File:  [Local Repository] / imach / src / imach.c
Revision 1.114: download - view: text, annotated - select for diffs
Sun Feb 26 12:57:58 2006 UTC (18 years, 2 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
(Module): Some improvements in processing parameter
filename with strsep.

    1: /* $Id: imach.c,v 1.114 2006/02/26 12:57:58 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.114  2006/02/26 12:57:58  brouard
    5:   (Module): Some improvements in processing parameter
    6:   filename with strsep.
    7: 
    8:   Revision 1.113  2006/02/24 14:20:24  brouard
    9:   (Module): Memory leaks checks with valgrind and:
   10:   datafile was not closed, some imatrix were not freed and on matrix
   11:   allocation too.
   12: 
   13:   Revision 1.112  2006/01/30 09:55:26  brouard
   14:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
   15: 
   16:   Revision 1.111  2006/01/25 20:38:18  brouard
   17:   (Module): Lots of cleaning and bugs added (Gompertz)
   18:   (Module): Comments can be added in data file. Missing date values
   19:   can be a simple dot '.'.
   20: 
   21:   Revision 1.110  2006/01/25 00:51:50  brouard
   22:   (Module): Lots of cleaning and bugs added (Gompertz)
   23: 
   24:   Revision 1.109  2006/01/24 19:37:15  brouard
   25:   (Module): Comments (lines starting with a #) are allowed in data.
   26: 
   27:   Revision 1.108  2006/01/19 18:05:42  lievre
   28:   Gnuplot problem appeared...
   29:   To be fixed
   30: 
   31:   Revision 1.107  2006/01/19 16:20:37  brouard
   32:   Test existence of gnuplot in imach path
   33: 
   34:   Revision 1.106  2006/01/19 13:24:36  brouard
   35:   Some cleaning and links added in html output
   36: 
   37:   Revision 1.105  2006/01/05 20:23:19  lievre
   38:   *** empty log message ***
   39: 
   40:   Revision 1.104  2005/09/30 16:11:43  lievre
   41:   (Module): sump fixed, loop imx fixed, and simplifications.
   42:   (Module): If the status is missing at the last wave but we know
   43:   that the person is alive, then we can code his/her status as -2
   44:   (instead of missing=-1 in earlier versions) and his/her
   45:   contributions to the likelihood is 1 - Prob of dying from last
   46:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
   47:   the healthy state at last known wave). Version is 0.98
   48: 
   49:   Revision 1.103  2005/09/30 15:54:49  lievre
   50:   (Module): sump fixed, loop imx fixed, and simplifications.
   51: 
   52:   Revision 1.102  2004/09/15 17:31:30  brouard
   53:   Add the possibility to read data file including tab characters.
   54: 
   55:   Revision 1.101  2004/09/15 10:38:38  brouard
   56:   Fix on curr_time
   57: 
   58:   Revision 1.100  2004/07/12 18:29:06  brouard
   59:   Add version for Mac OS X. Just define UNIX in Makefile
   60: 
   61:   Revision 1.99  2004/06/05 08:57:40  brouard
   62:   *** empty log message ***
   63: 
   64:   Revision 1.98  2004/05/16 15:05:56  brouard
   65:   New version 0.97 . First attempt to estimate force of mortality
   66:   directly from the data i.e. without the need of knowing the health
   67:   state at each age, but using a Gompertz model: log u =a + b*age .
   68:   This is the basic analysis of mortality and should be done before any
   69:   other analysis, in order to test if the mortality estimated from the
   70:   cross-longitudinal survey is different from the mortality estimated
   71:   from other sources like vital statistic data.
   72: 
   73:   The same imach parameter file can be used but the option for mle should be -3.
   74: 
   75:   Agnès, who wrote this part of the code, tried to keep most of the
   76:   former routines in order to include the new code within the former code.
   77: 
   78:   The output is very simple: only an estimate of the intercept and of
   79:   the slope with 95% confident intervals.
   80: 
   81:   Current limitations:
   82:   A) Even if you enter covariates, i.e. with the
   83:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   84:   B) There is no computation of Life Expectancy nor Life Table.
   85: 
   86:   Revision 1.97  2004/02/20 13:25:42  lievre
   87:   Version 0.96d. Population forecasting command line is (temporarily)
   88:   suppressed.
   89: 
   90:   Revision 1.96  2003/07/15 15:38:55  brouard
   91:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   92:   rewritten within the same printf. Workaround: many printfs.
   93: 
   94:   Revision 1.95  2003/07/08 07:54:34  brouard
   95:   * imach.c (Repository):
   96:   (Repository): Using imachwizard code to output a more meaningful covariance
   97:   matrix (cov(a12,c31) instead of numbers.
   98: 
   99:   Revision 1.94  2003/06/27 13:00:02  brouard
  100:   Just cleaning
  101: 
  102:   Revision 1.93  2003/06/25 16:33:55  brouard
  103:   (Module): On windows (cygwin) function asctime_r doesn't
  104:   exist so I changed back to asctime which exists.
  105:   (Module): Version 0.96b
  106: 
  107:   Revision 1.92  2003/06/25 16:30:45  brouard
  108:   (Module): On windows (cygwin) function asctime_r doesn't
  109:   exist so I changed back to asctime which exists.
  110: 
  111:   Revision 1.91  2003/06/25 15:30:29  brouard
  112:   * imach.c (Repository): Duplicated warning errors corrected.
  113:   (Repository): Elapsed time after each iteration is now output. It
  114:   helps to forecast when convergence will be reached. Elapsed time
  115:   is stamped in powell.  We created a new html file for the graphs
  116:   concerning matrix of covariance. It has extension -cov.htm.
  117: 
  118:   Revision 1.90  2003/06/24 12:34:15  brouard
  119:   (Module): Some bugs corrected for windows. Also, when
  120:   mle=-1 a template is output in file "or"mypar.txt with the design
  121:   of the covariance matrix to be input.
  122: 
  123:   Revision 1.89  2003/06/24 12:30:52  brouard
  124:   (Module): Some bugs corrected for windows. Also, when
  125:   mle=-1 a template is output in file "or"mypar.txt with the design
  126:   of the covariance matrix to be input.
  127: 
  128:   Revision 1.88  2003/06/23 17:54:56  brouard
  129:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  130: 
  131:   Revision 1.87  2003/06/18 12:26:01  brouard
  132:   Version 0.96
  133: 
  134:   Revision 1.86  2003/06/17 20:04:08  brouard
  135:   (Module): Change position of html and gnuplot routines and added
  136:   routine fileappend.
  137: 
  138:   Revision 1.85  2003/06/17 13:12:43  brouard
  139:   * imach.c (Repository): Check when date of death was earlier that
  140:   current date of interview. It may happen when the death was just
  141:   prior to the death. In this case, dh was negative and likelihood
  142:   was wrong (infinity). We still send an "Error" but patch by
  143:   assuming that the date of death was just one stepm after the
  144:   interview.
  145:   (Repository): Because some people have very long ID (first column)
  146:   we changed int to long in num[] and we added a new lvector for
  147:   memory allocation. But we also truncated to 8 characters (left
  148:   truncation)
  149:   (Repository): No more line truncation errors.
  150: 
  151:   Revision 1.84  2003/06/13 21:44:43  brouard
  152:   * imach.c (Repository): Replace "freqsummary" at a correct
  153:   place. It differs from routine "prevalence" which may be called
  154:   many times. Probs is memory consuming and must be used with
  155:   parcimony.
  156:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  157: 
  158:   Revision 1.83  2003/06/10 13:39:11  lievre
  159:   *** empty log message ***
  160: 
  161:   Revision 1.82  2003/06/05 15:57:20  brouard
  162:   Add log in  imach.c and  fullversion number is now printed.
  163: 
  164: */
  165: /*
  166:    Interpolated Markov Chain
  167: 
  168:   Short summary of the programme:
  169:   
  170:   This program computes Healthy Life Expectancies from
  171:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  172:   first survey ("cross") where individuals from different ages are
  173:   interviewed on their health status or degree of disability (in the
  174:   case of a health survey which is our main interest) -2- at least a
  175:   second wave of interviews ("longitudinal") which measure each change
  176:   (if any) in individual health status.  Health expectancies are
  177:   computed from the time spent in each health state according to a
  178:   model. More health states you consider, more time is necessary to reach the
  179:   Maximum Likelihood of the parameters involved in the model.  The
  180:   simplest model is the multinomial logistic model where pij is the
  181:   probability to be observed in state j at the second wave
  182:   conditional to be observed in state i at the first wave. Therefore
  183:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  184:   'age' is age and 'sex' is a covariate. If you want to have a more
  185:   complex model than "constant and age", you should modify the program
  186:   where the markup *Covariates have to be included here again* invites
  187:   you to do it.  More covariates you add, slower the
  188:   convergence.
  189: 
  190:   The advantage of this computer programme, compared to a simple
  191:   multinomial logistic model, is clear when the delay between waves is not
  192:   identical for each individual. Also, if a individual missed an
  193:   intermediate interview, the information is lost, but taken into
  194:   account using an interpolation or extrapolation.  
  195: 
  196:   hPijx is the probability to be observed in state i at age x+h
  197:   conditional to the observed state i at age x. The delay 'h' can be
  198:   split into an exact number (nh*stepm) of unobserved intermediate
  199:   states. This elementary transition (by month, quarter,
  200:   semester or year) is modelled as a multinomial logistic.  The hPx
  201:   matrix is simply the matrix product of nh*stepm elementary matrices
  202:   and the contribution of each individual to the likelihood is simply
  203:   hPijx.
  204: 
  205:   Also this programme outputs the covariance matrix of the parameters but also
  206:   of the life expectancies. It also computes the stable prevalence. 
  207:   
  208:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  209:            Institut national d'études démographiques, Paris.
  210:   This software have been partly granted by Euro-REVES, a concerted action
  211:   from the European Union.
  212:   It is copyrighted identically to a GNU software product, ie programme and
  213:   software can be distributed freely for non commercial use. Latest version
  214:   can be accessed at http://euroreves.ined.fr/imach .
  215: 
  216:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  217:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  218:   
  219:   **********************************************************************/
  220: /*
  221:   main
  222:   read parameterfile
  223:   read datafile
  224:   concatwav
  225:   freqsummary
  226:   if (mle >= 1)
  227:     mlikeli
  228:   print results files
  229:   if mle==1 
  230:      computes hessian
  231:   read end of parameter file: agemin, agemax, bage, fage, estepm
  232:       begin-prev-date,...
  233:   open gnuplot file
  234:   open html file
  235:   stable prevalence
  236:    for age prevalim()
  237:   h Pij x
  238:   variance of p varprob
  239:   forecasting if prevfcast==1 prevforecast call prevalence()
  240:   health expectancies
  241:   Variance-covariance of DFLE
  242:   prevalence()
  243:    movingaverage()
  244:   varevsij() 
  245:   if popbased==1 varevsij(,popbased)
  246:   total life expectancies
  247:   Variance of stable prevalence
  248:  end
  249: */
  250: 
  251: 
  252: 
  253:  
  254: #include <math.h>
  255: #include <stdio.h>
  256: #include <stdlib.h>
  257: #include <string.h>
  258: #include <unistd.h>
  259: 
  260: #include <limits.h>
  261: #include <sys/types.h>
  262: #include <sys/stat.h>
  263: #include <errno.h>
  264: extern int errno;
  265: 
  266: /* #include <sys/time.h> */
  267: #include <time.h>
  268: #include "timeval.h"
  269: 
  270: /* #include <libintl.h> */
  271: /* #define _(String) gettext (String) */
  272: 
  273: #define MAXLINE 256
  274: 
  275: #define GNUPLOTPROGRAM "gnuplot"
  276: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  277: #define FILENAMELENGTH 132
  278: 
  279: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  280: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  281: 
  282: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
  283: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  284: 
  285: #define NINTERVMAX 8
  286: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
  287: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
  288: #define NCOVMAX 8 /* Maximum number of covariates */
  289: #define MAXN 20000
  290: #define YEARM 12. /* Number of months per year */
  291: #define AGESUP 130
  292: #define AGEBASE 40
  293: #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
  294: #ifdef UNIX
  295: #define DIRSEPARATOR '/'
  296: #define CHARSEPARATOR "/"
  297: #define ODIRSEPARATOR '\\'
  298: #else
  299: #define DIRSEPARATOR '\\'
  300: #define CHARSEPARATOR "\\"
  301: #define ODIRSEPARATOR '/'
  302: #endif
  303: 
  304: /* $Id: imach.c,v 1.114 2006/02/26 12:57:58 brouard Exp $ */
  305: /* $State: Exp $ */
  306: 
  307: char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
  308: char fullversion[]="$Revision: 1.114 $ $Date: 2006/02/26 12:57:58 $"; 
  309: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  310: int nvar;
  311: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
  312: int npar=NPARMAX;
  313: int nlstate=2; /* Number of live states */
  314: int ndeath=1; /* Number of dead states */
  315: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  316: int popbased=0;
  317: 
  318: int *wav; /* Number of waves for this individuual 0 is possible */
  319: int maxwav; /* Maxim number of waves */
  320: int jmin, jmax; /* min, max spacing between 2 waves */
  321: int ijmin, ijmax; /* Individuals having jmin and jmax */ 
  322: int gipmx, gsw; /* Global variables on the number of contributions 
  323: 		   to the likelihood and the sum of weights (done by funcone)*/
  324: int mle, weightopt;
  325: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  326: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  327: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  328: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  329: double jmean; /* Mean space between 2 waves */
  330: double **oldm, **newm, **savm; /* Working pointers to matrices */
  331: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  332: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  333: FILE *ficlog, *ficrespow;
  334: int globpr; /* Global variable for printing or not */
  335: double fretone; /* Only one call to likelihood */
  336: long ipmx; /* Number of contributions */
  337: double sw; /* Sum of weights */
  338: char filerespow[FILENAMELENGTH];
  339: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  340: FILE *ficresilk;
  341: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  342: FILE *ficresprobmorprev;
  343: FILE *fichtm, *fichtmcov; /* Html File */
  344: FILE *ficreseij;
  345: char filerese[FILENAMELENGTH];
  346: FILE  *ficresvij;
  347: char fileresv[FILENAMELENGTH];
  348: FILE  *ficresvpl;
  349: char fileresvpl[FILENAMELENGTH];
  350: char title[MAXLINE];
  351: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  352: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  353: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  354: char command[FILENAMELENGTH];
  355: int  outcmd=0;
  356: 
  357: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  358: 
  359: char filelog[FILENAMELENGTH]; /* Log file */
  360: char filerest[FILENAMELENGTH];
  361: char fileregp[FILENAMELENGTH];
  362: char popfile[FILENAMELENGTH];
  363: 
  364: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  365: 
  366: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  367: struct timezone tzp;
  368: extern int gettimeofday();
  369: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  370: long time_value;
  371: extern long time();
  372: char strcurr[80], strfor[80];
  373: 
  374: char *endptr;
  375: long lval;
  376: 
  377: #define NR_END 1
  378: #define FREE_ARG char*
  379: #define FTOL 1.0e-10
  380: 
  381: #define NRANSI 
  382: #define ITMAX 200 
  383: 
  384: #define TOL 2.0e-4 
  385: 
  386: #define CGOLD 0.3819660 
  387: #define ZEPS 1.0e-10 
  388: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  389: 
  390: #define GOLD 1.618034 
  391: #define GLIMIT 100.0 
  392: #define TINY 1.0e-20 
  393: 
  394: static double maxarg1,maxarg2;
  395: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  396: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  397:   
  398: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  399: #define rint(a) floor(a+0.5)
  400: 
  401: static double sqrarg;
  402: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  403: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  404: int agegomp= AGEGOMP;
  405: 
  406: int imx; 
  407: int stepm=1;
  408: /* Stepm, step in month: minimum step interpolation*/
  409: 
  410: int estepm;
  411: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  412: 
  413: int m,nb;
  414: long *num;
  415: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  416: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  417: double **pmmij, ***probs;
  418: double *ageexmed,*agecens;
  419: double dateintmean=0;
  420: 
  421: double *weight;
  422: int **s; /* Status */
  423: double *agedc, **covar, idx;
  424: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  425: double *lsurv, *lpop, *tpop;
  426: 
  427: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  428: double ftolhess; /* Tolerance for computing hessian */
  429: 
  430: /**************** split *************************/
  431: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  432: {
  433:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  434:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  435:   */ 
  436:   char	*ss;				/* pointer */
  437:   int	l1, l2;				/* length counters */
  438: 
  439:   l1 = strlen(path );			/* length of path */
  440:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  441:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  442:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  443:     strcpy( name, path );		/* we got the fullname name because no directory */
  444:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  445:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  446:     /* get current working directory */
  447:     /*    extern  char* getcwd ( char *buf , int len);*/
  448:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  449:       return( GLOCK_ERROR_GETCWD );
  450:     }
  451:     /* got dirc from getcwd*/
  452:     printf(" DIRC = %s \n",dirc);
  453:   } else {				/* strip direcotry from path */
  454:     ss++;				/* after this, the filename */
  455:     l2 = strlen( ss );			/* length of filename */
  456:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  457:     strcpy( name, ss );		/* save file name */
  458:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  459:     dirc[l1-l2] = 0;			/* add zero */
  460:     printf(" DIRC2 = %s \n",dirc);
  461:   }
  462:   /* We add a separator at the end of dirc if not exists */
  463:   l1 = strlen( dirc );			/* length of directory */
  464:   if( dirc[l1-1] != DIRSEPARATOR ){
  465:     dirc[l1] =  DIRSEPARATOR;
  466:     dirc[l1+1] = 0; 
  467:     printf(" DIRC3 = %s \n",dirc);
  468:   }
  469:   ss = strrchr( name, '.' );		/* find last / */
  470:   if (ss >0){
  471:     ss++;
  472:     strcpy(ext,ss);			/* save extension */
  473:     l1= strlen( name);
  474:     l2= strlen(ss)+1;
  475:     strncpy( finame, name, l1-l2);
  476:     finame[l1-l2]= 0;
  477:   }
  478: 
  479:   return( 0 );				/* we're done */
  480: }
  481: 
  482: 
  483: /******************************************/
  484: 
  485: void replace_back_to_slash(char *s, char*t)
  486: {
  487:   int i;
  488:   int lg=0;
  489:   i=0;
  490:   lg=strlen(t);
  491:   for(i=0; i<= lg; i++) {
  492:     (s[i] = t[i]);
  493:     if (t[i]== '\\') s[i]='/';
  494:   }
  495: }
  496: 
  497: int nbocc(char *s, char occ)
  498: {
  499:   int i,j=0;
  500:   int lg=20;
  501:   i=0;
  502:   lg=strlen(s);
  503:   for(i=0; i<= lg; i++) {
  504:   if  (s[i] == occ ) j++;
  505:   }
  506:   return j;
  507: }
  508: 
  509: void cutv(char *u,char *v, char*t, char occ)
  510: {
  511:   /* cuts string t into u and v where u ends before first occurence of char 'occ' 
  512:      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
  513:      gives u="abcedf" and v="ghi2j" */
  514:   int i,lg,j,p=0;
  515:   i=0;
  516:   for(j=0; j<=strlen(t)-1; j++) {
  517:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  518:   }
  519: 
  520:   lg=strlen(t);
  521:   for(j=0; j<p; j++) {
  522:     (u[j] = t[j]);
  523:   }
  524:      u[p]='\0';
  525: 
  526:    for(j=0; j<= lg; j++) {
  527:     if (j>=(p+1))(v[j-p-1] = t[j]);
  528:   }
  529: }
  530: 
  531: /********************** nrerror ********************/
  532: 
  533: void nrerror(char error_text[])
  534: {
  535:   fprintf(stderr,"ERREUR ...\n");
  536:   fprintf(stderr,"%s\n",error_text);
  537:   exit(EXIT_FAILURE);
  538: }
  539: /*********************** vector *******************/
  540: double *vector(int nl, int nh)
  541: {
  542:   double *v;
  543:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  544:   if (!v) nrerror("allocation failure in vector");
  545:   return v-nl+NR_END;
  546: }
  547: 
  548: /************************ free vector ******************/
  549: void free_vector(double*v, int nl, int nh)
  550: {
  551:   free((FREE_ARG)(v+nl-NR_END));
  552: }
  553: 
  554: /************************ivector *******************************/
  555: int *ivector(long nl,long nh)
  556: {
  557:   int *v;
  558:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  559:   if (!v) nrerror("allocation failure in ivector");
  560:   return v-nl+NR_END;
  561: }
  562: 
  563: /******************free ivector **************************/
  564: void free_ivector(int *v, long nl, long nh)
  565: {
  566:   free((FREE_ARG)(v+nl-NR_END));
  567: }
  568: 
  569: /************************lvector *******************************/
  570: long *lvector(long nl,long nh)
  571: {
  572:   long *v;
  573:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  574:   if (!v) nrerror("allocation failure in ivector");
  575:   return v-nl+NR_END;
  576: }
  577: 
  578: /******************free lvector **************************/
  579: void free_lvector(long *v, long nl, long nh)
  580: {
  581:   free((FREE_ARG)(v+nl-NR_END));
  582: }
  583: 
  584: /******************* imatrix *******************************/
  585: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  586:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  587: { 
  588:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  589:   int **m; 
  590:   
  591:   /* allocate pointers to rows */ 
  592:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  593:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  594:   m += NR_END; 
  595:   m -= nrl; 
  596:   
  597:   
  598:   /* allocate rows and set pointers to them */ 
  599:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  600:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  601:   m[nrl] += NR_END; 
  602:   m[nrl] -= ncl; 
  603:   
  604:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  605:   
  606:   /* return pointer to array of pointers to rows */ 
  607:   return m; 
  608: } 
  609: 
  610: /****************** free_imatrix *************************/
  611: void free_imatrix(m,nrl,nrh,ncl,nch)
  612:       int **m;
  613:       long nch,ncl,nrh,nrl; 
  614:      /* free an int matrix allocated by imatrix() */ 
  615: { 
  616:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  617:   free((FREE_ARG) (m+nrl-NR_END)); 
  618: } 
  619: 
  620: /******************* matrix *******************************/
  621: double **matrix(long nrl, long nrh, long ncl, long nch)
  622: {
  623:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  624:   double **m;
  625: 
  626:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  627:   if (!m) nrerror("allocation failure 1 in matrix()");
  628:   m += NR_END;
  629:   m -= nrl;
  630: 
  631:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  632:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  633:   m[nrl] += NR_END;
  634:   m[nrl] -= ncl;
  635: 
  636:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  637:   return m;
  638:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
  639:    */
  640: }
  641: 
  642: /*************************free matrix ************************/
  643: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  644: {
  645:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  646:   free((FREE_ARG)(m+nrl-NR_END));
  647: }
  648: 
  649: /******************* ma3x *******************************/
  650: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  651: {
  652:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  653:   double ***m;
  654: 
  655:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  656:   if (!m) nrerror("allocation failure 1 in matrix()");
  657:   m += NR_END;
  658:   m -= nrl;
  659: 
  660:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  661:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  662:   m[nrl] += NR_END;
  663:   m[nrl] -= ncl;
  664: 
  665:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  666: 
  667:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  668:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  669:   m[nrl][ncl] += NR_END;
  670:   m[nrl][ncl] -= nll;
  671:   for (j=ncl+1; j<=nch; j++) 
  672:     m[nrl][j]=m[nrl][j-1]+nlay;
  673:   
  674:   for (i=nrl+1; i<=nrh; i++) {
  675:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  676:     for (j=ncl+1; j<=nch; j++) 
  677:       m[i][j]=m[i][j-1]+nlay;
  678:   }
  679:   return m; 
  680:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  681:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  682:   */
  683: }
  684: 
  685: /*************************free ma3x ************************/
  686: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  687: {
  688:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  689:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  690:   free((FREE_ARG)(m+nrl-NR_END));
  691: }
  692: 
  693: /*************** function subdirf ***********/
  694: char *subdirf(char fileres[])
  695: {
  696:   /* Caution optionfilefiname is hidden */
  697:   strcpy(tmpout,optionfilefiname);
  698:   strcat(tmpout,"/"); /* Add to the right */
  699:   strcat(tmpout,fileres);
  700:   return tmpout;
  701: }
  702: 
  703: /*************** function subdirf2 ***********/
  704: char *subdirf2(char fileres[], char *preop)
  705: {
  706:   
  707:   /* Caution optionfilefiname is hidden */
  708:   strcpy(tmpout,optionfilefiname);
  709:   strcat(tmpout,"/");
  710:   strcat(tmpout,preop);
  711:   strcat(tmpout,fileres);
  712:   return tmpout;
  713: }
  714: 
  715: /*************** function subdirf3 ***********/
  716: char *subdirf3(char fileres[], char *preop, char *preop2)
  717: {
  718:   
  719:   /* Caution optionfilefiname is hidden */
  720:   strcpy(tmpout,optionfilefiname);
  721:   strcat(tmpout,"/");
  722:   strcat(tmpout,preop);
  723:   strcat(tmpout,preop2);
  724:   strcat(tmpout,fileres);
  725:   return tmpout;
  726: }
  727: 
  728: /***************** f1dim *************************/
  729: extern int ncom; 
  730: extern double *pcom,*xicom;
  731: extern double (*nrfunc)(double []); 
  732:  
  733: double f1dim(double x) 
  734: { 
  735:   int j; 
  736:   double f;
  737:   double *xt; 
  738:  
  739:   xt=vector(1,ncom); 
  740:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  741:   f=(*nrfunc)(xt); 
  742:   free_vector(xt,1,ncom); 
  743:   return f; 
  744: } 
  745: 
  746: /*****************brent *************************/
  747: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  748: { 
  749:   int iter; 
  750:   double a,b,d,etemp;
  751:   double fu,fv,fw,fx;
  752:   double ftemp;
  753:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  754:   double e=0.0; 
  755:  
  756:   a=(ax < cx ? ax : cx); 
  757:   b=(ax > cx ? ax : cx); 
  758:   x=w=v=bx; 
  759:   fw=fv=fx=(*f)(x); 
  760:   for (iter=1;iter<=ITMAX;iter++) { 
  761:     xm=0.5*(a+b); 
  762:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  763:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  764:     printf(".");fflush(stdout);
  765:     fprintf(ficlog,".");fflush(ficlog);
  766: #ifdef DEBUG
  767:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  768:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  769:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  770: #endif
  771:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  772:       *xmin=x; 
  773:       return fx; 
  774:     } 
  775:     ftemp=fu;
  776:     if (fabs(e) > tol1) { 
  777:       r=(x-w)*(fx-fv); 
  778:       q=(x-v)*(fx-fw); 
  779:       p=(x-v)*q-(x-w)*r; 
  780:       q=2.0*(q-r); 
  781:       if (q > 0.0) p = -p; 
  782:       q=fabs(q); 
  783:       etemp=e; 
  784:       e=d; 
  785:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  786: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  787:       else { 
  788: 	d=p/q; 
  789: 	u=x+d; 
  790: 	if (u-a < tol2 || b-u < tol2) 
  791: 	  d=SIGN(tol1,xm-x); 
  792:       } 
  793:     } else { 
  794:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  795:     } 
  796:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  797:     fu=(*f)(u); 
  798:     if (fu <= fx) { 
  799:       if (u >= x) a=x; else b=x; 
  800:       SHFT(v,w,x,u) 
  801: 	SHFT(fv,fw,fx,fu) 
  802: 	} else { 
  803: 	  if (u < x) a=u; else b=u; 
  804: 	  if (fu <= fw || w == x) { 
  805: 	    v=w; 
  806: 	    w=u; 
  807: 	    fv=fw; 
  808: 	    fw=fu; 
  809: 	  } else if (fu <= fv || v == x || v == w) { 
  810: 	    v=u; 
  811: 	    fv=fu; 
  812: 	  } 
  813: 	} 
  814:   } 
  815:   nrerror("Too many iterations in brent"); 
  816:   *xmin=x; 
  817:   return fx; 
  818: } 
  819: 
  820: /****************** mnbrak ***********************/
  821: 
  822: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  823: 	    double (*func)(double)) 
  824: { 
  825:   double ulim,u,r,q, dum;
  826:   double fu; 
  827:  
  828:   *fa=(*func)(*ax); 
  829:   *fb=(*func)(*bx); 
  830:   if (*fb > *fa) { 
  831:     SHFT(dum,*ax,*bx,dum) 
  832:       SHFT(dum,*fb,*fa,dum) 
  833:       } 
  834:   *cx=(*bx)+GOLD*(*bx-*ax); 
  835:   *fc=(*func)(*cx); 
  836:   while (*fb > *fc) { 
  837:     r=(*bx-*ax)*(*fb-*fc); 
  838:     q=(*bx-*cx)*(*fb-*fa); 
  839:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  840:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  841:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  842:     if ((*bx-u)*(u-*cx) > 0.0) { 
  843:       fu=(*func)(u); 
  844:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  845:       fu=(*func)(u); 
  846:       if (fu < *fc) { 
  847: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  848: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  849: 	  } 
  850:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  851:       u=ulim; 
  852:       fu=(*func)(u); 
  853:     } else { 
  854:       u=(*cx)+GOLD*(*cx-*bx); 
  855:       fu=(*func)(u); 
  856:     } 
  857:     SHFT(*ax,*bx,*cx,u) 
  858:       SHFT(*fa,*fb,*fc,fu) 
  859:       } 
  860: } 
  861: 
  862: /*************** linmin ************************/
  863: 
  864: int ncom; 
  865: double *pcom,*xicom;
  866: double (*nrfunc)(double []); 
  867:  
  868: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  869: { 
  870:   double brent(double ax, double bx, double cx, 
  871: 	       double (*f)(double), double tol, double *xmin); 
  872:   double f1dim(double x); 
  873:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  874: 	      double *fc, double (*func)(double)); 
  875:   int j; 
  876:   double xx,xmin,bx,ax; 
  877:   double fx,fb,fa;
  878:  
  879:   ncom=n; 
  880:   pcom=vector(1,n); 
  881:   xicom=vector(1,n); 
  882:   nrfunc=func; 
  883:   for (j=1;j<=n;j++) { 
  884:     pcom[j]=p[j]; 
  885:     xicom[j]=xi[j]; 
  886:   } 
  887:   ax=0.0; 
  888:   xx=1.0; 
  889:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  890:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  891: #ifdef DEBUG
  892:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  893:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  894: #endif
  895:   for (j=1;j<=n;j++) { 
  896:     xi[j] *= xmin; 
  897:     p[j] += xi[j]; 
  898:   } 
  899:   free_vector(xicom,1,n); 
  900:   free_vector(pcom,1,n); 
  901: } 
  902: 
  903: char *asc_diff_time(long time_sec, char ascdiff[])
  904: {
  905:   long sec_left, days, hours, minutes;
  906:   days = (time_sec) / (60*60*24);
  907:   sec_left = (time_sec) % (60*60*24);
  908:   hours = (sec_left) / (60*60) ;
  909:   sec_left = (sec_left) %(60*60);
  910:   minutes = (sec_left) /60;
  911:   sec_left = (sec_left) % (60);
  912:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
  913:   return ascdiff;
  914: }
  915: 
  916: /*************** powell ************************/
  917: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  918: 	    double (*func)(double [])) 
  919: { 
  920:   void linmin(double p[], double xi[], int n, double *fret, 
  921: 	      double (*func)(double [])); 
  922:   int i,ibig,j; 
  923:   double del,t,*pt,*ptt,*xit;
  924:   double fp,fptt;
  925:   double *xits;
  926:   int niterf, itmp;
  927: 
  928:   pt=vector(1,n); 
  929:   ptt=vector(1,n); 
  930:   xit=vector(1,n); 
  931:   xits=vector(1,n); 
  932:   *fret=(*func)(p); 
  933:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  934:   for (*iter=1;;++(*iter)) { 
  935:     fp=(*fret); 
  936:     ibig=0; 
  937:     del=0.0; 
  938:     last_time=curr_time;
  939:     (void) gettimeofday(&curr_time,&tzp);
  940:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
  941:     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
  942:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
  943:     */
  944:    for (i=1;i<=n;i++) {
  945:       printf(" %d %.12f",i, p[i]);
  946:       fprintf(ficlog," %d %.12lf",i, p[i]);
  947:       fprintf(ficrespow," %.12lf", p[i]);
  948:     }
  949:     printf("\n");
  950:     fprintf(ficlog,"\n");
  951:     fprintf(ficrespow,"\n");fflush(ficrespow);
  952:     if(*iter <=3){
  953:       tm = *localtime(&curr_time.tv_sec);
  954:       strcpy(strcurr,asctime(&tm));
  955: /*       asctime_r(&tm,strcurr); */
  956:       forecast_time=curr_time; 
  957:       itmp = strlen(strcurr);
  958:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
  959: 	strcurr[itmp-1]='\0';
  960:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  961:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  962:       for(niterf=10;niterf<=30;niterf+=10){
  963: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
  964: 	tmf = *localtime(&forecast_time.tv_sec);
  965: /* 	asctime_r(&tmf,strfor); */
  966: 	strcpy(strfor,asctime(&tmf));
  967: 	itmp = strlen(strfor);
  968: 	if(strfor[itmp-1]=='\n')
  969: 	strfor[itmp-1]='\0';
  970: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  971: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  972:       }
  973:     }
  974:     for (i=1;i<=n;i++) { 
  975:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  976:       fptt=(*fret); 
  977: #ifdef DEBUG
  978:       printf("fret=%lf \n",*fret);
  979:       fprintf(ficlog,"fret=%lf \n",*fret);
  980: #endif
  981:       printf("%d",i);fflush(stdout);
  982:       fprintf(ficlog,"%d",i);fflush(ficlog);
  983:       linmin(p,xit,n,fret,func); 
  984:       if (fabs(fptt-(*fret)) > del) { 
  985: 	del=fabs(fptt-(*fret)); 
  986: 	ibig=i; 
  987:       } 
  988: #ifdef DEBUG
  989:       printf("%d %.12e",i,(*fret));
  990:       fprintf(ficlog,"%d %.12e",i,(*fret));
  991:       for (j=1;j<=n;j++) {
  992: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  993: 	printf(" x(%d)=%.12e",j,xit[j]);
  994: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  995:       }
  996:       for(j=1;j<=n;j++) {
  997: 	printf(" p=%.12e",p[j]);
  998: 	fprintf(ficlog," p=%.12e",p[j]);
  999:       }
 1000:       printf("\n");
 1001:       fprintf(ficlog,"\n");
 1002: #endif
 1003:     } 
 1004:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1005: #ifdef DEBUG
 1006:       int k[2],l;
 1007:       k[0]=1;
 1008:       k[1]=-1;
 1009:       printf("Max: %.12e",(*func)(p));
 1010:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1011:       for (j=1;j<=n;j++) {
 1012: 	printf(" %.12e",p[j]);
 1013: 	fprintf(ficlog," %.12e",p[j]);
 1014:       }
 1015:       printf("\n");
 1016:       fprintf(ficlog,"\n");
 1017:       for(l=0;l<=1;l++) {
 1018: 	for (j=1;j<=n;j++) {
 1019: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1020: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1021: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1022: 	}
 1023: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1024: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1025:       }
 1026: #endif
 1027: 
 1028: 
 1029:       free_vector(xit,1,n); 
 1030:       free_vector(xits,1,n); 
 1031:       free_vector(ptt,1,n); 
 1032:       free_vector(pt,1,n); 
 1033:       return; 
 1034:     } 
 1035:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1036:     for (j=1;j<=n;j++) { 
 1037:       ptt[j]=2.0*p[j]-pt[j]; 
 1038:       xit[j]=p[j]-pt[j]; 
 1039:       pt[j]=p[j]; 
 1040:     } 
 1041:     fptt=(*func)(ptt); 
 1042:     if (fptt < fp) { 
 1043:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 1044:       if (t < 0.0) { 
 1045: 	linmin(p,xit,n,fret,func); 
 1046: 	for (j=1;j<=n;j++) { 
 1047: 	  xi[j][ibig]=xi[j][n]; 
 1048: 	  xi[j][n]=xit[j]; 
 1049: 	}
 1050: #ifdef DEBUG
 1051: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1052: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1053: 	for(j=1;j<=n;j++){
 1054: 	  printf(" %.12e",xit[j]);
 1055: 	  fprintf(ficlog," %.12e",xit[j]);
 1056: 	}
 1057: 	printf("\n");
 1058: 	fprintf(ficlog,"\n");
 1059: #endif
 1060:       }
 1061:     } 
 1062:   } 
 1063: } 
 1064: 
 1065: /**** Prevalence limit (stable prevalence)  ****************/
 1066: 
 1067: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1068: {
 1069:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1070:      matrix by transitions matrix until convergence is reached */
 1071: 
 1072:   int i, ii,j,k;
 1073:   double min, max, maxmin, maxmax,sumnew=0.;
 1074:   double **matprod2();
 1075:   double **out, cov[NCOVMAX], **pmij();
 1076:   double **newm;
 1077:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1078: 
 1079:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1080:     for (j=1;j<=nlstate+ndeath;j++){
 1081:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1082:     }
 1083: 
 1084:    cov[1]=1.;
 1085:  
 1086:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1087:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1088:     newm=savm;
 1089:     /* Covariates have to be included here again */
 1090:      cov[2]=agefin;
 1091:   
 1092:       for (k=1; k<=cptcovn;k++) {
 1093: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1094: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 1095:       }
 1096:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1097:       for (k=1; k<=cptcovprod;k++)
 1098: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1099: 
 1100:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1101:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1102:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1103:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 1104: 
 1105:     savm=oldm;
 1106:     oldm=newm;
 1107:     maxmax=0.;
 1108:     for(j=1;j<=nlstate;j++){
 1109:       min=1.;
 1110:       max=0.;
 1111:       for(i=1; i<=nlstate; i++) {
 1112: 	sumnew=0;
 1113: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1114: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1115: 	max=FMAX(max,prlim[i][j]);
 1116: 	min=FMIN(min,prlim[i][j]);
 1117:       }
 1118:       maxmin=max-min;
 1119:       maxmax=FMAX(maxmax,maxmin);
 1120:     }
 1121:     if(maxmax < ftolpl){
 1122:       return prlim;
 1123:     }
 1124:   }
 1125: }
 1126: 
 1127: /*************** transition probabilities ***************/ 
 1128: 
 1129: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1130: {
 1131:   double s1, s2;
 1132:   /*double t34;*/
 1133:   int i,j,j1, nc, ii, jj;
 1134: 
 1135:     for(i=1; i<= nlstate; i++){
 1136:       for(j=1; j<i;j++){
 1137: 	for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1138: 	  /*s2 += param[i][j][nc]*cov[nc];*/
 1139: 	  s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1140: /* 	 printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 1141: 	}
 1142: 	ps[i][j]=s2;
 1143: /* 	printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 1144:       }
 1145:       for(j=i+1; j<=nlstate+ndeath;j++){
 1146: 	for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1147: 	  s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1148: /* 	  printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 1149: 	}
 1150: 	ps[i][j]=s2;
 1151:       }
 1152:     }
 1153:     /*ps[3][2]=1;*/
 1154:     
 1155:     for(i=1; i<= nlstate; i++){
 1156:       s1=0;
 1157:       for(j=1; j<i; j++)
 1158: 	s1+=exp(ps[i][j]);
 1159:       for(j=i+1; j<=nlstate+ndeath; j++)
 1160: 	s1+=exp(ps[i][j]);
 1161:       ps[i][i]=1./(s1+1.);
 1162:       for(j=1; j<i; j++)
 1163: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1164:       for(j=i+1; j<=nlstate+ndeath; j++)
 1165: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1166:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1167:     } /* end i */
 1168:     
 1169:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1170:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1171: 	ps[ii][jj]=0;
 1172: 	ps[ii][ii]=1;
 1173:       }
 1174:     }
 1175:     
 1176: 
 1177: /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1178: /* 	 for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1179: /* 	   printf("ddd %lf ",ps[ii][jj]); */
 1180: /* 	 } */
 1181: /* 	 printf("\n "); */
 1182: /*        } */
 1183: /*        printf("\n ");printf("%lf ",cov[2]); */
 1184:        /*
 1185:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1186:       goto end;*/
 1187:     return ps;
 1188: }
 1189: 
 1190: /**************** Product of 2 matrices ******************/
 1191: 
 1192: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 1193: {
 1194:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1195:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1196:   /* in, b, out are matrice of pointers which should have been initialized 
 1197:      before: only the contents of out is modified. The function returns
 1198:      a pointer to pointers identical to out */
 1199:   long i, j, k;
 1200:   for(i=nrl; i<= nrh; i++)
 1201:     for(k=ncolol; k<=ncoloh; k++)
 1202:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
 1203: 	out[i][k] +=in[i][j]*b[j][k];
 1204: 
 1205:   return out;
 1206: }
 1207: 
 1208: 
 1209: /************* Higher Matrix Product ***************/
 1210: 
 1211: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1212: {
 1213:   /* Computes the transition matrix starting at age 'age' over 
 1214:      'nhstepm*hstepm*stepm' months (i.e. until
 1215:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1216:      nhstepm*hstepm matrices. 
 1217:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1218:      (typically every 2 years instead of every month which is too big 
 1219:      for the memory).
 1220:      Model is determined by parameters x and covariates have to be 
 1221:      included manually here. 
 1222: 
 1223:      */
 1224: 
 1225:   int i, j, d, h, k;
 1226:   double **out, cov[NCOVMAX];
 1227:   double **newm;
 1228: 
 1229:   /* Hstepm could be zero and should return the unit matrix */
 1230:   for (i=1;i<=nlstate+ndeath;i++)
 1231:     for (j=1;j<=nlstate+ndeath;j++){
 1232:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1233:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1234:     }
 1235:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1236:   for(h=1; h <=nhstepm; h++){
 1237:     for(d=1; d <=hstepm; d++){
 1238:       newm=savm;
 1239:       /* Covariates have to be included here again */
 1240:       cov[1]=1.;
 1241:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1242:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1243:       for (k=1; k<=cptcovage;k++)
 1244: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1245:       for (k=1; k<=cptcovprod;k++)
 1246: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1247: 
 1248: 
 1249:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1250:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1251:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1252: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1253:       savm=oldm;
 1254:       oldm=newm;
 1255:     }
 1256:     for(i=1; i<=nlstate+ndeath; i++)
 1257:       for(j=1;j<=nlstate+ndeath;j++) {
 1258: 	po[i][j][h]=newm[i][j];
 1259: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 1260: 	 */
 1261:       }
 1262:   } /* end h */
 1263:   return po;
 1264: }
 1265: 
 1266: 
 1267: /*************** log-likelihood *************/
 1268: double func( double *x)
 1269: {
 1270:   int i, ii, j, k, mi, d, kk;
 1271:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1272:   double **out;
 1273:   double sw; /* Sum of weights */
 1274:   double lli; /* Individual log likelihood */
 1275:   int s1, s2;
 1276:   double bbh, survp;
 1277:   long ipmx;
 1278:   /*extern weight */
 1279:   /* We are differentiating ll according to initial status */
 1280:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1281:   /*for(i=1;i<imx;i++) 
 1282:     printf(" %d\n",s[4][i]);
 1283:   */
 1284:   cov[1]=1.;
 1285: 
 1286:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1287: 
 1288:   if(mle==1){
 1289:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1290:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1291:       for(mi=1; mi<= wav[i]-1; mi++){
 1292: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1293: 	  for (j=1;j<=nlstate+ndeath;j++){
 1294: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1295: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1296: 	  }
 1297: 	for(d=0; d<dh[mi][i]; d++){
 1298: 	  newm=savm;
 1299: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1300: 	  for (kk=1; kk<=cptcovage;kk++) {
 1301: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1302: 	  }
 1303: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1304: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1305: 	  savm=oldm;
 1306: 	  oldm=newm;
 1307: 	} /* end mult */
 1308:       
 1309: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1310: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1311: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1312: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1313: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1314: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1315: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1316: 	 * probability in order to take into account the bias as a fraction of the way
 1317: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1318: 	 * -stepm/2 to stepm/2 .
 1319: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1320: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1321: 	 */
 1322: 	s1=s[mw[mi][i]][i];
 1323: 	s2=s[mw[mi+1][i]][i];
 1324: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1325: 	/* bias bh is positive if real duration
 1326: 	 * is higher than the multiple of stepm and negative otherwise.
 1327: 	 */
 1328: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1329: 	if( s2 > nlstate){ 
 1330: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1331: 	     then the contribution to the likelihood is the probability to 
 1332: 	     die between last step unit time and current  step unit time, 
 1333: 	     which is also equal to probability to die before dh 
 1334: 	     minus probability to die before dh-stepm . 
 1335: 	     In version up to 0.92 likelihood was computed
 1336: 	as if date of death was unknown. Death was treated as any other
 1337: 	health state: the date of the interview describes the actual state
 1338: 	and not the date of a change in health state. The former idea was
 1339: 	to consider that at each interview the state was recorded
 1340: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1341: 	introduced the exact date of death then we should have modified
 1342: 	the contribution of an exact death to the likelihood. This new
 1343: 	contribution is smaller and very dependent of the step unit
 1344: 	stepm. It is no more the probability to die between last interview
 1345: 	and month of death but the probability to survive from last
 1346: 	interview up to one month before death multiplied by the
 1347: 	probability to die within a month. Thanks to Chris
 1348: 	Jackson for correcting this bug.  Former versions increased
 1349: 	mortality artificially. The bad side is that we add another loop
 1350: 	which slows down the processing. The difference can be up to 10%
 1351: 	lower mortality.
 1352: 	  */
 1353: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1354: 
 1355: 
 1356: 	} else if  (s2==-2) {
 1357: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1358: 	    survp += out[s1][j];
 1359: 	  lli= survp;
 1360: 	}
 1361: 	
 1362: 	else if  (s2==-4) {
 1363: 	  for (j=3,survp=0. ; j<=nlstate; j++) 
 1364: 	    survp += out[s1][j];
 1365: 	  lli= survp;
 1366: 	}
 1367: 	
 1368: 	else if  (s2==-5) {
 1369: 	  for (j=1,survp=0. ; j<=2; j++) 
 1370: 	    survp += out[s1][j];
 1371: 	  lli= survp;
 1372: 	}
 1373: 
 1374: 
 1375: 	else{
 1376: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1377: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1378: 	} 
 1379: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1380: 	/*if(lli ==000.0)*/
 1381: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1382:   	ipmx +=1;
 1383: 	sw += weight[i];
 1384: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1385:       } /* end of wave */
 1386:     } /* end of individual */
 1387:   }  else if(mle==2){
 1388:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1389:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1390:       for(mi=1; mi<= wav[i]-1; mi++){
 1391: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1392: 	  for (j=1;j<=nlstate+ndeath;j++){
 1393: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1394: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1395: 	  }
 1396: 	for(d=0; d<=dh[mi][i]; d++){
 1397: 	  newm=savm;
 1398: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1399: 	  for (kk=1; kk<=cptcovage;kk++) {
 1400: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1401: 	  }
 1402: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1403: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1404: 	  savm=oldm;
 1405: 	  oldm=newm;
 1406: 	} /* end mult */
 1407:       
 1408: 	s1=s[mw[mi][i]][i];
 1409: 	s2=s[mw[mi+1][i]][i];
 1410: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1411: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1412: 	ipmx +=1;
 1413: 	sw += weight[i];
 1414: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1415:       } /* end of wave */
 1416:     } /* end of individual */
 1417:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1418:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1419:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1420:       for(mi=1; mi<= wav[i]-1; mi++){
 1421: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1422: 	  for (j=1;j<=nlstate+ndeath;j++){
 1423: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1424: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1425: 	  }
 1426: 	for(d=0; d<dh[mi][i]; d++){
 1427: 	  newm=savm;
 1428: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1429: 	  for (kk=1; kk<=cptcovage;kk++) {
 1430: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1431: 	  }
 1432: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1433: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1434: 	  savm=oldm;
 1435: 	  oldm=newm;
 1436: 	} /* end mult */
 1437:       
 1438: 	s1=s[mw[mi][i]][i];
 1439: 	s2=s[mw[mi+1][i]][i];
 1440: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1441: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1442: 	ipmx +=1;
 1443: 	sw += weight[i];
 1444: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1445:       } /* end of wave */
 1446:     } /* end of individual */
 1447:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1448:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1449:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1450:       for(mi=1; mi<= wav[i]-1; mi++){
 1451: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1452: 	  for (j=1;j<=nlstate+ndeath;j++){
 1453: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1454: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1455: 	  }
 1456: 	for(d=0; d<dh[mi][i]; d++){
 1457: 	  newm=savm;
 1458: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1459: 	  for (kk=1; kk<=cptcovage;kk++) {
 1460: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1461: 	  }
 1462: 	
 1463: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1464: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1465: 	  savm=oldm;
 1466: 	  oldm=newm;
 1467: 	} /* end mult */
 1468:       
 1469: 	s1=s[mw[mi][i]][i];
 1470: 	s2=s[mw[mi+1][i]][i];
 1471: 	if( s2 > nlstate){ 
 1472: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1473: 	}else{
 1474: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1475: 	}
 1476: 	ipmx +=1;
 1477: 	sw += weight[i];
 1478: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1479: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1480:       } /* end of wave */
 1481:     } /* end of individual */
 1482:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1483:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1484:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1485:       for(mi=1; mi<= wav[i]-1; mi++){
 1486: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1487: 	  for (j=1;j<=nlstate+ndeath;j++){
 1488: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1489: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1490: 	  }
 1491: 	for(d=0; d<dh[mi][i]; d++){
 1492: 	  newm=savm;
 1493: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1494: 	  for (kk=1; kk<=cptcovage;kk++) {
 1495: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1496: 	  }
 1497: 	
 1498: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1499: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1500: 	  savm=oldm;
 1501: 	  oldm=newm;
 1502: 	} /* end mult */
 1503:       
 1504: 	s1=s[mw[mi][i]][i];
 1505: 	s2=s[mw[mi+1][i]][i];
 1506: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1507: 	ipmx +=1;
 1508: 	sw += weight[i];
 1509: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1510: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1511:       } /* end of wave */
 1512:     } /* end of individual */
 1513:   } /* End of if */
 1514:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1515:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1516:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1517:   return -l;
 1518: }
 1519: 
 1520: /*************** log-likelihood *************/
 1521: double funcone( double *x)
 1522: {
 1523:   /* Same as likeli but slower because of a lot of printf and if */
 1524:   int i, ii, j, k, mi, d, kk;
 1525:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1526:   double **out;
 1527:   double lli; /* Individual log likelihood */
 1528:   double llt;
 1529:   int s1, s2;
 1530:   double bbh, survp;
 1531:   /*extern weight */
 1532:   /* We are differentiating ll according to initial status */
 1533:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1534:   /*for(i=1;i<imx;i++) 
 1535:     printf(" %d\n",s[4][i]);
 1536:   */
 1537:   cov[1]=1.;
 1538: 
 1539:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1540: 
 1541:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1542:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1543:     for(mi=1; mi<= wav[i]-1; mi++){
 1544:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1545: 	for (j=1;j<=nlstate+ndeath;j++){
 1546: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1547: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1548: 	}
 1549:       for(d=0; d<dh[mi][i]; d++){
 1550: 	newm=savm;
 1551: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1552: 	for (kk=1; kk<=cptcovage;kk++) {
 1553: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1554: 	}
 1555: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1556: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1557: 	savm=oldm;
 1558: 	oldm=newm;
 1559:       } /* end mult */
 1560:       
 1561:       s1=s[mw[mi][i]][i];
 1562:       s2=s[mw[mi+1][i]][i];
 1563:       bbh=(double)bh[mi][i]/(double)stepm; 
 1564:       /* bias is positive if real duration
 1565:        * is higher than the multiple of stepm and negative otherwise.
 1566:        */
 1567:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1568: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1569:       } else if (mle==1){
 1570: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1571:       } else if(mle==2){
 1572: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1573:       } else if(mle==3){  /* exponential inter-extrapolation */
 1574: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1575:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1576: 	lli=log(out[s1][s2]); /* Original formula */
 1577:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 1578: 	lli=log(out[s1][s2]); /* Original formula */
 1579:       } /* End of if */
 1580:       ipmx +=1;
 1581:       sw += weight[i];
 1582:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1583: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1584:       if(globpr){
 1585: 	fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 1586:  %10.6f %10.6f %10.6f ", \
 1587: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1588: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1589: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1590: 	  llt +=ll[k]*gipmx/gsw;
 1591: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1592: 	}
 1593: 	fprintf(ficresilk," %10.6f\n", -llt);
 1594:       }
 1595:     } /* end of wave */
 1596:   } /* end of individual */
 1597:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1598:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1599:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1600:   if(globpr==0){ /* First time we count the contributions and weights */
 1601:     gipmx=ipmx;
 1602:     gsw=sw;
 1603:   }
 1604:   return -l;
 1605: }
 1606: 
 1607: 
 1608: /*************** function likelione ***********/
 1609: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1610: {
 1611:   /* This routine should help understanding what is done with 
 1612:      the selection of individuals/waves and
 1613:      to check the exact contribution to the likelihood.
 1614:      Plotting could be done.
 1615:    */
 1616:   int k;
 1617: 
 1618:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1619:     strcpy(fileresilk,"ilk"); 
 1620:     strcat(fileresilk,fileres);
 1621:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1622:       printf("Problem with resultfile: %s\n", fileresilk);
 1623:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1624:     }
 1625:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1626:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1627:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1628:     for(k=1; k<=nlstate; k++) 
 1629:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1630:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1631:   }
 1632: 
 1633:   *fretone=(*funcone)(p);
 1634:   if(*globpri !=0){
 1635:     fclose(ficresilk);
 1636:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1637:     fflush(fichtm); 
 1638:   } 
 1639:   return;
 1640: }
 1641: 
 1642: 
 1643: /*********** Maximum Likelihood Estimation ***************/
 1644: 
 1645: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1646: {
 1647:   int i,j, iter;
 1648:   double **xi;
 1649:   double fret;
 1650:   double fretone; /* Only one call to likelihood */
 1651:   /*  char filerespow[FILENAMELENGTH];*/
 1652:   xi=matrix(1,npar,1,npar);
 1653:   for (i=1;i<=npar;i++)
 1654:     for (j=1;j<=npar;j++)
 1655:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1656:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1657:   strcpy(filerespow,"pow"); 
 1658:   strcat(filerespow,fileres);
 1659:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1660:     printf("Problem with resultfile: %s\n", filerespow);
 1661:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1662:   }
 1663:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1664:   for (i=1;i<=nlstate;i++)
 1665:     for(j=1;j<=nlstate+ndeath;j++)
 1666:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 1667:   fprintf(ficrespow,"\n");
 1668: 
 1669:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1670: 
 1671:   fclose(ficrespow);
 1672:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1673:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1674:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1675: 
 1676: }
 1677: 
 1678: /**** Computes Hessian and covariance matrix ***/
 1679: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1680: {
 1681:   double  **a,**y,*x,pd;
 1682:   double **hess;
 1683:   int i, j,jk;
 1684:   int *indx;
 1685: 
 1686:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 1687:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 1688:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1689:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1690:   double gompertz(double p[]);
 1691:   hess=matrix(1,npar,1,npar);
 1692: 
 1693:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1694:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1695:   for (i=1;i<=npar;i++){
 1696:     printf("%d",i);fflush(stdout);
 1697:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1698:    
 1699:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 1700:     
 1701:     /*  printf(" %f ",p[i]);
 1702: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 1703:   }
 1704:   
 1705:   for (i=1;i<=npar;i++) {
 1706:     for (j=1;j<=npar;j++)  {
 1707:       if (j>i) { 
 1708: 	printf(".%d%d",i,j);fflush(stdout);
 1709: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1710: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 1711: 	
 1712: 	hess[j][i]=hess[i][j];    
 1713: 	/*printf(" %lf ",hess[i][j]);*/
 1714:       }
 1715:     }
 1716:   }
 1717:   printf("\n");
 1718:   fprintf(ficlog,"\n");
 1719: 
 1720:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1721:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1722:   
 1723:   a=matrix(1,npar,1,npar);
 1724:   y=matrix(1,npar,1,npar);
 1725:   x=vector(1,npar);
 1726:   indx=ivector(1,npar);
 1727:   for (i=1;i<=npar;i++)
 1728:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1729:   ludcmp(a,npar,indx,&pd);
 1730: 
 1731:   for (j=1;j<=npar;j++) {
 1732:     for (i=1;i<=npar;i++) x[i]=0;
 1733:     x[j]=1;
 1734:     lubksb(a,npar,indx,x);
 1735:     for (i=1;i<=npar;i++){ 
 1736:       matcov[i][j]=x[i];
 1737:     }
 1738:   }
 1739: 
 1740:   printf("\n#Hessian matrix#\n");
 1741:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1742:   for (i=1;i<=npar;i++) { 
 1743:     for (j=1;j<=npar;j++) { 
 1744:       printf("%.3e ",hess[i][j]);
 1745:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1746:     }
 1747:     printf("\n");
 1748:     fprintf(ficlog,"\n");
 1749:   }
 1750: 
 1751:   /* Recompute Inverse */
 1752:   for (i=1;i<=npar;i++)
 1753:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1754:   ludcmp(a,npar,indx,&pd);
 1755: 
 1756:   /*  printf("\n#Hessian matrix recomputed#\n");
 1757: 
 1758:   for (j=1;j<=npar;j++) {
 1759:     for (i=1;i<=npar;i++) x[i]=0;
 1760:     x[j]=1;
 1761:     lubksb(a,npar,indx,x);
 1762:     for (i=1;i<=npar;i++){ 
 1763:       y[i][j]=x[i];
 1764:       printf("%.3e ",y[i][j]);
 1765:       fprintf(ficlog,"%.3e ",y[i][j]);
 1766:     }
 1767:     printf("\n");
 1768:     fprintf(ficlog,"\n");
 1769:   }
 1770:   */
 1771: 
 1772:   free_matrix(a,1,npar,1,npar);
 1773:   free_matrix(y,1,npar,1,npar);
 1774:   free_vector(x,1,npar);
 1775:   free_ivector(indx,1,npar);
 1776:   free_matrix(hess,1,npar,1,npar);
 1777: 
 1778: 
 1779: }
 1780: 
 1781: /*************** hessian matrix ****************/
 1782: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 1783: {
 1784:   int i;
 1785:   int l=1, lmax=20;
 1786:   double k1,k2;
 1787:   double p2[NPARMAX+1];
 1788:   double res;
 1789:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1790:   double fx;
 1791:   int k=0,kmax=10;
 1792:   double l1;
 1793: 
 1794:   fx=func(x);
 1795:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1796:   for(l=0 ; l <=lmax; l++){
 1797:     l1=pow(10,l);
 1798:     delts=delt;
 1799:     for(k=1 ; k <kmax; k=k+1){
 1800:       delt = delta*(l1*k);
 1801:       p2[theta]=x[theta] +delt;
 1802:       k1=func(p2)-fx;
 1803:       p2[theta]=x[theta]-delt;
 1804:       k2=func(p2)-fx;
 1805:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1806:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1807:       
 1808: #ifdef DEBUG
 1809:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1810:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1811: #endif
 1812:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1813:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1814: 	k=kmax;
 1815:       }
 1816:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1817: 	k=kmax; l=lmax*10.;
 1818:       }
 1819:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1820: 	delts=delt;
 1821:       }
 1822:     }
 1823:   }
 1824:   delti[theta]=delts;
 1825:   return res; 
 1826:   
 1827: }
 1828: 
 1829: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 1830: {
 1831:   int i;
 1832:   int l=1, l1, lmax=20;
 1833:   double k1,k2,k3,k4,res,fx;
 1834:   double p2[NPARMAX+1];
 1835:   int k;
 1836: 
 1837:   fx=func(x);
 1838:   for (k=1; k<=2; k++) {
 1839:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1840:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1841:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1842:     k1=func(p2)-fx;
 1843:   
 1844:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1845:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1846:     k2=func(p2)-fx;
 1847:   
 1848:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1849:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1850:     k3=func(p2)-fx;
 1851:   
 1852:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1853:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1854:     k4=func(p2)-fx;
 1855:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1856: #ifdef DEBUG
 1857:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1858:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1859: #endif
 1860:   }
 1861:   return res;
 1862: }
 1863: 
 1864: /************** Inverse of matrix **************/
 1865: void ludcmp(double **a, int n, int *indx, double *d) 
 1866: { 
 1867:   int i,imax,j,k; 
 1868:   double big,dum,sum,temp; 
 1869:   double *vv; 
 1870:  
 1871:   vv=vector(1,n); 
 1872:   *d=1.0; 
 1873:   for (i=1;i<=n;i++) { 
 1874:     big=0.0; 
 1875:     for (j=1;j<=n;j++) 
 1876:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1877:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1878:     vv[i]=1.0/big; 
 1879:   } 
 1880:   for (j=1;j<=n;j++) { 
 1881:     for (i=1;i<j;i++) { 
 1882:       sum=a[i][j]; 
 1883:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1884:       a[i][j]=sum; 
 1885:     } 
 1886:     big=0.0; 
 1887:     for (i=j;i<=n;i++) { 
 1888:       sum=a[i][j]; 
 1889:       for (k=1;k<j;k++) 
 1890: 	sum -= a[i][k]*a[k][j]; 
 1891:       a[i][j]=sum; 
 1892:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1893: 	big=dum; 
 1894: 	imax=i; 
 1895:       } 
 1896:     } 
 1897:     if (j != imax) { 
 1898:       for (k=1;k<=n;k++) { 
 1899: 	dum=a[imax][k]; 
 1900: 	a[imax][k]=a[j][k]; 
 1901: 	a[j][k]=dum; 
 1902:       } 
 1903:       *d = -(*d); 
 1904:       vv[imax]=vv[j]; 
 1905:     } 
 1906:     indx[j]=imax; 
 1907:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1908:     if (j != n) { 
 1909:       dum=1.0/(a[j][j]); 
 1910:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1911:     } 
 1912:   } 
 1913:   free_vector(vv,1,n);  /* Doesn't work */
 1914: ;
 1915: } 
 1916: 
 1917: void lubksb(double **a, int n, int *indx, double b[]) 
 1918: { 
 1919:   int i,ii=0,ip,j; 
 1920:   double sum; 
 1921:  
 1922:   for (i=1;i<=n;i++) { 
 1923:     ip=indx[i]; 
 1924:     sum=b[ip]; 
 1925:     b[ip]=b[i]; 
 1926:     if (ii) 
 1927:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1928:     else if (sum) ii=i; 
 1929:     b[i]=sum; 
 1930:   } 
 1931:   for (i=n;i>=1;i--) { 
 1932:     sum=b[i]; 
 1933:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1934:     b[i]=sum/a[i][i]; 
 1935:   } 
 1936: } 
 1937: 
 1938: /************ Frequencies ********************/
 1939: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 1940: {  /* Some frequencies */
 1941:   
 1942:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1943:   int first;
 1944:   double ***freq; /* Frequencies */
 1945:   double *pp, **prop;
 1946:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 1947:   FILE *ficresp;
 1948:   char fileresp[FILENAMELENGTH];
 1949:   
 1950:   pp=vector(1,nlstate);
 1951:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 1952:   strcpy(fileresp,"p");
 1953:   strcat(fileresp,fileres);
 1954:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1955:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1956:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1957:     exit(0);
 1958:   }
 1959:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 1960:   j1=0;
 1961:   
 1962:   j=cptcoveff;
 1963:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1964: 
 1965:   first=1;
 1966: 
 1967:   for(k1=1; k1<=j;k1++){
 1968:     for(i1=1; i1<=ncodemax[k1];i1++){
 1969:       j1++;
 1970:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1971: 	scanf("%d", i);*/
 1972:       for (i=-5; i<=nlstate+ndeath; i++)  
 1973: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 1974: 	  for(m=iagemin; m <= iagemax+3; m++)
 1975: 	    freq[i][jk][m]=0;
 1976: 
 1977:     for (i=1; i<=nlstate; i++)  
 1978:       for(m=iagemin; m <= iagemax+3; m++)
 1979: 	prop[i][m]=0;
 1980:       
 1981:       dateintsum=0;
 1982:       k2cpt=0;
 1983:       for (i=1; i<=imx; i++) {
 1984: 	bool=1;
 1985: 	if  (cptcovn>0) {
 1986: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1987: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1988: 	      bool=0;
 1989: 	}
 1990: 	if (bool==1){
 1991: 	  for(m=firstpass; m<=lastpass; m++){
 1992: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1993: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 1994: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 1995: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 1996: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 1997: 	      if (m<lastpass) {
 1998: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1999: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2000: 	      }
 2001: 	      
 2002: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2003: 		dateintsum=dateintsum+k2;
 2004: 		k2cpt++;
 2005: 	      }
 2006: 	      /*}*/
 2007: 	  }
 2008: 	}
 2009:       }
 2010:        
 2011:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2012: fprintf(ficresp, "#Local time at start: %s", strstart);
 2013:       if  (cptcovn>0) {
 2014: 	fprintf(ficresp, "\n#********** Variable "); 
 2015: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2016: 	fprintf(ficresp, "**********\n#");
 2017:       }
 2018:       for(i=1; i<=nlstate;i++) 
 2019: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2020:       fprintf(ficresp, "\n");
 2021:       
 2022:       for(i=iagemin; i <= iagemax+3; i++){
 2023: 	if(i==iagemax+3){
 2024: 	  fprintf(ficlog,"Total");
 2025: 	}else{
 2026: 	  if(first==1){
 2027: 	    first=0;
 2028: 	    printf("See log file for details...\n");
 2029: 	  }
 2030: 	  fprintf(ficlog,"Age %d", i);
 2031: 	}
 2032: 	for(jk=1; jk <=nlstate ; jk++){
 2033: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2034: 	    pp[jk] += freq[jk][m][i]; 
 2035: 	}
 2036: 	for(jk=1; jk <=nlstate ; jk++){
 2037: 	  for(m=-1, pos=0; m <=0 ; m++)
 2038: 	    pos += freq[jk][m][i];
 2039: 	  if(pp[jk]>=1.e-10){
 2040: 	    if(first==1){
 2041: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2042: 	    }
 2043: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2044: 	  }else{
 2045: 	    if(first==1)
 2046: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2047: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2048: 	  }
 2049: 	}
 2050: 
 2051: 	for(jk=1; jk <=nlstate ; jk++){
 2052: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2053: 	    pp[jk] += freq[jk][m][i];
 2054: 	}	
 2055: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2056: 	  pos += pp[jk];
 2057: 	  posprop += prop[jk][i];
 2058: 	}
 2059: 	for(jk=1; jk <=nlstate ; jk++){
 2060: 	  if(pos>=1.e-5){
 2061: 	    if(first==1)
 2062: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2063: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2064: 	  }else{
 2065: 	    if(first==1)
 2066: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2067: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2068: 	  }
 2069: 	  if( i <= iagemax){
 2070: 	    if(pos>=1.e-5){
 2071: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2072: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2073: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2074: 	    }
 2075: 	    else
 2076: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2077: 	  }
 2078: 	}
 2079: 	
 2080: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2081: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2082: 	    if(freq[jk][m][i] !=0 ) {
 2083: 	    if(first==1)
 2084: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2085: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2086: 	    }
 2087: 	if(i <= iagemax)
 2088: 	  fprintf(ficresp,"\n");
 2089: 	if(first==1)
 2090: 	  printf("Others in log...\n");
 2091: 	fprintf(ficlog,"\n");
 2092:       }
 2093:     }
 2094:   }
 2095:   dateintmean=dateintsum/k2cpt; 
 2096:  
 2097:   fclose(ficresp);
 2098:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2099:   free_vector(pp,1,nlstate);
 2100:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2101:   /* End of Freq */
 2102: }
 2103: 
 2104: /************ Prevalence ********************/
 2105: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2106: {  
 2107:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2108:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2109:      We still use firstpass and lastpass as another selection.
 2110:   */
 2111:  
 2112:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 2113:   double ***freq; /* Frequencies */
 2114:   double *pp, **prop;
 2115:   double pos,posprop; 
 2116:   double  y2; /* in fractional years */
 2117:   int iagemin, iagemax;
 2118: 
 2119:   iagemin= (int) agemin;
 2120:   iagemax= (int) agemax;
 2121:   /*pp=vector(1,nlstate);*/
 2122:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2123:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2124:   j1=0;
 2125:   
 2126:   j=cptcoveff;
 2127:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2128:   
 2129:   for(k1=1; k1<=j;k1++){
 2130:     for(i1=1; i1<=ncodemax[k1];i1++){
 2131:       j1++;
 2132:       
 2133:       for (i=1; i<=nlstate; i++)  
 2134: 	for(m=iagemin; m <= iagemax+3; m++)
 2135: 	  prop[i][m]=0.0;
 2136:      
 2137:       for (i=1; i<=imx; i++) { /* Each individual */
 2138: 	bool=1;
 2139: 	if  (cptcovn>0) {
 2140: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2141: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2142: 	      bool=0;
 2143: 	} 
 2144: 	if (bool==1) { 
 2145: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2146: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2147: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2148: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2149: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2150: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2151:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2152: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2153:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2154:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2155:  	      } 
 2156: 	    }
 2157: 	  } /* end selection of waves */
 2158: 	}
 2159:       }
 2160:       for(i=iagemin; i <= iagemax+3; i++){  
 2161: 	
 2162:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2163:  	  posprop += prop[jk][i]; 
 2164:  	} 
 2165: 
 2166:  	for(jk=1; jk <=nlstate ; jk++){	    
 2167:  	  if( i <=  iagemax){ 
 2168:  	    if(posprop>=1.e-5){ 
 2169:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2170:  	    } 
 2171:  	  } 
 2172:  	}/* end jk */ 
 2173:       }/* end i */ 
 2174:     } /* end i1 */
 2175:   } /* end k1 */
 2176:   
 2177:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2178:   /*free_vector(pp,1,nlstate);*/
 2179:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2180: }  /* End of prevalence */
 2181: 
 2182: /************* Waves Concatenation ***************/
 2183: 
 2184: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2185: {
 2186:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2187:      Death is a valid wave (if date is known).
 2188:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2189:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2190:      and mw[mi+1][i]. dh depends on stepm.
 2191:      */
 2192: 
 2193:   int i, mi, m;
 2194:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2195:      double sum=0., jmean=0.;*/
 2196:   int first;
 2197:   int j, k=0,jk, ju, jl;
 2198:   double sum=0.;
 2199:   first=0;
 2200:   jmin=1e+5;
 2201:   jmax=-1;
 2202:   jmean=0.;
 2203:   for(i=1; i<=imx; i++){
 2204:     mi=0;
 2205:     m=firstpass;
 2206:     while(s[m][i] <= nlstate){
 2207:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2208: 	mw[++mi][i]=m;
 2209:       if(m >=lastpass)
 2210: 	break;
 2211:       else
 2212: 	m++;
 2213:     }/* end while */
 2214:     if (s[m][i] > nlstate){
 2215:       mi++;	/* Death is another wave */
 2216:       /* if(mi==0)  never been interviewed correctly before death */
 2217: 	 /* Only death is a correct wave */
 2218:       mw[mi][i]=m;
 2219:     }
 2220: 
 2221:     wav[i]=mi;
 2222:     if(mi==0){
 2223:       nbwarn++;
 2224:       if(first==0){
 2225: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2226: 	first=1;
 2227:       }
 2228:       if(first==1){
 2229: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2230:       }
 2231:     } /* end mi==0 */
 2232:   } /* End individuals */
 2233: 
 2234:   for(i=1; i<=imx; i++){
 2235:     for(mi=1; mi<wav[i];mi++){
 2236:       if (stepm <=0)
 2237: 	dh[mi][i]=1;
 2238:       else{
 2239: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2240: 	  if (agedc[i] < 2*AGESUP) {
 2241: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2242: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2243: 	    else if(j<0){
 2244: 	      nberr++;
 2245: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2246: 	      j=1; /* Temporary Dangerous patch */
 2247: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2248: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2249: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2250: 	    }
 2251: 	    k=k+1;
 2252: 	    if (j >= jmax){
 2253: 	      jmax=j;
 2254: 	      ijmax=i;
 2255: 	    }
 2256: 	    if (j <= jmin){
 2257: 	      jmin=j;
 2258: 	      ijmin=i;
 2259: 	    }
 2260: 	    sum=sum+j;
 2261: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2262: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2263: 	  }
 2264: 	}
 2265: 	else{
 2266: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2267: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2268: 
 2269: 	  k=k+1;
 2270: 	  if (j >= jmax) {
 2271: 	    jmax=j;
 2272: 	    ijmax=i;
 2273: 	  }
 2274: 	  else if (j <= jmin){
 2275: 	    jmin=j;
 2276: 	    ijmin=i;
 2277: 	  }
 2278: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2279: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2280: 	  if(j<0){
 2281: 	    nberr++;
 2282: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2283: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2284: 	  }
 2285: 	  sum=sum+j;
 2286: 	}
 2287: 	jk= j/stepm;
 2288: 	jl= j -jk*stepm;
 2289: 	ju= j -(jk+1)*stepm;
 2290: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2291: 	  if(jl==0){
 2292: 	    dh[mi][i]=jk;
 2293: 	    bh[mi][i]=0;
 2294: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2295: 		  * at the price of an extra matrix product in likelihood */
 2296: 	    dh[mi][i]=jk+1;
 2297: 	    bh[mi][i]=ju;
 2298: 	  }
 2299: 	}else{
 2300: 	  if(jl <= -ju){
 2301: 	    dh[mi][i]=jk;
 2302: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2303: 				 * is higher than the multiple of stepm and negative otherwise.
 2304: 				 */
 2305: 	  }
 2306: 	  else{
 2307: 	    dh[mi][i]=jk+1;
 2308: 	    bh[mi][i]=ju;
 2309: 	  }
 2310: 	  if(dh[mi][i]==0){
 2311: 	    dh[mi][i]=1; /* At least one step */
 2312: 	    bh[mi][i]=ju; /* At least one step */
 2313: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2314: 	  }
 2315: 	} /* end if mle */
 2316:       }
 2317:     } /* end wave */
 2318:   }
 2319:   jmean=sum/k;
 2320:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2321:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2322:  }
 2323: 
 2324: /*********** Tricode ****************************/
 2325: void tricode(int *Tvar, int **nbcode, int imx)
 2326: {
 2327:   
 2328:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 2329:   int cptcode=0;
 2330:   cptcoveff=0; 
 2331:  
 2332:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 2333:   for (k=1; k<=7; k++) ncodemax[k]=0;
 2334: 
 2335:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 2336:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 2337: 			       modality*/ 
 2338:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 2339:       Ndum[ij]++; /*store the modality */
 2340:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2341:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 2342: 				       Tvar[j]. If V=sex and male is 0 and 
 2343: 				       female is 1, then  cptcode=1.*/
 2344:     }
 2345: 
 2346:     for (i=0; i<=cptcode; i++) {
 2347:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 2348:     }
 2349: 
 2350:     ij=1; 
 2351:     for (i=1; i<=ncodemax[j]; i++) {
 2352:       for (k=0; k<= maxncov; k++) {
 2353: 	if (Ndum[k] != 0) {
 2354: 	  nbcode[Tvar[j]][ij]=k; 
 2355: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2356: 	  
 2357: 	  ij++;
 2358: 	}
 2359: 	if (ij > ncodemax[j]) break; 
 2360:       }  
 2361:     } 
 2362:   }  
 2363: 
 2364:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 2365: 
 2366:  for (i=1; i<=ncovmodel-2; i++) { 
 2367:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 2368:    ij=Tvar[i];
 2369:    Ndum[ij]++;
 2370:  }
 2371: 
 2372:  ij=1;
 2373:  for (i=1; i<= maxncov; i++) {
 2374:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2375:      Tvaraff[ij]=i; /*For printing */
 2376:      ij++;
 2377:    }
 2378:  }
 2379:  
 2380:  cptcoveff=ij-1; /*Number of simple covariates*/
 2381: }
 2382: 
 2383: /*********** Health Expectancies ****************/
 2384: 
 2385: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
 2386: 
 2387: {
 2388:   /* Health expectancies */
 2389:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 2390:   double age, agelim, hf;
 2391:   double ***p3mat,***varhe;
 2392:   double **dnewm,**doldm;
 2393:   double *xp;
 2394:   double **gp, **gm;
 2395:   double ***gradg, ***trgradg;
 2396:   int theta;
 2397: 
 2398:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2399:   xp=vector(1,npar);
 2400:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2401:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2402:   
 2403:   fprintf(ficreseij,"# Local time at start: %s", strstart);
 2404:   fprintf(ficreseij,"# Health expectancies\n");
 2405:   fprintf(ficreseij,"# Age");
 2406:   for(i=1; i<=nlstate;i++)
 2407:     for(j=1; j<=nlstate;j++)
 2408:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
 2409:   fprintf(ficreseij,"\n");
 2410: 
 2411:   if(estepm < stepm){
 2412:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2413:   }
 2414:   else  hstepm=estepm;   
 2415:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2416:    * This is mainly to measure the difference between two models: for example
 2417:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2418:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2419:    * progression in between and thus overestimating or underestimating according
 2420:    * to the curvature of the survival function. If, for the same date, we 
 2421:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2422:    * to compare the new estimate of Life expectancy with the same linear 
 2423:    * hypothesis. A more precise result, taking into account a more precise
 2424:    * curvature will be obtained if estepm is as small as stepm. */
 2425: 
 2426:   /* For example we decided to compute the life expectancy with the smallest unit */
 2427:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2428:      nhstepm is the number of hstepm from age to agelim 
 2429:      nstepm is the number of stepm from age to agelin. 
 2430:      Look at hpijx to understand the reason of that which relies in memory size
 2431:      and note for a fixed period like estepm months */
 2432:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2433:      survival function given by stepm (the optimization length). Unfortunately it
 2434:      means that if the survival funtion is printed only each two years of age and if
 2435:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2436:      results. So we changed our mind and took the option of the best precision.
 2437:   */
 2438:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2439: 
 2440:   agelim=AGESUP;
 2441:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2442:     /* nhstepm age range expressed in number of stepm */
 2443:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 2444:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2445:     /* if (stepm >= YEARM) hstepm=1;*/
 2446:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2447:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2448:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2449:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2450:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2451: 
 2452:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2453:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2454:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 2455:  
 2456: 
 2457:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2458: 
 2459:     /* Computing  Variances of health expectancies */
 2460: 
 2461:      for(theta=1; theta <=npar; theta++){
 2462:       for(i=1; i<=npar; i++){ 
 2463: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2464:       }
 2465:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2466:   
 2467:       cptj=0;
 2468:       for(j=1; j<= nlstate; j++){
 2469: 	for(i=1; i<=nlstate; i++){
 2470: 	  cptj=cptj+1;
 2471: 	  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 2472: 	    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2473: 	  }
 2474: 	}
 2475:       }
 2476:      
 2477:      
 2478:       for(i=1; i<=npar; i++) 
 2479: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2480:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2481:       
 2482:       cptj=0;
 2483:       for(j=1; j<= nlstate; j++){
 2484: 	for(i=1;i<=nlstate;i++){
 2485: 	  cptj=cptj+1;
 2486: 	  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 2487: 
 2488: 	    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2489: 	  }
 2490: 	}
 2491:       }
 2492:       for(j=1; j<= nlstate*nlstate; j++)
 2493: 	for(h=0; h<=nhstepm-1; h++){
 2494: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2495: 	}
 2496:      } 
 2497:    
 2498: /* End theta */
 2499: 
 2500:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2501: 
 2502:      for(h=0; h<=nhstepm-1; h++)
 2503:       for(j=1; j<=nlstate*nlstate;j++)
 2504: 	for(theta=1; theta <=npar; theta++)
 2505: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2506:      
 2507: 
 2508:      for(i=1;i<=nlstate*nlstate;i++)
 2509:       for(j=1;j<=nlstate*nlstate;j++)
 2510: 	varhe[i][j][(int)age] =0.;
 2511: 
 2512:      printf("%d|",(int)age);fflush(stdout);
 2513:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2514:      for(h=0;h<=nhstepm-1;h++){
 2515:       for(k=0;k<=nhstepm-1;k++){
 2516: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 2517: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 2518: 	for(i=1;i<=nlstate*nlstate;i++)
 2519: 	  for(j=1;j<=nlstate*nlstate;j++)
 2520: 	    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 2521:       }
 2522:     }
 2523:     /* Computing expectancies */
 2524:     for(i=1; i<=nlstate;i++)
 2525:       for(j=1; j<=nlstate;j++)
 2526: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2527: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2528: 	  
 2529: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2530: 
 2531: 	}
 2532: 
 2533:     fprintf(ficreseij,"%3.0f",age );
 2534:     cptj=0;
 2535:     for(i=1; i<=nlstate;i++)
 2536:       for(j=1; j<=nlstate;j++){
 2537: 	cptj++;
 2538: 	fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 2539:       }
 2540:     fprintf(ficreseij,"\n");
 2541:    
 2542:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 2543:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 2544:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 2545:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 2546:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2547:   }
 2548:   printf("\n");
 2549:   fprintf(ficlog,"\n");
 2550: 
 2551:   free_vector(xp,1,npar);
 2552:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 2553:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 2554:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 2555: }
 2556: 
 2557: /************ Variance ******************/
 2558: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 2559: {
 2560:   /* Variance of health expectancies */
 2561:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2562:   /* double **newm;*/
 2563:   double **dnewm,**doldm;
 2564:   double **dnewmp,**doldmp;
 2565:   int i, j, nhstepm, hstepm, h, nstepm ;
 2566:   int k, cptcode;
 2567:   double *xp;
 2568:   double **gp, **gm;  /* for var eij */
 2569:   double ***gradg, ***trgradg; /*for var eij */
 2570:   double **gradgp, **trgradgp; /* for var p point j */
 2571:   double *gpp, *gmp; /* for var p point j */
 2572:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2573:   double ***p3mat;
 2574:   double age,agelim, hf;
 2575:   double ***mobaverage;
 2576:   int theta;
 2577:   char digit[4];
 2578:   char digitp[25];
 2579: 
 2580:   char fileresprobmorprev[FILENAMELENGTH];
 2581: 
 2582:   if(popbased==1){
 2583:     if(mobilav!=0)
 2584:       strcpy(digitp,"-populbased-mobilav-");
 2585:     else strcpy(digitp,"-populbased-nomobil-");
 2586:   }
 2587:   else 
 2588:     strcpy(digitp,"-stablbased-");
 2589: 
 2590:   if (mobilav!=0) {
 2591:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2592:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2593:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2594:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2595:     }
 2596:   }
 2597: 
 2598:   strcpy(fileresprobmorprev,"prmorprev"); 
 2599:   sprintf(digit,"%-d",ij);
 2600:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2601:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2602:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2603:   strcat(fileresprobmorprev,fileres);
 2604:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2605:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2606:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2607:   }
 2608:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2609:  
 2610:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2611:   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
 2612:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2613:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2614:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2615:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2616:     for(i=1; i<=nlstate;i++)
 2617:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2618:   }  
 2619:   fprintf(ficresprobmorprev,"\n");
 2620:   fprintf(ficgp,"\n# Routine varevsij");
 2621:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 2622:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2623:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 2624: /*   } */
 2625:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2626:  fprintf(ficresvij, "#Local time at start: %s", strstart);
 2627:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 2628:   fprintf(ficresvij,"# Age");
 2629:   for(i=1; i<=nlstate;i++)
 2630:     for(j=1; j<=nlstate;j++)
 2631:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 2632:   fprintf(ficresvij,"\n");
 2633: 
 2634:   xp=vector(1,npar);
 2635:   dnewm=matrix(1,nlstate,1,npar);
 2636:   doldm=matrix(1,nlstate,1,nlstate);
 2637:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 2638:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2639: 
 2640:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 2641:   gpp=vector(nlstate+1,nlstate+ndeath);
 2642:   gmp=vector(nlstate+1,nlstate+ndeath);
 2643:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2644:   
 2645:   if(estepm < stepm){
 2646:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2647:   }
 2648:   else  hstepm=estepm;   
 2649:   /* For example we decided to compute the life expectancy with the smallest unit */
 2650:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2651:      nhstepm is the number of hstepm from age to agelim 
 2652:      nstepm is the number of stepm from age to agelin. 
 2653:      Look at hpijx to understand the reason of that which relies in memory size
 2654:      and note for a fixed period like k years */
 2655:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2656:      survival function given by stepm (the optimization length). Unfortunately it
 2657:      means that if the survival funtion is printed every two years of age and if
 2658:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2659:      results. So we changed our mind and took the option of the best precision.
 2660:   */
 2661:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2662:   agelim = AGESUP;
 2663:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2664:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2665:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2666:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2667:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 2668:     gp=matrix(0,nhstepm,1,nlstate);
 2669:     gm=matrix(0,nhstepm,1,nlstate);
 2670: 
 2671: 
 2672:     for(theta=1; theta <=npar; theta++){
 2673:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 2674: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2675:       }
 2676:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2677:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2678: 
 2679:       if (popbased==1) {
 2680: 	if(mobilav ==0){
 2681: 	  for(i=1; i<=nlstate;i++)
 2682: 	    prlim[i][i]=probs[(int)age][i][ij];
 2683: 	}else{ /* mobilav */ 
 2684: 	  for(i=1; i<=nlstate;i++)
 2685: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2686: 	}
 2687:       }
 2688:   
 2689:       for(j=1; j<= nlstate; j++){
 2690: 	for(h=0; h<=nhstepm; h++){
 2691: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 2692: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 2693: 	}
 2694:       }
 2695:       /* This for computing probability of death (h=1 means
 2696:          computed over hstepm matrices product = hstepm*stepm months) 
 2697:          as a weighted average of prlim.
 2698:       */
 2699:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2700: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 2701: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 2702:       }    
 2703:       /* end probability of death */
 2704: 
 2705:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 2706: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2707:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2708:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2709:  
 2710:       if (popbased==1) {
 2711: 	if(mobilav ==0){
 2712: 	  for(i=1; i<=nlstate;i++)
 2713: 	    prlim[i][i]=probs[(int)age][i][ij];
 2714: 	}else{ /* mobilav */ 
 2715: 	  for(i=1; i<=nlstate;i++)
 2716: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2717: 	}
 2718:       }
 2719: 
 2720:       for(j=1; j<= nlstate; j++){
 2721: 	for(h=0; h<=nhstepm; h++){
 2722: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 2723: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 2724: 	}
 2725:       }
 2726:       /* This for computing probability of death (h=1 means
 2727:          computed over hstepm matrices product = hstepm*stepm months) 
 2728:          as a weighted average of prlim.
 2729:       */
 2730:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2731: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 2732:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 2733:       }    
 2734:       /* end probability of death */
 2735: 
 2736:       for(j=1; j<= nlstate; j++) /* vareij */
 2737: 	for(h=0; h<=nhstepm; h++){
 2738: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2739: 	}
 2740: 
 2741:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 2742: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 2743:       }
 2744: 
 2745:     } /* End theta */
 2746: 
 2747:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2748: 
 2749:     for(h=0; h<=nhstepm; h++) /* veij */
 2750:       for(j=1; j<=nlstate;j++)
 2751: 	for(theta=1; theta <=npar; theta++)
 2752: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2753: 
 2754:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2755:       for(theta=1; theta <=npar; theta++)
 2756: 	trgradgp[j][theta]=gradgp[theta][j];
 2757:   
 2758: 
 2759:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2760:     for(i=1;i<=nlstate;i++)
 2761:       for(j=1;j<=nlstate;j++)
 2762: 	vareij[i][j][(int)age] =0.;
 2763: 
 2764:     for(h=0;h<=nhstepm;h++){
 2765:       for(k=0;k<=nhstepm;k++){
 2766: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2767: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2768: 	for(i=1;i<=nlstate;i++)
 2769: 	  for(j=1;j<=nlstate;j++)
 2770: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2771:       }
 2772:     }
 2773:   
 2774:     /* pptj */
 2775:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2776:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2777:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2778:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2779: 	varppt[j][i]=doldmp[j][i];
 2780:     /* end ppptj */
 2781:     /*  x centered again */
 2782:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2783:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2784:  
 2785:     if (popbased==1) {
 2786:       if(mobilav ==0){
 2787: 	for(i=1; i<=nlstate;i++)
 2788: 	  prlim[i][i]=probs[(int)age][i][ij];
 2789:       }else{ /* mobilav */ 
 2790: 	for(i=1; i<=nlstate;i++)
 2791: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2792:       }
 2793:     }
 2794:              
 2795:     /* This for computing probability of death (h=1 means
 2796:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 2797:        as a weighted average of prlim.
 2798:     */
 2799:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2800:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 2801: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2802:     }    
 2803:     /* end probability of death */
 2804: 
 2805:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2806:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2807:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2808:       for(i=1; i<=nlstate;i++){
 2809: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2810:       }
 2811:     } 
 2812:     fprintf(ficresprobmorprev,"\n");
 2813: 
 2814:     fprintf(ficresvij,"%.0f ",age );
 2815:     for(i=1; i<=nlstate;i++)
 2816:       for(j=1; j<=nlstate;j++){
 2817: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2818:       }
 2819:     fprintf(ficresvij,"\n");
 2820:     free_matrix(gp,0,nhstepm,1,nlstate);
 2821:     free_matrix(gm,0,nhstepm,1,nlstate);
 2822:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2823:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2824:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2825:   } /* End age */
 2826:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2827:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2828:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 2829:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2830:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 2831:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 2832:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 2833: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 2834: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2835: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2836:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 2837:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 2838:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 2839:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 2840:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2841:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 2842: */
 2843: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 2844:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2845: 
 2846:   free_vector(xp,1,npar);
 2847:   free_matrix(doldm,1,nlstate,1,nlstate);
 2848:   free_matrix(dnewm,1,nlstate,1,npar);
 2849:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2850:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 2851:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2852:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2853:   fclose(ficresprobmorprev);
 2854:   fflush(ficgp);
 2855:   fflush(fichtm); 
 2856: }  /* end varevsij */
 2857: 
 2858: /************ Variance of prevlim ******************/
 2859: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 2860: {
 2861:   /* Variance of prevalence limit */
 2862:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 2863:   double **newm;
 2864:   double **dnewm,**doldm;
 2865:   int i, j, nhstepm, hstepm;
 2866:   int k, cptcode;
 2867:   double *xp;
 2868:   double *gp, *gm;
 2869:   double **gradg, **trgradg;
 2870:   double age,agelim;
 2871:   int theta;
 2872:   fprintf(ficresvpl, "#Local time at start: %s", strstart); 
 2873:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 2874:   fprintf(ficresvpl,"# Age");
 2875:   for(i=1; i<=nlstate;i++)
 2876:       fprintf(ficresvpl," %1d-%1d",i,i);
 2877:   fprintf(ficresvpl,"\n");
 2878: 
 2879:   xp=vector(1,npar);
 2880:   dnewm=matrix(1,nlstate,1,npar);
 2881:   doldm=matrix(1,nlstate,1,nlstate);
 2882:   
 2883:   hstepm=1*YEARM; /* Every year of age */
 2884:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 2885:   agelim = AGESUP;
 2886:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2887:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2888:     if (stepm >= YEARM) hstepm=1;
 2889:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2890:     gradg=matrix(1,npar,1,nlstate);
 2891:     gp=vector(1,nlstate);
 2892:     gm=vector(1,nlstate);
 2893: 
 2894:     for(theta=1; theta <=npar; theta++){
 2895:       for(i=1; i<=npar; i++){ /* Computes gradient */
 2896: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2897:       }
 2898:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2899:       for(i=1;i<=nlstate;i++)
 2900: 	gp[i] = prlim[i][i];
 2901:     
 2902:       for(i=1; i<=npar; i++) /* Computes gradient */
 2903: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2904:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2905:       for(i=1;i<=nlstate;i++)
 2906: 	gm[i] = prlim[i][i];
 2907: 
 2908:       for(i=1;i<=nlstate;i++)
 2909: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 2910:     } /* End theta */
 2911: 
 2912:     trgradg =matrix(1,nlstate,1,npar);
 2913: 
 2914:     for(j=1; j<=nlstate;j++)
 2915:       for(theta=1; theta <=npar; theta++)
 2916: 	trgradg[j][theta]=gradg[theta][j];
 2917: 
 2918:     for(i=1;i<=nlstate;i++)
 2919:       varpl[i][(int)age] =0.;
 2920:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 2921:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 2922:     for(i=1;i<=nlstate;i++)
 2923:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 2924: 
 2925:     fprintf(ficresvpl,"%.0f ",age );
 2926:     for(i=1; i<=nlstate;i++)
 2927:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 2928:     fprintf(ficresvpl,"\n");
 2929:     free_vector(gp,1,nlstate);
 2930:     free_vector(gm,1,nlstate);
 2931:     free_matrix(gradg,1,npar,1,nlstate);
 2932:     free_matrix(trgradg,1,nlstate,1,npar);
 2933:   } /* End age */
 2934: 
 2935:   free_vector(xp,1,npar);
 2936:   free_matrix(doldm,1,nlstate,1,npar);
 2937:   free_matrix(dnewm,1,nlstate,1,nlstate);
 2938: 
 2939: }
 2940: 
 2941: /************ Variance of one-step probabilities  ******************/
 2942: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 2943: {
 2944:   int i, j=0,  i1, k1, l1, t, tj;
 2945:   int k2, l2, j1,  z1;
 2946:   int k=0,l, cptcode;
 2947:   int first=1, first1;
 2948:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 2949:   double **dnewm,**doldm;
 2950:   double *xp;
 2951:   double *gp, *gm;
 2952:   double **gradg, **trgradg;
 2953:   double **mu;
 2954:   double age,agelim, cov[NCOVMAX];
 2955:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 2956:   int theta;
 2957:   char fileresprob[FILENAMELENGTH];
 2958:   char fileresprobcov[FILENAMELENGTH];
 2959:   char fileresprobcor[FILENAMELENGTH];
 2960: 
 2961:   double ***varpij;
 2962: 
 2963:   strcpy(fileresprob,"prob"); 
 2964:   strcat(fileresprob,fileres);
 2965:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 2966:     printf("Problem with resultfile: %s\n", fileresprob);
 2967:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 2968:   }
 2969:   strcpy(fileresprobcov,"probcov"); 
 2970:   strcat(fileresprobcov,fileres);
 2971:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 2972:     printf("Problem with resultfile: %s\n", fileresprobcov);
 2973:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 2974:   }
 2975:   strcpy(fileresprobcor,"probcor"); 
 2976:   strcat(fileresprobcor,fileres);
 2977:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 2978:     printf("Problem with resultfile: %s\n", fileresprobcor);
 2979:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 2980:   }
 2981:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2982:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2983:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2984:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2985:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2986:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2987:   fprintf(ficresprob, "#Local time at start: %s", strstart);
 2988:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 2989:   fprintf(ficresprob,"# Age");
 2990:   fprintf(ficresprobcov, "#Local time at start: %s", strstart);
 2991:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 2992:   fprintf(ficresprobcov,"# Age");
 2993:   fprintf(ficresprobcor, "#Local time at start: %s", strstart);
 2994:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 2995:   fprintf(ficresprobcov,"# Age");
 2996: 
 2997: 
 2998:   for(i=1; i<=nlstate;i++)
 2999:     for(j=1; j<=(nlstate+ndeath);j++){
 3000:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3001:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3002:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3003:     }  
 3004:  /* fprintf(ficresprob,"\n");
 3005:   fprintf(ficresprobcov,"\n");
 3006:   fprintf(ficresprobcor,"\n");
 3007:  */
 3008:  xp=vector(1,npar);
 3009:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3010:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3011:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3012:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3013:   first=1;
 3014:   fprintf(ficgp,"\n# Routine varprob");
 3015:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3016:   fprintf(fichtm,"\n");
 3017: 
 3018:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3019:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3020:   file %s<br>\n",optionfilehtmcov);
 3021:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3022: and drawn. It helps understanding how is the covariance between two incidences.\
 3023:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3024:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3025: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3026: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3027: standard deviations wide on each axis. <br>\
 3028:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3029:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3030: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3031: 
 3032:   cov[1]=1;
 3033:   tj=cptcoveff;
 3034:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3035:   j1=0;
 3036:   for(t=1; t<=tj;t++){
 3037:     for(i1=1; i1<=ncodemax[t];i1++){ 
 3038:       j1++;
 3039:       if  (cptcovn>0) {
 3040: 	fprintf(ficresprob, "\n#********** Variable "); 
 3041: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3042: 	fprintf(ficresprob, "**********\n#\n");
 3043: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3044: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3045: 	fprintf(ficresprobcov, "**********\n#\n");
 3046: 	
 3047: 	fprintf(ficgp, "\n#********** Variable "); 
 3048: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3049: 	fprintf(ficgp, "**********\n#\n");
 3050: 	
 3051: 	
 3052: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3053: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3054: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3055: 	
 3056: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3057: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3058: 	fprintf(ficresprobcor, "**********\n#");    
 3059:       }
 3060:       
 3061:       for (age=bage; age<=fage; age ++){ 
 3062: 	cov[2]=age;
 3063: 	for (k=1; k<=cptcovn;k++) {
 3064: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 3065: 	}
 3066: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3067: 	for (k=1; k<=cptcovprod;k++)
 3068: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3069: 	
 3070: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3071: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3072: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 3073: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 3074:     
 3075: 	for(theta=1; theta <=npar; theta++){
 3076: 	  for(i=1; i<=npar; i++)
 3077: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3078: 	  
 3079: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3080: 	  
 3081: 	  k=0;
 3082: 	  for(i=1; i<= (nlstate); i++){
 3083: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3084: 	      k=k+1;
 3085: 	      gp[k]=pmmij[i][j];
 3086: 	    }
 3087: 	  }
 3088: 	  
 3089: 	  for(i=1; i<=npar; i++)
 3090: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3091:     
 3092: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3093: 	  k=0;
 3094: 	  for(i=1; i<=(nlstate); i++){
 3095: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3096: 	      k=k+1;
 3097: 	      gm[k]=pmmij[i][j];
 3098: 	    }
 3099: 	  }
 3100:      
 3101: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3102: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3103: 	}
 3104: 
 3105: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3106: 	  for(theta=1; theta <=npar; theta++)
 3107: 	    trgradg[j][theta]=gradg[theta][j];
 3108: 	
 3109: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3110: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3111: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3112: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3113: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3114: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3115: 
 3116: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3117: 	
 3118: 	k=0;
 3119: 	for(i=1; i<=(nlstate); i++){
 3120: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3121: 	    k=k+1;
 3122: 	    mu[k][(int) age]=pmmij[i][j];
 3123: 	  }
 3124: 	}
 3125:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3126: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3127: 	    varpij[i][j][(int)age] = doldm[i][j];
 3128: 
 3129: 	/*printf("\n%d ",(int)age);
 3130: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3131: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3132: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3133: 	  }*/
 3134: 
 3135: 	fprintf(ficresprob,"\n%d ",(int)age);
 3136: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3137: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3138: 
 3139: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3140: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3141: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3142: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3143: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3144: 	}
 3145: 	i=0;
 3146: 	for (k=1; k<=(nlstate);k++){
 3147:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3148:  	    i=i++;
 3149: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3150: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3151: 	    for (j=1; j<=i;j++){
 3152: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3153: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3154: 	    }
 3155: 	  }
 3156: 	}/* end of loop for state */
 3157:       } /* end of loop for age */
 3158: 
 3159:       /* Confidence intervalle of pij  */
 3160:       /*
 3161: 	fprintf(ficgp,"\nset noparametric;unset label");
 3162: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3163: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3164: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3165: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3166: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3167: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3168:       */
 3169: 
 3170:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3171:       first1=1;
 3172:       for (k2=1; k2<=(nlstate);k2++){
 3173: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3174: 	  if(l2==k2) continue;
 3175: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3176: 	  for (k1=1; k1<=(nlstate);k1++){
 3177: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3178: 	      if(l1==k1) continue;
 3179: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3180: 	      if(i<=j) continue;
 3181: 	      for (age=bage; age<=fage; age ++){ 
 3182: 		if ((int)age %5==0){
 3183: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3184: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3185: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3186: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3187: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3188: 		  c12=cv12/sqrt(v1*v2);
 3189: 		  /* Computing eigen value of matrix of covariance */
 3190: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3191: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3192: 		  /* Eigen vectors */
 3193: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3194: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3195: 		  v21=(lc1-v1)/cv12*v11;
 3196: 		  v12=-v21;
 3197: 		  v22=v11;
 3198: 		  tnalp=v21/v11;
 3199: 		  if(first1==1){
 3200: 		    first1=0;
 3201: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3202: 		  }
 3203: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3204: 		  /*printf(fignu*/
 3205: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3206: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3207: 		  if(first==1){
 3208: 		    first=0;
 3209:  		    fprintf(ficgp,"\nset parametric;unset label");
 3210: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3211: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3212: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3213:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3214: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3215: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3216: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3217: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3218: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3219: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3220: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3221: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3222: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3223: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3224: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3225: 		  }else{
 3226: 		    first=0;
 3227: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3228: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3229: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3230: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3231: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3232: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3233: 		  }/* if first */
 3234: 		} /* age mod 5 */
 3235: 	      } /* end loop age */
 3236: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3237: 	      first=1;
 3238: 	    } /*l12 */
 3239: 	  } /* k12 */
 3240: 	} /*l1 */
 3241:       }/* k1 */
 3242:     } /* loop covariates */
 3243:   }
 3244:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3245:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3246:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3247:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 3248:   free_vector(xp,1,npar);
 3249:   fclose(ficresprob);
 3250:   fclose(ficresprobcov);
 3251:   fclose(ficresprobcor);
 3252:   fflush(ficgp);
 3253:   fflush(fichtmcov);
 3254: }
 3255: 
 3256: 
 3257: /******************* Printing html file ***********/
 3258: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3259: 		  int lastpass, int stepm, int weightopt, char model[],\
 3260: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3261: 		  int popforecast, int estepm ,\
 3262: 		  double jprev1, double mprev1,double anprev1, \
 3263: 		  double jprev2, double mprev2,double anprev2){
 3264:   int jj1, k1, i1, cpt;
 3265: 
 3266:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 3267:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 3268: </ul>");
 3269:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 3270:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 3271: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 3272:    fprintf(fichtm,"\
 3273:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 3274: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 3275:    fprintf(fichtm,"\
 3276:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 3277: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 3278:    fprintf(fichtm,"\
 3279:  - Life expectancies by age and initial health status (estepm=%2d months): \
 3280:    <a href=\"%s\">%s</a> <br>\n</li>",
 3281: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3282: 
 3283: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3284: 
 3285:  m=cptcoveff;
 3286:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3287: 
 3288:  jj1=0;
 3289:  for(k1=1; k1<=m;k1++){
 3290:    for(i1=1; i1<=ncodemax[k1];i1++){
 3291:      jj1++;
 3292:      if (cptcovn > 0) {
 3293:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3294:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3295: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3296:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3297:      }
 3298:      /* Pij */
 3299:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
 3300: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3301:      /* Quasi-incidences */
 3302:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3303:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
 3304: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3305:        /* Stable prevalence in each health state */
 3306:        for(cpt=1; cpt<nlstate;cpt++){
 3307: 	 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
 3308: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3309:        }
 3310:      for(cpt=1; cpt<=nlstate;cpt++) {
 3311:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
 3312: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3313:      }
 3314:    } /* end i1 */
 3315:  }/* End k1 */
 3316:  fprintf(fichtm,"</ul>");
 3317: 
 3318: 
 3319:  fprintf(fichtm,"\
 3320: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 3321:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 3322: 
 3323:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3324: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 3325:  fprintf(fichtm,"\
 3326:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3327: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 3328: 
 3329:  fprintf(fichtm,"\
 3330:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 3331: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 3332:  fprintf(fichtm,"\
 3333:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 3334: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 3335:  fprintf(fichtm,"\
 3336:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
 3337: 	 subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 3338:  fprintf(fichtm,"\
 3339:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3340: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3341: 
 3342: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3343: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3344: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3345: /* 	<br>",fileres,fileres,fileres,fileres); */
 3346: /*  else  */
 3347: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3348:  fflush(fichtm);
 3349:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3350: 
 3351:  m=cptcoveff;
 3352:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3353: 
 3354:  jj1=0;
 3355:  for(k1=1; k1<=m;k1++){
 3356:    for(i1=1; i1<=ncodemax[k1];i1++){
 3357:      jj1++;
 3358:      if (cptcovn > 0) {
 3359:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3360:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3361: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3362:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3363:      }
 3364:      for(cpt=1; cpt<=nlstate;cpt++) {
 3365:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 3366: prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 3367: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3368:      }
 3369:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3370: health expectancies in states (1) and (2): %s%d.png<br>\
 3371: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3372:    } /* end i1 */
 3373:  }/* End k1 */
 3374:  fprintf(fichtm,"</ul>");
 3375:  fflush(fichtm);
 3376: }
 3377: 
 3378: /******************* Gnuplot file **************/
 3379: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3380: 
 3381:   char dirfileres[132],optfileres[132];
 3382:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 3383:   int ng;
 3384: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3385: /*     printf("Problem with file %s",optionfilegnuplot); */
 3386: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3387: /*   } */
 3388: 
 3389:   /*#ifdef windows */
 3390:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3391:     /*#endif */
 3392:   m=pow(2,cptcoveff);
 3393: 
 3394:   strcpy(dirfileres,optionfilefiname);
 3395:   strcpy(optfileres,"vpl");
 3396:  /* 1eme*/
 3397:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3398:    for (k1=1; k1<= m ; k1 ++) {
 3399:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3400:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 3401:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3402: set ylabel \"Probability\" \n\
 3403: set ter png small\n\
 3404: set size 0.65,0.65\n\
 3405: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3406: 
 3407:      for (i=1; i<= nlstate ; i ++) {
 3408:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3409:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3410:      }
 3411:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3412:      for (i=1; i<= nlstate ; i ++) {
 3413:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3414:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3415:      } 
 3416:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 3417:      for (i=1; i<= nlstate ; i ++) {
 3418:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3419:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3420:      }  
 3421:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 3422:    }
 3423:   }
 3424:   /*2 eme*/
 3425:   
 3426:   for (k1=1; k1<= m ; k1 ++) { 
 3427:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 3428:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 3429:     
 3430:     for (i=1; i<= nlstate+1 ; i ++) {
 3431:       k=2*i;
 3432:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3433:       for (j=1; j<= nlstate+1 ; j ++) {
 3434: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3435: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3436:       }   
 3437:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 3438:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 3439:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3440:       for (j=1; j<= nlstate+1 ; j ++) {
 3441: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3442: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3443:       }   
 3444:       fprintf(ficgp,"\" t\"\" w l 0,");
 3445:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3446:       for (j=1; j<= nlstate+1 ; j ++) {
 3447: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3448: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3449:       }   
 3450:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 3451:       else fprintf(ficgp,"\" t\"\" w l 0,");
 3452:     }
 3453:   }
 3454:   
 3455:   /*3eme*/
 3456:   
 3457:   for (k1=1; k1<= m ; k1 ++) { 
 3458:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 3459:       k=2+nlstate*(2*cpt-2);
 3460:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 3461:       fprintf(ficgp,"set ter png small\n\
 3462: set size 0.65,0.65\n\
 3463: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 3464:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3465: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3466: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3467: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3468: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3469: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3470: 	
 3471:       */
 3472:       for (i=1; i< nlstate ; i ++) {
 3473: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
 3474: 	
 3475:       } 
 3476:     }
 3477:   }
 3478:   
 3479:   /* CV preval stable (period) */
 3480:   for (k1=1; k1<= m ; k1 ++) { 
 3481:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 3482:       k=3;
 3483:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 3484:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 3485: set ter png small\nset size 0.65,0.65\n\
 3486: unset log y\n\
 3487: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 3488:       
 3489:       for (i=1; i< nlstate ; i ++)
 3490: 	fprintf(ficgp,"+$%d",k+i+1);
 3491:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 3492:       
 3493:       l=3+(nlstate+ndeath)*cpt;
 3494:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 3495:       for (i=1; i< nlstate ; i ++) {
 3496: 	l=3+(nlstate+ndeath)*cpt;
 3497: 	fprintf(ficgp,"+$%d",l+i+1);
 3498:       }
 3499:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 3500:     } 
 3501:   }  
 3502:   
 3503:   /* proba elementaires */
 3504:   for(i=1,jk=1; i <=nlstate; i++){
 3505:     for(k=1; k <=(nlstate+ndeath); k++){
 3506:       if (k != i) {
 3507: 	for(j=1; j <=ncovmodel; j++){
 3508: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 3509: 	  jk++; 
 3510: 	  fprintf(ficgp,"\n");
 3511: 	}
 3512:       }
 3513:     }
 3514:    }
 3515: 
 3516:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 3517:      for(jk=1; jk <=m; jk++) {
 3518:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 3519:        if (ng==2)
 3520: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 3521:        else
 3522: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 3523:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 3524:        i=1;
 3525:        for(k2=1; k2<=nlstate; k2++) {
 3526: 	 k3=i;
 3527: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 3528: 	   if (k != k2){
 3529: 	     if(ng==2)
 3530: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 3531: 	     else
 3532: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 3533: 	     ij=1;
 3534: 	     for(j=3; j <=ncovmodel; j++) {
 3535: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3536: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3537: 		 ij++;
 3538: 	       }
 3539: 	       else
 3540: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3541: 	     }
 3542: 	     fprintf(ficgp,")/(1");
 3543: 	     
 3544: 	     for(k1=1; k1 <=nlstate; k1++){   
 3545: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 3546: 	       ij=1;
 3547: 	       for(j=3; j <=ncovmodel; j++){
 3548: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3549: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3550: 		   ij++;
 3551: 		 }
 3552: 		 else
 3553: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3554: 	       }
 3555: 	       fprintf(ficgp,")");
 3556: 	     }
 3557: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 3558: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 3559: 	     i=i+ncovmodel;
 3560: 	   }
 3561: 	 } /* end k */
 3562:        } /* end k2 */
 3563:      } /* end jk */
 3564:    } /* end ng */
 3565:    fflush(ficgp); 
 3566: }  /* end gnuplot */
 3567: 
 3568: 
 3569: /*************** Moving average **************/
 3570: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 3571: 
 3572:   int i, cpt, cptcod;
 3573:   int modcovmax =1;
 3574:   int mobilavrange, mob;
 3575:   double age;
 3576: 
 3577:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 3578: 			   a covariate has 2 modalities */
 3579:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 3580: 
 3581:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 3582:     if(mobilav==1) mobilavrange=5; /* default */
 3583:     else mobilavrange=mobilav;
 3584:     for (age=bage; age<=fage; age++)
 3585:       for (i=1; i<=nlstate;i++)
 3586: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 3587: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 3588:     /* We keep the original values on the extreme ages bage, fage and for 
 3589:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 3590:        we use a 5 terms etc. until the borders are no more concerned. 
 3591:     */ 
 3592:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 3593:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 3594: 	for (i=1; i<=nlstate;i++){
 3595: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 3596: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 3597: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 3598: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 3599: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 3600: 	      }
 3601: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 3602: 	  }
 3603: 	}
 3604:       }/* end age */
 3605:     }/* end mob */
 3606:   }else return -1;
 3607:   return 0;
 3608: }/* End movingaverage */
 3609: 
 3610: 
 3611: /************** Forecasting ******************/
 3612: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 3613:   /* proj1, year, month, day of starting projection 
 3614:      agemin, agemax range of age
 3615:      dateprev1 dateprev2 range of dates during which prevalence is computed
 3616:      anproj2 year of en of projection (same day and month as proj1).
 3617:   */
 3618:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 3619:   int *popage;
 3620:   double agec; /* generic age */
 3621:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 3622:   double *popeffectif,*popcount;
 3623:   double ***p3mat;
 3624:   double ***mobaverage;
 3625:   char fileresf[FILENAMELENGTH];
 3626: 
 3627:   agelim=AGESUP;
 3628:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3629:  
 3630:   strcpy(fileresf,"f"); 
 3631:   strcat(fileresf,fileres);
 3632:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 3633:     printf("Problem with forecast resultfile: %s\n", fileresf);
 3634:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 3635:   }
 3636:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 3637:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 3638: 
 3639:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3640: 
 3641:   if (mobilav!=0) {
 3642:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3643:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3644:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3645:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3646:     }
 3647:   }
 3648: 
 3649:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3650:   if (stepm<=12) stepsize=1;
 3651:   if(estepm < stepm){
 3652:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3653:   }
 3654:   else  hstepm=estepm;   
 3655: 
 3656:   hstepm=hstepm/stepm; 
 3657:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 3658:                                fractional in yp1 */
 3659:   anprojmean=yp;
 3660:   yp2=modf((yp1*12),&yp);
 3661:   mprojmean=yp;
 3662:   yp1=modf((yp2*30.5),&yp);
 3663:   jprojmean=yp;
 3664:   if(jprojmean==0) jprojmean=1;
 3665:   if(mprojmean==0) jprojmean=1;
 3666: 
 3667:   i1=cptcoveff;
 3668:   if (cptcovn < 1){i1=1;}
 3669:   
 3670:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 3671:   
 3672:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 3673: 
 3674: /* 	      if (h==(int)(YEARM*yearp)){ */
 3675:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 3676:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3677:       k=k+1;
 3678:       fprintf(ficresf,"\n#******");
 3679:       for(j=1;j<=cptcoveff;j++) {
 3680: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3681:       }
 3682:       fprintf(ficresf,"******\n");
 3683:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 3684:       for(j=1; j<=nlstate+ndeath;j++){ 
 3685: 	for(i=1; i<=nlstate;i++) 	      
 3686:           fprintf(ficresf," p%d%d",i,j);
 3687: 	fprintf(ficresf," p.%d",j);
 3688:       }
 3689:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 3690: 	fprintf(ficresf,"\n");
 3691: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 3692: 
 3693:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 3694: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 3695: 	  nhstepm = nhstepm/hstepm; 
 3696: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3697: 	  oldm=oldms;savm=savms;
 3698: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3699: 	
 3700: 	  for (h=0; h<=nhstepm; h++){
 3701: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 3702:               fprintf(ficresf,"\n");
 3703:               for(j=1;j<=cptcoveff;j++) 
 3704:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3705: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 3706: 	    } 
 3707: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3708: 	      ppij=0.;
 3709: 	      for(i=1; i<=nlstate;i++) {
 3710: 		if (mobilav==1) 
 3711: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 3712: 		else {
 3713: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 3714: 		}
 3715: 		if (h*hstepm/YEARM*stepm== yearp) {
 3716: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 3717: 		}
 3718: 	      } /* end i */
 3719: 	      if (h*hstepm/YEARM*stepm==yearp) {
 3720: 		fprintf(ficresf," %.3f", ppij);
 3721: 	      }
 3722: 	    }/* end j */
 3723: 	  } /* end h */
 3724: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3725: 	} /* end agec */
 3726:       } /* end yearp */
 3727:     } /* end cptcod */
 3728:   } /* end  cptcov */
 3729:        
 3730:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3731: 
 3732:   fclose(ficresf);
 3733: }
 3734: 
 3735: /************** Forecasting *****not tested NB*************/
 3736: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 3737:   
 3738:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3739:   int *popage;
 3740:   double calagedatem, agelim, kk1, kk2;
 3741:   double *popeffectif,*popcount;
 3742:   double ***p3mat,***tabpop,***tabpopprev;
 3743:   double ***mobaverage;
 3744:   char filerespop[FILENAMELENGTH];
 3745: 
 3746:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3747:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3748:   agelim=AGESUP;
 3749:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 3750:   
 3751:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3752:   
 3753:   
 3754:   strcpy(filerespop,"pop"); 
 3755:   strcat(filerespop,fileres);
 3756:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 3757:     printf("Problem with forecast resultfile: %s\n", filerespop);
 3758:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 3759:   }
 3760:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 3761:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 3762: 
 3763:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3764: 
 3765:   if (mobilav!=0) {
 3766:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3767:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3768:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3769:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3770:     }
 3771:   }
 3772: 
 3773:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3774:   if (stepm<=12) stepsize=1;
 3775:   
 3776:   agelim=AGESUP;
 3777:   
 3778:   hstepm=1;
 3779:   hstepm=hstepm/stepm; 
 3780:   
 3781:   if (popforecast==1) {
 3782:     if((ficpop=fopen(popfile,"r"))==NULL) {
 3783:       printf("Problem with population file : %s\n",popfile);exit(0);
 3784:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 3785:     } 
 3786:     popage=ivector(0,AGESUP);
 3787:     popeffectif=vector(0,AGESUP);
 3788:     popcount=vector(0,AGESUP);
 3789:     
 3790:     i=1;   
 3791:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 3792:    
 3793:     imx=i;
 3794:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 3795:   }
 3796: 
 3797:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 3798:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3799:       k=k+1;
 3800:       fprintf(ficrespop,"\n#******");
 3801:       for(j=1;j<=cptcoveff;j++) {
 3802: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3803:       }
 3804:       fprintf(ficrespop,"******\n");
 3805:       fprintf(ficrespop,"# Age");
 3806:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 3807:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3808:       
 3809:       for (cpt=0; cpt<=0;cpt++) { 
 3810: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3811: 	
 3812:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3813: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3814: 	  nhstepm = nhstepm/hstepm; 
 3815: 	  
 3816: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3817: 	  oldm=oldms;savm=savms;
 3818: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3819: 	
 3820: 	  for (h=0; h<=nhstepm; h++){
 3821: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3822: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3823: 	    } 
 3824: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3825: 	      kk1=0.;kk2=0;
 3826: 	      for(i=1; i<=nlstate;i++) {	      
 3827: 		if (mobilav==1) 
 3828: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3829: 		else {
 3830: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3831: 		}
 3832: 	      }
 3833: 	      if (h==(int)(calagedatem+12*cpt)){
 3834: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 3835: 		  /*fprintf(ficrespop," %.3f", kk1);
 3836: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 3837: 	      }
 3838: 	    }
 3839: 	    for(i=1; i<=nlstate;i++){
 3840: 	      kk1=0.;
 3841: 		for(j=1; j<=nlstate;j++){
 3842: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 3843: 		}
 3844: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 3845: 	    }
 3846: 
 3847: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 3848: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 3849: 	  }
 3850: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3851: 	}
 3852:       }
 3853:  
 3854:   /******/
 3855: 
 3856:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 3857: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3858: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3859: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3860: 	  nhstepm = nhstepm/hstepm; 
 3861: 	  
 3862: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3863: 	  oldm=oldms;savm=savms;
 3864: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3865: 	  for (h=0; h<=nhstepm; h++){
 3866: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3867: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3868: 	    } 
 3869: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3870: 	      kk1=0.;kk2=0;
 3871: 	      for(i=1; i<=nlstate;i++) {	      
 3872: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 3873: 	      }
 3874: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 3875: 	    }
 3876: 	  }
 3877: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3878: 	}
 3879:       }
 3880:    } 
 3881:   }
 3882:  
 3883:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3884: 
 3885:   if (popforecast==1) {
 3886:     free_ivector(popage,0,AGESUP);
 3887:     free_vector(popeffectif,0,AGESUP);
 3888:     free_vector(popcount,0,AGESUP);
 3889:   }
 3890:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3891:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3892:   fclose(ficrespop);
 3893: } /* End of popforecast */
 3894: 
 3895: int fileappend(FILE *fichier, char *optionfich)
 3896: {
 3897:   if((fichier=fopen(optionfich,"a"))==NULL) {
 3898:     printf("Problem with file: %s\n", optionfich);
 3899:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 3900:     return (0);
 3901:   }
 3902:   fflush(fichier);
 3903:   return (1);
 3904: }
 3905: 
 3906: 
 3907: /**************** function prwizard **********************/
 3908: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 3909: {
 3910: 
 3911:   /* Wizard to print covariance matrix template */
 3912: 
 3913:   char ca[32], cb[32], cc[32];
 3914:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 3915:   int numlinepar;
 3916: 
 3917:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3918:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3919:   for(i=1; i <=nlstate; i++){
 3920:     jj=0;
 3921:     for(j=1; j <=nlstate+ndeath; j++){
 3922:       if(j==i) continue;
 3923:       jj++;
 3924:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 3925:       printf("%1d%1d",i,j);
 3926:       fprintf(ficparo,"%1d%1d",i,j);
 3927:       for(k=1; k<=ncovmodel;k++){
 3928: 	/* 	  printf(" %lf",param[i][j][k]); */
 3929: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 3930: 	printf(" 0.");
 3931: 	fprintf(ficparo," 0.");
 3932:       }
 3933:       printf("\n");
 3934:       fprintf(ficparo,"\n");
 3935:     }
 3936:   }
 3937:   printf("# Scales (for hessian or gradient estimation)\n");
 3938:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 3939:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 3940:   for(i=1; i <=nlstate; i++){
 3941:     jj=0;
 3942:     for(j=1; j <=nlstate+ndeath; j++){
 3943:       if(j==i) continue;
 3944:       jj++;
 3945:       fprintf(ficparo,"%1d%1d",i,j);
 3946:       printf("%1d%1d",i,j);
 3947:       fflush(stdout);
 3948:       for(k=1; k<=ncovmodel;k++){
 3949: 	/* 	printf(" %le",delti3[i][j][k]); */
 3950: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 3951: 	printf(" 0.");
 3952: 	fprintf(ficparo," 0.");
 3953:       }
 3954:       numlinepar++;
 3955:       printf("\n");
 3956:       fprintf(ficparo,"\n");
 3957:     }
 3958:   }
 3959:   printf("# Covariance matrix\n");
 3960: /* # 121 Var(a12)\n\ */
 3961: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3962: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 3963: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 3964: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 3965: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 3966: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 3967: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 3968:   fflush(stdout);
 3969:   fprintf(ficparo,"# Covariance matrix\n");
 3970:   /* # 121 Var(a12)\n\ */
 3971:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3972:   /* #   ...\n\ */
 3973:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 3974:   
 3975:   for(itimes=1;itimes<=2;itimes++){
 3976:     jj=0;
 3977:     for(i=1; i <=nlstate; i++){
 3978:       for(j=1; j <=nlstate+ndeath; j++){
 3979: 	if(j==i) continue;
 3980: 	for(k=1; k<=ncovmodel;k++){
 3981: 	  jj++;
 3982: 	  ca[0]= k+'a'-1;ca[1]='\0';
 3983: 	  if(itimes==1){
 3984: 	    printf("#%1d%1d%d",i,j,k);
 3985: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 3986: 	  }else{
 3987: 	    printf("%1d%1d%d",i,j,k);
 3988: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 3989: 	    /* 	printf(" %.5le",matcov[i][j]); */
 3990: 	  }
 3991: 	  ll=0;
 3992: 	  for(li=1;li <=nlstate; li++){
 3993: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 3994: 	      if(lj==li) continue;
 3995: 	      for(lk=1;lk<=ncovmodel;lk++){
 3996: 		ll++;
 3997: 		if(ll<=jj){
 3998: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 3999: 		  if(ll<jj){
 4000: 		    if(itimes==1){
 4001: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4002: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4003: 		    }else{
 4004: 		      printf(" 0.");
 4005: 		      fprintf(ficparo," 0.");
 4006: 		    }
 4007: 		  }else{
 4008: 		    if(itimes==1){
 4009: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4010: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4011: 		    }else{
 4012: 		      printf(" 0.");
 4013: 		      fprintf(ficparo," 0.");
 4014: 		    }
 4015: 		  }
 4016: 		}
 4017: 	      } /* end lk */
 4018: 	    } /* end lj */
 4019: 	  } /* end li */
 4020: 	  printf("\n");
 4021: 	  fprintf(ficparo,"\n");
 4022: 	  numlinepar++;
 4023: 	} /* end k*/
 4024:       } /*end j */
 4025:     } /* end i */
 4026:   } /* end itimes */
 4027: 
 4028: } /* end of prwizard */
 4029: /******************* Gompertz Likelihood ******************************/
 4030: double gompertz(double x[])
 4031: { 
 4032:   double A,B,L=0.0,sump=0.,num=0.;
 4033:   int i,n=0; /* n is the size of the sample */
 4034: 
 4035:   for (i=0;i<=imx-1 ; i++) {
 4036:     sump=sump+weight[i];
 4037:     /*    sump=sump+1;*/
 4038:     num=num+1;
 4039:   }
 4040:  
 4041:  
 4042:   /* for (i=0; i<=imx; i++) 
 4043:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4044: 
 4045:   for (i=1;i<=imx ; i++)
 4046:     {
 4047:       if (cens[i] == 1 && wav[i]>1)
 4048: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4049:       
 4050:       if (cens[i] == 0 && wav[i]>1)
 4051: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4052: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4053:       
 4054:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4055:       if (wav[i] > 1 ) { /* ??? */
 4056: 	L=L+A*weight[i];
 4057: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4058:       }
 4059:     }
 4060: 
 4061:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4062:  
 4063:   return -2*L*num/sump;
 4064: }
 4065: 
 4066: /******************* Printing html file ***********/
 4067: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4068: 		  int lastpass, int stepm, int weightopt, char model[],\
 4069: 		  int imx,  double p[],double **matcov,double agemortsup){
 4070:   int i,k;
 4071: 
 4072:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4073:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4074:   for (i=1;i<=2;i++) 
 4075:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4076:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4077:   fprintf(fichtm,"</ul>");
 4078: 
 4079: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4080: 
 4081:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4082: 
 4083:  for (k=agegomp;k<(agemortsup-2);k++) 
 4084:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4085: 
 4086:  
 4087:   fflush(fichtm);
 4088: }
 4089: 
 4090: /******************* Gnuplot file **************/
 4091: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4092: 
 4093:   char dirfileres[132],optfileres[132];
 4094:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 4095:   int ng;
 4096: 
 4097: 
 4098:   /*#ifdef windows */
 4099:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4100:     /*#endif */
 4101: 
 4102: 
 4103:   strcpy(dirfileres,optionfilefiname);
 4104:   strcpy(optfileres,"vpl");
 4105:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4106:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4107:   fprintf(ficgp, "set ter png small\n set log y\n"); 
 4108:   fprintf(ficgp, "set size 0.65,0.65\n");
 4109:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4110: 
 4111: } 
 4112: 
 4113: 
 4114: 
 4115: 
 4116: /***********************************************/
 4117: /**************** Main Program *****************/
 4118: /***********************************************/
 4119: 
 4120: int main(int argc, char *argv[])
 4121: {
 4122:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 4123:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 4124:   int linei, month, year,iout;
 4125:   int jj, ll, li, lj, lk, imk;
 4126:   int numlinepar=0; /* Current linenumber of parameter file */
 4127:   int itimes;
 4128:   int NDIM=2;
 4129: 
 4130:   char ca[32], cb[32], cc[32];
 4131:   char dummy[]="                         ";
 4132:   /*  FILE *fichtm; *//* Html File */
 4133:   /* FILE *ficgp;*/ /*Gnuplot File */
 4134:   struct stat info;
 4135:   double agedeb, agefin,hf;
 4136:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 4137: 
 4138:   double fret;
 4139:   double **xi,tmp,delta;
 4140: 
 4141:   double dum; /* Dummy variable */
 4142:   double ***p3mat;
 4143:   double ***mobaverage;
 4144:   int *indx;
 4145:   char line[MAXLINE], linepar[MAXLINE];
 4146:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 4147:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 4148:   char **bp, *tok, *val; /* pathtot */
 4149:   int firstobs=1, lastobs=10;
 4150:   int sdeb, sfin; /* Status at beginning and end */
 4151:   int c,  h , cpt,l;
 4152:   int ju,jl, mi;
 4153:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 4154:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
 4155:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 4156:   int mobilav=0,popforecast=0;
 4157:   int hstepm, nhstepm;
 4158:   int agemortsup;
 4159:   float  sumlpop=0.;
 4160:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 4161:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 4162: 
 4163:   double bage, fage, age, agelim, agebase;
 4164:   double ftolpl=FTOL;
 4165:   double **prlim;
 4166:   double *severity;
 4167:   double ***param; /* Matrix of parameters */
 4168:   double  *p;
 4169:   double **matcov; /* Matrix of covariance */
 4170:   double ***delti3; /* Scale */
 4171:   double *delti; /* Scale */
 4172:   double ***eij, ***vareij;
 4173:   double **varpl; /* Variances of prevalence limits by age */
 4174:   double *epj, vepp;
 4175:   double kk1, kk2;
 4176:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 4177:   double **ximort;
 4178:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 4179:   int *dcwave;
 4180: 
 4181:   char z[1]="c", occ;
 4182: 
 4183:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 4184:   char strstart[80], *strt, strtend[80];
 4185:   char *stratrunc;
 4186:   int lstra;
 4187: 
 4188:   long total_usecs;
 4189:  
 4190: /*   setlocale (LC_ALL, ""); */
 4191: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 4192: /*   textdomain (PACKAGE); */
 4193: /*   setlocale (LC_CTYPE, ""); */
 4194: /*   setlocale (LC_MESSAGES, ""); */
 4195: 
 4196:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 4197:   (void) gettimeofday(&start_time,&tzp);
 4198:   curr_time=start_time;
 4199:   tm = *localtime(&start_time.tv_sec);
 4200:   tmg = *gmtime(&start_time.tv_sec);
 4201:   strcpy(strstart,asctime(&tm));
 4202: 
 4203: /*  printf("Localtime (at start)=%s",strstart); */
 4204: /*  tp.tv_sec = tp.tv_sec +86400; */
 4205: /*  tm = *localtime(&start_time.tv_sec); */
 4206: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 4207: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 4208: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 4209: /*   tp.tv_sec = mktime(&tmg); */
 4210: /*   strt=asctime(&tmg); */
 4211: /*   printf("Time(after) =%s",strstart);  */
 4212: /*  (void) time (&time_value);
 4213: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 4214: *  tm = *localtime(&time_value);
 4215: *  strstart=asctime(&tm);
 4216: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 4217: */
 4218: 
 4219:   nberr=0; /* Number of errors and warnings */
 4220:   nbwarn=0;
 4221:   getcwd(pathcd, size);
 4222: 
 4223:   printf("\n%s\n%s",version,fullversion);
 4224:   if(argc <=1){
 4225:     printf("\nEnter the parameter file name: ");
 4226:     fgets(pathr,FILENAMELENGTH,stdin);
 4227:     i=strlen(pathr);
 4228:     if(pathr[i-1]=='\n')
 4229:       pathr[i-1]='\0';
 4230:    for (tok = pathr; tok != NULL; ){
 4231:       printf("Pathr |%s|\n",pathr);
 4232:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 4233:       printf("val= |%s| pathr=%s\n",val,pathr);
 4234:       strcpy (pathtot, val);
 4235:       if(pathr[0] == '\0') break; /* Un peu sale */
 4236:     }
 4237:   }
 4238:   else{
 4239:     strcpy(pathtot,argv[1]);
 4240:   }
 4241:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 4242:   /*cygwin_split_path(pathtot,path,optionfile);
 4243:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 4244:   /* cutv(path,optionfile,pathtot,'\\');*/
 4245: 
 4246:   /* Split argv[0], imach program to get pathimach */
 4247:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 4248:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 4249:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 4250:  /*   strcpy(pathimach,argv[0]); */
 4251:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 4252:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 4253:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 4254:   chdir(path);
 4255:   strcpy(command,"mkdir ");
 4256:   strcat(command,optionfilefiname);
 4257:   if((outcmd=system(command)) != 0){
 4258:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 4259:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 4260:     /* fclose(ficlog); */
 4261: /*     exit(1); */
 4262:   }
 4263: /*   if((imk=mkdir(optionfilefiname))<0){ */
 4264: /*     perror("mkdir"); */
 4265: /*   } */
 4266: 
 4267:   /*-------- arguments in the command line --------*/
 4268: 
 4269:   /* Log file */
 4270:   strcat(filelog, optionfilefiname);
 4271:   strcat(filelog,".log");    /* */
 4272:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 4273:     printf("Problem with logfile %s\n",filelog);
 4274:     goto end;
 4275:   }
 4276:   fprintf(ficlog,"Log filename:%s\n",filelog);
 4277:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 4278:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 4279:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 4280:  path=%s \n\
 4281:  optionfile=%s\n\
 4282:  optionfilext=%s\n\
 4283:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 4284: 
 4285:   printf("Local time (at start):%s",strstart);
 4286:   fprintf(ficlog,"Local time (at start): %s",strstart);
 4287:   fflush(ficlog);
 4288: /*   (void) gettimeofday(&curr_time,&tzp); */
 4289: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 4290: 
 4291:   /* */
 4292:   strcpy(fileres,"r");
 4293:   strcat(fileres, optionfilefiname);
 4294:   strcat(fileres,".txt");    /* Other files have txt extension */
 4295: 
 4296:   /*---------arguments file --------*/
 4297: 
 4298:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 4299:     printf("Problem with optionfile %s\n",optionfile);
 4300:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 4301:     fflush(ficlog);
 4302:     goto end;
 4303:   }
 4304: 
 4305: 
 4306: 
 4307:   strcpy(filereso,"o");
 4308:   strcat(filereso,fileres);
 4309:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 4310:     printf("Problem with Output resultfile: %s\n", filereso);
 4311:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 4312:     fflush(ficlog);
 4313:     goto end;
 4314:   }
 4315: 
 4316:   /* Reads comments: lines beginning with '#' */
 4317:   numlinepar=0;
 4318:   while((c=getc(ficpar))=='#' && c!= EOF){
 4319:     ungetc(c,ficpar);
 4320:     fgets(line, MAXLINE, ficpar);
 4321:     numlinepar++;
 4322:     puts(line);
 4323:     fputs(line,ficparo);
 4324:     fputs(line,ficlog);
 4325:   }
 4326:   ungetc(c,ficpar);
 4327: 
 4328:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 4329:   numlinepar++;
 4330:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 4331:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4332:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4333:   fflush(ficlog);
 4334:   while((c=getc(ficpar))=='#' && c!= EOF){
 4335:     ungetc(c,ficpar);
 4336:     fgets(line, MAXLINE, ficpar);
 4337:     numlinepar++;
 4338:     puts(line);
 4339:     fputs(line,ficparo);
 4340:     fputs(line,ficlog);
 4341:   }
 4342:   ungetc(c,ficpar);
 4343: 
 4344:    
 4345:   covar=matrix(0,NCOVMAX,1,n); 
 4346:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 4347:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 4348: 
 4349:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 4350:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 4351:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 4352: 
 4353:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4354:   delti=delti3[1][1];
 4355:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 4356:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 4357:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4358:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4359:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4360:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 4361:     fclose (ficparo);
 4362:     fclose (ficlog);
 4363:     exit(0);
 4364:   }
 4365:   else if(mle==-3) {
 4366:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4367:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 4368:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 4369:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4370:     matcov=matrix(1,npar,1,npar);
 4371:   }
 4372:   else{
 4373:     /* Read guess parameters */
 4374:     /* Reads comments: lines beginning with '#' */
 4375:     while((c=getc(ficpar))=='#' && c!= EOF){
 4376:       ungetc(c,ficpar);
 4377:       fgets(line, MAXLINE, ficpar);
 4378:       numlinepar++;
 4379:       puts(line);
 4380:       fputs(line,ficparo);
 4381:       fputs(line,ficlog);
 4382:     }
 4383:     ungetc(c,ficpar);
 4384:     
 4385:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4386:     for(i=1; i <=nlstate; i++){
 4387:       j=0;
 4388:       for(jj=1; jj <=nlstate+ndeath; jj++){
 4389: 	if(jj==i) continue;
 4390: 	j++;
 4391: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 4392: 	if ((i1 != i) && (j1 != j)){
 4393: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4394: 	  exit(1);
 4395: 	}
 4396: 	fprintf(ficparo,"%1d%1d",i1,j1);
 4397: 	if(mle==1)
 4398: 	  printf("%1d%1d",i,j);
 4399: 	fprintf(ficlog,"%1d%1d",i,j);
 4400: 	for(k=1; k<=ncovmodel;k++){
 4401: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 4402: 	  if(mle==1){
 4403: 	    printf(" %lf",param[i][j][k]);
 4404: 	    fprintf(ficlog," %lf",param[i][j][k]);
 4405: 	  }
 4406: 	  else
 4407: 	    fprintf(ficlog," %lf",param[i][j][k]);
 4408: 	  fprintf(ficparo," %lf",param[i][j][k]);
 4409: 	}
 4410: 	fscanf(ficpar,"\n");
 4411: 	numlinepar++;
 4412: 	if(mle==1)
 4413: 	  printf("\n");
 4414: 	fprintf(ficlog,"\n");
 4415: 	fprintf(ficparo,"\n");
 4416:       }
 4417:     }  
 4418:     fflush(ficlog);
 4419: 
 4420:     p=param[1][1];
 4421:     
 4422:     /* Reads comments: lines beginning with '#' */
 4423:     while((c=getc(ficpar))=='#' && c!= EOF){
 4424:       ungetc(c,ficpar);
 4425:       fgets(line, MAXLINE, ficpar);
 4426:       numlinepar++;
 4427:       puts(line);
 4428:       fputs(line,ficparo);
 4429:       fputs(line,ficlog);
 4430:     }
 4431:     ungetc(c,ficpar);
 4432: 
 4433:     for(i=1; i <=nlstate; i++){
 4434:       for(j=1; j <=nlstate+ndeath-1; j++){
 4435: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 4436: 	if ((i1-i)*(j1-j)!=0){
 4437: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4438: 	  exit(1);
 4439: 	}
 4440: 	printf("%1d%1d",i,j);
 4441: 	fprintf(ficparo,"%1d%1d",i1,j1);
 4442: 	fprintf(ficlog,"%1d%1d",i1,j1);
 4443: 	for(k=1; k<=ncovmodel;k++){
 4444: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 4445: 	  printf(" %le",delti3[i][j][k]);
 4446: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 4447: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 4448: 	}
 4449: 	fscanf(ficpar,"\n");
 4450: 	numlinepar++;
 4451: 	printf("\n");
 4452: 	fprintf(ficparo,"\n");
 4453: 	fprintf(ficlog,"\n");
 4454:       }
 4455:     }
 4456:     fflush(ficlog);
 4457: 
 4458:     delti=delti3[1][1];
 4459: 
 4460: 
 4461:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 4462:   
 4463:     /* Reads comments: lines beginning with '#' */
 4464:     while((c=getc(ficpar))=='#' && c!= EOF){
 4465:       ungetc(c,ficpar);
 4466:       fgets(line, MAXLINE, ficpar);
 4467:       numlinepar++;
 4468:       puts(line);
 4469:       fputs(line,ficparo);
 4470:       fputs(line,ficlog);
 4471:     }
 4472:     ungetc(c,ficpar);
 4473:   
 4474:     matcov=matrix(1,npar,1,npar);
 4475:     for(i=1; i <=npar; i++){
 4476:       fscanf(ficpar,"%s",&str);
 4477:       if(mle==1)
 4478: 	printf("%s",str);
 4479:       fprintf(ficlog,"%s",str);
 4480:       fprintf(ficparo,"%s",str);
 4481:       for(j=1; j <=i; j++){
 4482: 	fscanf(ficpar," %le",&matcov[i][j]);
 4483: 	if(mle==1){
 4484: 	  printf(" %.5le",matcov[i][j]);
 4485: 	}
 4486: 	fprintf(ficlog," %.5le",matcov[i][j]);
 4487: 	fprintf(ficparo," %.5le",matcov[i][j]);
 4488:       }
 4489:       fscanf(ficpar,"\n");
 4490:       numlinepar++;
 4491:       if(mle==1)
 4492: 	printf("\n");
 4493:       fprintf(ficlog,"\n");
 4494:       fprintf(ficparo,"\n");
 4495:     }
 4496:     for(i=1; i <=npar; i++)
 4497:       for(j=i+1;j<=npar;j++)
 4498: 	matcov[i][j]=matcov[j][i];
 4499:     
 4500:     if(mle==1)
 4501:       printf("\n");
 4502:     fprintf(ficlog,"\n");
 4503:     
 4504:     fflush(ficlog);
 4505:     
 4506:     /*-------- Rewriting parameter file ----------*/
 4507:     strcpy(rfileres,"r");    /* "Rparameterfile */
 4508:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 4509:     strcat(rfileres,".");    /* */
 4510:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 4511:     if((ficres =fopen(rfileres,"w"))==NULL) {
 4512:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 4513:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 4514:     }
 4515:     fprintf(ficres,"#%s\n",version);
 4516:   }    /* End of mle != -3 */
 4517: 
 4518:   /*-------- data file ----------*/
 4519:   if((fic=fopen(datafile,"r"))==NULL)    {
 4520:     printf("Problem with datafile: %s\n", datafile);goto end;
 4521:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 4522:   }
 4523: 
 4524:   n= lastobs;
 4525:   severity = vector(1,maxwav);
 4526:   outcome=imatrix(1,maxwav+1,1,n);
 4527:   num=lvector(1,n);
 4528:   moisnais=vector(1,n);
 4529:   annais=vector(1,n);
 4530:   moisdc=vector(1,n);
 4531:   andc=vector(1,n);
 4532:   agedc=vector(1,n);
 4533:   cod=ivector(1,n);
 4534:   weight=vector(1,n);
 4535:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 4536:   mint=matrix(1,maxwav,1,n);
 4537:   anint=matrix(1,maxwav,1,n);
 4538:   s=imatrix(1,maxwav+1,1,n);
 4539:   tab=ivector(1,NCOVMAX);
 4540:   ncodemax=ivector(1,8);
 4541: 
 4542:   i=1;
 4543:   linei=0;
 4544:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 4545:     linei=linei+1;
 4546:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4547:       if(line[j] == '\t')
 4548: 	line[j] = ' ';
 4549:     }
 4550:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 4551:       ;
 4552:     };
 4553:     line[j+1]=0;  /* Trims blanks at end of line */
 4554:     if(line[0]=='#'){
 4555:       fprintf(ficlog,"Comment line\n%s\n",line);
 4556:       printf("Comment line\n%s\n",line);
 4557:       continue;
 4558:     }
 4559: 
 4560:     for (j=maxwav;j>=1;j--){
 4561:       cutv(stra, strb,line,' '); 
 4562:       errno=0;
 4563:       lval=strtol(strb,&endptr,10); 
 4564:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 4565:       if( strb[0]=='\0' || (*endptr != '\0')){
 4566: 	printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 4567: 	exit(1);
 4568:       }
 4569:       s[j][i]=lval;
 4570:       
 4571:       strcpy(line,stra);
 4572:       cutv(stra, strb,line,' ');
 4573:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4574:       }
 4575:       else  if(iout=sscanf(strb,"%s.") != 0){
 4576: 	month=99;
 4577: 	year=9999;
 4578:       }else{
 4579: 	printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 4580: 	exit(1);
 4581:       }
 4582:       anint[j][i]= (double) year; 
 4583:       mint[j][i]= (double)month; 
 4584:       strcpy(line,stra);
 4585:     } /* ENd Waves */
 4586:     
 4587:     cutv(stra, strb,line,' '); 
 4588:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4589:     }
 4590:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 4591:       month=99;
 4592:       year=9999;
 4593:     }else{
 4594:       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 4595:       exit(1);
 4596:     }
 4597:     andc[i]=(double) year; 
 4598:     moisdc[i]=(double) month; 
 4599:     strcpy(line,stra);
 4600:     
 4601:     cutv(stra, strb,line,' '); 
 4602:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 4603:     }
 4604:     else  if(iout=sscanf(strb,"%s.") != 0){
 4605:       month=99;
 4606:       year=9999;
 4607:     }else{
 4608:       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
 4609:       exit(1);
 4610:     }
 4611:     annais[i]=(double)(year);
 4612:     moisnais[i]=(double)(month); 
 4613:     strcpy(line,stra);
 4614:     
 4615:     cutv(stra, strb,line,' '); 
 4616:     errno=0;
 4617:     lval=strtol(strb,&endptr,10); 
 4618:     if( strb[0]=='\0' || (*endptr != '\0')){
 4619:       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
 4620:       exit(1);
 4621:     }
 4622:     weight[i]=(double)(lval); 
 4623:     strcpy(line,stra);
 4624:     
 4625:     for (j=ncovcol;j>=1;j--){
 4626:       cutv(stra, strb,line,' '); 
 4627:       errno=0;
 4628:       lval=strtol(strb,&endptr,10); 
 4629:       if( strb[0]=='\0' || (*endptr != '\0')){
 4630: 	printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
 4631: 	exit(1);
 4632:       }
 4633:       if(lval <-1 || lval >1){
 4634: 	printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
 4635: 	exit(1);
 4636:       }
 4637:       covar[j][i]=(double)(lval);
 4638:       strcpy(line,stra);
 4639:     } 
 4640:     lstra=strlen(stra);
 4641:     
 4642:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4643:       stratrunc = &(stra[lstra-9]);
 4644:       num[i]=atol(stratrunc);
 4645:     }
 4646:     else
 4647:       num[i]=atol(stra);
 4648:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4649:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4650:     
 4651:     i=i+1;
 4652:   } /* End loop reading  data */
 4653:   fclose(fic);
 4654:   /* printf("ii=%d", ij);
 4655:      scanf("%d",i);*/
 4656:   imx=i-1; /* Number of individuals */
 4657: 
 4658:   /* for (i=1; i<=imx; i++){
 4659:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 4660:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 4661:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 4662:     }*/
 4663:    /*  for (i=1; i<=imx; i++){
 4664:      if (s[4][i]==9)  s[4][i]=-1; 
 4665:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 4666:   
 4667:   /* for (i=1; i<=imx; i++) */
 4668:  
 4669:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 4670:      else weight[i]=1;*/
 4671: 
 4672:   /* Calculation of the number of parameters from char model */
 4673:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 4674:   Tprod=ivector(1,15); 
 4675:   Tvaraff=ivector(1,15); 
 4676:   Tvard=imatrix(1,15,1,2);
 4677:   Tage=ivector(1,15);      
 4678:    
 4679:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4680:     j=0, j1=0, k1=1, k2=1;
 4681:     j=nbocc(model,'+'); /* j=Number of '+' */
 4682:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 4683:     cptcovn=j+1; 
 4684:     cptcovprod=j1; /*Number of products */
 4685:     
 4686:     strcpy(modelsav,model); 
 4687:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 4688:       printf("Error. Non available option model=%s ",model);
 4689:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 4690:       goto end;
 4691:     }
 4692:     
 4693:     /* This loop fills the array Tvar from the string 'model'.*/
 4694: 
 4695:     for(i=(j+1); i>=1;i--){
 4696:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 4697:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 4698:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 4699:       /*scanf("%d",i);*/
 4700:       if (strchr(strb,'*')) {  /* Model includes a product */
 4701: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 4702: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 4703: 	  cptcovprod--;
 4704: 	  cutv(strb,stre,strd,'V');
 4705: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 4706: 	  cptcovage++;
 4707: 	    Tage[cptcovage]=i;
 4708: 	    /*printf("stre=%s ", stre);*/
 4709: 	}
 4710: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 4711: 	  cptcovprod--;
 4712: 	  cutv(strb,stre,strc,'V');
 4713: 	  Tvar[i]=atoi(stre);
 4714: 	  cptcovage++;
 4715: 	  Tage[cptcovage]=i;
 4716: 	}
 4717: 	else {  /* Age is not in the model */
 4718: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 4719: 	  Tvar[i]=ncovcol+k1;
 4720: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 4721: 	  Tprod[k1]=i;
 4722: 	  Tvard[k1][1]=atoi(strc); /* m*/
 4723: 	  Tvard[k1][2]=atoi(stre); /* n */
 4724: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 4725: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 4726: 	  for (k=1; k<=lastobs;k++) 
 4727: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 4728: 	  k1++;
 4729: 	  k2=k2+2;
 4730: 	}
 4731:       }
 4732:       else { /* no more sum */
 4733: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 4734:        /*  scanf("%d",i);*/
 4735:       cutv(strd,strc,strb,'V');
 4736:       Tvar[i]=atoi(strc);
 4737:       }
 4738:       strcpy(modelsav,stra);  
 4739:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 4740: 	scanf("%d",i);*/
 4741:     } /* end of loop + */
 4742:   } /* end model */
 4743:   
 4744:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 4745:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 4746: 
 4747:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 4748:   printf("cptcovprod=%d ", cptcovprod);
 4749:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 4750: 
 4751:   scanf("%d ",i);*/
 4752: 
 4753:     /*  if(mle==1){*/
 4754:   if (weightopt != 1) { /* Maximisation without weights*/
 4755:     for(i=1;i<=n;i++) weight[i]=1.0;
 4756:   }
 4757:     /*-calculation of age at interview from date of interview and age at death -*/
 4758:   agev=matrix(1,maxwav,1,imx);
 4759: 
 4760:   for (i=1; i<=imx; i++) {
 4761:     for(m=2; (m<= maxwav); m++) {
 4762:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 4763: 	anint[m][i]=9999;
 4764: 	s[m][i]=-1;
 4765:       }
 4766:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 4767: 	nberr++;
 4768: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4769: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4770: 	s[m][i]=-1;
 4771:       }
 4772:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 4773: 	nberr++;
 4774: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 4775: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 4776: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 4777:       }
 4778:     }
 4779:   }
 4780: 
 4781:   for (i=1; i<=imx; i++)  {
 4782:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 4783:     for(m=firstpass; (m<= lastpass); m++){
 4784:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 4785: 	if (s[m][i] >= nlstate+1) {
 4786: 	  if(agedc[i]>0)
 4787: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 4788: 	      agev[m][i]=agedc[i];
 4789: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 4790: 	    else {
 4791: 	      if ((int)andc[i]!=9999){
 4792: 		nbwarn++;
 4793: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 4794: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 4795: 		agev[m][i]=-1;
 4796: 	      }
 4797: 	    }
 4798: 	}
 4799: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 4800: 				 years but with the precision of a month */
 4801: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 4802: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 4803: 	    agev[m][i]=1;
 4804: 	  else if(agev[m][i] <agemin){ 
 4805: 	    agemin=agev[m][i];
 4806: 	    /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 4807: 	  }
 4808: 	  else if(agev[m][i] >agemax){
 4809: 	    agemax=agev[m][i];
 4810: 	    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 4811: 	  }
 4812: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 4813: 	  /*	 agev[m][i] = age[i]+2*m;*/
 4814: 	}
 4815: 	else { /* =9 */
 4816: 	  agev[m][i]=1;
 4817: 	  s[m][i]=-1;
 4818: 	}
 4819:       }
 4820:       else /*= 0 Unknown */
 4821: 	agev[m][i]=1;
 4822:     }
 4823:     
 4824:   }
 4825:   for (i=1; i<=imx; i++)  {
 4826:     for(m=firstpass; (m<=lastpass); m++){
 4827:       if (s[m][i] > (nlstate+ndeath)) {
 4828: 	nberr++;
 4829: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4830: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4831: 	goto end;
 4832:       }
 4833:     }
 4834:   }
 4835: 
 4836:   /*for (i=1; i<=imx; i++){
 4837:   for (m=firstpass; (m<lastpass); m++){
 4838:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 4839: }
 4840: 
 4841: }*/
 4842: 
 4843: 
 4844:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 4845:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 4846: 
 4847:   agegomp=(int)agemin;
 4848:   free_vector(severity,1,maxwav);
 4849:   free_imatrix(outcome,1,maxwav+1,1,n);
 4850:   free_vector(moisnais,1,n);
 4851:   free_vector(annais,1,n);
 4852:   /* free_matrix(mint,1,maxwav,1,n);
 4853:      free_matrix(anint,1,maxwav,1,n);*/
 4854:   free_vector(moisdc,1,n);
 4855:   free_vector(andc,1,n);
 4856: 
 4857:    
 4858:   wav=ivector(1,imx);
 4859:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 4860:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 4861:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 4862:    
 4863:   /* Concatenates waves */
 4864:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 4865: 
 4866:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 4867: 
 4868:   Tcode=ivector(1,100);
 4869:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 4870:   ncodemax[1]=1;
 4871:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 4872:       
 4873:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 4874: 				 the estimations*/
 4875:   h=0;
 4876:   m=pow(2,cptcoveff);
 4877:  
 4878:   for(k=1;k<=cptcoveff; k++){
 4879:     for(i=1; i <=(m/pow(2,k));i++){
 4880:       for(j=1; j <= ncodemax[k]; j++){
 4881: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 4882: 	  h++;
 4883: 	  if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 4884: 	  /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 4885: 	} 
 4886:       }
 4887:     }
 4888:   } 
 4889:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 4890:      codtab[1][2]=1;codtab[2][2]=2; */
 4891:   /* for(i=1; i <=m ;i++){ 
 4892:      for(k=1; k <=cptcovn; k++){
 4893:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 4894:      }
 4895:      printf("\n");
 4896:      }
 4897:      scanf("%d",i);*/
 4898:     
 4899:   /*------------ gnuplot -------------*/
 4900:   strcpy(optionfilegnuplot,optionfilefiname);
 4901:   if(mle==-3)
 4902:     strcat(optionfilegnuplot,"-mort");
 4903:   strcat(optionfilegnuplot,".gp");
 4904: 
 4905:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 4906:     printf("Problem with file %s",optionfilegnuplot);
 4907:   }
 4908:   else{
 4909:     fprintf(ficgp,"\n# %s\n", version); 
 4910:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 4911:     fprintf(ficgp,"set missing 'NaNq'\n");
 4912:   }
 4913:   /*  fclose(ficgp);*/
 4914:   /*--------- index.htm --------*/
 4915: 
 4916:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 4917:   if(mle==-3)
 4918:     strcat(optionfilehtm,"-mort");
 4919:   strcat(optionfilehtm,".htm");
 4920:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 4921:     printf("Problem with %s \n",optionfilehtm), exit(0);
 4922:   }
 4923: 
 4924:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 4925:   strcat(optionfilehtmcov,"-cov.htm");
 4926:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 4927:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 4928:   }
 4929:   else{
 4930:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4931: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4932: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 4933: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 4934:   }
 4935: 
 4936:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4937: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4938: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 4939: \n\
 4940: <hr  size=\"2\" color=\"#EC5E5E\">\
 4941:  <ul><li><h4>Parameter files</h4>\n\
 4942:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 4943:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 4944:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 4945:  - Date and time at start: %s</ul>\n",\
 4946: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 4947: 	  fileres,fileres,\
 4948: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 4949:   fflush(fichtm);
 4950: 
 4951:   strcpy(pathr,path);
 4952:   strcat(pathr,optionfilefiname);
 4953:   chdir(optionfilefiname); /* Move to directory named optionfile */
 4954:   
 4955:   /* Calculates basic frequencies. Computes observed prevalence at single age
 4956:      and prints on file fileres'p'. */
 4957:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 4958: 
 4959:   fprintf(fichtm,"\n");
 4960:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 4961: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 4962: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 4963: 	  imx,agemin,agemax,jmin,jmax,jmean);
 4964:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4965:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4966:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4967:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4968:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 4969:     
 4970:    
 4971:   /* For Powell, parameters are in a vector p[] starting at p[1]
 4972:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 4973:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 4974: 
 4975:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 4976: 
 4977:   if (mle==-3){
 4978:     ximort=matrix(1,NDIM,1,NDIM);
 4979:     cens=ivector(1,n);
 4980:     ageexmed=vector(1,n);
 4981:     agecens=vector(1,n);
 4982:     dcwave=ivector(1,n);
 4983:  
 4984:     for (i=1; i<=imx; i++){
 4985:       dcwave[i]=-1;
 4986:       for (m=firstpass; m<=lastpass; m++)
 4987: 	if (s[m][i]>nlstate) {
 4988: 	  dcwave[i]=m;
 4989: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 4990: 	  break;
 4991: 	}
 4992:     }
 4993: 
 4994:     for (i=1; i<=imx; i++) {
 4995:       if (wav[i]>0){
 4996: 	ageexmed[i]=agev[mw[1][i]][i];
 4997: 	j=wav[i];
 4998: 	agecens[i]=1.; 
 4999: 
 5000: 	if (ageexmed[i]> 1 && wav[i] > 0){
 5001: 	  agecens[i]=agev[mw[j][i]][i];
 5002: 	  cens[i]= 1;
 5003: 	}else if (ageexmed[i]< 1) 
 5004: 	  cens[i]= -1;
 5005: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 5006: 	  cens[i]=0 ;
 5007:       }
 5008:       else cens[i]=-1;
 5009:     }
 5010:     
 5011:     for (i=1;i<=NDIM;i++) {
 5012:       for (j=1;j<=NDIM;j++)
 5013: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 5014:     }
 5015:     
 5016:     p[1]=0.0268; p[NDIM]=0.083;
 5017:     /*printf("%lf %lf", p[1], p[2]);*/
 5018:     
 5019:     
 5020:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 5021:     strcpy(filerespow,"pow-mort"); 
 5022:     strcat(filerespow,fileres);
 5023:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 5024:       printf("Problem with resultfile: %s\n", filerespow);
 5025:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 5026:     }
 5027:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 5028:     /*  for (i=1;i<=nlstate;i++)
 5029: 	for(j=1;j<=nlstate+ndeath;j++)
 5030: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 5031:     */
 5032:     fprintf(ficrespow,"\n");
 5033:     
 5034:     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 5035:     fclose(ficrespow);
 5036:     
 5037:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 5038: 
 5039:     for(i=1; i <=NDIM; i++)
 5040:       for(j=i+1;j<=NDIM;j++)
 5041: 	matcov[i][j]=matcov[j][i];
 5042:     
 5043:     printf("\nCovariance matrix\n ");
 5044:     for(i=1; i <=NDIM; i++) {
 5045:       for(j=1;j<=NDIM;j++){ 
 5046: 	printf("%f ",matcov[i][j]);
 5047:       }
 5048:       printf("\n ");
 5049:     }
 5050:     
 5051:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 5052:     for (i=1;i<=NDIM;i++) 
 5053:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5054: 
 5055:     lsurv=vector(1,AGESUP);
 5056:     lpop=vector(1,AGESUP);
 5057:     tpop=vector(1,AGESUP);
 5058:     lsurv[agegomp]=100000;
 5059:     
 5060:     for (k=agegomp;k<=AGESUP;k++) {
 5061:       agemortsup=k;
 5062:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 5063:     }
 5064:     
 5065:     for (k=agegomp;k<agemortsup;k++)
 5066:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 5067:     
 5068:     for (k=agegomp;k<agemortsup;k++){
 5069:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 5070:       sumlpop=sumlpop+lpop[k];
 5071:     }
 5072:     
 5073:     tpop[agegomp]=sumlpop;
 5074:     for (k=agegomp;k<(agemortsup-3);k++){
 5075:       /*  tpop[k+1]=2;*/
 5076:       tpop[k+1]=tpop[k]-lpop[k];
 5077:     }
 5078:     
 5079:     
 5080:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 5081:     for (k=agegomp;k<(agemortsup-2);k++) 
 5082:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5083:     
 5084:     
 5085:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 5086:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 5087:     
 5088:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 5089: 		     stepm, weightopt,\
 5090: 		     model,imx,p,matcov,agemortsup);
 5091:     
 5092:     free_vector(lsurv,1,AGESUP);
 5093:     free_vector(lpop,1,AGESUP);
 5094:     free_vector(tpop,1,AGESUP);
 5095:   } /* Endof if mle==-3 */
 5096:   
 5097:   else{ /* For mle >=1 */
 5098:   
 5099:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 5100:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 5101:     for (k=1; k<=npar;k++)
 5102:       printf(" %d %8.5f",k,p[k]);
 5103:     printf("\n");
 5104:     globpr=1; /* to print the contributions */
 5105:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 5106:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 5107:     for (k=1; k<=npar;k++)
 5108:       printf(" %d %8.5f",k,p[k]);
 5109:     printf("\n");
 5110:     if(mle>=1){ /* Could be 1 or 2 */
 5111:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 5112:     }
 5113:     
 5114:     /*--------- results files --------------*/
 5115:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 5116:     
 5117:     
 5118:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5119:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5120:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5121:     for(i=1,jk=1; i <=nlstate; i++){
 5122:       for(k=1; k <=(nlstate+ndeath); k++){
 5123: 	if (k != i) {
 5124: 	  printf("%d%d ",i,k);
 5125: 	  fprintf(ficlog,"%d%d ",i,k);
 5126: 	  fprintf(ficres,"%1d%1d ",i,k);
 5127: 	  for(j=1; j <=ncovmodel; j++){
 5128: 	    printf("%f ",p[jk]);
 5129: 	    fprintf(ficlog,"%f ",p[jk]);
 5130: 	    fprintf(ficres,"%f ",p[jk]);
 5131: 	    jk++; 
 5132: 	  }
 5133: 	  printf("\n");
 5134: 	  fprintf(ficlog,"\n");
 5135: 	  fprintf(ficres,"\n");
 5136: 	}
 5137:       }
 5138:     }
 5139:     if(mle!=0){
 5140:       /* Computing hessian and covariance matrix */
 5141:       ftolhess=ftol; /* Usually correct */
 5142:       hesscov(matcov, p, npar, delti, ftolhess, func);
 5143:     }
 5144:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 5145:     printf("# Scales (for hessian or gradient estimation)\n");
 5146:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 5147:     for(i=1,jk=1; i <=nlstate; i++){
 5148:       for(j=1; j <=nlstate+ndeath; j++){
 5149: 	if (j!=i) {
 5150: 	  fprintf(ficres,"%1d%1d",i,j);
 5151: 	  printf("%1d%1d",i,j);
 5152: 	  fprintf(ficlog,"%1d%1d",i,j);
 5153: 	  for(k=1; k<=ncovmodel;k++){
 5154: 	    printf(" %.5e",delti[jk]);
 5155: 	    fprintf(ficlog," %.5e",delti[jk]);
 5156: 	    fprintf(ficres," %.5e",delti[jk]);
 5157: 	    jk++;
 5158: 	  }
 5159: 	  printf("\n");
 5160: 	  fprintf(ficlog,"\n");
 5161: 	  fprintf(ficres,"\n");
 5162: 	}
 5163:       }
 5164:     }
 5165:     
 5166:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5167:     if(mle>=1)
 5168:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5169:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 5170:     /* # 121 Var(a12)\n\ */
 5171:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 5172:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 5173:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 5174:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 5175:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 5176:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 5177:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 5178:     
 5179:     
 5180:     /* Just to have a covariance matrix which will be more understandable
 5181:        even is we still don't want to manage dictionary of variables
 5182:     */
 5183:     for(itimes=1;itimes<=2;itimes++){
 5184:       jj=0;
 5185:       for(i=1; i <=nlstate; i++){
 5186: 	for(j=1; j <=nlstate+ndeath; j++){
 5187: 	  if(j==i) continue;
 5188: 	  for(k=1; k<=ncovmodel;k++){
 5189: 	    jj++;
 5190: 	    ca[0]= k+'a'-1;ca[1]='\0';
 5191: 	    if(itimes==1){
 5192: 	      if(mle>=1)
 5193: 		printf("#%1d%1d%d",i,j,k);
 5194: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 5195: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 5196: 	    }else{
 5197: 	      if(mle>=1)
 5198: 		printf("%1d%1d%d",i,j,k);
 5199: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 5200: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 5201: 	    }
 5202: 	    ll=0;
 5203: 	    for(li=1;li <=nlstate; li++){
 5204: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 5205: 		if(lj==li) continue;
 5206: 		for(lk=1;lk<=ncovmodel;lk++){
 5207: 		  ll++;
 5208: 		  if(ll<=jj){
 5209: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 5210: 		    if(ll<jj){
 5211: 		      if(itimes==1){
 5212: 			if(mle>=1)
 5213: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5214: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5215: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5216: 		      }else{
 5217: 			if(mle>=1)
 5218: 			  printf(" %.5e",matcov[jj][ll]); 
 5219: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5220: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5221: 		      }
 5222: 		    }else{
 5223: 		      if(itimes==1){
 5224: 			if(mle>=1)
 5225: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 5226: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 5227: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 5228: 		      }else{
 5229: 			if(mle>=1)
 5230: 			  printf(" %.5e",matcov[jj][ll]); 
 5231: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 5232: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 5233: 		      }
 5234: 		    }
 5235: 		  }
 5236: 		} /* end lk */
 5237: 	      } /* end lj */
 5238: 	    } /* end li */
 5239: 	    if(mle>=1)
 5240: 	      printf("\n");
 5241: 	    fprintf(ficlog,"\n");
 5242: 	    fprintf(ficres,"\n");
 5243: 	    numlinepar++;
 5244: 	  } /* end k*/
 5245: 	} /*end j */
 5246:       } /* end i */
 5247:     } /* end itimes */
 5248:     
 5249:     fflush(ficlog);
 5250:     fflush(ficres);
 5251:     
 5252:     while((c=getc(ficpar))=='#' && c!= EOF){
 5253:       ungetc(c,ficpar);
 5254:       fgets(line, MAXLINE, ficpar);
 5255:       puts(line);
 5256:       fputs(line,ficparo);
 5257:     }
 5258:     ungetc(c,ficpar);
 5259:     
 5260:     estepm=0;
 5261:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 5262:     if (estepm==0 || estepm < stepm) estepm=stepm;
 5263:     if (fage <= 2) {
 5264:       bage = ageminpar;
 5265:       fage = agemaxpar;
 5266:     }
 5267:     
 5268:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 5269:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5270:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 5271:     
 5272:     while((c=getc(ficpar))=='#' && c!= EOF){
 5273:       ungetc(c,ficpar);
 5274:       fgets(line, MAXLINE, ficpar);
 5275:       puts(line);
 5276:       fputs(line,ficparo);
 5277:     }
 5278:     ungetc(c,ficpar);
 5279:     
 5280:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 5281:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5282:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5283:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5284:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 5285:     
 5286:     while((c=getc(ficpar))=='#' && c!= EOF){
 5287:       ungetc(c,ficpar);
 5288:       fgets(line, MAXLINE, ficpar);
 5289:       puts(line);
 5290:       fputs(line,ficparo);
 5291:     }
 5292:     ungetc(c,ficpar);
 5293:     
 5294:     
 5295:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 5296:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 5297:     
 5298:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 5299:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 5300:     fprintf(ficres,"pop_based=%d\n",popbased);   
 5301:     
 5302:     while((c=getc(ficpar))=='#' && c!= EOF){
 5303:       ungetc(c,ficpar);
 5304:       fgets(line, MAXLINE, ficpar);
 5305:       puts(line);
 5306:       fputs(line,ficparo);
 5307:     }
 5308:     ungetc(c,ficpar);
 5309:     
 5310:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 5311:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5312:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5313:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5314:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 5315:     /* day and month of proj2 are not used but only year anproj2.*/
 5316:     
 5317:     
 5318:     
 5319:     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
 5320:     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 5321:     
 5322:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 5323:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 5324:     
 5325:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 5326: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 5327: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 5328:       
 5329:    /*------------ free_vector  -------------*/
 5330:    /*  chdir(path); */
 5331:  
 5332:     free_ivector(wav,1,imx);
 5333:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 5334:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 5335:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 5336:     free_lvector(num,1,n);
 5337:     free_vector(agedc,1,n);
 5338:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 5339:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 5340:     fclose(ficparo);
 5341:     fclose(ficres);
 5342: 
 5343: 
 5344:     /*--------------- Prevalence limit  (stable prevalence) --------------*/
 5345:   
 5346:     strcpy(filerespl,"pl");
 5347:     strcat(filerespl,fileres);
 5348:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 5349:       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 5350:       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 5351:     }
 5352:     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
 5353:     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
 5354:     fprintf(ficrespl, "#Local time at start: %s", strstart);
 5355:     fprintf(ficrespl,"#Stable prevalence \n");
 5356:     fprintf(ficrespl,"#Age ");
 5357:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5358:     fprintf(ficrespl,"\n");
 5359:   
 5360:     prlim=matrix(1,nlstate,1,nlstate);
 5361: 
 5362:     agebase=ageminpar;
 5363:     agelim=agemaxpar;
 5364:     ftolpl=1.e-10;
 5365:     i1=cptcoveff;
 5366:     if (cptcovn < 1){i1=1;}
 5367: 
 5368:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5369:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5370: 	k=k+1;
 5371: 	/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 5372: 	fprintf(ficrespl,"\n#******");
 5373: 	printf("\n#******");
 5374: 	fprintf(ficlog,"\n#******");
 5375: 	for(j=1;j<=cptcoveff;j++) {
 5376: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5377: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5378: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5379: 	}
 5380: 	fprintf(ficrespl,"******\n");
 5381: 	printf("******\n");
 5382: 	fprintf(ficlog,"******\n");
 5383: 	
 5384: 	for (age=agebase; age<=agelim; age++){
 5385: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5386: 	  fprintf(ficrespl,"%.0f ",age );
 5387: 	  for(j=1;j<=cptcoveff;j++)
 5388: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5389: 	  for(i=1; i<=nlstate;i++)
 5390: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 5391: 	  fprintf(ficrespl,"\n");
 5392: 	}
 5393:       }
 5394:     }
 5395:     fclose(ficrespl);
 5396: 
 5397:     /*------------- h Pij x at various ages ------------*/
 5398:   
 5399:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 5400:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 5401:       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 5402:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 5403:     }
 5404:     printf("Computing pij: result on file '%s' \n", filerespij);
 5405:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 5406:   
 5407:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 5408:     /*if (stepm<=24) stepsize=2;*/
 5409: 
 5410:     agelim=AGESUP;
 5411:     hstepm=stepsize*YEARM; /* Every year of age */
 5412:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 5413: 
 5414:     /* hstepm=1;   aff par mois*/
 5415:     fprintf(ficrespij, "#Local time at start: %s", strstart);
 5416:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 5417:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5418:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5419: 	k=k+1;
 5420: 	fprintf(ficrespij,"\n#****** ");
 5421: 	for(j=1;j<=cptcoveff;j++) 
 5422: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5423: 	fprintf(ficrespij,"******\n");
 5424: 	
 5425: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 5426: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 5427: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 5428: 
 5429: 	  /*	  nhstepm=nhstepm*YEARM; aff par mois*/
 5430: 
 5431: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5432: 	  oldm=oldms;savm=savms;
 5433: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5434: 	  fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 5435: 	  for(i=1; i<=nlstate;i++)
 5436: 	    for(j=1; j<=nlstate+ndeath;j++)
 5437: 	      fprintf(ficrespij," %1d-%1d",i,j);
 5438: 	  fprintf(ficrespij,"\n");
 5439: 	  for (h=0; h<=nhstepm; h++){
 5440: 	    fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 5441: 	    for(i=1; i<=nlstate;i++)
 5442: 	      for(j=1; j<=nlstate+ndeath;j++)
 5443: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 5444: 	    fprintf(ficrespij,"\n");
 5445: 	  }
 5446: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5447: 	  fprintf(ficrespij,"\n");
 5448: 	}
 5449:       }
 5450:     }
 5451: 
 5452:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 5453: 
 5454:     fclose(ficrespij);
 5455: 
 5456:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5457:     for(i=1;i<=AGESUP;i++)
 5458:       for(j=1;j<=NCOVMAX;j++)
 5459: 	for(k=1;k<=NCOVMAX;k++)
 5460: 	  probs[i][j][k]=0.;
 5461: 
 5462:     /*---------- Forecasting ------------------*/
 5463:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 5464:     if(prevfcast==1){
 5465:       /*    if(stepm ==1){*/
 5466:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 5467:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 5468:       /*      }  */
 5469:       /*      else{ */
 5470:       /*        erreur=108; */
 5471:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 5472:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 5473:       /*      } */
 5474:     }
 5475:   
 5476: 
 5477:     /*---------- Health expectancies and variances ------------*/
 5478: 
 5479:     strcpy(filerest,"t");
 5480:     strcat(filerest,fileres);
 5481:     if((ficrest=fopen(filerest,"w"))==NULL) {
 5482:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 5483:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 5484:     }
 5485:     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 5486:     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
 5487: 
 5488: 
 5489:     strcpy(filerese,"e");
 5490:     strcat(filerese,fileres);
 5491:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 5492:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 5493:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 5494:     }
 5495:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 5496:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 5497: 
 5498:     strcpy(fileresv,"v");
 5499:     strcat(fileresv,fileres);
 5500:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 5501:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 5502:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 5503:     }
 5504:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 5505:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 5506: 
 5507:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 5508:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 5509:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 5510: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 5511:     */
 5512: 
 5513:     if (mobilav!=0) {
 5514:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5515:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 5516: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 5517: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 5518:       }
 5519:     }
 5520: 
 5521:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5522:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5523: 	k=k+1; 
 5524: 	fprintf(ficrest,"\n#****** ");
 5525: 	for(j=1;j<=cptcoveff;j++) 
 5526: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5527: 	fprintf(ficrest,"******\n");
 5528: 
 5529: 	fprintf(ficreseij,"\n#****** ");
 5530: 	for(j=1;j<=cptcoveff;j++) 
 5531: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5532: 	fprintf(ficreseij,"******\n");
 5533: 
 5534: 	fprintf(ficresvij,"\n#****** ");
 5535: 	for(j=1;j<=cptcoveff;j++) 
 5536: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5537: 	fprintf(ficresvij,"******\n");
 5538: 
 5539: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5540: 	oldm=oldms;savm=savms;
 5541: 	evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 5542:  
 5543: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5544: 	oldm=oldms;savm=savms;
 5545: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
 5546: 	if(popbased==1){
 5547: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
 5548: 	}
 5549: 
 5550: 	fprintf(ficrest, "#Local time at start: %s", strstart);
 5551: 	fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 5552: 	for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 5553: 	fprintf(ficrest,"\n");
 5554: 
 5555: 	epj=vector(1,nlstate+1);
 5556: 	for(age=bage; age <=fage ;age++){
 5557: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5558: 	  if (popbased==1) {
 5559: 	    if(mobilav ==0){
 5560: 	      for(i=1; i<=nlstate;i++)
 5561: 		prlim[i][i]=probs[(int)age][i][k];
 5562: 	    }else{ /* mobilav */ 
 5563: 	      for(i=1; i<=nlstate;i++)
 5564: 		prlim[i][i]=mobaverage[(int)age][i][k];
 5565: 	    }
 5566: 	  }
 5567: 	
 5568: 	  fprintf(ficrest," %4.0f",age);
 5569: 	  for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 5570: 	    for(i=1, epj[j]=0.;i <=nlstate;i++) {
 5571: 	      epj[j] += prlim[i][i]*eij[i][j][(int)age];
 5572: 	      /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 5573: 	    }
 5574: 	    epj[nlstate+1] +=epj[j];
 5575: 	  }
 5576: 
 5577: 	  for(i=1, vepp=0.;i <=nlstate;i++)
 5578: 	    for(j=1;j <=nlstate;j++)
 5579: 	      vepp += vareij[i][j][(int)age];
 5580: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 5581: 	  for(j=1;j <=nlstate;j++){
 5582: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 5583: 	  }
 5584: 	  fprintf(ficrest,"\n");
 5585: 	}
 5586: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5587: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5588: 	free_vector(epj,1,nlstate+1);
 5589:       }
 5590:     }
 5591:     free_vector(weight,1,n);
 5592:     free_imatrix(Tvard,1,15,1,2);
 5593:     free_imatrix(s,1,maxwav+1,1,n);
 5594:     free_matrix(anint,1,maxwav,1,n); 
 5595:     free_matrix(mint,1,maxwav,1,n);
 5596:     free_ivector(cod,1,n);
 5597:     free_ivector(tab,1,NCOVMAX);
 5598:     fclose(ficreseij);
 5599:     fclose(ficresvij);
 5600:     fclose(ficrest);
 5601:     fclose(ficpar);
 5602:   
 5603:     /*------- Variance of stable prevalence------*/   
 5604: 
 5605:     strcpy(fileresvpl,"vpl");
 5606:     strcat(fileresvpl,fileres);
 5607:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 5608:       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 5609:       exit(0);
 5610:     }
 5611:     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
 5612: 
 5613:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5614:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5615: 	k=k+1;
 5616: 	fprintf(ficresvpl,"\n#****** ");
 5617: 	for(j=1;j<=cptcoveff;j++) 
 5618: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5619: 	fprintf(ficresvpl,"******\n");
 5620:       
 5621: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 5622: 	oldm=oldms;savm=savms;
 5623: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 5624: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 5625:       }
 5626:     }
 5627: 
 5628:     fclose(ficresvpl);
 5629: 
 5630:     /*---------- End : free ----------------*/
 5631:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5632:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5633: 
 5634:   }  /* mle==-3 arrives here for freeing */
 5635:   free_matrix(prlim,1,nlstate,1,nlstate);
 5636:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 5637:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5638:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5639:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5640:     free_matrix(covar,0,NCOVMAX,1,n);
 5641:     free_matrix(matcov,1,npar,1,npar);
 5642:     /*free_vector(delti,1,npar);*/
 5643:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5644:     free_matrix(agev,1,maxwav,1,imx);
 5645:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 5646: 
 5647:     free_ivector(ncodemax,1,8);
 5648:     free_ivector(Tvar,1,15);
 5649:     free_ivector(Tprod,1,15);
 5650:     free_ivector(Tvaraff,1,15);
 5651:     free_ivector(Tage,1,15);
 5652:     free_ivector(Tcode,1,100);
 5653: 
 5654:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 5655:     free_imatrix(codtab,1,100,1,10);
 5656:   fflush(fichtm);
 5657:   fflush(ficgp);
 5658:   
 5659: 
 5660:   if((nberr >0) || (nbwarn>0)){
 5661:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 5662:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5663:   }else{
 5664:     printf("End of Imach\n");
 5665:     fprintf(ficlog,"End of Imach\n");
 5666:   }
 5667:   printf("See log file on %s\n",filelog);
 5668:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 5669:   (void) gettimeofday(&end_time,&tzp);
 5670:   tm = *localtime(&end_time.tv_sec);
 5671:   tmg = *gmtime(&end_time.tv_sec);
 5672:   strcpy(strtend,asctime(&tm));
 5673:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 5674:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 5675:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5676: 
 5677:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5678:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5679:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5680:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 5681: /*   if(fileappend(fichtm,optionfilehtm)){ */
 5682:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
 5683:   fclose(fichtm);
 5684:   fclose(fichtmcov);
 5685:   fclose(ficgp);
 5686:   fclose(ficlog);
 5687:   /*------ End -----------*/
 5688: 
 5689:   chdir(path);
 5690:   /*strcat(plotcmd,CHARSEPARATOR);*/
 5691:   sprintf(plotcmd,"gnuplot");
 5692: #ifndef UNIX
 5693:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 5694: #endif
 5695:   if(!stat(plotcmd,&info)){
 5696:     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 5697:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 5698:       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 5699:     }else
 5700:       strcpy(pplotcmd,plotcmd);
 5701: #ifdef UNIX
 5702:     strcpy(plotcmd,GNUPLOTPROGRAM);
 5703:     if(!stat(plotcmd,&info)){
 5704:       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 5705:     }else
 5706:       strcpy(pplotcmd,plotcmd);
 5707: #endif
 5708:   }else
 5709:     strcpy(pplotcmd,plotcmd);
 5710:   
 5711:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 5712:   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
 5713: 
 5714:   if((outcmd=system(plotcmd)) != 0){
 5715:     printf("\n Problem with gnuplot\n");
 5716:   }
 5717:   printf(" Wait...");
 5718:   while (z[0] != 'q') {
 5719:     /* chdir(path); */
 5720:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 5721:     scanf("%s",z);
 5722: /*     if (z[0] == 'c') system("./imach"); */
 5723:     if (z[0] == 'e') {
 5724:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
 5725:       system(optionfilehtm);
 5726:     }
 5727:     else if (z[0] == 'g') system(plotcmd);
 5728:     else if (z[0] == 'q') exit(0);
 5729:   }
 5730:   end:
 5731:   while (z[0] != 'q') {
 5732:     printf("\nType  q for exiting: ");
 5733:     scanf("%s",z);
 5734:   }
 5735: }
 5736: 
 5737: 
 5738: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>