File:  [Local Repository] / imach / src / imach.c
Revision 1.168: download - view: text, annotated - select for diffs
Mon Dec 22 15:17:42 2014 UTC (9 years, 5 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: udate

    1: /* $Id: imach.c,v 1.168 2014/12/22 15:17:42 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.168  2014/12/22 15:17:42  brouard
    5:   Summary: udate
    6: 
    7:   Revision 1.167  2014/12/22 13:50:56  brouard
    8:   Summary: Testing uname and compiler version and if compiled 32 or 64
    9: 
   10:   Testing on Linux 64
   11: 
   12:   Revision 1.166  2014/12/22 11:40:47  brouard
   13:   *** empty log message ***
   14: 
   15:   Revision 1.165  2014/12/16 11:20:36  brouard
   16:   Summary: After compiling on Visual C
   17: 
   18:   * imach.c (Module): Merging 1.61 to 1.162
   19: 
   20:   Revision 1.164  2014/12/16 10:52:11  brouard
   21:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   22: 
   23:   * imach.c (Module): Merging 1.61 to 1.162
   24: 
   25:   Revision 1.163  2014/12/16 10:30:11  brouard
   26:   * imach.c (Module): Merging 1.61 to 1.162
   27: 
   28:   Revision 1.162  2014/09/25 11:43:39  brouard
   29:   Summary: temporary backup 0.99!
   30: 
   31:   Revision 1.1  2014/09/16 11:06:58  brouard
   32:   Summary: With some code (wrong) for nlopt
   33: 
   34:   Author:
   35: 
   36:   Revision 1.161  2014/09/15 20:41:41  brouard
   37:   Summary: Problem with macro SQR on Intel compiler
   38: 
   39:   Revision 1.160  2014/09/02 09:24:05  brouard
   40:   *** empty log message ***
   41: 
   42:   Revision 1.159  2014/09/01 10:34:10  brouard
   43:   Summary: WIN32
   44:   Author: Brouard
   45: 
   46:   Revision 1.158  2014/08/27 17:11:51  brouard
   47:   *** empty log message ***
   48: 
   49:   Revision 1.157  2014/08/27 16:26:55  brouard
   50:   Summary: Preparing windows Visual studio version
   51:   Author: Brouard
   52: 
   53:   In order to compile on Visual studio, time.h is now correct and time_t
   54:   and tm struct should be used. difftime should be used but sometimes I
   55:   just make the differences in raw time format (time(&now).
   56:   Trying to suppress #ifdef LINUX
   57:   Add xdg-open for __linux in order to open default browser.
   58: 
   59:   Revision 1.156  2014/08/25 20:10:10  brouard
   60:   *** empty log message ***
   61: 
   62:   Revision 1.155  2014/08/25 18:32:34  brouard
   63:   Summary: New compile, minor changes
   64:   Author: Brouard
   65: 
   66:   Revision 1.154  2014/06/20 17:32:08  brouard
   67:   Summary: Outputs now all graphs of convergence to period prevalence
   68: 
   69:   Revision 1.153  2014/06/20 16:45:46  brouard
   70:   Summary: If 3 live state, convergence to period prevalence on same graph
   71:   Author: Brouard
   72: 
   73:   Revision 1.152  2014/06/18 17:54:09  brouard
   74:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
   75: 
   76:   Revision 1.151  2014/06/18 16:43:30  brouard
   77:   *** empty log message ***
   78: 
   79:   Revision 1.150  2014/06/18 16:42:35  brouard
   80:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   81:   Author: brouard
   82: 
   83:   Revision 1.149  2014/06/18 15:51:14  brouard
   84:   Summary: Some fixes in parameter files errors
   85:   Author: Nicolas Brouard
   86: 
   87:   Revision 1.148  2014/06/17 17:38:48  brouard
   88:   Summary: Nothing new
   89:   Author: Brouard
   90: 
   91:   Just a new packaging for OS/X version 0.98nS
   92: 
   93:   Revision 1.147  2014/06/16 10:33:11  brouard
   94:   *** empty log message ***
   95: 
   96:   Revision 1.146  2014/06/16 10:20:28  brouard
   97:   Summary: Merge
   98:   Author: Brouard
   99: 
  100:   Merge, before building revised version.
  101: 
  102:   Revision 1.145  2014/06/10 21:23:15  brouard
  103:   Summary: Debugging with valgrind
  104:   Author: Nicolas Brouard
  105: 
  106:   Lot of changes in order to output the results with some covariates
  107:   After the Edimburgh REVES conference 2014, it seems mandatory to
  108:   improve the code.
  109:   No more memory valgrind error but a lot has to be done in order to
  110:   continue the work of splitting the code into subroutines.
  111:   Also, decodemodel has been improved. Tricode is still not
  112:   optimal. nbcode should be improved. Documentation has been added in
  113:   the source code.
  114: 
  115:   Revision 1.143  2014/01/26 09:45:38  brouard
  116:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
  117: 
  118:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  119:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
  120: 
  121:   Revision 1.142  2014/01/26 03:57:36  brouard
  122:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  123: 
  124:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  125: 
  126:   Revision 1.141  2014/01/26 02:42:01  brouard
  127:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  128: 
  129:   Revision 1.140  2011/09/02 10:37:54  brouard
  130:   Summary: times.h is ok with mingw32 now.
  131: 
  132:   Revision 1.139  2010/06/14 07:50:17  brouard
  133:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  134:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  135: 
  136:   Revision 1.138  2010/04/30 18:19:40  brouard
  137:   *** empty log message ***
  138: 
  139:   Revision 1.137  2010/04/29 18:11:38  brouard
  140:   (Module): Checking covariates for more complex models
  141:   than V1+V2. A lot of change to be done. Unstable.
  142: 
  143:   Revision 1.136  2010/04/26 20:30:53  brouard
  144:   (Module): merging some libgsl code. Fixing computation
  145:   of likelione (using inter/intrapolation if mle = 0) in order to
  146:   get same likelihood as if mle=1.
  147:   Some cleaning of code and comments added.
  148: 
  149:   Revision 1.135  2009/10/29 15:33:14  brouard
  150:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  151: 
  152:   Revision 1.134  2009/10/29 13:18:53  brouard
  153:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  154: 
  155:   Revision 1.133  2009/07/06 10:21:25  brouard
  156:   just nforces
  157: 
  158:   Revision 1.132  2009/07/06 08:22:05  brouard
  159:   Many tings
  160: 
  161:   Revision 1.131  2009/06/20 16:22:47  brouard
  162:   Some dimensions resccaled
  163: 
  164:   Revision 1.130  2009/05/26 06:44:34  brouard
  165:   (Module): Max Covariate is now set to 20 instead of 8. A
  166:   lot of cleaning with variables initialized to 0. Trying to make
  167:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  168: 
  169:   Revision 1.129  2007/08/31 13:49:27  lievre
  170:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  171: 
  172:   Revision 1.128  2006/06/30 13:02:05  brouard
  173:   (Module): Clarifications on computing e.j
  174: 
  175:   Revision 1.127  2006/04/28 18:11:50  brouard
  176:   (Module): Yes the sum of survivors was wrong since
  177:   imach-114 because nhstepm was no more computed in the age
  178:   loop. Now we define nhstepma in the age loop.
  179:   (Module): In order to speed up (in case of numerous covariates) we
  180:   compute health expectancies (without variances) in a first step
  181:   and then all the health expectancies with variances or standard
  182:   deviation (needs data from the Hessian matrices) which slows the
  183:   computation.
  184:   In the future we should be able to stop the program is only health
  185:   expectancies and graph are needed without standard deviations.
  186: 
  187:   Revision 1.126  2006/04/28 17:23:28  brouard
  188:   (Module): Yes the sum of survivors was wrong since
  189:   imach-114 because nhstepm was no more computed in the age
  190:   loop. Now we define nhstepma in the age loop.
  191:   Version 0.98h
  192: 
  193:   Revision 1.125  2006/04/04 15:20:31  lievre
  194:   Errors in calculation of health expectancies. Age was not initialized.
  195:   Forecasting file added.
  196: 
  197:   Revision 1.124  2006/03/22 17:13:53  lievre
  198:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  199:   The log-likelihood is printed in the log file
  200: 
  201:   Revision 1.123  2006/03/20 10:52:43  brouard
  202:   * imach.c (Module): <title> changed, corresponds to .htm file
  203:   name. <head> headers where missing.
  204: 
  205:   * imach.c (Module): Weights can have a decimal point as for
  206:   English (a comma might work with a correct LC_NUMERIC environment,
  207:   otherwise the weight is truncated).
  208:   Modification of warning when the covariates values are not 0 or
  209:   1.
  210:   Version 0.98g
  211: 
  212:   Revision 1.122  2006/03/20 09:45:41  brouard
  213:   (Module): Weights can have a decimal point as for
  214:   English (a comma might work with a correct LC_NUMERIC environment,
  215:   otherwise the weight is truncated).
  216:   Modification of warning when the covariates values are not 0 or
  217:   1.
  218:   Version 0.98g
  219: 
  220:   Revision 1.121  2006/03/16 17:45:01  lievre
  221:   * imach.c (Module): Comments concerning covariates added
  222: 
  223:   * imach.c (Module): refinements in the computation of lli if
  224:   status=-2 in order to have more reliable computation if stepm is
  225:   not 1 month. Version 0.98f
  226: 
  227:   Revision 1.120  2006/03/16 15:10:38  lievre
  228:   (Module): refinements in the computation of lli if
  229:   status=-2 in order to have more reliable computation if stepm is
  230:   not 1 month. Version 0.98f
  231: 
  232:   Revision 1.119  2006/03/15 17:42:26  brouard
  233:   (Module): Bug if status = -2, the loglikelihood was
  234:   computed as likelihood omitting the logarithm. Version O.98e
  235: 
  236:   Revision 1.118  2006/03/14 18:20:07  brouard
  237:   (Module): varevsij Comments added explaining the second
  238:   table of variances if popbased=1 .
  239:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  240:   (Module): Function pstamp added
  241:   (Module): Version 0.98d
  242: 
  243:   Revision 1.117  2006/03/14 17:16:22  brouard
  244:   (Module): varevsij Comments added explaining the second
  245:   table of variances if popbased=1 .
  246:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  247:   (Module): Function pstamp added
  248:   (Module): Version 0.98d
  249: 
  250:   Revision 1.116  2006/03/06 10:29:27  brouard
  251:   (Module): Variance-covariance wrong links and
  252:   varian-covariance of ej. is needed (Saito).
  253: 
  254:   Revision 1.115  2006/02/27 12:17:45  brouard
  255:   (Module): One freematrix added in mlikeli! 0.98c
  256: 
  257:   Revision 1.114  2006/02/26 12:57:58  brouard
  258:   (Module): Some improvements in processing parameter
  259:   filename with strsep.
  260: 
  261:   Revision 1.113  2006/02/24 14:20:24  brouard
  262:   (Module): Memory leaks checks with valgrind and:
  263:   datafile was not closed, some imatrix were not freed and on matrix
  264:   allocation too.
  265: 
  266:   Revision 1.112  2006/01/30 09:55:26  brouard
  267:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  268: 
  269:   Revision 1.111  2006/01/25 20:38:18  brouard
  270:   (Module): Lots of cleaning and bugs added (Gompertz)
  271:   (Module): Comments can be added in data file. Missing date values
  272:   can be a simple dot '.'.
  273: 
  274:   Revision 1.110  2006/01/25 00:51:50  brouard
  275:   (Module): Lots of cleaning and bugs added (Gompertz)
  276: 
  277:   Revision 1.109  2006/01/24 19:37:15  brouard
  278:   (Module): Comments (lines starting with a #) are allowed in data.
  279: 
  280:   Revision 1.108  2006/01/19 18:05:42  lievre
  281:   Gnuplot problem appeared...
  282:   To be fixed
  283: 
  284:   Revision 1.107  2006/01/19 16:20:37  brouard
  285:   Test existence of gnuplot in imach path
  286: 
  287:   Revision 1.106  2006/01/19 13:24:36  brouard
  288:   Some cleaning and links added in html output
  289: 
  290:   Revision 1.105  2006/01/05 20:23:19  lievre
  291:   *** empty log message ***
  292: 
  293:   Revision 1.104  2005/09/30 16:11:43  lievre
  294:   (Module): sump fixed, loop imx fixed, and simplifications.
  295:   (Module): If the status is missing at the last wave but we know
  296:   that the person is alive, then we can code his/her status as -2
  297:   (instead of missing=-1 in earlier versions) and his/her
  298:   contributions to the likelihood is 1 - Prob of dying from last
  299:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  300:   the healthy state at last known wave). Version is 0.98
  301: 
  302:   Revision 1.103  2005/09/30 15:54:49  lievre
  303:   (Module): sump fixed, loop imx fixed, and simplifications.
  304: 
  305:   Revision 1.102  2004/09/15 17:31:30  brouard
  306:   Add the possibility to read data file including tab characters.
  307: 
  308:   Revision 1.101  2004/09/15 10:38:38  brouard
  309:   Fix on curr_time
  310: 
  311:   Revision 1.100  2004/07/12 18:29:06  brouard
  312:   Add version for Mac OS X. Just define UNIX in Makefile
  313: 
  314:   Revision 1.99  2004/06/05 08:57:40  brouard
  315:   *** empty log message ***
  316: 
  317:   Revision 1.98  2004/05/16 15:05:56  brouard
  318:   New version 0.97 . First attempt to estimate force of mortality
  319:   directly from the data i.e. without the need of knowing the health
  320:   state at each age, but using a Gompertz model: log u =a + b*age .
  321:   This is the basic analysis of mortality and should be done before any
  322:   other analysis, in order to test if the mortality estimated from the
  323:   cross-longitudinal survey is different from the mortality estimated
  324:   from other sources like vital statistic data.
  325: 
  326:   The same imach parameter file can be used but the option for mle should be -3.
  327: 
  328:   Agnès, who wrote this part of the code, tried to keep most of the
  329:   former routines in order to include the new code within the former code.
  330: 
  331:   The output is very simple: only an estimate of the intercept and of
  332:   the slope with 95% confident intervals.
  333: 
  334:   Current limitations:
  335:   A) Even if you enter covariates, i.e. with the
  336:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  337:   B) There is no computation of Life Expectancy nor Life Table.
  338: 
  339:   Revision 1.97  2004/02/20 13:25:42  lievre
  340:   Version 0.96d. Population forecasting command line is (temporarily)
  341:   suppressed.
  342: 
  343:   Revision 1.96  2003/07/15 15:38:55  brouard
  344:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  345:   rewritten within the same printf. Workaround: many printfs.
  346: 
  347:   Revision 1.95  2003/07/08 07:54:34  brouard
  348:   * imach.c (Repository):
  349:   (Repository): Using imachwizard code to output a more meaningful covariance
  350:   matrix (cov(a12,c31) instead of numbers.
  351: 
  352:   Revision 1.94  2003/06/27 13:00:02  brouard
  353:   Just cleaning
  354: 
  355:   Revision 1.93  2003/06/25 16:33:55  brouard
  356:   (Module): On windows (cygwin) function asctime_r doesn't
  357:   exist so I changed back to asctime which exists.
  358:   (Module): Version 0.96b
  359: 
  360:   Revision 1.92  2003/06/25 16:30:45  brouard
  361:   (Module): On windows (cygwin) function asctime_r doesn't
  362:   exist so I changed back to asctime which exists.
  363: 
  364:   Revision 1.91  2003/06/25 15:30:29  brouard
  365:   * imach.c (Repository): Duplicated warning errors corrected.
  366:   (Repository): Elapsed time after each iteration is now output. It
  367:   helps to forecast when convergence will be reached. Elapsed time
  368:   is stamped in powell.  We created a new html file for the graphs
  369:   concerning matrix of covariance. It has extension -cov.htm.
  370: 
  371:   Revision 1.90  2003/06/24 12:34:15  brouard
  372:   (Module): Some bugs corrected for windows. Also, when
  373:   mle=-1 a template is output in file "or"mypar.txt with the design
  374:   of the covariance matrix to be input.
  375: 
  376:   Revision 1.89  2003/06/24 12:30:52  brouard
  377:   (Module): Some bugs corrected for windows. Also, when
  378:   mle=-1 a template is output in file "or"mypar.txt with the design
  379:   of the covariance matrix to be input.
  380: 
  381:   Revision 1.88  2003/06/23 17:54:56  brouard
  382:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  383: 
  384:   Revision 1.87  2003/06/18 12:26:01  brouard
  385:   Version 0.96
  386: 
  387:   Revision 1.86  2003/06/17 20:04:08  brouard
  388:   (Module): Change position of html and gnuplot routines and added
  389:   routine fileappend.
  390: 
  391:   Revision 1.85  2003/06/17 13:12:43  brouard
  392:   * imach.c (Repository): Check when date of death was earlier that
  393:   current date of interview. It may happen when the death was just
  394:   prior to the death. In this case, dh was negative and likelihood
  395:   was wrong (infinity). We still send an "Error" but patch by
  396:   assuming that the date of death was just one stepm after the
  397:   interview.
  398:   (Repository): Because some people have very long ID (first column)
  399:   we changed int to long in num[] and we added a new lvector for
  400:   memory allocation. But we also truncated to 8 characters (left
  401:   truncation)
  402:   (Repository): No more line truncation errors.
  403: 
  404:   Revision 1.84  2003/06/13 21:44:43  brouard
  405:   * imach.c (Repository): Replace "freqsummary" at a correct
  406:   place. It differs from routine "prevalence" which may be called
  407:   many times. Probs is memory consuming and must be used with
  408:   parcimony.
  409:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  410: 
  411:   Revision 1.83  2003/06/10 13:39:11  lievre
  412:   *** empty log message ***
  413: 
  414:   Revision 1.82  2003/06/05 15:57:20  brouard
  415:   Add log in  imach.c and  fullversion number is now printed.
  416: 
  417: */
  418: /*
  419:    Interpolated Markov Chain
  420: 
  421:   Short summary of the programme:
  422:   
  423:   This program computes Healthy Life Expectancies from
  424:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  425:   first survey ("cross") where individuals from different ages are
  426:   interviewed on their health status or degree of disability (in the
  427:   case of a health survey which is our main interest) -2- at least a
  428:   second wave of interviews ("longitudinal") which measure each change
  429:   (if any) in individual health status.  Health expectancies are
  430:   computed from the time spent in each health state according to a
  431:   model. More health states you consider, more time is necessary to reach the
  432:   Maximum Likelihood of the parameters involved in the model.  The
  433:   simplest model is the multinomial logistic model where pij is the
  434:   probability to be observed in state j at the second wave
  435:   conditional to be observed in state i at the first wave. Therefore
  436:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  437:   'age' is age and 'sex' is a covariate. If you want to have a more
  438:   complex model than "constant and age", you should modify the program
  439:   where the markup *Covariates have to be included here again* invites
  440:   you to do it.  More covariates you add, slower the
  441:   convergence.
  442: 
  443:   The advantage of this computer programme, compared to a simple
  444:   multinomial logistic model, is clear when the delay between waves is not
  445:   identical for each individual. Also, if a individual missed an
  446:   intermediate interview, the information is lost, but taken into
  447:   account using an interpolation or extrapolation.  
  448: 
  449:   hPijx is the probability to be observed in state i at age x+h
  450:   conditional to the observed state i at age x. The delay 'h' can be
  451:   split into an exact number (nh*stepm) of unobserved intermediate
  452:   states. This elementary transition (by month, quarter,
  453:   semester or year) is modelled as a multinomial logistic.  The hPx
  454:   matrix is simply the matrix product of nh*stepm elementary matrices
  455:   and the contribution of each individual to the likelihood is simply
  456:   hPijx.
  457: 
  458:   Also this programme outputs the covariance matrix of the parameters but also
  459:   of the life expectancies. It also computes the period (stable) prevalence. 
  460:   
  461:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  462:            Institut national d'études démographiques, Paris.
  463:   This software have been partly granted by Euro-REVES, a concerted action
  464:   from the European Union.
  465:   It is copyrighted identically to a GNU software product, ie programme and
  466:   software can be distributed freely for non commercial use. Latest version
  467:   can be accessed at http://euroreves.ined.fr/imach .
  468: 
  469:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  470:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  471:   
  472:   **********************************************************************/
  473: /*
  474:   main
  475:   read parameterfile
  476:   read datafile
  477:   concatwav
  478:   freqsummary
  479:   if (mle >= 1)
  480:     mlikeli
  481:   print results files
  482:   if mle==1 
  483:      computes hessian
  484:   read end of parameter file: agemin, agemax, bage, fage, estepm
  485:       begin-prev-date,...
  486:   open gnuplot file
  487:   open html file
  488:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  489:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  490:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  491:     freexexit2 possible for memory heap.
  492: 
  493:   h Pij x                         | pij_nom  ficrestpij
  494:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  495:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  496:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  497: 
  498:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  499:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  500:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  501:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  502:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  503: 
  504:   forecasting if prevfcast==1 prevforecast call prevalence()
  505:   health expectancies
  506:   Variance-covariance of DFLE
  507:   prevalence()
  508:    movingaverage()
  509:   varevsij() 
  510:   if popbased==1 varevsij(,popbased)
  511:   total life expectancies
  512:   Variance of period (stable) prevalence
  513:  end
  514: */
  515: 
  516: #define POWELL /* Instead of NLOPT */
  517: 
  518: #include <math.h>
  519: #include <stdio.h>
  520: #include <stdlib.h>
  521: #include <string.h>
  522: 
  523: #ifdef _WIN32
  524: #include <io.h>
  525: #else
  526: #include <unistd.h>
  527: #endif
  528: 
  529: #include <limits.h>
  530: #include <sys/types.h>
  531: #include <sys/utsname.h>
  532: #include <sys/stat.h>
  533: #include <errno.h>
  534: /* extern int errno; */
  535: 
  536: /* #ifdef LINUX */
  537: /* #include <time.h> */
  538: /* #include "timeval.h" */
  539: /* #else */
  540: /* #include <sys/time.h> */
  541: /* #endif */
  542: 
  543: #include <time.h>
  544: 
  545: #ifdef GSL
  546: #include <gsl/gsl_errno.h>
  547: #include <gsl/gsl_multimin.h>
  548: #endif
  549: 
  550: 
  551: #ifdef NLOPT
  552: #include <nlopt.h>
  553: typedef struct {
  554:   double (* function)(double [] );
  555: } myfunc_data ;
  556: #endif
  557: 
  558: /* #include <libintl.h> */
  559: /* #define _(String) gettext (String) */
  560: 
  561: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  562: 
  563: #define GNUPLOTPROGRAM "gnuplot"
  564: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  565: #define FILENAMELENGTH 132
  566: 
  567: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  568: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  569: 
  570: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  571: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  572: 
  573: #define NINTERVMAX 8
  574: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  575: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  576: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  577: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  578: #define MAXN 20000
  579: #define YEARM 12. /**< Number of months per year */
  580: #define AGESUP 130
  581: #define AGEBASE 40
  582: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
  583: #ifdef _WIN32
  584: #define DIRSEPARATOR '\\'
  585: #define CHARSEPARATOR "\\"
  586: #define ODIRSEPARATOR '/'
  587: #else
  588: #define DIRSEPARATOR '/'
  589: #define CHARSEPARATOR "/"
  590: #define ODIRSEPARATOR '\\'
  591: #endif
  592: 
  593: /* $Id: imach.c,v 1.168 2014/12/22 15:17:42 brouard Exp $ */
  594: /* $State: Exp $ */
  595: 
  596: char version[]="Imach version 0.98nY, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
  597: char fullversion[]="$Revision: 1.168 $ $Date: 2014/12/22 15:17:42 $"; 
  598: char strstart[80];
  599: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  600: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  601: int nvar=0, nforce=0; /* Number of variables, number of forces */
  602: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  603: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  604: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  605: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  606: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  607: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  608: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  609: int cptcov=0; /* Working variable */
  610: int npar=NPARMAX;
  611: int nlstate=2; /* Number of live states */
  612: int ndeath=1; /* Number of dead states */
  613: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  614: int popbased=0;
  615: 
  616: int *wav; /* Number of waves for this individuual 0 is possible */
  617: int maxwav=0; /* Maxim number of waves */
  618: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  619: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  620: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  621: 		   to the likelihood and the sum of weights (done by funcone)*/
  622: int mle=1, weightopt=0;
  623: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  624: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  625: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  626: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  627: int countcallfunc=0;  /* Count the number of calls to func */
  628: double jmean=1; /* Mean space between 2 waves */
  629: double **matprod2(); /* test */
  630: double **oldm, **newm, **savm; /* Working pointers to matrices */
  631: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  632: /*FILE *fic ; */ /* Used in readdata only */
  633: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  634: FILE *ficlog, *ficrespow;
  635: int globpr=0; /* Global variable for printing or not */
  636: double fretone; /* Only one call to likelihood */
  637: long ipmx=0; /* Number of contributions */
  638: double sw; /* Sum of weights */
  639: char filerespow[FILENAMELENGTH];
  640: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  641: FILE *ficresilk;
  642: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  643: FILE *ficresprobmorprev;
  644: FILE *fichtm, *fichtmcov; /* Html File */
  645: FILE *ficreseij;
  646: char filerese[FILENAMELENGTH];
  647: FILE *ficresstdeij;
  648: char fileresstde[FILENAMELENGTH];
  649: FILE *ficrescveij;
  650: char filerescve[FILENAMELENGTH];
  651: FILE  *ficresvij;
  652: char fileresv[FILENAMELENGTH];
  653: FILE  *ficresvpl;
  654: char fileresvpl[FILENAMELENGTH];
  655: char title[MAXLINE];
  656: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  657: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  658: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  659: char command[FILENAMELENGTH];
  660: int  outcmd=0;
  661: 
  662: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  663: 
  664: char filelog[FILENAMELENGTH]; /* Log file */
  665: char filerest[FILENAMELENGTH];
  666: char fileregp[FILENAMELENGTH];
  667: char popfile[FILENAMELENGTH];
  668: 
  669: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  670: 
  671: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  672: /* struct timezone tzp; */
  673: /* extern int gettimeofday(); */
  674: struct tm tml, *gmtime(), *localtime();
  675: 
  676: extern time_t time();
  677: 
  678: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  679: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  680: struct tm tm;
  681: 
  682: char strcurr[80], strfor[80];
  683: 
  684: char *endptr;
  685: long lval;
  686: double dval;
  687: 
  688: #define NR_END 1
  689: #define FREE_ARG char*
  690: #define FTOL 1.0e-10
  691: 
  692: #define NRANSI 
  693: #define ITMAX 200 
  694: 
  695: #define TOL 2.0e-4 
  696: 
  697: #define CGOLD 0.3819660 
  698: #define ZEPS 1.0e-10 
  699: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  700: 
  701: #define GOLD 1.618034 
  702: #define GLIMIT 100.0 
  703: #define TINY 1.0e-20 
  704: 
  705: static double maxarg1,maxarg2;
  706: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  707: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  708:   
  709: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  710: #define rint(a) floor(a+0.5)
  711: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
  712: /* #define mytinydouble 1.0e-16 */
  713: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
  714: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
  715: /* static double dsqrarg; */
  716: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
  717: static double sqrarg;
  718: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  719: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  720: int agegomp= AGEGOMP;
  721: 
  722: int imx; 
  723: int stepm=1;
  724: /* Stepm, step in month: minimum step interpolation*/
  725: 
  726: int estepm;
  727: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  728: 
  729: int m,nb;
  730: long *num;
  731: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  732: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  733: double **pmmij, ***probs;
  734: double *ageexmed,*agecens;
  735: double dateintmean=0;
  736: 
  737: double *weight;
  738: int **s; /* Status */
  739: double *agedc;
  740: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  741: 		  * covar=matrix(0,NCOVMAX,1,n); 
  742: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  743: double  idx; 
  744: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  745: int *Ndum; /** Freq of modality (tricode */
  746: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  747: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  748: double *lsurv, *lpop, *tpop;
  749: 
  750: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  751: double ftolhess; /**< Tolerance for computing hessian */
  752: 
  753: /**************** split *************************/
  754: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  755: {
  756:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  757:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  758:   */ 
  759:   char	*ss;				/* pointer */
  760:   int	l1, l2;				/* length counters */
  761: 
  762:   l1 = strlen(path );			/* length of path */
  763:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  764:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  765:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  766:     strcpy( name, path );		/* we got the fullname name because no directory */
  767:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  768:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  769:     /* get current working directory */
  770:     /*    extern  char* getcwd ( char *buf , int len);*/
  771:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  772:       return( GLOCK_ERROR_GETCWD );
  773:     }
  774:     /* got dirc from getcwd*/
  775:     printf(" DIRC = %s \n",dirc);
  776:   } else {				/* strip direcotry from path */
  777:     ss++;				/* after this, the filename */
  778:     l2 = strlen( ss );			/* length of filename */
  779:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  780:     strcpy( name, ss );		/* save file name */
  781:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  782:     dirc[l1-l2] = 0;			/* add zero */
  783:     printf(" DIRC2 = %s \n",dirc);
  784:   }
  785:   /* We add a separator at the end of dirc if not exists */
  786:   l1 = strlen( dirc );			/* length of directory */
  787:   if( dirc[l1-1] != DIRSEPARATOR ){
  788:     dirc[l1] =  DIRSEPARATOR;
  789:     dirc[l1+1] = 0; 
  790:     printf(" DIRC3 = %s \n",dirc);
  791:   }
  792:   ss = strrchr( name, '.' );		/* find last / */
  793:   if (ss >0){
  794:     ss++;
  795:     strcpy(ext,ss);			/* save extension */
  796:     l1= strlen( name);
  797:     l2= strlen(ss)+1;
  798:     strncpy( finame, name, l1-l2);
  799:     finame[l1-l2]= 0;
  800:   }
  801: 
  802:   return( 0 );				/* we're done */
  803: }
  804: 
  805: 
  806: /******************************************/
  807: 
  808: void replace_back_to_slash(char *s, char*t)
  809: {
  810:   int i;
  811:   int lg=0;
  812:   i=0;
  813:   lg=strlen(t);
  814:   for(i=0; i<= lg; i++) {
  815:     (s[i] = t[i]);
  816:     if (t[i]== '\\') s[i]='/';
  817:   }
  818: }
  819: 
  820: char *trimbb(char *out, char *in)
  821: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  822:   char *s;
  823:   s=out;
  824:   while (*in != '\0'){
  825:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  826:       in++;
  827:     }
  828:     *out++ = *in++;
  829:   }
  830:   *out='\0';
  831:   return s;
  832: }
  833: 
  834: char *cutl(char *blocc, char *alocc, char *in, char occ)
  835: {
  836:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  837:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  838:      gives blocc="abcdef2ghi" and alocc="j".
  839:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  840:   */
  841:   char *s, *t;
  842:   t=in;s=in;
  843:   while ((*in != occ) && (*in != '\0')){
  844:     *alocc++ = *in++;
  845:   }
  846:   if( *in == occ){
  847:     *(alocc)='\0';
  848:     s=++in;
  849:   }
  850:  
  851:   if (s == t) {/* occ not found */
  852:     *(alocc-(in-s))='\0';
  853:     in=s;
  854:   }
  855:   while ( *in != '\0'){
  856:     *blocc++ = *in++;
  857:   }
  858: 
  859:   *blocc='\0';
  860:   return t;
  861: }
  862: char *cutv(char *blocc, char *alocc, char *in, char occ)
  863: {
  864:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  865:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  866:      gives blocc="abcdef2ghi" and alocc="j".
  867:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  868:   */
  869:   char *s, *t;
  870:   t=in;s=in;
  871:   while (*in != '\0'){
  872:     while( *in == occ){
  873:       *blocc++ = *in++;
  874:       s=in;
  875:     }
  876:     *blocc++ = *in++;
  877:   }
  878:   if (s == t) /* occ not found */
  879:     *(blocc-(in-s))='\0';
  880:   else
  881:     *(blocc-(in-s)-1)='\0';
  882:   in=s;
  883:   while ( *in != '\0'){
  884:     *alocc++ = *in++;
  885:   }
  886: 
  887:   *alocc='\0';
  888:   return s;
  889: }
  890: 
  891: int nbocc(char *s, char occ)
  892: {
  893:   int i,j=0;
  894:   int lg=20;
  895:   i=0;
  896:   lg=strlen(s);
  897:   for(i=0; i<= lg; i++) {
  898:   if  (s[i] == occ ) j++;
  899:   }
  900:   return j;
  901: }
  902: 
  903: /* void cutv(char *u,char *v, char*t, char occ) */
  904: /* { */
  905: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  906: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  907: /*      gives u="abcdef2ghi" and v="j" *\/ */
  908: /*   int i,lg,j,p=0; */
  909: /*   i=0; */
  910: /*   lg=strlen(t); */
  911: /*   for(j=0; j<=lg-1; j++) { */
  912: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  913: /*   } */
  914: 
  915: /*   for(j=0; j<p; j++) { */
  916: /*     (u[j] = t[j]); */
  917: /*   } */
  918: /*      u[p]='\0'; */
  919: 
  920: /*    for(j=0; j<= lg; j++) { */
  921: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
  922: /*   } */
  923: /* } */
  924: 
  925: #ifdef _WIN32
  926: char * strsep(char **pp, const char *delim)
  927: {
  928:   char *p, *q;
  929:          
  930:   if ((p = *pp) == NULL)
  931:     return 0;
  932:   if ((q = strpbrk (p, delim)) != NULL)
  933:   {
  934:     *pp = q + 1;
  935:     *q = '\0';
  936:   }
  937:   else
  938:     *pp = 0;
  939:   return p;
  940: }
  941: #endif
  942: 
  943: /********************** nrerror ********************/
  944: 
  945: void nrerror(char error_text[])
  946: {
  947:   fprintf(stderr,"ERREUR ...\n");
  948:   fprintf(stderr,"%s\n",error_text);
  949:   exit(EXIT_FAILURE);
  950: }
  951: /*********************** vector *******************/
  952: double *vector(int nl, int nh)
  953: {
  954:   double *v;
  955:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  956:   if (!v) nrerror("allocation failure in vector");
  957:   return v-nl+NR_END;
  958: }
  959: 
  960: /************************ free vector ******************/
  961: void free_vector(double*v, int nl, int nh)
  962: {
  963:   free((FREE_ARG)(v+nl-NR_END));
  964: }
  965: 
  966: /************************ivector *******************************/
  967: int *ivector(long nl,long nh)
  968: {
  969:   int *v;
  970:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  971:   if (!v) nrerror("allocation failure in ivector");
  972:   return v-nl+NR_END;
  973: }
  974: 
  975: /******************free ivector **************************/
  976: void free_ivector(int *v, long nl, long nh)
  977: {
  978:   free((FREE_ARG)(v+nl-NR_END));
  979: }
  980: 
  981: /************************lvector *******************************/
  982: long *lvector(long nl,long nh)
  983: {
  984:   long *v;
  985:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  986:   if (!v) nrerror("allocation failure in ivector");
  987:   return v-nl+NR_END;
  988: }
  989: 
  990: /******************free lvector **************************/
  991: void free_lvector(long *v, long nl, long nh)
  992: {
  993:   free((FREE_ARG)(v+nl-NR_END));
  994: }
  995: 
  996: /******************* imatrix *******************************/
  997: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  998:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  999: { 
 1000:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 1001:   int **m; 
 1002:   
 1003:   /* allocate pointers to rows */ 
 1004:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 1005:   if (!m) nrerror("allocation failure 1 in matrix()"); 
 1006:   m += NR_END; 
 1007:   m -= nrl; 
 1008:   
 1009:   
 1010:   /* allocate rows and set pointers to them */ 
 1011:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 1012:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 1013:   m[nrl] += NR_END; 
 1014:   m[nrl] -= ncl; 
 1015:   
 1016:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 1017:   
 1018:   /* return pointer to array of pointers to rows */ 
 1019:   return m; 
 1020: } 
 1021: 
 1022: /****************** free_imatrix *************************/
 1023: void free_imatrix(m,nrl,nrh,ncl,nch)
 1024:       int **m;
 1025:       long nch,ncl,nrh,nrl; 
 1026:      /* free an int matrix allocated by imatrix() */ 
 1027: { 
 1028:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 1029:   free((FREE_ARG) (m+nrl-NR_END)); 
 1030: } 
 1031: 
 1032: /******************* matrix *******************************/
 1033: double **matrix(long nrl, long nrh, long ncl, long nch)
 1034: {
 1035:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 1036:   double **m;
 1037: 
 1038:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1039:   if (!m) nrerror("allocation failure 1 in matrix()");
 1040:   m += NR_END;
 1041:   m -= nrl;
 1042: 
 1043:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1044:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1045:   m[nrl] += NR_END;
 1046:   m[nrl] -= ncl;
 1047: 
 1048:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1049:   return m;
 1050:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1051: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1052: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1053:    */
 1054: }
 1055: 
 1056: /*************************free matrix ************************/
 1057: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1058: {
 1059:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1060:   free((FREE_ARG)(m+nrl-NR_END));
 1061: }
 1062: 
 1063: /******************* ma3x *******************************/
 1064: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1065: {
 1066:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1067:   double ***m;
 1068: 
 1069:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1070:   if (!m) nrerror("allocation failure 1 in matrix()");
 1071:   m += NR_END;
 1072:   m -= nrl;
 1073: 
 1074:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1075:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1076:   m[nrl] += NR_END;
 1077:   m[nrl] -= ncl;
 1078: 
 1079:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1080: 
 1081:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1082:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1083:   m[nrl][ncl] += NR_END;
 1084:   m[nrl][ncl] -= nll;
 1085:   for (j=ncl+1; j<=nch; j++) 
 1086:     m[nrl][j]=m[nrl][j-1]+nlay;
 1087:   
 1088:   for (i=nrl+1; i<=nrh; i++) {
 1089:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1090:     for (j=ncl+1; j<=nch; j++) 
 1091:       m[i][j]=m[i][j-1]+nlay;
 1092:   }
 1093:   return m; 
 1094:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1095:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1096:   */
 1097: }
 1098: 
 1099: /*************************free ma3x ************************/
 1100: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1101: {
 1102:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1103:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1104:   free((FREE_ARG)(m+nrl-NR_END));
 1105: }
 1106: 
 1107: /*************** function subdirf ***********/
 1108: char *subdirf(char fileres[])
 1109: {
 1110:   /* Caution optionfilefiname is hidden */
 1111:   strcpy(tmpout,optionfilefiname);
 1112:   strcat(tmpout,"/"); /* Add to the right */
 1113:   strcat(tmpout,fileres);
 1114:   return tmpout;
 1115: }
 1116: 
 1117: /*************** function subdirf2 ***********/
 1118: char *subdirf2(char fileres[], char *preop)
 1119: {
 1120:   
 1121:   /* Caution optionfilefiname is hidden */
 1122:   strcpy(tmpout,optionfilefiname);
 1123:   strcat(tmpout,"/");
 1124:   strcat(tmpout,preop);
 1125:   strcat(tmpout,fileres);
 1126:   return tmpout;
 1127: }
 1128: 
 1129: /*************** function subdirf3 ***********/
 1130: char *subdirf3(char fileres[], char *preop, char *preop2)
 1131: {
 1132:   
 1133:   /* Caution optionfilefiname is hidden */
 1134:   strcpy(tmpout,optionfilefiname);
 1135:   strcat(tmpout,"/");
 1136:   strcat(tmpout,preop);
 1137:   strcat(tmpout,preop2);
 1138:   strcat(tmpout,fileres);
 1139:   return tmpout;
 1140: }
 1141: 
 1142: char *asc_diff_time(long time_sec, char ascdiff[])
 1143: {
 1144:   long sec_left, days, hours, minutes;
 1145:   days = (time_sec) / (60*60*24);
 1146:   sec_left = (time_sec) % (60*60*24);
 1147:   hours = (sec_left) / (60*60) ;
 1148:   sec_left = (sec_left) %(60*60);
 1149:   minutes = (sec_left) /60;
 1150:   sec_left = (sec_left) % (60);
 1151:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1152:   return ascdiff;
 1153: }
 1154: 
 1155: /***************** f1dim *************************/
 1156: extern int ncom; 
 1157: extern double *pcom,*xicom;
 1158: extern double (*nrfunc)(double []); 
 1159:  
 1160: double f1dim(double x) 
 1161: { 
 1162:   int j; 
 1163:   double f;
 1164:   double *xt; 
 1165:  
 1166:   xt=vector(1,ncom); 
 1167:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1168:   f=(*nrfunc)(xt); 
 1169:   free_vector(xt,1,ncom); 
 1170:   return f; 
 1171: } 
 1172: 
 1173: /*****************brent *************************/
 1174: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1175: { 
 1176:   int iter; 
 1177:   double a,b,d,etemp;
 1178:   double fu=0,fv,fw,fx;
 1179:   double ftemp=0.;
 1180:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1181:   double e=0.0; 
 1182:  
 1183:   a=(ax < cx ? ax : cx); 
 1184:   b=(ax > cx ? ax : cx); 
 1185:   x=w=v=bx; 
 1186:   fw=fv=fx=(*f)(x); 
 1187:   for (iter=1;iter<=ITMAX;iter++) { 
 1188:     xm=0.5*(a+b); 
 1189:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1190:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1191:     printf(".");fflush(stdout);
 1192:     fprintf(ficlog,".");fflush(ficlog);
 1193: #ifdef DEBUGBRENT
 1194:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1195:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1196:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1197: #endif
 1198:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1199:       *xmin=x; 
 1200:       return fx; 
 1201:     } 
 1202:     ftemp=fu;
 1203:     if (fabs(e) > tol1) { 
 1204:       r=(x-w)*(fx-fv); 
 1205:       q=(x-v)*(fx-fw); 
 1206:       p=(x-v)*q-(x-w)*r; 
 1207:       q=2.0*(q-r); 
 1208:       if (q > 0.0) p = -p; 
 1209:       q=fabs(q); 
 1210:       etemp=e; 
 1211:       e=d; 
 1212:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1213: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1214:       else { 
 1215: 	d=p/q; 
 1216: 	u=x+d; 
 1217: 	if (u-a < tol2 || b-u < tol2) 
 1218: 	  d=SIGN(tol1,xm-x); 
 1219:       } 
 1220:     } else { 
 1221:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1222:     } 
 1223:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1224:     fu=(*f)(u); 
 1225:     if (fu <= fx) { 
 1226:       if (u >= x) a=x; else b=x; 
 1227:       SHFT(v,w,x,u) 
 1228: 	SHFT(fv,fw,fx,fu) 
 1229: 	} else { 
 1230: 	  if (u < x) a=u; else b=u; 
 1231: 	  if (fu <= fw || w == x) { 
 1232: 	    v=w; 
 1233: 	    w=u; 
 1234: 	    fv=fw; 
 1235: 	    fw=fu; 
 1236: 	  } else if (fu <= fv || v == x || v == w) { 
 1237: 	    v=u; 
 1238: 	    fv=fu; 
 1239: 	  } 
 1240: 	} 
 1241:   } 
 1242:   nrerror("Too many iterations in brent"); 
 1243:   *xmin=x; 
 1244:   return fx; 
 1245: } 
 1246: 
 1247: /****************** mnbrak ***********************/
 1248: 
 1249: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1250: 	    double (*func)(double)) 
 1251: { 
 1252:   double ulim,u,r,q, dum;
 1253:   double fu; 
 1254:  
 1255:   *fa=(*func)(*ax); 
 1256:   *fb=(*func)(*bx); 
 1257:   if (*fb > *fa) { 
 1258:     SHFT(dum,*ax,*bx,dum) 
 1259:       SHFT(dum,*fb,*fa,dum) 
 1260:       } 
 1261:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1262:   *fc=(*func)(*cx); 
 1263:   while (*fb > *fc) { /* Declining fa, fb, fc */
 1264:     r=(*bx-*ax)*(*fb-*fc); 
 1265:     q=(*bx-*cx)*(*fb-*fa); 
 1266:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1267:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 1268:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
 1269:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
 1270:       fu=(*func)(u); 
 1271: #ifdef DEBUG
 1272:       /* f(x)=A(x-u)**2+f(u) */
 1273:       double A, fparabu; 
 1274:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 1275:       fparabu= *fa - A*(*ax-u)*(*ax-u);
 1276:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1277:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1278: #endif 
 1279:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 1280:       fu=(*func)(u); 
 1281:       if (fu < *fc) { 
 1282: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1283: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
 1284: 	  } 
 1285:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 1286:       u=ulim; 
 1287:       fu=(*func)(u); 
 1288:     } else { 
 1289:       u=(*cx)+GOLD*(*cx-*bx); 
 1290:       fu=(*func)(u); 
 1291:     } 
 1292:     SHFT(*ax,*bx,*cx,u) 
 1293:       SHFT(*fa,*fb,*fc,fu) 
 1294:       } 
 1295: } 
 1296: 
 1297: /*************** linmin ************************/
 1298: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 1299: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 1300: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 1301: the value of func at the returned location p . This is actually all accomplished by calling the
 1302: routines mnbrak and brent .*/
 1303: int ncom; 
 1304: double *pcom,*xicom;
 1305: double (*nrfunc)(double []); 
 1306:  
 1307: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1308: { 
 1309:   double brent(double ax, double bx, double cx, 
 1310: 	       double (*f)(double), double tol, double *xmin); 
 1311:   double f1dim(double x); 
 1312:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1313: 	      double *fc, double (*func)(double)); 
 1314:   int j; 
 1315:   double xx,xmin,bx,ax; 
 1316:   double fx,fb,fa;
 1317:  
 1318:   ncom=n; 
 1319:   pcom=vector(1,n); 
 1320:   xicom=vector(1,n); 
 1321:   nrfunc=func; 
 1322:   for (j=1;j<=n;j++) { 
 1323:     pcom[j]=p[j]; 
 1324:     xicom[j]=xi[j]; 
 1325:   } 
 1326:   ax=0.0; 
 1327:   xx=1.0; 
 1328:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
 1329:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
 1330: #ifdef DEBUG
 1331:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1332:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1333: #endif
 1334:   for (j=1;j<=n;j++) { 
 1335:     xi[j] *= xmin; 
 1336:     p[j] += xi[j]; 
 1337:   } 
 1338:   free_vector(xicom,1,n); 
 1339:   free_vector(pcom,1,n); 
 1340: } 
 1341: 
 1342: 
 1343: /*************** powell ************************/
 1344: /*
 1345: Minimization of a function func of n variables. Input consists of an initial starting point
 1346: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 1347: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 1348: such that failure to decrease by more than this amount on one iteration signals doneness. On
 1349: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 1350: function value at p , and iter is the number of iterations taken. The routine linmin is used.
 1351:  */
 1352: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1353: 	    double (*func)(double [])) 
 1354: { 
 1355:   void linmin(double p[], double xi[], int n, double *fret, 
 1356: 	      double (*func)(double [])); 
 1357:   int i,ibig,j; 
 1358:   double del,t,*pt,*ptt,*xit;
 1359:   double fp,fptt;
 1360:   double *xits;
 1361:   int niterf, itmp;
 1362: 
 1363:   pt=vector(1,n); 
 1364:   ptt=vector(1,n); 
 1365:   xit=vector(1,n); 
 1366:   xits=vector(1,n); 
 1367:   *fret=(*func)(p); 
 1368:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1369:     rcurr_time = time(NULL);  
 1370:   for (*iter=1;;++(*iter)) { 
 1371:     fp=(*fret); 
 1372:     ibig=0; 
 1373:     del=0.0; 
 1374:     rlast_time=rcurr_time;
 1375:     /* (void) gettimeofday(&curr_time,&tzp); */
 1376:     rcurr_time = time(NULL);  
 1377:     curr_time = *localtime(&rcurr_time);
 1378:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1379:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1380: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1381:    for (i=1;i<=n;i++) {
 1382:       printf(" %d %.12f",i, p[i]);
 1383:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1384:       fprintf(ficrespow," %.12lf", p[i]);
 1385:     }
 1386:     printf("\n");
 1387:     fprintf(ficlog,"\n");
 1388:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1389:     if(*iter <=3){
 1390:       tml = *localtime(&rcurr_time);
 1391:       strcpy(strcurr,asctime(&tml));
 1392:       rforecast_time=rcurr_time; 
 1393:       itmp = strlen(strcurr);
 1394:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1395: 	strcurr[itmp-1]='\0';
 1396:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1397:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1398:       for(niterf=10;niterf<=30;niterf+=10){
 1399: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1400: 	forecast_time = *localtime(&rforecast_time);
 1401: 	strcpy(strfor,asctime(&forecast_time));
 1402: 	itmp = strlen(strfor);
 1403: 	if(strfor[itmp-1]=='\n')
 1404: 	strfor[itmp-1]='\0';
 1405: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1406: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1407:       }
 1408:     }
 1409:     for (i=1;i<=n;i++) { 
 1410:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1411:       fptt=(*fret); 
 1412: #ifdef DEBUG
 1413: 	  printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1414: 	  fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1415: #endif
 1416:       printf("%d",i);fflush(stdout);
 1417:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1418:       linmin(p,xit,n,fret,func); 
 1419:       if (fabs(fptt-(*fret)) > del) { 
 1420: 	del=fabs(fptt-(*fret)); 
 1421: 	ibig=i; 
 1422:       } 
 1423: #ifdef DEBUG
 1424:       printf("%d %.12e",i,(*fret));
 1425:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1426:       for (j=1;j<=n;j++) {
 1427: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1428: 	printf(" x(%d)=%.12e",j,xit[j]);
 1429: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1430:       }
 1431:       for(j=1;j<=n;j++) {
 1432: 	printf(" p(%d)=%.12e",j,p[j]);
 1433: 	fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 1434:       }
 1435:       printf("\n");
 1436:       fprintf(ficlog,"\n");
 1437: #endif
 1438:     } /* end i */
 1439:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 1440: #ifdef DEBUG
 1441:       int k[2],l;
 1442:       k[0]=1;
 1443:       k[1]=-1;
 1444:       printf("Max: %.12e",(*func)(p));
 1445:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1446:       for (j=1;j<=n;j++) {
 1447: 	printf(" %.12e",p[j]);
 1448: 	fprintf(ficlog," %.12e",p[j]);
 1449:       }
 1450:       printf("\n");
 1451:       fprintf(ficlog,"\n");
 1452:       for(l=0;l<=1;l++) {
 1453: 	for (j=1;j<=n;j++) {
 1454: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1455: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1456: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1457: 	}
 1458: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1459: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1460:       }
 1461: #endif
 1462: 
 1463: 
 1464:       free_vector(xit,1,n); 
 1465:       free_vector(xits,1,n); 
 1466:       free_vector(ptt,1,n); 
 1467:       free_vector(pt,1,n); 
 1468:       return; 
 1469:     } 
 1470:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1471:     for (j=1;j<=n;j++) { /* Computes an extrapolated point */
 1472:       ptt[j]=2.0*p[j]-pt[j]; 
 1473:       xit[j]=p[j]-pt[j]; 
 1474:       pt[j]=p[j]; 
 1475:     } 
 1476:     fptt=(*func)(ptt); 
 1477:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1478:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 1479:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1480:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 1481:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 1482:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1483:       /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
 1484:       /* Thus we compare delta(2h) with observed f1-f3 */
 1485:       /* or best gain on one ancient line 'del' with total  */
 1486:       /* gain f1-f2 = f1 - f2 - 'del' with del  */
 1487:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1488: 
 1489:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
 1490:       t= t- del*SQR(fp-fptt);
 1491:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
 1492:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
 1493: #ifdef DEBUG
 1494:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1495: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1496:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1497: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1498:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1499:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1500: #endif
 1501:       if (t < 0.0) { /* Then we use it for last direction */
 1502: 	linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
 1503: 	for (j=1;j<=n;j++) { 
 1504: 	  xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
 1505: 	  xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
 1506: 	}
 1507: 	printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1508: 	fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
 1509: 
 1510: #ifdef DEBUG
 1511: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1512: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1513: 	for(j=1;j<=n;j++){
 1514: 	  printf(" %.12e",xit[j]);
 1515: 	  fprintf(ficlog," %.12e",xit[j]);
 1516: 	}
 1517: 	printf("\n");
 1518: 	fprintf(ficlog,"\n");
 1519: #endif
 1520:       } /* end of t negative */
 1521:     } /* end if (fptt < fp)  */
 1522:   } 
 1523: } 
 1524: 
 1525: /**** Prevalence limit (stable or period prevalence)  ****************/
 1526: 
 1527: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1528: {
 1529:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1530:      matrix by transitions matrix until convergence is reached */
 1531: 
 1532:   int i, ii,j,k;
 1533:   double min, max, maxmin, maxmax,sumnew=0.;
 1534:   /* double **matprod2(); */ /* test */
 1535:   double **out, cov[NCOVMAX+1], **pmij();
 1536:   double **newm;
 1537:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1538: 
 1539:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1540:     for (j=1;j<=nlstate+ndeath;j++){
 1541:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1542:     }
 1543: 
 1544:    cov[1]=1.;
 1545:  
 1546:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1547:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1548:     newm=savm;
 1549:     /* Covariates have to be included here again */
 1550:     cov[2]=agefin;
 1551:     
 1552:     for (k=1; k<=cptcovn;k++) {
 1553:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1554:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1555:     }
 1556:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1557:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 1558:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 1559:     
 1560:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1561:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1562:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1563:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1564:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1565:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1566:     
 1567:     savm=oldm;
 1568:     oldm=newm;
 1569:     maxmax=0.;
 1570:     for(j=1;j<=nlstate;j++){
 1571:       min=1.;
 1572:       max=0.;
 1573:       for(i=1; i<=nlstate; i++) {
 1574: 	sumnew=0;
 1575: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1576: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1577:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1578: 	max=FMAX(max,prlim[i][j]);
 1579: 	min=FMIN(min,prlim[i][j]);
 1580:       }
 1581:       maxmin=max-min;
 1582:       maxmax=FMAX(maxmax,maxmin);
 1583:     }
 1584:     if(maxmax < ftolpl){
 1585:       return prlim;
 1586:     }
 1587:   }
 1588: }
 1589: 
 1590: /*************** transition probabilities ***************/ 
 1591: 
 1592: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1593: {
 1594:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1595:      computes the probability to be observed in state j being in state i by appying the
 1596:      model to the ncovmodel covariates (including constant and age).
 1597:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1598:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1599:      ncth covariate in the global vector x is given by the formula:
 1600:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1601:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1602:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1603:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1604:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1605:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1606:   */
 1607:   double s1, lnpijopii;
 1608:   /*double t34;*/
 1609:   int i,j, nc, ii, jj;
 1610: 
 1611:     for(i=1; i<= nlstate; i++){
 1612:       for(j=1; j<i;j++){
 1613: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1614: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1615: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1616: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1617: 	}
 1618: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1619: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1620:       }
 1621:       for(j=i+1; j<=nlstate+ndeath;j++){
 1622: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1623: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1624: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1625: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1626: 	}
 1627: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1628:       }
 1629:     }
 1630:     
 1631:     for(i=1; i<= nlstate; i++){
 1632:       s1=0;
 1633:       for(j=1; j<i; j++){
 1634: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1635: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1636:       }
 1637:       for(j=i+1; j<=nlstate+ndeath; j++){
 1638: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1639: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1640:       }
 1641:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1642:       ps[i][i]=1./(s1+1.);
 1643:       /* Computing other pijs */
 1644:       for(j=1; j<i; j++)
 1645: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1646:       for(j=i+1; j<=nlstate+ndeath; j++)
 1647: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1648:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1649:     } /* end i */
 1650:     
 1651:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1652:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1653: 	ps[ii][jj]=0;
 1654: 	ps[ii][ii]=1;
 1655:       }
 1656:     }
 1657:     
 1658:     
 1659:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1660:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1661:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1662:     /*   } */
 1663:     /*   printf("\n "); */
 1664:     /* } */
 1665:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1666:     /*
 1667:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1668:       goto end;*/
 1669:     return ps;
 1670: }
 1671: 
 1672: /**************** Product of 2 matrices ******************/
 1673: 
 1674: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1675: {
 1676:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1677:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1678:   /* in, b, out are matrice of pointers which should have been initialized 
 1679:      before: only the contents of out is modified. The function returns
 1680:      a pointer to pointers identical to out */
 1681:   int i, j, k;
 1682:   for(i=nrl; i<= nrh; i++)
 1683:     for(k=ncolol; k<=ncoloh; k++){
 1684:       out[i][k]=0.;
 1685:       for(j=ncl; j<=nch; j++)
 1686:   	out[i][k] +=in[i][j]*b[j][k];
 1687:     }
 1688:   return out;
 1689: }
 1690: 
 1691: 
 1692: /************* Higher Matrix Product ***************/
 1693: 
 1694: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1695: {
 1696:   /* Computes the transition matrix starting at age 'age' over 
 1697:      'nhstepm*hstepm*stepm' months (i.e. until
 1698:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1699:      nhstepm*hstepm matrices. 
 1700:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1701:      (typically every 2 years instead of every month which is too big 
 1702:      for the memory).
 1703:      Model is determined by parameters x and covariates have to be 
 1704:      included manually here. 
 1705: 
 1706:      */
 1707: 
 1708:   int i, j, d, h, k;
 1709:   double **out, cov[NCOVMAX+1];
 1710:   double **newm;
 1711: 
 1712:   /* Hstepm could be zero and should return the unit matrix */
 1713:   for (i=1;i<=nlstate+ndeath;i++)
 1714:     for (j=1;j<=nlstate+ndeath;j++){
 1715:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1716:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1717:     }
 1718:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1719:   for(h=1; h <=nhstepm; h++){
 1720:     for(d=1; d <=hstepm; d++){
 1721:       newm=savm;
 1722:       /* Covariates have to be included here again */
 1723:       cov[1]=1.;
 1724:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1725:       for (k=1; k<=cptcovn;k++) 
 1726: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1727:       for (k=1; k<=cptcovage;k++)
 1728: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1729:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1730: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1731: 
 1732: 
 1733:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1734:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1735:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1736: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1737:       savm=oldm;
 1738:       oldm=newm;
 1739:     }
 1740:     for(i=1; i<=nlstate+ndeath; i++)
 1741:       for(j=1;j<=nlstate+ndeath;j++) {
 1742: 	po[i][j][h]=newm[i][j];
 1743: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1744:       }
 1745:     /*printf("h=%d ",h);*/
 1746:   } /* end h */
 1747: /*     printf("\n H=%d \n",h); */
 1748:   return po;
 1749: }
 1750: 
 1751: #ifdef NLOPT
 1752:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 1753:   double fret;
 1754:   double *xt;
 1755:   int j;
 1756:   myfunc_data *d2 = (myfunc_data *) pd;
 1757: /* xt = (p1-1); */
 1758:   xt=vector(1,n); 
 1759:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 1760: 
 1761:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 1762:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 1763:   printf("Function = %.12lf ",fret);
 1764:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 1765:   printf("\n");
 1766:  free_vector(xt,1,n);
 1767:   return fret;
 1768: }
 1769: #endif
 1770: 
 1771: /*************** log-likelihood *************/
 1772: double func( double *x)
 1773: {
 1774:   int i, ii, j, k, mi, d, kk;
 1775:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1776:   double **out;
 1777:   double sw; /* Sum of weights */
 1778:   double lli; /* Individual log likelihood */
 1779:   int s1, s2;
 1780:   double bbh, survp;
 1781:   long ipmx;
 1782:   /*extern weight */
 1783:   /* We are differentiating ll according to initial status */
 1784:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1785:   /*for(i=1;i<imx;i++) 
 1786:     printf(" %d\n",s[4][i]);
 1787:   */
 1788: 
 1789:   ++countcallfunc;
 1790: 
 1791:   cov[1]=1.;
 1792: 
 1793:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1794: 
 1795:   if(mle==1){
 1796:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1797:       /* Computes the values of the ncovmodel covariates of the model
 1798: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1799: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1800: 	 to be observed in j being in i according to the model.
 1801:        */
 1802:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1803: 	cov[2+k]=covar[Tvar[k]][i];
 1804:       }
 1805:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1806: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1807: 	 has been calculated etc */
 1808:       for(mi=1; mi<= wav[i]-1; mi++){
 1809: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1810: 	  for (j=1;j<=nlstate+ndeath;j++){
 1811: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1812: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1813: 	  }
 1814: 	for(d=0; d<dh[mi][i]; d++){
 1815: 	  newm=savm;
 1816: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1817: 	  for (kk=1; kk<=cptcovage;kk++) {
 1818: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1819: 	  }
 1820: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1821: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1822: 	  savm=oldm;
 1823: 	  oldm=newm;
 1824: 	} /* end mult */
 1825:       
 1826: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1827: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1828: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1829: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1830: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1831: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1832: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1833: 	 * probability in order to take into account the bias as a fraction of the way
 1834: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1835: 	 * -stepm/2 to stepm/2 .
 1836: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1837: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1838: 	 */
 1839: 	s1=s[mw[mi][i]][i];
 1840: 	s2=s[mw[mi+1][i]][i];
 1841: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1842: 	/* bias bh is positive if real duration
 1843: 	 * is higher than the multiple of stepm and negative otherwise.
 1844: 	 */
 1845: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1846: 	if( s2 > nlstate){ 
 1847: 	  /* i.e. if s2 is a death state and if the date of death is known 
 1848: 	     then the contribution to the likelihood is the probability to 
 1849: 	     die between last step unit time and current  step unit time, 
 1850: 	     which is also equal to probability to die before dh 
 1851: 	     minus probability to die before dh-stepm . 
 1852: 	     In version up to 0.92 likelihood was computed
 1853: 	as if date of death was unknown. Death was treated as any other
 1854: 	health state: the date of the interview describes the actual state
 1855: 	and not the date of a change in health state. The former idea was
 1856: 	to consider that at each interview the state was recorded
 1857: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1858: 	introduced the exact date of death then we should have modified
 1859: 	the contribution of an exact death to the likelihood. This new
 1860: 	contribution is smaller and very dependent of the step unit
 1861: 	stepm. It is no more the probability to die between last interview
 1862: 	and month of death but the probability to survive from last
 1863: 	interview up to one month before death multiplied by the
 1864: 	probability to die within a month. Thanks to Chris
 1865: 	Jackson for correcting this bug.  Former versions increased
 1866: 	mortality artificially. The bad side is that we add another loop
 1867: 	which slows down the processing. The difference can be up to 10%
 1868: 	lower mortality.
 1869: 	  */
 1870: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1871: 
 1872: 
 1873: 	} else if  (s2==-2) {
 1874: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 1875: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1876: 	  /*survp += out[s1][j]; */
 1877: 	  lli= log(survp);
 1878: 	}
 1879: 	
 1880:  	else if  (s2==-4) { 
 1881: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 1882: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1883:  	  lli= log(survp); 
 1884:  	} 
 1885: 
 1886:  	else if  (s2==-5) { 
 1887:  	  for (j=1,survp=0. ; j<=2; j++)  
 1888: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 1889:  	  lli= log(survp); 
 1890:  	} 
 1891: 	
 1892: 	else{
 1893: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1894: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1895: 	} 
 1896: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1897: 	/*if(lli ==000.0)*/
 1898: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1899:   	ipmx +=1;
 1900: 	sw += weight[i];
 1901: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1902:       } /* end of wave */
 1903:     } /* end of individual */
 1904:   }  else if(mle==2){
 1905:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1906:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1907:       for(mi=1; mi<= wav[i]-1; mi++){
 1908: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1909: 	  for (j=1;j<=nlstate+ndeath;j++){
 1910: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1911: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1912: 	  }
 1913: 	for(d=0; d<=dh[mi][i]; d++){
 1914: 	  newm=savm;
 1915: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1916: 	  for (kk=1; kk<=cptcovage;kk++) {
 1917: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1918: 	  }
 1919: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1920: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1921: 	  savm=oldm;
 1922: 	  oldm=newm;
 1923: 	} /* end mult */
 1924:       
 1925: 	s1=s[mw[mi][i]][i];
 1926: 	s2=s[mw[mi+1][i]][i];
 1927: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1928: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1929: 	ipmx +=1;
 1930: 	sw += weight[i];
 1931: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1932:       } /* end of wave */
 1933:     } /* end of individual */
 1934:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1935:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1936:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1937:       for(mi=1; mi<= wav[i]-1; mi++){
 1938: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1939: 	  for (j=1;j<=nlstate+ndeath;j++){
 1940: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1941: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1942: 	  }
 1943: 	for(d=0; d<dh[mi][i]; d++){
 1944: 	  newm=savm;
 1945: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1946: 	  for (kk=1; kk<=cptcovage;kk++) {
 1947: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1948: 	  }
 1949: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1950: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1951: 	  savm=oldm;
 1952: 	  oldm=newm;
 1953: 	} /* end mult */
 1954:       
 1955: 	s1=s[mw[mi][i]][i];
 1956: 	s2=s[mw[mi+1][i]][i];
 1957: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1958: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1959: 	ipmx +=1;
 1960: 	sw += weight[i];
 1961: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1962:       } /* end of wave */
 1963:     } /* end of individual */
 1964:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1965:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1966:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1967:       for(mi=1; mi<= wav[i]-1; mi++){
 1968: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1969: 	  for (j=1;j<=nlstate+ndeath;j++){
 1970: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1971: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1972: 	  }
 1973: 	for(d=0; d<dh[mi][i]; d++){
 1974: 	  newm=savm;
 1975: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1976: 	  for (kk=1; kk<=cptcovage;kk++) {
 1977: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1978: 	  }
 1979: 	
 1980: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1981: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1982: 	  savm=oldm;
 1983: 	  oldm=newm;
 1984: 	} /* end mult */
 1985:       
 1986: 	s1=s[mw[mi][i]][i];
 1987: 	s2=s[mw[mi+1][i]][i];
 1988: 	if( s2 > nlstate){ 
 1989: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1990: 	}else{
 1991: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1992: 	}
 1993: 	ipmx +=1;
 1994: 	sw += weight[i];
 1995: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1996: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1997:       } /* end of wave */
 1998:     } /* end of individual */
 1999:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 2000:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2001:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2002:       for(mi=1; mi<= wav[i]-1; mi++){
 2003: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2004: 	  for (j=1;j<=nlstate+ndeath;j++){
 2005: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2006: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2007: 	  }
 2008: 	for(d=0; d<dh[mi][i]; d++){
 2009: 	  newm=savm;
 2010: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2011: 	  for (kk=1; kk<=cptcovage;kk++) {
 2012: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2013: 	  }
 2014: 	
 2015: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2016: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2017: 	  savm=oldm;
 2018: 	  oldm=newm;
 2019: 	} /* end mult */
 2020:       
 2021: 	s1=s[mw[mi][i]][i];
 2022: 	s2=s[mw[mi+1][i]][i];
 2023: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2024: 	ipmx +=1;
 2025: 	sw += weight[i];
 2026: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2027: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 2028:       } /* end of wave */
 2029:     } /* end of individual */
 2030:   } /* End of if */
 2031:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2032:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2033:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2034:   return -l;
 2035: }
 2036: 
 2037: /*************** log-likelihood *************/
 2038: double funcone( double *x)
 2039: {
 2040:   /* Same as likeli but slower because of a lot of printf and if */
 2041:   int i, ii, j, k, mi, d, kk;
 2042:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2043:   double **out;
 2044:   double lli; /* Individual log likelihood */
 2045:   double llt;
 2046:   int s1, s2;
 2047:   double bbh, survp;
 2048:   /*extern weight */
 2049:   /* We are differentiating ll according to initial status */
 2050:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2051:   /*for(i=1;i<imx;i++) 
 2052:     printf(" %d\n",s[4][i]);
 2053:   */
 2054:   cov[1]=1.;
 2055: 
 2056:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2057: 
 2058:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2059:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2060:     for(mi=1; mi<= wav[i]-1; mi++){
 2061:       for (ii=1;ii<=nlstate+ndeath;ii++)
 2062: 	for (j=1;j<=nlstate+ndeath;j++){
 2063: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2064: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2065: 	}
 2066:       for(d=0; d<dh[mi][i]; d++){
 2067: 	newm=savm;
 2068: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2069: 	for (kk=1; kk<=cptcovage;kk++) {
 2070: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2071: 	}
 2072: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 2073: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2074: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2075: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 2076: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 2077: 	savm=oldm;
 2078: 	oldm=newm;
 2079:       } /* end mult */
 2080:       
 2081:       s1=s[mw[mi][i]][i];
 2082:       s2=s[mw[mi+1][i]][i];
 2083:       bbh=(double)bh[mi][i]/(double)stepm; 
 2084:       /* bias is positive if real duration
 2085:        * is higher than the multiple of stepm and negative otherwise.
 2086:        */
 2087:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 2088: 	lli=log(out[s1][s2] - savm[s1][s2]);
 2089:       } else if  (s2==-2) {
 2090: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 2091: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2092: 	lli= log(survp);
 2093:       }else if (mle==1){
 2094: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2095:       } else if(mle==2){
 2096: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2097:       } else if(mle==3){  /* exponential inter-extrapolation */
 2098: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2099:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2100: 	lli=log(out[s1][s2]); /* Original formula */
 2101:       } else{  /* mle=0 back to 1 */
 2102: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2103: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2104:       } /* End of if */
 2105:       ipmx +=1;
 2106:       sw += weight[i];
 2107:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2108:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2109:       if(globpr){
 2110: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2111:  %11.6f %11.6f %11.6f ", \
 2112: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2113: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2114: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2115: 	  llt +=ll[k]*gipmx/gsw;
 2116: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2117: 	}
 2118: 	fprintf(ficresilk," %10.6f\n", -llt);
 2119:       }
 2120:     } /* end of wave */
 2121:   } /* end of individual */
 2122:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2123:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2124:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2125:   if(globpr==0){ /* First time we count the contributions and weights */
 2126:     gipmx=ipmx;
 2127:     gsw=sw;
 2128:   }
 2129:   return -l;
 2130: }
 2131: 
 2132: 
 2133: /*************** function likelione ***********/
 2134: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2135: {
 2136:   /* This routine should help understanding what is done with 
 2137:      the selection of individuals/waves and
 2138:      to check the exact contribution to the likelihood.
 2139:      Plotting could be done.
 2140:    */
 2141:   int k;
 2142: 
 2143:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2144:     strcpy(fileresilk,"ilk"); 
 2145:     strcat(fileresilk,fileres);
 2146:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2147:       printf("Problem with resultfile: %s\n", fileresilk);
 2148:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2149:     }
 2150:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2151:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2152:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2153:     for(k=1; k<=nlstate; k++) 
 2154:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2155:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2156:   }
 2157: 
 2158:   *fretone=(*funcone)(p);
 2159:   if(*globpri !=0){
 2160:     fclose(ficresilk);
 2161:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2162:     fflush(fichtm); 
 2163:   } 
 2164:   return;
 2165: }
 2166: 
 2167: 
 2168: /*********** Maximum Likelihood Estimation ***************/
 2169: 
 2170: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2171: {
 2172:   int i,j, iter=0;
 2173:   double **xi;
 2174:   double fret;
 2175:   double fretone; /* Only one call to likelihood */
 2176:   /*  char filerespow[FILENAMELENGTH];*/
 2177: 
 2178: #ifdef NLOPT
 2179:   int creturn;
 2180:   nlopt_opt opt;
 2181:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 2182:   double *lb;
 2183:   double minf; /* the minimum objective value, upon return */
 2184:   double * p1; /* Shifted parameters from 0 instead of 1 */
 2185:   myfunc_data dinst, *d = &dinst;
 2186: #endif
 2187: 
 2188: 
 2189:   xi=matrix(1,npar,1,npar);
 2190:   for (i=1;i<=npar;i++)
 2191:     for (j=1;j<=npar;j++)
 2192:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2193:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2194:   strcpy(filerespow,"pow"); 
 2195:   strcat(filerespow,fileres);
 2196:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2197:     printf("Problem with resultfile: %s\n", filerespow);
 2198:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2199:   }
 2200:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2201:   for (i=1;i<=nlstate;i++)
 2202:     for(j=1;j<=nlstate+ndeath;j++)
 2203:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2204:   fprintf(ficrespow,"\n");
 2205: #ifdef POWELL
 2206:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2207: #endif
 2208: 
 2209: #ifdef NLOPT
 2210: #ifdef NEWUOA
 2211:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 2212: #else
 2213:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 2214: #endif
 2215:   lb=vector(0,npar-1);
 2216:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 2217:   nlopt_set_lower_bounds(opt, lb);
 2218:   nlopt_set_initial_step1(opt, 0.1);
 2219:   
 2220:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 2221:   d->function = func;
 2222:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 2223:   nlopt_set_min_objective(opt, myfunc, d);
 2224:   nlopt_set_xtol_rel(opt, ftol);
 2225:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 2226:     printf("nlopt failed! %d\n",creturn); 
 2227:   }
 2228:   else {
 2229:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 2230:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 2231:     iter=1; /* not equal */
 2232:   }
 2233:   nlopt_destroy(opt);
 2234: #endif
 2235:   free_matrix(xi,1,npar,1,npar);
 2236:   fclose(ficrespow);
 2237:   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2238:   fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2239:   fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2240: 
 2241: }
 2242: 
 2243: /**** Computes Hessian and covariance matrix ***/
 2244: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2245: {
 2246:   double  **a,**y,*x,pd;
 2247:   double **hess;
 2248:   int i, j;
 2249:   int *indx;
 2250: 
 2251:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2252:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2253:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2254:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2255:   double gompertz(double p[]);
 2256:   hess=matrix(1,npar,1,npar);
 2257: 
 2258:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2259:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2260:   for (i=1;i<=npar;i++){
 2261:     printf("%d",i);fflush(stdout);
 2262:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2263:    
 2264:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2265:     
 2266:     /*  printf(" %f ",p[i]);
 2267: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2268:   }
 2269:   
 2270:   for (i=1;i<=npar;i++) {
 2271:     for (j=1;j<=npar;j++)  {
 2272:       if (j>i) { 
 2273: 	printf(".%d%d",i,j);fflush(stdout);
 2274: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2275: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2276: 	
 2277: 	hess[j][i]=hess[i][j];    
 2278: 	/*printf(" %lf ",hess[i][j]);*/
 2279:       }
 2280:     }
 2281:   }
 2282:   printf("\n");
 2283:   fprintf(ficlog,"\n");
 2284: 
 2285:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2286:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2287:   
 2288:   a=matrix(1,npar,1,npar);
 2289:   y=matrix(1,npar,1,npar);
 2290:   x=vector(1,npar);
 2291:   indx=ivector(1,npar);
 2292:   for (i=1;i<=npar;i++)
 2293:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2294:   ludcmp(a,npar,indx,&pd);
 2295: 
 2296:   for (j=1;j<=npar;j++) {
 2297:     for (i=1;i<=npar;i++) x[i]=0;
 2298:     x[j]=1;
 2299:     lubksb(a,npar,indx,x);
 2300:     for (i=1;i<=npar;i++){ 
 2301:       matcov[i][j]=x[i];
 2302:     }
 2303:   }
 2304: 
 2305:   printf("\n#Hessian matrix#\n");
 2306:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2307:   for (i=1;i<=npar;i++) { 
 2308:     for (j=1;j<=npar;j++) { 
 2309:       printf("%.3e ",hess[i][j]);
 2310:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2311:     }
 2312:     printf("\n");
 2313:     fprintf(ficlog,"\n");
 2314:   }
 2315: 
 2316:   /* Recompute Inverse */
 2317:   for (i=1;i<=npar;i++)
 2318:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2319:   ludcmp(a,npar,indx,&pd);
 2320: 
 2321:   /*  printf("\n#Hessian matrix recomputed#\n");
 2322: 
 2323:   for (j=1;j<=npar;j++) {
 2324:     for (i=1;i<=npar;i++) x[i]=0;
 2325:     x[j]=1;
 2326:     lubksb(a,npar,indx,x);
 2327:     for (i=1;i<=npar;i++){ 
 2328:       y[i][j]=x[i];
 2329:       printf("%.3e ",y[i][j]);
 2330:       fprintf(ficlog,"%.3e ",y[i][j]);
 2331:     }
 2332:     printf("\n");
 2333:     fprintf(ficlog,"\n");
 2334:   }
 2335:   */
 2336: 
 2337:   free_matrix(a,1,npar,1,npar);
 2338:   free_matrix(y,1,npar,1,npar);
 2339:   free_vector(x,1,npar);
 2340:   free_ivector(indx,1,npar);
 2341:   free_matrix(hess,1,npar,1,npar);
 2342: 
 2343: 
 2344: }
 2345: 
 2346: /*************** hessian matrix ****************/
 2347: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2348: {
 2349:   int i;
 2350:   int l=1, lmax=20;
 2351:   double k1,k2;
 2352:   double p2[MAXPARM+1]; /* identical to x */
 2353:   double res;
 2354:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2355:   double fx;
 2356:   int k=0,kmax=10;
 2357:   double l1;
 2358: 
 2359:   fx=func(x);
 2360:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2361:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2362:     l1=pow(10,l);
 2363:     delts=delt;
 2364:     for(k=1 ; k <kmax; k=k+1){
 2365:       delt = delta*(l1*k);
 2366:       p2[theta]=x[theta] +delt;
 2367:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2368:       p2[theta]=x[theta]-delt;
 2369:       k2=func(p2)-fx;
 2370:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2371:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2372:       
 2373: #ifdef DEBUGHESS
 2374:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2375:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2376: #endif
 2377:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2378:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2379: 	k=kmax;
 2380:       }
 2381:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2382: 	k=kmax; l=lmax*10;
 2383:       }
 2384:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2385: 	delts=delt;
 2386:       }
 2387:     }
 2388:   }
 2389:   delti[theta]=delts;
 2390:   return res; 
 2391:   
 2392: }
 2393: 
 2394: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2395: {
 2396:   int i;
 2397:   int l=1, lmax=20;
 2398:   double k1,k2,k3,k4,res,fx;
 2399:   double p2[MAXPARM+1];
 2400:   int k;
 2401: 
 2402:   fx=func(x);
 2403:   for (k=1; k<=2; k++) {
 2404:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2405:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2406:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2407:     k1=func(p2)-fx;
 2408:   
 2409:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2410:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2411:     k2=func(p2)-fx;
 2412:   
 2413:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2414:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2415:     k3=func(p2)-fx;
 2416:   
 2417:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2418:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2419:     k4=func(p2)-fx;
 2420:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2421: #ifdef DEBUG
 2422:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2423:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2424: #endif
 2425:   }
 2426:   return res;
 2427: }
 2428: 
 2429: /************** Inverse of matrix **************/
 2430: void ludcmp(double **a, int n, int *indx, double *d) 
 2431: { 
 2432:   int i,imax,j,k; 
 2433:   double big,dum,sum,temp; 
 2434:   double *vv; 
 2435:  
 2436:   vv=vector(1,n); 
 2437:   *d=1.0; 
 2438:   for (i=1;i<=n;i++) { 
 2439:     big=0.0; 
 2440:     for (j=1;j<=n;j++) 
 2441:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2442:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2443:     vv[i]=1.0/big; 
 2444:   } 
 2445:   for (j=1;j<=n;j++) { 
 2446:     for (i=1;i<j;i++) { 
 2447:       sum=a[i][j]; 
 2448:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2449:       a[i][j]=sum; 
 2450:     } 
 2451:     big=0.0; 
 2452:     for (i=j;i<=n;i++) { 
 2453:       sum=a[i][j]; 
 2454:       for (k=1;k<j;k++) 
 2455: 	sum -= a[i][k]*a[k][j]; 
 2456:       a[i][j]=sum; 
 2457:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2458: 	big=dum; 
 2459: 	imax=i; 
 2460:       } 
 2461:     } 
 2462:     if (j != imax) { 
 2463:       for (k=1;k<=n;k++) { 
 2464: 	dum=a[imax][k]; 
 2465: 	a[imax][k]=a[j][k]; 
 2466: 	a[j][k]=dum; 
 2467:       } 
 2468:       *d = -(*d); 
 2469:       vv[imax]=vv[j]; 
 2470:     } 
 2471:     indx[j]=imax; 
 2472:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2473:     if (j != n) { 
 2474:       dum=1.0/(a[j][j]); 
 2475:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2476:     } 
 2477:   } 
 2478:   free_vector(vv,1,n);  /* Doesn't work */
 2479: ;
 2480: } 
 2481: 
 2482: void lubksb(double **a, int n, int *indx, double b[]) 
 2483: { 
 2484:   int i,ii=0,ip,j; 
 2485:   double sum; 
 2486:  
 2487:   for (i=1;i<=n;i++) { 
 2488:     ip=indx[i]; 
 2489:     sum=b[ip]; 
 2490:     b[ip]=b[i]; 
 2491:     if (ii) 
 2492:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2493:     else if (sum) ii=i; 
 2494:     b[i]=sum; 
 2495:   } 
 2496:   for (i=n;i>=1;i--) { 
 2497:     sum=b[i]; 
 2498:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2499:     b[i]=sum/a[i][i]; 
 2500:   } 
 2501: } 
 2502: 
 2503: void pstamp(FILE *fichier)
 2504: {
 2505:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2506: }
 2507: 
 2508: /************ Frequencies ********************/
 2509: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2510: {  /* Some frequencies */
 2511:   
 2512:   int i, m, jk, j1, bool, z1,j;
 2513:   int first;
 2514:   double ***freq; /* Frequencies */
 2515:   double *pp, **prop;
 2516:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2517:   char fileresp[FILENAMELENGTH];
 2518:   
 2519:   pp=vector(1,nlstate);
 2520:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2521:   strcpy(fileresp,"p");
 2522:   strcat(fileresp,fileres);
 2523:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2524:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2525:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2526:     exit(0);
 2527:   }
 2528:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2529:   j1=0;
 2530:   
 2531:   j=cptcoveff;
 2532:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2533: 
 2534:   first=1;
 2535: 
 2536:   /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 2537:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
 2538:   /*    j1++;
 2539: */
 2540:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2541:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2542: 	scanf("%d", i);*/
 2543:       for (i=-5; i<=nlstate+ndeath; i++)  
 2544: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2545: 	  for(m=iagemin; m <= iagemax+3; m++)
 2546: 	    freq[i][jk][m]=0;
 2547:       
 2548:       for (i=1; i<=nlstate; i++)  
 2549: 	for(m=iagemin; m <= iagemax+3; m++)
 2550: 	  prop[i][m]=0;
 2551:       
 2552:       dateintsum=0;
 2553:       k2cpt=0;
 2554:       for (i=1; i<=imx; i++) {
 2555: 	bool=1;
 2556: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2557: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2558:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2559:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2560:               bool=0;
 2561:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2562:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2563:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2564:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2565:             } 
 2566: 	}
 2567:  
 2568: 	if (bool==1){
 2569: 	  for(m=firstpass; m<=lastpass; m++){
 2570: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2571: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2572: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2573: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2574: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2575: 	      if (m<lastpass) {
 2576: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2577: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2578: 	      }
 2579: 	      
 2580: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2581: 		dateintsum=dateintsum+k2;
 2582: 		k2cpt++;
 2583: 	      }
 2584: 	      /*}*/
 2585: 	  }
 2586: 	}
 2587:       } /* end i */
 2588:        
 2589:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2590:       pstamp(ficresp);
 2591:       if  (cptcovn>0) {
 2592: 	fprintf(ficresp, "\n#********** Variable "); 
 2593: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2594: 	fprintf(ficresp, "**********\n#");
 2595: 	fprintf(ficlog, "\n#********** Variable "); 
 2596: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2597: 	fprintf(ficlog, "**********\n#");
 2598:       }
 2599:       for(i=1; i<=nlstate;i++) 
 2600: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2601:       fprintf(ficresp, "\n");
 2602:       
 2603:       for(i=iagemin; i <= iagemax+3; i++){
 2604: 	if(i==iagemax+3){
 2605: 	  fprintf(ficlog,"Total");
 2606: 	}else{
 2607: 	  if(first==1){
 2608: 	    first=0;
 2609: 	    printf("See log file for details...\n");
 2610: 	  }
 2611: 	  fprintf(ficlog,"Age %d", i);
 2612: 	}
 2613: 	for(jk=1; jk <=nlstate ; jk++){
 2614: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2615: 	    pp[jk] += freq[jk][m][i]; 
 2616: 	}
 2617: 	for(jk=1; jk <=nlstate ; jk++){
 2618: 	  for(m=-1, pos=0; m <=0 ; m++)
 2619: 	    pos += freq[jk][m][i];
 2620: 	  if(pp[jk]>=1.e-10){
 2621: 	    if(first==1){
 2622: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2623: 	    }
 2624: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2625: 	  }else{
 2626: 	    if(first==1)
 2627: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2628: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2629: 	  }
 2630: 	}
 2631: 
 2632: 	for(jk=1; jk <=nlstate ; jk++){
 2633: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2634: 	    pp[jk] += freq[jk][m][i];
 2635: 	}	
 2636: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2637: 	  pos += pp[jk];
 2638: 	  posprop += prop[jk][i];
 2639: 	}
 2640: 	for(jk=1; jk <=nlstate ; jk++){
 2641: 	  if(pos>=1.e-5){
 2642: 	    if(first==1)
 2643: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2644: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2645: 	  }else{
 2646: 	    if(first==1)
 2647: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2648: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2649: 	  }
 2650: 	  if( i <= iagemax){
 2651: 	    if(pos>=1.e-5){
 2652: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2653: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2654: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2655: 	    }
 2656: 	    else
 2657: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2658: 	  }
 2659: 	}
 2660: 	
 2661: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2662: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2663: 	    if(freq[jk][m][i] !=0 ) {
 2664: 	    if(first==1)
 2665: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2666: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2667: 	    }
 2668: 	if(i <= iagemax)
 2669: 	  fprintf(ficresp,"\n");
 2670: 	if(first==1)
 2671: 	  printf("Others in log...\n");
 2672: 	fprintf(ficlog,"\n");
 2673:       }
 2674:       /*}*/
 2675:   }
 2676:   dateintmean=dateintsum/k2cpt; 
 2677:  
 2678:   fclose(ficresp);
 2679:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2680:   free_vector(pp,1,nlstate);
 2681:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2682:   /* End of Freq */
 2683: }
 2684: 
 2685: /************ Prevalence ********************/
 2686: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2687: {  
 2688:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2689:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2690:      We still use firstpass and lastpass as another selection.
 2691:   */
 2692:  
 2693:   int i, m, jk, j1, bool, z1,j;
 2694: 
 2695:   double **prop;
 2696:   double posprop; 
 2697:   double  y2; /* in fractional years */
 2698:   int iagemin, iagemax;
 2699:   int first; /** to stop verbosity which is redirected to log file */
 2700: 
 2701:   iagemin= (int) agemin;
 2702:   iagemax= (int) agemax;
 2703:   /*pp=vector(1,nlstate);*/
 2704:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2705:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2706:   j1=0;
 2707:   
 2708:   /*j=cptcoveff;*/
 2709:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2710:   
 2711:   first=1;
 2712:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2713:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2714:       j1++;*/
 2715:       
 2716:       for (i=1; i<=nlstate; i++)  
 2717: 	for(m=iagemin; m <= iagemax+3; m++)
 2718: 	  prop[i][m]=0.0;
 2719:      
 2720:       for (i=1; i<=imx; i++) { /* Each individual */
 2721: 	bool=1;
 2722: 	if  (cptcovn>0) {
 2723: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2724: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2725: 	      bool=0;
 2726: 	} 
 2727: 	if (bool==1) { 
 2728: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2729: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2730: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2731: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2732: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2733: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2734:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2735: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2736:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2737:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2738:  	      } 
 2739: 	    }
 2740: 	  } /* end selection of waves */
 2741: 	}
 2742:       }
 2743:       for(i=iagemin; i <= iagemax+3; i++){  
 2744:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2745:  	  posprop += prop[jk][i]; 
 2746:  	} 
 2747: 	
 2748:  	for(jk=1; jk <=nlstate ; jk++){	    
 2749:  	  if( i <=  iagemax){ 
 2750:  	    if(posprop>=1.e-5){ 
 2751:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2752:  	    } else{
 2753: 	      if(first==1){
 2754: 		first=0;
 2755: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2756: 	      }
 2757: 	    }
 2758:  	  } 
 2759:  	}/* end jk */ 
 2760:       }/* end i */ 
 2761:     /*} *//* end i1 */
 2762:   } /* end j1 */
 2763:   
 2764:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2765:   /*free_vector(pp,1,nlstate);*/
 2766:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2767: }  /* End of prevalence */
 2768: 
 2769: /************* Waves Concatenation ***************/
 2770: 
 2771: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2772: {
 2773:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2774:      Death is a valid wave (if date is known).
 2775:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2776:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2777:      and mw[mi+1][i]. dh depends on stepm.
 2778:      */
 2779: 
 2780:   int i, mi, m;
 2781:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2782:      double sum=0., jmean=0.;*/
 2783:   int first;
 2784:   int j, k=0,jk, ju, jl;
 2785:   double sum=0.;
 2786:   first=0;
 2787:   jmin=100000;
 2788:   jmax=-1;
 2789:   jmean=0.;
 2790:   for(i=1; i<=imx; i++){
 2791:     mi=0;
 2792:     m=firstpass;
 2793:     while(s[m][i] <= nlstate){
 2794:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2795: 	mw[++mi][i]=m;
 2796:       if(m >=lastpass)
 2797: 	break;
 2798:       else
 2799: 	m++;
 2800:     }/* end while */
 2801:     if (s[m][i] > nlstate){
 2802:       mi++;	/* Death is another wave */
 2803:       /* if(mi==0)  never been interviewed correctly before death */
 2804: 	 /* Only death is a correct wave */
 2805:       mw[mi][i]=m;
 2806:     }
 2807: 
 2808:     wav[i]=mi;
 2809:     if(mi==0){
 2810:       nbwarn++;
 2811:       if(first==0){
 2812: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2813: 	first=1;
 2814:       }
 2815:       if(first==1){
 2816: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 2817:       }
 2818:     } /* end mi==0 */
 2819:   } /* End individuals */
 2820: 
 2821:   for(i=1; i<=imx; i++){
 2822:     for(mi=1; mi<wav[i];mi++){
 2823:       if (stepm <=0)
 2824: 	dh[mi][i]=1;
 2825:       else{
 2826: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2827: 	  if (agedc[i] < 2*AGESUP) {
 2828: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2829: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2830: 	    else if(j<0){
 2831: 	      nberr++;
 2832: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2833: 	      j=1; /* Temporary Dangerous patch */
 2834: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2835: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2836: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 2837: 	    }
 2838: 	    k=k+1;
 2839: 	    if (j >= jmax){
 2840: 	      jmax=j;
 2841: 	      ijmax=i;
 2842: 	    }
 2843: 	    if (j <= jmin){
 2844: 	      jmin=j;
 2845: 	      ijmin=i;
 2846: 	    }
 2847: 	    sum=sum+j;
 2848: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2849: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2850: 	  }
 2851: 	}
 2852: 	else{
 2853: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2854: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 2855: 
 2856: 	  k=k+1;
 2857: 	  if (j >= jmax) {
 2858: 	    jmax=j;
 2859: 	    ijmax=i;
 2860: 	  }
 2861: 	  else if (j <= jmin){
 2862: 	    jmin=j;
 2863: 	    ijmin=i;
 2864: 	  }
 2865: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2866: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2867: 	  if(j<0){
 2868: 	    nberr++;
 2869: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2870: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2871: 	  }
 2872: 	  sum=sum+j;
 2873: 	}
 2874: 	jk= j/stepm;
 2875: 	jl= j -jk*stepm;
 2876: 	ju= j -(jk+1)*stepm;
 2877: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2878: 	  if(jl==0){
 2879: 	    dh[mi][i]=jk;
 2880: 	    bh[mi][i]=0;
 2881: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2882: 		  * to avoid the price of an extra matrix product in likelihood */
 2883: 	    dh[mi][i]=jk+1;
 2884: 	    bh[mi][i]=ju;
 2885: 	  }
 2886: 	}else{
 2887: 	  if(jl <= -ju){
 2888: 	    dh[mi][i]=jk;
 2889: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2890: 				 * is higher than the multiple of stepm and negative otherwise.
 2891: 				 */
 2892: 	  }
 2893: 	  else{
 2894: 	    dh[mi][i]=jk+1;
 2895: 	    bh[mi][i]=ju;
 2896: 	  }
 2897: 	  if(dh[mi][i]==0){
 2898: 	    dh[mi][i]=1; /* At least one step */
 2899: 	    bh[mi][i]=ju; /* At least one step */
 2900: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2901: 	  }
 2902: 	} /* end if mle */
 2903:       }
 2904:     } /* end wave */
 2905:   }
 2906:   jmean=sum/k;
 2907:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 2908:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 2909:  }
 2910: 
 2911: /*********** Tricode ****************************/
 2912: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 2913: {
 2914:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 2915:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 2916:   /* Boring subroutine which should only output nbcode[Tvar[j]][k]
 2917:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 2918:   /* nbcode[Tvar[j]][1]= 
 2919:   */
 2920: 
 2921:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 2922:   int modmaxcovj=0; /* Modality max of covariates j */
 2923:   int cptcode=0; /* Modality max of covariates j */
 2924:   int modmincovj=0; /* Modality min of covariates j */
 2925: 
 2926: 
 2927:   cptcoveff=0; 
 2928:  
 2929:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 2930:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 2931: 
 2932:   /* Loop on covariates without age and products */
 2933:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 2934:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 2935: 			       modality of this covariate Vj*/ 
 2936:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 2937: 				    * If product of Vn*Vm, still boolean *:
 2938: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 2939: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 2940:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 2941: 				      modality of the nth covariate of individual i. */
 2942:       if (ij > modmaxcovj)
 2943:         modmaxcovj=ij; 
 2944:       else if (ij < modmincovj) 
 2945: 	modmincovj=ij; 
 2946:       if ((ij < -1) && (ij > NCOVMAX)){
 2947: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 2948: 	exit(1);
 2949:       }else
 2950:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 2951:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 2952:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2953:       /* getting the maximum value of the modality of the covariate
 2954: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 2955: 	 female is 1, then modmaxcovj=1.*/
 2956:     }
 2957:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 2958:     cptcode=modmaxcovj;
 2959:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 2960:    /*for (i=0; i<=cptcode; i++) {*/
 2961:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 2962:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 2963:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 2964: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 2965:       }
 2966:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 2967: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 2968:     } /* Ndum[-1] number of undefined modalities */
 2969: 
 2970:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 2971:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 2972:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 2973:        modmincovj=3; modmaxcovj = 7;
 2974:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 2975:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 2976:        variables V1_1 and V1_2.
 2977:        nbcode[Tvar[j]][ij]=k;
 2978:        nbcode[Tvar[j]][1]=0;
 2979:        nbcode[Tvar[j]][2]=1;
 2980:        nbcode[Tvar[j]][3]=2;
 2981:     */
 2982:     ij=1; /* ij is similar to i but can jumps over null modalities */
 2983:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 2984:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 2985: 	/*recode from 0 */
 2986: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 2987: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 2988: 				     k is a modality. If we have model=V1+V1*sex 
 2989: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2990: 	  ij++;
 2991: 	}
 2992: 	if (ij > ncodemax[j]) break; 
 2993:       }  /* end of loop on */
 2994:     } /* end of loop on modality */ 
 2995:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 2996:   
 2997:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 2998:   
 2999:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 3000:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 3001:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 3002:    Ndum[ij]++; 
 3003:  } 
 3004: 
 3005:  ij=1;
 3006:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 3007:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 3008:    if((Ndum[i]!=0) && (i<=ncovcol)){
 3009:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 3010:      Tvaraff[ij]=i; /*For printing (unclear) */
 3011:      ij++;
 3012:    }else
 3013:        Tvaraff[ij]=0;
 3014:  }
 3015:  ij--;
 3016:  cptcoveff=ij; /*Number of total covariates*/
 3017: 
 3018: }
 3019: 
 3020: 
 3021: /*********** Health Expectancies ****************/
 3022: 
 3023: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 3024: 
 3025: {
 3026:   /* Health expectancies, no variances */
 3027:   int i, j, nhstepm, hstepm, h, nstepm;
 3028:   int nhstepma, nstepma; /* Decreasing with age */
 3029:   double age, agelim, hf;
 3030:   double ***p3mat;
 3031:   double eip;
 3032: 
 3033:   pstamp(ficreseij);
 3034:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 3035:   fprintf(ficreseij,"# Age");
 3036:   for(i=1; i<=nlstate;i++){
 3037:     for(j=1; j<=nlstate;j++){
 3038:       fprintf(ficreseij," e%1d%1d ",i,j);
 3039:     }
 3040:     fprintf(ficreseij," e%1d. ",i);
 3041:   }
 3042:   fprintf(ficreseij,"\n");
 3043: 
 3044:   
 3045:   if(estepm < stepm){
 3046:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3047:   }
 3048:   else  hstepm=estepm;   
 3049:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3050:    * This is mainly to measure the difference between two models: for example
 3051:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3052:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3053:    * progression in between and thus overestimating or underestimating according
 3054:    * to the curvature of the survival function. If, for the same date, we 
 3055:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3056:    * to compare the new estimate of Life expectancy with the same linear 
 3057:    * hypothesis. A more precise result, taking into account a more precise
 3058:    * curvature will be obtained if estepm is as small as stepm. */
 3059: 
 3060:   /* For example we decided to compute the life expectancy with the smallest unit */
 3061:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3062:      nhstepm is the number of hstepm from age to agelim 
 3063:      nstepm is the number of stepm from age to agelin. 
 3064:      Look at hpijx to understand the reason of that which relies in memory size
 3065:      and note for a fixed period like estepm months */
 3066:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3067:      survival function given by stepm (the optimization length). Unfortunately it
 3068:      means that if the survival funtion is printed only each two years of age and if
 3069:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3070:      results. So we changed our mind and took the option of the best precision.
 3071:   */
 3072:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3073: 
 3074:   agelim=AGESUP;
 3075:   /* If stepm=6 months */
 3076:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 3077:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 3078:     
 3079: /* nhstepm age range expressed in number of stepm */
 3080:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3081:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3082:   /* if (stepm >= YEARM) hstepm=1;*/
 3083:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3084:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3085: 
 3086:   for (age=bage; age<=fage; age ++){ 
 3087:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3088:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3089:     /* if (stepm >= YEARM) hstepm=1;*/
 3090:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3091: 
 3092:     /* If stepm=6 months */
 3093:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3094:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3095:     
 3096:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3097:     
 3098:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3099:     
 3100:     printf("%d|",(int)age);fflush(stdout);
 3101:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3102:     
 3103:     /* Computing expectancies */
 3104:     for(i=1; i<=nlstate;i++)
 3105:       for(j=1; j<=nlstate;j++)
 3106: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3107: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 3108: 	  
 3109: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3110: 
 3111: 	}
 3112: 
 3113:     fprintf(ficreseij,"%3.0f",age );
 3114:     for(i=1; i<=nlstate;i++){
 3115:       eip=0;
 3116:       for(j=1; j<=nlstate;j++){
 3117: 	eip +=eij[i][j][(int)age];
 3118: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 3119:       }
 3120:       fprintf(ficreseij,"%9.4f", eip );
 3121:     }
 3122:     fprintf(ficreseij,"\n");
 3123:     
 3124:   }
 3125:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3126:   printf("\n");
 3127:   fprintf(ficlog,"\n");
 3128:   
 3129: }
 3130: 
 3131: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3132: 
 3133: {
 3134:   /* Covariances of health expectancies eij and of total life expectancies according
 3135:    to initial status i, ei. .
 3136:   */
 3137:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3138:   int nhstepma, nstepma; /* Decreasing with age */
 3139:   double age, agelim, hf;
 3140:   double ***p3matp, ***p3matm, ***varhe;
 3141:   double **dnewm,**doldm;
 3142:   double *xp, *xm;
 3143:   double **gp, **gm;
 3144:   double ***gradg, ***trgradg;
 3145:   int theta;
 3146: 
 3147:   double eip, vip;
 3148: 
 3149:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3150:   xp=vector(1,npar);
 3151:   xm=vector(1,npar);
 3152:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3153:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3154:   
 3155:   pstamp(ficresstdeij);
 3156:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3157:   fprintf(ficresstdeij,"# Age");
 3158:   for(i=1; i<=nlstate;i++){
 3159:     for(j=1; j<=nlstate;j++)
 3160:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3161:     fprintf(ficresstdeij," e%1d. ",i);
 3162:   }
 3163:   fprintf(ficresstdeij,"\n");
 3164: 
 3165:   pstamp(ficrescveij);
 3166:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3167:   fprintf(ficrescveij,"# Age");
 3168:   for(i=1; i<=nlstate;i++)
 3169:     for(j=1; j<=nlstate;j++){
 3170:       cptj= (j-1)*nlstate+i;
 3171:       for(i2=1; i2<=nlstate;i2++)
 3172: 	for(j2=1; j2<=nlstate;j2++){
 3173: 	  cptj2= (j2-1)*nlstate+i2;
 3174: 	  if(cptj2 <= cptj)
 3175: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3176: 	}
 3177:     }
 3178:   fprintf(ficrescveij,"\n");
 3179:   
 3180:   if(estepm < stepm){
 3181:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3182:   }
 3183:   else  hstepm=estepm;   
 3184:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3185:    * This is mainly to measure the difference between two models: for example
 3186:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3187:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3188:    * progression in between and thus overestimating or underestimating according
 3189:    * to the curvature of the survival function. If, for the same date, we 
 3190:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3191:    * to compare the new estimate of Life expectancy with the same linear 
 3192:    * hypothesis. A more precise result, taking into account a more precise
 3193:    * curvature will be obtained if estepm is as small as stepm. */
 3194: 
 3195:   /* For example we decided to compute the life expectancy with the smallest unit */
 3196:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3197:      nhstepm is the number of hstepm from age to agelim 
 3198:      nstepm is the number of stepm from age to agelin. 
 3199:      Look at hpijx to understand the reason of that which relies in memory size
 3200:      and note for a fixed period like estepm months */
 3201:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3202:      survival function given by stepm (the optimization length). Unfortunately it
 3203:      means that if the survival funtion is printed only each two years of age and if
 3204:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3205:      results. So we changed our mind and took the option of the best precision.
 3206:   */
 3207:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3208: 
 3209:   /* If stepm=6 months */
 3210:   /* nhstepm age range expressed in number of stepm */
 3211:   agelim=AGESUP;
 3212:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3213:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3214:   /* if (stepm >= YEARM) hstepm=1;*/
 3215:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3216:   
 3217:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3218:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3219:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3220:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3221:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3222:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3223: 
 3224:   for (age=bage; age<=fage; age ++){ 
 3225:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3226:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3227:     /* if (stepm >= YEARM) hstepm=1;*/
 3228:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3229: 
 3230:     /* If stepm=6 months */
 3231:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3232:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3233:     
 3234:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3235: 
 3236:     /* Computing  Variances of health expectancies */
 3237:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3238:        decrease memory allocation */
 3239:     for(theta=1; theta <=npar; theta++){
 3240:       for(i=1; i<=npar; i++){ 
 3241: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3242: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3243:       }
 3244:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3245:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3246:   
 3247:       for(j=1; j<= nlstate; j++){
 3248: 	for(i=1; i<=nlstate; i++){
 3249: 	  for(h=0; h<=nhstepm-1; h++){
 3250: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3251: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3252: 	  }
 3253: 	}
 3254:       }
 3255:      
 3256:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3257: 	for(h=0; h<=nhstepm-1; h++){
 3258: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3259: 	}
 3260:     }/* End theta */
 3261:     
 3262:     
 3263:     for(h=0; h<=nhstepm-1; h++)
 3264:       for(j=1; j<=nlstate*nlstate;j++)
 3265: 	for(theta=1; theta <=npar; theta++)
 3266: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3267:     
 3268: 
 3269:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3270:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3271: 	varhe[ij][ji][(int)age] =0.;
 3272: 
 3273:      printf("%d|",(int)age);fflush(stdout);
 3274:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3275:      for(h=0;h<=nhstepm-1;h++){
 3276:       for(k=0;k<=nhstepm-1;k++){
 3277: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3278: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3279: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3280: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3281: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3282:       }
 3283:     }
 3284: 
 3285:     /* Computing expectancies */
 3286:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3287:     for(i=1; i<=nlstate;i++)
 3288:       for(j=1; j<=nlstate;j++)
 3289: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3290: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3291: 	  
 3292: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3293: 
 3294: 	}
 3295: 
 3296:     fprintf(ficresstdeij,"%3.0f",age );
 3297:     for(i=1; i<=nlstate;i++){
 3298:       eip=0.;
 3299:       vip=0.;
 3300:       for(j=1; j<=nlstate;j++){
 3301: 	eip += eij[i][j][(int)age];
 3302: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3303: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3304: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3305:       }
 3306:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3307:     }
 3308:     fprintf(ficresstdeij,"\n");
 3309: 
 3310:     fprintf(ficrescveij,"%3.0f",age );
 3311:     for(i=1; i<=nlstate;i++)
 3312:       for(j=1; j<=nlstate;j++){
 3313: 	cptj= (j-1)*nlstate+i;
 3314: 	for(i2=1; i2<=nlstate;i2++)
 3315: 	  for(j2=1; j2<=nlstate;j2++){
 3316: 	    cptj2= (j2-1)*nlstate+i2;
 3317: 	    if(cptj2 <= cptj)
 3318: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3319: 	  }
 3320:       }
 3321:     fprintf(ficrescveij,"\n");
 3322:    
 3323:   }
 3324:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3325:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3326:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3327:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3328:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3329:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3330:   printf("\n");
 3331:   fprintf(ficlog,"\n");
 3332: 
 3333:   free_vector(xm,1,npar);
 3334:   free_vector(xp,1,npar);
 3335:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3336:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3337:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3338: }
 3339: 
 3340: /************ Variance ******************/
 3341: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3342: {
 3343:   /* Variance of health expectancies */
 3344:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3345:   /* double **newm;*/
 3346:   double **dnewm,**doldm;
 3347:   double **dnewmp,**doldmp;
 3348:   int i, j, nhstepm, hstepm, h, nstepm ;
 3349:   int k;
 3350:   double *xp;
 3351:   double **gp, **gm;  /* for var eij */
 3352:   double ***gradg, ***trgradg; /*for var eij */
 3353:   double **gradgp, **trgradgp; /* for var p point j */
 3354:   double *gpp, *gmp; /* for var p point j */
 3355:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3356:   double ***p3mat;
 3357:   double age,agelim, hf;
 3358:   double ***mobaverage;
 3359:   int theta;
 3360:   char digit[4];
 3361:   char digitp[25];
 3362: 
 3363:   char fileresprobmorprev[FILENAMELENGTH];
 3364: 
 3365:   if(popbased==1){
 3366:     if(mobilav!=0)
 3367:       strcpy(digitp,"-populbased-mobilav-");
 3368:     else strcpy(digitp,"-populbased-nomobil-");
 3369:   }
 3370:   else 
 3371:     strcpy(digitp,"-stablbased-");
 3372: 
 3373:   if (mobilav!=0) {
 3374:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3375:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3376:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3377:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3378:     }
 3379:   }
 3380: 
 3381:   strcpy(fileresprobmorprev,"prmorprev"); 
 3382:   sprintf(digit,"%-d",ij);
 3383:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3384:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3385:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3386:   strcat(fileresprobmorprev,fileres);
 3387:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3388:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3389:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3390:   }
 3391:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3392:  
 3393:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3394:   pstamp(ficresprobmorprev);
 3395:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3396:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3397:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3398:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3399:     for(i=1; i<=nlstate;i++)
 3400:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3401:   }  
 3402:   fprintf(ficresprobmorprev,"\n");
 3403:   fprintf(ficgp,"\n# Routine varevsij");
 3404:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3405:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3406:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3407: /*   } */
 3408:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3409:   pstamp(ficresvij);
 3410:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3411:   if(popbased==1)
 3412:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3413:   else
 3414:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3415:   fprintf(ficresvij,"# Age");
 3416:   for(i=1; i<=nlstate;i++)
 3417:     for(j=1; j<=nlstate;j++)
 3418:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3419:   fprintf(ficresvij,"\n");
 3420: 
 3421:   xp=vector(1,npar);
 3422:   dnewm=matrix(1,nlstate,1,npar);
 3423:   doldm=matrix(1,nlstate,1,nlstate);
 3424:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3425:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3426: 
 3427:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3428:   gpp=vector(nlstate+1,nlstate+ndeath);
 3429:   gmp=vector(nlstate+1,nlstate+ndeath);
 3430:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3431:   
 3432:   if(estepm < stepm){
 3433:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3434:   }
 3435:   else  hstepm=estepm;   
 3436:   /* For example we decided to compute the life expectancy with the smallest unit */
 3437:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3438:      nhstepm is the number of hstepm from age to agelim 
 3439:      nstepm is the number of stepm from age to agelin. 
 3440:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3441:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3442:      survival function given by stepm (the optimization length). Unfortunately it
 3443:      means that if the survival funtion is printed every two years of age and if
 3444:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3445:      results. So we changed our mind and took the option of the best precision.
 3446:   */
 3447:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3448:   agelim = AGESUP;
 3449:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3450:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3451:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3452:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3453:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3454:     gp=matrix(0,nhstepm,1,nlstate);
 3455:     gm=matrix(0,nhstepm,1,nlstate);
 3456: 
 3457: 
 3458:     for(theta=1; theta <=npar; theta++){
 3459:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3460: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3461:       }
 3462:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3463:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3464: 
 3465:       if (popbased==1) {
 3466: 	if(mobilav ==0){
 3467: 	  for(i=1; i<=nlstate;i++)
 3468: 	    prlim[i][i]=probs[(int)age][i][ij];
 3469: 	}else{ /* mobilav */ 
 3470: 	  for(i=1; i<=nlstate;i++)
 3471: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3472: 	}
 3473:       }
 3474:   
 3475:       for(j=1; j<= nlstate; j++){
 3476: 	for(h=0; h<=nhstepm; h++){
 3477: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3478: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3479: 	}
 3480:       }
 3481:       /* This for computing probability of death (h=1 means
 3482:          computed over hstepm matrices product = hstepm*stepm months) 
 3483:          as a weighted average of prlim.
 3484:       */
 3485:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3486: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3487: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3488:       }    
 3489:       /* end probability of death */
 3490: 
 3491:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3492: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3493:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3494:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3495:  
 3496:       if (popbased==1) {
 3497: 	if(mobilav ==0){
 3498: 	  for(i=1; i<=nlstate;i++)
 3499: 	    prlim[i][i]=probs[(int)age][i][ij];
 3500: 	}else{ /* mobilav */ 
 3501: 	  for(i=1; i<=nlstate;i++)
 3502: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3503: 	}
 3504:       }
 3505: 
 3506:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3507: 	for(h=0; h<=nhstepm; h++){
 3508: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3509: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3510: 	}
 3511:       }
 3512:       /* This for computing probability of death (h=1 means
 3513:          computed over hstepm matrices product = hstepm*stepm months) 
 3514:          as a weighted average of prlim.
 3515:       */
 3516:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3517: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3518:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3519:       }    
 3520:       /* end probability of death */
 3521: 
 3522:       for(j=1; j<= nlstate; j++) /* vareij */
 3523: 	for(h=0; h<=nhstepm; h++){
 3524: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3525: 	}
 3526: 
 3527:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3528: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3529:       }
 3530: 
 3531:     } /* End theta */
 3532: 
 3533:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3534: 
 3535:     for(h=0; h<=nhstepm; h++) /* veij */
 3536:       for(j=1; j<=nlstate;j++)
 3537: 	for(theta=1; theta <=npar; theta++)
 3538: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3539: 
 3540:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3541:       for(theta=1; theta <=npar; theta++)
 3542: 	trgradgp[j][theta]=gradgp[theta][j];
 3543:   
 3544: 
 3545:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3546:     for(i=1;i<=nlstate;i++)
 3547:       for(j=1;j<=nlstate;j++)
 3548: 	vareij[i][j][(int)age] =0.;
 3549: 
 3550:     for(h=0;h<=nhstepm;h++){
 3551:       for(k=0;k<=nhstepm;k++){
 3552: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3553: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3554: 	for(i=1;i<=nlstate;i++)
 3555: 	  for(j=1;j<=nlstate;j++)
 3556: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3557:       }
 3558:     }
 3559:   
 3560:     /* pptj */
 3561:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3562:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3563:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3564:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3565: 	varppt[j][i]=doldmp[j][i];
 3566:     /* end ppptj */
 3567:     /*  x centered again */
 3568:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3569:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3570:  
 3571:     if (popbased==1) {
 3572:       if(mobilav ==0){
 3573: 	for(i=1; i<=nlstate;i++)
 3574: 	  prlim[i][i]=probs[(int)age][i][ij];
 3575:       }else{ /* mobilav */ 
 3576: 	for(i=1; i<=nlstate;i++)
 3577: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3578:       }
 3579:     }
 3580:              
 3581:     /* This for computing probability of death (h=1 means
 3582:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3583:        as a weighted average of prlim.
 3584:     */
 3585:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3586:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3587: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3588:     }    
 3589:     /* end probability of death */
 3590: 
 3591:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3592:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3593:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3594:       for(i=1; i<=nlstate;i++){
 3595: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3596:       }
 3597:     } 
 3598:     fprintf(ficresprobmorprev,"\n");
 3599: 
 3600:     fprintf(ficresvij,"%.0f ",age );
 3601:     for(i=1; i<=nlstate;i++)
 3602:       for(j=1; j<=nlstate;j++){
 3603: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3604:       }
 3605:     fprintf(ficresvij,"\n");
 3606:     free_matrix(gp,0,nhstepm,1,nlstate);
 3607:     free_matrix(gm,0,nhstepm,1,nlstate);
 3608:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3609:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3610:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3611:   } /* End age */
 3612:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3613:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3614:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3615:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3616:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3617:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3618:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3619: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3620: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3621: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3622:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3623:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3624:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3625:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3626:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3627:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3628: */
 3629: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3630:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3631: 
 3632:   free_vector(xp,1,npar);
 3633:   free_matrix(doldm,1,nlstate,1,nlstate);
 3634:   free_matrix(dnewm,1,nlstate,1,npar);
 3635:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3636:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3637:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3638:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3639:   fclose(ficresprobmorprev);
 3640:   fflush(ficgp);
 3641:   fflush(fichtm); 
 3642: }  /* end varevsij */
 3643: 
 3644: /************ Variance of prevlim ******************/
 3645: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3646: {
 3647:   /* Variance of prevalence limit */
 3648:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3649: 
 3650:   double **dnewm,**doldm;
 3651:   int i, j, nhstepm, hstepm;
 3652:   double *xp;
 3653:   double *gp, *gm;
 3654:   double **gradg, **trgradg;
 3655:   double age,agelim;
 3656:   int theta;
 3657:   
 3658:   pstamp(ficresvpl);
 3659:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3660:   fprintf(ficresvpl,"# Age");
 3661:   for(i=1; i<=nlstate;i++)
 3662:       fprintf(ficresvpl," %1d-%1d",i,i);
 3663:   fprintf(ficresvpl,"\n");
 3664: 
 3665:   xp=vector(1,npar);
 3666:   dnewm=matrix(1,nlstate,1,npar);
 3667:   doldm=matrix(1,nlstate,1,nlstate);
 3668:   
 3669:   hstepm=1*YEARM; /* Every year of age */
 3670:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3671:   agelim = AGESUP;
 3672:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3673:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3674:     if (stepm >= YEARM) hstepm=1;
 3675:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3676:     gradg=matrix(1,npar,1,nlstate);
 3677:     gp=vector(1,nlstate);
 3678:     gm=vector(1,nlstate);
 3679: 
 3680:     for(theta=1; theta <=npar; theta++){
 3681:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3682: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3683:       }
 3684:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3685:       for(i=1;i<=nlstate;i++)
 3686: 	gp[i] = prlim[i][i];
 3687:     
 3688:       for(i=1; i<=npar; i++) /* Computes gradient */
 3689: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3690:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3691:       for(i=1;i<=nlstate;i++)
 3692: 	gm[i] = prlim[i][i];
 3693: 
 3694:       for(i=1;i<=nlstate;i++)
 3695: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3696:     } /* End theta */
 3697: 
 3698:     trgradg =matrix(1,nlstate,1,npar);
 3699: 
 3700:     for(j=1; j<=nlstate;j++)
 3701:       for(theta=1; theta <=npar; theta++)
 3702: 	trgradg[j][theta]=gradg[theta][j];
 3703: 
 3704:     for(i=1;i<=nlstate;i++)
 3705:       varpl[i][(int)age] =0.;
 3706:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3707:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3708:     for(i=1;i<=nlstate;i++)
 3709:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3710: 
 3711:     fprintf(ficresvpl,"%.0f ",age );
 3712:     for(i=1; i<=nlstate;i++)
 3713:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3714:     fprintf(ficresvpl,"\n");
 3715:     free_vector(gp,1,nlstate);
 3716:     free_vector(gm,1,nlstate);
 3717:     free_matrix(gradg,1,npar,1,nlstate);
 3718:     free_matrix(trgradg,1,nlstate,1,npar);
 3719:   } /* End age */
 3720: 
 3721:   free_vector(xp,1,npar);
 3722:   free_matrix(doldm,1,nlstate,1,npar);
 3723:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3724: 
 3725: }
 3726: 
 3727: /************ Variance of one-step probabilities  ******************/
 3728: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3729: {
 3730:   int i, j=0,  k1, l1, tj;
 3731:   int k2, l2, j1,  z1;
 3732:   int k=0, l;
 3733:   int first=1, first1, first2;
 3734:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3735:   double **dnewm,**doldm;
 3736:   double *xp;
 3737:   double *gp, *gm;
 3738:   double **gradg, **trgradg;
 3739:   double **mu;
 3740:   double age, cov[NCOVMAX+1];
 3741:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3742:   int theta;
 3743:   char fileresprob[FILENAMELENGTH];
 3744:   char fileresprobcov[FILENAMELENGTH];
 3745:   char fileresprobcor[FILENAMELENGTH];
 3746:   double ***varpij;
 3747: 
 3748:   strcpy(fileresprob,"prob"); 
 3749:   strcat(fileresprob,fileres);
 3750:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3751:     printf("Problem with resultfile: %s\n", fileresprob);
 3752:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3753:   }
 3754:   strcpy(fileresprobcov,"probcov"); 
 3755:   strcat(fileresprobcov,fileres);
 3756:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3757:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3758:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3759:   }
 3760:   strcpy(fileresprobcor,"probcor"); 
 3761:   strcat(fileresprobcor,fileres);
 3762:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3763:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3764:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3765:   }
 3766:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3767:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3768:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3769:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3770:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3771:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3772:   pstamp(ficresprob);
 3773:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3774:   fprintf(ficresprob,"# Age");
 3775:   pstamp(ficresprobcov);
 3776:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3777:   fprintf(ficresprobcov,"# Age");
 3778:   pstamp(ficresprobcor);
 3779:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3780:   fprintf(ficresprobcor,"# Age");
 3781: 
 3782: 
 3783:   for(i=1; i<=nlstate;i++)
 3784:     for(j=1; j<=(nlstate+ndeath);j++){
 3785:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3786:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3787:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3788:     }  
 3789:  /* fprintf(ficresprob,"\n");
 3790:   fprintf(ficresprobcov,"\n");
 3791:   fprintf(ficresprobcor,"\n");
 3792:  */
 3793:   xp=vector(1,npar);
 3794:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3795:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3796:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3797:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3798:   first=1;
 3799:   fprintf(ficgp,"\n# Routine varprob");
 3800:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3801:   fprintf(fichtm,"\n");
 3802: 
 3803:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3804:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3805:   file %s<br>\n",optionfilehtmcov);
 3806:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3807: and drawn. It helps understanding how is the covariance between two incidences.\
 3808:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3809:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3810: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 3811: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 3812: standard deviations wide on each axis. <br>\
 3813:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 3814:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 3815: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 3816: 
 3817:   cov[1]=1;
 3818:   /* tj=cptcoveff; */
 3819:   tj = (int) pow(2,cptcoveff);
 3820:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 3821:   j1=0;
 3822:   for(j1=1; j1<=tj;j1++){
 3823:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 3824:     /*j1++;*/
 3825:       if  (cptcovn>0) {
 3826: 	fprintf(ficresprob, "\n#********** Variable "); 
 3827: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3828: 	fprintf(ficresprob, "**********\n#\n");
 3829: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 3830: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3831: 	fprintf(ficresprobcov, "**********\n#\n");
 3832: 	
 3833: 	fprintf(ficgp, "\n#********** Variable "); 
 3834: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3835: 	fprintf(ficgp, "**********\n#\n");
 3836: 	
 3837: 	
 3838: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 3839: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3840: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 3841: 	
 3842: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 3843: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 3844: 	fprintf(ficresprobcor, "**********\n#");    
 3845:       }
 3846:       
 3847:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 3848:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3849:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 3850:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 3851:       for (age=bage; age<=fage; age ++){ 
 3852: 	cov[2]=age;
 3853: 	for (k=1; k<=cptcovn;k++) {
 3854: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 3855: 							 * 1  1 1 1 1
 3856: 							 * 2  2 1 1 1
 3857: 							 * 3  1 2 1 1
 3858: 							 */
 3859: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 3860: 	}
 3861: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 3862: 	for (k=1; k<=cptcovprod;k++)
 3863: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 3864: 	
 3865:     
 3866: 	for(theta=1; theta <=npar; theta++){
 3867: 	  for(i=1; i<=npar; i++)
 3868: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 3869: 	  
 3870: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3871: 	  
 3872: 	  k=0;
 3873: 	  for(i=1; i<= (nlstate); i++){
 3874: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3875: 	      k=k+1;
 3876: 	      gp[k]=pmmij[i][j];
 3877: 	    }
 3878: 	  }
 3879: 	  
 3880: 	  for(i=1; i<=npar; i++)
 3881: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 3882:     
 3883: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 3884: 	  k=0;
 3885: 	  for(i=1; i<=(nlstate); i++){
 3886: 	    for(j=1; j<=(nlstate+ndeath);j++){
 3887: 	      k=k+1;
 3888: 	      gm[k]=pmmij[i][j];
 3889: 	    }
 3890: 	  }
 3891:      
 3892: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 3893: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 3894: 	}
 3895: 
 3896: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 3897: 	  for(theta=1; theta <=npar; theta++)
 3898: 	    trgradg[j][theta]=gradg[theta][j];
 3899: 	
 3900: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 3901: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 3902: 
 3903: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 3904: 	
 3905: 	k=0;
 3906: 	for(i=1; i<=(nlstate); i++){
 3907: 	  for(j=1; j<=(nlstate+ndeath);j++){
 3908: 	    k=k+1;
 3909: 	    mu[k][(int) age]=pmmij[i][j];
 3910: 	  }
 3911: 	}
 3912:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 3913: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 3914: 	    varpij[i][j][(int)age] = doldm[i][j];
 3915: 
 3916: 	/*printf("\n%d ",(int)age);
 3917: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3918: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3919: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 3920: 	  }*/
 3921: 
 3922: 	fprintf(ficresprob,"\n%d ",(int)age);
 3923: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 3924: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 3925: 
 3926: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3927: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3928: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3929: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3930: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3931: 	}
 3932: 	i=0;
 3933: 	for (k=1; k<=(nlstate);k++){
 3934:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3935:  	    i++;
 3936: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3937: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3938: 	    for (j=1; j<=i;j++){
 3939: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 3940: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3941: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3942: 	    }
 3943: 	  }
 3944: 	}/* end of loop for state */
 3945:       } /* end of loop for age */
 3946:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 3947:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 3948:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3949:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 3950:       
 3951:       /* Confidence intervalle of pij  */
 3952:       /*
 3953: 	fprintf(ficgp,"\nunset parametric;unset label");
 3954: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3955: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3956: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3957: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3958: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3959: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3960:       */
 3961: 
 3962:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3963:       first1=1;first2=2;
 3964:       for (k2=1; k2<=(nlstate);k2++){
 3965: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3966: 	  if(l2==k2) continue;
 3967: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3968: 	  for (k1=1; k1<=(nlstate);k1++){
 3969: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3970: 	      if(l1==k1) continue;
 3971: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3972: 	      if(i<=j) continue;
 3973: 	      for (age=bage; age<=fage; age ++){ 
 3974: 		if ((int)age %5==0){
 3975: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3976: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3977: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3978: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3979: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3980: 		  c12=cv12/sqrt(v1*v2);
 3981: 		  /* Computing eigen value of matrix of covariance */
 3982: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3983: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3984: 		  if ((lc2 <0) || (lc1 <0) ){
 3985: 		    if(first2==1){
 3986: 		      first1=0;
 3987: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 3988: 		    }
 3989: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 3990: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 3991: 		    /* lc2=fabs(lc2); */
 3992: 		  }
 3993: 
 3994: 		  /* Eigen vectors */
 3995: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3996: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3997: 		  v21=(lc1-v1)/cv12*v11;
 3998: 		  v12=-v21;
 3999: 		  v22=v11;
 4000: 		  tnalp=v21/v11;
 4001: 		  if(first1==1){
 4002: 		    first1=0;
 4003: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4004: 		  }
 4005: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4006: 		  /*printf(fignu*/
 4007: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 4008: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 4009: 		  if(first==1){
 4010: 		    first=0;
 4011:  		    fprintf(ficgp,"\nset parametric;unset label");
 4012: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 4013: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 4014: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 4015:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 4016: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 4017: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 4018: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4019: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4020: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 4021: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4022: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4023: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4024: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4025: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4026: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4027: 		  }else{
 4028: 		    first=0;
 4029: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 4030: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4031: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4032: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4033: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4034: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4035: 		  }/* if first */
 4036: 		} /* age mod 5 */
 4037: 	      } /* end loop age */
 4038: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4039: 	      first=1;
 4040: 	    } /*l12 */
 4041: 	  } /* k12 */
 4042: 	} /*l1 */
 4043:       }/* k1 */
 4044:       /* } /* loop covariates */
 4045:   }
 4046:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 4047:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 4048:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4049:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 4050:   free_vector(xp,1,npar);
 4051:   fclose(ficresprob);
 4052:   fclose(ficresprobcov);
 4053:   fclose(ficresprobcor);
 4054:   fflush(ficgp);
 4055:   fflush(fichtmcov);
 4056: }
 4057: 
 4058: 
 4059: /******************* Printing html file ***********/
 4060: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 4061: 		  int lastpass, int stepm, int weightopt, char model[],\
 4062: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 4063: 		  int popforecast, int estepm ,\
 4064: 		  double jprev1, double mprev1,double anprev1, \
 4065: 		  double jprev2, double mprev2,double anprev2){
 4066:   int jj1, k1, i1, cpt;
 4067: 
 4068:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 4069:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 4070: </ul>");
 4071:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 4072:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 4073: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 4074:    fprintf(fichtm,"\
 4075:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 4076: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 4077:    fprintf(fichtm,"\
 4078:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 4079: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 4080:    fprintf(fichtm,"\
 4081:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 4082:    <a href=\"%s\">%s</a> <br>\n",
 4083: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 4084:    fprintf(fichtm,"\
 4085:  - Population projections by age and states: \
 4086:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 4087: 
 4088: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 4089: 
 4090:  m=pow(2,cptcoveff);
 4091:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4092: 
 4093:  jj1=0;
 4094:  for(k1=1; k1<=m;k1++){
 4095:    for(i1=1; i1<=ncodemax[k1];i1++){
 4096:      jj1++;
 4097:      if (cptcovn > 0) {
 4098:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4099:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4100: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4101:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4102:      }
 4103:      /* Pij */
 4104:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 4105: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 4106:      /* Quasi-incidences */
 4107:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 4108:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 4109: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 4110:        /* Period (stable) prevalence in each health state */
 4111:        for(cpt=1; cpt<=nlstate;cpt++){
 4112: 	 fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 4113: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 4114:        }
 4115:      for(cpt=1; cpt<=nlstate;cpt++) {
 4116:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 4117: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 4118:      }
 4119:    } /* end i1 */
 4120:  }/* End k1 */
 4121:  fprintf(fichtm,"</ul>");
 4122: 
 4123: 
 4124:  fprintf(fichtm,"\
 4125: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 4126:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 4127: 
 4128:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4129: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4130:  fprintf(fichtm,"\
 4131:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4132: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4133: 
 4134:  fprintf(fichtm,"\
 4135:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4136: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4137:  fprintf(fichtm,"\
 4138:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4139:    <a href=\"%s\">%s</a> <br>\n</li>",
 4140: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4141:  fprintf(fichtm,"\
 4142:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4143:    <a href=\"%s\">%s</a> <br>\n</li>",
 4144: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4145:  fprintf(fichtm,"\
 4146:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4147: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4148:  fprintf(fichtm,"\
 4149:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4150: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4151:  fprintf(fichtm,"\
 4152:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4153: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4154: 
 4155: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4156: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4157: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4158: /* 	<br>",fileres,fileres,fileres,fileres); */
 4159: /*  else  */
 4160: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4161:  fflush(fichtm);
 4162:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4163: 
 4164:  m=pow(2,cptcoveff);
 4165:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4166: 
 4167:  jj1=0;
 4168:  for(k1=1; k1<=m;k1++){
 4169:    for(i1=1; i1<=ncodemax[k1];i1++){
 4170:      jj1++;
 4171:      if (cptcovn > 0) {
 4172:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4173:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4174: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4175:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4176:      }
 4177:      for(cpt=1; cpt<=nlstate;cpt++) {
 4178:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4179: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 4180: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4181:      }
 4182:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4183: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4184: true period expectancies (those weighted with period prevalences are also\
 4185:  drawn in addition to the population based expectancies computed using\
 4186:  observed and cahotic prevalences: %s%d.png<br>\
 4187: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4188:    } /* end i1 */
 4189:  }/* End k1 */
 4190:  fprintf(fichtm,"</ul>");
 4191:  fflush(fichtm);
 4192: }
 4193: 
 4194: /******************* Gnuplot file **************/
 4195: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4196: 
 4197:   char dirfileres[132],optfileres[132];
 4198:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4199:   int ng=0;
 4200: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4201: /*     printf("Problem with file %s",optionfilegnuplot); */
 4202: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4203: /*   } */
 4204: 
 4205:   /*#ifdef windows */
 4206:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4207:     /*#endif */
 4208:   m=pow(2,cptcoveff);
 4209: 
 4210:   strcpy(dirfileres,optionfilefiname);
 4211:   strcpy(optfileres,"vpl");
 4212:  /* 1eme*/
 4213:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4214:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4215:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4216:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4217:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 4218:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4219: set ylabel \"Probability\" \n\
 4220: set ter png small size 320, 240\n\
 4221: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4222: 
 4223:      for (i=1; i<= nlstate ; i ++) {
 4224:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4225:        else        fprintf(ficgp," \%%*lf (\%%*lf)");
 4226:      }
 4227:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4228:      for (i=1; i<= nlstate ; i ++) {
 4229:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4230:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4231:      } 
 4232:      fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4233:      for (i=1; i<= nlstate ; i ++) {
 4234:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 4235:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 4236:      }  
 4237:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4238:    }
 4239:   }
 4240:   /*2 eme*/
 4241:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4242:   for (k1=1; k1<= m ; k1 ++) { 
 4243:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4244:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4245:     
 4246:     for (i=1; i<= nlstate+1 ; i ++) {
 4247:       k=2*i;
 4248:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4249:       for (j=1; j<= nlstate+1 ; j ++) {
 4250: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4251: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4252:       }   
 4253:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4254:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4255:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4256:       for (j=1; j<= nlstate+1 ; j ++) {
 4257: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4258: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4259:       }   
 4260:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4261:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4262:       for (j=1; j<= nlstate+1 ; j ++) {
 4263: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 4264: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 4265:       }   
 4266:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4267:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4268:     }
 4269:   }
 4270:   
 4271:   /*3eme*/
 4272:   
 4273:   for (k1=1; k1<= m ; k1 ++) { 
 4274:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4275:       /*       k=2+nlstate*(2*cpt-2); */
 4276:       k=2+(nlstate+1)*(cpt-1);
 4277:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4278:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4279: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4280:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4281: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4282: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4283: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4284: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4285: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4286: 	
 4287:       */
 4288:       for (i=1; i< nlstate ; i ++) {
 4289: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4290: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4291: 	
 4292:       } 
 4293:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4294:     }
 4295:   }
 4296:   
 4297:   /* CV preval stable (period) */
 4298:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4299:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4300:       k=3;
 4301:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4302:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4303:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4304: set ter png small size 320, 240\n\
 4305: unset log y\n\
 4306: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4307:       for (i=1; i<= nlstate ; i ++){
 4308: 	if(i==1)
 4309: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4310: 	else
 4311: 	  fprintf(ficgp,", '' ");
 4312: 	l=(nlstate+ndeath)*(i-1)+1;
 4313: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4314: 	for (j=1; j<= (nlstate-1) ; j ++)
 4315: 	  fprintf(ficgp,"+$%d",k+l+j);
 4316: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4317:       } /* nlstate */
 4318:       fprintf(ficgp,"\n");
 4319:     } /* end cpt state*/ 
 4320:   } /* end covariate */  
 4321:   
 4322:   /* proba elementaires */
 4323:   for(i=1,jk=1; i <=nlstate; i++){
 4324:     for(k=1; k <=(nlstate+ndeath); k++){
 4325:       if (k != i) {
 4326: 	for(j=1; j <=ncovmodel; j++){
 4327: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4328: 	  jk++; 
 4329: 	  fprintf(ficgp,"\n");
 4330: 	}
 4331:       }
 4332:     }
 4333:    }
 4334:   /*goto avoid;*/
 4335:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4336:      for(jk=1; jk <=m; jk++) {
 4337:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4338:        if (ng==2)
 4339: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4340:        else
 4341: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4342:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4343:        i=1;
 4344:        for(k2=1; k2<=nlstate; k2++) {
 4345: 	 k3=i;
 4346: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4347: 	   if (k != k2){
 4348: 	     if(ng==2)
 4349: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4350: 	     else
 4351: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4352: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4353: 	     for(j=3; j <=ncovmodel; j++) {
 4354: 	       /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
 4355: 	       /* 	 /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
 4356: 	       /* 	 ij++; */
 4357: 	       /* } */
 4358: 	       /* else */
 4359: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4360: 	     }
 4361: 	     fprintf(ficgp,")/(1");
 4362: 	     
 4363: 	     for(k1=1; k1 <=nlstate; k1++){   
 4364: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4365: 	       ij=1;
 4366: 	       for(j=3; j <=ncovmodel; j++){
 4367: 		 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
 4368: 		 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
 4369: 		 /*   ij++; */
 4370: 		 /* } */
 4371: 		 /* else */
 4372: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4373: 	       }
 4374: 	       fprintf(ficgp,")");
 4375: 	     }
 4376: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4377: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4378: 	     i=i+ncovmodel;
 4379: 	   }
 4380: 	 } /* end k */
 4381:        } /* end k2 */
 4382:      } /* end jk */
 4383:    } /* end ng */
 4384:  /* avoid: */
 4385:    fflush(ficgp); 
 4386: }  /* end gnuplot */
 4387: 
 4388: 
 4389: /*************** Moving average **************/
 4390: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4391: 
 4392:   int i, cpt, cptcod;
 4393:   int modcovmax =1;
 4394:   int mobilavrange, mob;
 4395:   double age;
 4396: 
 4397:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4398: 			   a covariate has 2 modalities */
 4399:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4400: 
 4401:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4402:     if(mobilav==1) mobilavrange=5; /* default */
 4403:     else mobilavrange=mobilav;
 4404:     for (age=bage; age<=fage; age++)
 4405:       for (i=1; i<=nlstate;i++)
 4406: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4407: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4408:     /* We keep the original values on the extreme ages bage, fage and for 
 4409:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4410:        we use a 5 terms etc. until the borders are no more concerned. 
 4411:     */ 
 4412:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4413:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4414: 	for (i=1; i<=nlstate;i++){
 4415: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4416: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4417: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4418: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4419: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4420: 	      }
 4421: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4422: 	  }
 4423: 	}
 4424:       }/* end age */
 4425:     }/* end mob */
 4426:   }else return -1;
 4427:   return 0;
 4428: }/* End movingaverage */
 4429: 
 4430: 
 4431: /************** Forecasting ******************/
 4432: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4433:   /* proj1, year, month, day of starting projection 
 4434:      agemin, agemax range of age
 4435:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4436:      anproj2 year of en of projection (same day and month as proj1).
 4437:   */
 4438:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
 4439:   double agec; /* generic age */
 4440:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4441:   double *popeffectif,*popcount;
 4442:   double ***p3mat;
 4443:   double ***mobaverage;
 4444:   char fileresf[FILENAMELENGTH];
 4445: 
 4446:   agelim=AGESUP;
 4447:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4448:  
 4449:   strcpy(fileresf,"f"); 
 4450:   strcat(fileresf,fileres);
 4451:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4452:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4453:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4454:   }
 4455:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4456:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4457: 
 4458:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4459: 
 4460:   if (mobilav!=0) {
 4461:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4462:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4463:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4464:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4465:     }
 4466:   }
 4467: 
 4468:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4469:   if (stepm<=12) stepsize=1;
 4470:   if(estepm < stepm){
 4471:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4472:   }
 4473:   else  hstepm=estepm;   
 4474: 
 4475:   hstepm=hstepm/stepm; 
 4476:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4477:                                fractional in yp1 */
 4478:   anprojmean=yp;
 4479:   yp2=modf((yp1*12),&yp);
 4480:   mprojmean=yp;
 4481:   yp1=modf((yp2*30.5),&yp);
 4482:   jprojmean=yp;
 4483:   if(jprojmean==0) jprojmean=1;
 4484:   if(mprojmean==0) jprojmean=1;
 4485: 
 4486:   i1=cptcoveff;
 4487:   if (cptcovn < 1){i1=1;}
 4488:   
 4489:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4490:   
 4491:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4492: 
 4493: /* 	      if (h==(int)(YEARM*yearp)){ */
 4494:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4495:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4496:       k=k+1;
 4497:       fprintf(ficresf,"\n#******");
 4498:       for(j=1;j<=cptcoveff;j++) {
 4499: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4500:       }
 4501:       fprintf(ficresf,"******\n");
 4502:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4503:       for(j=1; j<=nlstate+ndeath;j++){ 
 4504: 	for(i=1; i<=nlstate;i++) 	      
 4505:           fprintf(ficresf," p%d%d",i,j);
 4506: 	fprintf(ficresf," p.%d",j);
 4507:       }
 4508:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4509: 	fprintf(ficresf,"\n");
 4510: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4511: 
 4512:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4513: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4514: 	  nhstepm = nhstepm/hstepm; 
 4515: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4516: 	  oldm=oldms;savm=savms;
 4517: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4518: 	
 4519: 	  for (h=0; h<=nhstepm; h++){
 4520: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4521:               fprintf(ficresf,"\n");
 4522:               for(j=1;j<=cptcoveff;j++) 
 4523:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4524: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4525: 	    } 
 4526: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4527: 	      ppij=0.;
 4528: 	      for(i=1; i<=nlstate;i++) {
 4529: 		if (mobilav==1) 
 4530: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4531: 		else {
 4532: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4533: 		}
 4534: 		if (h*hstepm/YEARM*stepm== yearp) {
 4535: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4536: 		}
 4537: 	      } /* end i */
 4538: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4539: 		fprintf(ficresf," %.3f", ppij);
 4540: 	      }
 4541: 	    }/* end j */
 4542: 	  } /* end h */
 4543: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4544: 	} /* end agec */
 4545:       } /* end yearp */
 4546:     } /* end cptcod */
 4547:   } /* end  cptcov */
 4548:        
 4549:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4550: 
 4551:   fclose(ficresf);
 4552: }
 4553: 
 4554: /************** Forecasting *****not tested NB*************/
 4555: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4556:   
 4557:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4558:   int *popage;
 4559:   double calagedatem, agelim, kk1, kk2;
 4560:   double *popeffectif,*popcount;
 4561:   double ***p3mat,***tabpop,***tabpopprev;
 4562:   double ***mobaverage;
 4563:   char filerespop[FILENAMELENGTH];
 4564: 
 4565:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4566:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4567:   agelim=AGESUP;
 4568:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4569:   
 4570:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4571:   
 4572:   
 4573:   strcpy(filerespop,"pop"); 
 4574:   strcat(filerespop,fileres);
 4575:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4576:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4577:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4578:   }
 4579:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4580:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4581: 
 4582:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4583: 
 4584:   if (mobilav!=0) {
 4585:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4586:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4587:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4588:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4589:     }
 4590:   }
 4591: 
 4592:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4593:   if (stepm<=12) stepsize=1;
 4594:   
 4595:   agelim=AGESUP;
 4596:   
 4597:   hstepm=1;
 4598:   hstepm=hstepm/stepm; 
 4599:   
 4600:   if (popforecast==1) {
 4601:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4602:       printf("Problem with population file : %s\n",popfile);exit(0);
 4603:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4604:     } 
 4605:     popage=ivector(0,AGESUP);
 4606:     popeffectif=vector(0,AGESUP);
 4607:     popcount=vector(0,AGESUP);
 4608:     
 4609:     i=1;   
 4610:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4611:    
 4612:     imx=i;
 4613:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4614:   }
 4615: 
 4616:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4617:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4618:       k=k+1;
 4619:       fprintf(ficrespop,"\n#******");
 4620:       for(j=1;j<=cptcoveff;j++) {
 4621: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4622:       }
 4623:       fprintf(ficrespop,"******\n");
 4624:       fprintf(ficrespop,"# Age");
 4625:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4626:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4627:       
 4628:       for (cpt=0; cpt<=0;cpt++) { 
 4629: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4630: 	
 4631:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4632: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4633: 	  nhstepm = nhstepm/hstepm; 
 4634: 	  
 4635: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4636: 	  oldm=oldms;savm=savms;
 4637: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4638: 	
 4639: 	  for (h=0; h<=nhstepm; h++){
 4640: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4641: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4642: 	    } 
 4643: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4644: 	      kk1=0.;kk2=0;
 4645: 	      for(i=1; i<=nlstate;i++) {	      
 4646: 		if (mobilav==1) 
 4647: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4648: 		else {
 4649: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4650: 		}
 4651: 	      }
 4652: 	      if (h==(int)(calagedatem+12*cpt)){
 4653: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4654: 		  /*fprintf(ficrespop," %.3f", kk1);
 4655: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4656: 	      }
 4657: 	    }
 4658: 	    for(i=1; i<=nlstate;i++){
 4659: 	      kk1=0.;
 4660: 		for(j=1; j<=nlstate;j++){
 4661: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4662: 		}
 4663: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4664: 	    }
 4665: 
 4666: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4667: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4668: 	  }
 4669: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4670: 	}
 4671:       }
 4672:  
 4673:   /******/
 4674: 
 4675:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4676: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4677: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4678: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4679: 	  nhstepm = nhstepm/hstepm; 
 4680: 	  
 4681: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4682: 	  oldm=oldms;savm=savms;
 4683: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4684: 	  for (h=0; h<=nhstepm; h++){
 4685: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4686: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4687: 	    } 
 4688: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4689: 	      kk1=0.;kk2=0;
 4690: 	      for(i=1; i<=nlstate;i++) {	      
 4691: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4692: 	      }
 4693: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4694: 	    }
 4695: 	  }
 4696: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4697: 	}
 4698:       }
 4699:    } 
 4700:   }
 4701:  
 4702:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4703: 
 4704:   if (popforecast==1) {
 4705:     free_ivector(popage,0,AGESUP);
 4706:     free_vector(popeffectif,0,AGESUP);
 4707:     free_vector(popcount,0,AGESUP);
 4708:   }
 4709:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4710:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4711:   fclose(ficrespop);
 4712: } /* End of popforecast */
 4713: 
 4714: int fileappend(FILE *fichier, char *optionfich)
 4715: {
 4716:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4717:     printf("Problem with file: %s\n", optionfich);
 4718:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4719:     return (0);
 4720:   }
 4721:   fflush(fichier);
 4722:   return (1);
 4723: }
 4724: 
 4725: 
 4726: /**************** function prwizard **********************/
 4727: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4728: {
 4729: 
 4730:   /* Wizard to print covariance matrix template */
 4731: 
 4732:   char ca[32], cb[32];
 4733:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
 4734:   int numlinepar;
 4735: 
 4736:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4737:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4738:   for(i=1; i <=nlstate; i++){
 4739:     jj=0;
 4740:     for(j=1; j <=nlstate+ndeath; j++){
 4741:       if(j==i) continue;
 4742:       jj++;
 4743:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4744:       printf("%1d%1d",i,j);
 4745:       fprintf(ficparo,"%1d%1d",i,j);
 4746:       for(k=1; k<=ncovmodel;k++){
 4747: 	/* 	  printf(" %lf",param[i][j][k]); */
 4748: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4749: 	printf(" 0.");
 4750: 	fprintf(ficparo," 0.");
 4751:       }
 4752:       printf("\n");
 4753:       fprintf(ficparo,"\n");
 4754:     }
 4755:   }
 4756:   printf("# Scales (for hessian or gradient estimation)\n");
 4757:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4758:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4759:   for(i=1; i <=nlstate; i++){
 4760:     jj=0;
 4761:     for(j=1; j <=nlstate+ndeath; j++){
 4762:       if(j==i) continue;
 4763:       jj++;
 4764:       fprintf(ficparo,"%1d%1d",i,j);
 4765:       printf("%1d%1d",i,j);
 4766:       fflush(stdout);
 4767:       for(k=1; k<=ncovmodel;k++){
 4768: 	/* 	printf(" %le",delti3[i][j][k]); */
 4769: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4770: 	printf(" 0.");
 4771: 	fprintf(ficparo," 0.");
 4772:       }
 4773:       numlinepar++;
 4774:       printf("\n");
 4775:       fprintf(ficparo,"\n");
 4776:     }
 4777:   }
 4778:   printf("# Covariance matrix\n");
 4779: /* # 121 Var(a12)\n\ */
 4780: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4781: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4782: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4783: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4784: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4785: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4786: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4787:   fflush(stdout);
 4788:   fprintf(ficparo,"# Covariance matrix\n");
 4789:   /* # 121 Var(a12)\n\ */
 4790:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4791:   /* #   ...\n\ */
 4792:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4793:   
 4794:   for(itimes=1;itimes<=2;itimes++){
 4795:     jj=0;
 4796:     for(i=1; i <=nlstate; i++){
 4797:       for(j=1; j <=nlstate+ndeath; j++){
 4798: 	if(j==i) continue;
 4799: 	for(k=1; k<=ncovmodel;k++){
 4800: 	  jj++;
 4801: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4802: 	  if(itimes==1){
 4803: 	    printf("#%1d%1d%d",i,j,k);
 4804: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4805: 	  }else{
 4806: 	    printf("%1d%1d%d",i,j,k);
 4807: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4808: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4809: 	  }
 4810: 	  ll=0;
 4811: 	  for(li=1;li <=nlstate; li++){
 4812: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 4813: 	      if(lj==li) continue;
 4814: 	      for(lk=1;lk<=ncovmodel;lk++){
 4815: 		ll++;
 4816: 		if(ll<=jj){
 4817: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 4818: 		  if(ll<jj){
 4819: 		    if(itimes==1){
 4820: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4821: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 4822: 		    }else{
 4823: 		      printf(" 0.");
 4824: 		      fprintf(ficparo," 0.");
 4825: 		    }
 4826: 		  }else{
 4827: 		    if(itimes==1){
 4828: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 4829: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 4830: 		    }else{
 4831: 		      printf(" 0.");
 4832: 		      fprintf(ficparo," 0.");
 4833: 		    }
 4834: 		  }
 4835: 		}
 4836: 	      } /* end lk */
 4837: 	    } /* end lj */
 4838: 	  } /* end li */
 4839: 	  printf("\n");
 4840: 	  fprintf(ficparo,"\n");
 4841: 	  numlinepar++;
 4842: 	} /* end k*/
 4843:       } /*end j */
 4844:     } /* end i */
 4845:   } /* end itimes */
 4846: 
 4847: } /* end of prwizard */
 4848: /******************* Gompertz Likelihood ******************************/
 4849: double gompertz(double x[])
 4850: { 
 4851:   double A,B,L=0.0,sump=0.,num=0.;
 4852:   int i,n=0; /* n is the size of the sample */
 4853: 
 4854:   for (i=0;i<=imx-1 ; i++) {
 4855:     sump=sump+weight[i];
 4856:     /*    sump=sump+1;*/
 4857:     num=num+1;
 4858:   }
 4859:  
 4860:  
 4861:   /* for (i=0; i<=imx; i++) 
 4862:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4863: 
 4864:   for (i=1;i<=imx ; i++)
 4865:     {
 4866:       if (cens[i] == 1 && wav[i]>1)
 4867: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 4868:       
 4869:       if (cens[i] == 0 && wav[i]>1)
 4870: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 4871: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 4872:       
 4873:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4874:       if (wav[i] > 1 ) { /* ??? */
 4875: 	L=L+A*weight[i];
 4876: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4877:       }
 4878:     }
 4879: 
 4880:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4881:  
 4882:   return -2*L*num/sump;
 4883: }
 4884: 
 4885: #ifdef GSL
 4886: /******************* Gompertz_f Likelihood ******************************/
 4887: double gompertz_f(const gsl_vector *v, void *params)
 4888: { 
 4889:   double A,B,LL=0.0,sump=0.,num=0.;
 4890:   double *x= (double *) v->data;
 4891:   int i,n=0; /* n is the size of the sample */
 4892: 
 4893:   for (i=0;i<=imx-1 ; i++) {
 4894:     sump=sump+weight[i];
 4895:     /*    sump=sump+1;*/
 4896:     num=num+1;
 4897:   }
 4898:  
 4899:  
 4900:   /* for (i=0; i<=imx; i++) 
 4901:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 4902:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 4903:   for (i=1;i<=imx ; i++)
 4904:     {
 4905:       if (cens[i] == 1 && wav[i]>1)
 4906: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 4907:       
 4908:       if (cens[i] == 0 && wav[i]>1)
 4909: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 4910: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 4911:       
 4912:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 4913:       if (wav[i] > 1 ) { /* ??? */
 4914: 	LL=LL+A*weight[i];
 4915: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 4916:       }
 4917:     }
 4918: 
 4919:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 4920:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 4921:  
 4922:   return -2*LL*num/sump;
 4923: }
 4924: #endif
 4925: 
 4926: /******************* Printing html file ***********/
 4927: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 4928: 		  int lastpass, int stepm, int weightopt, char model[],\
 4929: 		  int imx,  double p[],double **matcov,double agemortsup){
 4930:   int i,k;
 4931: 
 4932:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 4933:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 4934:   for (i=1;i<=2;i++) 
 4935:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 4936:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 4937:   fprintf(fichtm,"</ul>");
 4938: 
 4939: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 4940: 
 4941:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 4942: 
 4943:  for (k=agegomp;k<(agemortsup-2);k++) 
 4944:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 4945: 
 4946:  
 4947:   fflush(fichtm);
 4948: }
 4949: 
 4950: /******************* Gnuplot file **************/
 4951: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4952: 
 4953:   char dirfileres[132],optfileres[132];
 4954: 
 4955:   int ng;
 4956: 
 4957: 
 4958:   /*#ifdef windows */
 4959:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4960:     /*#endif */
 4961: 
 4962: 
 4963:   strcpy(dirfileres,optionfilefiname);
 4964:   strcpy(optfileres,"vpl");
 4965:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 4966:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 4967:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 4968:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 4969:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 4970: 
 4971: } 
 4972: 
 4973: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 4974: {
 4975: 
 4976:   /*-------- data file ----------*/
 4977:   FILE *fic;
 4978:   char dummy[]="                         ";
 4979:   int i=0, j=0, n=0;
 4980:   int linei, month, year,iout;
 4981:   char line[MAXLINE], linetmp[MAXLINE];
 4982:   char stra[MAXLINE], strb[MAXLINE];
 4983:   char *stratrunc;
 4984:   int lstra;
 4985: 
 4986: 
 4987:   if((fic=fopen(datafile,"r"))==NULL)    {
 4988:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 4989:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 4990:   }
 4991: 
 4992:   i=1;
 4993:   linei=0;
 4994:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 4995:     linei=linei+1;
 4996:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 4997:       if(line[j] == '\t')
 4998: 	line[j] = ' ';
 4999:     }
 5000:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 5001:       ;
 5002:     };
 5003:     line[j+1]=0;  /* Trims blanks at end of line */
 5004:     if(line[0]=='#'){
 5005:       fprintf(ficlog,"Comment line\n%s\n",line);
 5006:       printf("Comment line\n%s\n",line);
 5007:       continue;
 5008:     }
 5009:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 5010:     strcpy(line, linetmp);
 5011:   
 5012: 
 5013:     for (j=maxwav;j>=1;j--){
 5014:       cutv(stra, strb, line, ' '); 
 5015:       if(strb[0]=='.') { /* Missing status */
 5016: 	lval=-1;
 5017:       }else{
 5018: 	errno=0;
 5019: 	lval=strtol(strb,&endptr,10); 
 5020:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 5021: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5022: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 5023: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 5024: 	  return 1;
 5025: 	}
 5026:       }
 5027:       s[j][i]=lval;
 5028:       
 5029:       strcpy(line,stra);
 5030:       cutv(stra, strb,line,' ');
 5031:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 5032:       }
 5033:       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 5034: 	month=99;
 5035: 	year=9999;
 5036:       }else{
 5037: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 5038: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 5039: 	return 1;
 5040:       }
 5041:       anint[j][i]= (double) year; 
 5042:       mint[j][i]= (double)month; 
 5043:       strcpy(line,stra);
 5044:     } /* ENd Waves */
 5045:     
 5046:     cutv(stra, strb,line,' '); 
 5047:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 5048:     }
 5049:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
 5050:       month=99;
 5051:       year=9999;
 5052:     }else{
 5053:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5054: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5055: 	return 1;
 5056:     }
 5057:     andc[i]=(double) year; 
 5058:     moisdc[i]=(double) month; 
 5059:     strcpy(line,stra);
 5060:     
 5061:     cutv(stra, strb,line,' '); 
 5062:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 5063:     }
 5064:     else  if(iout=sscanf(strb,"%s.", dummy) != 0){
 5065:       month=99;
 5066:       year=9999;
 5067:     }else{
 5068:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5069:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5070: 	return 1;
 5071:     }
 5072:     if (year==9999) {
 5073:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 5074:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5075: 	return 1;
 5076: 
 5077:     }
 5078:     annais[i]=(double)(year);
 5079:     moisnais[i]=(double)(month); 
 5080:     strcpy(line,stra);
 5081:     
 5082:     cutv(stra, strb,line,' '); 
 5083:     errno=0;
 5084:     dval=strtod(strb,&endptr); 
 5085:     if( strb[0]=='\0' || (*endptr != '\0')){
 5086:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5087:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5088:       fflush(ficlog);
 5089:       return 1;
 5090:     }
 5091:     weight[i]=dval; 
 5092:     strcpy(line,stra);
 5093:     
 5094:     for (j=ncovcol;j>=1;j--){
 5095:       cutv(stra, strb,line,' '); 
 5096:       if(strb[0]=='.') { /* Missing status */
 5097: 	lval=-1;
 5098:       }else{
 5099: 	errno=0;
 5100: 	lval=strtol(strb,&endptr,10); 
 5101: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5102: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 5103: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 5104: 	  return 1;
 5105: 	}
 5106:       }
 5107:       if(lval <-1 || lval >1){
 5108: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5109:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5110:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5111:  For example, for multinomial values like 1, 2 and 3,\n \
 5112:  build V1=0 V2=0 for the reference value (1),\n \
 5113:         V1=1 V2=0 for (2) \n \
 5114:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5115:  output of IMaCh is often meaningless.\n \
 5116:  Exiting.\n",lval,linei, i,line,j);
 5117: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5118:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5119:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5120:  For example, for multinomial values like 1, 2 and 3,\n \
 5121:  build V1=0 V2=0 for the reference value (1),\n \
 5122:         V1=1 V2=0 for (2) \n \
 5123:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5124:  output of IMaCh is often meaningless.\n \
 5125:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 5126: 	return 1;
 5127:       }
 5128:       covar[j][i]=(double)(lval);
 5129:       strcpy(line,stra);
 5130:     }  
 5131:     lstra=strlen(stra);
 5132:      
 5133:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5134:       stratrunc = &(stra[lstra-9]);
 5135:       num[i]=atol(stratrunc);
 5136:     }
 5137:     else
 5138:       num[i]=atol(stra);
 5139:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5140:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5141:     
 5142:     i=i+1;
 5143:   } /* End loop reading  data */
 5144: 
 5145:   *imax=i-1; /* Number of individuals */
 5146:   fclose(fic);
 5147:  
 5148:   return (0);
 5149:   /* endread: */
 5150:     printf("Exiting readdata: ");
 5151:     fclose(fic);
 5152:     return (1);
 5153: 
 5154: 
 5155: 
 5156: }
 5157: void removespace(char *str) {
 5158:   char *p1 = str, *p2 = str;
 5159:   do
 5160:     while (*p2 == ' ')
 5161:       p2++;
 5162:   while (*p1++ = *p2++);
 5163: }
 5164: 
 5165: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5166:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 5167:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 5168:    * - cptcovn or number of covariates k of the models excluding age*products =6
 5169:    * - cptcovage number of covariates with age*products =2
 5170:    * - cptcovs number of simple covariates
 5171:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5172:    *     which is a new column after the 9 (ncovcol) variables. 
 5173:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5174:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5175:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5176:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5177:  */
 5178: {
 5179:   int i, j, k, ks;
 5180:   int  j1, k1, k2;
 5181:   char modelsav[80];
 5182:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5183: 
 5184:   /*removespace(model);*/
 5185:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5186:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5187:     j=nbocc(model,'+'); /**< j=Number of '+' */
 5188:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 5189:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 5190:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 5191:                   /* including age products which are counted in cptcovage.
 5192: 		  /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 5193:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5194:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5195:     strcpy(modelsav,model); 
 5196:     if (strstr(model,"AGE") !=0){
 5197:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 5198:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 5199:       return 1;
 5200:     }
 5201:     if (strstr(model,"v") !=0){
 5202:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5203:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5204:       return 1;
 5205:     }
 5206:     
 5207:     /*   Design
 5208:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5209:      *  <          ncovcol=8                >
 5210:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5211:      *   k=  1    2      3       4     5       6      7        8
 5212:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5213:      *  covar[k,i], value of kth covariate if not including age for individual i:
 5214:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5215:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5216:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5217:      *  Tage[++cptcovage]=k
 5218:      *       if products, new covar are created after ncovcol with k1
 5219:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5220:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5221:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5222:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5223:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5224:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5225:      *  <          ncovcol=8                >
 5226:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5227:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5228:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5229:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5230:      * p Tprod[1]@2={                         6, 5}
 5231:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5232:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5233:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5234:      *How to reorganize?
 5235:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5236:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5237:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5238:      * Struct []
 5239:      */
 5240: 
 5241:     /* This loop fills the array Tvar from the string 'model'.*/
 5242:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5243:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5244:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5245:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5246:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5247:     /* 	k=1 Tvar[1]=2 (from V2) */
 5248:     /* 	k=5 Tvar[5] */
 5249:     /* for (k=1; k<=cptcovn;k++) { */
 5250:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5251:     /* 	} */
 5252:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 5253:     /*
 5254:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5255:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5256:         Tvar[k]=0;
 5257:     cptcovage=0;
 5258:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5259:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5260: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5261:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5262:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5263:       /*scanf("%d",i);*/
 5264:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5265: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5266: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5267: 	  /* covar is not filled and then is empty */
 5268: 	  cptcovprod--;
 5269: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5270: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5271: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5272: 	  Tage[cptcovage]=k;  /* Tage[1] = 4 */
 5273: 	  /*printf("stre=%s ", stre);*/
 5274: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5275: 	  cptcovprod--;
 5276: 	  cutl(stre,strb,strc,'V');
 5277: 	  Tvar[k]=atoi(stre);
 5278: 	  cptcovage++;
 5279: 	  Tage[cptcovage]=k;
 5280: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5281: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5282: 	  cptcovn++;
 5283: 	  cptcovprodnoage++;k1++;
 5284: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5285: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5286: 				  because this model-covariate is a construction we invent a new column
 5287: 				  ncovcol + k1
 5288: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5289: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5290: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5291: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5292: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5293: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5294: 	  k2=k2+2;
 5295: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5296: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5297: 	  for (i=1; i<=lastobs;i++){
 5298: 	    /* Computes the new covariate which is a product of
 5299: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5300: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5301: 	  }
 5302: 	} /* End age is not in the model */
 5303:       } /* End if model includes a product */
 5304:       else { /* no more sum */
 5305: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5306:        /*  scanf("%d",i);*/
 5307: 	cutl(strd,strc,strb,'V');
 5308: 	ks++; /**< Number of simple covariates */
 5309: 	cptcovn++;
 5310: 	Tvar[k]=atoi(strd);
 5311:       }
 5312:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5313:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5314: 	scanf("%d",i);*/
 5315:     } /* end of loop + */
 5316:   } /* end model */
 5317:   
 5318:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5319:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5320: 
 5321:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5322:   printf("cptcovprod=%d ", cptcovprod);
 5323:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5324: 
 5325:   scanf("%d ",i);*/
 5326: 
 5327: 
 5328:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5329:   /*endread:*/
 5330:     printf("Exiting decodemodel: ");
 5331:     return (1);
 5332: }
 5333: 
 5334: calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5335: {
 5336:   int i, m;
 5337: 
 5338:   for (i=1; i<=imx; i++) {
 5339:     for(m=2; (m<= maxwav); m++) {
 5340:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5341: 	anint[m][i]=9999;
 5342: 	s[m][i]=-1;
 5343:       }
 5344:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5345: 	*nberr++;
 5346: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5347: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 5348: 	s[m][i]=-1;
 5349:       }
 5350:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5351: 	*nberr++;
 5352: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5353: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5354: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5355:       }
 5356:     }
 5357:   }
 5358: 
 5359:   for (i=1; i<=imx; i++)  {
 5360:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5361:     for(m=firstpass; (m<= lastpass); m++){
 5362:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5363: 	if (s[m][i] >= nlstate+1) {
 5364: 	  if(agedc[i]>0)
 5365: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 5366: 	      agev[m][i]=agedc[i];
 5367: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5368: 	    else {
 5369: 	      if ((int)andc[i]!=9999){
 5370: 		nbwarn++;
 5371: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5372: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5373: 		agev[m][i]=-1;
 5374: 	      }
 5375: 	    }
 5376: 	}
 5377: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5378: 				 years but with the precision of a month */
 5379: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5380: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5381: 	    agev[m][i]=1;
 5382: 	  else if(agev[m][i] < *agemin){ 
 5383: 	    *agemin=agev[m][i];
 5384: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5385: 	  }
 5386: 	  else if(agev[m][i] >*agemax){
 5387: 	    *agemax=agev[m][i];
 5388: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5389: 	  }
 5390: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5391: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5392: 	}
 5393: 	else { /* =9 */
 5394: 	  agev[m][i]=1;
 5395: 	  s[m][i]=-1;
 5396: 	}
 5397:       }
 5398:       else /*= 0 Unknown */
 5399: 	agev[m][i]=1;
 5400:     }
 5401:     
 5402:   }
 5403:   for (i=1; i<=imx; i++)  {
 5404:     for(m=firstpass; (m<=lastpass); m++){
 5405:       if (s[m][i] > (nlstate+ndeath)) {
 5406: 	*nberr++;
 5407: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5408: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5409: 	return 1;
 5410:       }
 5411:     }
 5412:   }
 5413: 
 5414:   /*for (i=1; i<=imx; i++){
 5415:   for (m=firstpass; (m<lastpass); m++){
 5416:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5417: }
 5418: 
 5419: }*/
 5420: 
 5421: 
 5422:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5423:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5424: 
 5425:   return (0);
 5426:  /* endread:*/
 5427:     printf("Exiting calandcheckages: ");
 5428:     return (1);
 5429: }
 5430: 
 5431: syscompilerinfo()
 5432:  {
 5433:    /* #include "syscompilerinfo.h"*/
 5434: #include <gnu/libc-version.h>
 5435: #if defined(__GNUC__)
 5436: # if defined(__GNUC_PATCHLEVEL__)
 5437: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5438:                             + __GNUC_MINOR__ * 100 \
 5439:                             + __GNUC_PATCHLEVEL__)
 5440: # else
 5441: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5442:                             + __GNUC_MINOR__ * 100)
 5443: # endif
 5444: #endif
 5445: 
 5446: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
 5447: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
 5448:     // Windows (x64 and x86)
 5449: #elif __unix__ // all unices, not all compilers
 5450:     // Unix
 5451: #elif __linux__
 5452:     // linux
 5453: #elif __APPLE__
 5454:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
 5455: #endif
 5456: 
 5457: /*  __MINGW32__	  */
 5458: /*  __CYGWIN__	 */
 5459: /* __MINGW64__  */
 5460: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
 5461: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
 5462: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
 5463: /* _WIN64  // Defined for applications for Win64. */
 5464: /* _M_X64 // Defined for compilations that target x64 processors. */
 5465: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
 5466: #include <stdint.h>
 5467: #if UINTPTR_MAX == 0xffffffff
 5468:    printf("32-bit \n"); /* 32-bit */
 5469: #elif UINTPTR_MAX == 0xffffffffffffffff
 5470:   printf("64-bit \n");/* 64-bit */
 5471: #else
 5472:  printf("wtf-bit \n"); /* wtf */
 5473: #endif
 5474: 
 5475: struct utsname sysInfo;
 5476: 
 5477:    if (uname(&sysInfo) != -1) {
 5478:       puts(sysInfo.sysname);
 5479:       puts(sysInfo.nodename);
 5480:       puts(sysInfo.release);
 5481:       puts(sysInfo.version);
 5482:       puts(sysInfo.machine);
 5483:    }
 5484:    else
 5485:       perror("uname() error");
 5486:    printf("GNU C version %d\n", __GNUC_VERSION__);
 5487:   printf("GNU libc version: %s\n", gnu_get_libc_version());
 5488: 
 5489:  }
 5490: 
 5491: /***********************************************/
 5492: /**************** Main Program *****************/
 5493: /***********************************************/
 5494: 
 5495: int main(int argc, char *argv[])
 5496: {
 5497: #ifdef GSL
 5498:   const gsl_multimin_fminimizer_type *T;
 5499:   size_t iteri = 0, it;
 5500:   int rval = GSL_CONTINUE;
 5501:   int status = GSL_SUCCESS;
 5502:   double ssval;
 5503: #endif
 5504:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5505:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
 5506: 
 5507:   int jj, ll, li, lj, lk;
 5508:   int numlinepar=0; /* Current linenumber of parameter file */
 5509:   int itimes;
 5510:   int NDIM=2;
 5511:   int vpopbased=0;
 5512: 
 5513:   char ca[32], cb[32];
 5514:   /*  FILE *fichtm; *//* Html File */
 5515:   /* FILE *ficgp;*/ /*Gnuplot File */
 5516:   struct stat info;
 5517:   double agedeb;
 5518:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5519: 
 5520:   double fret;
 5521:   double dum; /* Dummy variable */
 5522:   double ***p3mat;
 5523:   double ***mobaverage;
 5524: 
 5525:   char line[MAXLINE];
 5526:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5527:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5528:   char *tok, *val; /* pathtot */
 5529:   int firstobs=1, lastobs=10;
 5530:   int c,  h , cpt;
 5531:   int jl;
 5532:   int i1, j1, jk, stepsize;
 5533:   int *tab; 
 5534:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 5535:   int mobilav=0,popforecast=0;
 5536:   int hstepm, nhstepm;
 5537:   int agemortsup;
 5538:   float  sumlpop=0.;
 5539:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 5540:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 5541: 
 5542:   double bage=0, fage=110, age, agelim, agebase;
 5543:   double ftolpl=FTOL;
 5544:   double **prlim;
 5545:   double ***param; /* Matrix of parameters */
 5546:   double  *p;
 5547:   double **matcov; /* Matrix of covariance */
 5548:   double ***delti3; /* Scale */
 5549:   double *delti; /* Scale */
 5550:   double ***eij, ***vareij;
 5551:   double **varpl; /* Variances of prevalence limits by age */
 5552:   double *epj, vepp;
 5553: 
 5554:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 5555:   double **ximort;
 5556:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 5557:   int *dcwave;
 5558: 
 5559:   char z[1]="c";
 5560: 
 5561:   /*char  *strt;*/
 5562:   char strtend[80];
 5563: 
 5564: 
 5565: /*   setlocale (LC_ALL, ""); */
 5566: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 5567: /*   textdomain (PACKAGE); */
 5568: /*   setlocale (LC_CTYPE, ""); */
 5569: /*   setlocale (LC_MESSAGES, ""); */
 5570: 
 5571:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 5572:   rstart_time = time(NULL);  
 5573:   /*  (void) gettimeofday(&start_time,&tzp);*/
 5574:   start_time = *localtime(&rstart_time);
 5575:   curr_time=start_time;
 5576:   /*tml = *localtime(&start_time.tm_sec);*/
 5577:   /* strcpy(strstart,asctime(&tml)); */
 5578:   strcpy(strstart,asctime(&start_time));
 5579: 
 5580: /*  printf("Localtime (at start)=%s",strstart); */
 5581: /*  tp.tm_sec = tp.tm_sec +86400; */
 5582: /*  tm = *localtime(&start_time.tm_sec); */
 5583: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 5584: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 5585: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 5586: /*   tp.tm_sec = mktime(&tmg); */
 5587: /*   strt=asctime(&tmg); */
 5588: /*   printf("Time(after) =%s",strstart);  */
 5589: /*  (void) time (&time_value);
 5590: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 5591: *  tm = *localtime(&time_value);
 5592: *  strstart=asctime(&tm);
 5593: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 5594: */
 5595: 
 5596:   nberr=0; /* Number of errors and warnings */
 5597:   nbwarn=0;
 5598:   getcwd(pathcd, size);
 5599: 
 5600:   printf("\n%s\n%s",version,fullversion);
 5601:   if(argc <=1){
 5602:     printf("\nEnter the parameter file name: ");
 5603:     fgets(pathr,FILENAMELENGTH,stdin);
 5604:     i=strlen(pathr);
 5605:     if(pathr[i-1]=='\n')
 5606:       pathr[i-1]='\0';
 5607:     i=strlen(pathr);
 5608:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 5609:       pathr[i-1]='\0';
 5610:    for (tok = pathr; tok != NULL; ){
 5611:       printf("Pathr |%s|\n",pathr);
 5612:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 5613:       printf("val= |%s| pathr=%s\n",val,pathr);
 5614:       strcpy (pathtot, val);
 5615:       if(pathr[0] == '\0') break; /* Dirty */
 5616:     }
 5617:   }
 5618:   else{
 5619:     strcpy(pathtot,argv[1]);
 5620:   }
 5621:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 5622:   /*cygwin_split_path(pathtot,path,optionfile);
 5623:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 5624:   /* cutv(path,optionfile,pathtot,'\\');*/
 5625: 
 5626:   /* Split argv[0], imach program to get pathimach */
 5627:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 5628:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5629:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 5630:  /*   strcpy(pathimach,argv[0]); */
 5631:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 5632:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 5633:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 5634:   chdir(path); /* Can be a relative path */
 5635:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 5636:     printf("Current directory %s!\n",pathcd);
 5637:   strcpy(command,"mkdir ");
 5638:   strcat(command,optionfilefiname);
 5639:   if((outcmd=system(command)) != 0){
 5640:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 5641:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 5642:     /* fclose(ficlog); */
 5643: /*     exit(1); */
 5644:   }
 5645: /*   if((imk=mkdir(optionfilefiname))<0){ */
 5646: /*     perror("mkdir"); */
 5647: /*   } */
 5648: 
 5649:   /*-------- arguments in the command line --------*/
 5650: 
 5651:   /* Log file */
 5652:   strcat(filelog, optionfilefiname);
 5653:   strcat(filelog,".log");    /* */
 5654:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 5655:     printf("Problem with logfile %s\n",filelog);
 5656:     goto end;
 5657:   }
 5658:   fprintf(ficlog,"Log filename:%s\n",filelog);
 5659:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 5660:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 5661:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 5662:  path=%s \n\
 5663:  optionfile=%s\n\
 5664:  optionfilext=%s\n\
 5665:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 5666: 
 5667:   syscompilerinfo();
 5668: 
 5669:   printf("Local time (at start):%s",strstart);
 5670:   fprintf(ficlog,"Local time (at start): %s",strstart);
 5671:   fflush(ficlog);
 5672: /*   (void) gettimeofday(&curr_time,&tzp); */
 5673: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 5674: 
 5675:   /* */
 5676:   strcpy(fileres,"r");
 5677:   strcat(fileres, optionfilefiname);
 5678:   strcat(fileres,".txt");    /* Other files have txt extension */
 5679: 
 5680:   /*---------arguments file --------*/
 5681: 
 5682:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 5683:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 5684:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 5685:     fflush(ficlog);
 5686:     /* goto end; */
 5687:     exit(70); 
 5688:   }
 5689: 
 5690: 
 5691: 
 5692:   strcpy(filereso,"o");
 5693:   strcat(filereso,fileres);
 5694:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 5695:     printf("Problem with Output resultfile: %s\n", filereso);
 5696:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 5697:     fflush(ficlog);
 5698:     goto end;
 5699:   }
 5700: 
 5701:   /* Reads comments: lines beginning with '#' */
 5702:   numlinepar=0;
 5703:   while((c=getc(ficpar))=='#' && c!= EOF){
 5704:     ungetc(c,ficpar);
 5705:     fgets(line, MAXLINE, ficpar);
 5706:     numlinepar++;
 5707:     fputs(line,stdout);
 5708:     fputs(line,ficparo);
 5709:     fputs(line,ficlog);
 5710:   }
 5711:   ungetc(c,ficpar);
 5712: 
 5713:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 5714:   numlinepar++;
 5715:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 5716:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5717:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 5718:   fflush(ficlog);
 5719:   while((c=getc(ficpar))=='#' && c!= EOF){
 5720:     ungetc(c,ficpar);
 5721:     fgets(line, MAXLINE, ficpar);
 5722:     numlinepar++;
 5723:     fputs(line, stdout);
 5724:     //puts(line);
 5725:     fputs(line,ficparo);
 5726:     fputs(line,ficlog);
 5727:   }
 5728:   ungetc(c,ficpar);
 5729: 
 5730:    
 5731:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 5732:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 5733:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 5734:      v1+v2*age+v2*v3 makes cptcovn = 3
 5735:   */
 5736:   if (strlen(model)>1) 
 5737:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 5738:   else
 5739:     ncovmodel=2;
 5740:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 5741:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 5742:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 5743:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 5744:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5745:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 5746:     fflush(stdout);
 5747:     fclose (ficlog);
 5748:     goto end;
 5749:   }
 5750:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5751:   delti=delti3[1][1];
 5752:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 5753:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 5754:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5755:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5756:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 5757:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5758:     fclose (ficparo);
 5759:     fclose (ficlog);
 5760:     goto end;
 5761:     exit(0);
 5762:   }
 5763:   else if(mle==-3) {
 5764:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 5765:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5766:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 5767:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5768:     matcov=matrix(1,npar,1,npar);
 5769:   }
 5770:   else{
 5771:     /* Read guessed parameters */
 5772:     /* Reads comments: lines beginning with '#' */
 5773:     while((c=getc(ficpar))=='#' && c!= EOF){
 5774:       ungetc(c,ficpar);
 5775:       fgets(line, MAXLINE, ficpar);
 5776:       numlinepar++;
 5777:       fputs(line,stdout);
 5778:       fputs(line,ficparo);
 5779:       fputs(line,ficlog);
 5780:     }
 5781:     ungetc(c,ficpar);
 5782:     
 5783:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 5784:     for(i=1; i <=nlstate; i++){
 5785:       j=0;
 5786:       for(jj=1; jj <=nlstate+ndeath; jj++){
 5787: 	if(jj==i) continue;
 5788: 	j++;
 5789: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5790: 	if ((i1 != i) && (j1 != j)){
 5791: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 5792: It might be a problem of design; if ncovcol and the model are correct\n \
 5793: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 5794: 	  exit(1);
 5795: 	}
 5796: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5797: 	if(mle==1)
 5798: 	  printf("%1d%1d",i,j);
 5799: 	fprintf(ficlog,"%1d%1d",i,j);
 5800: 	for(k=1; k<=ncovmodel;k++){
 5801: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 5802: 	  if(mle==1){
 5803: 	    printf(" %lf",param[i][j][k]);
 5804: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5805: 	  }
 5806: 	  else
 5807: 	    fprintf(ficlog," %lf",param[i][j][k]);
 5808: 	  fprintf(ficparo," %lf",param[i][j][k]);
 5809: 	}
 5810: 	fscanf(ficpar,"\n");
 5811: 	numlinepar++;
 5812: 	if(mle==1)
 5813: 	  printf("\n");
 5814: 	fprintf(ficlog,"\n");
 5815: 	fprintf(ficparo,"\n");
 5816:       }
 5817:     }  
 5818:     fflush(ficlog);
 5819: 
 5820:     /* Reads scales values */
 5821:     p=param[1][1];
 5822:     
 5823:     /* Reads comments: lines beginning with '#' */
 5824:     while((c=getc(ficpar))=='#' && c!= EOF){
 5825:       ungetc(c,ficpar);
 5826:       fgets(line, MAXLINE, ficpar);
 5827:       numlinepar++;
 5828:       fputs(line,stdout);
 5829:       fputs(line,ficparo);
 5830:       fputs(line,ficlog);
 5831:     }
 5832:     ungetc(c,ficpar);
 5833: 
 5834:     for(i=1; i <=nlstate; i++){
 5835:       for(j=1; j <=nlstate+ndeath-1; j++){
 5836: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 5837: 	if ( (i1-i) * (j1-j) != 0){
 5838: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 5839: 	  exit(1);
 5840: 	}
 5841: 	printf("%1d%1d",i,j);
 5842: 	fprintf(ficparo,"%1d%1d",i1,j1);
 5843: 	fprintf(ficlog,"%1d%1d",i1,j1);
 5844: 	for(k=1; k<=ncovmodel;k++){
 5845: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 5846: 	  printf(" %le",delti3[i][j][k]);
 5847: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 5848: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 5849: 	}
 5850: 	fscanf(ficpar,"\n");
 5851: 	numlinepar++;
 5852: 	printf("\n");
 5853: 	fprintf(ficparo,"\n");
 5854: 	fprintf(ficlog,"\n");
 5855:       }
 5856:     }
 5857:     fflush(ficlog);
 5858: 
 5859:     /* Reads covariance matrix */
 5860:     delti=delti3[1][1];
 5861: 
 5862: 
 5863:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 5864:   
 5865:     /* Reads comments: lines beginning with '#' */
 5866:     while((c=getc(ficpar))=='#' && c!= EOF){
 5867:       ungetc(c,ficpar);
 5868:       fgets(line, MAXLINE, ficpar);
 5869:       numlinepar++;
 5870:       fputs(line,stdout);
 5871:       fputs(line,ficparo);
 5872:       fputs(line,ficlog);
 5873:     }
 5874:     ungetc(c,ficpar);
 5875:   
 5876:     matcov=matrix(1,npar,1,npar);
 5877:     for(i=1; i <=npar; i++)
 5878:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 5879:       
 5880:     for(i=1; i <=npar; i++){
 5881:       fscanf(ficpar,"%s",str);
 5882:       if(mle==1)
 5883: 	printf("%s",str);
 5884:       fprintf(ficlog,"%s",str);
 5885:       fprintf(ficparo,"%s",str);
 5886:       for(j=1; j <=i; j++){
 5887: 	fscanf(ficpar," %le",&matcov[i][j]);
 5888: 	if(mle==1){
 5889: 	  printf(" %.5le",matcov[i][j]);
 5890: 	}
 5891: 	fprintf(ficlog," %.5le",matcov[i][j]);
 5892: 	fprintf(ficparo," %.5le",matcov[i][j]);
 5893:       }
 5894:       fscanf(ficpar,"\n");
 5895:       numlinepar++;
 5896:       if(mle==1)
 5897: 	printf("\n");
 5898:       fprintf(ficlog,"\n");
 5899:       fprintf(ficparo,"\n");
 5900:     }
 5901:     for(i=1; i <=npar; i++)
 5902:       for(j=i+1;j<=npar;j++)
 5903: 	matcov[i][j]=matcov[j][i];
 5904:     
 5905:     if(mle==1)
 5906:       printf("\n");
 5907:     fprintf(ficlog,"\n");
 5908:     
 5909:     fflush(ficlog);
 5910:     
 5911:     /*-------- Rewriting parameter file ----------*/
 5912:     strcpy(rfileres,"r");    /* "Rparameterfile */
 5913:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 5914:     strcat(rfileres,".");    /* */
 5915:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 5916:     if((ficres =fopen(rfileres,"w"))==NULL) {
 5917:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 5918:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 5919:     }
 5920:     fprintf(ficres,"#%s\n",version);
 5921:   }    /* End of mle != -3 */
 5922: 
 5923: 
 5924:   n= lastobs;
 5925:   num=lvector(1,n);
 5926:   moisnais=vector(1,n);
 5927:   annais=vector(1,n);
 5928:   moisdc=vector(1,n);
 5929:   andc=vector(1,n);
 5930:   agedc=vector(1,n);
 5931:   cod=ivector(1,n);
 5932:   weight=vector(1,n);
 5933:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 5934:   mint=matrix(1,maxwav,1,n);
 5935:   anint=matrix(1,maxwav,1,n);
 5936:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 5937:   tab=ivector(1,NCOVMAX);
 5938:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 5939: 
 5940:   /* Reads data from file datafile */
 5941:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 5942:     goto end;
 5943: 
 5944:   /* Calculation of the number of parameters from char model */
 5945:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 5946: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 5947: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 5948: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 5949: 	k=1 Tvar[1]=2 (from V2)
 5950:     */
 5951:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 5952:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 5953:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 5954:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 5955:   */
 5956:   /* For model-covariate k tells which data-covariate to use but
 5957:     because this model-covariate is a construction we invent a new column
 5958:     ncovcol + k1
 5959:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 5960:     Tvar[3=V1*V4]=4+1 etc */
 5961:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 5962:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 5963:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 5964:   */
 5965:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 5966:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 5967: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 5968: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 5969:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 5970: 			 4 covariates (3 plus signs)
 5971: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 5972: 		      */  
 5973: 
 5974:   if(decodemodel(model, lastobs) == 1)
 5975:     goto end;
 5976: 
 5977:   if((double)(lastobs-imx)/(double)imx > 1.10){
 5978:     nbwarn++;
 5979:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5980:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 5981:   }
 5982:     /*  if(mle==1){*/
 5983:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 5984:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 5985:   }
 5986: 
 5987:     /*-calculation of age at interview from date of interview and age at death -*/
 5988:   agev=matrix(1,maxwav,1,imx);
 5989: 
 5990:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 5991:     goto end;
 5992: 
 5993: 
 5994:   agegomp=(int)agemin;
 5995:   free_vector(moisnais,1,n);
 5996:   free_vector(annais,1,n);
 5997:   /* free_matrix(mint,1,maxwav,1,n);
 5998:      free_matrix(anint,1,maxwav,1,n);*/
 5999:   free_vector(moisdc,1,n);
 6000:   free_vector(andc,1,n);
 6001:   /* */
 6002:   
 6003:   wav=ivector(1,imx);
 6004:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 6005:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 6006:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 6007:    
 6008:   /* Concatenates waves */
 6009:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 6010:   /* */
 6011:  
 6012:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 6013: 
 6014:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 6015:   ncodemax[1]=1;
 6016:   Ndum =ivector(-1,NCOVMAX);  
 6017:   if (ncovmodel > 2)
 6018:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 6019: 
 6020:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 6021:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 6022:   h=0;
 6023: 
 6024: 
 6025:   /*if (cptcovn > 0) */
 6026:       
 6027:  
 6028:   m=pow(2,cptcoveff);
 6029:  
 6030:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 6031:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 6032:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 6033: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 6034: 	  h++;
 6035: 	  if (h>m) 
 6036: 	    h=1;
 6037: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 6038: 	   *     h     1     2     3     4
 6039: 	   *______________________________  
 6040: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 6041: 	   *     2     2     1     1     1
 6042: 	   *     3 i=2 1     2     1     1
 6043: 	   *     4     2     2     1     1
 6044: 	   *     5 i=3 1 i=2 1     2     1
 6045: 	   *     6     2     1     2     1
 6046: 	   *     7 i=4 1     2     2     1
 6047: 	   *     8     2     2     2     1
 6048: 	   *     9 i=5 1 i=3 1 i=2 1     1
 6049: 	   *    10     2     1     1     1
 6050: 	   *    11 i=6 1     2     1     1
 6051: 	   *    12     2     2     1     1
 6052: 	   *    13 i=7 1 i=4 1     2     1    
 6053: 	   *    14     2     1     2     1
 6054: 	   *    15 i=8 1     2     2     1
 6055: 	   *    16     2     2     2     1
 6056: 	   */
 6057: 	  codtab[h][k]=j;
 6058: 	  /*codtab[h][Tvar[k]]=j;*/
 6059: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 6060: 	} 
 6061:       }
 6062:     }
 6063:   } 
 6064:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 6065:      codtab[1][2]=1;codtab[2][2]=2; */
 6066:   /* for(i=1; i <=m ;i++){ 
 6067:      for(k=1; k <=cptcovn; k++){
 6068:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 6069:      }
 6070:      printf("\n");
 6071:      }
 6072:      scanf("%d",i);*/
 6073: 
 6074:  free_ivector(Ndum,-1,NCOVMAX);
 6075: 
 6076: 
 6077:     
 6078:   /*------------ gnuplot -------------*/
 6079:   strcpy(optionfilegnuplot,optionfilefiname);
 6080:   if(mle==-3)
 6081:     strcat(optionfilegnuplot,"-mort");
 6082:   strcat(optionfilegnuplot,".gp");
 6083: 
 6084:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 6085:     printf("Problem with file %s",optionfilegnuplot);
 6086:   }
 6087:   else{
 6088:     fprintf(ficgp,"\n# %s\n", version); 
 6089:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 6090:     //fprintf(ficgp,"set missing 'NaNq'\n");
 6091:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 6092:   }
 6093:   /*  fclose(ficgp);*/
 6094:   /*--------- index.htm --------*/
 6095: 
 6096:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 6097:   if(mle==-3)
 6098:     strcat(optionfilehtm,"-mort");
 6099:   strcat(optionfilehtm,".htm");
 6100:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 6101:     printf("Problem with %s \n",optionfilehtm);
 6102:     exit(0);
 6103:   }
 6104: 
 6105:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 6106:   strcat(optionfilehtmcov,"-cov.htm");
 6107:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 6108:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 6109:   }
 6110:   else{
 6111:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6112: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6113: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 6114: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 6115:   }
 6116: 
 6117:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6118: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6119: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 6120: \n\
 6121: <hr  size=\"2\" color=\"#EC5E5E\">\
 6122:  <ul><li><h4>Parameter files</h4>\n\
 6123:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 6124:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 6125:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 6126:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 6127:  - Date and time at start: %s</ul>\n",\
 6128: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 6129: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 6130: 	  fileres,fileres,\
 6131: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 6132:   fflush(fichtm);
 6133: 
 6134:   strcpy(pathr,path);
 6135:   strcat(pathr,optionfilefiname);
 6136:   chdir(optionfilefiname); /* Move to directory named optionfile */
 6137:   
 6138:   /* Calculates basic frequencies. Computes observed prevalence at single age
 6139:      and prints on file fileres'p'. */
 6140:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 6141: 
 6142:   fprintf(fichtm,"\n");
 6143:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 6144: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 6145: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 6146: 	  imx,agemin,agemax,jmin,jmax,jmean);
 6147:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6148:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6149:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6150:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6151:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 6152:     
 6153:    
 6154:   /* For Powell, parameters are in a vector p[] starting at p[1]
 6155:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 6156:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 6157: 
 6158:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 6159: 
 6160:   if (mle==-3){
 6161:     ximort=matrix(1,NDIM,1,NDIM); 
 6162: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 6163:     cens=ivector(1,n);
 6164:     ageexmed=vector(1,n);
 6165:     agecens=vector(1,n);
 6166:     dcwave=ivector(1,n);
 6167:  
 6168:     for (i=1; i<=imx; i++){
 6169:       dcwave[i]=-1;
 6170:       for (m=firstpass; m<=lastpass; m++)
 6171: 	if (s[m][i]>nlstate) {
 6172: 	  dcwave[i]=m;
 6173: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 6174: 	  break;
 6175: 	}
 6176:     }
 6177: 
 6178:     for (i=1; i<=imx; i++) {
 6179:       if (wav[i]>0){
 6180: 	ageexmed[i]=agev[mw[1][i]][i];
 6181: 	j=wav[i];
 6182: 	agecens[i]=1.; 
 6183: 
 6184: 	if (ageexmed[i]> 1 && wav[i] > 0){
 6185: 	  agecens[i]=agev[mw[j][i]][i];
 6186: 	  cens[i]= 1;
 6187: 	}else if (ageexmed[i]< 1) 
 6188: 	  cens[i]= -1;
 6189: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 6190: 	  cens[i]=0 ;
 6191:       }
 6192:       else cens[i]=-1;
 6193:     }
 6194:     
 6195:     for (i=1;i<=NDIM;i++) {
 6196:       for (j=1;j<=NDIM;j++)
 6197: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 6198:     }
 6199:     
 6200:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 6201:     /*printf("%lf %lf", p[1], p[2]);*/
 6202:     
 6203:     
 6204: #ifdef GSL
 6205:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 6206: #else
 6207:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 6208: #endif
 6209:     strcpy(filerespow,"pow-mort"); 
 6210:     strcat(filerespow,fileres);
 6211:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 6212:       printf("Problem with resultfile: %s\n", filerespow);
 6213:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 6214:     }
 6215: #ifdef GSL
 6216:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 6217: #else
 6218:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 6219: #endif
 6220:     /*  for (i=1;i<=nlstate;i++)
 6221: 	for(j=1;j<=nlstate+ndeath;j++)
 6222: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 6223:     */
 6224:     fprintf(ficrespow,"\n");
 6225: #ifdef GSL
 6226:     /* gsl starts here */ 
 6227:     T = gsl_multimin_fminimizer_nmsimplex;
 6228:     gsl_multimin_fminimizer *sfm = NULL;
 6229:     gsl_vector *ss, *x;
 6230:     gsl_multimin_function minex_func;
 6231: 
 6232:     /* Initial vertex size vector */
 6233:     ss = gsl_vector_alloc (NDIM);
 6234:     
 6235:     if (ss == NULL){
 6236:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 6237:     }
 6238:     /* Set all step sizes to 1 */
 6239:     gsl_vector_set_all (ss, 0.001);
 6240: 
 6241:     /* Starting point */
 6242:     
 6243:     x = gsl_vector_alloc (NDIM);
 6244:     
 6245:     if (x == NULL){
 6246:       gsl_vector_free(ss);
 6247:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 6248:     }
 6249:   
 6250:     /* Initialize method and iterate */
 6251:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 6252: /*     gsl_vector_set(x, 0, 0.0268); */
 6253: /*     gsl_vector_set(x, 1, 0.083); */
 6254:     gsl_vector_set(x, 0, p[1]);
 6255:     gsl_vector_set(x, 1, p[2]);
 6256: 
 6257:     minex_func.f = &gompertz_f;
 6258:     minex_func.n = NDIM;
 6259:     minex_func.params = (void *)&p; /* ??? */
 6260:     
 6261:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 6262:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 6263:     
 6264:     printf("Iterations beginning .....\n\n");
 6265:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 6266: 
 6267:     iteri=0;
 6268:     while (rval == GSL_CONTINUE){
 6269:       iteri++;
 6270:       status = gsl_multimin_fminimizer_iterate(sfm);
 6271:       
 6272:       if (status) printf("error: %s\n", gsl_strerror (status));
 6273:       fflush(0);
 6274:       
 6275:       if (status) 
 6276:         break;
 6277:       
 6278:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 6279:       ssval = gsl_multimin_fminimizer_size (sfm);
 6280:       
 6281:       if (rval == GSL_SUCCESS)
 6282:         printf ("converged to a local maximum at\n");
 6283:       
 6284:       printf("%5d ", iteri);
 6285:       for (it = 0; it < NDIM; it++){
 6286: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 6287:       }
 6288:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 6289:     }
 6290:     
 6291:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6292:     
 6293:     gsl_vector_free(x); /* initial values */
 6294:     gsl_vector_free(ss); /* inital step size */
 6295:     for (it=0; it<NDIM; it++){
 6296:       p[it+1]=gsl_vector_get(sfm->x,it);
 6297:       fprintf(ficrespow," %.12lf", p[it]);
 6298:     }
 6299:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6300: #endif
 6301: #ifdef POWELL
 6302:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6303: #endif  
 6304:     fclose(ficrespow);
 6305:     
 6306:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6307: 
 6308:     for(i=1; i <=NDIM; i++)
 6309:       for(j=i+1;j<=NDIM;j++)
 6310: 	matcov[i][j]=matcov[j][i];
 6311:     
 6312:     printf("\nCovariance matrix\n ");
 6313:     for(i=1; i <=NDIM; i++) {
 6314:       for(j=1;j<=NDIM;j++){ 
 6315: 	printf("%f ",matcov[i][j]);
 6316:       }
 6317:       printf("\n ");
 6318:     }
 6319:     
 6320:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6321:     for (i=1;i<=NDIM;i++) 
 6322:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6323: 
 6324:     lsurv=vector(1,AGESUP);
 6325:     lpop=vector(1,AGESUP);
 6326:     tpop=vector(1,AGESUP);
 6327:     lsurv[agegomp]=100000;
 6328:     
 6329:     for (k=agegomp;k<=AGESUP;k++) {
 6330:       agemortsup=k;
 6331:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6332:     }
 6333:     
 6334:     for (k=agegomp;k<agemortsup;k++)
 6335:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6336:     
 6337:     for (k=agegomp;k<agemortsup;k++){
 6338:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6339:       sumlpop=sumlpop+lpop[k];
 6340:     }
 6341:     
 6342:     tpop[agegomp]=sumlpop;
 6343:     for (k=agegomp;k<(agemortsup-3);k++){
 6344:       /*  tpop[k+1]=2;*/
 6345:       tpop[k+1]=tpop[k]-lpop[k];
 6346:     }
 6347:     
 6348:     
 6349:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6350:     for (k=agegomp;k<(agemortsup-2);k++) 
 6351:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6352:     
 6353:     
 6354:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6355:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6356:     
 6357:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6358: 		     stepm, weightopt,\
 6359: 		     model,imx,p,matcov,agemortsup);
 6360:     
 6361:     free_vector(lsurv,1,AGESUP);
 6362:     free_vector(lpop,1,AGESUP);
 6363:     free_vector(tpop,1,AGESUP);
 6364: #ifdef GSL
 6365:     free_ivector(cens,1,n);
 6366:     free_vector(agecens,1,n);
 6367:     free_ivector(dcwave,1,n);
 6368:     free_matrix(ximort,1,NDIM,1,NDIM);
 6369: #endif
 6370:   } /* Endof if mle==-3 */
 6371:   
 6372:   else{ /* For mle >=1 */
 6373:     globpr=0;/* debug */
 6374:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6375:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6376:     for (k=1; k<=npar;k++)
 6377:       printf(" %d %8.5f",k,p[k]);
 6378:     printf("\n");
 6379:     globpr=1; /* to print the contributions */
 6380:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6381:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6382:     for (k=1; k<=npar;k++)
 6383:       printf(" %d %8.5f",k,p[k]);
 6384:     printf("\n");
 6385:     if(mle>=1){ /* Could be 1 or 2 */
 6386:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6387:     }
 6388:     
 6389:     /*--------- results files --------------*/
 6390:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6391:     
 6392:     
 6393:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6394:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6395:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6396:     for(i=1,jk=1; i <=nlstate; i++){
 6397:       for(k=1; k <=(nlstate+ndeath); k++){
 6398: 	if (k != i) {
 6399: 	  printf("%d%d ",i,k);
 6400: 	  fprintf(ficlog,"%d%d ",i,k);
 6401: 	  fprintf(ficres,"%1d%1d ",i,k);
 6402: 	  for(j=1; j <=ncovmodel; j++){
 6403: 	    printf("%lf ",p[jk]);
 6404: 	    fprintf(ficlog,"%lf ",p[jk]);
 6405: 	    fprintf(ficres,"%lf ",p[jk]);
 6406: 	    jk++; 
 6407: 	  }
 6408: 	  printf("\n");
 6409: 	  fprintf(ficlog,"\n");
 6410: 	  fprintf(ficres,"\n");
 6411: 	}
 6412:       }
 6413:     }
 6414:     if(mle!=0){
 6415:       /* Computing hessian and covariance matrix */
 6416:       ftolhess=ftol; /* Usually correct */
 6417:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6418:     }
 6419:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6420:     printf("# Scales (for hessian or gradient estimation)\n");
 6421:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6422:     for(i=1,jk=1; i <=nlstate; i++){
 6423:       for(j=1; j <=nlstate+ndeath; j++){
 6424: 	if (j!=i) {
 6425: 	  fprintf(ficres,"%1d%1d",i,j);
 6426: 	  printf("%1d%1d",i,j);
 6427: 	  fprintf(ficlog,"%1d%1d",i,j);
 6428: 	  for(k=1; k<=ncovmodel;k++){
 6429: 	    printf(" %.5e",delti[jk]);
 6430: 	    fprintf(ficlog," %.5e",delti[jk]);
 6431: 	    fprintf(ficres," %.5e",delti[jk]);
 6432: 	    jk++;
 6433: 	  }
 6434: 	  printf("\n");
 6435: 	  fprintf(ficlog,"\n");
 6436: 	  fprintf(ficres,"\n");
 6437: 	}
 6438:       }
 6439:     }
 6440:     
 6441:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6442:     if(mle>=1)
 6443:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6444:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6445:     /* # 121 Var(a12)\n\ */
 6446:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6447:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6448:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6449:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6450:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6451:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6452:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6453:     
 6454:     
 6455:     /* Just to have a covariance matrix which will be more understandable
 6456:        even is we still don't want to manage dictionary of variables
 6457:     */
 6458:     for(itimes=1;itimes<=2;itimes++){
 6459:       jj=0;
 6460:       for(i=1; i <=nlstate; i++){
 6461: 	for(j=1; j <=nlstate+ndeath; j++){
 6462: 	  if(j==i) continue;
 6463: 	  for(k=1; k<=ncovmodel;k++){
 6464: 	    jj++;
 6465: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6466: 	    if(itimes==1){
 6467: 	      if(mle>=1)
 6468: 		printf("#%1d%1d%d",i,j,k);
 6469: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6470: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6471: 	    }else{
 6472: 	      if(mle>=1)
 6473: 		printf("%1d%1d%d",i,j,k);
 6474: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6475: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6476: 	    }
 6477: 	    ll=0;
 6478: 	    for(li=1;li <=nlstate; li++){
 6479: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6480: 		if(lj==li) continue;
 6481: 		for(lk=1;lk<=ncovmodel;lk++){
 6482: 		  ll++;
 6483: 		  if(ll<=jj){
 6484: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6485: 		    if(ll<jj){
 6486: 		      if(itimes==1){
 6487: 			if(mle>=1)
 6488: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6489: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6490: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6491: 		      }else{
 6492: 			if(mle>=1)
 6493: 			  printf(" %.5e",matcov[jj][ll]); 
 6494: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6495: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6496: 		      }
 6497: 		    }else{
 6498: 		      if(itimes==1){
 6499: 			if(mle>=1)
 6500: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 6501: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 6502: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 6503: 		      }else{
 6504: 			if(mle>=1)
 6505: 			  printf(" %.5e",matcov[jj][ll]); 
 6506: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 6507: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 6508: 		      }
 6509: 		    }
 6510: 		  }
 6511: 		} /* end lk */
 6512: 	      } /* end lj */
 6513: 	    } /* end li */
 6514: 	    if(mle>=1)
 6515: 	      printf("\n");
 6516: 	    fprintf(ficlog,"\n");
 6517: 	    fprintf(ficres,"\n");
 6518: 	    numlinepar++;
 6519: 	  } /* end k*/
 6520: 	} /*end j */
 6521:       } /* end i */
 6522:     } /* end itimes */
 6523:     
 6524:     fflush(ficlog);
 6525:     fflush(ficres);
 6526:     
 6527:     while((c=getc(ficpar))=='#' && c!= EOF){
 6528:       ungetc(c,ficpar);
 6529:       fgets(line, MAXLINE, ficpar);
 6530:       fputs(line,stdout);
 6531:       fputs(line,ficparo);
 6532:     }
 6533:     ungetc(c,ficpar);
 6534:     
 6535:     estepm=0;
 6536:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 6537:     if (estepm==0 || estepm < stepm) estepm=stepm;
 6538:     if (fage <= 2) {
 6539:       bage = ageminpar;
 6540:       fage = agemaxpar;
 6541:     }
 6542:     
 6543:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 6544:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6545:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 6546:     
 6547:     while((c=getc(ficpar))=='#' && c!= EOF){
 6548:       ungetc(c,ficpar);
 6549:       fgets(line, MAXLINE, ficpar);
 6550:       fputs(line,stdout);
 6551:       fputs(line,ficparo);
 6552:     }
 6553:     ungetc(c,ficpar);
 6554:     
 6555:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 6556:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6557:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6558:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6559:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 6560:     
 6561:     while((c=getc(ficpar))=='#' && c!= EOF){
 6562:       ungetc(c,ficpar);
 6563:       fgets(line, MAXLINE, ficpar);
 6564:       fputs(line,stdout);
 6565:       fputs(line,ficparo);
 6566:     }
 6567:     ungetc(c,ficpar);
 6568:     
 6569:     
 6570:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 6571:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 6572:     
 6573:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 6574:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 6575:     fprintf(ficres,"pop_based=%d\n",popbased);   
 6576:     
 6577:     while((c=getc(ficpar))=='#' && c!= EOF){
 6578:       ungetc(c,ficpar);
 6579:       fgets(line, MAXLINE, ficpar);
 6580:       fputs(line,stdout);
 6581:       fputs(line,ficparo);
 6582:     }
 6583:     ungetc(c,ficpar);
 6584:     
 6585:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 6586:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6587:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6588:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6589:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 6590:     /* day and month of proj2 are not used but only year anproj2.*/
 6591:     
 6592:     
 6593:     
 6594:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 6595:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 6596:     
 6597:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6598:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6599:     
 6600:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 6601: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 6602: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 6603:       
 6604:    /*------------ free_vector  -------------*/
 6605:    /*  chdir(path); */
 6606:  
 6607:     free_ivector(wav,1,imx);
 6608:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 6609:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 6610:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 6611:     free_lvector(num,1,n);
 6612:     free_vector(agedc,1,n);
 6613:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 6614:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 6615:     fclose(ficparo);
 6616:     fclose(ficres);
 6617: 
 6618: 
 6619:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6620: #include "prevlim.h"  /* Use ficrespl, ficlog */
 6621:     fclose(ficrespl);
 6622: 
 6623: #ifdef FREEEXIT2
 6624: #include "freeexit2.h"
 6625: #endif
 6626: 
 6627:     /*------------- h Pij x at various ages ------------*/
 6628: #include "hpijx.h"
 6629:     fclose(ficrespij);
 6630: 
 6631:   /*-------------- Variance of one-step probabilities---*/
 6632:     k=1;
 6633:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 6634: 
 6635: 
 6636:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6637:     for(i=1;i<=AGESUP;i++)
 6638:       for(j=1;j<=NCOVMAX;j++)
 6639: 	for(k=1;k<=NCOVMAX;k++)
 6640: 	  probs[i][j][k]=0.;
 6641: 
 6642:     /*---------- Forecasting ------------------*/
 6643:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 6644:     if(prevfcast==1){
 6645:       /*    if(stepm ==1){*/
 6646:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 6647:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 6648:       /*      }  */
 6649:       /*      else{ */
 6650:       /*        erreur=108; */
 6651:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6652:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 6653:       /*      } */
 6654:     }
 6655:   
 6656: 
 6657:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 6658: 
 6659:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 6660:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 6661: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 6662:     */
 6663: 
 6664:     if (mobilav!=0) {
 6665:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6666:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 6667: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 6668: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 6669:       }
 6670:     }
 6671: 
 6672: 
 6673:     /*---------- Health expectancies, no variances ------------*/
 6674: 
 6675:     strcpy(filerese,"e");
 6676:     strcat(filerese,fileres);
 6677:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 6678:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6679:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 6680:     }
 6681:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 6682:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 6683:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6684:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6685:           
 6686:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6687: 	fprintf(ficreseij,"\n#****** ");
 6688: 	for(j=1;j<=cptcoveff;j++) {
 6689: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6690: 	}
 6691: 	fprintf(ficreseij,"******\n");
 6692: 
 6693: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6694: 	oldm=oldms;savm=savms;
 6695: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 6696:       
 6697: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6698:       /*}*/
 6699:     }
 6700:     fclose(ficreseij);
 6701: 
 6702: 
 6703:     /*---------- Health expectancies and variances ------------*/
 6704: 
 6705: 
 6706:     strcpy(filerest,"t");
 6707:     strcat(filerest,fileres);
 6708:     if((ficrest=fopen(filerest,"w"))==NULL) {
 6709:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 6710:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 6711:     }
 6712:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6713:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 6714: 
 6715: 
 6716:     strcpy(fileresstde,"stde");
 6717:     strcat(fileresstde,fileres);
 6718:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 6719:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6720:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 6721:     }
 6722:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6723:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 6724: 
 6725:     strcpy(filerescve,"cve");
 6726:     strcat(filerescve,fileres);
 6727:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 6728:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6729:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 6730:     }
 6731:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6732:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 6733: 
 6734:     strcpy(fileresv,"v");
 6735:     strcat(fileresv,fileres);
 6736:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 6737:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 6738:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 6739:     }
 6740:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6741:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 6742: 
 6743:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6744:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6745:           
 6746:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6747:     	fprintf(ficrest,"\n#****** ");
 6748: 	for(j=1;j<=cptcoveff;j++) 
 6749: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6750: 	fprintf(ficrest,"******\n");
 6751: 
 6752: 	fprintf(ficresstdeij,"\n#****** ");
 6753: 	fprintf(ficrescveij,"\n#****** ");
 6754: 	for(j=1;j<=cptcoveff;j++) {
 6755: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6756: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6757: 	}
 6758: 	fprintf(ficresstdeij,"******\n");
 6759: 	fprintf(ficrescveij,"******\n");
 6760: 
 6761: 	fprintf(ficresvij,"\n#****** ");
 6762: 	for(j=1;j<=cptcoveff;j++) 
 6763: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6764: 	fprintf(ficresvij,"******\n");
 6765: 
 6766: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6767: 	oldm=oldms;savm=savms;
 6768: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 6769: 	/*
 6770: 	 */
 6771: 	/* goto endfree; */
 6772:  
 6773: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 6774: 	pstamp(ficrest);
 6775: 
 6776: 
 6777: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 6778: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 6779: 	  cptcod= 0; /* To be deleted */
 6780: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 6781: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 6782: 	  if(vpopbased==1)
 6783: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 6784: 	  else
 6785: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 6786: 	  fprintf(ficrest,"# Age e.. (std) ");
 6787: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 6788: 	  fprintf(ficrest,"\n");
 6789: 
 6790: 	  epj=vector(1,nlstate+1);
 6791: 	  for(age=bage; age <=fage ;age++){
 6792: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6793: 	    if (vpopbased==1) {
 6794: 	      if(mobilav ==0){
 6795: 		for(i=1; i<=nlstate;i++)
 6796: 		  prlim[i][i]=probs[(int)age][i][k];
 6797: 	      }else{ /* mobilav */ 
 6798: 		for(i=1; i<=nlstate;i++)
 6799: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 6800: 	      }
 6801: 	    }
 6802: 	
 6803: 	    fprintf(ficrest," %4.0f",age);
 6804: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 6805: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 6806: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 6807: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 6808: 	      }
 6809: 	      epj[nlstate+1] +=epj[j];
 6810: 	    }
 6811: 
 6812: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 6813: 	      for(j=1;j <=nlstate;j++)
 6814: 		vepp += vareij[i][j][(int)age];
 6815: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 6816: 	    for(j=1;j <=nlstate;j++){
 6817: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 6818: 	    }
 6819: 	    fprintf(ficrest,"\n");
 6820: 	  }
 6821: 	}
 6822: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6823: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 6824: 	free_vector(epj,1,nlstate+1);
 6825:       /*}*/
 6826:     }
 6827:     free_vector(weight,1,n);
 6828:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 6829:     free_imatrix(s,1,maxwav+1,1,n);
 6830:     free_matrix(anint,1,maxwav,1,n); 
 6831:     free_matrix(mint,1,maxwav,1,n);
 6832:     free_ivector(cod,1,n);
 6833:     free_ivector(tab,1,NCOVMAX);
 6834:     fclose(ficresstdeij);
 6835:     fclose(ficrescveij);
 6836:     fclose(ficresvij);
 6837:     fclose(ficrest);
 6838:     fclose(ficpar);
 6839:   
 6840:     /*------- Variance of period (stable) prevalence------*/   
 6841: 
 6842:     strcpy(fileresvpl,"vpl");
 6843:     strcat(fileresvpl,fileres);
 6844:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 6845:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 6846:       exit(0);
 6847:     }
 6848:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 6849: 
 6850:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6851:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 6852:           
 6853:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6854:     	fprintf(ficresvpl,"\n#****** ");
 6855: 	for(j=1;j<=cptcoveff;j++) 
 6856: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 6857: 	fprintf(ficresvpl,"******\n");
 6858:       
 6859: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 6860: 	oldm=oldms;savm=savms;
 6861: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 6862: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 6863:       /*}*/
 6864:     }
 6865: 
 6866:     fclose(ficresvpl);
 6867: 
 6868:     /*---------- End : free ----------------*/
 6869:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6870:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 6871:   }  /* mle==-3 arrives here for freeing */
 6872:  /* endfree:*/
 6873:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 6874:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 6875:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6876:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6877:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 6878:     free_matrix(covar,0,NCOVMAX,1,n);
 6879:     free_matrix(matcov,1,npar,1,npar);
 6880:     /*free_vector(delti,1,npar);*/
 6881:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6882:     free_matrix(agev,1,maxwav,1,imx);
 6883:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 6884: 
 6885:     free_ivector(ncodemax,1,NCOVMAX);
 6886:     free_ivector(Tvar,1,NCOVMAX);
 6887:     free_ivector(Tprod,1,NCOVMAX);
 6888:     free_ivector(Tvaraff,1,NCOVMAX);
 6889:     free_ivector(Tage,1,NCOVMAX);
 6890: 
 6891:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 6892:     free_imatrix(codtab,1,100,1,10);
 6893:   fflush(fichtm);
 6894:   fflush(ficgp);
 6895:   
 6896: 
 6897:   if((nberr >0) || (nbwarn>0)){
 6898:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 6899:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 6900:   }else{
 6901:     printf("End of Imach\n");
 6902:     fprintf(ficlog,"End of Imach\n");
 6903:   }
 6904:   printf("See log file on %s\n",filelog);
 6905:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 6906:   /*(void) gettimeofday(&end_time,&tzp);*/
 6907:   rend_time = time(NULL);  
 6908:   end_time = *localtime(&rend_time);
 6909:   /* tml = *localtime(&end_time.tm_sec); */
 6910:   strcpy(strtend,asctime(&end_time));
 6911:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 6912:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 6913:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 6914: 
 6915:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 6916:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 6917:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 6918:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 6919: /*   if(fileappend(fichtm,optionfilehtm)){ */
 6920:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6921:   fclose(fichtm);
 6922:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 6923:   fclose(fichtmcov);
 6924:   fclose(ficgp);
 6925:   fclose(ficlog);
 6926:   /*------ End -----------*/
 6927: 
 6928: 
 6929:    printf("Before Current directory %s!\n",pathcd);
 6930:    if(chdir(pathcd) != 0)
 6931:     printf("Can't move to directory %s!\n",path);
 6932:   if(getcwd(pathcd,MAXLINE) > 0)
 6933:     printf("Current directory %s!\n",pathcd);
 6934:   /*strcat(plotcmd,CHARSEPARATOR);*/
 6935:   sprintf(plotcmd,"gnuplot");
 6936: #ifdef _WIN32
 6937:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 6938: #endif
 6939:   if(!stat(plotcmd,&info)){
 6940:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 6941:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 6942:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 6943:     }else
 6944:       strcpy(pplotcmd,plotcmd);
 6945: #ifdef __unix
 6946:     strcpy(plotcmd,GNUPLOTPROGRAM);
 6947:     if(!stat(plotcmd,&info)){
 6948:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 6949:     }else
 6950:       strcpy(pplotcmd,plotcmd);
 6951: #endif
 6952:   }else
 6953:     strcpy(pplotcmd,plotcmd);
 6954:   
 6955:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 6956:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 6957: 
 6958:   if((outcmd=system(plotcmd)) != 0){
 6959:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 6960:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 6961:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 6962:     if((outcmd=system(plotcmd)) != 0)
 6963:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 6964:   }
 6965:   printf(" Successful, please wait...");
 6966:   while (z[0] != 'q') {
 6967:     /* chdir(path); */
 6968:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 6969:     scanf("%s",z);
 6970: /*     if (z[0] == 'c') system("./imach"); */
 6971:     if (z[0] == 'e') {
 6972: #ifdef __APPLE__
 6973:       sprintf(pplotcmd, "open %s", optionfilehtm);
 6974: #elif __linux
 6975:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 6976: #else
 6977:       sprintf(pplotcmd, "%s", optionfilehtm);
 6978: #endif
 6979:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 6980:       system(pplotcmd);
 6981:     }
 6982:     else if (z[0] == 'g') system(plotcmd);
 6983:     else if (z[0] == 'q') exit(0);
 6984:   }
 6985:   end:
 6986:   while (z[0] != 'q') {
 6987:     printf("\nType  q for exiting: ");
 6988:     scanf("%s",z);
 6989:   }
 6990: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>