
 4768: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 4769: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 4770: 	    agev[m][i]=1;
 4771: 	  else if(agev[m][i] <agemin){ 
 4772: 	    agemin=agev[m][i];
 4773: 	    /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 4774: 	  }
 4775: 	  else if(agev[m][i] >agemax){
 4776: 	    agemax=agev[m][i];
 4777: 	    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 4778: 	  }
 4779: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 4780: 	  /*	 agev[m][i] = age[i]+2*m;*/
 4781: 	}
 4782: 	else { /* =9 */
 4783: 	  agev[m][i]=1;
 4784: 	  s[m][i]=-1;
 4785: 	}
 4786:       }
 4787:       else /*= 0 Unknown */
 4788: 	agev[m][i]=1;
 4789:     }
 4790:     
 4791:   }
 4792:   for (i=1; i<=imx; i++)  {
 4793:     for(m=firstpass; (m<=lastpass); m++){
 4794:       if (s[m][i] > (nlstate+ndeath)) {
 4795: 	nberr++;
 4796: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4797: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4798: 	goto end;
 4799:       }
 4800:     }
 4801:   }
 4802: 
 4803:   /*for (i=1; i<=imx; i++){
 4804:   for (m=firstpass; (m<lastpass); m++){
 4805:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 4806: }
 4807: 
 4808: }*/
 4809: 
 4810: 
 4811:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 4812:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 4813: 
 4814:   agegomp=(int)agemin;
 4815:   free_vector(severity,1,maxwav);
 4816:   free_imatrix(outcome,1,maxwav+1,1,n);
 4817:   free_vector(moisnais,1,n);
 4818:   free_vector(annais,1,n);
 4819:   /* free_matrix(mint,1,maxwav,1,n);
 4820:      free_matrix(anint,1,maxwav,1,n);*/
 4821:   free_vector(moisdc,1,n);
 4822:   free_vector(andc,1,n);
 4823: 
 4824:    
 4825:   wav=ivector(1,imx);
 4826:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 4827:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 4828:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 4829:    
 4830:   /* Concatenates waves */
 4831:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 4832: 
 4833:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 4834: 
 4835:   Tcode=ivector(1,100);
 4836:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 4837:   ncodemax[1]=1;
 4838:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 4839:       
 4840:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 4841: 				 the estimations*/
 4842:   h=0;
 4843:   m=pow(2,cptcoveff);
 4844:  
 4845:   for(k=1;k<=cptcoveff; k++){
 4846:     for(i=1; i <=(m/pow(2,k));i++){
 4847:       for(j=1; j <= ncodemax[k]; j++){
 4848: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 4849: 	  h++;
 4850: 	  if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 4851: 	  /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 4852: 	} 
 4853:       }
 4854:     }
 4855:   } 
 4856:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 4857:      codtab[1][2]=1;codtab[2][2]=2; */
 4858:   /* for(i=1; i <=m ;i++){ 
 4859:      for(k=1; k <=cptcovn; k++){
 4860:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 4861:      }
 4862:      printf("\n");
 4863:      }
 4864:      scanf("%d",i);*/
 4865:     
 4866:   /*------------ gnuplot -------------*/
 4867:   strcpy(optionfilegnuplot,optionfilefiname);
 4868:   if(mle==-3)
 4869:     strcat(optionfilegnuplot,"-mort");
 4870:   strcat(optionfilegnuplot,".gp");
 4871: 
 4872:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 4873:     printf("Problem with file %s",optionfilegnuplot);
 4874:   }
 4875:   else{
 4876:     fprintf(ficgp,"\n# %s\n", version); 
 4877:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 4878:     fprintf(ficgp,"set missing 'NaNq'\n");
 4879:   }
 4880:   /*  fclose(ficgp);*/
 4881:   /*--------- index.htm --------*/
 4882: 
 4883:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 4884:   if(mle==-3)
 4885:     strcat(optionfilehtm,"-mort");
 4886:   strcat(optionfilehtm,".htm");
 4887:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 4888:     printf("Problem with %s \n",optionfilehtm), exit(0);
 4889:   }
 4890: 
 4891:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 4892:   strcat(optionfilehtmcov,"-cov.htm");
 4893:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 4894:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 4895:   }
 4896:   else{
 4897:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4898: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4899: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 4900: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 4901:   }
 4902: 
 4903:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4904: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4905: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 4906: \n\
 4907: <hr  size=\"2\" color=\"#EC5E5E\">\
 4908:  <ul><li><h4>Parameter files</h4>\n\
 4909:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 4910:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 4911:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 4912:  - Date and time at start: %s</ul>\n",\
 4913: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 4914: 	  fileres,fileres,\
 4915: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 4916:   fflush(fichtm);
 4917: 
 4918:   strcpy(pathr,path);
 4919:   strcat(pathr,optionfilefiname);
 4920:   chdir(optionfilefiname); /* Move to directory named optionfile */
 4921:   
 4922:   /* Calculates basic frequencies. Computes observed prevalence at single age
 4923:      and prints on file fileres'p'. */
 4924:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 4925: 
 4926:   fprintf(fichtm,"\n");
 4927:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 4928: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 4929: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 4930: 	  imx,agemin,agemax,jmin,jmax,jmean);
 4931:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4932:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4933:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4934:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4935:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 4936:     
 4937:    
 4938:   /* For Powell, parameters are in a vector p[] starting at p[1]
 4939:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 4940:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 4941: 
 4942:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 4943:   if (mle==-3){
 4944:     ximort=matrix(1,NDIM,1,NDIM);
 4945:     cens=ivector(1,n);
 4946:     ageexmed=vector(1,n);
 4947:     agecens=vector(1,n);
 4948:     dcwave=ivector(1,n);
 4949:  
 4950:     for (i=1; i<=imx; i++){
 4951:       dcwave[i]=-1;
 4952:       for (j=1; j<=lastpass; j++)
 4953: 	if (s[j][i]>nlstate) {
 4954: 	  dcwave[i]=j;
 4955: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 4956: 	  break;
 4957: 	}
 4958:     }
 4959: 
 4960:     for (i=1; i<=imx; i++) {
 4961:       if (wav[i]>0){
 4962: 	ageexmed[i]=agev[mw[1][i]][i];
 4963: 	j=wav[i];agecens[i]=1.; 
 4964: 	if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
 4965: 	cens[i]=1;
 4966: 	
 4967: 	if (ageexmed[i]<1) cens[i]=-1;
 4968: 	if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
 4969:       }
 4970:       else cens[i]=-1;
 4971:     }
 4972:     
 4973:     for (i=1;i<=NDIM;i++) {
 4974:       for (j=1;j<=NDIM;j++)
 4975: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 4976:     }
 4977: 
 4978:     p[1]=0.1; p[2]=0.1;
 4979:     /*printf("%lf %lf", p[1], p[2]);*/
 4980:     
 4981:     
 4982:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 4983:   strcpy(filerespow,"pow-mort"); 
 4984:   strcat(filerespow,fileres);
 4985:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 4986:     printf("Problem with resultfile: %s\n", filerespow);
 4987:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 4988:   }
 4989:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 4990:   /*  for (i=1;i<=nlstate;i++)
 4991:     for(j=1;j<=nlstate+ndeath;j++)
 4992:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 4993:   */
 4994:   fprintf(ficrespow,"\n");
 4995: 
 4996:     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 4997:     fclose(ficrespow);
 4998:     
 4999:     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
 5000: 
 5001:     for(i=1; i <=NDIM; i++)
 5002:       for(j=i+1;j<=NDIM;j++)
 5003: 	matcov[i][j]=matcov[j][i];
 5004:     
 5005:     printf("\nCovariance matrix\n ");
 5006:     for(i=1; i <=NDIM; i++) {
 5007:       for(j=1;j<=NDIM;j++){ 
 5008: 	printf("%f ",matcov[i][j]);
 5009:       }
 5010:       printf("\n ");
 5011:     }
 5012:     
 5013:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 5014:     for (i=1;i<=NDIM;i++) 
 5015:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5016: 
 5017: lsurv=vector(1,AGESUP);
 5018:     lpop=vector(1,AGESUP);
 5019:     tpop=vector(1,AGESUP);
 5020:     lsurv[agegomp]=100000;
 5021:    
 5022:      for (k=agegomp;k<=AGESUP;k++) {
 5023:       agemortsup=k;
 5024:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 5025:     }
 5026:    
 5027:       for (k=agegomp;k<agemortsup;k++)
 5028:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 5029: 
 5030:     for (k=agegomp;k<agemortsup;k++){
 5031:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 5032:       sumlpop=sumlpop+lpop[k];
 5033:     }
 5034: 
 5035:  tpop[agegomp]=sumlpop;
 5036:     for (k=agegomp;k<(agemortsup-3);k++){
 5037:       /*  tpop[k+1]=2;*/
 5038:       tpop[k+1]=tpop[k]-lpop[k];
 5039:        }
 5040:    
 5041:    
 5042:        printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 5043:     for (k=agegomp;k<(agemortsup-2);k++) 
 5044:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5045: 
 5046: 
 5047:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 5048:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 5049:     
 5050:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 5051: 		     stepm, weightopt,\
 5052: 		     model,imx,p,matcov,agemortsup);
 5053: 
 5054:     free_vector(lsurv,1,AGESUP);
 5055:     free_vector(lpop,1,AGESUP);
 5056:     free_vector(tpop,1,AGESUP);
 5057:   } /* Endof if mle==-3 */
 5058: 
 5059:   else{ /* For mle >=1 */
 5060:   
 5061:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 5062:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 5063:     for (k=1; k<=npar;k++)
 5064:       printf(" %d %8.5f",k,p[k]);
 5065:     printf("\n");
 5066:     globpr=1; /* to print the contributions */
 5067:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 5068:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 5069:     for (k=1; k<=npar;k++)
 5070:       printf(" %d %8.5f",k,p[k]);
 5071:     printf("\n");
 5072:     if(mle>=1){ /* Could be 1 or 2 */
 5073:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 5074:     }
 5075:     
 5076:     /*--------- results files --------------*/
 5077:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 5078:     
 5079:     
 5080:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5081:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5082:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5083:     for(i=1,jk=1; i <=nlstate; i++){
 5084:       for(k=1; k <=(nlstate+ndeath); k++){
 5085: 	if (k != i) {
 5086: 	  printf("%d%d ",i,k);
 5087: 	  fprintf(ficlog,"%d%d ",i,k);
 5088: 	  fprintf(ficres,"%1d%1d ",i,k);
 5089: 	  for(j=1; j <=ncovmodel; j++){
 5090: 	    printf("%f ",p[jk]);
 5091: 	    fprintf(ficlog,"%f ",p[jk]);
 5092: 	    fprintf(ficres,"%f ",p[jk]);
 5093: 	    jk++; 
 5094: 	  }
 5095: 	  printf("\n");
 5096: 	  fprintf(ficlog,"\n");
 5097: 	  fprintf(ficres,"\n");
 5098: 	}
 5099:       }
 5100:     }
 5101:     if(mle!=0){
 5102:       /* Computing hessian and covariance matrix */
 5103:       ftolhess=ftol; /* Usually correct */
 5104:       hesscov(matcov, p, npar, delti, ftolhess, func);
 5105:     }
 5106:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 5107:     printf("# Scales (for hessian or gradient estimation)\n");
 5108:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 5109:     for(i=1,jk=1; i <=nlstate; i++){
 5110:       for(j=1; j <=nlstate+ndeath; j++){
 5111: 	if (j!=i) {
 5112: 	  fprintf(ficres,"%1d%1d",i,j);
 5113: 	  printf("%1d%1d",i,j);
 5114: 	  fprintf(ficlog,"%1d%1d",i,j);
 5115: 	  for(k=1; k<=ncovmodel;k++){
 5116: 	    printf(" %.5e",delti[jk]);
 5117: 	    fprintf(ficlog," %.5e",delti[jk]);
 5118: 	    fprintf(ficres," %.5e",delti[jk]);
 5119: 	    jk++;
 5120: 	  }
 5121: 	  printf("\n");
 5122: 	  fprintf(ficlog,"\n");
 5123: 	  fprintf(ficres,"\n");
 5124: 	}
 5125:       }
 5126:     }
 5127:     
 5128:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5129:     if(mle>=1)
 5130:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5131:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5132:     /* # 121 Var(a12)\n\ */
 5133:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 5134:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 5135:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 5136:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 5137:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 5138:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 5139:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 5140:     
 5141:     
 5142:     /* Just to have a covariance matrix which will be more understandable
 5143:        even is we still don't want to manage dictionary of variables
 5144:     */
 5145:     for(itimes=1;itimes<=2;itimes++){
 5146:       jj=0;
 5147:       for(i=1; i <=nlstate; i++){
 5148: 	for(j=1; j <=nlstate+ndeath; j++){
 5149: 	  if(j==i) continue;
 5150: 	  for(k=1; k<=ncovmodel;k++){
 5151: 	    jj++;
 5152: 	    ca[0]= k+'a'-1;ca[1]='\0';
 5153: 	    if(itimes==1){
 5154: 	      if(mle>=1)
 5155: 		printf("#%1d%1d%d",i,j,k);
 5156: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 5157: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 5158: 	    }else{
 5159: 	      if(mle>=1)
 5160: 		printf("%1d%1d%d",i,j,k);
 5161: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 5162: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 5163: 	    }
 5164: 	    ll=0;
 5165: 	    for(li=1;li <=nlstate; li++){
 5166: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 5167: 		if(lj==li) continue;
 5168: 		for(lk=1;lk<=ncovmodel;lk++){
 5169: 		  ll++;
 5170: 		  if(ll<=jj){
 5171: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 5172: 		    if(ll<jj){
 5173: 		      if(itimes==1){
 5174: 			if(mle>=1)
 5175: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5176: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5177: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5178: 		      }else{
 5179: 			if(mle>=1)
 5180: 			  printf(" %.5e",matcov[jj][ll]); 
 5181: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5182: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5183: 		      }
 5184: 		    }else{
 5185: 		      if(itimes==1){
 5186: 			if(mle>=1)
 5187: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 5188: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 5189: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 5190: 		      }else{
 5191: 			if(mle>=1)
 5192: 			  printf(" %.5e",matcov[jj][ll]); 
 5193: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5194: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5195: 		      }
 5196: 		    }
 5197: 		  }
 5198: 		} /* end lk */
 5199: 	      } /* end lj */
 5200: 	    } /* end li */
 5201: 	    if(mle>=1)
 5202: 	      printf("\n");
 5203: 	    fprintf(ficlog,"\n");
 5204: 	    fprintf(ficres,"\n");
 5205: 	    numlinepar++;
 5206: 	  } /* end k*/
 5207: 	} /*end j */
 5208:       } /* end i */
 5209:     } /* end itimes */
 5210:     
 5211:     fflush(ficlog);
 5212:     fflush(ficres);
 5213:     
 5214:     while((c=getc(ficpar))=='#' && c!= EOF){
 5215:       ungetc(c,ficpar);
 5216:       fgets(line, MAXLINE, ficpar);
 5217:       puts(line);
 5218:       fputs(line,ficparo);
 5219:     }
 5220:     ungetc(c,ficpar);
 5221:     
 5222:     estepm=0;
 5223:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 5224:     if (estepm==0 || estepm < stepm) estepm=stepm;
 5225:     if (fage <= 2) {
 5226:       bage = ageminpar;
 5227:       fage = agemaxpar;
 5228:     }
 5229:     
 5230:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 5231:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5232:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5233:     
 5234:     while((c=getc(ficpar))=='#' && c!= EOF){
 5235:       ungetc(c,ficpar);
 5236:       fgets(line, MAXLINE, ficpar);
 5237:       puts(line);
 5238:       fputs(line,ficparo);
 5239:     }
 5240:     ungetc(c,ficpar);
 5241:     
 5242:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 5243:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5244:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5245:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5246:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5247:     
 5248:     while((c=getc(ficpar))=='#' && c!= EOF){
 5249:       ungetc(c,ficpar);
 5250:       fgets(line, MAXLINE, ficpar);
 5251:       puts(line);
 5252:       fputs(line,ficparo);
 5253:     }
 5254:     ungetc(c,ficpar);
 5255:     
 5256:     
 5257:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 5258:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 5259:     
 5260:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 5261:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 5262:     fprintf(ficres,"pop_based=%d\n",popbased);   
 5263:     
 5264:     while((c=getc(ficpar))=='#' && c!= EOF){
 5265:       ungetc(c,ficpar);
 5266:       fgets(line, MAXLINE, ficpar);
 5267:       puts(line);
 5268:       fputs(line,ficparo);
 5269:     }
 5270:     ungetc(c,ficpar);
 5271:     
 5272:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 5273:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5274:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5275:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5276:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5277:     /* day and month of proj2 are not used but only year anproj2.*/
 5278:     
 5279:     
 5280:     
 5281:     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
 5282:     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 5283:     
 5284:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 5285:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 5286:     
 5287:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 5288: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 5289: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 5290:       
 5291:    /*------------ free_vector  -------------*/
 5292:    /*  chdir(path); */
 5293:  
 5294:     free_ivector(wav,1,imx);
 5295:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 5296:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 5297:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 5298:     free_lvector(num,1,n);
 5299:     free_vector(agedc,1,n);
 5300:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 5301:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 5302:     fclose(ficparo);
 5303:     fclose(ficres);
 5304: 
 5305: 
 5306:     /*--------------- Prevalence limit  (stable prevalence) --------------*/
 5307:   
 5308:     strcpy(filerespl,"pl");
 5309:     strcat(filerespl,fileres);
 5310:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 5311:       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 5312:       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 5313:     }
 5314:     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
 5315:     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
 5316:     fprintf(ficrespl, "#Local time at start: %s", strstart);
 5317:     fprintf(ficrespl,"#Stable prevalence \n");
 5318:     fprintf(ficrespl,"#Age ");
 5319:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5320:     fprintf(ficrespl,"\n");
 5321:   
 5322:     prlim=matrix(1,nlstate,1,nlstate);
 5323: 
 5324:     agebase=ageminpar;
 5325:     agelim=agemaxpar;
 5326:     ftolpl=1.e-10;
 5327:     i1=cptcoveff;
 5328:     if (cptcovn < 1){i1=1;}
 5329: 
 5330:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5331:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5332: 	k=k+1;
 5333: 	/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 5334: 	fprintf(ficrespl,"\n#******");
 5335: 	printf("\n#******");
 5336: 	fprintf(ficlog,"\n#******");
 5337: 	for(j=1;j<=cptcoveff;j++) {
 5338: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5339: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5340: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5341: 	}
 5342: 	fprintf(ficrespl,"******\n");
 5343: 	printf("******\n");
 5344: 	fprintf(ficlog,"******\n");
 5345: 	
 5346: 	for (age=agebase; age<=agelim; age++){
 5347: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5348: 	  fprintf(ficrespl,"%.0f ",age );
 5349: 	  for(j=1;j<=cptcoveff;j++)
 5350: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5351: 	  for(i=1; i<=nlstate;i++)
 5352: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 5353: 	  fprintf(ficrespl,"\n");
 5354: 	}
 5355:       }
 5356:     }
 5357:     fclose(ficrespl);
 5358: 
 5359:     /*------------- h Pij x at various ages ------------*/
 5360:   
 5361:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 5362:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 5363:       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 5364:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 5365:     }
 5366:     printf("Computing pij: result on file '%s' \n", filerespij);
 5367:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 5368:   
 5369:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 5370:     /*if (stepm<=24) stepsize=2;*/
 5371: 
 5372:     agelim=AGESUP;
 5373:     hstepm=stepsize*YEARM; /* Every year of age */
 5374:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 5375: 
 5376:     /* hstepm=1;   aff par mois*/
 5377:     fprintf(ficrespij, "#Local time at start: %s", strstart);
 5378:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 5379:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5380:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5381: 	k=k+1;
 5382: 	fprintf(ficrespij,"\n#****** ");
 5383: 	for(j=1;j<=cptcoveff;j++) 
 5384: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5385: 	fprintf(ficrespij,"******\n");
 5386: 	
 5387: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 5388: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 5389: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 5390: 
 5391: 	  /*	  nhstepm=nhstepm*YEARM; aff par mois*/
 5392: 
 5393: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5394: 	  oldm=oldms;savm=savms;
 5395: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5396: 	  fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 5397: 	  for(i=1; i<=nlstate;i++)
 5398: 	    for(j=1; j<=nlstate+ndeath;j++)
 5399: 	      fprintf(ficrespij," %1d-%1d",i,j);
 5400: 	  fprintf(ficrespij,"\n");
 5401: 	  for (h=0; h<=nhstepm; h++){
 5402: 	    fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 5403: 	    for(i=1; i<=nlstate;i++)
 5404: 	      for(j=1; j<=nlstate+ndeath;j++)
 5405: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 5406: 	    fprintf(ficrespij,"\n");
 5407: 	  }
 5408: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5409: 	  fprintf(ficrespij,"\n");
 5410: 	}
 5411:       }
 5412:     }
 5413: 
 5414:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 5415: 
 5416:     fclose(ficrespij);
 5417: 
 5418:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5419:     for(i=1;i<=AGESUP;i++)
 5420:       for(j=1;j<=NCOVMAX;j++)
 5421: 	for(k=1;k<=NCOVMAX;k++)
 5422: 	  probs[i][j][k]=0.;
 5423: 
 5424:     /*---------- Forecasting ------------------*/
 5425:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 5426:     if(prevfcast==1){
 5427:       /*    if(stepm ==1){*/
 5428:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 5429:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 5430:       /*      }  */
 5431:       /*      else{ */
 5432:       /*        erreur=108; */
 5433:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 5434:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 5435:       /*      } */
 5436:     }
 5437:   
 5438: 
 5439:     /*---------- Health expectancies and variances ------------*/
 5440: 
 5441:     strcpy(filerest,"t");
 5442:     strcat(filerest,fileres);
 5443:     if((ficrest=fopen(filerest,"w"))==NULL) {
 5444:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 5445:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 5446:     }
 5447:     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 5448:     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
 5449: 
 5450: 
 5451:     strcpy(filerese,"e");
 5452:     strcat(filerese,fileres);
 5453:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 5454:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 5455:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 5456:     }
 5457:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 5458:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 5459: 
 5460:     strcpy(fileresv,"v");
 5461:     strcat(fileresv,fileres);
 5462:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 5463:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 5464:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 5465:     }
 5466:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 5467:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 5468: 
 5469:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 5470:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 5471:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 5472: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 5473:     */
 5474: 
 5475:     if (mobilav!=0) {
 5476:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5477:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 5478: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 5479: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 5480:       }
 5481:     }
 5482: 
 5483:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5484:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5485: 	k=k+1; 
 5486: 	fprintf(ficrest,"\n#****** ");
 5487: 	for(j=1;j<=cptcoveff;j++) 
 5488: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5489: 	fprintf(ficrest,"******\n");
 5490: 
 5491: 	fprintf(ficreseij,"\n#****** ");
 5492: 	for(j=1;j<=cptcoveff;j++) 
 5493: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5494: 	fprintf(ficreseij,"******\n");
 5495: 
 5496: 	fprintf(ficresvij,"\n#****** ");
 5497: 	for(j=1;j<=cptcoveff;j++) 
 5498: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5499: 	fprintf(ficresvij,"******\n");
 5500: 
 5501: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5502: 	oldm=oldms;savm=savms;
 5503: 	evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 5504:  
 5505: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5506: 	oldm=oldms;savm=savms;
 5507: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
 5508: 	if(popbased==1){
 5509: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
 5510: 	}
 5511: 
 5512: 	fprintf(ficrest, "#Local time at start: %s", strstart);
 5513: 	fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 5514: 	for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 5515: 	fprintf(ficrest,"\n");
 5516: 
 5517: 	epj=vector(1,nlstate+1);
 5518: 	for(age=bage; age <=fage ;age++){
 5519: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5520: 	  if (popbased==1) {
 5521: 	    if(mobilav ==0){
 5522: 	      for(i=1; i<=nlstate;i++)
 5523: 		prlim[i][i]=probs[(int)age][i][k];
 5524: 	    }else{ /* mobilav */ 
 5525: 	      for(i=1; i<=nlstate;i++)
 5526: 		prlim[i][i]=mobaverage[(int)age][i][k];
 5527: 	    }
 5528: 	  }
 5529: 	
 5530: 	  fprintf(ficrest," %4.0f",age);
 5531: 	  for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 5532: 	    for(i=1, epj[j]=0.;i <=nlstate;i++) {
 5533: 	      epj[j] += prlim[i][i]*eij[i][j][(int)age];
 5534: 	      /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 5535: 	    }
 5536: 	    epj[nlstate+1] +=epj[j];
 5537: 	  }
 5538: 
 5539: 	  for(i=1, vepp=0.;i <=nlstate;i++)
 5540: 	    for(j=1;j <=nlstate;j++)
 5541: 	      vepp += vareij[i][j][(int)age];
 5542: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 5543: 	  for(j=1;j <=nlstate;j++){
 5544: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 5545: 	  }
 5546: 	  fprintf(ficrest,"\n");
 5547: 	}
 5548: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5549: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5550: 	free_vector(epj,1,nlstate+1);
 5551:       }
 5552:     }
 5553:     free_vector(weight,1,n);
 5554:     free_imatrix(Tvard,1,15,1,2);
 5555:     free_imatrix(s,1,maxwav+1,1,n);
 5556:     free_matrix(anint,1,maxwav,1,n); 
 5557:     free_matrix(mint,1,maxwav,1,n);
 5558:     free_ivector(cod,1,n);
 5559:     free_ivector(tab,1,NCOVMAX);
 5560:     fclose(ficreseij);
 5561:     fclose(ficresvij);
 5562:     fclose(ficrest);
 5563:     fclose(ficpar);
 5564:   
 5565:     /*------- Variance of stable prevalence------*/   
 5566: 
 5567:     strcpy(fileresvpl,"vpl");
 5568:     strcat(fileresvpl,fileres);
 5569:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 5570:       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 5571:       exit(0);
 5572:     }
 5573:     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
 5574: 
 5575:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5576:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5577: 	k=k+1;
 5578: 	fprintf(ficresvpl,"\n#****** ");
 5579: 	for(j=1;j<=cptcoveff;j++) 
 5580: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5581: 	fprintf(ficresvpl,"******\n");
 5582:       
 5583: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 5584: 	oldm=oldms;savm=savms;
 5585: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 5586: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 5587:       }
 5588:     }
 5589: 
 5590:     fclose(ficresvpl);
 5591: 
 5592:     /*---------- End : free ----------------*/
 5593:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5594:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5595: 
 5596:   }  /* mle==-3 arrives here for freeing */
 5597:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 5598:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5599:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5600:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5601:   
 5602:     free_matrix(covar,0,NCOVMAX,1,n);
 5603:     free_matrix(matcov,1,npar,1,npar);
 5604:     /*free_vector(delti,1,npar);*/
 5605:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5606:     free_matrix(agev,1,maxwav,1,imx);
 5607:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 5608: 
 5609:     free_ivector(ncodemax,1,8);
 5610:     free_ivector(Tvar,1,15);
 5611:     free_ivector(Tprod,1,15);
 5612:     free_ivector(Tvaraff,1,15);
 5613:     free_ivector(Tage,1,15);
 5614:     free_ivector(Tcode,1,100);
 5615: 
 5616: 
 5617:   fflush(fichtm);
 5618:   fflush(ficgp);
 5619:   
 5620: 
 5621:   if((nberr >0) || (nbwarn>0)){
 5622:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 5623:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5624:   }else{
 5625:     printf("End of Imach\n");
 5626:     fprintf(ficlog,"End of Imach\n");
 5627:   }
 5628:   printf("See log file on %s\n",filelog);
 5629:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 5630:   (void) gettimeofday(&end_time,&tzp);
 5631:   tm = *localtime(&end_time.tv_sec);
 5632:   tmg = *gmtime(&end_time.tv_sec);
 5633:   strcpy(strtend,asctime(&tm));
 5634:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 5635:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 5636:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5637: 
 5638:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5639:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5640:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5641:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 5642: /*   if(fileappend(fichtm,optionfilehtm)){ */
 5643:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
 5644:   fclose(fichtm);
 5645:   fclose(fichtmcov);
 5646:   fclose(ficgp);
 5647:   fclose(ficlog);
 5648:   /*------ End -----------*/
 5649: 
 5650:   chdir(path);
 5651: #ifndef UNIX
 5652:   /*  strcpy(plotcmd,"\""); */
 5653: #endif
 5654:   strcpy(plotcmd,pathimach);
 5655:   /*strcat(plotcmd,CHARSEPARATOR);*/
 5656:   strcat(plotcmd,GNUPLOTPROGRAM);
 5657: #ifndef UNIX
 5658:   strcat(plotcmd,".exe");
 5659:   /*  strcat(plotcmd,"\"");*/
 5660: #endif
 5661:   if(stat(plotcmd,&info)){
 5662:     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 5663:   }
 5664: 
 5665: #ifndef UNIX
 5666:   strcpy(plotcmd,"\"");
 5667: #endif
 5668:   strcat(plotcmd,pathimach);
 5669:   strcat(plotcmd,GNUPLOTPROGRAM);
 5670: #ifndef UNIX
 5671:   strcat(plotcmd,".exe");
 5672:   strcat(plotcmd,"\"");
 5673: #endif
 5674:   strcat(plotcmd," ");
 5675:   strcat(plotcmd,optionfilegnuplot);
 5676:   printf("Starting graphs with: %s",plotcmd);fflush(stdout);
 5677: 
 5678:   if((outcmd=system(plotcmd)) != 0){
 5679:     printf("\n Problem with gnuplot\n");
 5680:   }
 5681:   printf(" Wait...");
 5682:   while (z[0] != 'q') {
 5683:     /* chdir(path); */
 5684:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 5685:     scanf("%s",z);
 5686: /*     if (z[0] == 'c') system("./imach"); */
 5687:     if (z[0] == 'e') {
 5688:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
 5689:       system(optionfilehtm);
 5690:     }
 5691:     else if (z[0] == 'g') system(plotcmd);
 5692:     else if (z[0] == 'q') exit(0);
 5693:   }
 5694:   end:
 5695:   while (z[0] != 'q') {
 5696:     printf("\nType  q for exiting: ");
 5697:     scanf("%s",z);
 5698:   }
 5699: }
 5700: 
 5701: 
 5702: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>