File:  [Local Repository] / imach / src / imach.c
Revision 1.186: download - view: text, annotated - select for diffs
Thu Apr 23 12:01:52 2015 UTC (9 years, 1 month ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: V1*age is working now, version 0.98q1

Some codes had been disabled in order to simplify and Vn*age was
working in the optimization phase, ie, giving correct MLE parameters,
but, as usual, outputs were not correct and program core dumped.

    1: /* $Id: imach.c,v 1.186 2015/04/23 12:01:52 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.186  2015/04/23 12:01:52  brouard
    5:   Summary: V1*age is working now, version 0.98q1
    6: 
    7:   Some codes had been disabled in order to simplify and Vn*age was
    8:   working in the optimization phase, ie, giving correct MLE parameters,
    9:   but, as usual, outputs were not correct and program core dumped.
   10: 
   11:   Revision 1.185  2015/03/11 13:26:42  brouard
   12:   Summary: Inclusion of compile and links command line for Intel Compiler
   13: 
   14:   Revision 1.184  2015/03/11 11:52:39  brouard
   15:   Summary: Back from Windows 8. Intel Compiler
   16: 
   17:   Revision 1.183  2015/03/10 20:34:32  brouard
   18:   Summary: 0.98q0, trying with directest, mnbrak fixed
   19: 
   20:   We use directest instead of original Powell test; probably no
   21:   incidence on the results, but better justifications;
   22:   We fixed Numerical Recipes mnbrak routine which was wrong and gave
   23:   wrong results.
   24: 
   25:   Revision 1.182  2015/02/12 08:19:57  brouard
   26:   Summary: Trying to keep directest which seems simpler and more general
   27:   Author: Nicolas Brouard
   28: 
   29:   Revision 1.181  2015/02/11 23:22:24  brouard
   30:   Summary: Comments on Powell added
   31: 
   32:   Author:
   33: 
   34:   Revision 1.180  2015/02/11 17:33:45  brouard
   35:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
   36: 
   37:   Revision 1.179  2015/01/04 09:57:06  brouard
   38:   Summary: back to OS/X
   39: 
   40:   Revision 1.178  2015/01/04 09:35:48  brouard
   41:   *** empty log message ***
   42: 
   43:   Revision 1.177  2015/01/03 18:40:56  brouard
   44:   Summary: Still testing ilc32 on OSX
   45: 
   46:   Revision 1.176  2015/01/03 16:45:04  brouard
   47:   *** empty log message ***
   48: 
   49:   Revision 1.175  2015/01/03 16:33:42  brouard
   50:   *** empty log message ***
   51: 
   52:   Revision 1.174  2015/01/03 16:15:49  brouard
   53:   Summary: Still in cross-compilation
   54: 
   55:   Revision 1.173  2015/01/03 12:06:26  brouard
   56:   Summary: trying to detect cross-compilation
   57: 
   58:   Revision 1.172  2014/12/27 12:07:47  brouard
   59:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   60: 
   61:   Revision 1.171  2014/12/23 13:26:59  brouard
   62:   Summary: Back from Visual C
   63: 
   64:   Still problem with utsname.h on Windows
   65: 
   66:   Revision 1.170  2014/12/23 11:17:12  brouard
   67:   Summary: Cleaning some \%% back to %%
   68: 
   69:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
   70: 
   71:   Revision 1.169  2014/12/22 23:08:31  brouard
   72:   Summary: 0.98p
   73: 
   74:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
   75: 
   76:   Revision 1.168  2014/12/22 15:17:42  brouard
   77:   Summary: update
   78: 
   79:   Revision 1.167  2014/12/22 13:50:56  brouard
   80:   Summary: Testing uname and compiler version and if compiled 32 or 64
   81: 
   82:   Testing on Linux 64
   83: 
   84:   Revision 1.166  2014/12/22 11:40:47  brouard
   85:   *** empty log message ***
   86: 
   87:   Revision 1.165  2014/12/16 11:20:36  brouard
   88:   Summary: After compiling on Visual C
   89: 
   90:   * imach.c (Module): Merging 1.61 to 1.162
   91: 
   92:   Revision 1.164  2014/12/16 10:52:11  brouard
   93:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   94: 
   95:   * imach.c (Module): Merging 1.61 to 1.162
   96: 
   97:   Revision 1.163  2014/12/16 10:30:11  brouard
   98:   * imach.c (Module): Merging 1.61 to 1.162
   99: 
  100:   Revision 1.162  2014/09/25 11:43:39  brouard
  101:   Summary: temporary backup 0.99!
  102: 
  103:   Revision 1.1  2014/09/16 11:06:58  brouard
  104:   Summary: With some code (wrong) for nlopt
  105: 
  106:   Author:
  107: 
  108:   Revision 1.161  2014/09/15 20:41:41  brouard
  109:   Summary: Problem with macro SQR on Intel compiler
  110: 
  111:   Revision 1.160  2014/09/02 09:24:05  brouard
  112:   *** empty log message ***
  113: 
  114:   Revision 1.159  2014/09/01 10:34:10  brouard
  115:   Summary: WIN32
  116:   Author: Brouard
  117: 
  118:   Revision 1.158  2014/08/27 17:11:51  brouard
  119:   *** empty log message ***
  120: 
  121:   Revision 1.157  2014/08/27 16:26:55  brouard
  122:   Summary: Preparing windows Visual studio version
  123:   Author: Brouard
  124: 
  125:   In order to compile on Visual studio, time.h is now correct and time_t
  126:   and tm struct should be used. difftime should be used but sometimes I
  127:   just make the differences in raw time format (time(&now).
  128:   Trying to suppress #ifdef LINUX
  129:   Add xdg-open for __linux in order to open default browser.
  130: 
  131:   Revision 1.156  2014/08/25 20:10:10  brouard
  132:   *** empty log message ***
  133: 
  134:   Revision 1.155  2014/08/25 18:32:34  brouard
  135:   Summary: New compile, minor changes
  136:   Author: Brouard
  137: 
  138:   Revision 1.154  2014/06/20 17:32:08  brouard
  139:   Summary: Outputs now all graphs of convergence to period prevalence
  140: 
  141:   Revision 1.153  2014/06/20 16:45:46  brouard
  142:   Summary: If 3 live state, convergence to period prevalence on same graph
  143:   Author: Brouard
  144: 
  145:   Revision 1.152  2014/06/18 17:54:09  brouard
  146:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
  147: 
  148:   Revision 1.151  2014/06/18 16:43:30  brouard
  149:   *** empty log message ***
  150: 
  151:   Revision 1.150  2014/06/18 16:42:35  brouard
  152:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
  153:   Author: brouard
  154: 
  155:   Revision 1.149  2014/06/18 15:51:14  brouard
  156:   Summary: Some fixes in parameter files errors
  157:   Author: Nicolas Brouard
  158: 
  159:   Revision 1.148  2014/06/17 17:38:48  brouard
  160:   Summary: Nothing new
  161:   Author: Brouard
  162: 
  163:   Just a new packaging for OS/X version 0.98nS
  164: 
  165:   Revision 1.147  2014/06/16 10:33:11  brouard
  166:   *** empty log message ***
  167: 
  168:   Revision 1.146  2014/06/16 10:20:28  brouard
  169:   Summary: Merge
  170:   Author: Brouard
  171: 
  172:   Merge, before building revised version.
  173: 
  174:   Revision 1.145  2014/06/10 21:23:15  brouard
  175:   Summary: Debugging with valgrind
  176:   Author: Nicolas Brouard
  177: 
  178:   Lot of changes in order to output the results with some covariates
  179:   After the Edimburgh REVES conference 2014, it seems mandatory to
  180:   improve the code.
  181:   No more memory valgrind error but a lot has to be done in order to
  182:   continue the work of splitting the code into subroutines.
  183:   Also, decodemodel has been improved. Tricode is still not
  184:   optimal. nbcode should be improved. Documentation has been added in
  185:   the source code.
  186: 
  187:   Revision 1.143  2014/01/26 09:45:38  brouard
  188:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
  189: 
  190:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  191:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
  192: 
  193:   Revision 1.142  2014/01/26 03:57:36  brouard
  194:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  195: 
  196:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  197: 
  198:   Revision 1.141  2014/01/26 02:42:01  brouard
  199:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  200: 
  201:   Revision 1.140  2011/09/02 10:37:54  brouard
  202:   Summary: times.h is ok with mingw32 now.
  203: 
  204:   Revision 1.139  2010/06/14 07:50:17  brouard
  205:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  206:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  207: 
  208:   Revision 1.138  2010/04/30 18:19:40  brouard
  209:   *** empty log message ***
  210: 
  211:   Revision 1.137  2010/04/29 18:11:38  brouard
  212:   (Module): Checking covariates for more complex models
  213:   than V1+V2. A lot of change to be done. Unstable.
  214: 
  215:   Revision 1.136  2010/04/26 20:30:53  brouard
  216:   (Module): merging some libgsl code. Fixing computation
  217:   of likelione (using inter/intrapolation if mle = 0) in order to
  218:   get same likelihood as if mle=1.
  219:   Some cleaning of code and comments added.
  220: 
  221:   Revision 1.135  2009/10/29 15:33:14  brouard
  222:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  223: 
  224:   Revision 1.134  2009/10/29 13:18:53  brouard
  225:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  226: 
  227:   Revision 1.133  2009/07/06 10:21:25  brouard
  228:   just nforces
  229: 
  230:   Revision 1.132  2009/07/06 08:22:05  brouard
  231:   Many tings
  232: 
  233:   Revision 1.131  2009/06/20 16:22:47  brouard
  234:   Some dimensions resccaled
  235: 
  236:   Revision 1.130  2009/05/26 06:44:34  brouard
  237:   (Module): Max Covariate is now set to 20 instead of 8. A
  238:   lot of cleaning with variables initialized to 0. Trying to make
  239:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  240: 
  241:   Revision 1.129  2007/08/31 13:49:27  lievre
  242:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  243: 
  244:   Revision 1.128  2006/06/30 13:02:05  brouard
  245:   (Module): Clarifications on computing e.j
  246: 
  247:   Revision 1.127  2006/04/28 18:11:50  brouard
  248:   (Module): Yes the sum of survivors was wrong since
  249:   imach-114 because nhstepm was no more computed in the age
  250:   loop. Now we define nhstepma in the age loop.
  251:   (Module): In order to speed up (in case of numerous covariates) we
  252:   compute health expectancies (without variances) in a first step
  253:   and then all the health expectancies with variances or standard
  254:   deviation (needs data from the Hessian matrices) which slows the
  255:   computation.
  256:   In the future we should be able to stop the program is only health
  257:   expectancies and graph are needed without standard deviations.
  258: 
  259:   Revision 1.126  2006/04/28 17:23:28  brouard
  260:   (Module): Yes the sum of survivors was wrong since
  261:   imach-114 because nhstepm was no more computed in the age
  262:   loop. Now we define nhstepma in the age loop.
  263:   Version 0.98h
  264: 
  265:   Revision 1.125  2006/04/04 15:20:31  lievre
  266:   Errors in calculation of health expectancies. Age was not initialized.
  267:   Forecasting file added.
  268: 
  269:   Revision 1.124  2006/03/22 17:13:53  lievre
  270:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  271:   The log-likelihood is printed in the log file
  272: 
  273:   Revision 1.123  2006/03/20 10:52:43  brouard
  274:   * imach.c (Module): <title> changed, corresponds to .htm file
  275:   name. <head> headers where missing.
  276: 
  277:   * imach.c (Module): Weights can have a decimal point as for
  278:   English (a comma might work with a correct LC_NUMERIC environment,
  279:   otherwise the weight is truncated).
  280:   Modification of warning when the covariates values are not 0 or
  281:   1.
  282:   Version 0.98g
  283: 
  284:   Revision 1.122  2006/03/20 09:45:41  brouard
  285:   (Module): Weights can have a decimal point as for
  286:   English (a comma might work with a correct LC_NUMERIC environment,
  287:   otherwise the weight is truncated).
  288:   Modification of warning when the covariates values are not 0 or
  289:   1.
  290:   Version 0.98g
  291: 
  292:   Revision 1.121  2006/03/16 17:45:01  lievre
  293:   * imach.c (Module): Comments concerning covariates added
  294: 
  295:   * imach.c (Module): refinements in the computation of lli if
  296:   status=-2 in order to have more reliable computation if stepm is
  297:   not 1 month. Version 0.98f
  298: 
  299:   Revision 1.120  2006/03/16 15:10:38  lievre
  300:   (Module): refinements in the computation of lli if
  301:   status=-2 in order to have more reliable computation if stepm is
  302:   not 1 month. Version 0.98f
  303: 
  304:   Revision 1.119  2006/03/15 17:42:26  brouard
  305:   (Module): Bug if status = -2, the loglikelihood was
  306:   computed as likelihood omitting the logarithm. Version O.98e
  307: 
  308:   Revision 1.118  2006/03/14 18:20:07  brouard
  309:   (Module): varevsij Comments added explaining the second
  310:   table of variances if popbased=1 .
  311:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  312:   (Module): Function pstamp added
  313:   (Module): Version 0.98d
  314: 
  315:   Revision 1.117  2006/03/14 17:16:22  brouard
  316:   (Module): varevsij Comments added explaining the second
  317:   table of variances if popbased=1 .
  318:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  319:   (Module): Function pstamp added
  320:   (Module): Version 0.98d
  321: 
  322:   Revision 1.116  2006/03/06 10:29:27  brouard
  323:   (Module): Variance-covariance wrong links and
  324:   varian-covariance of ej. is needed (Saito).
  325: 
  326:   Revision 1.115  2006/02/27 12:17:45  brouard
  327:   (Module): One freematrix added in mlikeli! 0.98c
  328: 
  329:   Revision 1.114  2006/02/26 12:57:58  brouard
  330:   (Module): Some improvements in processing parameter
  331:   filename with strsep.
  332: 
  333:   Revision 1.113  2006/02/24 14:20:24  brouard
  334:   (Module): Memory leaks checks with valgrind and:
  335:   datafile was not closed, some imatrix were not freed and on matrix
  336:   allocation too.
  337: 
  338:   Revision 1.112  2006/01/30 09:55:26  brouard
  339:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  340: 
  341:   Revision 1.111  2006/01/25 20:38:18  brouard
  342:   (Module): Lots of cleaning and bugs added (Gompertz)
  343:   (Module): Comments can be added in data file. Missing date values
  344:   can be a simple dot '.'.
  345: 
  346:   Revision 1.110  2006/01/25 00:51:50  brouard
  347:   (Module): Lots of cleaning and bugs added (Gompertz)
  348: 
  349:   Revision 1.109  2006/01/24 19:37:15  brouard
  350:   (Module): Comments (lines starting with a #) are allowed in data.
  351: 
  352:   Revision 1.108  2006/01/19 18:05:42  lievre
  353:   Gnuplot problem appeared...
  354:   To be fixed
  355: 
  356:   Revision 1.107  2006/01/19 16:20:37  brouard
  357:   Test existence of gnuplot in imach path
  358: 
  359:   Revision 1.106  2006/01/19 13:24:36  brouard
  360:   Some cleaning and links added in html output
  361: 
  362:   Revision 1.105  2006/01/05 20:23:19  lievre
  363:   *** empty log message ***
  364: 
  365:   Revision 1.104  2005/09/30 16:11:43  lievre
  366:   (Module): sump fixed, loop imx fixed, and simplifications.
  367:   (Module): If the status is missing at the last wave but we know
  368:   that the person is alive, then we can code his/her status as -2
  369:   (instead of missing=-1 in earlier versions) and his/her
  370:   contributions to the likelihood is 1 - Prob of dying from last
  371:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  372:   the healthy state at last known wave). Version is 0.98
  373: 
  374:   Revision 1.103  2005/09/30 15:54:49  lievre
  375:   (Module): sump fixed, loop imx fixed, and simplifications.
  376: 
  377:   Revision 1.102  2004/09/15 17:31:30  brouard
  378:   Add the possibility to read data file including tab characters.
  379: 
  380:   Revision 1.101  2004/09/15 10:38:38  brouard
  381:   Fix on curr_time
  382: 
  383:   Revision 1.100  2004/07/12 18:29:06  brouard
  384:   Add version for Mac OS X. Just define UNIX in Makefile
  385: 
  386:   Revision 1.99  2004/06/05 08:57:40  brouard
  387:   *** empty log message ***
  388: 
  389:   Revision 1.98  2004/05/16 15:05:56  brouard
  390:   New version 0.97 . First attempt to estimate force of mortality
  391:   directly from the data i.e. without the need of knowing the health
  392:   state at each age, but using a Gompertz model: log u =a + b*age .
  393:   This is the basic analysis of mortality and should be done before any
  394:   other analysis, in order to test if the mortality estimated from the
  395:   cross-longitudinal survey is different from the mortality estimated
  396:   from other sources like vital statistic data.
  397: 
  398:   The same imach parameter file can be used but the option for mle should be -3.
  399: 
  400:   Agnès, who wrote this part of the code, tried to keep most of the
  401:   former routines in order to include the new code within the former code.
  402: 
  403:   The output is very simple: only an estimate of the intercept and of
  404:   the slope with 95% confident intervals.
  405: 
  406:   Current limitations:
  407:   A) Even if you enter covariates, i.e. with the
  408:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  409:   B) There is no computation of Life Expectancy nor Life Table.
  410: 
  411:   Revision 1.97  2004/02/20 13:25:42  lievre
  412:   Version 0.96d. Population forecasting command line is (temporarily)
  413:   suppressed.
  414: 
  415:   Revision 1.96  2003/07/15 15:38:55  brouard
  416:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  417:   rewritten within the same printf. Workaround: many printfs.
  418: 
  419:   Revision 1.95  2003/07/08 07:54:34  brouard
  420:   * imach.c (Repository):
  421:   (Repository): Using imachwizard code to output a more meaningful covariance
  422:   matrix (cov(a12,c31) instead of numbers.
  423: 
  424:   Revision 1.94  2003/06/27 13:00:02  brouard
  425:   Just cleaning
  426: 
  427:   Revision 1.93  2003/06/25 16:33:55  brouard
  428:   (Module): On windows (cygwin) function asctime_r doesn't
  429:   exist so I changed back to asctime which exists.
  430:   (Module): Version 0.96b
  431: 
  432:   Revision 1.92  2003/06/25 16:30:45  brouard
  433:   (Module): On windows (cygwin) function asctime_r doesn't
  434:   exist so I changed back to asctime which exists.
  435: 
  436:   Revision 1.91  2003/06/25 15:30:29  brouard
  437:   * imach.c (Repository): Duplicated warning errors corrected.
  438:   (Repository): Elapsed time after each iteration is now output. It
  439:   helps to forecast when convergence will be reached. Elapsed time
  440:   is stamped in powell.  We created a new html file for the graphs
  441:   concerning matrix of covariance. It has extension -cov.htm.
  442: 
  443:   Revision 1.90  2003/06/24 12:34:15  brouard
  444:   (Module): Some bugs corrected for windows. Also, when
  445:   mle=-1 a template is output in file "or"mypar.txt with the design
  446:   of the covariance matrix to be input.
  447: 
  448:   Revision 1.89  2003/06/24 12:30:52  brouard
  449:   (Module): Some bugs corrected for windows. Also, when
  450:   mle=-1 a template is output in file "or"mypar.txt with the design
  451:   of the covariance matrix to be input.
  452: 
  453:   Revision 1.88  2003/06/23 17:54:56  brouard
  454:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  455: 
  456:   Revision 1.87  2003/06/18 12:26:01  brouard
  457:   Version 0.96
  458: 
  459:   Revision 1.86  2003/06/17 20:04:08  brouard
  460:   (Module): Change position of html and gnuplot routines and added
  461:   routine fileappend.
  462: 
  463:   Revision 1.85  2003/06/17 13:12:43  brouard
  464:   * imach.c (Repository): Check when date of death was earlier that
  465:   current date of interview. It may happen when the death was just
  466:   prior to the death. In this case, dh was negative and likelihood
  467:   was wrong (infinity). We still send an "Error" but patch by
  468:   assuming that the date of death was just one stepm after the
  469:   interview.
  470:   (Repository): Because some people have very long ID (first column)
  471:   we changed int to long in num[] and we added a new lvector for
  472:   memory allocation. But we also truncated to 8 characters (left
  473:   truncation)
  474:   (Repository): No more line truncation errors.
  475: 
  476:   Revision 1.84  2003/06/13 21:44:43  brouard
  477:   * imach.c (Repository): Replace "freqsummary" at a correct
  478:   place. It differs from routine "prevalence" which may be called
  479:   many times. Probs is memory consuming and must be used with
  480:   parcimony.
  481:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  482: 
  483:   Revision 1.83  2003/06/10 13:39:11  lievre
  484:   *** empty log message ***
  485: 
  486:   Revision 1.82  2003/06/05 15:57:20  brouard
  487:   Add log in  imach.c and  fullversion number is now printed.
  488: 
  489: */
  490: /*
  491:    Interpolated Markov Chain
  492: 
  493:   Short summary of the programme:
  494:   
  495:   This program computes Healthy Life Expectancies from
  496:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  497:   first survey ("cross") where individuals from different ages are
  498:   interviewed on their health status or degree of disability (in the
  499:   case of a health survey which is our main interest) -2- at least a
  500:   second wave of interviews ("longitudinal") which measure each change
  501:   (if any) in individual health status.  Health expectancies are
  502:   computed from the time spent in each health state according to a
  503:   model. More health states you consider, more time is necessary to reach the
  504:   Maximum Likelihood of the parameters involved in the model.  The
  505:   simplest model is the multinomial logistic model where pij is the
  506:   probability to be observed in state j at the second wave
  507:   conditional to be observed in state i at the first wave. Therefore
  508:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  509:   'age' is age and 'sex' is a covariate. If you want to have a more
  510:   complex model than "constant and age", you should modify the program
  511:   where the markup *Covariates have to be included here again* invites
  512:   you to do it.  More covariates you add, slower the
  513:   convergence.
  514: 
  515:   The advantage of this computer programme, compared to a simple
  516:   multinomial logistic model, is clear when the delay between waves is not
  517:   identical for each individual. Also, if a individual missed an
  518:   intermediate interview, the information is lost, but taken into
  519:   account using an interpolation or extrapolation.  
  520: 
  521:   hPijx is the probability to be observed in state i at age x+h
  522:   conditional to the observed state i at age x. The delay 'h' can be
  523:   split into an exact number (nh*stepm) of unobserved intermediate
  524:   states. This elementary transition (by month, quarter,
  525:   semester or year) is modelled as a multinomial logistic.  The hPx
  526:   matrix is simply the matrix product of nh*stepm elementary matrices
  527:   and the contribution of each individual to the likelihood is simply
  528:   hPijx.
  529: 
  530:   Also this programme outputs the covariance matrix of the parameters but also
  531:   of the life expectancies. It also computes the period (stable) prevalence. 
  532:   
  533:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  534:            Institut national d'études démographiques, Paris.
  535:   This software have been partly granted by Euro-REVES, a concerted action
  536:   from the European Union.
  537:   It is copyrighted identically to a GNU software product, ie programme and
  538:   software can be distributed freely for non commercial use. Latest version
  539:   can be accessed at http://euroreves.ined.fr/imach .
  540: 
  541:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  542:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  543:   
  544:   **********************************************************************/
  545: /*
  546:   main
  547:   read parameterfile
  548:   read datafile
  549:   concatwav
  550:   freqsummary
  551:   if (mle >= 1)
  552:     mlikeli
  553:   print results files
  554:   if mle==1 
  555:      computes hessian
  556:   read end of parameter file: agemin, agemax, bage, fage, estepm
  557:       begin-prev-date,...
  558:   open gnuplot file
  559:   open html file
  560:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  561:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  562:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  563:     freexexit2 possible for memory heap.
  564: 
  565:   h Pij x                         | pij_nom  ficrestpij
  566:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  567:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  568:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  569: 
  570:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  571:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  572:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  573:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  574:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  575: 
  576:   forecasting if prevfcast==1 prevforecast call prevalence()
  577:   health expectancies
  578:   Variance-covariance of DFLE
  579:   prevalence()
  580:    movingaverage()
  581:   varevsij() 
  582:   if popbased==1 varevsij(,popbased)
  583:   total life expectancies
  584:   Variance of period (stable) prevalence
  585:  end
  586: */
  587: 
  588: #define POWELL /* Instead of NLOPT */
  589: /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
  590: /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
  591: 
  592: #include <math.h>
  593: #include <stdio.h>
  594: #include <stdlib.h>
  595: #include <string.h>
  596: 
  597: #ifdef _WIN32
  598: #include <io.h>
  599: #include <windows.h>
  600: #include <tchar.h>
  601: #else
  602: #include <unistd.h>
  603: #endif
  604: 
  605: #include <limits.h>
  606: #include <sys/types.h>
  607: 
  608: #if defined(__GNUC__)
  609: #include <sys/utsname.h> /* Doesn't work on Windows */
  610: #endif
  611: 
  612: #include <sys/stat.h>
  613: #include <errno.h>
  614: /* extern int errno; */
  615: 
  616: /* #ifdef LINUX */
  617: /* #include <time.h> */
  618: /* #include "timeval.h" */
  619: /* #else */
  620: /* #include <sys/time.h> */
  621: /* #endif */
  622: 
  623: #include <time.h>
  624: 
  625: #ifdef GSL
  626: #include <gsl/gsl_errno.h>
  627: #include <gsl/gsl_multimin.h>
  628: #endif
  629: 
  630: 
  631: #ifdef NLOPT
  632: #include <nlopt.h>
  633: typedef struct {
  634:   double (* function)(double [] );
  635: } myfunc_data ;
  636: #endif
  637: 
  638: /* #include <libintl.h> */
  639: /* #define _(String) gettext (String) */
  640: 
  641: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  642: 
  643: #define GNUPLOTPROGRAM "gnuplot"
  644: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  645: #define FILENAMELENGTH 132
  646: 
  647: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  648: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  649: 
  650: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  651: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  652: 
  653: #define NINTERVMAX 8
  654: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  655: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  656: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  657: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
  658: #define MAXN 20000
  659: #define YEARM 12. /**< Number of months per year */
  660: #define AGESUP 130
  661: #define AGEBASE 40
  662: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
  663: #ifdef _WIN32
  664: #define DIRSEPARATOR '\\'
  665: #define CHARSEPARATOR "\\"
  666: #define ODIRSEPARATOR '/'
  667: #else
  668: #define DIRSEPARATOR '/'
  669: #define CHARSEPARATOR "/"
  670: #define ODIRSEPARATOR '\\'
  671: #endif
  672: 
  673: /* $Id: imach.c,v 1.186 2015/04/23 12:01:52 brouard Exp $ */
  674: /* $State: Exp $ */
  675: 
  676: char version[]="Imach version 0.98q1, April 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
  677: char fullversion[]="$Revision: 1.186 $ $Date: 2015/04/23 12:01:52 $"; 
  678: char strstart[80];
  679: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  680: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  681: int nvar=0, nforce=0; /* Number of variables, number of forces */
  682: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  683: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  684: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  685: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  686: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  687: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  688: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  689: int cptcov=0; /* Working variable */
  690: int npar=NPARMAX;
  691: int nlstate=2; /* Number of live states */
  692: int ndeath=1; /* Number of dead states */
  693: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  694: int popbased=0;
  695: 
  696: int *wav; /* Number of waves for this individuual 0 is possible */
  697: int maxwav=0; /* Maxim number of waves */
  698: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  699: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  700: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  701: 		   to the likelihood and the sum of weights (done by funcone)*/
  702: int mle=1, weightopt=0;
  703: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  704: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  705: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  706: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  707: int countcallfunc=0;  /* Count the number of calls to func */
  708: double jmean=1; /* Mean space between 2 waves */
  709: double **matprod2(); /* test */
  710: double **oldm, **newm, **savm; /* Working pointers to matrices */
  711: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  712: /*FILE *fic ; */ /* Used in readdata only */
  713: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  714: FILE *ficlog, *ficrespow;
  715: int globpr=0; /* Global variable for printing or not */
  716: double fretone; /* Only one call to likelihood */
  717: long ipmx=0; /* Number of contributions */
  718: double sw; /* Sum of weights */
  719: char filerespow[FILENAMELENGTH];
  720: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  721: FILE *ficresilk;
  722: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  723: FILE *ficresprobmorprev;
  724: FILE *fichtm, *fichtmcov; /* Html File */
  725: FILE *ficreseij;
  726: char filerese[FILENAMELENGTH];
  727: FILE *ficresstdeij;
  728: char fileresstde[FILENAMELENGTH];
  729: FILE *ficrescveij;
  730: char filerescve[FILENAMELENGTH];
  731: FILE  *ficresvij;
  732: char fileresv[FILENAMELENGTH];
  733: FILE  *ficresvpl;
  734: char fileresvpl[FILENAMELENGTH];
  735: char title[MAXLINE];
  736: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  737: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  738: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  739: char command[FILENAMELENGTH];
  740: int  outcmd=0;
  741: 
  742: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  743: 
  744: char filelog[FILENAMELENGTH]; /* Log file */
  745: char filerest[FILENAMELENGTH];
  746: char fileregp[FILENAMELENGTH];
  747: char popfile[FILENAMELENGTH];
  748: 
  749: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  750: 
  751: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  752: /* struct timezone tzp; */
  753: /* extern int gettimeofday(); */
  754: struct tm tml, *gmtime(), *localtime();
  755: 
  756: extern time_t time();
  757: 
  758: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  759: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  760: struct tm tm;
  761: 
  762: char strcurr[80], strfor[80];
  763: 
  764: char *endptr;
  765: long lval;
  766: double dval;
  767: 
  768: #define NR_END 1
  769: #define FREE_ARG char*
  770: #define FTOL 1.0e-10
  771: 
  772: #define NRANSI 
  773: #define ITMAX 200 
  774: 
  775: #define TOL 2.0e-4 
  776: 
  777: #define CGOLD 0.3819660 
  778: #define ZEPS 1.0e-10 
  779: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  780: 
  781: #define GOLD 1.618034 
  782: #define GLIMIT 100.0 
  783: #define TINY 1.0e-20 
  784: 
  785: static double maxarg1,maxarg2;
  786: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  787: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  788:   
  789: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  790: #define rint(a) floor(a+0.5)
  791: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
  792: #define mytinydouble 1.0e-16
  793: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
  794: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
  795: /* static double dsqrarg; */
  796: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
  797: static double sqrarg;
  798: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  799: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  800: int agegomp= AGEGOMP;
  801: 
  802: int imx; 
  803: int stepm=1;
  804: /* Stepm, step in month: minimum step interpolation*/
  805: 
  806: int estepm;
  807: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  808: 
  809: int m,nb;
  810: long *num;
  811: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  812: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  813: double **pmmij, ***probs;
  814: double *ageexmed,*agecens;
  815: double dateintmean=0;
  816: 
  817: double *weight;
  818: int **s; /* Status */
  819: double *agedc;
  820: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  821: 		  * covar=matrix(0,NCOVMAX,1,n); 
  822: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
  823: double  idx; 
  824: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  825: int *Ndum; /** Freq of modality (tricode */
  826: int **codtab; /**< codtab=imatrix(1,100,1,10); */
  827: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  828: double *lsurv, *lpop, *tpop;
  829: 
  830: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  831: double ftolhess; /**< Tolerance for computing hessian */
  832: 
  833: /**************** split *************************/
  834: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  835: {
  836:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  837:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  838:   */ 
  839:   char	*ss;				/* pointer */
  840:   int	l1=0, l2=0;				/* length counters */
  841: 
  842:   l1 = strlen(path );			/* length of path */
  843:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  844:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  845:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  846:     strcpy( name, path );		/* we got the fullname name because no directory */
  847:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  848:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  849:     /* get current working directory */
  850:     /*    extern  char* getcwd ( char *buf , int len);*/
  851: #ifdef WIN32
  852:     if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
  853: #else
  854: 	if (getcwd(dirc, FILENAME_MAX) == NULL) {
  855: #endif
  856:       return( GLOCK_ERROR_GETCWD );
  857:     }
  858:     /* got dirc from getcwd*/
  859:     printf(" DIRC = %s \n",dirc);
  860:   } else {				/* strip direcotry from path */
  861:     ss++;				/* after this, the filename */
  862:     l2 = strlen( ss );			/* length of filename */
  863:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  864:     strcpy( name, ss );		/* save file name */
  865:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  866:     dirc[l1-l2] = '\0';			/* add zero */
  867:     printf(" DIRC2 = %s \n",dirc);
  868:   }
  869:   /* We add a separator at the end of dirc if not exists */
  870:   l1 = strlen( dirc );			/* length of directory */
  871:   if( dirc[l1-1] != DIRSEPARATOR ){
  872:     dirc[l1] =  DIRSEPARATOR;
  873:     dirc[l1+1] = 0; 
  874:     printf(" DIRC3 = %s \n",dirc);
  875:   }
  876:   ss = strrchr( name, '.' );		/* find last / */
  877:   if (ss >0){
  878:     ss++;
  879:     strcpy(ext,ss);			/* save extension */
  880:     l1= strlen( name);
  881:     l2= strlen(ss)+1;
  882:     strncpy( finame, name, l1-l2);
  883:     finame[l1-l2]= 0;
  884:   }
  885: 
  886:   return( 0 );				/* we're done */
  887: }
  888: 
  889: 
  890: /******************************************/
  891: 
  892: void replace_back_to_slash(char *s, char*t)
  893: {
  894:   int i;
  895:   int lg=0;
  896:   i=0;
  897:   lg=strlen(t);
  898:   for(i=0; i<= lg; i++) {
  899:     (s[i] = t[i]);
  900:     if (t[i]== '\\') s[i]='/';
  901:   }
  902: }
  903: 
  904: char *trimbb(char *out, char *in)
  905: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  906:   char *s;
  907:   s=out;
  908:   while (*in != '\0'){
  909:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  910:       in++;
  911:     }
  912:     *out++ = *in++;
  913:   }
  914:   *out='\0';
  915:   return s;
  916: }
  917: 
  918: char *cutl(char *blocc, char *alocc, char *in, char occ)
  919: {
  920:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
  921:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  922:      gives blocc="abcdef2ghi" and alocc="j".
  923:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
  924:   */
  925:   char *s, *t;
  926:   t=in;s=in;
  927:   while ((*in != occ) && (*in != '\0')){
  928:     *alocc++ = *in++;
  929:   }
  930:   if( *in == occ){
  931:     *(alocc)='\0';
  932:     s=++in;
  933:   }
  934:  
  935:   if (s == t) {/* occ not found */
  936:     *(alocc-(in-s))='\0';
  937:     in=s;
  938:   }
  939:   while ( *in != '\0'){
  940:     *blocc++ = *in++;
  941:   }
  942: 
  943:   *blocc='\0';
  944:   return t;
  945: }
  946: char *cutv(char *blocc, char *alocc, char *in, char occ)
  947: {
  948:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  949:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
  950:      gives blocc="abcdef2ghi" and alocc="j".
  951:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
  952:   */
  953:   char *s, *t;
  954:   t=in;s=in;
  955:   while (*in != '\0'){
  956:     while( *in == occ){
  957:       *blocc++ = *in++;
  958:       s=in;
  959:     }
  960:     *blocc++ = *in++;
  961:   }
  962:   if (s == t) /* occ not found */
  963:     *(blocc-(in-s))='\0';
  964:   else
  965:     *(blocc-(in-s)-1)='\0';
  966:   in=s;
  967:   while ( *in != '\0'){
  968:     *alocc++ = *in++;
  969:   }
  970: 
  971:   *alocc='\0';
  972:   return s;
  973: }
  974: 
  975: int nbocc(char *s, char occ)
  976: {
  977:   int i,j=0;
  978:   int lg=20;
  979:   i=0;
  980:   lg=strlen(s);
  981:   for(i=0; i<= lg; i++) {
  982:   if  (s[i] == occ ) j++;
  983:   }
  984:   return j;
  985: }
  986: 
  987: /* void cutv(char *u,char *v, char*t, char occ) */
  988: /* { */
  989: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  990: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
  991: /*      gives u="abcdef2ghi" and v="j" *\/ */
  992: /*   int i,lg,j,p=0; */
  993: /*   i=0; */
  994: /*   lg=strlen(t); */
  995: /*   for(j=0; j<=lg-1; j++) { */
  996: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
  997: /*   } */
  998: 
  999: /*   for(j=0; j<p; j++) { */
 1000: /*     (u[j] = t[j]); */
 1001: /*   } */
 1002: /*      u[p]='\0'; */
 1003: 
 1004: /*    for(j=0; j<= lg; j++) { */
 1005: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 1006: /*   } */
 1007: /* } */
 1008: 
 1009: #ifdef _WIN32
 1010: char * strsep(char **pp, const char *delim)
 1011: {
 1012:   char *p, *q;
 1013:          
 1014:   if ((p = *pp) == NULL)
 1015:     return 0;
 1016:   if ((q = strpbrk (p, delim)) != NULL)
 1017:   {
 1018:     *pp = q + 1;
 1019:     *q = '\0';
 1020:   }
 1021:   else
 1022:     *pp = 0;
 1023:   return p;
 1024: }
 1025: #endif
 1026: 
 1027: /********************** nrerror ********************/
 1028: 
 1029: void nrerror(char error_text[])
 1030: {
 1031:   fprintf(stderr,"ERREUR ...\n");
 1032:   fprintf(stderr,"%s\n",error_text);
 1033:   exit(EXIT_FAILURE);
 1034: }
 1035: /*********************** vector *******************/
 1036: double *vector(int nl, int nh)
 1037: {
 1038:   double *v;
 1039:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 1040:   if (!v) nrerror("allocation failure in vector");
 1041:   return v-nl+NR_END;
 1042: }
 1043: 
 1044: /************************ free vector ******************/
 1045: void free_vector(double*v, int nl, int nh)
 1046: {
 1047:   free((FREE_ARG)(v+nl-NR_END));
 1048: }
 1049: 
 1050: /************************ivector *******************************/
 1051: int *ivector(long nl,long nh)
 1052: {
 1053:   int *v;
 1054:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 1055:   if (!v) nrerror("allocation failure in ivector");
 1056:   return v-nl+NR_END;
 1057: }
 1058: 
 1059: /******************free ivector **************************/
 1060: void free_ivector(int *v, long nl, long nh)
 1061: {
 1062:   free((FREE_ARG)(v+nl-NR_END));
 1063: }
 1064: 
 1065: /************************lvector *******************************/
 1066: long *lvector(long nl,long nh)
 1067: {
 1068:   long *v;
 1069:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 1070:   if (!v) nrerror("allocation failure in ivector");
 1071:   return v-nl+NR_END;
 1072: }
 1073: 
 1074: /******************free lvector **************************/
 1075: void free_lvector(long *v, long nl, long nh)
 1076: {
 1077:   free((FREE_ARG)(v+nl-NR_END));
 1078: }
 1079: 
 1080: /******************* imatrix *******************************/
 1081: int **imatrix(long nrl, long nrh, long ncl, long nch) 
 1082:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 1083: { 
 1084:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 1085:   int **m; 
 1086:   
 1087:   /* allocate pointers to rows */ 
 1088:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 1089:   if (!m) nrerror("allocation failure 1 in matrix()"); 
 1090:   m += NR_END; 
 1091:   m -= nrl; 
 1092:   
 1093:   
 1094:   /* allocate rows and set pointers to them */ 
 1095:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 1096:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 1097:   m[nrl] += NR_END; 
 1098:   m[nrl] -= ncl; 
 1099:   
 1100:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 1101:   
 1102:   /* return pointer to array of pointers to rows */ 
 1103:   return m; 
 1104: } 
 1105: 
 1106: /****************** free_imatrix *************************/
 1107: void free_imatrix(m,nrl,nrh,ncl,nch)
 1108:       int **m;
 1109:       long nch,ncl,nrh,nrl; 
 1110:      /* free an int matrix allocated by imatrix() */ 
 1111: { 
 1112:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 1113:   free((FREE_ARG) (m+nrl-NR_END)); 
 1114: } 
 1115: 
 1116: /******************* matrix *******************************/
 1117: double **matrix(long nrl, long nrh, long ncl, long nch)
 1118: {
 1119:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 1120:   double **m;
 1121: 
 1122:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1123:   if (!m) nrerror("allocation failure 1 in matrix()");
 1124:   m += NR_END;
 1125:   m -= nrl;
 1126: 
 1127:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1128:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1129:   m[nrl] += NR_END;
 1130:   m[nrl] -= ncl;
 1131: 
 1132:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1133:   return m;
 1134:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1135: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1136: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1137:    */
 1138: }
 1139: 
 1140: /*************************free matrix ************************/
 1141: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1142: {
 1143:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1144:   free((FREE_ARG)(m+nrl-NR_END));
 1145: }
 1146: 
 1147: /******************* ma3x *******************************/
 1148: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1149: {
 1150:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1151:   double ***m;
 1152: 
 1153:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1154:   if (!m) nrerror("allocation failure 1 in matrix()");
 1155:   m += NR_END;
 1156:   m -= nrl;
 1157: 
 1158:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1159:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1160:   m[nrl] += NR_END;
 1161:   m[nrl] -= ncl;
 1162: 
 1163:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1164: 
 1165:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1166:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1167:   m[nrl][ncl] += NR_END;
 1168:   m[nrl][ncl] -= nll;
 1169:   for (j=ncl+1; j<=nch; j++) 
 1170:     m[nrl][j]=m[nrl][j-1]+nlay;
 1171:   
 1172:   for (i=nrl+1; i<=nrh; i++) {
 1173:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1174:     for (j=ncl+1; j<=nch; j++) 
 1175:       m[i][j]=m[i][j-1]+nlay;
 1176:   }
 1177:   return m; 
 1178:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1179:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1180:   */
 1181: }
 1182: 
 1183: /*************************free ma3x ************************/
 1184: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1185: {
 1186:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1187:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1188:   free((FREE_ARG)(m+nrl-NR_END));
 1189: }
 1190: 
 1191: /*************** function subdirf ***********/
 1192: char *subdirf(char fileres[])
 1193: {
 1194:   /* Caution optionfilefiname is hidden */
 1195:   strcpy(tmpout,optionfilefiname);
 1196:   strcat(tmpout,"/"); /* Add to the right */
 1197:   strcat(tmpout,fileres);
 1198:   return tmpout;
 1199: }
 1200: 
 1201: /*************** function subdirf2 ***********/
 1202: char *subdirf2(char fileres[], char *preop)
 1203: {
 1204:   
 1205:   /* Caution optionfilefiname is hidden */
 1206:   strcpy(tmpout,optionfilefiname);
 1207:   strcat(tmpout,"/");
 1208:   strcat(tmpout,preop);
 1209:   strcat(tmpout,fileres);
 1210:   return tmpout;
 1211: }
 1212: 
 1213: /*************** function subdirf3 ***********/
 1214: char *subdirf3(char fileres[], char *preop, char *preop2)
 1215: {
 1216:   
 1217:   /* Caution optionfilefiname is hidden */
 1218:   strcpy(tmpout,optionfilefiname);
 1219:   strcat(tmpout,"/");
 1220:   strcat(tmpout,preop);
 1221:   strcat(tmpout,preop2);
 1222:   strcat(tmpout,fileres);
 1223:   return tmpout;
 1224: }
 1225: 
 1226: char *asc_diff_time(long time_sec, char ascdiff[])
 1227: {
 1228:   long sec_left, days, hours, minutes;
 1229:   days = (time_sec) / (60*60*24);
 1230:   sec_left = (time_sec) % (60*60*24);
 1231:   hours = (sec_left) / (60*60) ;
 1232:   sec_left = (sec_left) %(60*60);
 1233:   minutes = (sec_left) /60;
 1234:   sec_left = (sec_left) % (60);
 1235:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1236:   return ascdiff;
 1237: }
 1238: 
 1239: /***************** f1dim *************************/
 1240: extern int ncom; 
 1241: extern double *pcom,*xicom;
 1242: extern double (*nrfunc)(double []); 
 1243:  
 1244: double f1dim(double x) 
 1245: { 
 1246:   int j; 
 1247:   double f;
 1248:   double *xt; 
 1249:  
 1250:   xt=vector(1,ncom); 
 1251:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1252:   f=(*nrfunc)(xt); 
 1253:   free_vector(xt,1,ncom); 
 1254:   return f; 
 1255: } 
 1256: 
 1257: /*****************brent *************************/
 1258: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1259: { 
 1260:   int iter; 
 1261:   double a,b,d,etemp;
 1262:   double fu=0,fv,fw,fx;
 1263:   double ftemp=0.;
 1264:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1265:   double e=0.0; 
 1266:  
 1267:   a=(ax < cx ? ax : cx); 
 1268:   b=(ax > cx ? ax : cx); 
 1269:   x=w=v=bx; 
 1270:   fw=fv=fx=(*f)(x); 
 1271:   for (iter=1;iter<=ITMAX;iter++) { 
 1272:     xm=0.5*(a+b); 
 1273:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1274:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1275:     printf(".");fflush(stdout);
 1276:     fprintf(ficlog,".");fflush(ficlog);
 1277: #ifdef DEBUGBRENT
 1278:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1279:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1280:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1281: #endif
 1282:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1283:       *xmin=x; 
 1284:       return fx; 
 1285:     } 
 1286:     ftemp=fu;
 1287:     if (fabs(e) > tol1) { 
 1288:       r=(x-w)*(fx-fv); 
 1289:       q=(x-v)*(fx-fw); 
 1290:       p=(x-v)*q-(x-w)*r; 
 1291:       q=2.0*(q-r); 
 1292:       if (q > 0.0) p = -p; 
 1293:       q=fabs(q); 
 1294:       etemp=e; 
 1295:       e=d; 
 1296:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1297: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1298:       else { 
 1299: 	d=p/q; 
 1300: 	u=x+d; 
 1301: 	if (u-a < tol2 || b-u < tol2) 
 1302: 	  d=SIGN(tol1,xm-x); 
 1303:       } 
 1304:     } else { 
 1305:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1306:     } 
 1307:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1308:     fu=(*f)(u); 
 1309:     if (fu <= fx) { 
 1310:       if (u >= x) a=x; else b=x; 
 1311:       SHFT(v,w,x,u) 
 1312:       SHFT(fv,fw,fx,fu) 
 1313:     } else { 
 1314:       if (u < x) a=u; else b=u; 
 1315:       if (fu <= fw || w == x) { 
 1316: 	v=w; 
 1317: 	w=u; 
 1318: 	fv=fw; 
 1319: 	fw=fu; 
 1320:       } else if (fu <= fv || v == x || v == w) { 
 1321: 	v=u; 
 1322: 	fv=fu; 
 1323:       } 
 1324:     } 
 1325:   } 
 1326:   nrerror("Too many iterations in brent"); 
 1327:   *xmin=x; 
 1328:   return fx; 
 1329: } 
 1330: 
 1331: /****************** mnbrak ***********************/
 1332: 
 1333: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1334: 	    double (*func)(double)) 
 1335: { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
 1336: the downhill direction (defined by the function as evaluated at the initial points) and returns
 1337: new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 1338: values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 1339:    */
 1340:   double ulim,u,r,q, dum;
 1341:   double fu; 
 1342:  
 1343:   *fa=(*func)(*ax); 
 1344:   *fb=(*func)(*bx); 
 1345:   if (*fb > *fa) { 
 1346:     SHFT(dum,*ax,*bx,dum) 
 1347:     SHFT(dum,*fb,*fa,dum) 
 1348:   } 
 1349:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1350:   *fc=(*func)(*cx); 
 1351: #ifdef DEBUG
 1352:   printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 1353:   fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 1354: #endif
 1355:   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
 1356:     r=(*bx-*ax)*(*fb-*fc); 
 1357:     q=(*bx-*cx)*(*fb-*fa); 
 1358:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1359:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 1360:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
 1361:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
 1362:       fu=(*func)(u); 
 1363: #ifdef DEBUG
 1364:       /* f(x)=A(x-u)**2+f(u) */
 1365:       double A, fparabu; 
 1366:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 1367:       fparabu= *fa - A*(*ax-u)*(*ax-u);
 1368:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1369:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1370:       /* And thus,it can be that fu > *fc even if fparabu < *fc */
 1371:       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
 1372:         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
 1373:       /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
 1374: #endif 
 1375: #ifdef MNBRAKORIGINAL
 1376: #else
 1377:       if (fu > *fc) {
 1378: #ifdef DEBUG
 1379:       printf("mnbrak4  fu > fc \n");
 1380:       fprintf(ficlog, "mnbrak4 fu > fc\n");
 1381: #endif
 1382: 	/* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
 1383: 	/* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
 1384: 	dum=u; /* Shifting c and u */
 1385: 	u = *cx;
 1386: 	*cx = dum;
 1387: 	dum = fu;
 1388: 	fu = *fc;
 1389: 	*fc =dum;
 1390:       } else { /* end */
 1391: #ifdef DEBUG
 1392:       printf("mnbrak3  fu < fc \n");
 1393:       fprintf(ficlog, "mnbrak3 fu < fc\n");
 1394: #endif
 1395: 	dum=u; /* Shifting c and u */
 1396: 	u = *cx;
 1397: 	*cx = dum;
 1398: 	dum = fu;
 1399: 	fu = *fc;
 1400: 	*fc =dum;
 1401:       }
 1402: #endif
 1403:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 1404: #ifdef DEBUG
 1405:       printf("mnbrak2  u after c but before ulim\n");
 1406:       fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
 1407: #endif
 1408:       fu=(*func)(u); 
 1409:       if (fu < *fc) { 
 1410: #ifdef DEBUG
 1411:       printf("mnbrak2  u after c but before ulim AND fu < fc\n");
 1412:       fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
 1413: #endif
 1414: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1415: 	SHFT(*fb,*fc,fu,(*func)(u)) 
 1416:       } 
 1417:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 1418: #ifdef DEBUG
 1419:       printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
 1420:       fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
 1421: #endif
 1422:       u=ulim; 
 1423:       fu=(*func)(u); 
 1424:     } else { /* u could be left to b (if r > q parabola has a maximum) */
 1425: #ifdef DEBUG
 1426:       printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 1427:       fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 1428: #endif
 1429:       u=(*cx)+GOLD*(*cx-*bx); 
 1430:       fu=(*func)(u); 
 1431:     } /* end tests */
 1432:     SHFT(*ax,*bx,*cx,u) 
 1433:     SHFT(*fa,*fb,*fc,fu) 
 1434: #ifdef DEBUG
 1435:       printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 1436:       fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 1437: #endif
 1438:   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
 1439: } 
 1440: 
 1441: /*************** linmin ************************/
 1442: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 1443: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 1444: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 1445: the value of func at the returned location p . This is actually all accomplished by calling the
 1446: routines mnbrak and brent .*/
 1447: int ncom; 
 1448: double *pcom,*xicom;
 1449: double (*nrfunc)(double []); 
 1450:  
 1451: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1452: { 
 1453:   double brent(double ax, double bx, double cx, 
 1454: 	       double (*f)(double), double tol, double *xmin); 
 1455:   double f1dim(double x); 
 1456:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1457: 	      double *fc, double (*func)(double)); 
 1458:   int j; 
 1459:   double xx,xmin,bx,ax; 
 1460:   double fx,fb,fa;
 1461:  
 1462:   ncom=n; 
 1463:   pcom=vector(1,n); 
 1464:   xicom=vector(1,n); 
 1465:   nrfunc=func; 
 1466:   for (j=1;j<=n;j++) { 
 1467:     pcom[j]=p[j]; 
 1468:     xicom[j]=xi[j]; 
 1469:   } 
 1470:   ax=0.0; 
 1471:   xx=1.0; 
 1472:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
 1473:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
 1474: #ifdef DEBUG
 1475:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1476:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1477: #endif
 1478:   for (j=1;j<=n;j++) { 
 1479:     xi[j] *= xmin; 
 1480:     p[j] += xi[j]; 
 1481:   } 
 1482:   free_vector(xicom,1,n); 
 1483:   free_vector(pcom,1,n); 
 1484: } 
 1485: 
 1486: 
 1487: /*************** powell ************************/
 1488: /*
 1489: Minimization of a function func of n variables. Input consists of an initial starting point
 1490: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 1491: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 1492: such that failure to decrease by more than this amount on one iteration signals doneness. On
 1493: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 1494: function value at p , and iter is the number of iterations taken. The routine linmin is used.
 1495:  */
 1496: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1497: 	    double (*func)(double [])) 
 1498: { 
 1499:   void linmin(double p[], double xi[], int n, double *fret, 
 1500: 	      double (*func)(double [])); 
 1501:   int i,ibig,j; 
 1502:   double del,t,*pt,*ptt,*xit;
 1503:   double directest;
 1504:   double fp,fptt;
 1505:   double *xits;
 1506:   int niterf, itmp;
 1507: 
 1508:   pt=vector(1,n); 
 1509:   ptt=vector(1,n); 
 1510:   xit=vector(1,n); 
 1511:   xits=vector(1,n); 
 1512:   *fret=(*func)(p); 
 1513:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1514:     rcurr_time = time(NULL);  
 1515:   for (*iter=1;;++(*iter)) { 
 1516:     fp=(*fret); 
 1517:     ibig=0; 
 1518:     del=0.0; 
 1519:     rlast_time=rcurr_time;
 1520:     /* (void) gettimeofday(&curr_time,&tzp); */
 1521:     rcurr_time = time(NULL);  
 1522:     curr_time = *localtime(&rcurr_time);
 1523:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1524:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1525: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1526:    for (i=1;i<=n;i++) {
 1527:       printf(" %d %.12f",i, p[i]);
 1528:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1529:       fprintf(ficrespow," %.12lf", p[i]);
 1530:     }
 1531:     printf("\n");
 1532:     fprintf(ficlog,"\n");
 1533:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1534:     if(*iter <=3){
 1535:       tml = *localtime(&rcurr_time);
 1536:       strcpy(strcurr,asctime(&tml));
 1537:       rforecast_time=rcurr_time; 
 1538:       itmp = strlen(strcurr);
 1539:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1540: 	strcurr[itmp-1]='\0';
 1541:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1542:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1543:       for(niterf=10;niterf<=30;niterf+=10){
 1544: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1545: 	forecast_time = *localtime(&rforecast_time);
 1546: 	strcpy(strfor,asctime(&forecast_time));
 1547: 	itmp = strlen(strfor);
 1548: 	if(strfor[itmp-1]=='\n')
 1549: 	strfor[itmp-1]='\0';
 1550: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1551: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1552:       }
 1553:     }
 1554:     for (i=1;i<=n;i++) { 
 1555:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 1556:       fptt=(*fret); 
 1557: #ifdef DEBUG
 1558: 	  printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1559: 	  fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1560: #endif
 1561:       printf("%d",i);fflush(stdout);
 1562:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1563:       linmin(p,xit,n,fret,func); /* xit[n] has been loaded for direction i */
 1564:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
 1565: 				       because that direction will be replaced unless the gain del is small
 1566: 				      in comparison with the 'probable' gain, mu^2, with the last average direction.
 1567: 				      Unless the n directions are conjugate some gain in the determinant may be obtained
 1568: 				      with the new direction.
 1569: 				      */
 1570: 	del=fabs(fptt-(*fret)); 
 1571: 	ibig=i; 
 1572:       } 
 1573: #ifdef DEBUG
 1574:       printf("%d %.12e",i,(*fret));
 1575:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1576:       for (j=1;j<=n;j++) {
 1577: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1578: 	printf(" x(%d)=%.12e",j,xit[j]);
 1579: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1580:       }
 1581:       for(j=1;j<=n;j++) {
 1582: 	printf(" p(%d)=%.12e",j,p[j]);
 1583: 	fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 1584:       }
 1585:       printf("\n");
 1586:       fprintf(ficlog,"\n");
 1587: #endif
 1588:     } /* end i */
 1589:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
 1590: #ifdef DEBUG
 1591:       int k[2],l;
 1592:       k[0]=1;
 1593:       k[1]=-1;
 1594:       printf("Max: %.12e",(*func)(p));
 1595:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1596:       for (j=1;j<=n;j++) {
 1597: 	printf(" %.12e",p[j]);
 1598: 	fprintf(ficlog," %.12e",p[j]);
 1599:       }
 1600:       printf("\n");
 1601:       fprintf(ficlog,"\n");
 1602:       for(l=0;l<=1;l++) {
 1603: 	for (j=1;j<=n;j++) {
 1604: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1605: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1606: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1607: 	}
 1608: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1609: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1610:       }
 1611: #endif
 1612: 
 1613: 
 1614:       free_vector(xit,1,n); 
 1615:       free_vector(xits,1,n); 
 1616:       free_vector(ptt,1,n); 
 1617:       free_vector(pt,1,n); 
 1618:       return; 
 1619:     } 
 1620:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1621:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 1622:       ptt[j]=2.0*p[j]-pt[j]; 
 1623:       xit[j]=p[j]-pt[j]; 
 1624:       pt[j]=p[j]; 
 1625:     } 
 1626:     fptt=(*func)(ptt); /* f_3 */
 1627:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1628:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 1629:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1630:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 1631:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 1632:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1633:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
 1634:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1635: #ifdef NRCORIGINAL
 1636:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 1637: #else
 1638:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
 1639:       t= t- del*SQR(fp-fptt);
 1640: #endif
 1641:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
 1642: #ifdef DEBUG
 1643:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1644:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1645:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1646: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1647:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1648: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1649:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1650:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1651: #endif
 1652: #ifdef POWELLORIGINAL
 1653:       if (t < 0.0) { /* Then we use it for new direction */
 1654: #else
 1655:       if (directest*t < 0.0) { /* Contradiction between both tests */
 1656:       printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
 1657:       printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1658:       fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
 1659:       fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1660:     } 
 1661:       if (directest < 0.0) { /* Then we use it for new direction */
 1662: #endif
 1663: 	linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
 1664: 	for (j=1;j<=n;j++) { 
 1665: 	  xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
 1666: 	  xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
 1667: 	}
 1668: 	printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1669: 	fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1670: 
 1671: #ifdef DEBUG
 1672: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1673: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1674: 	for(j=1;j<=n;j++){
 1675: 	  printf(" %.12e",xit[j]);
 1676: 	  fprintf(ficlog," %.12e",xit[j]);
 1677: 	}
 1678: 	printf("\n");
 1679: 	fprintf(ficlog,"\n");
 1680: #endif
 1681:       } /* end of t negative */
 1682:     } /* end if (fptt < fp)  */
 1683:   } 
 1684: } 
 1685: 
 1686: /**** Prevalence limit (stable or period prevalence)  ****************/
 1687: 
 1688: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1689: {
 1690:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1691:      matrix by transitions matrix until convergence is reached */
 1692:   
 1693:   int i, ii,j,k;
 1694:   double min, max, maxmin, maxmax,sumnew=0.;
 1695:   /* double **matprod2(); */ /* test */
 1696:   double **out, cov[NCOVMAX+1], **pmij();
 1697:   double **newm;
 1698:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1699:   
 1700:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1701:     for (j=1;j<=nlstate+ndeath;j++){
 1702:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1703:     }
 1704:   
 1705:   cov[1]=1.;
 1706:   
 1707:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1708:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1709:     newm=savm;
 1710:     /* Covariates have to be included here again */
 1711:     cov[2]=agefin;
 1712:     
 1713:     for (k=1; k<=cptcovn;k++) {
 1714:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1715:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 1716:     }
 1717:     /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1718:     for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
 1719:     for (k=1; k<=cptcovprod;k++) /* Useless */
 1720:       cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1721:     
 1722:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1723:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1724:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1725:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1726:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1727:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1728:     
 1729:     savm=oldm;
 1730:     oldm=newm;
 1731:     maxmax=0.;
 1732:     for(j=1;j<=nlstate;j++){
 1733:       min=1.;
 1734:       max=0.;
 1735:       for(i=1; i<=nlstate; i++) {
 1736: 	sumnew=0;
 1737: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1738: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1739:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1740: 	max=FMAX(max,prlim[i][j]);
 1741: 	min=FMIN(min,prlim[i][j]);
 1742:       }
 1743:       maxmin=max-min;
 1744:       maxmax=FMAX(maxmax,maxmin);
 1745:     } /* j loop */
 1746:     if(maxmax < ftolpl){
 1747:       return prlim;
 1748:     }
 1749:   } /* age loop */
 1750:   return prlim; /* should not reach here */
 1751: }
 1752: 
 1753: /*************** transition probabilities ***************/ 
 1754: 
 1755: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1756: {
 1757:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1758:      computes the probability to be observed in state j being in state i by appying the
 1759:      model to the ncovmodel covariates (including constant and age).
 1760:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1761:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1762:      ncth covariate in the global vector x is given by the formula:
 1763:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1764:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1765:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1766:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1767:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1768:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1769:   */
 1770:   double s1, lnpijopii;
 1771:   /*double t34;*/
 1772:   int i,j, nc, ii, jj;
 1773: 
 1774:     for(i=1; i<= nlstate; i++){
 1775:       for(j=1; j<i;j++){
 1776: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1777: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1778: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1779: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1780: 	}
 1781: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1782: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1783:       }
 1784:       for(j=i+1; j<=nlstate+ndeath;j++){
 1785: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1786: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 1787: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 1788: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 1789: 	}
 1790: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1791:       }
 1792:     }
 1793:     
 1794:     for(i=1; i<= nlstate; i++){
 1795:       s1=0;
 1796:       for(j=1; j<i; j++){
 1797: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1798: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1799:       }
 1800:       for(j=i+1; j<=nlstate+ndeath; j++){
 1801: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 1802: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 1803:       }
 1804:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 1805:       ps[i][i]=1./(s1+1.);
 1806:       /* Computing other pijs */
 1807:       for(j=1; j<i; j++)
 1808: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1809:       for(j=i+1; j<=nlstate+ndeath; j++)
 1810: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 1811:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1812:     } /* end i */
 1813:     
 1814:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1815:       for(jj=1; jj<= nlstate+ndeath; jj++){
 1816: 	ps[ii][jj]=0;
 1817: 	ps[ii][ii]=1;
 1818:       }
 1819:     }
 1820:     
 1821:     
 1822:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 1823:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 1824:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 1825:     /*   } */
 1826:     /*   printf("\n "); */
 1827:     /* } */
 1828:     /* printf("\n ");printf("%lf ",cov[2]);*/
 1829:     /*
 1830:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1831:       goto end;*/
 1832:     return ps;
 1833: }
 1834: 
 1835: /**************** Product of 2 matrices ******************/
 1836: 
 1837: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 1838: {
 1839:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1840:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1841:   /* in, b, out are matrice of pointers which should have been initialized 
 1842:      before: only the contents of out is modified. The function returns
 1843:      a pointer to pointers identical to out */
 1844:   int i, j, k;
 1845:   for(i=nrl; i<= nrh; i++)
 1846:     for(k=ncolol; k<=ncoloh; k++){
 1847:       out[i][k]=0.;
 1848:       for(j=ncl; j<=nch; j++)
 1849:   	out[i][k] +=in[i][j]*b[j][k];
 1850:     }
 1851:   return out;
 1852: }
 1853: 
 1854: 
 1855: /************* Higher Matrix Product ***************/
 1856: 
 1857: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1858: {
 1859:   /* Computes the transition matrix starting at age 'age' over 
 1860:      'nhstepm*hstepm*stepm' months (i.e. until
 1861:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1862:      nhstepm*hstepm matrices. 
 1863:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1864:      (typically every 2 years instead of every month which is too big 
 1865:      for the memory).
 1866:      Model is determined by parameters x and covariates have to be 
 1867:      included manually here. 
 1868: 
 1869:      */
 1870: 
 1871:   int i, j, d, h, k;
 1872:   double **out, cov[NCOVMAX+1];
 1873:   double **newm;
 1874: 
 1875:   /* Hstepm could be zero and should return the unit matrix */
 1876:   for (i=1;i<=nlstate+ndeath;i++)
 1877:     for (j=1;j<=nlstate+ndeath;j++){
 1878:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1879:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1880:     }
 1881:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1882:   for(h=1; h <=nhstepm; h++){
 1883:     for(d=1; d <=hstepm; d++){
 1884:       newm=savm;
 1885:       /* Covariates have to be included here again */
 1886:       cov[1]=1.;
 1887:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1888:       for (k=1; k<=cptcovn;k++) 
 1889: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1890:       for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
 1891: 	/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1892: 	cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
 1893:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 1894: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1895: 
 1896: 
 1897:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1898:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1899:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1900: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1901:       savm=oldm;
 1902:       oldm=newm;
 1903:     }
 1904:     for(i=1; i<=nlstate+ndeath; i++)
 1905:       for(j=1;j<=nlstate+ndeath;j++) {
 1906: 	po[i][j][h]=newm[i][j];
 1907: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 1908:       }
 1909:     /*printf("h=%d ",h);*/
 1910:   } /* end h */
 1911: /*     printf("\n H=%d \n",h); */
 1912:   return po;
 1913: }
 1914: 
 1915: #ifdef NLOPT
 1916:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 1917:   double fret;
 1918:   double *xt;
 1919:   int j;
 1920:   myfunc_data *d2 = (myfunc_data *) pd;
 1921: /* xt = (p1-1); */
 1922:   xt=vector(1,n); 
 1923:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 1924: 
 1925:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 1926:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 1927:   printf("Function = %.12lf ",fret);
 1928:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 1929:   printf("\n");
 1930:  free_vector(xt,1,n);
 1931:   return fret;
 1932: }
 1933: #endif
 1934: 
 1935: /*************** log-likelihood *************/
 1936: double func( double *x)
 1937: {
 1938:   int i, ii, j, k, mi, d, kk;
 1939:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 1940:   double **out;
 1941:   double sw; /* Sum of weights */
 1942:   double lli; /* Individual log likelihood */
 1943:   int s1, s2;
 1944:   double bbh, survp;
 1945:   long ipmx;
 1946:   /*extern weight */
 1947:   /* We are differentiating ll according to initial status */
 1948:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1949:   /*for(i=1;i<imx;i++) 
 1950:     printf(" %d\n",s[4][i]);
 1951:   */
 1952: 
 1953:   ++countcallfunc;
 1954: 
 1955:   cov[1]=1.;
 1956: 
 1957:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1958: 
 1959:   if(mle==1){
 1960:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1961:       /* Computes the values of the ncovmodel covariates of the model
 1962: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 1963: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 1964: 	 to be observed in j being in i according to the model.
 1965:        */
 1966:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 1967: 	cov[2+k]=covar[Tvar[k]][i];
 1968:       }
 1969:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 1970: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 1971: 	 has been calculated etc */
 1972:       for(mi=1; mi<= wav[i]-1; mi++){
 1973: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1974: 	  for (j=1;j<=nlstate+ndeath;j++){
 1975: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1976: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1977: 	  }
 1978: 	for(d=0; d<dh[mi][i]; d++){
 1979: 	  newm=savm;
 1980: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1981: 	  for (kk=1; kk<=cptcovage;kk++) {
 1982: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 1983: 	  }
 1984: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1985: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1986: 	  savm=oldm;
 1987: 	  oldm=newm;
 1988: 	} /* end mult */
 1989:       
 1990: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1991: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 1992: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1993: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1994: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1995: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1996: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 1997: 	 * probability in order to take into account the bias as a fraction of the way
 1998: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 1999: 	 * -stepm/2 to stepm/2 .
 2000: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 2001: 	 * For stepm > 1 the results are less biased than in previous versions. 
 2002: 	 */
 2003: 	s1=s[mw[mi][i]][i];
 2004: 	s2=s[mw[mi+1][i]][i];
 2005: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2006: 	/* bias bh is positive if real duration
 2007: 	 * is higher than the multiple of stepm and negative otherwise.
 2008: 	 */
 2009: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 2010: 	if( s2 > nlstate){ 
 2011: 	  /* i.e. if s2 is a death state and if the date of death is known 
 2012: 	     then the contribution to the likelihood is the probability to 
 2013: 	     die between last step unit time and current  step unit time, 
 2014: 	     which is also equal to probability to die before dh 
 2015: 	     minus probability to die before dh-stepm . 
 2016: 	     In version up to 0.92 likelihood was computed
 2017: 	as if date of death was unknown. Death was treated as any other
 2018: 	health state: the date of the interview describes the actual state
 2019: 	and not the date of a change in health state. The former idea was
 2020: 	to consider that at each interview the state was recorded
 2021: 	(healthy, disable or death) and IMaCh was corrected; but when we
 2022: 	introduced the exact date of death then we should have modified
 2023: 	the contribution of an exact death to the likelihood. This new
 2024: 	contribution is smaller and very dependent of the step unit
 2025: 	stepm. It is no more the probability to die between last interview
 2026: 	and month of death but the probability to survive from last
 2027: 	interview up to one month before death multiplied by the
 2028: 	probability to die within a month. Thanks to Chris
 2029: 	Jackson for correcting this bug.  Former versions increased
 2030: 	mortality artificially. The bad side is that we add another loop
 2031: 	which slows down the processing. The difference can be up to 10%
 2032: 	lower mortality.
 2033: 	  */
 2034: 	/* If, at the beginning of the maximization mostly, the
 2035: 	   cumulative probability or probability to be dead is
 2036: 	   constant (ie = 1) over time d, the difference is equal to
 2037: 	   0.  out[s1][3] = savm[s1][3]: probability, being at state
 2038: 	   s1 at precedent wave, to be dead a month before current
 2039: 	   wave is equal to probability, being at state s1 at
 2040: 	   precedent wave, to be dead at mont of the current
 2041: 	   wave. Then the observed probability (that this person died)
 2042: 	   is null according to current estimated parameter. In fact,
 2043: 	   it should be very low but not zero otherwise the log go to
 2044: 	   infinity.
 2045: 	*/
 2046: /* #ifdef INFINITYORIGINAL */
 2047: /* 	    lli=log(out[s1][s2] - savm[s1][s2]); */
 2048: /* #else */
 2049: /* 	  if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
 2050: /* 	    lli=log(mytinydouble); */
 2051: /* 	  else */
 2052: /* 	    lli=log(out[s1][s2] - savm[s1][s2]); */
 2053: /* #endif */
 2054: 	    lli=log(out[s1][s2] - savm[s1][s2]);
 2055: 
 2056: 	} else if  (s2==-2) {
 2057: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 2058: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2059: 	  /*survp += out[s1][j]; */
 2060: 	  lli= log(survp);
 2061: 	}
 2062: 	
 2063:  	else if  (s2==-4) { 
 2064: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 2065: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2066:  	  lli= log(survp); 
 2067:  	} 
 2068: 
 2069:  	else if  (s2==-5) { 
 2070:  	  for (j=1,survp=0. ; j<=2; j++)  
 2071: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2072:  	  lli= log(survp); 
 2073:  	} 
 2074: 	
 2075: 	else{
 2076: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2077: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 2078: 	} 
 2079: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 2080: 	/*if(lli ==000.0)*/
 2081: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 2082:   	ipmx +=1;
 2083: 	sw += weight[i];
 2084: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2085: 	/* if (lli < log(mytinydouble)){ */
 2086: 	/*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
 2087: 	/*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
 2088: 	/* } */
 2089:       } /* end of wave */
 2090:     } /* end of individual */
 2091:   }  else if(mle==2){
 2092:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2093:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2094:       for(mi=1; mi<= wav[i]-1; mi++){
 2095: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2096: 	  for (j=1;j<=nlstate+ndeath;j++){
 2097: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2098: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2099: 	  }
 2100: 	for(d=0; d<=dh[mi][i]; d++){
 2101: 	  newm=savm;
 2102: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2103: 	  for (kk=1; kk<=cptcovage;kk++) {
 2104: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2105: 	  }
 2106: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2107: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2108: 	  savm=oldm;
 2109: 	  oldm=newm;
 2110: 	} /* end mult */
 2111:       
 2112: 	s1=s[mw[mi][i]][i];
 2113: 	s2=s[mw[mi+1][i]][i];
 2114: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2115: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2116: 	ipmx +=1;
 2117: 	sw += weight[i];
 2118: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2119:       } /* end of wave */
 2120:     } /* end of individual */
 2121:   }  else if(mle==3){  /* exponential inter-extrapolation */
 2122:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2123:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2124:       for(mi=1; mi<= wav[i]-1; mi++){
 2125: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2126: 	  for (j=1;j<=nlstate+ndeath;j++){
 2127: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2128: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2129: 	  }
 2130: 	for(d=0; d<dh[mi][i]; d++){
 2131: 	  newm=savm;
 2132: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2133: 	  for (kk=1; kk<=cptcovage;kk++) {
 2134: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2135: 	  }
 2136: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2137: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2138: 	  savm=oldm;
 2139: 	  oldm=newm;
 2140: 	} /* end mult */
 2141:       
 2142: 	s1=s[mw[mi][i]][i];
 2143: 	s2=s[mw[mi+1][i]][i];
 2144: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2145: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2146: 	ipmx +=1;
 2147: 	sw += weight[i];
 2148: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2149:       } /* end of wave */
 2150:     } /* end of individual */
 2151:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 2152:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2153:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2154:       for(mi=1; mi<= wav[i]-1; mi++){
 2155: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2156: 	  for (j=1;j<=nlstate+ndeath;j++){
 2157: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2158: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2159: 	  }
 2160: 	for(d=0; d<dh[mi][i]; d++){
 2161: 	  newm=savm;
 2162: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2163: 	  for (kk=1; kk<=cptcovage;kk++) {
 2164: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2165: 	  }
 2166: 	
 2167: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2168: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2169: 	  savm=oldm;
 2170: 	  oldm=newm;
 2171: 	} /* end mult */
 2172:       
 2173: 	s1=s[mw[mi][i]][i];
 2174: 	s2=s[mw[mi+1][i]][i];
 2175: 	if( s2 > nlstate){ 
 2176: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 2177: 	}else{
 2178: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2179: 	}
 2180: 	ipmx +=1;
 2181: 	sw += weight[i];
 2182: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2183: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2184:       } /* end of wave */
 2185:     } /* end of individual */
 2186:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 2187:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2188:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2189:       for(mi=1; mi<= wav[i]-1; mi++){
 2190: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2191: 	  for (j=1;j<=nlstate+ndeath;j++){
 2192: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2193: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2194: 	  }
 2195: 	for(d=0; d<dh[mi][i]; d++){
 2196: 	  newm=savm;
 2197: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2198: 	  for (kk=1; kk<=cptcovage;kk++) {
 2199: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2200: 	  }
 2201: 	
 2202: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2203: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2204: 	  savm=oldm;
 2205: 	  oldm=newm;
 2206: 	} /* end mult */
 2207:       
 2208: 	s1=s[mw[mi][i]][i];
 2209: 	s2=s[mw[mi+1][i]][i];
 2210: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2211: 	ipmx +=1;
 2212: 	sw += weight[i];
 2213: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2214: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 2215:       } /* end of wave */
 2216:     } /* end of individual */
 2217:   } /* End of if */
 2218:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2219:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2220:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2221:   return -l;
 2222: }
 2223: 
 2224: /*************** log-likelihood *************/
 2225: double funcone( double *x)
 2226: {
 2227:   /* Same as likeli but slower because of a lot of printf and if */
 2228:   int i, ii, j, k, mi, d, kk;
 2229:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2230:   double **out;
 2231:   double lli; /* Individual log likelihood */
 2232:   double llt;
 2233:   int s1, s2;
 2234:   double bbh, survp;
 2235:   /*extern weight */
 2236:   /* We are differentiating ll according to initial status */
 2237:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2238:   /*for(i=1;i<imx;i++) 
 2239:     printf(" %d\n",s[4][i]);
 2240:   */
 2241:   cov[1]=1.;
 2242: 
 2243:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2244: 
 2245:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2246:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 2247:     for(mi=1; mi<= wav[i]-1; mi++){
 2248:       for (ii=1;ii<=nlstate+ndeath;ii++)
 2249: 	for (j=1;j<=nlstate+ndeath;j++){
 2250: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2251: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2252: 	}
 2253:       for(d=0; d<dh[mi][i]; d++){
 2254: 	newm=savm;
 2255: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2256: 	for (kk=1; kk<=cptcovage;kk++) {
 2257: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 2258: 	}
 2259: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 2260: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2261: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2262: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 2263: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 2264: 	savm=oldm;
 2265: 	oldm=newm;
 2266:       } /* end mult */
 2267:       
 2268:       s1=s[mw[mi][i]][i];
 2269:       s2=s[mw[mi+1][i]][i];
 2270:       bbh=(double)bh[mi][i]/(double)stepm; 
 2271:       /* bias is positive if real duration
 2272:        * is higher than the multiple of stepm and negative otherwise.
 2273:        */
 2274:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 2275: 	lli=log(out[s1][s2] - savm[s1][s2]);
 2276:       } else if  (s2==-2) {
 2277: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 2278: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2279: 	lli= log(survp);
 2280:       }else if (mle==1){
 2281: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2282:       } else if(mle==2){
 2283: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2284:       } else if(mle==3){  /* exponential inter-extrapolation */
 2285: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2286:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2287: 	lli=log(out[s1][s2]); /* Original formula */
 2288:       } else{  /* mle=0 back to 1 */
 2289: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2290: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2291:       } /* End of if */
 2292:       ipmx +=1;
 2293:       sw += weight[i];
 2294:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2295:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2296:       if(globpr){
 2297: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2298:  %11.6f %11.6f %11.6f ", \
 2299: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2300: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2301: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2302: 	  llt +=ll[k]*gipmx/gsw;
 2303: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2304: 	}
 2305: 	fprintf(ficresilk," %10.6f\n", -llt);
 2306:       }
 2307:     } /* end of wave */
 2308:   } /* end of individual */
 2309:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2310:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2311:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2312:   if(globpr==0){ /* First time we count the contributions and weights */
 2313:     gipmx=ipmx;
 2314:     gsw=sw;
 2315:   }
 2316:   return -l;
 2317: }
 2318: 
 2319: 
 2320: /*************** function likelione ***********/
 2321: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2322: {
 2323:   /* This routine should help understanding what is done with 
 2324:      the selection of individuals/waves and
 2325:      to check the exact contribution to the likelihood.
 2326:      Plotting could be done.
 2327:    */
 2328:   int k;
 2329: 
 2330:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2331:     strcpy(fileresilk,"ilk"); 
 2332:     strcat(fileresilk,fileres);
 2333:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2334:       printf("Problem with resultfile: %s\n", fileresilk);
 2335:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2336:     }
 2337:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2338:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2339:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2340:     for(k=1; k<=nlstate; k++) 
 2341:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2342:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2343:   }
 2344: 
 2345:   *fretone=(*funcone)(p);
 2346:   if(*globpri !=0){
 2347:     fclose(ficresilk);
 2348:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2349:     fflush(fichtm); 
 2350:   } 
 2351:   return;
 2352: }
 2353: 
 2354: 
 2355: /*********** Maximum Likelihood Estimation ***************/
 2356: 
 2357: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2358: {
 2359:   int i,j, iter=0;
 2360:   double **xi;
 2361:   double fret;
 2362:   double fretone; /* Only one call to likelihood */
 2363:   /*  char filerespow[FILENAMELENGTH];*/
 2364: 
 2365: #ifdef NLOPT
 2366:   int creturn;
 2367:   nlopt_opt opt;
 2368:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 2369:   double *lb;
 2370:   double minf; /* the minimum objective value, upon return */
 2371:   double * p1; /* Shifted parameters from 0 instead of 1 */
 2372:   myfunc_data dinst, *d = &dinst;
 2373: #endif
 2374: 
 2375: 
 2376:   xi=matrix(1,npar,1,npar);
 2377:   for (i=1;i<=npar;i++)
 2378:     for (j=1;j<=npar;j++)
 2379:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2380:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2381:   strcpy(filerespow,"pow"); 
 2382:   strcat(filerespow,fileres);
 2383:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2384:     printf("Problem with resultfile: %s\n", filerespow);
 2385:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2386:   }
 2387:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2388:   for (i=1;i<=nlstate;i++)
 2389:     for(j=1;j<=nlstate+ndeath;j++)
 2390:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2391:   fprintf(ficrespow,"\n");
 2392: #ifdef POWELL
 2393:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2394: #endif
 2395: 
 2396: #ifdef NLOPT
 2397: #ifdef NEWUOA
 2398:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 2399: #else
 2400:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 2401: #endif
 2402:   lb=vector(0,npar-1);
 2403:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 2404:   nlopt_set_lower_bounds(opt, lb);
 2405:   nlopt_set_initial_step1(opt, 0.1);
 2406:   
 2407:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 2408:   d->function = func;
 2409:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 2410:   nlopt_set_min_objective(opt, myfunc, d);
 2411:   nlopt_set_xtol_rel(opt, ftol);
 2412:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 2413:     printf("nlopt failed! %d\n",creturn); 
 2414:   }
 2415:   else {
 2416:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 2417:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 2418:     iter=1; /* not equal */
 2419:   }
 2420:   nlopt_destroy(opt);
 2421: #endif
 2422:   free_matrix(xi,1,npar,1,npar);
 2423:   fclose(ficrespow);
 2424:   printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2425:   fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2426:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2427: 
 2428: }
 2429: 
 2430: /**** Computes Hessian and covariance matrix ***/
 2431: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2432: {
 2433:   double  **a,**y,*x,pd;
 2434:   double **hess;
 2435:   int i, j;
 2436:   int *indx;
 2437: 
 2438:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2439:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2440:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2441:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2442:   double gompertz(double p[]);
 2443:   hess=matrix(1,npar,1,npar);
 2444: 
 2445:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2446:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2447:   for (i=1;i<=npar;i++){
 2448:     printf("%d",i);fflush(stdout);
 2449:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2450:    
 2451:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2452:     
 2453:     /*  printf(" %f ",p[i]);
 2454: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2455:   }
 2456:   
 2457:   for (i=1;i<=npar;i++) {
 2458:     for (j=1;j<=npar;j++)  {
 2459:       if (j>i) { 
 2460: 	printf(".%d%d",i,j);fflush(stdout);
 2461: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2462: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2463: 	
 2464: 	hess[j][i]=hess[i][j];    
 2465: 	/*printf(" %lf ",hess[i][j]);*/
 2466:       }
 2467:     }
 2468:   }
 2469:   printf("\n");
 2470:   fprintf(ficlog,"\n");
 2471: 
 2472:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2473:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2474:   
 2475:   a=matrix(1,npar,1,npar);
 2476:   y=matrix(1,npar,1,npar);
 2477:   x=vector(1,npar);
 2478:   indx=ivector(1,npar);
 2479:   for (i=1;i<=npar;i++)
 2480:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2481:   ludcmp(a,npar,indx,&pd);
 2482: 
 2483:   for (j=1;j<=npar;j++) {
 2484:     for (i=1;i<=npar;i++) x[i]=0;
 2485:     x[j]=1;
 2486:     lubksb(a,npar,indx,x);
 2487:     for (i=1;i<=npar;i++){ 
 2488:       matcov[i][j]=x[i];
 2489:     }
 2490:   }
 2491: 
 2492:   printf("\n#Hessian matrix#\n");
 2493:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2494:   for (i=1;i<=npar;i++) { 
 2495:     for (j=1;j<=npar;j++) { 
 2496:       printf("%.3e ",hess[i][j]);
 2497:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2498:     }
 2499:     printf("\n");
 2500:     fprintf(ficlog,"\n");
 2501:   }
 2502: 
 2503:   /* Recompute Inverse */
 2504:   for (i=1;i<=npar;i++)
 2505:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2506:   ludcmp(a,npar,indx,&pd);
 2507: 
 2508:   /*  printf("\n#Hessian matrix recomputed#\n");
 2509: 
 2510:   for (j=1;j<=npar;j++) {
 2511:     for (i=1;i<=npar;i++) x[i]=0;
 2512:     x[j]=1;
 2513:     lubksb(a,npar,indx,x);
 2514:     for (i=1;i<=npar;i++){ 
 2515:       y[i][j]=x[i];
 2516:       printf("%.3e ",y[i][j]);
 2517:       fprintf(ficlog,"%.3e ",y[i][j]);
 2518:     }
 2519:     printf("\n");
 2520:     fprintf(ficlog,"\n");
 2521:   }
 2522:   */
 2523: 
 2524:   free_matrix(a,1,npar,1,npar);
 2525:   free_matrix(y,1,npar,1,npar);
 2526:   free_vector(x,1,npar);
 2527:   free_ivector(indx,1,npar);
 2528:   free_matrix(hess,1,npar,1,npar);
 2529: 
 2530: 
 2531: }
 2532: 
 2533: /*************** hessian matrix ****************/
 2534: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2535: {
 2536:   int i;
 2537:   int l=1, lmax=20;
 2538:   double k1,k2;
 2539:   double p2[MAXPARM+1]; /* identical to x */
 2540:   double res;
 2541:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2542:   double fx;
 2543:   int k=0,kmax=10;
 2544:   double l1;
 2545: 
 2546:   fx=func(x);
 2547:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2548:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2549:     l1=pow(10,l);
 2550:     delts=delt;
 2551:     for(k=1 ; k <kmax; k=k+1){
 2552:       delt = delta*(l1*k);
 2553:       p2[theta]=x[theta] +delt;
 2554:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2555:       p2[theta]=x[theta]-delt;
 2556:       k2=func(p2)-fx;
 2557:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2558:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2559:       
 2560: #ifdef DEBUGHESS
 2561:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2562:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2563: #endif
 2564:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2565:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2566: 	k=kmax;
 2567:       }
 2568:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2569: 	k=kmax; l=lmax*10;
 2570:       }
 2571:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2572: 	delts=delt;
 2573:       }
 2574:     }
 2575:   }
 2576:   delti[theta]=delts;
 2577:   return res; 
 2578:   
 2579: }
 2580: 
 2581: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2582: {
 2583:   int i;
 2584:   int l=1, lmax=20;
 2585:   double k1,k2,k3,k4,res,fx;
 2586:   double p2[MAXPARM+1];
 2587:   int k;
 2588: 
 2589:   fx=func(x);
 2590:   for (k=1; k<=2; k++) {
 2591:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2592:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2593:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2594:     k1=func(p2)-fx;
 2595:   
 2596:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2597:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2598:     k2=func(p2)-fx;
 2599:   
 2600:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2601:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2602:     k3=func(p2)-fx;
 2603:   
 2604:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2605:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2606:     k4=func(p2)-fx;
 2607:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2608: #ifdef DEBUG
 2609:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2610:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2611: #endif
 2612:   }
 2613:   return res;
 2614: }
 2615: 
 2616: /************** Inverse of matrix **************/
 2617: void ludcmp(double **a, int n, int *indx, double *d) 
 2618: { 
 2619:   int i,imax,j,k; 
 2620:   double big,dum,sum,temp; 
 2621:   double *vv; 
 2622:  
 2623:   vv=vector(1,n); 
 2624:   *d=1.0; 
 2625:   for (i=1;i<=n;i++) { 
 2626:     big=0.0; 
 2627:     for (j=1;j<=n;j++) 
 2628:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2629:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2630:     vv[i]=1.0/big; 
 2631:   } 
 2632:   for (j=1;j<=n;j++) { 
 2633:     for (i=1;i<j;i++) { 
 2634:       sum=a[i][j]; 
 2635:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2636:       a[i][j]=sum; 
 2637:     } 
 2638:     big=0.0; 
 2639:     for (i=j;i<=n;i++) { 
 2640:       sum=a[i][j]; 
 2641:       for (k=1;k<j;k++) 
 2642: 	sum -= a[i][k]*a[k][j]; 
 2643:       a[i][j]=sum; 
 2644:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2645: 	big=dum; 
 2646: 	imax=i; 
 2647:       } 
 2648:     } 
 2649:     if (j != imax) { 
 2650:       for (k=1;k<=n;k++) { 
 2651: 	dum=a[imax][k]; 
 2652: 	a[imax][k]=a[j][k]; 
 2653: 	a[j][k]=dum; 
 2654:       } 
 2655:       *d = -(*d); 
 2656:       vv[imax]=vv[j]; 
 2657:     } 
 2658:     indx[j]=imax; 
 2659:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2660:     if (j != n) { 
 2661:       dum=1.0/(a[j][j]); 
 2662:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2663:     } 
 2664:   } 
 2665:   free_vector(vv,1,n);  /* Doesn't work */
 2666: ;
 2667: } 
 2668: 
 2669: void lubksb(double **a, int n, int *indx, double b[]) 
 2670: { 
 2671:   int i,ii=0,ip,j; 
 2672:   double sum; 
 2673:  
 2674:   for (i=1;i<=n;i++) { 
 2675:     ip=indx[i]; 
 2676:     sum=b[ip]; 
 2677:     b[ip]=b[i]; 
 2678:     if (ii) 
 2679:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2680:     else if (sum) ii=i; 
 2681:     b[i]=sum; 
 2682:   } 
 2683:   for (i=n;i>=1;i--) { 
 2684:     sum=b[i]; 
 2685:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2686:     b[i]=sum/a[i][i]; 
 2687:   } 
 2688: } 
 2689: 
 2690: void pstamp(FILE *fichier)
 2691: {
 2692:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 2693: }
 2694: 
 2695: /************ Frequencies ********************/
 2696: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2697: {  /* Some frequencies */
 2698:   
 2699:   int i, m, jk, j1, bool, z1,j;
 2700:   int first;
 2701:   double ***freq; /* Frequencies */
 2702:   double *pp, **prop;
 2703:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2704:   char fileresp[FILENAMELENGTH];
 2705:   
 2706:   pp=vector(1,nlstate);
 2707:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2708:   strcpy(fileresp,"p");
 2709:   strcat(fileresp,fileres);
 2710:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2711:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2712:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2713:     exit(0);
 2714:   }
 2715:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2716:   j1=0;
 2717:   
 2718:   j=cptcoveff;
 2719:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2720: 
 2721:   first=1;
 2722: 
 2723:   /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
 2724:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
 2725:   /*    j1++; */
 2726:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2727:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2728: 	scanf("%d", i);*/
 2729:       for (i=-5; i<=nlstate+ndeath; i++)  
 2730: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2731: 	  for(m=iagemin; m <= iagemax+3; m++)
 2732: 	    freq[i][jk][m]=0;
 2733:       
 2734:       for (i=1; i<=nlstate; i++)  
 2735: 	for(m=iagemin; m <= iagemax+3; m++)
 2736: 	  prop[i][m]=0;
 2737:       
 2738:       dateintsum=0;
 2739:       k2cpt=0;
 2740:       for (i=1; i<=imx; i++) {
 2741: 	bool=1;
 2742: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2743: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2744:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 2745:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2746:               bool=0;
 2747:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 2748:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 2749:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 2750:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 2751:             } 
 2752: 	}
 2753:  
 2754: 	if (bool==1){
 2755: 	  for(m=firstpass; m<=lastpass; m++){
 2756: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2757: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 2758: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2759: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2760: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2761: 	      if (m<lastpass) {
 2762: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 2763: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 2764: 	      }
 2765: 	      
 2766: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 2767: 		dateintsum=dateintsum+k2;
 2768: 		k2cpt++;
 2769: 	      }
 2770: 	      /*}*/
 2771: 	  }
 2772: 	}
 2773:       } /* end i */
 2774:        
 2775:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 2776:       pstamp(ficresp);
 2777:       if  (cptcovn>0) {
 2778: 	fprintf(ficresp, "\n#********** Variable "); 
 2779: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2780: 	fprintf(ficresp, "**********\n#");
 2781: 	fprintf(ficlog, "\n#********** Variable "); 
 2782: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2783: 	fprintf(ficlog, "**********\n#");
 2784:       }
 2785:       for(i=1; i<=nlstate;i++) 
 2786: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 2787:       fprintf(ficresp, "\n");
 2788:       
 2789:       for(i=iagemin; i <= iagemax+3; i++){
 2790: 	if(i==iagemax+3){
 2791: 	  fprintf(ficlog,"Total");
 2792: 	}else{
 2793: 	  if(first==1){
 2794: 	    first=0;
 2795: 	    printf("See log file for details...\n");
 2796: 	  }
 2797: 	  fprintf(ficlog,"Age %d", i);
 2798: 	}
 2799: 	for(jk=1; jk <=nlstate ; jk++){
 2800: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 2801: 	    pp[jk] += freq[jk][m][i]; 
 2802: 	}
 2803: 	for(jk=1; jk <=nlstate ; jk++){
 2804: 	  for(m=-1, pos=0; m <=0 ; m++)
 2805: 	    pos += freq[jk][m][i];
 2806: 	  if(pp[jk]>=1.e-10){
 2807: 	    if(first==1){
 2808: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2809: 	    }
 2810: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 2811: 	  }else{
 2812: 	    if(first==1)
 2813: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2814: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 2815: 	  }
 2816: 	}
 2817: 
 2818: 	for(jk=1; jk <=nlstate ; jk++){
 2819: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 2820: 	    pp[jk] += freq[jk][m][i];
 2821: 	}	
 2822: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 2823: 	  pos += pp[jk];
 2824: 	  posprop += prop[jk][i];
 2825: 	}
 2826: 	for(jk=1; jk <=nlstate ; jk++){
 2827: 	  if(pos>=1.e-5){
 2828: 	    if(first==1)
 2829: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2830: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 2831: 	  }else{
 2832: 	    if(first==1)
 2833: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2834: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 2835: 	  }
 2836: 	  if( i <= iagemax){
 2837: 	    if(pos>=1.e-5){
 2838: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 2839: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 2840: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 2841: 	    }
 2842: 	    else
 2843: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 2844: 	  }
 2845: 	}
 2846: 	
 2847: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 2848: 	  for(m=-1; m <=nlstate+ndeath; m++)
 2849: 	    if(freq[jk][m][i] !=0 ) {
 2850: 	    if(first==1)
 2851: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 2852: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 2853: 	    }
 2854: 	if(i <= iagemax)
 2855: 	  fprintf(ficresp,"\n");
 2856: 	if(first==1)
 2857: 	  printf("Others in log...\n");
 2858: 	fprintf(ficlog,"\n");
 2859:       }
 2860:       /*}*/
 2861:   }
 2862:   dateintmean=dateintsum/k2cpt; 
 2863:  
 2864:   fclose(ficresp);
 2865:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 2866:   free_vector(pp,1,nlstate);
 2867:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 2868:   /* End of Freq */
 2869: }
 2870: 
 2871: /************ Prevalence ********************/
 2872: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 2873: {  
 2874:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 2875:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 2876:      We still use firstpass and lastpass as another selection.
 2877:   */
 2878:  
 2879:   int i, m, jk, j1, bool, z1,j;
 2880: 
 2881:   double **prop;
 2882:   double posprop; 
 2883:   double  y2; /* in fractional years */
 2884:   int iagemin, iagemax;
 2885:   int first; /** to stop verbosity which is redirected to log file */
 2886: 
 2887:   iagemin= (int) agemin;
 2888:   iagemax= (int) agemax;
 2889:   /*pp=vector(1,nlstate);*/
 2890:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2891:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2892:   j1=0;
 2893:   
 2894:   /*j=cptcoveff;*/
 2895:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2896:   
 2897:   first=1;
 2898:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 2899:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 2900:       j1++;*/
 2901:       
 2902:       for (i=1; i<=nlstate; i++)  
 2903: 	for(m=iagemin; m <= iagemax+3; m++)
 2904: 	  prop[i][m]=0.0;
 2905:      
 2906:       for (i=1; i<=imx; i++) { /* Each individual */
 2907: 	bool=1;
 2908: 	if  (cptcovn>0) {
 2909: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2910: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2911: 	      bool=0;
 2912: 	} 
 2913: 	if (bool==1) { 
 2914: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2915: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2916: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2917: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2918: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2919: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2920:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2921: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2922:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2923:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2924:  	      } 
 2925: 	    }
 2926: 	  } /* end selection of waves */
 2927: 	}
 2928:       }
 2929:       for(i=iagemin; i <= iagemax+3; i++){  
 2930:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2931:  	  posprop += prop[jk][i]; 
 2932:  	} 
 2933: 	
 2934:  	for(jk=1; jk <=nlstate ; jk++){	    
 2935:  	  if( i <=  iagemax){ 
 2936:  	    if(posprop>=1.e-5){ 
 2937:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2938:  	    } else{
 2939: 	      if(first==1){
 2940: 		first=0;
 2941: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 2942: 	      }
 2943: 	    }
 2944:  	  } 
 2945:  	}/* end jk */ 
 2946:       }/* end i */ 
 2947:     /*} *//* end i1 */
 2948:   } /* end j1 */
 2949:   
 2950:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2951:   /*free_vector(pp,1,nlstate);*/
 2952:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2953: }  /* End of prevalence */
 2954: 
 2955: /************* Waves Concatenation ***************/
 2956: 
 2957: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2958: {
 2959:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2960:      Death is a valid wave (if date is known).
 2961:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2962:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2963:      and mw[mi+1][i]. dh depends on stepm.
 2964:      */
 2965: 
 2966:   int i, mi, m;
 2967:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2968:      double sum=0., jmean=0.;*/
 2969:   int first;
 2970:   int j, k=0,jk, ju, jl;
 2971:   double sum=0.;
 2972:   first=0;
 2973:   jmin=100000;
 2974:   jmax=-1;
 2975:   jmean=0.;
 2976:   for(i=1; i<=imx; i++){
 2977:     mi=0;
 2978:     m=firstpass;
 2979:     while(s[m][i] <= nlstate){
 2980:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 2981: 	mw[++mi][i]=m;
 2982:       if(m >=lastpass)
 2983: 	break;
 2984:       else
 2985: 	m++;
 2986:     }/* end while */
 2987:     if (s[m][i] > nlstate){
 2988:       mi++;	/* Death is another wave */
 2989:       /* if(mi==0)  never been interviewed correctly before death */
 2990: 	 /* Only death is a correct wave */
 2991:       mw[mi][i]=m;
 2992:     }
 2993: 
 2994:     wav[i]=mi;
 2995:     if(mi==0){
 2996:       nbwarn++;
 2997:       if(first==0){
 2998: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2999: 	first=1;
 3000:       }
 3001:       if(first==1){
 3002: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 3003:       }
 3004:     } /* end mi==0 */
 3005:   } /* End individuals */
 3006: 
 3007:   for(i=1; i<=imx; i++){
 3008:     for(mi=1; mi<wav[i];mi++){
 3009:       if (stepm <=0)
 3010: 	dh[mi][i]=1;
 3011:       else{
 3012: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 3013: 	  if (agedc[i] < 2*AGESUP) {
 3014: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 3015: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 3016: 	    else if(j<0){
 3017: 	      nberr++;
 3018: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3019: 	      j=1; /* Temporary Dangerous patch */
 3020: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 3021: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3022: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 3023: 	    }
 3024: 	    k=k+1;
 3025: 	    if (j >= jmax){
 3026: 	      jmax=j;
 3027: 	      ijmax=i;
 3028: 	    }
 3029: 	    if (j <= jmin){
 3030: 	      jmin=j;
 3031: 	      ijmin=i;
 3032: 	    }
 3033: 	    sum=sum+j;
 3034: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 3035: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 3036: 	  }
 3037: 	}
 3038: 	else{
 3039: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 3040: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 3041: 
 3042: 	  k=k+1;
 3043: 	  if (j >= jmax) {
 3044: 	    jmax=j;
 3045: 	    ijmax=i;
 3046: 	  }
 3047: 	  else if (j <= jmin){
 3048: 	    jmin=j;
 3049: 	    ijmin=i;
 3050: 	  }
 3051: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 3052: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 3053: 	  if(j<0){
 3054: 	    nberr++;
 3055: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3056: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3057: 	  }
 3058: 	  sum=sum+j;
 3059: 	}
 3060: 	jk= j/stepm;
 3061: 	jl= j -jk*stepm;
 3062: 	ju= j -(jk+1)*stepm;
 3063: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 3064: 	  if(jl==0){
 3065: 	    dh[mi][i]=jk;
 3066: 	    bh[mi][i]=0;
 3067: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 3068: 		  * to avoid the price of an extra matrix product in likelihood */
 3069: 	    dh[mi][i]=jk+1;
 3070: 	    bh[mi][i]=ju;
 3071: 	  }
 3072: 	}else{
 3073: 	  if(jl <= -ju){
 3074: 	    dh[mi][i]=jk;
 3075: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 3076: 				 * is higher than the multiple of stepm and negative otherwise.
 3077: 				 */
 3078: 	  }
 3079: 	  else{
 3080: 	    dh[mi][i]=jk+1;
 3081: 	    bh[mi][i]=ju;
 3082: 	  }
 3083: 	  if(dh[mi][i]==0){
 3084: 	    dh[mi][i]=1; /* At least one step */
 3085: 	    bh[mi][i]=ju; /* At least one step */
 3086: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 3087: 	  }
 3088: 	} /* end if mle */
 3089:       }
 3090:     } /* end wave */
 3091:   }
 3092:   jmean=sum/k;
 3093:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 3094:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 3095:  }
 3096: 
 3097: /*********** Tricode ****************************/
 3098: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 3099: {
 3100:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 3101:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 3102:    * Boring subroutine which should only output nbcode[Tvar[j]][k]
 3103:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 3104:    * nbcode[Tvar[j]][1]= 
 3105:   */
 3106: 
 3107:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 3108:   int modmaxcovj=0; /* Modality max of covariates j */
 3109:   int cptcode=0; /* Modality max of covariates j */
 3110:   int modmincovj=0; /* Modality min of covariates j */
 3111: 
 3112: 
 3113:   cptcoveff=0; 
 3114:  
 3115:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
 3116:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 3117: 
 3118:   /* Loop on covariates without age and products */
 3119:   for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
 3120:     for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
 3121: 			       modality of this covariate Vj*/ 
 3122:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 3123: 				    * If product of Vn*Vm, still boolean *:
 3124: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 3125: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 3126:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 3127: 				      modality of the nth covariate of individual i. */
 3128:       if (ij > modmaxcovj)
 3129:         modmaxcovj=ij; 
 3130:       else if (ij < modmincovj) 
 3131: 	modmincovj=ij; 
 3132:       if ((ij < -1) && (ij > NCOVMAX)){
 3133: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 3134: 	exit(1);
 3135:       }else
 3136:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 3137:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 3138:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 3139:       /* getting the maximum value of the modality of the covariate
 3140: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 3141: 	 female is 1, then modmaxcovj=1.*/
 3142:     }
 3143:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 3144:     cptcode=modmaxcovj;
 3145:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 3146:    /*for (i=0; i<=cptcode; i++) {*/
 3147:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 3148:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 3149:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 3150: 	ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
 3151:       }
 3152:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 3153: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 3154:     } /* Ndum[-1] number of undefined modalities */
 3155: 
 3156:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 3157:     /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
 3158:        If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
 3159:        modmincovj=3; modmaxcovj = 7;
 3160:        There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
 3161:        which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
 3162:        defining two dummy variables: variables V1_1 and V1_2.
 3163:        nbcode[Tvar[j]][ij]=k;
 3164:        nbcode[Tvar[j]][1]=0;
 3165:        nbcode[Tvar[j]][2]=1;
 3166:        nbcode[Tvar[j]][3]=2;
 3167:     */
 3168:     ij=1; /* ij is similar to i but can jumps over null modalities */
 3169:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 3170:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 3171: 	/*recode from 0 */
 3172: 	if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 3173: 	  nbcode[Tvar[j]][ij]=k;  /* stores the modality k in an array nbcode. 
 3174: 				     k is a modality. If we have model=V1+V1*sex 
 3175: 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 3176: 	  ij++;
 3177: 	}
 3178: 	if (ij > ncodemax[j]) break; 
 3179:       }  /* end of loop on */
 3180:     } /* end of loop on modality */ 
 3181:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 3182:   
 3183:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 3184:   
 3185:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 3186:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 3187:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 3188:    Ndum[ij]++; 
 3189:  } 
 3190: 
 3191:  ij=1;
 3192:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 3193:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 3194:    if((Ndum[i]!=0) && (i<=ncovcol)){
 3195:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 3196:      Tvaraff[ij]=i; /*For printing (unclear) */
 3197:      ij++;
 3198:    }else
 3199:        Tvaraff[ij]=0;
 3200:  }
 3201:  ij--;
 3202:  cptcoveff=ij; /*Number of total covariates*/
 3203: 
 3204: }
 3205: 
 3206: 
 3207: /*********** Health Expectancies ****************/
 3208: 
 3209: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 3210: 
 3211: {
 3212:   /* Health expectancies, no variances */
 3213:   int i, j, nhstepm, hstepm, h, nstepm;
 3214:   int nhstepma, nstepma; /* Decreasing with age */
 3215:   double age, agelim, hf;
 3216:   double ***p3mat;
 3217:   double eip;
 3218: 
 3219:   pstamp(ficreseij);
 3220:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 3221:   fprintf(ficreseij,"# Age");
 3222:   for(i=1; i<=nlstate;i++){
 3223:     for(j=1; j<=nlstate;j++){
 3224:       fprintf(ficreseij," e%1d%1d ",i,j);
 3225:     }
 3226:     fprintf(ficreseij," e%1d. ",i);
 3227:   }
 3228:   fprintf(ficreseij,"\n");
 3229: 
 3230:   
 3231:   if(estepm < stepm){
 3232:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3233:   }
 3234:   else  hstepm=estepm;   
 3235:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3236:    * This is mainly to measure the difference between two models: for example
 3237:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3238:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3239:    * progression in between and thus overestimating or underestimating according
 3240:    * to the curvature of the survival function. If, for the same date, we 
 3241:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3242:    * to compare the new estimate of Life expectancy with the same linear 
 3243:    * hypothesis. A more precise result, taking into account a more precise
 3244:    * curvature will be obtained if estepm is as small as stepm. */
 3245: 
 3246:   /* For example we decided to compute the life expectancy with the smallest unit */
 3247:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3248:      nhstepm is the number of hstepm from age to agelim 
 3249:      nstepm is the number of stepm from age to agelin. 
 3250:      Look at hpijx to understand the reason of that which relies in memory size
 3251:      and note for a fixed period like estepm months */
 3252:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3253:      survival function given by stepm (the optimization length). Unfortunately it
 3254:      means that if the survival funtion is printed only each two years of age and if
 3255:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3256:      results. So we changed our mind and took the option of the best precision.
 3257:   */
 3258:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3259: 
 3260:   agelim=AGESUP;
 3261:   /* If stepm=6 months */
 3262:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 3263:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 3264:     
 3265: /* nhstepm age range expressed in number of stepm */
 3266:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3267:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3268:   /* if (stepm >= YEARM) hstepm=1;*/
 3269:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3270:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3271: 
 3272:   for (age=bage; age<=fage; age ++){ 
 3273:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3274:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3275:     /* if (stepm >= YEARM) hstepm=1;*/
 3276:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3277: 
 3278:     /* If stepm=6 months */
 3279:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3280:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3281:     
 3282:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3283:     
 3284:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3285:     
 3286:     printf("%d|",(int)age);fflush(stdout);
 3287:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3288:     
 3289:     /* Computing expectancies */
 3290:     for(i=1; i<=nlstate;i++)
 3291:       for(j=1; j<=nlstate;j++)
 3292: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3293: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 3294: 	  
 3295: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3296: 
 3297: 	}
 3298: 
 3299:     fprintf(ficreseij,"%3.0f",age );
 3300:     for(i=1; i<=nlstate;i++){
 3301:       eip=0;
 3302:       for(j=1; j<=nlstate;j++){
 3303: 	eip +=eij[i][j][(int)age];
 3304: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 3305:       }
 3306:       fprintf(ficreseij,"%9.4f", eip );
 3307:     }
 3308:     fprintf(ficreseij,"\n");
 3309:     
 3310:   }
 3311:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3312:   printf("\n");
 3313:   fprintf(ficlog,"\n");
 3314:   
 3315: }
 3316: 
 3317: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3318: 
 3319: {
 3320:   /* Covariances of health expectancies eij and of total life expectancies according
 3321:    to initial status i, ei. .
 3322:   */
 3323:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3324:   int nhstepma, nstepma; /* Decreasing with age */
 3325:   double age, agelim, hf;
 3326:   double ***p3matp, ***p3matm, ***varhe;
 3327:   double **dnewm,**doldm;
 3328:   double *xp, *xm;
 3329:   double **gp, **gm;
 3330:   double ***gradg, ***trgradg;
 3331:   int theta;
 3332: 
 3333:   double eip, vip;
 3334: 
 3335:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3336:   xp=vector(1,npar);
 3337:   xm=vector(1,npar);
 3338:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3339:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3340:   
 3341:   pstamp(ficresstdeij);
 3342:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3343:   fprintf(ficresstdeij,"# Age");
 3344:   for(i=1; i<=nlstate;i++){
 3345:     for(j=1; j<=nlstate;j++)
 3346:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3347:     fprintf(ficresstdeij," e%1d. ",i);
 3348:   }
 3349:   fprintf(ficresstdeij,"\n");
 3350: 
 3351:   pstamp(ficrescveij);
 3352:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3353:   fprintf(ficrescveij,"# Age");
 3354:   for(i=1; i<=nlstate;i++)
 3355:     for(j=1; j<=nlstate;j++){
 3356:       cptj= (j-1)*nlstate+i;
 3357:       for(i2=1; i2<=nlstate;i2++)
 3358: 	for(j2=1; j2<=nlstate;j2++){
 3359: 	  cptj2= (j2-1)*nlstate+i2;
 3360: 	  if(cptj2 <= cptj)
 3361: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3362: 	}
 3363:     }
 3364:   fprintf(ficrescveij,"\n");
 3365:   
 3366:   if(estepm < stepm){
 3367:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3368:   }
 3369:   else  hstepm=estepm;   
 3370:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3371:    * This is mainly to measure the difference between two models: for example
 3372:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3373:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3374:    * progression in between and thus overestimating or underestimating according
 3375:    * to the curvature of the survival function. If, for the same date, we 
 3376:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3377:    * to compare the new estimate of Life expectancy with the same linear 
 3378:    * hypothesis. A more precise result, taking into account a more precise
 3379:    * curvature will be obtained if estepm is as small as stepm. */
 3380: 
 3381:   /* For example we decided to compute the life expectancy with the smallest unit */
 3382:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3383:      nhstepm is the number of hstepm from age to agelim 
 3384:      nstepm is the number of stepm from age to agelin. 
 3385:      Look at hpijx to understand the reason of that which relies in memory size
 3386:      and note for a fixed period like estepm months */
 3387:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3388:      survival function given by stepm (the optimization length). Unfortunately it
 3389:      means that if the survival funtion is printed only each two years of age and if
 3390:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3391:      results. So we changed our mind and took the option of the best precision.
 3392:   */
 3393:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3394: 
 3395:   /* If stepm=6 months */
 3396:   /* nhstepm age range expressed in number of stepm */
 3397:   agelim=AGESUP;
 3398:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3399:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3400:   /* if (stepm >= YEARM) hstepm=1;*/
 3401:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3402:   
 3403:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3404:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3405:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3406:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3407:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3408:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3409: 
 3410:   for (age=bage; age<=fage; age ++){ 
 3411:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3412:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3413:     /* if (stepm >= YEARM) hstepm=1;*/
 3414:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3415: 
 3416:     /* If stepm=6 months */
 3417:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3418:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3419:     
 3420:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3421: 
 3422:     /* Computing  Variances of health expectancies */
 3423:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3424:        decrease memory allocation */
 3425:     for(theta=1; theta <=npar; theta++){
 3426:       for(i=1; i<=npar; i++){ 
 3427: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3428: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3429:       }
 3430:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3431:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3432:   
 3433:       for(j=1; j<= nlstate; j++){
 3434: 	for(i=1; i<=nlstate; i++){
 3435: 	  for(h=0; h<=nhstepm-1; h++){
 3436: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3437: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3438: 	  }
 3439: 	}
 3440:       }
 3441:      
 3442:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3443: 	for(h=0; h<=nhstepm-1; h++){
 3444: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3445: 	}
 3446:     }/* End theta */
 3447:     
 3448:     
 3449:     for(h=0; h<=nhstepm-1; h++)
 3450:       for(j=1; j<=nlstate*nlstate;j++)
 3451: 	for(theta=1; theta <=npar; theta++)
 3452: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3453:     
 3454: 
 3455:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3456:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3457: 	varhe[ij][ji][(int)age] =0.;
 3458: 
 3459:      printf("%d|",(int)age);fflush(stdout);
 3460:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3461:      for(h=0;h<=nhstepm-1;h++){
 3462:       for(k=0;k<=nhstepm-1;k++){
 3463: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3464: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3465: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3466: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3467: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3468:       }
 3469:     }
 3470: 
 3471:     /* Computing expectancies */
 3472:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3473:     for(i=1; i<=nlstate;i++)
 3474:       for(j=1; j<=nlstate;j++)
 3475: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3476: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3477: 	  
 3478: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3479: 
 3480: 	}
 3481: 
 3482:     fprintf(ficresstdeij,"%3.0f",age );
 3483:     for(i=1; i<=nlstate;i++){
 3484:       eip=0.;
 3485:       vip=0.;
 3486:       for(j=1; j<=nlstate;j++){
 3487: 	eip += eij[i][j][(int)age];
 3488: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3489: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3490: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3491:       }
 3492:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3493:     }
 3494:     fprintf(ficresstdeij,"\n");
 3495: 
 3496:     fprintf(ficrescveij,"%3.0f",age );
 3497:     for(i=1; i<=nlstate;i++)
 3498:       for(j=1; j<=nlstate;j++){
 3499: 	cptj= (j-1)*nlstate+i;
 3500: 	for(i2=1; i2<=nlstate;i2++)
 3501: 	  for(j2=1; j2<=nlstate;j2++){
 3502: 	    cptj2= (j2-1)*nlstate+i2;
 3503: 	    if(cptj2 <= cptj)
 3504: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3505: 	  }
 3506:       }
 3507:     fprintf(ficrescveij,"\n");
 3508:    
 3509:   }
 3510:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3511:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3512:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3513:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3514:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3515:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3516:   printf("\n");
 3517:   fprintf(ficlog,"\n");
 3518: 
 3519:   free_vector(xm,1,npar);
 3520:   free_vector(xp,1,npar);
 3521:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3522:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3523:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3524: }
 3525: 
 3526: /************ Variance ******************/
 3527: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3528: {
 3529:   /* Variance of health expectancies */
 3530:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3531:   /* double **newm;*/
 3532:   /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
 3533:   
 3534:   int movingaverage();
 3535:   double **dnewm,**doldm;
 3536:   double **dnewmp,**doldmp;
 3537:   int i, j, nhstepm, hstepm, h, nstepm ;
 3538:   int k;
 3539:   double *xp;
 3540:   double **gp, **gm;  /* for var eij */
 3541:   double ***gradg, ***trgradg; /*for var eij */
 3542:   double **gradgp, **trgradgp; /* for var p point j */
 3543:   double *gpp, *gmp; /* for var p point j */
 3544:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3545:   double ***p3mat;
 3546:   double age,agelim, hf;
 3547:   double ***mobaverage;
 3548:   int theta;
 3549:   char digit[4];
 3550:   char digitp[25];
 3551: 
 3552:   char fileresprobmorprev[FILENAMELENGTH];
 3553: 
 3554:   if(popbased==1){
 3555:     if(mobilav!=0)
 3556:       strcpy(digitp,"-populbased-mobilav-");
 3557:     else strcpy(digitp,"-populbased-nomobil-");
 3558:   }
 3559:   else 
 3560:     strcpy(digitp,"-stablbased-");
 3561: 
 3562:   if (mobilav!=0) {
 3563:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3564:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3565:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3566:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3567:     }
 3568:   }
 3569: 
 3570:   strcpy(fileresprobmorprev,"prmorprev"); 
 3571:   sprintf(digit,"%-d",ij);
 3572:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3573:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3574:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3575:   strcat(fileresprobmorprev,fileres);
 3576:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3577:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3578:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3579:   }
 3580:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3581:  
 3582:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3583:   pstamp(ficresprobmorprev);
 3584:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3585:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3586:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3587:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3588:     for(i=1; i<=nlstate;i++)
 3589:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3590:   }  
 3591:   fprintf(ficresprobmorprev,"\n");
 3592:   fprintf(ficgp,"\n# Routine varevsij");
 3593:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3594:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3595:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3596: /*   } */
 3597:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3598:   pstamp(ficresvij);
 3599:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3600:   if(popbased==1)
 3601:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3602:   else
 3603:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3604:   fprintf(ficresvij,"# Age");
 3605:   for(i=1; i<=nlstate;i++)
 3606:     for(j=1; j<=nlstate;j++)
 3607:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3608:   fprintf(ficresvij,"\n");
 3609: 
 3610:   xp=vector(1,npar);
 3611:   dnewm=matrix(1,nlstate,1,npar);
 3612:   doldm=matrix(1,nlstate,1,nlstate);
 3613:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3614:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3615: 
 3616:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3617:   gpp=vector(nlstate+1,nlstate+ndeath);
 3618:   gmp=vector(nlstate+1,nlstate+ndeath);
 3619:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3620:   
 3621:   if(estepm < stepm){
 3622:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3623:   }
 3624:   else  hstepm=estepm;   
 3625:   /* For example we decided to compute the life expectancy with the smallest unit */
 3626:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3627:      nhstepm is the number of hstepm from age to agelim 
 3628:      nstepm is the number of stepm from age to agelin. 
 3629:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3630:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3631:      survival function given by stepm (the optimization length). Unfortunately it
 3632:      means that if the survival funtion is printed every two years of age and if
 3633:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3634:      results. So we changed our mind and took the option of the best precision.
 3635:   */
 3636:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3637:   agelim = AGESUP;
 3638:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3639:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3640:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3641:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3642:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3643:     gp=matrix(0,nhstepm,1,nlstate);
 3644:     gm=matrix(0,nhstepm,1,nlstate);
 3645: 
 3646: 
 3647:     for(theta=1; theta <=npar; theta++){
 3648:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3649: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3650:       }
 3651:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3652:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3653: 
 3654:       if (popbased==1) {
 3655: 	if(mobilav ==0){
 3656: 	  for(i=1; i<=nlstate;i++)
 3657: 	    prlim[i][i]=probs[(int)age][i][ij];
 3658: 	}else{ /* mobilav */ 
 3659: 	  for(i=1; i<=nlstate;i++)
 3660: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3661: 	}
 3662:       }
 3663:   
 3664:       for(j=1; j<= nlstate; j++){
 3665: 	for(h=0; h<=nhstepm; h++){
 3666: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3667: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3668: 	}
 3669:       }
 3670:       /* This for computing probability of death (h=1 means
 3671:          computed over hstepm matrices product = hstepm*stepm months) 
 3672:          as a weighted average of prlim.
 3673:       */
 3674:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3675: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3676: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3677:       }    
 3678:       /* end probability of death */
 3679: 
 3680:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3681: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3682:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3683:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3684:  
 3685:       if (popbased==1) {
 3686: 	if(mobilav ==0){
 3687: 	  for(i=1; i<=nlstate;i++)
 3688: 	    prlim[i][i]=probs[(int)age][i][ij];
 3689: 	}else{ /* mobilav */ 
 3690: 	  for(i=1; i<=nlstate;i++)
 3691: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3692: 	}
 3693:       }
 3694: 
 3695:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3696: 	for(h=0; h<=nhstepm; h++){
 3697: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3698: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3699: 	}
 3700:       }
 3701:       /* This for computing probability of death (h=1 means
 3702:          computed over hstepm matrices product = hstepm*stepm months) 
 3703:          as a weighted average of prlim.
 3704:       */
 3705:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3706: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3707:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3708:       }    
 3709:       /* end probability of death */
 3710: 
 3711:       for(j=1; j<= nlstate; j++) /* vareij */
 3712: 	for(h=0; h<=nhstepm; h++){
 3713: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3714: 	}
 3715: 
 3716:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3717: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3718:       }
 3719: 
 3720:     } /* End theta */
 3721: 
 3722:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3723: 
 3724:     for(h=0; h<=nhstepm; h++) /* veij */
 3725:       for(j=1; j<=nlstate;j++)
 3726: 	for(theta=1; theta <=npar; theta++)
 3727: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3728: 
 3729:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3730:       for(theta=1; theta <=npar; theta++)
 3731: 	trgradgp[j][theta]=gradgp[theta][j];
 3732:   
 3733: 
 3734:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3735:     for(i=1;i<=nlstate;i++)
 3736:       for(j=1;j<=nlstate;j++)
 3737: 	vareij[i][j][(int)age] =0.;
 3738: 
 3739:     for(h=0;h<=nhstepm;h++){
 3740:       for(k=0;k<=nhstepm;k++){
 3741: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 3742: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 3743: 	for(i=1;i<=nlstate;i++)
 3744: 	  for(j=1;j<=nlstate;j++)
 3745: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 3746:       }
 3747:     }
 3748:   
 3749:     /* pptj */
 3750:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 3751:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 3752:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 3753:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 3754: 	varppt[j][i]=doldmp[j][i];
 3755:     /* end ppptj */
 3756:     /*  x centered again */
 3757:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 3758:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 3759:  
 3760:     if (popbased==1) {
 3761:       if(mobilav ==0){
 3762: 	for(i=1; i<=nlstate;i++)
 3763: 	  prlim[i][i]=probs[(int)age][i][ij];
 3764:       }else{ /* mobilav */ 
 3765: 	for(i=1; i<=nlstate;i++)
 3766: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 3767:       }
 3768:     }
 3769:              
 3770:     /* This for computing probability of death (h=1 means
 3771:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 3772:        as a weighted average of prlim.
 3773:     */
 3774:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3775:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 3776: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 3777:     }    
 3778:     /* end probability of death */
 3779: 
 3780:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 3781:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3782:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 3783:       for(i=1; i<=nlstate;i++){
 3784: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 3785:       }
 3786:     } 
 3787:     fprintf(ficresprobmorprev,"\n");
 3788: 
 3789:     fprintf(ficresvij,"%.0f ",age );
 3790:     for(i=1; i<=nlstate;i++)
 3791:       for(j=1; j<=nlstate;j++){
 3792: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 3793:       }
 3794:     fprintf(ficresvij,"\n");
 3795:     free_matrix(gp,0,nhstepm,1,nlstate);
 3796:     free_matrix(gm,0,nhstepm,1,nlstate);
 3797:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 3798:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 3799:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3800:   } /* End age */
 3801:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 3802:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 3803:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 3804:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3805:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 3806:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 3807:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 3808: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 3809: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3810: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 3811:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 3812:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 3813:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 3814:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 3815:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3816:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 3817: */
 3818: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 3819:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 3820: 
 3821:   free_vector(xp,1,npar);
 3822:   free_matrix(doldm,1,nlstate,1,nlstate);
 3823:   free_matrix(dnewm,1,nlstate,1,npar);
 3824:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3825:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 3826:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3827:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3828:   fclose(ficresprobmorprev);
 3829:   fflush(ficgp);
 3830:   fflush(fichtm); 
 3831: }  /* end varevsij */
 3832: 
 3833: /************ Variance of prevlim ******************/
 3834: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 3835: {
 3836:   /* Variance of prevalence limit */
 3837:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 3838: 
 3839:   double **dnewm,**doldm;
 3840:   int i, j, nhstepm, hstepm;
 3841:   double *xp;
 3842:   double *gp, *gm;
 3843:   double **gradg, **trgradg;
 3844:   double age,agelim;
 3845:   int theta;
 3846:   
 3847:   pstamp(ficresvpl);
 3848:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 3849:   fprintf(ficresvpl,"# Age");
 3850:   for(i=1; i<=nlstate;i++)
 3851:       fprintf(ficresvpl," %1d-%1d",i,i);
 3852:   fprintf(ficresvpl,"\n");
 3853: 
 3854:   xp=vector(1,npar);
 3855:   dnewm=matrix(1,nlstate,1,npar);
 3856:   doldm=matrix(1,nlstate,1,nlstate);
 3857:   
 3858:   hstepm=1*YEARM; /* Every year of age */
 3859:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 3860:   agelim = AGESUP;
 3861:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3862:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3863:     if (stepm >= YEARM) hstepm=1;
 3864:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3865:     gradg=matrix(1,npar,1,nlstate);
 3866:     gp=vector(1,nlstate);
 3867:     gm=vector(1,nlstate);
 3868: 
 3869:     for(theta=1; theta <=npar; theta++){
 3870:       for(i=1; i<=npar; i++){ /* Computes gradient */
 3871: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3872:       }
 3873:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3874:       for(i=1;i<=nlstate;i++)
 3875: 	gp[i] = prlim[i][i];
 3876:     
 3877:       for(i=1; i<=npar; i++) /* Computes gradient */
 3878: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3879:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3880:       for(i=1;i<=nlstate;i++)
 3881: 	gm[i] = prlim[i][i];
 3882: 
 3883:       for(i=1;i<=nlstate;i++)
 3884: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 3885:     } /* End theta */
 3886: 
 3887:     trgradg =matrix(1,nlstate,1,npar);
 3888: 
 3889:     for(j=1; j<=nlstate;j++)
 3890:       for(theta=1; theta <=npar; theta++)
 3891: 	trgradg[j][theta]=gradg[theta][j];
 3892: 
 3893:     for(i=1;i<=nlstate;i++)
 3894:       varpl[i][(int)age] =0.;
 3895:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 3896:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 3897:     for(i=1;i<=nlstate;i++)
 3898:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 3899: 
 3900:     fprintf(ficresvpl,"%.0f ",age );
 3901:     for(i=1; i<=nlstate;i++)
 3902:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 3903:     fprintf(ficresvpl,"\n");
 3904:     free_vector(gp,1,nlstate);
 3905:     free_vector(gm,1,nlstate);
 3906:     free_matrix(gradg,1,npar,1,nlstate);
 3907:     free_matrix(trgradg,1,nlstate,1,npar);
 3908:   } /* End age */
 3909: 
 3910:   free_vector(xp,1,npar);
 3911:   free_matrix(doldm,1,nlstate,1,npar);
 3912:   free_matrix(dnewm,1,nlstate,1,nlstate);
 3913: 
 3914: }
 3915: 
 3916: /************ Variance of one-step probabilities  ******************/
 3917: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 3918: {
 3919:   int i, j=0,  k1, l1, tj;
 3920:   int k2, l2, j1,  z1;
 3921:   int k=0, l;
 3922:   int first=1, first1, first2;
 3923:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 3924:   double **dnewm,**doldm;
 3925:   double *xp;
 3926:   double *gp, *gm;
 3927:   double **gradg, **trgradg;
 3928:   double **mu;
 3929:   double age, cov[NCOVMAX+1];
 3930:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 3931:   int theta;
 3932:   char fileresprob[FILENAMELENGTH];
 3933:   char fileresprobcov[FILENAMELENGTH];
 3934:   char fileresprobcor[FILENAMELENGTH];
 3935:   double ***varpij;
 3936: 
 3937:   strcpy(fileresprob,"prob"); 
 3938:   strcat(fileresprob,fileres);
 3939:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 3940:     printf("Problem with resultfile: %s\n", fileresprob);
 3941:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 3942:   }
 3943:   strcpy(fileresprobcov,"probcov"); 
 3944:   strcat(fileresprobcov,fileres);
 3945:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 3946:     printf("Problem with resultfile: %s\n", fileresprobcov);
 3947:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 3948:   }
 3949:   strcpy(fileresprobcor,"probcor"); 
 3950:   strcat(fileresprobcor,fileres);
 3951:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 3952:     printf("Problem with resultfile: %s\n", fileresprobcor);
 3953:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 3954:   }
 3955:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3956:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 3957:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3958:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 3959:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3960:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 3961:   pstamp(ficresprob);
 3962:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 3963:   fprintf(ficresprob,"# Age");
 3964:   pstamp(ficresprobcov);
 3965:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 3966:   fprintf(ficresprobcov,"# Age");
 3967:   pstamp(ficresprobcor);
 3968:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 3969:   fprintf(ficresprobcor,"# Age");
 3970: 
 3971: 
 3972:   for(i=1; i<=nlstate;i++)
 3973:     for(j=1; j<=(nlstate+ndeath);j++){
 3974:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 3975:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 3976:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 3977:     }  
 3978:  /* fprintf(ficresprob,"\n");
 3979:   fprintf(ficresprobcov,"\n");
 3980:   fprintf(ficresprobcor,"\n");
 3981:  */
 3982:   xp=vector(1,npar);
 3983:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 3984:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 3985:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 3986:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 3987:   first=1;
 3988:   fprintf(ficgp,"\n# Routine varprob");
 3989:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 3990:   fprintf(fichtm,"\n");
 3991: 
 3992:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 3993:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
 3994:   file %s<br>\n",optionfilehtmcov);
 3995:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 3996: and drawn. It helps understanding how is the covariance between two incidences.\
 3997:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 3998:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 3999: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 4000: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 4001: standard deviations wide on each axis. <br>\
 4002:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 4003:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 4004: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 4005: 
 4006:   cov[1]=1;
 4007:   /* tj=cptcoveff; */
 4008:   tj = (int) pow(2,cptcoveff);
 4009:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 4010:   j1=0;
 4011:   for(j1=1; j1<=tj;j1++){
 4012:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 4013:     /*j1++;*/
 4014:       if  (cptcovn>0) {
 4015: 	fprintf(ficresprob, "\n#********** Variable "); 
 4016: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4017: 	fprintf(ficresprob, "**********\n#\n");
 4018: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 4019: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4020: 	fprintf(ficresprobcov, "**********\n#\n");
 4021: 	
 4022: 	fprintf(ficgp, "\n#********** Variable "); 
 4023: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4024: 	fprintf(ficgp, "**********\n#\n");
 4025: 	
 4026: 	
 4027: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 4028: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4029: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 4030: 	
 4031: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 4032: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 4033: 	fprintf(ficresprobcor, "**********\n#");    
 4034:       }
 4035:       
 4036:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 4037:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 4038:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 4039:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 4040:       for (age=bage; age<=fage; age ++){ 
 4041: 	cov[2]=age;
 4042: 	for (k=1; k<=cptcovn;k++) {
 4043: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
 4044: 							 * 1  1 1 1 1
 4045: 							 * 2  2 1 1 1
 4046: 							 * 3  1 2 1 1
 4047: 							 */
 4048: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 4049: 	}
 4050: 	/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 4051: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
 4052: 	for (k=1; k<=cptcovprod;k++)
 4053: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 4054: 	
 4055:     
 4056: 	for(theta=1; theta <=npar; theta++){
 4057: 	  for(i=1; i<=npar; i++)
 4058: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 4059: 	  
 4060: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 4061: 	  
 4062: 	  k=0;
 4063: 	  for(i=1; i<= (nlstate); i++){
 4064: 	    for(j=1; j<=(nlstate+ndeath);j++){
 4065: 	      k=k+1;
 4066: 	      gp[k]=pmmij[i][j];
 4067: 	    }
 4068: 	  }
 4069: 	  
 4070: 	  for(i=1; i<=npar; i++)
 4071: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 4072:     
 4073: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 4074: 	  k=0;
 4075: 	  for(i=1; i<=(nlstate); i++){
 4076: 	    for(j=1; j<=(nlstate+ndeath);j++){
 4077: 	      k=k+1;
 4078: 	      gm[k]=pmmij[i][j];
 4079: 	    }
 4080: 	  }
 4081:      
 4082: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 4083: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 4084: 	}
 4085: 
 4086: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 4087: 	  for(theta=1; theta <=npar; theta++)
 4088: 	    trgradg[j][theta]=gradg[theta][j];
 4089: 	
 4090: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 4091: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 4092: 
 4093: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 4094: 	
 4095: 	k=0;
 4096: 	for(i=1; i<=(nlstate); i++){
 4097: 	  for(j=1; j<=(nlstate+ndeath);j++){
 4098: 	    k=k+1;
 4099: 	    mu[k][(int) age]=pmmij[i][j];
 4100: 	  }
 4101: 	}
 4102:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 4103: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 4104: 	    varpij[i][j][(int)age] = doldm[i][j];
 4105: 
 4106: 	/*printf("\n%d ",(int)age);
 4107: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4108: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 4109: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 4110: 	  }*/
 4111: 
 4112: 	fprintf(ficresprob,"\n%d ",(int)age);
 4113: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 4114: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 4115: 
 4116: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 4117: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 4118: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4119: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 4120: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 4121: 	}
 4122: 	i=0;
 4123: 	for (k=1; k<=(nlstate);k++){
 4124:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 4125:  	    i++;
 4126: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 4127: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 4128: 	    for (j=1; j<=i;j++){
 4129: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 4130: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 4131: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 4132: 	    }
 4133: 	  }
 4134: 	}/* end of loop for state */
 4135:       } /* end of loop for age */
 4136:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 4137:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 4138:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4139:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4140:       
 4141:       /* Confidence intervalle of pij  */
 4142:       /*
 4143: 	fprintf(ficgp,"\nunset parametric;unset label");
 4144: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 4145: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 4146: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 4147: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 4148: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 4149: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 4150:       */
 4151: 
 4152:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 4153:       first1=1;first2=2;
 4154:       for (k2=1; k2<=(nlstate);k2++){
 4155: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 4156: 	  if(l2==k2) continue;
 4157: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 4158: 	  for (k1=1; k1<=(nlstate);k1++){
 4159: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 4160: 	      if(l1==k1) continue;
 4161: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 4162: 	      if(i<=j) continue;
 4163: 	      for (age=bage; age<=fage; age ++){ 
 4164: 		if ((int)age %5==0){
 4165: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 4166: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4167: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4168: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 4169: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 4170: 		  c12=cv12/sqrt(v1*v2);
 4171: 		  /* Computing eigen value of matrix of covariance */
 4172: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4173: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4174: 		  if ((lc2 <0) || (lc1 <0) ){
 4175: 		    if(first2==1){
 4176: 		      first1=0;
 4177: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 4178: 		    }
 4179: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 4180: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 4181: 		    /* lc2=fabs(lc2); */
 4182: 		  }
 4183: 
 4184: 		  /* Eigen vectors */
 4185: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 4186: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 4187: 		  v21=(lc1-v1)/cv12*v11;
 4188: 		  v12=-v21;
 4189: 		  v22=v11;
 4190: 		  tnalp=v21/v11;
 4191: 		  if(first1==1){
 4192: 		    first1=0;
 4193: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4194: 		  }
 4195: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4196: 		  /*printf(fignu*/
 4197: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 4198: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 4199: 		  if(first==1){
 4200: 		    first=0;
 4201:  		    fprintf(ficgp,"\nset parametric;unset label");
 4202: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 4203: 		    fprintf(ficgp,"\nset ter png small size 320, 240");
 4204: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 4205:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 4206: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 4207: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 4208: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4209: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4210: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 4211: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4212: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4213: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4214: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4215: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4216: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4217: 		  }else{
 4218: 		    first=0;
 4219: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 4220: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4221: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4222: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4223: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4224: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4225: 		  }/* if first */
 4226: 		} /* age mod 5 */
 4227: 	      } /* end loop age */
 4228: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4229: 	      first=1;
 4230: 	    } /*l12 */
 4231: 	  } /* k12 */
 4232: 	} /*l1 */
 4233:       }/* k1 */
 4234:       /* } */ /* loop covariates */
 4235:   }
 4236:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 4237:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 4238:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4239:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 4240:   free_vector(xp,1,npar);
 4241:   fclose(ficresprob);
 4242:   fclose(ficresprobcov);
 4243:   fclose(ficresprobcor);
 4244:   fflush(ficgp);
 4245:   fflush(fichtmcov);
 4246: }
 4247: 
 4248: 
 4249: /******************* Printing html file ***********/
 4250: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 4251: 		  int lastpass, int stepm, int weightopt, char model[],\
 4252: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 4253: 		  int popforecast, int estepm ,\
 4254: 		  double jprev1, double mprev1,double anprev1, \
 4255: 		  double jprev2, double mprev2,double anprev2){
 4256:   int jj1, k1, i1, cpt;
 4257: 
 4258:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 4259:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 4260: </ul>");
 4261:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 4262:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 4263: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 4264:    fprintf(fichtm,"\
 4265:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 4266: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 4267:    fprintf(fichtm,"\
 4268:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 4269: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 4270:    fprintf(fichtm,"\
 4271:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 4272:    <a href=\"%s\">%s</a> <br>\n",
 4273: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 4274:    fprintf(fichtm,"\
 4275:  - Population projections by age and states: \
 4276:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 4277: 
 4278: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 4279: 
 4280:  m=pow(2,cptcoveff);
 4281:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4282: 
 4283:  jj1=0;
 4284:  for(k1=1; k1<=m;k1++){
 4285:    for(i1=1; i1<=ncodemax[k1];i1++){
 4286:      jj1++;
 4287:      if (cptcovn > 0) {
 4288:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4289:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4290: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4291:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4292:      }
 4293:      /* Pij */
 4294:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
 4295: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 4296:      /* Quasi-incidences */
 4297:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 4298:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
 4299: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 4300:        /* Period (stable) prevalence in each health state */
 4301:        for(cpt=1; cpt<=nlstate;cpt++){
 4302: 	 fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
 4303: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 4304:        }
 4305:      for(cpt=1; cpt<=nlstate;cpt++) {
 4306:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 4307: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 4308:      }
 4309:    } /* end i1 */
 4310:  }/* End k1 */
 4311:  fprintf(fichtm,"</ul>");
 4312: 
 4313: 
 4314:  fprintf(fichtm,"\
 4315: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 4316:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 4317: 
 4318:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4319: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4320:  fprintf(fichtm,"\
 4321:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4322: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4323: 
 4324:  fprintf(fichtm,"\
 4325:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4326: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4327:  fprintf(fichtm,"\
 4328:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4329:    <a href=\"%s\">%s</a> <br>\n</li>",
 4330: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4331:  fprintf(fichtm,"\
 4332:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4333:    <a href=\"%s\">%s</a> <br>\n</li>",
 4334: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4335:  fprintf(fichtm,"\
 4336:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4337: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4338:  fprintf(fichtm,"\
 4339:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4340: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4341:  fprintf(fichtm,"\
 4342:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4343: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4344: 
 4345: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4346: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4347: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4348: /* 	<br>",fileres,fileres,fileres,fileres); */
 4349: /*  else  */
 4350: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4351:  fflush(fichtm);
 4352:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4353: 
 4354:  m=pow(2,cptcoveff);
 4355:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4356: 
 4357:  jj1=0;
 4358:  for(k1=1; k1<=m;k1++){
 4359:    for(i1=1; i1<=ncodemax[k1];i1++){
 4360:      jj1++;
 4361:      if (cptcovn > 0) {
 4362:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4363:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4364: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 4365:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4366:      }
 4367:      for(cpt=1; cpt<=nlstate;cpt++) {
 4368:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4369: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
 4370: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4371:      }
 4372:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4373: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4374: true period expectancies (those weighted with period prevalences are also\
 4375:  drawn in addition to the population based expectancies computed using\
 4376:  observed and cahotic prevalences: %s%d.png<br>\
 4377: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4378:    } /* end i1 */
 4379:  }/* End k1 */
 4380:  fprintf(fichtm,"</ul>");
 4381:  fflush(fichtm);
 4382: }
 4383: 
 4384: /******************* Gnuplot file **************/
 4385: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4386: 
 4387:   char dirfileres[132],optfileres[132];
 4388:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4389:   int ng=0;
 4390: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4391: /*     printf("Problem with file %s",optionfilegnuplot); */
 4392: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4393: /*   } */
 4394: 
 4395:   /*#ifdef windows */
 4396:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4397:     /*#endif */
 4398:   m=pow(2,cptcoveff);
 4399: 
 4400:   strcpy(dirfileres,optionfilefiname);
 4401:   strcpy(optfileres,"vpl");
 4402:  /* 1eme*/
 4403:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4404:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4405:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4406:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4407:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 4408:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4409: set ylabel \"Probability\" \n\
 4410: set ter png small size 320, 240\n\
 4411: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4412: 
 4413:      for (i=1; i<= nlstate ; i ++) {
 4414:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4415:        else        fprintf(ficgp," %%*lf (%%*lf)");
 4416:      }
 4417:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4418:      for (i=1; i<= nlstate ; i ++) {
 4419:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4420:        else fprintf(ficgp," %%*lf (%%*lf)");
 4421:      } 
 4422:      fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4423:      for (i=1; i<= nlstate ; i ++) {
 4424:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4425:        else fprintf(ficgp," %%*lf (%%*lf)");
 4426:      }  
 4427:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4428:    }
 4429:   }
 4430:   /*2 eme*/
 4431:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4432:   for (k1=1; k1<= m ; k1 ++) { 
 4433:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 4434:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
 4435:     
 4436:     for (i=1; i<= nlstate+1 ; i ++) {
 4437:       k=2*i;
 4438:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4439:       for (j=1; j<= nlstate+1 ; j ++) {
 4440: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4441: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4442:       }   
 4443:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4444:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4445:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4446:       for (j=1; j<= nlstate+1 ; j ++) {
 4447: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4448: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4449:       }   
 4450:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4451:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4452:       for (j=1; j<= nlstate+1 ; j ++) {
 4453: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4454: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4455:       }   
 4456:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4457:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4458:     }
 4459:   }
 4460:   
 4461:   /*3eme*/
 4462:   
 4463:   for (k1=1; k1<= m ; k1 ++) { 
 4464:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4465:       /*       k=2+nlstate*(2*cpt-2); */
 4466:       k=2+(nlstate+1)*(cpt-1);
 4467:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4468:       fprintf(ficgp,"set ter png small size 320, 240\n\
 4469: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4470:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4471: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4472: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4473: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4474: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4475: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4476: 	
 4477:       */
 4478:       for (i=1; i< nlstate ; i ++) {
 4479: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4480: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4481: 	
 4482:       } 
 4483:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4484:     }
 4485:   }
 4486:   
 4487:   /* CV preval stable (period) */
 4488:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4489:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4490:       k=3;
 4491:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4492:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4493:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4494: set ter png small size 320, 240\n\
 4495: unset log y\n\
 4496: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4497:       for (i=1; i<= nlstate ; i ++){
 4498: 	if(i==1)
 4499: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4500: 	else
 4501: 	  fprintf(ficgp,", '' ");
 4502: 	l=(nlstate+ndeath)*(i-1)+1;
 4503: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4504: 	for (j=1; j<= (nlstate-1) ; j ++)
 4505: 	  fprintf(ficgp,"+$%d",k+l+j);
 4506: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4507:       } /* nlstate */
 4508:       fprintf(ficgp,"\n");
 4509:     } /* end cpt state*/ 
 4510:   } /* end covariate */  
 4511:   
 4512:   /* proba elementaires */
 4513:   for(i=1,jk=1; i <=nlstate; i++){
 4514:     for(k=1; k <=(nlstate+ndeath); k++){
 4515:       if (k != i) {
 4516: 	for(j=1; j <=ncovmodel; j++){
 4517: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 4518: 	  jk++; 
 4519: 	  fprintf(ficgp,"\n");
 4520: 	}
 4521:       }
 4522:     }
 4523:    }
 4524:   /*goto avoid;*/
 4525:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4526:      for(jk=1; jk <=m; jk++) {
 4527:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4528:        if (ng==2)
 4529: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4530:        else
 4531: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 4532:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4533:        i=1;
 4534:        for(k2=1; k2<=nlstate; k2++) {
 4535: 	 k3=i;
 4536: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4537: 	   if (k != k2){
 4538: 	     if(ng==2)
 4539: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4540: 	     else
 4541: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4542: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4543: 	     for(j=3; j <=ncovmodel; j++) {
 4544: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
 4545: 	       	 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 4546: 	       	 ij++;
 4547: 	       }
 4548: 	       else
 4549: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4550: 	     }
 4551: 	     fprintf(ficgp,")/(1");
 4552: 	     
 4553: 	     for(k1=1; k1 <=nlstate; k1++){   
 4554: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4555: 	       ij=1;
 4556: 	       for(j=3; j <=ncovmodel; j++){
 4557: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 4558: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 4559: 		   ij++;
 4560: 		 }
 4561: 		 else
 4562: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 4563: 	       }
 4564: 	       fprintf(ficgp,")");
 4565: 	     }
 4566: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4567: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4568: 	     i=i+ncovmodel;
 4569: 	   }
 4570: 	 } /* end k */
 4571:        } /* end k2 */
 4572:      } /* end jk */
 4573:    } /* end ng */
 4574:  /* avoid: */
 4575:    fflush(ficgp); 
 4576: }  /* end gnuplot */
 4577: 
 4578: 
 4579: /*************** Moving average **************/
 4580: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4581: 
 4582:   int i, cpt, cptcod;
 4583:   int modcovmax =1;
 4584:   int mobilavrange, mob;
 4585:   double age;
 4586: 
 4587:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4588: 			   a covariate has 2 modalities */
 4589:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4590: 
 4591:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4592:     if(mobilav==1) mobilavrange=5; /* default */
 4593:     else mobilavrange=mobilav;
 4594:     for (age=bage; age<=fage; age++)
 4595:       for (i=1; i<=nlstate;i++)
 4596: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4597: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4598:     /* We keep the original values on the extreme ages bage, fage and for 
 4599:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4600:        we use a 5 terms etc. until the borders are no more concerned. 
 4601:     */ 
 4602:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4603:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4604: 	for (i=1; i<=nlstate;i++){
 4605: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4606: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4607: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4608: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4609: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4610: 	      }
 4611: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4612: 	  }
 4613: 	}
 4614:       }/* end age */
 4615:     }/* end mob */
 4616:   }else return -1;
 4617:   return 0;
 4618: }/* End movingaverage */
 4619: 
 4620: 
 4621: /************** Forecasting ******************/
 4622: void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4623:   /* proj1, year, month, day of starting projection 
 4624:      agemin, agemax range of age
 4625:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4626:      anproj2 year of en of projection (same day and month as proj1).
 4627:   */
 4628:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
 4629:   double agec; /* generic age */
 4630:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4631:   double *popeffectif,*popcount;
 4632:   double ***p3mat;
 4633:   double ***mobaverage;
 4634:   char fileresf[FILENAMELENGTH];
 4635: 
 4636:   agelim=AGESUP;
 4637:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4638:  
 4639:   strcpy(fileresf,"f"); 
 4640:   strcat(fileresf,fileres);
 4641:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4642:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4643:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4644:   }
 4645:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4646:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4647: 
 4648:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4649: 
 4650:   if (mobilav!=0) {
 4651:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4652:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4653:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4654:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4655:     }
 4656:   }
 4657: 
 4658:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4659:   if (stepm<=12) stepsize=1;
 4660:   if(estepm < stepm){
 4661:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4662:   }
 4663:   else  hstepm=estepm;   
 4664: 
 4665:   hstepm=hstepm/stepm; 
 4666:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4667:                                fractional in yp1 */
 4668:   anprojmean=yp;
 4669:   yp2=modf((yp1*12),&yp);
 4670:   mprojmean=yp;
 4671:   yp1=modf((yp2*30.5),&yp);
 4672:   jprojmean=yp;
 4673:   if(jprojmean==0) jprojmean=1;
 4674:   if(mprojmean==0) jprojmean=1;
 4675: 
 4676:   i1=cptcoveff;
 4677:   if (cptcovn < 1){i1=1;}
 4678:   
 4679:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4680:   
 4681:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4682: 
 4683: /* 	      if (h==(int)(YEARM*yearp)){ */
 4684:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 4685:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4686:       k=k+1;
 4687:       fprintf(ficresf,"\n#******");
 4688:       for(j=1;j<=cptcoveff;j++) {
 4689: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4690:       }
 4691:       fprintf(ficresf,"******\n");
 4692:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 4693:       for(j=1; j<=nlstate+ndeath;j++){ 
 4694: 	for(i=1; i<=nlstate;i++) 	      
 4695:           fprintf(ficresf," p%d%d",i,j);
 4696: 	fprintf(ficresf," p.%d",j);
 4697:       }
 4698:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 4699: 	fprintf(ficresf,"\n");
 4700: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 4701: 
 4702:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 4703: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 4704: 	  nhstepm = nhstepm/hstepm; 
 4705: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4706: 	  oldm=oldms;savm=savms;
 4707: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4708: 	
 4709: 	  for (h=0; h<=nhstepm; h++){
 4710: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 4711:               fprintf(ficresf,"\n");
 4712:               for(j=1;j<=cptcoveff;j++) 
 4713:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4714: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 4715: 	    } 
 4716: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4717: 	      ppij=0.;
 4718: 	      for(i=1; i<=nlstate;i++) {
 4719: 		if (mobilav==1) 
 4720: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 4721: 		else {
 4722: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 4723: 		}
 4724: 		if (h*hstepm/YEARM*stepm== yearp) {
 4725: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 4726: 		}
 4727: 	      } /* end i */
 4728: 	      if (h*hstepm/YEARM*stepm==yearp) {
 4729: 		fprintf(ficresf," %.3f", ppij);
 4730: 	      }
 4731: 	    }/* end j */
 4732: 	  } /* end h */
 4733: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4734: 	} /* end agec */
 4735:       } /* end yearp */
 4736:     } /* end cptcod */
 4737:   } /* end  cptcov */
 4738:        
 4739:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4740: 
 4741:   fclose(ficresf);
 4742: }
 4743: 
 4744: /************** Forecasting *****not tested NB*************/
 4745: void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 4746:   
 4747:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 4748:   int *popage;
 4749:   double calagedatem, agelim, kk1, kk2;
 4750:   double *popeffectif,*popcount;
 4751:   double ***p3mat,***tabpop,***tabpopprev;
 4752:   double ***mobaverage;
 4753:   char filerespop[FILENAMELENGTH];
 4754: 
 4755:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4756:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4757:   agelim=AGESUP;
 4758:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 4759:   
 4760:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4761:   
 4762:   
 4763:   strcpy(filerespop,"pop"); 
 4764:   strcat(filerespop,fileres);
 4765:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 4766:     printf("Problem with forecast resultfile: %s\n", filerespop);
 4767:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 4768:   }
 4769:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 4770:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 4771: 
 4772:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4773: 
 4774:   if (mobilav!=0) {
 4775:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4776:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4777:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4778:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4779:     }
 4780:   }
 4781: 
 4782:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4783:   if (stepm<=12) stepsize=1;
 4784:   
 4785:   agelim=AGESUP;
 4786:   
 4787:   hstepm=1;
 4788:   hstepm=hstepm/stepm; 
 4789:   
 4790:   if (popforecast==1) {
 4791:     if((ficpop=fopen(popfile,"r"))==NULL) {
 4792:       printf("Problem with population file : %s\n",popfile);exit(0);
 4793:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 4794:     } 
 4795:     popage=ivector(0,AGESUP);
 4796:     popeffectif=vector(0,AGESUP);
 4797:     popcount=vector(0,AGESUP);
 4798:     
 4799:     i=1;   
 4800:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 4801:    
 4802:     imx=i;
 4803:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 4804:   }
 4805: 
 4806:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 4807:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 4808:       k=k+1;
 4809:       fprintf(ficrespop,"\n#******");
 4810:       for(j=1;j<=cptcoveff;j++) {
 4811: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4812:       }
 4813:       fprintf(ficrespop,"******\n");
 4814:       fprintf(ficrespop,"# Age");
 4815:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 4816:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 4817:       
 4818:       for (cpt=0; cpt<=0;cpt++) { 
 4819: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4820: 	
 4821:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4822: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4823: 	  nhstepm = nhstepm/hstepm; 
 4824: 	  
 4825: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4826: 	  oldm=oldms;savm=savms;
 4827: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4828: 	
 4829: 	  for (h=0; h<=nhstepm; h++){
 4830: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4831: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4832: 	    } 
 4833: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4834: 	      kk1=0.;kk2=0;
 4835: 	      for(i=1; i<=nlstate;i++) {	      
 4836: 		if (mobilav==1) 
 4837: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 4838: 		else {
 4839: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 4840: 		}
 4841: 	      }
 4842: 	      if (h==(int)(calagedatem+12*cpt)){
 4843: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 4844: 		  /*fprintf(ficrespop," %.3f", kk1);
 4845: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 4846: 	      }
 4847: 	    }
 4848: 	    for(i=1; i<=nlstate;i++){
 4849: 	      kk1=0.;
 4850: 		for(j=1; j<=nlstate;j++){
 4851: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 4852: 		}
 4853: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 4854: 	    }
 4855: 
 4856: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 4857: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 4858: 	  }
 4859: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4860: 	}
 4861:       }
 4862:  
 4863:   /******/
 4864: 
 4865:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 4866: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 4867: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 4868: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 4869: 	  nhstepm = nhstepm/hstepm; 
 4870: 	  
 4871: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4872: 	  oldm=oldms;savm=savms;
 4873: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4874: 	  for (h=0; h<=nhstepm; h++){
 4875: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 4876: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 4877: 	    } 
 4878: 	    for(j=1; j<=nlstate+ndeath;j++) {
 4879: 	      kk1=0.;kk2=0;
 4880: 	      for(i=1; i<=nlstate;i++) {	      
 4881: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 4882: 	      }
 4883: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 4884: 	    }
 4885: 	  }
 4886: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4887: 	}
 4888:       }
 4889:    } 
 4890:   }
 4891:  
 4892:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4893: 
 4894:   if (popforecast==1) {
 4895:     free_ivector(popage,0,AGESUP);
 4896:     free_vector(popeffectif,0,AGESUP);
 4897:     free_vector(popcount,0,AGESUP);
 4898:   }
 4899:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4900:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4901:   fclose(ficrespop);
 4902: } /* End of popforecast */
 4903: 
 4904: int fileappend(FILE *fichier, char *optionfich)
 4905: {
 4906:   if((fichier=fopen(optionfich,"a"))==NULL) {
 4907:     printf("Problem with file: %s\n", optionfich);
 4908:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 4909:     return (0);
 4910:   }
 4911:   fflush(fichier);
 4912:   return (1);
 4913: }
 4914: 
 4915: 
 4916: /**************** function prwizard **********************/
 4917: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 4918: {
 4919: 
 4920:   /* Wizard to print covariance matrix template */
 4921: 
 4922:   char ca[32], cb[32];
 4923:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
 4924:   int numlinepar;
 4925: 
 4926:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4927:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4928:   for(i=1; i <=nlstate; i++){
 4929:     jj=0;
 4930:     for(j=1; j <=nlstate+ndeath; j++){
 4931:       if(j==i) continue;
 4932:       jj++;
 4933:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 4934:       printf("%1d%1d",i,j);
 4935:       fprintf(ficparo,"%1d%1d",i,j);
 4936:       for(k=1; k<=ncovmodel;k++){
 4937: 	/* 	  printf(" %lf",param[i][j][k]); */
 4938: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 4939: 	printf(" 0.");
 4940: 	fprintf(ficparo," 0.");
 4941:       }
 4942:       printf("\n");
 4943:       fprintf(ficparo,"\n");
 4944:     }
 4945:   }
 4946:   printf("# Scales (for hessian or gradient estimation)\n");
 4947:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 4948:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 4949:   for(i=1; i <=nlstate; i++){
 4950:     jj=0;
 4951:     for(j=1; j <=nlstate+ndeath; j++){
 4952:       if(j==i) continue;
 4953:       jj++;
 4954:       fprintf(ficparo,"%1d%1d",i,j);
 4955:       printf("%1d%1d",i,j);
 4956:       fflush(stdout);
 4957:       for(k=1; k<=ncovmodel;k++){
 4958: 	/* 	printf(" %le",delti3[i][j][k]); */
 4959: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 4960: 	printf(" 0.");
 4961: 	fprintf(ficparo," 0.");
 4962:       }
 4963:       numlinepar++;
 4964:       printf("\n");
 4965:       fprintf(ficparo,"\n");
 4966:     }
 4967:   }
 4968:   printf("# Covariance matrix\n");
 4969: /* # 121 Var(a12)\n\ */
 4970: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4971: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 4972: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 4973: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 4974: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 4975: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 4976: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 4977:   fflush(stdout);
 4978:   fprintf(ficparo,"# Covariance matrix\n");
 4979:   /* # 121 Var(a12)\n\ */
 4980:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 4981:   /* #   ...\n\ */
 4982:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 4983:   
 4984:   for(itimes=1;itimes<=2;itimes++){
 4985:     jj=0;
 4986:     for(i=1; i <=nlstate; i++){
 4987:       for(j=1; j <=nlstate+ndeath; j++){
 4988: 	if(j==i) continue;
 4989: 	for(k=1; k<=ncovmodel;k++){
 4990: 	  jj++;
 4991: 	  ca[0]= k+'a'-1;ca[1]='\0';
 4992: 	  if(itimes==1){
 4993: 	    printf("#%1d%1d%d",i,j,k);
 4994: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 4995: 	  }else{
 4996: 	    printf("%1d%1d%d",i,j,k);
 4997: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 4998: 	    /* 	printf(" %.5le",matcov[i][j]); */
 4999: 	  }
 5000: 	  ll=0;
 5001: 	  for(li=1;li <=nlstate; li++){
 5002: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 5003: 	      if(lj==li) continue;
 5004: 	      for(lk=1;lk<=ncovmodel;lk++){
 5005: 		ll++;
 5006: 		if(ll<=jj){
 5007: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 5008: 		  if(ll<jj){
 5009: 		    if(itimes==1){
 5010: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5011: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5012: 		    }else{
 5013: 		      printf(" 0.");
 5014: 		      fprintf(ficparo," 0.");
 5015: 		    }
 5016: 		  }else{
 5017: 		    if(itimes==1){
 5018: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 5019: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 5020: 		    }else{
 5021: 		      printf(" 0.");
 5022: 		      fprintf(ficparo," 0.");
 5023: 		    }
 5024: 		  }
 5025: 		}
 5026: 	      } /* end lk */
 5027: 	    } /* end lj */
 5028: 	  } /* end li */
 5029: 	  printf("\n");
 5030: 	  fprintf(ficparo,"\n");
 5031: 	  numlinepar++;
 5032: 	} /* end k*/
 5033:       } /*end j */
 5034:     } /* end i */
 5035:   } /* end itimes */
 5036: 
 5037: } /* end of prwizard */
 5038: /******************* Gompertz Likelihood ******************************/
 5039: double gompertz(double x[])
 5040: { 
 5041:   double A,B,L=0.0,sump=0.,num=0.;
 5042:   int i,n=0; /* n is the size of the sample */
 5043: 
 5044:   for (i=0;i<=imx-1 ; i++) {
 5045:     sump=sump+weight[i];
 5046:     /*    sump=sump+1;*/
 5047:     num=num+1;
 5048:   }
 5049:  
 5050:  
 5051:   /* for (i=0; i<=imx; i++) 
 5052:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 5053: 
 5054:   for (i=1;i<=imx ; i++)
 5055:     {
 5056:       if (cens[i] == 1 && wav[i]>1)
 5057: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 5058:       
 5059:       if (cens[i] == 0 && wav[i]>1)
 5060: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 5061: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 5062:       
 5063:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 5064:       if (wav[i] > 1 ) { /* ??? */
 5065: 	L=L+A*weight[i];
 5066: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 5067:       }
 5068:     }
 5069: 
 5070:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 5071:  
 5072:   return -2*L*num/sump;
 5073: }
 5074: 
 5075: #ifdef GSL
 5076: /******************* Gompertz_f Likelihood ******************************/
 5077: double gompertz_f(const gsl_vector *v, void *params)
 5078: { 
 5079:   double A,B,LL=0.0,sump=0.,num=0.;
 5080:   double *x= (double *) v->data;
 5081:   int i,n=0; /* n is the size of the sample */
 5082: 
 5083:   for (i=0;i<=imx-1 ; i++) {
 5084:     sump=sump+weight[i];
 5085:     /*    sump=sump+1;*/
 5086:     num=num+1;
 5087:   }
 5088:  
 5089:  
 5090:   /* for (i=0; i<=imx; i++) 
 5091:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 5092:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 5093:   for (i=1;i<=imx ; i++)
 5094:     {
 5095:       if (cens[i] == 1 && wav[i]>1)
 5096: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 5097:       
 5098:       if (cens[i] == 0 && wav[i]>1)
 5099: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 5100: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 5101:       
 5102:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 5103:       if (wav[i] > 1 ) { /* ??? */
 5104: 	LL=LL+A*weight[i];
 5105: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 5106:       }
 5107:     }
 5108: 
 5109:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 5110:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 5111:  
 5112:   return -2*LL*num/sump;
 5113: }
 5114: #endif
 5115: 
 5116: /******************* Printing html file ***********/
 5117: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 5118: 		  int lastpass, int stepm, int weightopt, char model[],\
 5119: 		  int imx,  double p[],double **matcov,double agemortsup){
 5120:   int i,k;
 5121: 
 5122:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 5123:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 5124:   for (i=1;i<=2;i++) 
 5125:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5126:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 5127:   fprintf(fichtm,"</ul>");
 5128: 
 5129: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 5130: 
 5131:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 5132: 
 5133:  for (k=agegomp;k<(agemortsup-2);k++) 
 5134:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5135: 
 5136:  
 5137:   fflush(fichtm);
 5138: }
 5139: 
 5140: /******************* Gnuplot file **************/
 5141: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 5142: 
 5143:   char dirfileres[132],optfileres[132];
 5144: 
 5145:   int ng;
 5146: 
 5147: 
 5148:   /*#ifdef windows */
 5149:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 5150:     /*#endif */
 5151: 
 5152: 
 5153:   strcpy(dirfileres,optionfilefiname);
 5154:   strcpy(optfileres,"vpl");
 5155:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 5156:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 5157:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
 5158:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 5159:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 5160: 
 5161: } 
 5162: 
 5163: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 5164: {
 5165: 
 5166:   /*-------- data file ----------*/
 5167:   FILE *fic;
 5168:   char dummy[]="                         ";
 5169:   int i=0, j=0, n=0;
 5170:   int linei, month, year,iout;
 5171:   char line[MAXLINE], linetmp[MAXLINE];
 5172:   char stra[MAXLINE], strb[MAXLINE];
 5173:   char *stratrunc;
 5174:   int lstra;
 5175: 
 5176: 
 5177:   if((fic=fopen(datafile,"r"))==NULL)    {
 5178:     printf("Problem while opening datafile: %s\n", datafile);return 1;
 5179:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
 5180:   }
 5181: 
 5182:   i=1;
 5183:   linei=0;
 5184:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 5185:     linei=linei+1;
 5186:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 5187:       if(line[j] == '\t')
 5188: 	line[j] = ' ';
 5189:     }
 5190:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 5191:       ;
 5192:     };
 5193:     line[j+1]=0;  /* Trims blanks at end of line */
 5194:     if(line[0]=='#'){
 5195:       fprintf(ficlog,"Comment line\n%s\n",line);
 5196:       printf("Comment line\n%s\n",line);
 5197:       continue;
 5198:     }
 5199:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 5200:     strcpy(line, linetmp);
 5201:   
 5202: 
 5203:     for (j=maxwav;j>=1;j--){
 5204:       cutv(stra, strb, line, ' '); 
 5205:       if(strb[0]=='.') { /* Missing status */
 5206: 	lval=-1;
 5207:       }else{
 5208: 	errno=0;
 5209: 	lval=strtol(strb,&endptr,10); 
 5210:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 5211: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5212: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 5213: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 5214: 	  return 1;
 5215: 	}
 5216:       }
 5217:       s[j][i]=lval;
 5218:       
 5219:       strcpy(line,stra);
 5220:       cutv(stra, strb,line,' ');
 5221:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5222:       }
 5223:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5224: 	month=99;
 5225: 	year=9999;
 5226:       }else{
 5227: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 5228: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 5229: 	return 1;
 5230:       }
 5231:       anint[j][i]= (double) year; 
 5232:       mint[j][i]= (double)month; 
 5233:       strcpy(line,stra);
 5234:     } /* ENd Waves */
 5235:     
 5236:     cutv(stra, strb,line,' '); 
 5237:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5238:     }
 5239:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5240:       month=99;
 5241:       year=9999;
 5242:     }else{
 5243:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5244: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5245: 	return 1;
 5246:     }
 5247:     andc[i]=(double) year; 
 5248:     moisdc[i]=(double) month; 
 5249:     strcpy(line,stra);
 5250:     
 5251:     cutv(stra, strb,line,' '); 
 5252:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5253:     }
 5254:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
 5255:       month=99;
 5256:       year=9999;
 5257:     }else{
 5258:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5259:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5260: 	return 1;
 5261:     }
 5262:     if (year==9999) {
 5263:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 5264:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5265: 	return 1;
 5266: 
 5267:     }
 5268:     annais[i]=(double)(year);
 5269:     moisnais[i]=(double)(month); 
 5270:     strcpy(line,stra);
 5271:     
 5272:     cutv(stra, strb,line,' '); 
 5273:     errno=0;
 5274:     dval=strtod(strb,&endptr); 
 5275:     if( strb[0]=='\0' || (*endptr != '\0')){
 5276:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5277:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5278:       fflush(ficlog);
 5279:       return 1;
 5280:     }
 5281:     weight[i]=dval; 
 5282:     strcpy(line,stra);
 5283:     
 5284:     for (j=ncovcol;j>=1;j--){
 5285:       cutv(stra, strb,line,' '); 
 5286:       if(strb[0]=='.') { /* Missing status */
 5287: 	lval=-1;
 5288:       }else{
 5289: 	errno=0;
 5290: 	lval=strtol(strb,&endptr,10); 
 5291: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5292: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 5293: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 5294: 	  return 1;
 5295: 	}
 5296:       }
 5297:       if(lval <-1 || lval >1){
 5298: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5299:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5300:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5301:  For example, for multinomial values like 1, 2 and 3,\n \
 5302:  build V1=0 V2=0 for the reference value (1),\n \
 5303:         V1=1 V2=0 for (2) \n \
 5304:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5305:  output of IMaCh is often meaningless.\n \
 5306:  Exiting.\n",lval,linei, i,line,j);
 5307: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5308:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5309:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5310:  For example, for multinomial values like 1, 2 and 3,\n \
 5311:  build V1=0 V2=0 for the reference value (1),\n \
 5312:         V1=1 V2=0 for (2) \n \
 5313:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5314:  output of IMaCh is often meaningless.\n \
 5315:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 5316: 	return 1;
 5317:       }
 5318:       covar[j][i]=(double)(lval);
 5319:       strcpy(line,stra);
 5320:     }  
 5321:     lstra=strlen(stra);
 5322:      
 5323:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5324:       stratrunc = &(stra[lstra-9]);
 5325:       num[i]=atol(stratrunc);
 5326:     }
 5327:     else
 5328:       num[i]=atol(stra);
 5329:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5330:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5331:     
 5332:     i=i+1;
 5333:   } /* End loop reading  data */
 5334: 
 5335:   *imax=i-1; /* Number of individuals */
 5336:   fclose(fic);
 5337:  
 5338:   return (0);
 5339:   /* endread: */
 5340:     printf("Exiting readdata: ");
 5341:     fclose(fic);
 5342:     return (1);
 5343: 
 5344: 
 5345: 
 5346: }
 5347: void removespace(char *str) {
 5348:   char *p1 = str, *p2 = str;
 5349:   do
 5350:     while (*p2 == ' ')
 5351:       p2++;
 5352:   while (*p1++ == *p2++);
 5353: }
 5354: 
 5355: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5356:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
 5357:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
 5358:    * - cptcovn or number of covariates k of the models excluding age*products =6
 5359:    * - cptcovage number of covariates with age*products =2
 5360:    * - cptcovs number of simple covariates
 5361:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5362:    *     which is a new column after the 9 (ncovcol) variables. 
 5363:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5364:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5365:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5366:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5367:  */
 5368: {
 5369:   int i, j, k, ks;
 5370:   int  j1, k1, k2;
 5371:   char modelsav[80];
 5372:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5373: 
 5374:   /*removespace(model);*/
 5375:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5376:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5377:     j=nbocc(model,'+'); /**< j=Number of '+' */
 5378:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
 5379:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
 5380:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
 5381:                   /* including age products which are counted in cptcovage.
 5382: 		  * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
 5383:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5384:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5385:     strcpy(modelsav,model); 
 5386:     if (strstr(model,"AGE") !=0){
 5387:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
 5388:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
 5389:       return 1;
 5390:     }
 5391:     if (strstr(model,"v") !=0){
 5392:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5393:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5394:       return 1;
 5395:     }
 5396:     
 5397:     /*   Design
 5398:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5399:      *  <          ncovcol=8                >
 5400:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5401:      *   k=  1    2      3       4     5       6      7        8
 5402:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5403:      *  covar[k,i], value of kth covariate if not including age for individual i:
 5404:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5405:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5406:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5407:      *  Tage[++cptcovage]=k
 5408:      *       if products, new covar are created after ncovcol with k1
 5409:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5410:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5411:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5412:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5413:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5414:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5415:      *  <          ncovcol=8                >
 5416:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5417:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5418:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5419:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5420:      * p Tprod[1]@2={                         6, 5}
 5421:      *p Tvard[1][1]@4= {7, 8, 5, 6}
 5422:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5423:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5424:      *How to reorganize?
 5425:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5426:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5427:      *       {2,   1,     4,      8,    5,      6,     3,       7}
 5428:      * Struct []
 5429:      */
 5430: 
 5431:     /* This loop fills the array Tvar from the string 'model'.*/
 5432:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5433:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5434:     /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5435:     /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5436:     /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5437:     /* 	k=1 Tvar[1]=2 (from V2) */
 5438:     /* 	k=5 Tvar[5] */
 5439:     /* for (k=1; k<=cptcovn;k++) { */
 5440:     /* 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
 5441:     /* 	} */
 5442:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
 5443:     /*
 5444:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5445:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5446:         Tvar[k]=0;
 5447:     cptcovage=0;
 5448:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5449:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5450: 				     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5451:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5452:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5453:       /*scanf("%d",i);*/
 5454:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5455: 	cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5456: 	if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5457: 	  /* covar is not filled and then is empty */
 5458: 	  cptcovprod--;
 5459: 	  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5460: 	  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
 5461: 	  cptcovage++; /* Sums the number of covariates which include age as a product */
 5462: 	  Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
 5463: 	  /*printf("stre=%s ", stre);*/
 5464: 	} else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5465: 	  cptcovprod--;
 5466: 	  cutl(stre,strb,strc,'V');
 5467: 	  Tvar[k]=atoi(stre);
 5468: 	  cptcovage++;
 5469: 	  Tage[cptcovage]=k;
 5470: 	} else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5471: 	  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5472: 	  cptcovn++;
 5473: 	  cptcovprodnoage++;k1++;
 5474: 	  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5475: 	  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5476: 				  because this model-covariate is a construction we invent a new column
 5477: 				  ncovcol + k1
 5478: 				  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5479: 				  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5480: 	  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5481: 	  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5482: 	  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5483: 	  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5484: 	  k2=k2+2;
 5485: 	  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5486: 	  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5487: 	  for (i=1; i<=lastobs;i++){
 5488: 	    /* Computes the new covariate which is a product of
 5489: 	       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5490: 	    covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5491: 	  }
 5492: 	} /* End age is not in the model */
 5493:       } /* End if model includes a product */
 5494:       else { /* no more sum */
 5495: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5496:        /*  scanf("%d",i);*/
 5497: 	cutl(strd,strc,strb,'V');
 5498: 	ks++; /**< Number of simple covariates */
 5499: 	cptcovn++;
 5500: 	Tvar[k]=atoi(strd);
 5501:       }
 5502:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5503:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5504: 	scanf("%d",i);*/
 5505:     } /* end of loop + */
 5506:   } /* end model */
 5507:   
 5508:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5509:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5510: 
 5511:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5512:   printf("cptcovprod=%d ", cptcovprod);
 5513:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5514: 
 5515:   scanf("%d ",i);*/
 5516: 
 5517: 
 5518:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5519:   /*endread:*/
 5520:     printf("Exiting decodemodel: ");
 5521:     return (1);
 5522: }
 5523: 
 5524: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5525: {
 5526:   int i, m;
 5527: 
 5528:   for (i=1; i<=imx; i++) {
 5529:     for(m=2; (m<= maxwav); m++) {
 5530:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5531: 	anint[m][i]=9999;
 5532: 	s[m][i]=-1;
 5533:       }
 5534:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5535: 	*nberr = *nberr + 1;
 5536: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5537: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5538: 	s[m][i]=-1;
 5539:       }
 5540:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5541: 	(*nberr)++;
 5542: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5543: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5544: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5545:       }
 5546:     }
 5547:   }
 5548: 
 5549:   for (i=1; i<=imx; i++)  {
 5550:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5551:     for(m=firstpass; (m<= lastpass); m++){
 5552:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5553: 	if (s[m][i] >= nlstate+1) {
 5554: 	  if(agedc[i]>0){
 5555: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
 5556: 	      agev[m][i]=agedc[i];
 5557: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5558: 	    }else {
 5559: 	      if ((int)andc[i]!=9999){
 5560: 		nbwarn++;
 5561: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5562: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5563: 		agev[m][i]=-1;
 5564: 	      }
 5565: 	    }
 5566: 	  } /* agedc > 0 */
 5567: 	}
 5568: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5569: 				 years but with the precision of a month */
 5570: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5571: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5572: 	    agev[m][i]=1;
 5573: 	  else if(agev[m][i] < *agemin){ 
 5574: 	    *agemin=agev[m][i];
 5575: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5576: 	  }
 5577: 	  else if(agev[m][i] >*agemax){
 5578: 	    *agemax=agev[m][i];
 5579: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5580: 	  }
 5581: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5582: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5583: 	}
 5584: 	else { /* =9 */
 5585: 	  agev[m][i]=1;
 5586: 	  s[m][i]=-1;
 5587: 	}
 5588:       }
 5589:       else /*= 0 Unknown */
 5590: 	agev[m][i]=1;
 5591:     }
 5592:     
 5593:   }
 5594:   for (i=1; i<=imx; i++)  {
 5595:     for(m=firstpass; (m<=lastpass); m++){
 5596:       if (s[m][i] > (nlstate+ndeath)) {
 5597: 	(*nberr)++;
 5598: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5599: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5600: 	return 1;
 5601:       }
 5602:     }
 5603:   }
 5604: 
 5605:   /*for (i=1; i<=imx; i++){
 5606:   for (m=firstpass; (m<lastpass); m++){
 5607:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5608: }
 5609: 
 5610: }*/
 5611: 
 5612: 
 5613:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5614:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5615: 
 5616:   return (0);
 5617:  /* endread:*/
 5618:     printf("Exiting calandcheckages: ");
 5619:     return (1);
 5620: }
 5621: 
 5622: #if defined(_MSC_VER)
 5623: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5624: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5625: //#include "stdafx.h"
 5626: //#include <stdio.h>
 5627: //#include <tchar.h>
 5628: //#include <windows.h>
 5629: //#include <iostream>
 5630: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
 5631: 
 5632: LPFN_ISWOW64PROCESS fnIsWow64Process;
 5633: 
 5634: BOOL IsWow64()
 5635: {
 5636: 	BOOL bIsWow64 = FALSE;
 5637: 
 5638: 	//typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
 5639: 	//  (HANDLE, PBOOL);
 5640: 
 5641: 	//LPFN_ISWOW64PROCESS fnIsWow64Process;
 5642: 
 5643: 	HMODULE module = GetModuleHandle(_T("kernel32"));
 5644: 	const char funcName[] = "IsWow64Process";
 5645: 	fnIsWow64Process = (LPFN_ISWOW64PROCESS)
 5646: 		GetProcAddress(module, funcName);
 5647: 
 5648: 	if (NULL != fnIsWow64Process)
 5649: 	{
 5650: 		if (!fnIsWow64Process(GetCurrentProcess(),
 5651: 			&bIsWow64))
 5652: 			//throw std::exception("Unknown error");
 5653: 			printf("Unknown error\n");
 5654: 	}
 5655: 	return bIsWow64 != FALSE;
 5656: }
 5657: #endif
 5658: 
 5659: void syscompilerinfo()
 5660:  {
 5661:    /* #include "syscompilerinfo.h"*/
 5662:    /* command line Intel compiler 32bit windows, XP compatible:*/
 5663:    /* /GS /W3 /Gy
 5664:       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
 5665:       "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
 5666:       "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
 5667:       /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
 5668:    */ 
 5669:    /* 64 bits */
 5670:    /*
 5671:      /GS /W3 /Gy
 5672:      /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
 5673:      /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
 5674:      /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
 5675:      "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
 5676:    /* Optimization are useless and O3 is slower than O2 */
 5677:    /*
 5678:      /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
 5679:      /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
 5680:      /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
 5681:      /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
 5682:    */
 5683:    /* Link is */ /* /OUT:"visual studio
 5684:       2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
 5685:       /PDB:"visual studio
 5686:       2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
 5687:       "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
 5688:       "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
 5689:       "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
 5690:       /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
 5691:       /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
 5692:       uiAccess='false'"
 5693:       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
 5694:       /NOLOGO /TLBID:1
 5695:    */
 5696: #if defined __INTEL_COMPILER
 5697: #if defined(__GNUC__)
 5698: 	struct utsname sysInfo;  /* For Intel on Linux and OS/X */
 5699: #endif
 5700: #elif defined(__GNUC__) 
 5701: #ifndef  __APPLE__
 5702: #include <gnu/libc-version.h>  /* Only on gnu */
 5703: #endif
 5704:    struct utsname sysInfo;
 5705:    int cross = CROSS;
 5706:    if (cross){
 5707: 	   printf("Cross-");
 5708: 	   fprintf(ficlog, "Cross-");
 5709:    }
 5710: #endif
 5711: 
 5712: #include <stdint.h>
 5713: 
 5714:    printf("Compiled with:");fprintf(ficlog,"Compiled with:");
 5715: #if defined(__clang__)
 5716:    printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM");	/* Clang/LLVM. ---------------------------------------------- */
 5717: #endif
 5718: #if defined(__ICC) || defined(__INTEL_COMPILER)
 5719:    printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
 5720: #endif
 5721: #if defined(__GNUC__) || defined(__GNUG__)
 5722:    printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
 5723: #endif
 5724: #if defined(__HP_cc) || defined(__HP_aCC)
 5725:    printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
 5726: #endif
 5727: #if defined(__IBMC__) || defined(__IBMCPP__)
 5728:    printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
 5729: #endif
 5730: #if defined(_MSC_VER)
 5731:    printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
 5732: #endif
 5733: #if defined(__PGI)
 5734:    printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
 5735: #endif
 5736: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
 5737:    printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
 5738: #endif
 5739:    printf(" for ");fprintf(ficlog," for ");
 5740:    
 5741: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
 5742: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
 5743:     // Windows (x64 and x86)
 5744:    printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
 5745: #elif __unix__ // all unices, not all compilers
 5746:     // Unix
 5747:    printf("Unix ");fprintf(ficlog,"Unix ");
 5748: #elif __linux__
 5749:     // linux
 5750:    printf("linux ");fprintf(ficlog,"linux ");
 5751: #elif __APPLE__
 5752:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
 5753:    printf("Mac OS ");fprintf(ficlog,"Mac OS ");
 5754: #endif
 5755: 
 5756: /*  __MINGW32__	  */
 5757: /*  __CYGWIN__	 */
 5758: /* __MINGW64__  */
 5759: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
 5760: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
 5761: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
 5762: /* _WIN64  // Defined for applications for Win64. */
 5763: /* _M_X64 // Defined for compilations that target x64 processors. */
 5764: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
 5765: 
 5766: #if UINTPTR_MAX == 0xffffffff
 5767:    printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
 5768: #elif UINTPTR_MAX == 0xffffffffffffffff
 5769:    printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
 5770: #else
 5771:    printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
 5772: #endif
 5773: 
 5774: #if defined(__GNUC__)
 5775: # if defined(__GNUC_PATCHLEVEL__)
 5776: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5777:                             + __GNUC_MINOR__ * 100 \
 5778:                             + __GNUC_PATCHLEVEL__)
 5779: # else
 5780: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 5781:                             + __GNUC_MINOR__ * 100)
 5782: # endif
 5783:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
 5784:    fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
 5785: 
 5786:    if (uname(&sysInfo) != -1) {
 5787:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 5788:      fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 5789:    }
 5790:    else
 5791:       perror("uname() error");
 5792:    //#ifndef __INTEL_COMPILER 
 5793: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
 5794:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
 5795:    fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
 5796: #endif
 5797: #endif
 5798: 
 5799:    //   void main()
 5800:    //   {
 5801: #if defined(_MSC_VER)
 5802:    if (IsWow64()){
 5803: 	   printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 5804: 	   fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 5805:    }
 5806:    else{
 5807: 	   printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 5808: 	   fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 5809:    }
 5810:    //	   printf("\nPress Enter to continue...");
 5811:    //	   getchar();
 5812:    //   }
 5813: 
 5814: #endif
 5815:    
 5816: 
 5817:  }
 5818: 
 5819: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
 5820:   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 5821:   int i, j, k, i1 ;
 5822:   double ftolpl = 1.e-10;
 5823:   double age, agebase, agelim;
 5824: 
 5825:     strcpy(filerespl,"pl");
 5826:     strcat(filerespl,fileres);
 5827:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 5828:       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 5829:       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 5830:     }
 5831:     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5832:     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 5833:     pstamp(ficrespl);
 5834:     fprintf(ficrespl,"# Period (stable) prevalence \n");
 5835:     fprintf(ficrespl,"#Age ");
 5836:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5837:     fprintf(ficrespl,"\n");
 5838:   
 5839:     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
 5840: 
 5841:     agebase=ageminpar;
 5842:     agelim=agemaxpar;
 5843: 
 5844:     i1=pow(2,cptcoveff);
 5845:     if (cptcovn < 1){i1=1;}
 5846: 
 5847:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5848:     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
 5849:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5850: 	k=k+1;
 5851: 	/* to clean */
 5852: 	//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
 5853: 	fprintf(ficrespl,"\n#******");
 5854: 	printf("\n#******");
 5855: 	fprintf(ficlog,"\n#******");
 5856: 	for(j=1;j<=cptcoveff;j++) {
 5857: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5858: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5859: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5860: 	}
 5861: 	fprintf(ficrespl,"******\n");
 5862: 	printf("******\n");
 5863: 	fprintf(ficlog,"******\n");
 5864: 
 5865: 	fprintf(ficrespl,"#Age ");
 5866: 	for(j=1;j<=cptcoveff;j++) {
 5867: 	  fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5868: 	}
 5869: 	for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 5870: 	fprintf(ficrespl,"\n");
 5871: 	
 5872: 	for (age=agebase; age<=agelim; age++){
 5873: 	/* for (age=agebase; age<=agebase; age++){ */
 5874: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5875: 	  fprintf(ficrespl,"%.0f ",age );
 5876: 	  for(j=1;j<=cptcoveff;j++)
 5877: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5878: 	  for(i=1; i<=nlstate;i++)
 5879: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 5880: 	  fprintf(ficrespl,"\n");
 5881: 	} /* Age */
 5882: 	/* was end of cptcod */
 5883:     } /* cptcov */
 5884: 	return 0;
 5885: }
 5886: 
 5887: int hPijx(double *p, int bage, int fage){
 5888:     /*------------- h Pij x at various ages ------------*/
 5889: 
 5890:   int stepsize;
 5891:   int agelim;
 5892:   int hstepm;
 5893:   int nhstepm;
 5894:   int h, i, i1, j, k;
 5895: 
 5896:   double agedeb;
 5897:   double ***p3mat;
 5898: 
 5899:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 5900:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 5901:       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
 5902:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
 5903:     }
 5904:     printf("Computing pij: result on file '%s' \n", filerespij);
 5905:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 5906:   
 5907:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 5908:     /*if (stepm<=24) stepsize=2;*/
 5909: 
 5910:     agelim=AGESUP;
 5911:     hstepm=stepsize*YEARM; /* Every year of age */
 5912:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 5913: 
 5914:     /* hstepm=1;   aff par mois*/
 5915:     pstamp(ficrespij);
 5916:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 5917:     i1= pow(2,cptcoveff);
 5918:    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
 5919:    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
 5920:    /*  	k=k+1;  */
 5921:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 5922:       fprintf(ficrespij,"\n#****** ");
 5923:       for(j=1;j<=cptcoveff;j++) 
 5924: 	fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5925:       fprintf(ficrespij,"******\n");
 5926:       
 5927:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 5928: 	nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 5929: 	nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 5930: 	
 5931: 	/*	  nhstepm=nhstepm*YEARM; aff par mois*/
 5932: 	
 5933: 	p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5934: 	oldm=oldms;savm=savms;
 5935: 	hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5936: 	fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 5937: 	for(i=1; i<=nlstate;i++)
 5938: 	  for(j=1; j<=nlstate+ndeath;j++)
 5939: 	    fprintf(ficrespij," %1d-%1d",i,j);
 5940: 	fprintf(ficrespij,"\n");
 5941: 	for (h=0; h<=nhstepm; h++){
 5942: 	  /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
 5943: 	  fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
 5944: 	  for(i=1; i<=nlstate;i++)
 5945: 	    for(j=1; j<=nlstate+ndeath;j++)
 5946: 	      fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 5947: 	  fprintf(ficrespij,"\n");
 5948: 	}
 5949: 	free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5950: 	fprintf(ficrespij,"\n");
 5951:       }
 5952:       /*}*/
 5953:     }
 5954: 	return 0;
 5955: }
 5956: 
 5957: 
 5958: /***********************************************/
 5959: /**************** Main Program *****************/
 5960: /***********************************************/
 5961: 
 5962: int main(int argc, char *argv[])
 5963: {
 5964: #ifdef GSL
 5965:   const gsl_multimin_fminimizer_type *T;
 5966:   size_t iteri = 0, it;
 5967:   int rval = GSL_CONTINUE;
 5968:   int status = GSL_SUCCESS;
 5969:   double ssval;
 5970: #endif
 5971:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 5972:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
 5973: 
 5974:   int jj, ll, li, lj, lk;
 5975:   int numlinepar=0; /* Current linenumber of parameter file */
 5976:   int itimes;
 5977:   int NDIM=2;
 5978:   int vpopbased=0;
 5979: 
 5980:   char ca[32], cb[32];
 5981:   /*  FILE *fichtm; *//* Html File */
 5982:   /* FILE *ficgp;*/ /*Gnuplot File */
 5983:   struct stat info;
 5984:   double agedeb;
 5985:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 5986: 
 5987:   double fret;
 5988:   double dum; /* Dummy variable */
 5989:   double ***p3mat;
 5990:   double ***mobaverage;
 5991: 
 5992:   char line[MAXLINE];
 5993:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 5994:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 5995:   char *tok, *val; /* pathtot */
 5996:   int firstobs=1, lastobs=10;
 5997:   int c,  h , cpt;
 5998:   int jl;
 5999:   int i1, j1, jk, stepsize;
 6000:   int *tab; 
 6001:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 6002:   int mobilav=0,popforecast=0;
 6003:   int hstepm, nhstepm;
 6004:   int agemortsup;
 6005:   float  sumlpop=0.;
 6006:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 6007:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 6008: 
 6009:   double bage=0, fage=110, age, agelim, agebase;
 6010:   double ftolpl=FTOL;
 6011:   double **prlim;
 6012:   double ***param; /* Matrix of parameters */
 6013:   double  *p;
 6014:   double **matcov; /* Matrix of covariance */
 6015:   double ***delti3; /* Scale */
 6016:   double *delti; /* Scale */
 6017:   double ***eij, ***vareij;
 6018:   double **varpl; /* Variances of prevalence limits by age */
 6019:   double *epj, vepp;
 6020: 
 6021:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 6022:   double **ximort;
 6023:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 6024:   int *dcwave;
 6025: 
 6026:   char z[1]="c";
 6027: 
 6028:   /*char  *strt;*/
 6029:   char strtend[80];
 6030: 
 6031: 
 6032: /*   setlocale (LC_ALL, ""); */
 6033: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 6034: /*   textdomain (PACKAGE); */
 6035: /*   setlocale (LC_CTYPE, ""); */
 6036: /*   setlocale (LC_MESSAGES, ""); */
 6037: 
 6038:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 6039:   rstart_time = time(NULL);  
 6040:   /*  (void) gettimeofday(&start_time,&tzp);*/
 6041:   start_time = *localtime(&rstart_time);
 6042:   curr_time=start_time;
 6043:   /*tml = *localtime(&start_time.tm_sec);*/
 6044:   /* strcpy(strstart,asctime(&tml)); */
 6045:   strcpy(strstart,asctime(&start_time));
 6046: 
 6047: /*  printf("Localtime (at start)=%s",strstart); */
 6048: /*  tp.tm_sec = tp.tm_sec +86400; */
 6049: /*  tm = *localtime(&start_time.tm_sec); */
 6050: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 6051: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 6052: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 6053: /*   tp.tm_sec = mktime(&tmg); */
 6054: /*   strt=asctime(&tmg); */
 6055: /*   printf("Time(after) =%s",strstart);  */
 6056: /*  (void) time (&time_value);
 6057: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 6058: *  tm = *localtime(&time_value);
 6059: *  strstart=asctime(&tm);
 6060: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 6061: */
 6062: 
 6063:   nberr=0; /* Number of errors and warnings */
 6064:   nbwarn=0;
 6065: #ifdef WIN32
 6066:   _getcwd(pathcd, size);
 6067: #else
 6068:   getcwd(pathcd, size);
 6069: #endif
 6070: 
 6071:   printf("\n%s\n%s",version,fullversion);
 6072:   if(argc <=1){
 6073:     printf("\nEnter the parameter file name: ");
 6074:     fgets(pathr,FILENAMELENGTH,stdin);
 6075:     i=strlen(pathr);
 6076:     if(pathr[i-1]=='\n')
 6077:       pathr[i-1]='\0';
 6078:     i=strlen(pathr);
 6079:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 6080:       pathr[i-1]='\0';
 6081:    for (tok = pathr; tok != NULL; ){
 6082:       printf("Pathr |%s|\n",pathr);
 6083:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 6084:       printf("val= |%s| pathr=%s\n",val,pathr);
 6085:       strcpy (pathtot, val);
 6086:       if(pathr[0] == '\0') break; /* Dirty */
 6087:     }
 6088:   }
 6089:   else{
 6090:     strcpy(pathtot,argv[1]);
 6091:   }
 6092:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 6093:   /*cygwin_split_path(pathtot,path,optionfile);
 6094:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 6095:   /* cutv(path,optionfile,pathtot,'\\');*/
 6096: 
 6097:   /* Split argv[0], imach program to get pathimach */
 6098:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 6099:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 6100:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 6101:  /*   strcpy(pathimach,argv[0]); */
 6102:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 6103:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 6104:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 6105: #ifdef WIN32
 6106:   _chdir(path); /* Can be a relative path */
 6107:   if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 6108: #else
 6109:   chdir(path); /* Can be a relative path */
 6110:   if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
 6111: #endif
 6112:   printf("Current directory %s!\n",pathcd);
 6113:   strcpy(command,"mkdir ");
 6114:   strcat(command,optionfilefiname);
 6115:   if((outcmd=system(command)) != 0){
 6116:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
 6117:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 6118:     /* fclose(ficlog); */
 6119: /*     exit(1); */
 6120:   }
 6121: /*   if((imk=mkdir(optionfilefiname))<0){ */
 6122: /*     perror("mkdir"); */
 6123: /*   } */
 6124: 
 6125:   /*-------- arguments in the command line --------*/
 6126: 
 6127:   /* Main Log file */
 6128:   strcat(filelog, optionfilefiname);
 6129:   strcat(filelog,".log");    /* */
 6130:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 6131:     printf("Problem with logfile %s\n",filelog);
 6132:     goto end;
 6133:   }
 6134:   fprintf(ficlog,"Log filename:%s\n",filelog);
 6135:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 6136:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 6137:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 6138:  path=%s \n\
 6139:  optionfile=%s\n\
 6140:  optionfilext=%s\n\
 6141:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 6142: 
 6143:   syscompilerinfo();
 6144: 
 6145:   printf("Local time (at start):%s",strstart);
 6146:   fprintf(ficlog,"Local time (at start): %s",strstart);
 6147:   fflush(ficlog);
 6148: /*   (void) gettimeofday(&curr_time,&tzp); */
 6149: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 6150: 
 6151:   /* */
 6152:   strcpy(fileres,"r");
 6153:   strcat(fileres, optionfilefiname);
 6154:   strcat(fileres,".txt");    /* Other files have txt extension */
 6155: 
 6156:   /* Main ---------arguments file --------*/
 6157: 
 6158:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 6159:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6160:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6161:     fflush(ficlog);
 6162:     /* goto end; */
 6163:     exit(70); 
 6164:   }
 6165: 
 6166: 
 6167: 
 6168:   strcpy(filereso,"o");
 6169:   strcat(filereso,fileres);
 6170:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 6171:     printf("Problem with Output resultfile: %s\n", filereso);
 6172:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 6173:     fflush(ficlog);
 6174:     goto end;
 6175:   }
 6176: 
 6177:   /* Reads comments: lines beginning with '#' */
 6178:   numlinepar=0;
 6179:   while((c=getc(ficpar))=='#' && c!= EOF){
 6180:     ungetc(c,ficpar);
 6181:     fgets(line, MAXLINE, ficpar);
 6182:     numlinepar++;
 6183:     fputs(line,stdout);
 6184:     fputs(line,ficparo);
 6185:     fputs(line,ficlog);
 6186:   }
 6187:   ungetc(c,ficpar);
 6188: 
 6189:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 6190:   numlinepar++;
 6191:   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
 6192:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n",title, datafile, lastobs, firstpass,lastpass);
 6193:   /*
 6194: 
 6195: 
 6196: 
 6197:    */
 6198:   printf("\nftol=%e \n", ftol);
 6199:   printf("stepm=%d \n", stepm);
 6200:   printf("ncovcol=%d nlstate=%d \n", ncovcol, nlstate);
 6201:   printf("ndeath=%d maxwav=%d mle=%d weight=%d\n", ndeath, maxwav, mle, weightopt);
 6202:   printf("model=%s\n",model);
 6203:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6204:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6205:   fflush(ficlog);
 6206:   while((c=getc(ficpar))=='#' && c!= EOF){
 6207:     ungetc(c,ficpar);
 6208:     fgets(line, MAXLINE, ficpar);
 6209:     numlinepar++;
 6210:     fputs(line, stdout);
 6211:     //puts(line);
 6212:     fputs(line,ficparo);
 6213:     fputs(line,ficlog);
 6214:   }
 6215:   ungetc(c,ficpar);
 6216: 
 6217:    
 6218:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 6219:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 6220:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 6221:      v1+v2*age+v2*v3 makes cptcovn = 3
 6222:   */
 6223:   if (strlen(model)>1) 
 6224:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
 6225:   else
 6226:     ncovmodel=2;
 6227:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 6228:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 6229:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 6230:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 6231:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6232:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6233:     fflush(stdout);
 6234:     fclose (ficlog);
 6235:     goto end;
 6236:   }
 6237:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6238:   delti=delti3[1][1];
 6239:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 6240:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 6241:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6242:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6243:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6244:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6245:     fclose (ficparo);
 6246:     fclose (ficlog);
 6247:     goto end;
 6248:     exit(0);
 6249:   }
 6250:   else if(mle==-3) { /* Main Wizard */
 6251:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6252:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6253:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6254:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6255:     matcov=matrix(1,npar,1,npar);
 6256:   }
 6257:   else{
 6258:     /* Read guessed parameters */
 6259:     /* Reads comments: lines beginning with '#' */
 6260:     while((c=getc(ficpar))=='#' && c!= EOF){
 6261:       ungetc(c,ficpar);
 6262:       fgets(line, MAXLINE, ficpar);
 6263:       numlinepar++;
 6264:       fputs(line,stdout);
 6265:       fputs(line,ficparo);
 6266:       fputs(line,ficlog);
 6267:     }
 6268:     ungetc(c,ficpar);
 6269:     
 6270:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6271:     for(i=1; i <=nlstate; i++){
 6272:       j=0;
 6273:       for(jj=1; jj <=nlstate+ndeath; jj++){
 6274: 	if(jj==i) continue;
 6275: 	j++;
 6276: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6277: 	if ((i1 != i) && (j1 != j)){
 6278: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 6279: It might be a problem of design; if ncovcol and the model are correct\n \
 6280: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 6281: 	  exit(1);
 6282: 	}
 6283: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6284: 	if(mle==1)
 6285: 	  printf("%1d%1d",i,j);
 6286: 	fprintf(ficlog,"%1d%1d",i,j);
 6287: 	for(k=1; k<=ncovmodel;k++){
 6288: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 6289: 	  if(mle==1){
 6290: 	    printf(" %lf",param[i][j][k]);
 6291: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6292: 	  }
 6293: 	  else
 6294: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6295: 	  fprintf(ficparo," %lf",param[i][j][k]);
 6296: 	}
 6297: 	fscanf(ficpar,"\n");
 6298: 	numlinepar++;
 6299: 	if(mle==1)
 6300: 	  printf("\n");
 6301: 	fprintf(ficlog,"\n");
 6302: 	fprintf(ficparo,"\n");
 6303:       }
 6304:     }  
 6305:     fflush(ficlog);
 6306: 
 6307:     /* Reads scales values */
 6308:     p=param[1][1];
 6309:     
 6310:     /* Reads comments: lines beginning with '#' */
 6311:     while((c=getc(ficpar))=='#' && c!= EOF){
 6312:       ungetc(c,ficpar);
 6313:       fgets(line, MAXLINE, ficpar);
 6314:       numlinepar++;
 6315:       fputs(line,stdout);
 6316:       fputs(line,ficparo);
 6317:       fputs(line,ficlog);
 6318:     }
 6319:     ungetc(c,ficpar);
 6320: 
 6321:     for(i=1; i <=nlstate; i++){
 6322:       for(j=1; j <=nlstate+ndeath-1; j++){
 6323: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6324: 	if ( (i1-i) * (j1-j) != 0){
 6325: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 6326: 	  exit(1);
 6327: 	}
 6328: 	printf("%1d%1d",i,j);
 6329: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6330: 	fprintf(ficlog,"%1d%1d",i1,j1);
 6331: 	for(k=1; k<=ncovmodel;k++){
 6332: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 6333: 	  printf(" %le",delti3[i][j][k]);
 6334: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 6335: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 6336: 	}
 6337: 	fscanf(ficpar,"\n");
 6338: 	numlinepar++;
 6339: 	printf("\n");
 6340: 	fprintf(ficparo,"\n");
 6341: 	fprintf(ficlog,"\n");
 6342:       }
 6343:     }
 6344:     fflush(ficlog);
 6345: 
 6346:     /* Reads covariance matrix */
 6347:     delti=delti3[1][1];
 6348: 
 6349: 
 6350:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 6351:   
 6352:     /* Reads comments: lines beginning with '#' */
 6353:     while((c=getc(ficpar))=='#' && c!= EOF){
 6354:       ungetc(c,ficpar);
 6355:       fgets(line, MAXLINE, ficpar);
 6356:       numlinepar++;
 6357:       fputs(line,stdout);
 6358:       fputs(line,ficparo);
 6359:       fputs(line,ficlog);
 6360:     }
 6361:     ungetc(c,ficpar);
 6362:   
 6363:     matcov=matrix(1,npar,1,npar);
 6364:     for(i=1; i <=npar; i++)
 6365:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 6366:       
 6367:     for(i=1; i <=npar; i++){
 6368:       fscanf(ficpar,"%s",str);
 6369:       if(mle==1)
 6370: 	printf("%s",str);
 6371:       fprintf(ficlog,"%s",str);
 6372:       fprintf(ficparo,"%s",str);
 6373:       for(j=1; j <=i; j++){
 6374: 	fscanf(ficpar," %le",&matcov[i][j]);
 6375: 	if(mle==1){
 6376: 	  printf(" %.5le",matcov[i][j]);
 6377: 	}
 6378: 	fprintf(ficlog," %.5le",matcov[i][j]);
 6379: 	fprintf(ficparo," %.5le",matcov[i][j]);
 6380:       }
 6381:       fscanf(ficpar,"\n");
 6382:       numlinepar++;
 6383:       if(mle==1)
 6384: 	printf("\n");
 6385:       fprintf(ficlog,"\n");
 6386:       fprintf(ficparo,"\n");
 6387:     }
 6388:     for(i=1; i <=npar; i++)
 6389:       for(j=i+1;j<=npar;j++)
 6390: 	matcov[i][j]=matcov[j][i];
 6391:     
 6392:     if(mle==1)
 6393:       printf("\n");
 6394:     fprintf(ficlog,"\n");
 6395:     
 6396:     fflush(ficlog);
 6397:     
 6398:     /*-------- Rewriting parameter file ----------*/
 6399:     strcpy(rfileres,"r");    /* "Rparameterfile */
 6400:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 6401:     strcat(rfileres,".");    /* */
 6402:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 6403:     if((ficres =fopen(rfileres,"w"))==NULL) {
 6404:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 6405:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 6406:     }
 6407:     fprintf(ficres,"#%s\n",version);
 6408:   }    /* End of mle != -3 */
 6409: 
 6410:   /*  Main data
 6411:    */
 6412:   n= lastobs;
 6413:   num=lvector(1,n);
 6414:   moisnais=vector(1,n);
 6415:   annais=vector(1,n);
 6416:   moisdc=vector(1,n);
 6417:   andc=vector(1,n);
 6418:   agedc=vector(1,n);
 6419:   cod=ivector(1,n);
 6420:   weight=vector(1,n);
 6421:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 6422:   mint=matrix(1,maxwav,1,n);
 6423:   anint=matrix(1,maxwav,1,n);
 6424:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 6425:   tab=ivector(1,NCOVMAX);
 6426:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 6427: 
 6428:   /* Reads data from file datafile */
 6429:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 6430:     goto end;
 6431: 
 6432:   /* Calculation of the number of parameters from char model */
 6433:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 6434: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 6435: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 6436: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 6437: 	k=1 Tvar[1]=2 (from V2)
 6438:     */
 6439:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 6440:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 6441:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 6442:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 6443:   */
 6444:   /* For model-covariate k tells which data-covariate to use but
 6445:     because this model-covariate is a construction we invent a new column
 6446:     ncovcol + k1
 6447:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 6448:     Tvar[3=V1*V4]=4+1 etc */
 6449:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 6450:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 6451:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 6452:   */
 6453:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 6454:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 6455: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 6456: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 6457:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 6458: 			 4 covariates (3 plus signs)
 6459: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 6460: 		      */  
 6461: 
 6462: /* Main decodemodel */
 6463: 
 6464:   if(decodemodel(model, lastobs) == 1)
 6465:     goto end;
 6466: 
 6467:   if((double)(lastobs-imx)/(double)imx > 1.10){
 6468:     nbwarn++;
 6469:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6470:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6471:   }
 6472:     /*  if(mle==1){*/
 6473:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 6474:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 6475:   }
 6476: 
 6477:     /*-calculation of age at interview from date of interview and age at death -*/
 6478:   agev=matrix(1,maxwav,1,imx);
 6479: 
 6480:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 6481:     goto end;
 6482: 
 6483: 
 6484:   agegomp=(int)agemin;
 6485:   free_vector(moisnais,1,n);
 6486:   free_vector(annais,1,n);
 6487:   /* free_matrix(mint,1,maxwav,1,n);
 6488:      free_matrix(anint,1,maxwav,1,n);*/
 6489:   free_vector(moisdc,1,n);
 6490:   free_vector(andc,1,n);
 6491:   /* */
 6492:   
 6493:   wav=ivector(1,imx);
 6494:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 6495:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 6496:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 6497:    
 6498:   /* Concatenates waves */
 6499:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 6500:   /* */
 6501:  
 6502:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 6503: 
 6504:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 6505:   ncodemax[1]=1;
 6506:   Ndum =ivector(-1,NCOVMAX);  
 6507:   if (ncovmodel > 2)
 6508:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 6509:   /* Nbcode gives the value of the lth modality of jth covariate, in
 6510:      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
 6511:   /* 1 to ncodemax[j] is the maximum value of this jth covariate */
 6512: 
 6513:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 6514:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
 6515:   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
 6516:   h=0;
 6517: 
 6518: 
 6519:   /*if (cptcovn > 0) */
 6520:       
 6521:  
 6522:   m=pow(2,cptcoveff);
 6523:  
 6524:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 6525:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
 6526:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
 6527: 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
 6528: 	  h++;
 6529: 	  if (h>m) 
 6530: 	    h=1;
 6531: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 6532: 	   * For k=4 covariates, h goes from 1 to 2**k
 6533: 	   * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
 6534: 	   *     h\k   1     2     3     4
 6535: 	   *______________________________  
 6536: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 6537: 	   *     2     2     1     1     1
 6538: 	   *     3 i=2 1     2     1     1
 6539: 	   *     4     2     2     1     1
 6540: 	   *     5 i=3 1 i=2 1     2     1
 6541: 	   *     6     2     1     2     1
 6542: 	   *     7 i=4 1     2     2     1
 6543: 	   *     8     2     2     2     1
 6544: 	   *     9 i=5 1 i=3 1 i=2 1     1
 6545: 	   *    10     2     1     1     1
 6546: 	   *    11 i=6 1     2     1     1
 6547: 	   *    12     2     2     1     1
 6548: 	   *    13 i=7 1 i=4 1     2     1    
 6549: 	   *    14     2     1     2     1
 6550: 	   *    15 i=8 1     2     2     1
 6551: 	   *    16     2     2     2     1
 6552: 	   */
 6553: 	  codtab[h][k]=j;
 6554: 	  /* codtab[12][3]=1; */
 6555: 	  /*codtab[h][Tvar[k]]=j;*/
 6556: 	  printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
 6557: 	} 
 6558:       }
 6559:     }
 6560:   } 
 6561:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 6562:      codtab[1][2]=1;codtab[2][2]=2; */
 6563:   /* for(i=1; i <=m ;i++){ 
 6564:      for(k=1; k <=cptcovn; k++){
 6565:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 6566:      }
 6567:      printf("\n");
 6568:      }
 6569:      scanf("%d",i);*/
 6570: 
 6571:  free_ivector(Ndum,-1,NCOVMAX);
 6572: 
 6573: 
 6574:     
 6575:   /* Initialisation of ----------- gnuplot -------------*/
 6576:   strcpy(optionfilegnuplot,optionfilefiname);
 6577:   if(mle==-3)
 6578:     strcat(optionfilegnuplot,"-mort");
 6579:   strcat(optionfilegnuplot,".gp");
 6580: 
 6581:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 6582:     printf("Problem with file %s",optionfilegnuplot);
 6583:   }
 6584:   else{
 6585:     fprintf(ficgp,"\n# %s\n", version); 
 6586:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 6587:     //fprintf(ficgp,"set missing 'NaNq'\n");
 6588:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 6589:   }
 6590:   /*  fclose(ficgp);*/
 6591: 
 6592: 
 6593:   /* Initialisation of --------- index.htm --------*/
 6594: 
 6595:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 6596:   if(mle==-3)
 6597:     strcat(optionfilehtm,"-mort");
 6598:   strcat(optionfilehtm,".htm");
 6599:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 6600:     printf("Problem with %s \n",optionfilehtm);
 6601:     exit(0);
 6602:   }
 6603: 
 6604:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 6605:   strcat(optionfilehtmcov,"-cov.htm");
 6606:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 6607:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 6608:   }
 6609:   else{
 6610:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6611: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6612: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 6613: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 6614:   }
 6615: 
 6616:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 6617: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 6618: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 6619: \n\
 6620: <hr  size=\"2\" color=\"#EC5E5E\">\
 6621:  <ul><li><h4>Parameter files</h4>\n\
 6622:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 6623:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 6624:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 6625:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 6626:  - Date and time at start: %s</ul>\n",\
 6627: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 6628: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 6629: 	  fileres,fileres,\
 6630: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 6631:   fflush(fichtm);
 6632: 
 6633:   strcpy(pathr,path);
 6634:   strcat(pathr,optionfilefiname);
 6635: #ifdef WIN32
 6636:   _chdir(optionfilefiname); /* Move to directory named optionfile */
 6637: #else
 6638:   chdir(optionfilefiname); /* Move to directory named optionfile */
 6639: #endif
 6640: 	  
 6641:   
 6642:   /* Calculates basic frequencies. Computes observed prevalence at single age
 6643:      and prints on file fileres'p'. */
 6644:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 6645: 
 6646:   fprintf(fichtm,"\n");
 6647:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 6648: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 6649: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 6650: 	  imx,agemin,agemax,jmin,jmax,jmean);
 6651:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6652:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6653:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6654:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 6655:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 6656:     
 6657:    
 6658:   /* For Powell, parameters are in a vector p[] starting at p[1]
 6659:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 6660:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 6661: 
 6662:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 6663:   /* For mortality only */
 6664:   if (mle==-3){
 6665:     ximort=matrix(1,NDIM,1,NDIM); 
 6666:     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 6667:     cens=ivector(1,n);
 6668:     ageexmed=vector(1,n);
 6669:     agecens=vector(1,n);
 6670:     dcwave=ivector(1,n);
 6671:  
 6672:     for (i=1; i<=imx; i++){
 6673:       dcwave[i]=-1;
 6674:       for (m=firstpass; m<=lastpass; m++)
 6675: 	if (s[m][i]>nlstate) {
 6676: 	  dcwave[i]=m;
 6677: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 6678: 	  break;
 6679: 	}
 6680:     }
 6681: 
 6682:     for (i=1; i<=imx; i++) {
 6683:       if (wav[i]>0){
 6684: 	ageexmed[i]=agev[mw[1][i]][i];
 6685: 	j=wav[i];
 6686: 	agecens[i]=1.; 
 6687: 
 6688: 	if (ageexmed[i]> 1 && wav[i] > 0){
 6689: 	  agecens[i]=agev[mw[j][i]][i];
 6690: 	  cens[i]= 1;
 6691: 	}else if (ageexmed[i]< 1) 
 6692: 	  cens[i]= -1;
 6693: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 6694: 	  cens[i]=0 ;
 6695:       }
 6696:       else cens[i]=-1;
 6697:     }
 6698:     
 6699:     for (i=1;i<=NDIM;i++) {
 6700:       for (j=1;j<=NDIM;j++)
 6701: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 6702:     }
 6703:     
 6704:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 6705:     /*printf("%lf %lf", p[1], p[2]);*/
 6706:     
 6707:     
 6708: #ifdef GSL
 6709:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 6710: #else
 6711:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 6712: #endif
 6713:     strcpy(filerespow,"pow-mort"); 
 6714:     strcat(filerespow,fileres);
 6715:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 6716:       printf("Problem with resultfile: %s\n", filerespow);
 6717:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 6718:     }
 6719: #ifdef GSL
 6720:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 6721: #else
 6722:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 6723: #endif
 6724:     /*  for (i=1;i<=nlstate;i++)
 6725: 	for(j=1;j<=nlstate+ndeath;j++)
 6726: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 6727:     */
 6728:     fprintf(ficrespow,"\n");
 6729: #ifdef GSL
 6730:     /* gsl starts here */ 
 6731:     T = gsl_multimin_fminimizer_nmsimplex;
 6732:     gsl_multimin_fminimizer *sfm = NULL;
 6733:     gsl_vector *ss, *x;
 6734:     gsl_multimin_function minex_func;
 6735: 
 6736:     /* Initial vertex size vector */
 6737:     ss = gsl_vector_alloc (NDIM);
 6738:     
 6739:     if (ss == NULL){
 6740:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 6741:     }
 6742:     /* Set all step sizes to 1 */
 6743:     gsl_vector_set_all (ss, 0.001);
 6744: 
 6745:     /* Starting point */
 6746:     
 6747:     x = gsl_vector_alloc (NDIM);
 6748:     
 6749:     if (x == NULL){
 6750:       gsl_vector_free(ss);
 6751:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 6752:     }
 6753:   
 6754:     /* Initialize method and iterate */
 6755:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 6756:     /*     gsl_vector_set(x, 0, 0.0268); */
 6757:     /*     gsl_vector_set(x, 1, 0.083); */
 6758:     gsl_vector_set(x, 0, p[1]);
 6759:     gsl_vector_set(x, 1, p[2]);
 6760: 
 6761:     minex_func.f = &gompertz_f;
 6762:     minex_func.n = NDIM;
 6763:     minex_func.params = (void *)&p; /* ??? */
 6764:     
 6765:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 6766:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 6767:     
 6768:     printf("Iterations beginning .....\n\n");
 6769:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 6770: 
 6771:     iteri=0;
 6772:     while (rval == GSL_CONTINUE){
 6773:       iteri++;
 6774:       status = gsl_multimin_fminimizer_iterate(sfm);
 6775:       
 6776:       if (status) printf("error: %s\n", gsl_strerror (status));
 6777:       fflush(0);
 6778:       
 6779:       if (status) 
 6780:         break;
 6781:       
 6782:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 6783:       ssval = gsl_multimin_fminimizer_size (sfm);
 6784:       
 6785:       if (rval == GSL_SUCCESS)
 6786:         printf ("converged to a local maximum at\n");
 6787:       
 6788:       printf("%5d ", iteri);
 6789:       for (it = 0; it < NDIM; it++){
 6790: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 6791:       }
 6792:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 6793:     }
 6794:     
 6795:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 6796:     
 6797:     gsl_vector_free(x); /* initial values */
 6798:     gsl_vector_free(ss); /* inital step size */
 6799:     for (it=0; it<NDIM; it++){
 6800:       p[it+1]=gsl_vector_get(sfm->x,it);
 6801:       fprintf(ficrespow," %.12lf", p[it]);
 6802:     }
 6803:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 6804: #endif
 6805: #ifdef POWELL
 6806:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 6807: #endif  
 6808:     fclose(ficrespow);
 6809:     
 6810:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 6811: 
 6812:     for(i=1; i <=NDIM; i++)
 6813:       for(j=i+1;j<=NDIM;j++)
 6814: 	matcov[i][j]=matcov[j][i];
 6815:     
 6816:     printf("\nCovariance matrix\n ");
 6817:     for(i=1; i <=NDIM; i++) {
 6818:       for(j=1;j<=NDIM;j++){ 
 6819: 	printf("%f ",matcov[i][j]);
 6820:       }
 6821:       printf("\n ");
 6822:     }
 6823:     
 6824:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 6825:     for (i=1;i<=NDIM;i++) 
 6826:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 6827: 
 6828:     lsurv=vector(1,AGESUP);
 6829:     lpop=vector(1,AGESUP);
 6830:     tpop=vector(1,AGESUP);
 6831:     lsurv[agegomp]=100000;
 6832:     
 6833:     for (k=agegomp;k<=AGESUP;k++) {
 6834:       agemortsup=k;
 6835:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 6836:     }
 6837:     
 6838:     for (k=agegomp;k<agemortsup;k++)
 6839:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 6840:     
 6841:     for (k=agegomp;k<agemortsup;k++){
 6842:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 6843:       sumlpop=sumlpop+lpop[k];
 6844:     }
 6845:     
 6846:     tpop[agegomp]=sumlpop;
 6847:     for (k=agegomp;k<(agemortsup-3);k++){
 6848:       /*  tpop[k+1]=2;*/
 6849:       tpop[k+1]=tpop[k]-lpop[k];
 6850:     }
 6851:     
 6852:     
 6853:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 6854:     for (k=agegomp;k<(agemortsup-2);k++) 
 6855:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 6856:     
 6857:     
 6858:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 6859:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 6860:     
 6861:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 6862: 		     stepm, weightopt,\
 6863: 		     model,imx,p,matcov,agemortsup);
 6864:     
 6865:     free_vector(lsurv,1,AGESUP);
 6866:     free_vector(lpop,1,AGESUP);
 6867:     free_vector(tpop,1,AGESUP);
 6868: #ifdef GSL
 6869:     free_ivector(cens,1,n);
 6870:     free_vector(agecens,1,n);
 6871:     free_ivector(dcwave,1,n);
 6872:     free_matrix(ximort,1,NDIM,1,NDIM);
 6873: #endif
 6874:   } /* Endof if mle==-3 mortality only */
 6875:   /* Standard maximisation */
 6876:   else{ /* For mle >=1 */
 6877:     globpr=0;/* debug */
 6878:     /* Computes likelihood for initial parameters */
 6879:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6880:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6881:     for (k=1; k<=npar;k++)
 6882:       printf(" %d %8.5f",k,p[k]);
 6883:     printf("\n");
 6884:     globpr=1; /* again, to print the contributions */
 6885:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 6886:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 6887:     for (k=1; k<=npar;k++)
 6888:       printf(" %d %8.5f",k,p[k]);
 6889:     printf("\n");
 6890:     if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
 6891:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 6892:     }
 6893:     
 6894:     /*--------- results files --------------*/
 6895:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 6896:     
 6897:     
 6898:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6899:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6900:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 6901:     for(i=1,jk=1; i <=nlstate; i++){
 6902:       for(k=1; k <=(nlstate+ndeath); k++){
 6903: 	if (k != i) {
 6904: 	  printf("%d%d ",i,k);
 6905: 	  fprintf(ficlog,"%d%d ",i,k);
 6906: 	  fprintf(ficres,"%1d%1d ",i,k);
 6907: 	  for(j=1; j <=ncovmodel; j++){
 6908: 	    printf("%lf ",p[jk]);
 6909: 	    fprintf(ficlog,"%lf ",p[jk]);
 6910: 	    fprintf(ficres,"%lf ",p[jk]);
 6911: 	    jk++; 
 6912: 	  }
 6913: 	  printf("\n");
 6914: 	  fprintf(ficlog,"\n");
 6915: 	  fprintf(ficres,"\n");
 6916: 	}
 6917:       }
 6918:     }
 6919:     if(mle!=0){
 6920:       /* Computing hessian and covariance matrix */
 6921:       ftolhess=ftol; /* Usually correct */
 6922:       hesscov(matcov, p, npar, delti, ftolhess, func);
 6923:     }
 6924:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 6925:     printf("# Scales (for hessian or gradient estimation)\n");
 6926:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 6927:     for(i=1,jk=1; i <=nlstate; i++){
 6928:       for(j=1; j <=nlstate+ndeath; j++){
 6929: 	if (j!=i) {
 6930: 	  fprintf(ficres,"%1d%1d",i,j);
 6931: 	  printf("%1d%1d",i,j);
 6932: 	  fprintf(ficlog,"%1d%1d",i,j);
 6933: 	  for(k=1; k<=ncovmodel;k++){
 6934: 	    printf(" %.5e",delti[jk]);
 6935: 	    fprintf(ficlog," %.5e",delti[jk]);
 6936: 	    fprintf(ficres," %.5e",delti[jk]);
 6937: 	    jk++;
 6938: 	  }
 6939: 	  printf("\n");
 6940: 	  fprintf(ficlog,"\n");
 6941: 	  fprintf(ficres,"\n");
 6942: 	}
 6943:       }
 6944:     }
 6945:     
 6946:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6947:     if(mle>=1)
 6948:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6949:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 6950:     /* # 121 Var(a12)\n\ */
 6951:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 6952:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 6953:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 6954:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 6955:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 6956:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 6957:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 6958:     
 6959:     
 6960:     /* Just to have a covariance matrix which will be more understandable
 6961:        even is we still don't want to manage dictionary of variables
 6962:     */
 6963:     for(itimes=1;itimes<=2;itimes++){
 6964:       jj=0;
 6965:       for(i=1; i <=nlstate; i++){
 6966: 	for(j=1; j <=nlstate+ndeath; j++){
 6967: 	  if(j==i) continue;
 6968: 	  for(k=1; k<=ncovmodel;k++){
 6969: 	    jj++;
 6970: 	    ca[0]= k+'a'-1;ca[1]='\0';
 6971: 	    if(itimes==1){
 6972: 	      if(mle>=1)
 6973: 		printf("#%1d%1d%d",i,j,k);
 6974: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 6975: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 6976: 	    }else{
 6977: 	      if(mle>=1)
 6978: 		printf("%1d%1d%d",i,j,k);
 6979: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 6980: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 6981: 	    }
 6982: 	    ll=0;
 6983: 	    for(li=1;li <=nlstate; li++){
 6984: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 6985: 		if(lj==li) continue;
 6986: 		for(lk=1;lk<=ncovmodel;lk++){
 6987: 		  ll++;
 6988: 		  if(ll<=jj){
 6989: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 6990: 		    if(ll<jj){
 6991: 		      if(itimes==1){
 6992: 			if(mle>=1)
 6993: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6994: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6995: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 6996: 		      }else{
 6997: 			if(mle>=1)
 6998: 			  printf(" %.5e",matcov[jj][ll]); 
 6999: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 7000: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 7001: 		      }
 7002: 		    }else{
 7003: 		      if(itimes==1){
 7004: 			if(mle>=1)
 7005: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 7006: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 7007: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 7008: 		      }else{
 7009: 			if(mle>=1)
 7010: 			  printf(" %.5e",matcov[jj][ll]); 
 7011: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 7012: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 7013: 		      }
 7014: 		    }
 7015: 		  }
 7016: 		} /* end lk */
 7017: 	      } /* end lj */
 7018: 	    } /* end li */
 7019: 	    if(mle>=1)
 7020: 	      printf("\n");
 7021: 	    fprintf(ficlog,"\n");
 7022: 	    fprintf(ficres,"\n");
 7023: 	    numlinepar++;
 7024: 	  } /* end k*/
 7025: 	} /*end j */
 7026:       } /* end i */
 7027:     } /* end itimes */
 7028:     
 7029:     fflush(ficlog);
 7030:     fflush(ficres);
 7031:     
 7032:     while((c=getc(ficpar))=='#' && c!= EOF){
 7033:       ungetc(c,ficpar);
 7034:       fgets(line, MAXLINE, ficpar);
 7035:       fputs(line,stdout);
 7036:       fputs(line,ficparo);
 7037:     }
 7038:     ungetc(c,ficpar);
 7039:     
 7040:     estepm=0;
 7041:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 7042:     if (estepm==0 || estepm < stepm) estepm=stepm;
 7043:     if (fage <= 2) {
 7044:       bage = ageminpar;
 7045:       fage = agemaxpar;
 7046:     }
 7047:     
 7048:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 7049:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 7050:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 7051: 
 7052:     /* Other stuffs, more or less useful */    
 7053:     while((c=getc(ficpar))=='#' && c!= EOF){
 7054:       ungetc(c,ficpar);
 7055:       fgets(line, MAXLINE, ficpar);
 7056:       fputs(line,stdout);
 7057:       fputs(line,ficparo);
 7058:     }
 7059:     ungetc(c,ficpar);
 7060:     
 7061:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 7062:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7063:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7064:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7065:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7066:     
 7067:     while((c=getc(ficpar))=='#' && c!= EOF){
 7068:       ungetc(c,ficpar);
 7069:       fgets(line, MAXLINE, ficpar);
 7070:       fputs(line,stdout);
 7071:       fputs(line,ficparo);
 7072:     }
 7073:     ungetc(c,ficpar);
 7074:     
 7075:     
 7076:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 7077:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 7078:     
 7079:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 7080:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 7081:     fprintf(ficres,"pop_based=%d\n",popbased);   
 7082:     
 7083:     while((c=getc(ficpar))=='#' && c!= EOF){
 7084:       ungetc(c,ficpar);
 7085:       fgets(line, MAXLINE, ficpar);
 7086:       fputs(line,stdout);
 7087:       fputs(line,ficparo);
 7088:     }
 7089:     ungetc(c,ficpar);
 7090:     
 7091:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 7092:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7093:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7094:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7095:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7096:     /* day and month of proj2 are not used but only year anproj2.*/
 7097:     
 7098:     
 7099:     
 7100:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 7101:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 7102:     
 7103:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 7104:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 7105:     
 7106:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 7107: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 7108: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 7109:       
 7110:    /*------------ free_vector  -------------*/
 7111:    /*  chdir(path); */
 7112:  
 7113:     free_ivector(wav,1,imx);
 7114:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 7115:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 7116:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 7117:     free_lvector(num,1,n);
 7118:     free_vector(agedc,1,n);
 7119:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 7120:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 7121:     fclose(ficparo);
 7122:     fclose(ficres);
 7123: 
 7124: 
 7125:     /* Other results (useful)*/
 7126: 
 7127: 
 7128:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 7129:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
 7130:     prlim=matrix(1,nlstate,1,nlstate);
 7131:     prevalence_limit(p, prlim,  ageminpar, agemaxpar);
 7132:     fclose(ficrespl);
 7133: 
 7134: #ifdef FREEEXIT2
 7135: #include "freeexit2.h"
 7136: #endif
 7137: 
 7138:     /*------------- h Pij x at various ages ------------*/
 7139:     /*#include "hpijx.h"*/
 7140:     hPijx(p, bage, fage);
 7141:     fclose(ficrespij);
 7142: 
 7143:   /*-------------- Variance of one-step probabilities---*/
 7144:     k=1;
 7145:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 7146: 
 7147: 
 7148:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7149:     for(i=1;i<=AGESUP;i++)
 7150:       for(j=1;j<=NCOVMAX;j++)
 7151: 	for(k=1;k<=NCOVMAX;k++)
 7152: 	  probs[i][j][k]=0.;
 7153: 
 7154:     /*---------- Forecasting ------------------*/
 7155:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 7156:     if(prevfcast==1){
 7157:       /*    if(stepm ==1){*/
 7158:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 7159:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 7160:       /*      }  */
 7161:       /*      else{ */
 7162:       /*        erreur=108; */
 7163:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 7164:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 7165:       /*      } */
 7166:     }
 7167:  
 7168:     /* ------ Other prevalence ratios------------ */
 7169: 
 7170:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 7171: 
 7172:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 7173:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 7174: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 7175:     */
 7176: 
 7177:     if (mobilav!=0) {
 7178:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7179:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 7180: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 7181: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 7182:       }
 7183:     }
 7184: 
 7185: 
 7186:     /*---------- Health expectancies, no variances ------------*/
 7187: 
 7188:     strcpy(filerese,"e");
 7189:     strcat(filerese,fileres);
 7190:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 7191:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7192:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7193:     }
 7194:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 7195:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 7196:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7197:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7198:           
 7199:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7200: 	fprintf(ficreseij,"\n#****** ");
 7201: 	for(j=1;j<=cptcoveff;j++) {
 7202: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7203: 	}
 7204: 	fprintf(ficreseij,"******\n");
 7205: 
 7206: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7207: 	oldm=oldms;savm=savms;
 7208: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 7209:       
 7210: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7211:       /*}*/
 7212:     }
 7213:     fclose(ficreseij);
 7214: 
 7215: 
 7216:     /*---------- Health expectancies and variances ------------*/
 7217: 
 7218: 
 7219:     strcpy(filerest,"t");
 7220:     strcat(filerest,fileres);
 7221:     if((ficrest=fopen(filerest,"w"))==NULL) {
 7222:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 7223:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 7224:     }
 7225:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7226:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7227: 
 7228: 
 7229:     strcpy(fileresstde,"stde");
 7230:     strcat(fileresstde,fileres);
 7231:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 7232:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7233:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7234:     }
 7235:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7236:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7237: 
 7238:     strcpy(filerescve,"cve");
 7239:     strcat(filerescve,fileres);
 7240:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 7241:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7242:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7243:     }
 7244:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7245:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7246: 
 7247:     strcpy(fileresv,"v");
 7248:     strcat(fileresv,fileres);
 7249:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 7250:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 7251:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 7252:     }
 7253:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7254:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7255: 
 7256:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7257:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7258:           
 7259:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7260:     	fprintf(ficrest,"\n#****** ");
 7261: 	for(j=1;j<=cptcoveff;j++) 
 7262: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7263: 	fprintf(ficrest,"******\n");
 7264: 
 7265: 	fprintf(ficresstdeij,"\n#****** ");
 7266: 	fprintf(ficrescveij,"\n#****** ");
 7267: 	for(j=1;j<=cptcoveff;j++) {
 7268: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7269: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7270: 	}
 7271: 	fprintf(ficresstdeij,"******\n");
 7272: 	fprintf(ficrescveij,"******\n");
 7273: 
 7274: 	fprintf(ficresvij,"\n#****** ");
 7275: 	for(j=1;j<=cptcoveff;j++) 
 7276: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7277: 	fprintf(ficresvij,"******\n");
 7278: 
 7279: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7280: 	oldm=oldms;savm=savms;
 7281: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 7282: 	/*
 7283: 	 */
 7284: 	/* goto endfree; */
 7285:  
 7286: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7287: 	pstamp(ficrest);
 7288: 
 7289: 
 7290: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 7291: 	  oldm=oldms;savm=savms; /* Segmentation fault */
 7292: 	  cptcod= 0; /* To be deleted */
 7293: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 7294: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 7295: 	  if(vpopbased==1)
 7296: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 7297: 	  else
 7298: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 7299: 	  fprintf(ficrest,"# Age e.. (std) ");
 7300: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 7301: 	  fprintf(ficrest,"\n");
 7302: 
 7303: 	  epj=vector(1,nlstate+1);
 7304: 	  for(age=bage; age <=fage ;age++){
 7305: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 7306: 	    if (vpopbased==1) {
 7307: 	      if(mobilav ==0){
 7308: 		for(i=1; i<=nlstate;i++)
 7309: 		  prlim[i][i]=probs[(int)age][i][k];
 7310: 	      }else{ /* mobilav */ 
 7311: 		for(i=1; i<=nlstate;i++)
 7312: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 7313: 	      }
 7314: 	    }
 7315: 	
 7316: 	    fprintf(ficrest," %4.0f",age);
 7317: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 7318: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 7319: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 7320: 		/*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 7321: 	      }
 7322: 	      epj[nlstate+1] +=epj[j];
 7323: 	    }
 7324: 
 7325: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 7326: 	      for(j=1;j <=nlstate;j++)
 7327: 		vepp += vareij[i][j][(int)age];
 7328: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 7329: 	    for(j=1;j <=nlstate;j++){
 7330: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 7331: 	    }
 7332: 	    fprintf(ficrest,"\n");
 7333: 	  }
 7334: 	}
 7335: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7336: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7337: 	free_vector(epj,1,nlstate+1);
 7338:       /*}*/
 7339:     }
 7340:     free_vector(weight,1,n);
 7341:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 7342:     free_imatrix(s,1,maxwav+1,1,n);
 7343:     free_matrix(anint,1,maxwav,1,n); 
 7344:     free_matrix(mint,1,maxwav,1,n);
 7345:     free_ivector(cod,1,n);
 7346:     free_ivector(tab,1,NCOVMAX);
 7347:     fclose(ficresstdeij);
 7348:     fclose(ficrescveij);
 7349:     fclose(ficresvij);
 7350:     fclose(ficrest);
 7351:     fclose(ficpar);
 7352:   
 7353:     /*------- Variance of period (stable) prevalence------*/   
 7354: 
 7355:     strcpy(fileresvpl,"vpl");
 7356:     strcat(fileresvpl,fileres);
 7357:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 7358:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 7359:       exit(0);
 7360:     }
 7361:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 7362: 
 7363:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7364:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7365:           
 7366:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7367:     	fprintf(ficresvpl,"\n#****** ");
 7368: 	for(j=1;j<=cptcoveff;j++) 
 7369: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 7370: 	fprintf(ficresvpl,"******\n");
 7371:       
 7372: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 7373: 	oldm=oldms;savm=savms;
 7374: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 7375: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 7376:       /*}*/
 7377:     }
 7378: 
 7379:     fclose(ficresvpl);
 7380: 
 7381:     /*---------- End : free ----------------*/
 7382:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7383:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7384:   }  /* mle==-3 arrives here for freeing */
 7385:  /* endfree:*/
 7386:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 7387:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 7388:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7389:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7390:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7391:     free_matrix(covar,0,NCOVMAX,1,n);
 7392:     free_matrix(matcov,1,npar,1,npar);
 7393:     /*free_vector(delti,1,npar);*/
 7394:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 7395:     free_matrix(agev,1,maxwav,1,imx);
 7396:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 7397: 
 7398:     free_ivector(ncodemax,1,NCOVMAX);
 7399:     free_ivector(Tvar,1,NCOVMAX);
 7400:     free_ivector(Tprod,1,NCOVMAX);
 7401:     free_ivector(Tvaraff,1,NCOVMAX);
 7402:     free_ivector(Tage,1,NCOVMAX);
 7403: 
 7404:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 7405:     free_imatrix(codtab,1,100,1,10);
 7406:   fflush(fichtm);
 7407:   fflush(ficgp);
 7408:   
 7409: 
 7410:   if((nberr >0) || (nbwarn>0)){
 7411:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 7412:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 7413:   }else{
 7414:     printf("End of Imach\n");
 7415:     fprintf(ficlog,"End of Imach\n");
 7416:   }
 7417:   printf("See log file on %s\n",filelog);
 7418:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 7419:   /*(void) gettimeofday(&end_time,&tzp);*/
 7420:   rend_time = time(NULL);  
 7421:   end_time = *localtime(&rend_time);
 7422:   /* tml = *localtime(&end_time.tm_sec); */
 7423:   strcpy(strtend,asctime(&end_time));
 7424:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 7425:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 7426:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7427: 
 7428:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7429:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7430:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7431:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 7432: /*   if(fileappend(fichtm,optionfilehtm)){ */
 7433:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7434:   fclose(fichtm);
 7435:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7436:   fclose(fichtmcov);
 7437:   fclose(ficgp);
 7438:   fclose(ficlog);
 7439:   /*------ End -----------*/
 7440: 
 7441: 
 7442:    printf("Before Current directory %s!\n",pathcd);
 7443: #ifdef WIN32
 7444:    if (_chdir(pathcd) != 0)
 7445: 	   printf("Can't move to directory %s!\n",path);
 7446:    if(_getcwd(pathcd,MAXLINE) > 0)
 7447: #else
 7448:    if(chdir(pathcd) != 0)
 7449: 	   printf("Can't move to directory %s!\n", path);
 7450:    if (getcwd(pathcd, MAXLINE) > 0)
 7451: #endif 
 7452:     printf("Current directory %s!\n",pathcd);
 7453:   /*strcat(plotcmd,CHARSEPARATOR);*/
 7454:   sprintf(plotcmd,"gnuplot");
 7455: #ifdef _WIN32
 7456:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 7457: #endif
 7458:   if(!stat(plotcmd,&info)){
 7459:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7460:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 7461:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 7462:     }else
 7463:       strcpy(pplotcmd,plotcmd);
 7464: #ifdef __unix
 7465:     strcpy(plotcmd,GNUPLOTPROGRAM);
 7466:     if(!stat(plotcmd,&info)){
 7467:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7468:     }else
 7469:       strcpy(pplotcmd,plotcmd);
 7470: #endif
 7471:   }else
 7472:     strcpy(pplotcmd,plotcmd);
 7473:   
 7474:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 7475:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 7476: 
 7477:   if((outcmd=system(plotcmd)) != 0){
 7478:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 7479:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 7480:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 7481:     if((outcmd=system(plotcmd)) != 0)
 7482:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 7483:   }
 7484:   printf(" Successful, please wait...");
 7485:   while (z[0] != 'q') {
 7486:     /* chdir(path); */
 7487:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 7488:     scanf("%s",z);
 7489: /*     if (z[0] == 'c') system("./imach"); */
 7490:     if (z[0] == 'e') {
 7491: #ifdef __APPLE__
 7492:       sprintf(pplotcmd, "open %s", optionfilehtm);
 7493: #elif __linux
 7494:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 7495: #else
 7496:       sprintf(pplotcmd, "%s", optionfilehtm);
 7497: #endif
 7498:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 7499:       system(pplotcmd);
 7500:     }
 7501:     else if (z[0] == 'g') system(plotcmd);
 7502:     else if (z[0] == 'q') exit(0);
 7503:   }
 7504:   end:
 7505:   while (z[0] != 'q') {
 7506:     printf("\nType  q for exiting: ");
 7507:     scanf("%s",z);
 7508:   }
 7509: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>