|
|
| version 1.5, 2023/10/09 09:10:01 | version 1.6, 2024/04/24 21:10:29 |
|---|---|
| Line 1 | Line 1 |
| /* $Id$ | /* $Id$ |
| $State$ | $State$ |
| $Log$ | $Log$ |
| Revision 1.6 2024/04/24 21:10:29 brouard | |
| Summary: First IMaCh version using Brent Praxis software based on Buckhardt and Gegenfürtner C codes | |
| Revision 1.5 2023/10/09 09:10:01 brouard | Revision 1.5 2023/10/09 09:10:01 brouard |
| Summary: trying to reconsider | Summary: trying to reconsider |
| Line 1436 int *wav; /* Number of waves for this in | Line 1439 int *wav; /* Number of waves for this in |
| int maxwav=0; /* Maxim number of waves */ | int maxwav=0; /* Maxim number of waves */ |
| int jmin=0, jmax=0; /* min, max spacing between 2 waves */ | int jmin=0, jmax=0; /* min, max spacing between 2 waves */ |
| int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ | int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ |
| int gipmx=0, gsw=0; /* Global variables on the number of contributions | int gipmx = 0; |
| double gsw = 0; /* Global variables on the number of contributions | |
| to the likelihood and the sum of weights (done by funcone)*/ | to the likelihood and the sum of weights (done by funcone)*/ |
| int mle=1, weightopt=0; | int mle=1, weightopt=0; |
| int **mw; /* mw[mi][i] is number of the mi wave for this individual */ | int **mw; /* mw[mi][i] is number of the mi wave for this individual */ |
| Line 2623 void linmin(double p[], double xi[], int | Line 2627 void linmin(double p[], double xi[], int |
| free_vector(pcom,1,n); | free_vector(pcom,1,n); |
| } | } |
| /**** praxis ****/ | /**** praxis gegen ****/ |
| # include <float.h> | |
| void transpose_in_place ( int n, double **a ) | /* This has been tested by Visual C from Microsoft and works */ |
| /* meaning tha valgrind could be wrong */ | |
| /*********************************************************************/ | |
| /* f u n c t i o n p r a x i s */ | |
| /* */ | |
| /* praxis is a general purpose routine for the minimization of a */ | |
| /* function in several variables. the algorithm used is a modifi- */ | |
| /* cation of conjugate gradient search method by powell. the changes */ | |
| /* are due to r.p. brent, who gives an algol-w program, which served */ | |
| /* as a basis for this function. */ | |
| /* */ | |
| /* references: */ | |
| /* - powell, m.j.d., 1964. an efficient method for finding */ | |
| /* the minimum of a function in several variables without */ | |
| /* calculating derivatives, computer journal, 7, 155-162 */ | |
| /* - brent, r.p., 1973. algorithms for minimization without */ | |
| /* derivatives, prentice hall, englewood cliffs. */ | |
| /* */ | |
| /* problems, suggestions or improvements are always wellcome */ | |
| /* karl gegenfurtner 07/08/87 */ | |
| /* c - version */ | |
| /*********************************************************************/ | |
| /* */ | |
| /* usage: min = praxis(tol, macheps, h, n, prin, x, func) */ | |
| /* macheps has been suppressed because it is replaced by DBL_EPSILON */ | |
| /* and if it was an argument of praxis (as it is in original brent) */ | |
| /* it should be declared external */ | |
| /* usage: min = praxis(tol, h, n, prin, x, func) */ | |
| /* was min = praxis(fun, x, n); */ | |
| /* */ | |
| /* fun the function to be minimized. fun is called from */ | |
| /* praxis with x and n as arguments */ | |
| /* x a double array containing the initial guesses for */ | |
| /* the minimum, which will contain the solution on */ | |
| /* return */ | |
| /* n an integer specifying the number of unknown */ | |
| /* parameters */ | |
| /* min praxis returns the least calculated value of fun */ | |
| /* */ | |
| /* some additional global variables control some more aspects of */ | |
| /* the inner workings of praxis. setting them is optional, they */ | |
| /* are all set to some reasonable default values given below. */ | |
| /* */ | |
| /* prin controls the printed output from the routine. */ | |
| /* 0 -> no output */ | |
| /* 1 -> print only starting and final values */ | |
| /* 2 -> detailed map of the minimization process */ | |
| /* 3 -> print also eigenvalues and vectors of the */ | |
| /* search directions */ | |
| /* the default value is 1 */ | |
| /* tol is the tolerance allowed for the precision of the */ | |
| /* solution. praxis returns if the criterion */ | |
| /* 2 * ||x[k]-x[k-1]|| <= sqrt(macheps) * ||x[k]|| + tol */ | |
| /* is fulfilled more than ktm times. */ | |
| /* the default value depends on the machine precision */ | |
| /* ktm see just above. default is 1, and a value of 4 leads */ | |
| /* to a very(!) cautious stopping criterion. */ | |
| /* h0 or step is a steplength parameter and should be set equal */ | |
| /* to the expected distance from the solution. */ | |
| /* exceptionally small or large values of step lead to */ | |
| /* slower convergence on the first few iterations */ | |
| /* the default value for step is 1.0 */ | |
| /* scbd is a scaling parameter. 1.0 is the default and */ | |
| /* indicates no scaling. if the scales for the different */ | |
| /* parameters are very different, scbd should be set to */ | |
| /* a value of about 10.0. */ | |
| /* illc should be set to true (1) if the problem is known to */ | |
| /* be ill-conditioned. the default is false (0). this */ | |
| /* variable is automatically set, when praxis finds */ | |
| /* the problem to be ill-conditioned during iterations. */ | |
| /* maxfun is the maximum number of calls to fun allowed. praxis */ | |
| /* will return after maxfun calls to fun even when the */ | |
| /* minimum is not yet found. the default value of 0 */ | |
| /* indicates no limit on the number of calls. */ | |
| /* this return condition is only checked every n */ | |
| /* iterations. */ | |
| /* */ | |
| /*********************************************************************/ | |
| /******************************************************************************/ | #include <math.h> |
| /* | #include <stdio.h> |
| Purpose: | #include <stdlib.h> |
| #include <float.h> /* for DBL_EPSILON */ | |
| /* #include "machine.h" */ | |
| TRANSPOSE_IN_PLACE transposes a square matrix in place. | |
| Licensing: | |
| This code is distributed under the GNU LGPL license. | |
| Input, int N, the number of rows and columns of the matrix A. | /* extern void minfit(int n, double eps, double tol, double **ab, double q[]); */ |
| /* extern void minfit(int n, double eps, double tol, double ab[N][N], double q[]); */ | |
| /* control parameters */ | |
| /* control parameters */ | |
| #define SQREPSILON 1.0e-19 | |
| /* #define EPSILON 1.0e-8 */ /* in main */ | |
| double tol = SQREPSILON, | |
| scbd = 1.0, | |
| step = 1.0; | |
| int ktm = 1, | |
| /* prin = 2, */ | |
| maxfun = 0, | |
| illc = 0; | |
| /* some global variables */ | |
| static int i, j, k, k2, nl, nf, kl, kt; | |
| /* static double s; */ | |
| double sl, dn, dmin, | |
| fx, f1, lds, ldt, sf, df, | |
| qf1, qd0, qd1, qa, qb, qc, | |
| m2, m4, small_windows, vsmall, large, | |
| vlarge, ldfac, t2; | |
| /* static double d[N], y[N], z[N], */ | |
| /* q0[N], q1[N], v[N][N]; */ | |
| static double *d, *y, *z; | |
| static double *q0, *q1, **v; | |
| double *tflin; /* used in flin: return (*fun)(tflin, n); */ | |
| double *e; /* used in minfit, don't konw how to free memory and thus made global */ | |
| /* static double s, sl, dn, dmin, */ | |
| /* fx, f1, lds, ldt, sf, df, */ | |
| /* qf1, qd0, qd1, qa, qb, qc, */ | |
| /* m2, m4, small, vsmall, large, */ | |
| /* vlarge, ldfac, t2; */ | |
| /* static double d[N], y[N], z[N], */ | |
| /* q0[N], q1[N], v[N][N]; */ | |
| /* these will be set by praxis to point to it's arguments */ | |
| static int prin; /* added */ | |
| static int n; | |
| static double *x; | |
| static double (*fun)(); | |
| /* static double (*fun)(double *x, int n); */ | |
| /* these will be set by praxis to the global control parameters */ | |
| /* static double h, macheps, t; */ | |
| extern double macheps; | |
| static double h; | |
| static double t; | |
| Input/output, double A[N*N], the matrix to be transposed. | static double |
| */ | drandom() /* return random no between 0 and 1 */ |
| { | |
| return (double)(rand()%(8192*2))/(double)(8192*2); | |
| } | |
| static void sort() /* d and v in descending order */ | |
| { | |
| int k, i, j; | |
| double s; | |
| for (i=1; i<=n-1; i++) { | |
| k = i; s = d[i]; | |
| for (j=i+1; j<=n; j++) { | |
| if (d[j] > s) { | |
| k = j; | |
| s = d[j]; | |
| } | |
| } | |
| if (k > i) { | |
| d[k] = d[i]; | |
| d[i] = s; | |
| for (j=1; j<=n; j++) { | |
| s = v[j][i]; | |
| v[j][i] = v[j][k]; | |
| v[j][k] = s; | |
| } | |
| } | |
| } | |
| } | |
| double randbrent ( int *naught ) | |
| { | |
| double ran1, ran3[127], half; | |
| int ran2, q, r, i, j; | |
| int init=0; /* false */ | |
| double rr; | |
| /* REAL*8 RAN1,RAN3(127),HALF */ | |
| /* INTEGER RAN2,Q,R */ | |
| /* LOGICAL INIT */ | |
| /* DATA INIT/.FALSE./ */ | |
| /* IF (INIT) GO TO 3 */ | |
| if(!init){ | |
| /* R = MOD(NAUGHT,8190) + 1 *//* 1804289383 rand () */ | |
| r = *naught % 8190 + 1;/* printf(" naught r %d %d",*naught,r); */ | |
| ran2=127; | |
| for(i=ran2; i>0; i--){ | |
| /* RAN2 = 128 */ | |
| /* DO 2 I=1,127 */ | |
| ran2 = ran2-1; | |
| /* RAN2 = RAN2 - 1 */ | |
| ran1 = -pow(2.0,55); | |
| /* RAN1 = -2.D0**55 */ | |
| /* DO 1 J=1,7 */ | |
| for(j=1; j<=7;j++){ | |
| /* R = MOD(1756*R,8191) */ | |
| r = (1756*r) % 8191;/* printf(" i=%d (1756*r)%8191=%d",j,r); */ | |
| q=r/32; | |
| /* Q = R/32 */ | |
| /* 1 RAN1 = (RAN1 + Q)*(1.0D0/256) */ | |
| ran1 =(ran1+q)*(1.0/256); | |
| } | |
| /* 2 RAN3(RAN2) = RAN1 */ | |
| ran3[ran2] = ran1; /* printf(" ran2=%d ran1=%.7g \n",ran2,ran1); */ | |
| } | |
| /* INIT = .TRUE. */ | |
| init=1; | |
| /* 3 IF (RAN2.EQ.1) RAN2 = 128 */ | |
| } | |
| if(ran2 == 0) ran2 = 126; | |
| else ran2 = ran2 -1; | |
| /* RAN2 = RAN2 - 1 */ | |
| /* RAN1 = RAN1 + RAN3(RAN2) */ | |
| ran1 = ran1 + ran3[ran2];/* printf("BIS ran2=%d ran1=%.7g \n",ran2,ran1); */ | |
| half= 0.5; | |
| /* HALF = .5D0 */ | |
| /* IF (RAN1.GE.0.D0) HALF = -HALF */ | |
| if(ran1 >= 0.) half =-half; | |
| ran1 = ran1 +half; | |
| ran3[ran2] = ran1; | |
| rr= ran1+0.5; | |
| /* RAN1 = RAN1 + HALF */ | |
| /* RAN3(RAN2) = RAN1 */ | |
| /* RANDOM = RAN1 + .5D0 */ | |
| /* r = ( ( double ) ( *seed ) ) * 4.656612875E-10; */ | |
| return rr; | |
| } | |
| static void matprint(char *s, double **v, int m, int n) | |
| /* char *s; */ | |
| /* double v[N][N]; */ | |
| { | { |
| #define INCX 8 | |
| int i; | int i; |
| int i2hi; | |
| int ihi; | |
| int ilo; | |
| int i2lo; | |
| int jlo=1; | |
| int j; | int j; |
| double t; | int j2hi; |
| int jhi; | |
| /* for ( j = 0; j < n; j++ ){ */ | int j2lo; |
| /* for ( i = 0; i < j; i++ ) { */ | ilo=1; |
| for ( j = 1; j <= n; j++ ){ | ihi=n; |
| for ( i = 1; i < j; i++ ) { | jlo=1; |
| /* t = a[i+j*n]; */ | jhi=n; |
| /* a[i+j*n] = a[j+i*n]; */ | |
| /* a[j+i*n] = t; */ | printf ("\n" ); |
| t = a[i][j]; | printf ("%s\n", s ); |
| a[i][j] = a[j][i]; | for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) |
| a[j][i] = t; | { |
| j2hi = j2lo + INCX - 1; | |
| if ( n < j2hi ) | |
| { | |
| j2hi = n; | |
| } | |
| if ( jhi < j2hi ) | |
| { | |
| j2hi = jhi; | |
| } | } |
| } | |
| return; | |
| } | |
| double pythag( double x, double y ) | /* fprintf ( ficlog, "\n" ); */ |
| printf ("\n" ); | |
| /* | |
| For each column J in the current range... | |
| /******************************************************************************/ | Write the header. |
| */ | |
| /* fprintf ( ficlog, " Col: "); */ | |
| printf ("Col:"); | |
| for ( j = j2lo; j <= j2hi; j++ ) | |
| { | |
| /* fprintf ( ficlog, " %7d ", j - 1 ); */ | |
| /* printf (" %9d ", j - 1 ); */ | |
| printf (" %9d ", j ); | |
| } | |
| /* fprintf ( ficlog, "\n" ); */ | |
| /* fprintf ( ficlog, " Row\n" ); */ | |
| /* fprintf ( ficlog, "\n" ); */ | |
| printf ("\n" ); | |
| printf (" Row\n" ); | |
| printf ("\n" ); | |
| /* | /* |
| Purpose: | Determine the range of the rows in this strip. |
| R8_HYPOT returns the value of sqrt ( X^2 + Y^2 ). | |
| Licensing: | |
| This code is distributed under the GNU LGPL license. | |
| Modified: | |
| 26 March 2012 | |
| Author: | |
| John Burkardt | |
| Parameters: | |
| Input, double X, Y, the arguments. | |
| Output, double R8_HYPOT, the value of sqrt ( X^2 + Y^2 ). | |
| */ | */ |
| { | if ( 1 < ilo ){ |
| double a; | i2lo = ilo; |
| double b; | }else{ |
| double value; | i2lo = 1; |
| } | |
| if ( fabs ( x ) < fabs ( y ) ) { | if ( m < ihi ){ |
| a = fabs ( y ); | i2hi = m; |
| b = fabs ( x ); | }else{ |
| } else { | i2hi = ihi; |
| a = fabs ( x ); | } |
| b = fabs ( y ); | |
| } | for ( i = i2lo; i <= i2hi; i++ ){ |
| /* | /* |
| A contains the larger value. | Print out (up to) 5 entries in row I, that lie in the current strip. |
| */ | */ |
| if ( a == 0.0 ) { | /* fprintf ( ficlog, "%5d:", i - 1 ); */ |
| value = 0.0; | /* printf ("%5d:", i - 1 ); */ |
| } else { | printf ("%5d:", i ); |
| value = a * sqrt ( 1.0 + ( b / a ) * ( b / a ) ); | for ( j = j2lo; j <= j2hi; j++ ) |
| { | |
| /* fprintf ( ficlog, " %14g", a[i-1+(j-1)*m] ); */ | |
| /* printf ("%14.7g ", a[i-1+(j-1)*m] ); */ | |
| /* printf("%14.7f ", v[i-1][j-1]); */ | |
| printf("%14.7f ", v[i][j]); | |
| /* fprintf ( stdout, " %14g", a[i-1+(j-1)*m] ); */ | |
| } | |
| /* fprintf ( ficlog, "\n" ); */ | |
| printf ("\n" ); | |
| } | |
| } | } |
| return value; | |
| /* printf("%s\n", s); */ | |
| /* for (k=0; k<n; k++) { */ | |
| /* for (i=0; i<n; i++) { */ | |
| /* /\* printf("%20.10e ", v[k][i]); *\/ */ | |
| /* } */ | |
| /* printf("\n"); */ | |
| /* } */ | |
| #undef INCX | |
| } | } |
| void svsort ( int n, double d[], double **v ) | void vecprint(char *s, double *x, int n) |
| /* char *s; */ | |
| /* double x[N]; */ | |
| { | |
| int i=0; | |
| printf(" %s", s); | |
| /* for (i=0; i<n; i++) */ | |
| for (i=1; i<=n; i++) | |
| printf (" %14.7g", x[i] ); | |
| /* printf(" %8d: %14g\n", i, x[i]); */ | |
| printf ("\n" ); | |
| } | |
| /******************************************************************************/ | static void print() /* print a line of traces */ |
| /* | { |
| Purpose: | |
| SVSORT descending sorts D and adjusts the corresponding columns of V. | printf("\n"); |
| /* printf("... chi square reduced to ... %20.10e\n", fx); */ | |
| /* printf("... after %u function calls ...\n", nf); */ | |
| /* printf("... including %u linear searches ...\n", nl); */ | |
| printf("%10d %10d%14.7g",nl, nf, fx); | |
| vecprint("... current values of x ...", x, n); | |
| } | |
| /* static void print2(int n, double *x, int prin, double fx, int nf, int nl) */ /* print a line of traces */ | |
| static void print2() /* print a line of traces */ | |
| { | |
| int i; double fmin=0.; | |
| Discussion: | /* printf("\n"); */ |
| A simple bubble sort is used on D. | /* printf("... chi square reduced to ... %20.10e\n", fx); */ |
| In our application, D contains singular values, and the columns of V are | /* printf("... after %u function calls ...\n", nf); */ |
| the corresponding right singular vectors. | /* printf("... including %u linear searches ...\n", nl); */ |
| Author: | /* printf("%10d %10d%14.7g",nl, nf, fx); */ |
| Original FORTRAN77 version by Richard Brent. | printf ( "\n" ); |
| Richard Brent, | printf ( " Linear searches %d", nl ); |
| Algorithms for Minimization with Derivatives, | /* printf ( " Linear searches %d\n", nl ); */ |
| Prentice Hall, 1973, | /* printf ( " Function evaluations %d\n", nf ); */ |
| Reprinted by Dover, 2002. | /* printf ( " Function value FX = %g\n", fx ); */ |
| printf ( " Function evaluations %d", nf ); | |
| Parameters: | printf ( " Function value FX = %.12lf\n", fx ); |
| Input, int N, the length of D, and the order of V. | #ifdef DEBUGPRAX |
| Input/output, double D[N], the vector to be sorted. | printf("n=%d prin=%d\n",n,prin); |
| On output, the entries of D are in descending order. | #endif |
| if(fx <= fmin) printf(" UNDEFINED "); else printf("%14.7g",log(fx-fmin)); | |
| Input/output, double V[N,N], an N by N array to be adjusted | if ( n <= 4 || 2 < prin ) |
| as D is sorted. In particular, if the value that was in D(I) on input is | { |
| moved to D(J) on output, then the input column V(*,I) is moved to | /* for(i=1;i<=n;i++)printf("%14.7g",x[i-1]); */ |
| the output column V(*,J). | for(i=1;i<=n;i++)printf("%14.7g",x[i]); |
| /* r8vec_print ( n, x, " X:" ); */ | |
| } | |
| printf("\n"); | |
| } | |
| /* #ifdef MSDOS */ | |
| /* static double tflin[N]; */ | |
| /* #endif */ | |
| static double flin(double l, int j) | |
| /* double l; */ | |
| { | |
| int i; | |
| /* #ifndef MSDOS */ | |
| /* double tflin[N]; */ | |
| /* #endif */ | |
| /* double *tflin; */ /* Be careful to put tflin on a vector n */ | |
| /* j is used from 0 to n-1 and can be -1 for parabolic search */ | |
| /* if (j != -1) { /\* linear search *\/ */ | |
| if (j > 0) { /* linear search */ | |
| /* for (i=0; i<n; i++){ */ | |
| for (i=1; i<=n; i++){ | |
| tflin[i] = x[i] + l *v[i][j]; | |
| #ifdef DEBUGPRAX | |
| /* printf(" flin i=%14d t=%14.7f x=%14.7f l=%14.7f v[%d,%d]=%14.7f nf=%14d\n",i+1, tflin[i],x[i],l,i,j,v[i][j],nf); */ | |
| printf(" flin i=%14d t=%14.7f x=%14.7f l=%14.7f v[%d,%d]=%14.7f nf=%14d\n",i, tflin[i],x[i],l,i,j,v[i][j],nf); | |
| #endif | |
| } | |
| } | |
| else { /* search along parabolic space curve */ | |
| qa = l*(l-qd1)/(qd0*(qd0+qd1)); | |
| qb = (l+qd0)*(qd1-l)/(qd0*qd1); | |
| qc = l*(l+qd0)/(qd1*(qd0+qd1)); | |
| #ifdef DEBUGPRAX | |
| printf(" search along a parabolic space curve. j=%14d nf=%14d l=%14.7f qd0=%14.7f qd1=%14.7f\n",j,nf,l,qd0,qd1); | |
| #endif | |
| /* for (i=0; i<n; i++){ */ | |
| for (i=1; i<=n; i++){ | |
| tflin[i] = qa*q0[i]+qb*x[i]+qc*q1[i]; | |
| #ifdef DEBUGPRAX | |
| /* printf(" parabole i=%14d t(i)=%14.7f q0=%14.7f x=%14.7f q1=%14.7f\n",i+1,tflin[i],q0[i],x[i],q1[i]); */ | |
| printf(" parabole i=%14d t(i)=%14.7e q0=%14.7e x=%14.7e q1=%14.7e\n",i,tflin[i],q0[i],x[i],q1[i]); | |
| #endif | |
| } | |
| } | |
| nf++; | |
| #ifdef NR_SHIFT | |
| return (*fun)((tflin-1), n); | |
| #else | |
| /* return (*fun)(tflin, n);*/ | |
| return (*fun)(tflin); | |
| #endif | |
| } | |
| void minny(int j, int nits, double *d2, double *x1, double f1, int fk) | |
| /* double *d2, *x1, f1; */ | |
| { | |
| /* here j is from 0 to n-1 and can be -1 for parabolic search */ | |
| /* MINIMIZES F FROM X IN THE DIRECTION V(*,J) */ | |
| /* UNLESS J<1, WHEN A QUADRATIC SEARCH IS DONE */ | |
| /* IN THE PLANE DEFINED BY Q0, Q1 AND X. */ | |
| /* D2 AN APPROXIMATION TO HALF F'' (OR ZERO), */ | |
| /* X1 AN ESTIMATE OF DISTANCE TO MINIMUM, */ | |
| /* RETURNED AS THE DISTANCE FOUND. */ | |
| /* IF FK = TRUE THEN F1 IS FLIN(X1), OTHERWISE */ | |
| /* X1 AND F1 ARE IGNORED ON ENTRY UNLESS FINAL */ | |
| /* FX > F1. NITS CONTROLS THE NUMBER OF TIMES */ | |
| /* AN ATTEMPT IS MADE TO HALVE THE INTERVAL. */ | |
| /* SIDE EFFECTS: USES AND ALTERS X, FX, NF, NL. */ | |
| /* IF J < 1 USES VARIABLES Q... . */ | |
| /* USES H, N, T, M2, M4, LDT, DMIN, MACHEPS; */ | |
| int k, i, dz; | |
| double x2, xm, f0, f2, fm, d1, t2, sf1, sx1; | |
| double s; | |
| double macheps; | |
| macheps=pow(16.0,-13.0); | |
| sf1 = f1; sx1 = *x1; | |
| k = 0; xm = 0.0; fm = f0 = fx; dz = *d2 < macheps; | |
| /* h=1.0;*/ /* To be revised */ | |
| #ifdef DEBUGPRAX | |
| /* printf("min macheps=%14g h=%14g step=%14g t=%14g fx=%14g\n",macheps,h, step,t, fx); */ | |
| /* Where is fx coming from */ | |
| printf(" min macheps=%14g h=%14g t=%14g fx=%.9lf dirj=%d\n",macheps, h, t, fx, j); | |
| matprint(" min vectors:",v,n,n); | |
| #endif | |
| /* find step size */ | |
| s = 0.; | |
| /* for (i=0; i<n; i++) s += x[i]*x[i]; */ | |
| for (i=1; i<=n; i++) s += x[i]*x[i]; | |
| s = sqrt(s); | |
| if (dz) | |
| t2 = m4*sqrt(fabs(fx)/dmin + s*ldt) + m2*ldt; | |
| else | |
| t2 = m4*sqrt(fabs(fx)/(*d2) + s*ldt) + m2*ldt; | |
| s = s*m4 + t; | |
| if (dz && t2 > s) t2 = s; | |
| if (t2 < small_windows) t2 = small_windows; | |
| if (t2 > 0.01*h) t2 = 0.01 * h; | |
| if (fk && f1 <= fm) { | |
| xm = *x1; | |
| fm = f1; | |
| } | |
| #ifdef DEBUGPRAX | |
| printf(" additional flin X1=%14.7f t2=%14.7f *f1=%14.7f fm=%14.7f fk=%d\n",*x1,t2,f1,fm,fk); | |
| #endif | |
| if (!fk || fabs(*x1) < t2) { | |
| *x1 = (*x1 >= 0 ? t2 : -t2); | |
| /* *x1 = (*x1 > 0 ? t2 : -t2); */ /* kind of error */ | |
| #ifdef DEBUGPRAX | |
| printf(" additional flin X1=%16.10e dirj=%d fk=%d\n",*x1, j, fk); | |
| #endif | |
| f1 = flin(*x1, j); | |
| #ifdef DEBUGPRAX | |
| printf(" after flin f1=%18.12e dirj=%d fk=%d\n",f1, j,fk); | |
| #endif | |
| } | |
| if (f1 <= fm) { | |
| xm = *x1; | |
| fm = f1; | |
| } | |
| L0: /*L0 loop or next */ | |
| /* | |
| Evaluate FLIN at another point and estimate the second derivative. | |
| */ | */ |
| if (dz) { | |
| x2 = (f0 < f1 ? -(*x1) : 2*(*x1)); | |
| #ifdef DEBUGPRAX | |
| printf(" additional second flin x2=%14.8e x1=%14.8e f0=%14.8e f1=%18.12e dirj=%d\n",x2,*x1,f0,f1,j); | |
| #endif | |
| f2 = flin(x2, j); | |
| #ifdef DEBUGPRAX | |
| printf(" additional second flin x2=%16.10e x1=%16.10e f1=%18.12e f0=%18.10e f2=%18.10e fm=%18.10e\n",x2, *x1, f1,f0,f2,fm); | |
| #endif | |
| if (f2 <= fm) { | |
| xm = x2; | |
| fm = f2; | |
| } | |
| /* d2 is the curvature or double difference f1 doesn't seem to be accurately computed */ | |
| *d2 = (x2*(f1-f0) - (*x1)*(f2-f0))/((*x1)*x2*((*x1)-x2)); | |
| #ifdef DEBUGPRAX | |
| double d11,d12; | |
| d11=(f1-f0)/(*x1);d12=(f2-f0)/x2; | |
| printf(" d11=%18.12e d12=%18.12e d11-d12=%18.12e x1-x2=%18.12e (d11-d12)/(x2-(*x1))=%18.12e\n", d11 ,d12, d11-d12, x2-(*x1), (d11-d12)/(x2-(*x1))); | |
| printf(" original computing f1=%18.12e *d2=%16.10e f0=%18.12e f1-f0=%16.10e f2-f0=%16.10e\n",f1,*d2,f0,f1-f0, f2-f0); | |
| double ff1=7.783920622852e+04; | |
| double f1mf0=9.0344736236e-05; | |
| *d2 = (f1mf0)/ (*x1)/((*x1)-x2) - (f2-f0)/x2/((*x1)-x2); | |
| /* *d2 = (ff1-f0)/ (*x1)/((*x1)-x2) - (f2-f0)/x2/((*x1)-x2); */ | |
| printf(" simpliff computing *d2=%16.10e f1mf0=%18.12e,f1=f0+f1mf0=%18.12e\n",*d2,f1mf0,f0+f1mf0); | |
| *d2 = ((f1-f0)/ (*x1) - (f2-f0)/x2)/((*x1)-x2); | |
| printf(" overlifi computing *d2=%16.10e\n",*d2); | |
| #endif | |
| *d2 = ((f1-f0)/ (*x1) - (f2-f0)/x2)/((*x1)-x2); | |
| } | |
| #ifdef DEBUGPRAX | |
| printf(" additional second flin xm=%14.8e fm=%14.8e *d2=%14.8e\n",xm, fm,*d2); | |
| #endif | |
| /* | |
| Estimate the first derivative at 0. | |
| */ | |
| d1 = (f1-f0)/(*x1) - *x1**d2; dz = 1; | |
| /* | |
| Predict the minimum. | |
| */ | |
| if (*d2 <= small_windows) { | |
| x2 = (d1 < 0 ? h : -h); | |
| } | |
| else { | |
| x2 = - 0.5*d1/(*d2); | |
| } | |
| #ifdef DEBUGPRAX | |
| printf(" AT d1=%14.8e d2=%14.8e small=%14.8e dz=%d x1=%14.8e x2=%14.8e\n",d1,*d2,small_windows,dz,*x1,x2); | |
| #endif | |
| if (fabs(x2) > h) | |
| x2 = (x2 > 0 ? h : -h); | |
| L1: /* L1 or try loop */ | |
| #ifdef DEBUGPRAX | |
| printf(" AT predicted minimum flin x2=%14.8e x1=%14.8e K=%14d NITS=%14d dirj=%d\n",x2,*x1,k,nits,j); | |
| #endif | |
| f2 = flin(x2, j); /* x[i]+x2*v[i][j] */ | |
| #ifdef DEBUGPRAX | |
| printf(" after flin f0=%14.8e f1=%14.8e f2=%14.8e fm=%14.8e\n",f0,f1,f2, fm); | |
| #endif | |
| if ((k < nits) && (f2 > f0)) { | |
| #ifdef DEBUGPRAX | |
| printf(" NO SUCCESS SO TRY AGAIN;\n"); | |
| #endif | |
| k++; | |
| if ((f0 < f1) && (*x1*x2 > 0.0)) | |
| goto L0; /* or next */ | |
| x2 *= 0.5; | |
| goto L1; | |
| } | |
| nl++; | |
| #ifdef DEBUGPRAX | |
| printf(" bebeBE end of min x1=%14.8e x2=%14.8e f1=%14.8e f2=%14.8e f0=%14.8e fm=%14.8e d2=%14.8e\n",*x1, x2, f1, f2, f0, fm, *d2); | |
| #endif | |
| if (f2 > fm) x2 = xm; else fm = f2; | |
| if (fabs(x2*(x2-*x1)) > small_windows) { | |
| *d2 = (x2*(f1-f0) - *x1*(fm-f0))/(*x1*x2*(*x1-x2)); | |
| } | |
| else { | |
| if (k > 0) *d2 = 0; | |
| } | |
| #ifdef DEBUGPRAX | |
| printf(" bebe end of min x1=%14.8e fx=%14.8e d2=%14.8e\n",*x1, fx, *d2); | |
| #endif | |
| if (*d2 <= small_windows) *d2 = small_windows; | |
| *x1 = x2; fx = fm; | |
| if (sf1 < fx) { | |
| fx = sf1; | |
| *x1 = sx1; | |
| } | |
| /* | |
| Update X for linear search. | |
| */ | |
| #ifdef DEBUGPRAX | |
| printf(" end of min x1=%14.8e fx=%14.8e d2=%14.8e\n",*x1, fx, *d2); | |
| #endif | |
| /* if (j != -1) */ | |
| /* for (i=0; i<n; i++) */ | |
| /* x[i] += (*x1)*v[i][j]; */ | |
| if (j > 0) | |
| for (i=1; i<=n; i++) | |
| x[i] += (*x1)*v[i][j]; | |
| } | |
| void quad() /* look for a minimum along the curve q0, q1, q2 */ | |
| { | |
| int i; | |
| double l, s; | |
| s = fx; fx = qf1; qf1 = s; qd1 = 0.0; | |
| /* for (i=0; i<n; i++) { */ | |
| for (i=1; i<=n; i++) { | |
| s = x[i]; l = q1[i]; x[i] = l; q1[i] = s; | |
| qd1 = qd1 + (s-l)*(s-l); | |
| } | |
| s = 0.0; qd1 = sqrt(qd1); l = qd1; | |
| #ifdef DEBUGPRAX | |
| printf(" QUAD after sqrt qd1=%14.8e \n",qd1); | |
| #endif | |
| if (qd0>0.0 && qd1>0.0 &&nl>=3*n*n) { | |
| #ifdef DEBUGPRAX | |
| printf(" QUAD before min value=%14.8e \n",qf1); | |
| #endif | |
| /* min(-1, 2, &s, &l, qf1, 1); */ | |
| minny(0, 2, &s, &l, qf1, 1); | |
| qa = l*(l-qd1)/(qd0*(qd0+qd1)); | |
| qb = (l+qd0)*(qd1-l)/(qd0*qd1); | |
| qc = l*(l+qd0)/(qd1*(qd0+qd1)); | |
| } | |
| else { | |
| fx = qf1; qa = qb = 0.0; qc = 1.0; | |
| } | |
| #ifdef DEBUGPRAX | |
| printf("after eventual min qd0=%14.8e qd1=%14.8e nl=%d\n",qd0, qd1,nl); | |
| #endif | |
| qd0 = qd1; | |
| /* for (i=0; i<n; i++) { */ | |
| for (i=1; i<=n; i++) { | |
| s = q0[i]; q0[i] = x[i]; | |
| x[i] = qa*s + qb*x[i] + qc*q1[i]; | |
| } | |
| #ifdef DEBUGQUAD | |
| vecprint ( " X after QUAD:" , x, n ); | |
| #endif | |
| } | |
| /* void minfit(int n, double eps, double tol, double ab[N][N], double q[]) */ | |
| void minfit(int n, double eps, double tol, double **ab, double q[]) | |
| /* int n; */ | |
| /* double eps, tol, ab[N][N], q[N]; */ | |
| { | |
| int l, kt, l2, i, j, k; | |
| double c, f, g, h, s, x, y, z; | |
| /* double eps; */ | |
| /* #ifndef MSDOS */ | |
| /* double e[N]; /\* plenty of stack on a vax *\/ */ | |
| /* #endif */ | |
| /* double *e; */ | |
| /* e=vector(0,n-1); /\* should be freed somewhere but gotos *\/ */ | |
| /* householder's reduction to bidiagonal form */ | |
| if(n==1){ | |
| /* q[1-1]=ab[1-1][1-1]; */ | |
| /* ab[1-1][1-1]=1.0; */ | |
| q[1]=ab[1][1]; | |
| ab[1][1]=1.0; | |
| return; /* added from hardt */ | |
| } | |
| /* eps=macheps; */ /* added */ | |
| x = g = 0.0; | |
| #ifdef DEBUGPRAX | |
| matprint (" HOUSE holder:", ab, n, n); | |
| #endif | |
| /* for (i=0; i<n; i++) { /\* FOR I := 1 UNTIL N DO *\/ */ | |
| for (i=1; i<=n; i++) { /* FOR I := 1 UNTIL N DO */ | |
| e[i] = g; s = 0.0; l = i+1; | |
| /* for (j=i; j<n; j++) /\* FOR J := I UNTIL N DO S := S*AB(J,I)**2; *\/ /\* not correct *\/ */ | |
| for (j=i; j<=n; j++) /* FOR J := I UNTIL N DO S := S*AB(J,I)**2; */ /* not correct */ | |
| s += ab[j][i] * ab[j][i]; | |
| #ifdef DEBUGPRAXFIN | |
| printf("i=%d s=%d %.7g tol=%.7g",i,s,tol); | |
| #endif | |
| if (s < tol) { | |
| g = 0.0; | |
| } | |
| else { | |
| /* f = ab[i][i]; */ | |
| f = ab[i][i]; | |
| if (f < 0.0) | |
| g = sqrt(s); | |
| else | |
| g = -sqrt(s); | |
| /* h = f*g - s; ab[i][i] = f - g; */ | |
| h = f*g - s; ab[i][i] = f - g; | |
| /* for (j=l; j<n; j++) { */ /* FOR J := L UNTIL N DO */ /* wrong */ | |
| for (j=l; j<=n; j++) { | |
| f = 0.0; | |
| /* for (k=i; k<n; k++) /\* FOR K := I UNTIL N DO *\/ /\* wrong *\/ */ | |
| for (k=i; k<=n; k++) /* FOR K := I UNTIL N DO */ | |
| /* f += ab[k][i] * ab[k][j]; */ | |
| f += ab[k][i] * ab[k][j]; | |
| f /= h; | |
| for (k=i; k<=n; k++) /* FOR K := I UNTIL N DO */ | |
| /* for (k=i; k<n; k++)/\* FOR K := I UNTIL N DO *\/ /\* wrong *\/ */ | |
| ab[k][j] += f * ab[k][i]; | |
| /* ab[k][j] += f * ab[k][i]; */ | |
| #ifdef DEBUGPRAX | |
| printf("Holder J=%d F=%.7g",j,f); | |
| #endif | |
| } | |
| } /* end s */ | |
| /* q[i] = g; s = 0.0; */ | |
| q[i] = g; s = 0.0; | |
| #ifdef DEBUGPRAX | |
| printf(" I Q=%d %.7g",i,q[i]); | |
| #endif | |
| /* if (i < n) */ | |
| /* if (i <= n) /\* I is always lower or equal to n wasn't in golub reinsch*\/ */ | |
| /* for (j=l; j<n; j++) */ | |
| for (j=l; j<=n; j++) | |
| s += ab[i][j] * ab[i][j]; | |
| /* s += ab[i][j] * ab[i][j]; */ | |
| if (s < tol) { | |
| g = 0.0; | |
| } | |
| else { | |
| if(i<n) | |
| /* f = ab[i][i+1]; */ /* Brent golub overflow */ | |
| f = ab[i][i+1]; | |
| if (f < 0.0) | |
| g = sqrt(s); | |
| else | |
| g = - sqrt(s); | |
| h = f*g - s; | |
| /* h = f*g - s; ab[i][i+1] = f - g; */ /* Overflow for i=n Error in Golub too but not Burkardt*/ | |
| /* for (j=l; j<n; j++) */ | |
| /* e[j] = ab[i][j]/h; */ | |
| if(i<n){ | |
| ab[i][i+1] = f - g; | |
| for (j=l; j<=n; j++) | |
| e[j] = ab[i][j]/h; | |
| /* for (j=l; j<n; j++) { */ | |
| for (j=l; j<=n; j++) { | |
| s = 0.0; | |
| /* for (k=l; k<n; k++) s += ab[j][k]*ab[i][k]; */ | |
| for (k=l; k<=n; k++) s += ab[j][k]*ab[i][k]; | |
| /* for (k=l; k<n; k++) ab[j][k] += s * e[k]; */ | |
| for (k=l; k<=n; k++) ab[j][k] += s * e[k]; | |
| } /* END J */ | |
| } /* END i <n */ | |
| } /* end s */ | |
| /* y = fabs(q[i]) + fabs(e[i]); */ | |
| y = fabs(q[i]) + fabs(e[i]); | |
| if (y > x) x = y; | |
| #ifdef DEBUGPRAX | |
| printf(" I Y=%d %.7g",i,y); | |
| #endif | |
| #ifdef DEBUGPRAX | |
| printf(" i=%d e(i) %.7g",i,e[i]); | |
| #endif | |
| } /* end i */ | |
| /* | |
| Accumulation of right hand transformations */ | |
| /* for (i=n-1; i >= 0; i--) { */ /* FOR I := N STEP -1 UNTIL 1 DO */ | |
| /* We should avoid the overflow in Golub */ | |
| /* ab[n-1][n-1] = 1.0; */ | |
| /* g = e[n-1]; */ | |
| ab[n][n] = 1.0; | |
| g = e[n]; | |
| l = n; | |
| /* for (i=n; i >= 1; i--) { */ | |
| for (i=n-1; i >= 1; i--) { /* n-1 loops, different from brent and golub*/ | |
| if (g != 0.0) { | |
| /* h = ab[i-1][i]*g; */ | |
| h = ab[i][i+1]*g; | |
| for (j=l; j<=n; j++) ab[j][i] = ab[i][j] / h; | |
| for (j=l; j<=n; j++) { | |
| /* h = ab[i][i+1]*g; */ | |
| /* for (j=l; j<n; j++) ab[j][i] = ab[i][j] / h; */ | |
| /* for (j=l; j<n; j++) { */ | |
| s = 0.0; | |
| /* for (k=l; k<n; k++) s += ab[i][k] * ab[k][j]; */ | |
| /* for (k=l; k<n; k++) ab[k][j] += s * ab[k][i]; */ | |
| for (k=l; k<=n; k++) s += ab[i][k] * ab[k][j]; | |
| for (k=l; k<=n; k++) ab[k][j] += s * ab[k][i]; | |
| }/* END J */ | |
| }/* END G */ | |
| /* for (j=l; j<n; j++) */ | |
| /* ab[i][j] = ab[j][i] = 0.0; */ | |
| /* ab[i][i] = 1.0; g = e[i]; l = i; */ | |
| for (j=l; j<=n; j++) | |
| ab[i][j] = ab[j][i] = 0.0; | |
| ab[i][i] = 1.0; g = e[i]; l = i; | |
| }/* END I */ | |
| #ifdef DEBUGPRAX | |
| matprint (" HOUSE accumulation:",ab,n, n ); | |
| #endif | |
| /* diagonalization to bidiagonal form */ | |
| eps *= x; | |
| /* for (k=n-1; k>= 0; k--) { */ | |
| for (k=n; k>= 1; k--) { | |
| kt = 0; | |
| TestFsplitting: | |
| #ifdef DEBUGPRAX | |
| printf(" TestFsplitting: k=%d kt=%d\n",k,kt); | |
| /* for(i=1;i<=n;i++)printf(" e(%d)=%.14f",i,e[i]);printf("\n"); */ | |
| #endif | |
| kt = kt+1; | |
| /* TestFsplitting: */ | |
| /* if (++kt > 30) { */ | |
| if (kt > 30) { | |
| e[k] = 0.0; | |
| fprintf(stderr, "\n+++ MINFIT - Fatal error\n"); | |
| fprintf ( stderr, " The QR algorithm failed to converge.\n" ); | |
| } | |
| /* for (l2=k; l2>=0; l2--) { */ | |
| for (l2=k; l2>=1; l2--) { | |
| l = l2; | |
| #ifdef DEBUGPRAX | |
| printf(" l e(l)< eps %d %.7g %.7g ",l,e[l], eps); | |
| #endif | |
| /* if (fabs(e[l]) <= eps) */ | |
| if (fabs(e[l]) <= eps) | |
| goto TestFconvergence; | |
| /* if (fabs(q[l-1]) <= eps)*/ /* missing if ( 1 < l ){ *//* printf(" q(l-1)< eps %d %.7g %.7g ",l-1,q[l-2], eps); */ | |
| if (fabs(q[l-1]) <= eps) | |
| break; /* goto Cancellation; */ | |
| } | |
| Cancellation: | |
| #ifdef DEBUGPRAX | |
| printf(" Cancellation:\n"); | |
| #endif | |
| c = 0.0; s = 1.0; | |
| for (i=l; i<=k; i++) { | |
| f = s * e[i]; e[i] *= c; | |
| /* f = s * e[i]; e[i] *= c; */ | |
| if (fabs(f) <= eps) | |
| goto TestFconvergence; | |
| /* g = q[i]; */ | |
| g = q[i]; | |
| if (fabs(f) < fabs(g)) { | |
| double fg = f/g; | |
| h = fabs(g)*sqrt(1.0+fg*fg); | |
| } | |
| else { | |
| double gf = g/f; | |
| h = (f!=0.0 ? fabs(f)*sqrt(1.0+gf*gf) : 0.0); | |
| } | |
| /* COMMENT: THE ABOVE REPLACES Q(I):=H:=LONGSQRT(G*G+F*F) */ | |
| /* WHICH MAY GIVE INCORRECT RESULTS IF THE */ | |
| /* SQUARES UNDERFLOW OR IF F = G = 0; */ | |
| /* q[i] = h; */ | |
| q[i] = h; | |
| if (h == 0.0) { h = 1.0; g = 1.0; } | |
| c = g/h; s = -f/h; | |
| } | |
| TestFconvergence: | |
| #ifdef DEBUGPRAX | |
| printf(" TestFconvergence: l=%d k=%d\n",l,k); | |
| #endif | |
| /* z = q[k]; */ | |
| z = q[k]; | |
| if (l == k) | |
| goto Convergence; | |
| /* shift from bottom 2x2 minor */ | |
| /* x = q[l]; y = q[k-l]; g = e[k-1]; h = e[k]; */ /* Error */ | |
| x = q[l]; y = q[k-1]; g = e[k-1]; h = e[k]; | |
| f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2.0*h*y); | |
| g = sqrt(f*f+1.0); | |
| if (f <= 0.0) | |
| f = ((x-z)*(x+z) + h*(y/(f-g)-h))/x; | |
| else | |
| f = ((x-z)*(x+z) + h*(y/(f+g)-h))/x; | |
| /* next qr transformation */ | |
| s = c = 1.0; | |
| for (i=l+1; i<=k; i++) { | |
| #ifdef DEBUGPRAXQR | |
| printf(" Before Mid TestFconvergence: l+1=%d i=%d k=%d h=%.6e e(i)=%14.8f e(i-1)=%14.8f\n",l+1,i,k, h, e[i],e[i-1]); | |
| #endif | |
| /* g = e[i]; y = q[i]; h = s*g; g *= c; */ | |
| g = e[i]; y = q[i]; h = s*g; g *= c; | |
| if (fabs(f) < fabs(h)) { | |
| double fh = f/h; | |
| z = fabs(h) * sqrt(1.0 + fh*fh); | |
| } | |
| else { | |
| double hf = h/f; | |
| z = (f!=0.0 ? fabs(f)*sqrt(1.0+hf*hf) : 0.0); | |
| } | |
| /* e[i-1] = z; */ | |
| e[i-1] = z; | |
| #ifdef DEBUGPRAXQR | |
| printf(" Mid TestFconvergence: l+1=%d i=%d k=%d h=%.6e e(i)=%14.8f e(i-1)=%14.8f\n",l+1,i,k, h, e[i],e[i-1]); | |
| #endif | |
| if (z == 0.0) | |
| f = z = 1.0; | |
| c = f/z; s = h/z; | |
| f = x*c + g*s; g = - x*s + g*c; h = y*s; | |
| y *= c; | |
| /* for (j=0; j<n; j++) { */ | |
| /* x = ab[j][i-1]; z = ab[j][i]; */ | |
| /* ab[j][i-1] = x*c + z*s; */ | |
| /* ab[j][i] = - x*s + z*c; */ | |
| /* } */ | |
| for (j=1; j<=n; j++) { | |
| x = ab[j][i-1]; z = ab[j][i]; | |
| ab[j][i-1] = x*c + z*s; | |
| ab[j][i] = - x*s + z*c; | |
| } | |
| if (fabs(f) < fabs(h)) { | |
| double fh = f/h; | |
| z = fabs(h) * sqrt(1.0 + fh*fh); | |
| } | |
| else { | |
| double hf = h/f; | |
| z = (f!=0.0 ? fabs(f)*sqrt(1.0+hf*hf) : 0.0); | |
| } | |
| #ifdef DEBUGPRAXQR | |
| printf(" qr transformation z f h=%.7g %.7g %.7g i=%d k=%d\n",z,f,h, i, k); | |
| #endif | |
| q[i-1] = z; | |
| if (z == 0.0) | |
| z = f = 1.0; | |
| c = f/z; s = h/z; | |
| f = c*g + s*y; /* f can be very small */ | |
| x = - s*g + c*y; | |
| } | |
| /* e[l] = 0.0; e[k] = f; q[k] = x; */ | |
| e[l] = 0.0; e[k] = f; q[k] = x; | |
| #ifdef DEBUGPRAXQR | |
| printf(" aftermid loop l=%d k=%d e(l)=%7g e(k)=%.7g q(k)=%.7g x=%.7g\n",l,k,e[l],e[k],q[k],x); | |
| #endif | |
| goto TestFsplitting; | |
| Convergence: | |
| #ifdef DEBUGPRAX | |
| printf(" Convergence:\n"); | |
| #endif | |
| if (z < 0.0) { | |
| /* q[k] = - z; */ | |
| /* for (j=0; j<n; j++) ab[j][k] = - ab[j][k]; */ | |
| q[k] = - z; | |
| for (j=1; j<=n; j++) ab[j][k] = - ab[j][k]; | |
| }/* END Z */ | |
| }/* END K */ | |
| } /* END MINFIT */ | |
| double praxis(double tol, double macheps, double h0, int _n, int _prin, double *_x, double (*_fun)(double *_x)) | |
| /* double praxis(double tol, double macheps, double h0, int _n, int _prin, double *_x, double (*_fun)(double *_x, int _n)) */ | |
| /* double praxis(double (*_fun)(), double _x[], int _n) */ | |
| /* double (*_fun)(); */ | |
| /* double _x[N]; */ | |
| /* double (*_fun)(); */ | |
| /* double _x[N]; */ | |
| { | { |
| int i, j1, j2, j3; | /* init global extern variables and parameters */ |
| double t; | /* double *d, *y, *z, */ |
| /* *q0, *q1, **v; */ | |
| /* double *tflin; /\* used in flin: return (*fun)(tflin, n); *\/ */ | |
| /* double *e; /\* used in minfit, don't konw how to free memory and thus made global *\/ */ | |
| int seed; /* added */ | |
| int biter=0; | |
| double r; | |
| double randbrent( int (*)); | |
| double s, sf; | |
| h = h0; /* step; */ | |
| t = tol; | |
| scbd = 1.0; | |
| illc = 0; | |
| ktm = 1; | |
| macheps = DBL_EPSILON; | |
| /* prin=4; */ | |
| #ifdef DEBUGPRAX | |
| printf("Praxis macheps=%14g h=%14g step=%14g tol=%14g\n",macheps,h, h0,tol); | |
| #endif | |
| n = _n; | |
| x = _x; | |
| prin = _prin; | |
| fun = _fun; | |
| d=vector(1, n); | |
| y=vector(1, n); | |
| z=vector(1, n); | |
| q0=vector(1, n); | |
| q1=vector(1, n); | |
| e=vector(1, n); | |
| tflin=vector(1, n); | |
| v=matrix(1, n, 1, n); | |
| for(i=1;i<=n;i++){d[i]=y[i]=z[i]=q0[0]=e[i]=tflin[i]=0.;} | |
| small_windows = (macheps) * (macheps); vsmall = small_windows*small_windows; | |
| large = 1.0/small_windows; vlarge = 1.0/vsmall; | |
| m2 = sqrt(macheps); m4 = sqrt(m2); | |
| seed = 123456789; /* added */ | |
| ldfac = (illc ? 0.1 : 0.01); | |
| for(i=1;i<=n;i++) z[i]=0.; /* Was missing in Gegenfurtner as well as Brent's algol or fortran */ | |
| nl = kt = 0; nf = 1; | |
| #ifdef NR_SHIFT | |
| fx = (*fun)((x-1), n); | |
| #else | |
| fx = (*fun)(x); | |
| #endif | |
| qf1 = fx; | |
| t2 = small_windows + fabs(t); t = t2; dmin = small_windows; | |
| #ifdef DEBUGPRAX | |
| printf("praxis2 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); | |
| #endif | |
| if (h < 100.0*t) h = 100.0*t; | |
| #ifdef DEBUGPRAX | |
| printf("praxis3 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); | |
| #endif | |
| ldt = h; | |
| /* for (i=0; i<n; i++) for (j=0; j<n; j++) */ | |
| for (i=1; i<=n; i++) for (j=1; j<=n; j++) | |
| v[i][j] = (i == j ? 1.0 : 0.0); | |
| d[1] = 0.0; qd0 = 0.0; | |
| /* for (i=0; i<n; i++) q1[i] = x[i]; */ | |
| for (i=1; i<=n; i++) q1[i] = x[i]; | |
| if (prin > 1) { | |
| printf("\n------------- enter function praxis -----------\n"); | |
| printf("... current parameter settings ...\n"); | |
| printf("... scaling ... %20.10e\n", scbd); | |
| printf("... tol ... %20.10e\n", t); | |
| printf("... maxstep ... %20.10e\n", h); | |
| printf("... illc ... %20u\n", illc); | |
| printf("... ktm ... %20u\n", ktm); | |
| printf("... maxfun ... %20u\n", maxfun); | |
| } | |
| if (prin) print2(); | |
| for (j1 = 1; j1 < n; j1++) { | mloop: |
| biter++; /* Added to count the loops */ | |
| /* sf = d[0]; */ | |
| /* s = d[0] = 0.0; */ | |
| printf("\n Big iteration %d \n",biter); | |
| fprintf(ficlog,"\n Big iteration %d \n",biter); | |
| sf = d[1]; | |
| s = d[1] = 0.0; | |
| /* minimize along first direction V(*,1) */ | |
| #ifdef DEBUGPRAX | |
| printf(" Minimize along the first direction V(*,1). illc=%d\n",illc); | |
| /* fprintf(ficlog," Minimize along the first direction V(*,1).\n"); */ | |
| #endif | |
| #ifdef DEBUGPRAX2 | |
| printf("praxis4 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); | |
| #endif | |
| /* min(0, 2, &d[0], &s, fx, 0); /\* mac heps not global *\/ */ | |
| minny(1, 2, &d[1], &s, fx, 0); /* mac heps not global */ | |
| #ifdef DEBUGPRAX | |
| printf("praxis5 macheps=%14g h=%14g looks at sign of s=%14g fx=%14g\n",macheps,h, s,fx); | |
| #endif | |
| if (s <= 0.0) | |
| /* for (i=0; i < n; i++) */ | |
| for (i=1; i <= n; i++) | |
| v[i][1] = -v[i][1]; | |
| /* if ((sf <= (0.9 * d[0])) || ((0.9 * sf) >= d[0])) */ | |
| if ((sf <= (0.9 * d[1])) || ((0.9 * sf) >= d[1])) | |
| /* for (i=1; i<n; i++) */ | |
| for (i=2; i<=n; i++) | |
| d[i] = 0.0; | |
| /* for (k=1; k<n; k++) { */ | |
| for (k=2; k<=n; k++) { | |
| /* | /* |
| * Find J3, the index of the largest entry in D[J1:N-1]. | The inner loop starts here. |
| * MAXLOC apparently requires its output to be an array. | |
| */ | */ |
| j3 = j1; | #ifdef DEBUGPRAX |
| for (j2 = j1+1; j2 < n; j2++) { | printf(" The inner loop here from k=%d to n=%d.\n",k,n); |
| if (d[j3] < d[j2]) { | /* fprintf(ficlog," The inner loop here from k=%d to n=%d.\n",k,n); */ |
| j3 = j2; | #endif |
| /* for (i=0; i<n; i++) */ | |
| for (i=1; i<=n; i++) | |
| y[i] = x[i]; | |
| sf = fx; | |
| #ifdef DEBUGPRAX | |
| printf(" illc=%d and kt=%d and ktm=%d\n", illc, kt, ktm); | |
| #endif | |
| illc = illc || (kt > 0); | |
| next: | |
| kl = k; | |
| df = 0.0; | |
| if (illc) { /* random step to get off resolution valley */ | |
| #ifdef DEBUGPRAX | |
| printf(" A random step follows, to avoid resolution valleys.\n"); | |
| matprint(" before rand, vectors:",v,n,n); | |
| #endif | |
| for (i=1; i<=n; i++) { | |
| #ifdef NOBRENTRAND | |
| r = drandom(); | |
| #else | |
| seed=i; | |
| /* seed=i+1; */ | |
| #ifdef DEBUGRAND | |
| printf(" Random seed=%d, brent i=%d",seed,i); /* YYYY i=5 j=1 vji= -0.0001170073 */ | |
| #endif | |
| r = randbrent ( &seed ); | |
| #endif | |
| #ifdef DEBUGRAND | |
| printf(" Random r=%.7g \n",r); | |
| #endif | |
| z[i] = (0.1 * ldt + t2 * pow(10.0,(double)kt)) * (r - 0.5); | |
| /* z[i] = (0.1 * ldt + t2 * pow(10.0,(double)kt)) * (drandom() - 0.5); */ | |
| s = z[i]; | |
| for (j=1; j <= n; j++) | |
| x[j] += s * v[j][i]; | |
| } | |
| #ifdef DEBUGRAND | |
| matprint(" after rand, vectors:",v,n,n); | |
| #endif | |
| #ifdef NR_SHIFT | |
| fx = (*fun)((x-1), n); | |
| #else | |
| fx = (*fun)(x, n); | |
| #endif | |
| /* fx = (*func) ( (x-1) ); *//* This for func which is computed from x[1] and not from x[0] xm1=(x-1)*/ | |
| nf++; | |
| } | |
| /* minimize along non-conjugate directions */ | |
| #ifdef DEBUGPRAX | |
| printf(" Minimize along the 'non-conjugate' directions (dots printed) V(*,%d),...,V(*,%d).\n",k,n); | |
| /* fprintf(ficlog," Minimize along the 'non-conjugate' directions (dots printed) V(*,%d),...,V(*,%d).\n",k,n); */ | |
| #endif | |
| /* for (k2=k; k2<n; k2++) { /\* Be careful here k2 <=n ? *\/ */ | |
| for (k2=k; k2<=n; k2++) { /* Be careful here k2 <=n ? */ | |
| sl = fx; | |
| s = 0.0; | |
| #ifdef DEBUGPRAX | |
| printf(" Minimize along the 'NON-CONJUGATE' true direction k2=%14d fx=%14.7f\n",k2, fx); | |
| matprint(" before min vectors:",v,n,n); | |
| #endif | |
| /* min(k2, 2, &d[k2], &s, fx, 0); */ | |
| /* jsearch=k2-1; */ | |
| /* min(jsearch, 2, &d[jsearch], &s, fx, 0); */ | |
| minny(k2, 2, &d[k2], &s, fx, 0); | |
| #ifdef DEBUGPRAX | |
| printf(" . D(%d)=%14.7f d[k2]=%14.7f z[k2]=%14.7f illc=%14d fx=%14.7f\n",k2,d[k2],d[k2],z[k2],illc,fx); | |
| #endif | |
| if (illc) { | |
| /* double szk = s + z[k2]; */ | |
| /* s = d[k2] * szk*szk; */ | |
| double szk = s + z[k2]; | |
| s = d[k2] * szk*szk; | |
| } | |
| else | |
| s = sl - fx; | |
| /* if (df < s) { */ | |
| if (df <= s) { | |
| df = s; | |
| kl = k2; | |
| #ifdef DEBUGPRAX | |
| printf(" df=%.7g and choose kl=%d \n",df,kl); /* UUUU */ | |
| #endif | |
| } | |
| } /* end loop k2 */ | |
| /* | |
| If there was not much improvement on the first try, set | |
| ILLC = true and start the inner loop again. | |
| */ | |
| #ifdef DEBUGPRAX | |
| printf(" If there was not much improvement on the first try, set ILLC = true and start the inner loop again. illc=%d\n",illc); | |
| /* fprintf(ficlog," If there was not much improvement on the first try, set ILLC = true and start the inner loop again.\n"); */ | |
| #endif | |
| if (!illc && (df < fabs(100.0 * (macheps) * fx))) { | |
| #ifdef DEBUGPRAX | |
| printf("\n NO SUCCESS because DF is small, starts inner loop with same K(=%d), fabs( 100.0 * machep(=%.10e) * fx(=%.9e) )=%.9e > df(=%.9e) break illc=%d\n", k, macheps, fx, fabs ( 100.0 * macheps * fx ), df, illc); | |
| #endif | |
| illc = 1; | |
| goto next; | |
| } | |
| #ifdef DEBUGPRAX | |
| printf("\n SUCCESS, BREAKS inner loop K(=%d) because DF is big, fabs( 100.0 * machep(=%.10e) * fx(=%.9e) )=%.9e <= df(=%.9e) break illc=%d\n", k, macheps, fx, fabs ( 100.0 * macheps * fx ), df, illc); | |
| #endif | |
| /* if ((k == 1) && (prin > 1)){ /\* be careful k=2 *\/ */ | |
| if ((k == 2) && (prin > 1)){ /* be careful k=2 */ | |
| #ifdef DEBUGPRAX | |
| printf(" NEW D The second difference array d:\n" ); | |
| /* fprintf(ficlog, " NEW D The second difference array d:\n" ); */ | |
| #endif | |
| vecprint(" NEW D The second difference array d:",d,n); | |
| } | |
| /* minimize along conjugate directions */ | |
| /* | |
| Minimize along the "conjugate" directions V(*,1),...,V(*,K-1). | |
| */ | |
| #ifdef DEBUGPRAX | |
| printf("Minimize along the 'conjugate' directions V(*,1),...,V(*,K-1=%d).\n",k-1); | |
| /* fprintf(ficlog,"Minimize along the 'conjugate' directions V(*,1),...,V(*,K-1=%d).\n",k-1); */ | |
| #endif | |
| /* for (k2=0; k2<=k-1; k2++) { */ | |
| for (k2=1; k2<=k-1; k2++) { | |
| s = 0.0; | |
| /* min(k2-1, 2, &d[k2-1], &s, fx, 0); */ | |
| minny(k2, 2, &d[k2], &s, fx, 0); | |
| } | |
| f1 = fx; | |
| fx = sf; | |
| lds = 0.0; | |
| /* for (i=0; i<n; i++) { */ | |
| for (i=1; i<=n; i++) { | |
| sl = x[i]; | |
| x[i] = y[i]; | |
| y[i] = sl - y[i]; | |
| sl = y[i]; | |
| lds = lds + sl*sl; | |
| } | |
| lds = sqrt(lds); | |
| #ifdef DEBUGPRAX | |
| printf("Minimization done 'conjugate', shifted all points, computed lds=%.8f\n",lds); | |
| #endif | |
| /* | |
| Discard direction V(*,kl). | |
| If no random step was taken, V(*,KL) is the "non-conjugate" | |
| direction along which the greatest improvement was made. | |
| */ | |
| if (lds > small_windows) { | |
| #ifdef DEBUGPRAX | |
| printf("lds big enough to throw direction V(*,kl=%d). If no random step was taken, V(*,KL) is the 'non-conjugate' direction along which the greatest improvement was made.\n",kl); | |
| matprint(" before shift new conjugate vectors:",v,n,n); | |
| #endif | |
| for (i=kl-1; i>=k; i--) { | |
| /* for (j=0; j < n; j++) */ | |
| for (j=1; j <= n; j++) | |
| /* v[j][i+1] = v[j][i]; */ /* This is v[j][i+1]=v[j][i] i=kl-1 to k */ | |
| v[j][i+1] = v[j][i]; /* This is v[j][i+1]=v[j][i] i=kl-1 to k */ | |
| /* v[j][i+1] = v[j][i]; */ | |
| /* d[i+1] = d[i];*/ /* last is d[k+1]= d[k] */ | |
| d[i+1] = d[i]; /* last is d[k]= d[k-1] */ | |
| } | |
| #ifdef DEBUGPRAX | |
| matprint(" after shift new conjugate vectors:",v,n,n); | |
| #endif /* d[k] = 0.0; */ | |
| d[k] = 0.0; | |
| for (i=1; i <= n; i++) | |
| v[i][k] = y[i] / lds; | |
| /* v[i][k] = y[i] / lds; */ | |
| #ifdef DEBUGPRAX | |
| printf("Minimize along the new 'conjugate' direction V(*,k=%d), which is the normalized vector: (new x) - (old x). d2=%14.7g lds=%.10f\n",k,d[k],lds); | |
| /* fprintf(ficlog,"Minimize along the new 'conjugate' direction V(*,k=%d), which is the normalized vector: (new x) - (old x).\n",k); */ | |
| matprint(" before min new conjugate vectors:",v,n,n); | |
| #endif | |
| /* min(k-1, 4, &d[k-1], &lds, f1, 1); */ | |
| minny(k, 4, &d[k], &lds, f1, 1); | |
| #ifdef DEBUGPRAX | |
| printf(" after min d(k)=%d %.7g lds=%14f\n",k,d[k],lds); | |
| matprint(" after min vectors:",v,n,n); | |
| #endif | |
| if (lds <= 0.0) { | |
| lds = -lds; | |
| #ifdef DEBUGPRAX | |
| printf(" lds changed sign lds=%.14f k=%d\n",lds,k); | |
| #endif | |
| /* for (i=0; i<n; i++) */ | |
| /* v[i][k] = -v[i][k]; */ | |
| for (i=1; i<=n; i++) | |
| v[i][k] = -v[i][k]; | |
| } | |
| } | |
| ldt = ldfac * ldt; | |
| if (ldt < lds) | |
| ldt = lds; | |
| if (prin > 0){ | |
| #ifdef DEBUGPRAX | |
| printf(" k=%d",k); | |
| /* fprintf(ficlog," k=%d",k); */ | |
| #endif | |
| print2();/* n, x, prin, fx, nf, nl ); */ | |
| } | |
| t2 = 0.0; | |
| /* for (i=0; i<n; i++) */ | |
| for (i=1; i<=n; i++) | |
| t2 += x[i]*x[i]; | |
| t2 = m2 * sqrt(t2) + t; | |
| /* | |
| See whether the length of the step taken since starting the | |
| inner loop exceeds half the tolerance. | |
| */ | |
| #ifdef DEBUGPRAX | |
| printf("See if step length exceeds half the tolerance.\n"); /* ZZZZZ */ | |
| /* fprintf(ficlog,"See if step length exceeds half the tolerance.\n"); */ | |
| #endif | |
| if (ldt > (0.5 * t2)) | |
| kt = 0; | |
| else | |
| kt++; | |
| #ifdef DEBUGPRAX | |
| printf("if kt=%d >? ktm=%d gotoL2 loop\n",kt,ktm); | |
| #endif | |
| if (kt > ktm){ | |
| if ( 0 < prin ){ | |
| /* printf("\nr8vec_print\n X:\n"); */ | |
| /* fprintf(ficlog,"\nr8vec_print\n X:\n"); */ | |
| vecprint ("END X:", x, n ); | |
| } | |
| goto fret; | |
| } | |
| #ifdef DEBUGPRAX | |
| matprint(" end of L2 loop vectors:",v,n,n); | |
| #endif | |
| } | |
| /* printf("The inner loop ends here.\n"); */ | |
| /* fprintf(ficlog,"The inner loop ends here.\n"); */ | |
| /* | |
| The inner loop ends here. | |
| Try quadratic extrapolation in case we are in a curved valley. | |
| */ | |
| #ifdef DEBUGPRAX | |
| printf("Try QUAD ratic extrapolation in case we are in a curved valley.\n"); | |
| #endif | |
| /* try quadratic extrapolation in case */ | |
| /* we are stuck in a curved valley */ | |
| quad(); | |
| dn = 0.0; | |
| /* for (i=0; i<n; i++) { */ | |
| for (i=1; i<=n; i++) { | |
| d[i] = 1.0 / sqrt(d[i]); | |
| if (dn < d[i]) | |
| dn = d[i]; | |
| } | |
| if (prin > 2) | |
| matprint(" NEW DIRECTIONS vectors:",v,n,n); | |
| /* for (j=0; j<n; j++) { */ | |
| for (j=1; j<=n; j++) { | |
| s = d[j] / dn; | |
| /* for (i=0; i < n; i++) */ | |
| for (i=1; i <= n; i++) | |
| v[i][j] *= s; | |
| } | |
| if (scbd > 1.0) { /* scale axis to reduce condition number */ | |
| #ifdef DEBUGPRAX | |
| printf("Scale the axes to try to reduce the condition number.\n"); | |
| #endif | |
| /* fprintf(ficlog,"Scale the axes to try to reduce the condition number.\n"); */ | |
| s = vlarge; | |
| /* for (i=0; i<n; i++) { */ | |
| for (i=1; i<=n; i++) { | |
| sl = 0.0; | |
| /* for (j=0; j < n; j++) */ | |
| for (j=1; j <= n; j++) | |
| sl += v[i][j]*v[i][j]; | |
| z[i] = sqrt(sl); | |
| if (z[i] < m4) | |
| z[i] = m4; | |
| if (s > z[i]) | |
| s = z[i]; | |
| } | |
| /* for (i=0; i<n; i++) { */ | |
| for (i=1; i<=n; i++) { | |
| sl = s / z[i]; | |
| z[i] = 1.0 / sl; | |
| if (z[i] > scbd) { | |
| sl = 1.0 / scbd; | |
| z[i] = scbd; | |
| } | |
| } | } |
| } | } |
| for (i=1; i<=n; i++) | |
| /* for (j=0; j<=i-1; j++) { */ | |
| /* for (j=1; j<=i; j++) { */ | |
| for (j=1; j<=i-1; j++) { | |
| s = v[i][j]; | |
| v[i][j] = v[j][i]; | |
| v[j][i] = s; | |
| } | |
| #ifdef DEBUGPRAX | |
| printf(" Calculate a new set of orthogonal directions before repeating the main loop.\n Transpose V for MINFIT:...\n"); | |
| #endif | |
| /* | |
| MINFIT finds the singular value decomposition of V. | |
| This gives the principal values and principal directions of the | |
| approximating quadratic form without squaring the condition number. | |
| */ | |
| #ifdef DEBUGPRAX | |
| printf(" MINFIT finds the singular value decomposition of V. \n This gives the principal values and principal directions of the\n approximating quadratic form without squaring the condition number...\n"); | |
| #endif | |
| minfit(n, macheps, vsmall, v, d); | |
| /* for(i=0; i<n;i++)printf(" %14.7g",d[i]); */ | |
| /* v is overwritten with R. */ | |
| /* | /* |
| * If J1 != J3, swap D[J1] and D[J3], and columns J1 and J3 of V. | Unscale the axes. |
| */ | */ |
| if (j1 != j3) { | if (scbd > 1.0) { |
| t = d[j1]; | #ifdef DEBUGPRAX |
| d[j1] = d[j3]; | printf(" Unscale the axes.\n"); |
| d[j3] = t; | #endif |
| for (i = 1; i <= n; i++) { | /* for (i=0; i<n; i++) { */ |
| t = v[i][j1]; | for (i=1; i<=n; i++) { |
| v[i][j1] = v[i][j3]; | s = z[i]; |
| v[i][j3] = t; | /* for (j=0; j<n; j++) */ |
| } /* end i */ | for (j=1; j<=n; j++) |
| } /* end j1 != j3 */ | v[i][j] *= s; |
| } /* end j1 */ | } |
| return; | /* for (i=0; i<n; i++) { */ |
| } | for (i=1; i<=n; i++) { |
| s = 0.0; | |
| /* for (j=0; j<n; j++) */ | |
| for (j=1; j<=n; j++) | |
| s += v[j][i]*v[j][i]; | |
| s = sqrt(s); | |
| d[i] *= s; | |
| s = 1.0 / s; | |
| /* for (j=0; j<n; j++) */ | |
| for (j=1; j<=n; j++) | |
| v[j][i] *= s; | |
| } | |
| } | |
| /* for (i=0; i<n; i++) { */ | |
| double dni; /* added for compatibility with buckhardt but not brent */ | |
| for (i=1; i<=n; i++) { | |
| dni=dn*d[i]; /* added for compatibility with buckhardt but not brent */ | |
| if ((dn * d[i]) > large) | |
| d[i] = vsmall; | |
| else if ((dn * d[i]) < small_windows) | |
| d[i] = vlarge; | |
| else | |
| d[i] = 1.0 / dni / dni; /* added for compatibility with buckhardt but not brent */ | |
| /* d[i] = pow(dn * d[i],-2.0); */ | |
| } | |
| #ifdef DEBUGPRAX | |
| vecprint ("\n Before sort Eigenvalues of a:",d,n ); | |
| #endif | |
| sort(); /* the new eigenvalues and eigenvectors */ | |
| #ifdef DEBUGPRAX | |
| vecprint( " After sort the eigenvalues ....\n", d, n); | |
| matprint( " After sort the eigenvectors....\n", v, n,n); | |
| #endif | |
| #ifdef DEBUGPRAX | |
| printf(" Determine the smallest eigenvalue.\n"); | |
| #endif | |
| /* dmin = d[n-1]; */ | |
| dmin = d[n]; | |
| if (dmin < small_windows) | |
| dmin = small_windows; | |
| /* | |
| The ratio of the smallest to largest eigenvalue determines whether | |
| the system is ill conditioned. | |
| */ | |
| /* illc = (m2 * d[0]) > dmin; */ | |
| illc = (m2 * d[1]) > dmin; | |
| #ifdef DEBUGPRAX | |
| printf(" The ratio of the smallest to largest eigenvalue determines whether\n the system is ill conditioned=%d . dmin=%.10lf < m2=%.10lf * d[1]=%.10lf \n",illc, dmin,m2, d[1]); | |
| #endif | |
| if ((prin > 2) && (scbd > 1.0)) | |
| vecprint("\n The scale factors:",z,n); | |
| if (prin > 2) | |
| vecprint(" Principal values (EIGEN VALUES OF A) of the quadratic form:",d,n); | |
| if (prin > 2) | |
| matprint(" The principal axes (EIGEN VECTORS OF A:",v,n, n); | |
| if ((maxfun > 0) && (nf > maxfun)) { | |
| if (prin) | |
| printf("\n... maximum number of function calls reached ...\n"); | |
| goto fret; | |
| } | |
| #ifdef DEBUGPRAX | |
| printf("Goto main loop\n"); | |
| #endif | |
| goto mloop; /* back to main loop */ | |
| /* void svdcmp(double **a, int m, int n, double w[], double **v) */ | fret: |
| void svdminfit(double **a, int m, int n, double w[]) | if (prin > 0) { |
| { | vecprint("\n X:", x, n); |
| /* From numerical recipes */ | /* printf("\n... ChiSq reduced to %20.10e ...\n", fx); */ |
| /* Given a matrix a[1..m][1..n], this routine computes its singular value */ | /* printf("... after %20u function calls.\n", nf); */ |
| /* decomposition, A = U ·W ·V T . The matrix U replaces a on output. */ | } |
| /* The diagonal matrix of singular values W is out- put as a vector w[1..n]. */ | free_vector(d, 1, n); |
| /* The matrix V (not the transpose V T ) is output as v[1..n][1..n]. */ | free_vector(y, 1, n); |
| free_vector(z, 1, n); | |
| /* But in fact from Golub 1970 Algol60 */ | free_vector(q0, 1, n); |
| free_vector(q1, 1, n); | |
| /* Computation of the singular values and complete orthogonal decom- */ | free_matrix(v, 1, n, 1, n); |
| /* position of a real rectangular matrix A, */ | /* double *d, *y, *z, */ |
| /* A = U diag (q) V^T, U^T U = V^T V =I , */ | /* *q0, *q1, **v; */ |
| /* where the arrays a[1:m, 1:n], u[1:m, 1 :n], v[1:n, 1:n], q[1:n] re- */ | free_vector(tflin, 1, n); |
| /* present A, U, V, q respectively. The actual parameters corresponding */ | /* double *tflin; /\* used in flin: return (*fun)(tflin, n); *\/ */ |
| /* to a, u, v may all be identical unless withu=withv = true . In this */ | free_vector(e, 1, n); |
| /* case, the actual parameters corresponding to u and v must differ. */ | /* double *e; /\* used in minfit, don't konw how to free memory and thus made global *\/ */ |
| /* m >= n is assumed; */ | |
| return(fx); | |
| /* Simplified (as in praxis) in order to output only V (replacing A), w is the diagonal matrix q */ | } |
| double pythag(double a, double b); | |
| int flag,i,its,j,jj,k,l,nm; | |
| double anorm,c,f,g,h,s,scale,x,y,z,*rv1; | |
| rv1=vector(1,n); | |
| /* Householder's reduction to bidiagonal form; */ | |
| g=scale=anorm=0.0; | |
| for (i=1;i<=n;i++) { | |
| l=i+1; | |
| rv1[i]=scale*g; | |
| g=s=scale=0.0; | |
| if (i <= m) { | |
| for (k=i;k<=m;k++) scale += fabs(a[k][i]); | |
| if (scale) { | |
| for (k=i;k<=m;k++) { | |
| a[k][i] /= scale; | |
| s += a[k][i]*a[k][i]; | |
| } | |
| f=a[i][i]; | |
| g = -SIGN(sqrt(s),f); | |
| h=f*g-s; | |
| a[i][i]=f-g; | |
| for (j=l;j<=n;j++) { | |
| for (s=0.0,k=i;k<=m;k++) s += a[k][i]*a[k][j]; | |
| f=s/h; | |
| for (k=i;k<=m;k++) a[k][j] += f*a[k][i]; | |
| } | |
| for (k=i;k<=m;k++) a[k][i] *= scale; | |
| } | |
| } | |
| w[i]=scale *g; /* p 411*/ | |
| g=s=scale=0.0; | |
| if (i <= m && i != n) { | |
| for (k=l;k<=n;k++) scale += fabs(a[i][k]); | |
| if (scale) { | |
| for (k=l;k<=n;k++) { | |
| a[i][k] /= scale; | |
| s += a[i][k]*a[i][k]; | |
| } | |
| f=a[i][l]; | |
| g = -SIGN(sqrt(s),f); | |
| h=f*g-s; | |
| a[i][l]=f-g; | |
| for (k=l;k<=n;k++) rv1[k]=a[i][k]/h; | |
| for (j=l;j<=m;j++) { | |
| for (s=0.0,k=l;k<=n;k++) s += a[j][k]*a[i][k]; | |
| for (k=l;k<=n;k++) a[j][k] += s*rv1[k]; | |
| } | |
| for (k=l;k<=n;k++) a[i][k] *= scale; | |
| } | |
| } | |
| /* y : = abs(q[i]) +abs(e[i]); if y > x then x : = y */ | |
| /* anorm=DMAX(anorm,(fabs(w[i])+fabs(rv1[i]))); */ | |
| anorm=FMAX(anorm,(fabs(w[i])+fabs(rv1[i]))); | |
| } | |
| /* Comment accumulation of right-hand transformations */ | |
| for (i=n;i>=1;i--) { | |
| if (i < n) { | |
| if (g) { | |
| for (j=l;j<=n;j++) a[j][i]=(a[i][j]/a[i][l])/g; /* Double division to avoid possible underflow. */ | |
| /* for (j=l;j<=n;j++) v[j][i]=(a[i][j]/a[i][l])/g; */ | |
| for (j=l;j<=n;j++) { | |
| /* for (s=0.0,k=l;k<=n;k++) s += a[i][k]*v[k][j]; */ | |
| for (s=0.0,k=l;k<=n;k++) s += a[i][k]*a[k][j]; | |
| /* for (k=l;k<=n;k++) v[k][j] += s*v[k][i]; */ | |
| for (k=l;k<=n;k++) a[k][j] += s*a[k][i]; | |
| } | |
| } | |
| /* for (j=l;j<=n;j++) v[i][j]=v[j][i]=0.0; */ | |
| for (j=l;j<=n;j++) a[i][j]=a[j][i]=0.0; | |
| } | |
| /* v[i][i]=1.0; */ | |
| a[i][i]=1.0; | |
| g=rv1[i]; | |
| l=i; | |
| } | |
| /* Comment accumulation of left-hand transformations; */ | |
| /* for (i=IMIN(m,n);i>=1;i--) { */ | |
| for (i=FMIN(m,n);i>=1;i--) { | |
| l=i+1; | |
| g=w[i]; | |
| for (j=l;j<=n;j++) a[i][j]=0.0; | |
| if (g) { | |
| g=1.0/g; | |
| for (j=l;j<=n;j++) { | |
| for (s=0.0,k=l;k<=m;k++) s += a[k][i]*a[k][j]; | |
| f=(s/a[i][i])*g; | |
| for (k=i;k<=m;k++) a[k][j] += f*a[k][i]; | |
| } | |
| for (j=i;j<=m;j++) a[j][i] *= g; | |
| } else for (j=i;j<=m;j++) a[j][i]=0.0; | |
| ++a[i][i]; | |
| } | |
| /* comment diagonalization of the bidiagonal form; */ | |
| for (k=n;k>=1;k--) { | |
| for (its=1;its<=30;its++) { /* Loop over singular values, and over allowed iterations. */ | |
| flag=1; | |
| for (l=k;l>=1;l--) { /* Test for splitting. */ | |
| nm=l-1; /* Note that rv1[1] is always zero. */ | |
| if ((double)(fabs(rv1[l])+anorm) == anorm) { | |
| flag=0; | |
| break; | |
| } | |
| if ((double)(fabs(w[nm])+anorm) == anorm) break; | |
| } | |
| if (flag) { | |
| c=0.0; /* Cancellation of rv1[l], if l > 1. */ | |
| s=1.0; | |
| for (i=l;i<=k;i++) { | |
| f=s*rv1[i]; | |
| rv1[i]=c*rv1[i]; | |
| if ((double)(fabs(f)+anorm) == anorm) break; | |
| g=w[i]; | |
| h=pythag(f,g); | |
| w[i]=h; | |
| h=1.0/h; | |
| c=g*h; | |
| s = -f*h; | |
| for (j=1;j<=m;j++) { | |
| y=a[j][nm]; | |
| z=a[j][i]; | |
| a[j][nm]=y*c+z*s; | |
| a[j][i]=z*c-y*s; | |
| } | |
| } | |
| } | |
| z=w[k]; | |
| if (l == k) { /* Convergence */ | |
| if (z < 0.0) { /* Singular value is made nonnegative. */ | |
| w[k] = -z; | |
| /* for (j=1;j<=n;j++) v[j][k] = -v[j][k]; */ | |
| for (j=1;j<=n;j++) a[j][k] = -a[j][k]; | |
| } | |
| break; | |
| } | |
| if (its == 30) nrerror("no convergence in 30 svdcmp iterations"); | |
| x=w[l]; /* shift from bottom 2 x 2 minor; */ | |
| nm=k-1; | |
| y=w[nm]; | |
| g=rv1[nm]; | |
| h=rv1[k]; | |
| f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y); | |
| g=pythag(f,1.0); | |
| /* g=dpythag(f,1.0); */ | |
| f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x; | |
| c=s=1.0; /* next QR transformation */ | |
| for (j=l;j<=nm;j++) { | |
| i=j+1; | |
| g=rv1[i]; | |
| y=w[i]; | |
| h=s*g; | |
| g=c*g; | |
| /* z=dpythag(f,h); */ | |
| z=pythag(f,h); | |
| rv1[j]=z; | |
| c=f/z; | |
| s=h/z; | |
| f=x*c+g*s; | |
| g = g*c-x*s; | |
| h=y*s; | |
| y *= c; | |
| /* if withv then for j:= 1 step 1 until n do */ | |
| for (jj=1;jj<=n;jj++) { | |
| /* x=v[jj][j]; */ | |
| /* z=v[jj][i]; */ | |
| x=a[jj][j]; | |
| z=a[jj][i]; | |
| /* v[jj][j]=x*c+z*s; */ | |
| /* v[jj][i]=z*c-x*s; */ | |
| a[jj][j]=x*c+z*s; | |
| a[jj][i]=z*c-x*s; | |
| } | |
| /* z=dpythag(f,h); */ | |
| z=pythag(f,h); | |
| w[j]=z; | |
| if (z) { | |
| z=1.0/z; | |
| c=f*z; | |
| s=h*z; | |
| } | |
| f=c*g+s*y; | |
| x=c*y-s*g; | |
| /* if withu then for j:=1 step 1 until m do */ | |
| /* for (jj=1;jj<=m;jj++) { */ | |
| /* y=a[jj][j]; */ | |
| /* z=a[jj][i]; */ | |
| /* a[jj][j]=y*c+z*s; */ | |
| /* a[jj][i]=z*c-y*s; */ | |
| /* } */ | |
| } | |
| rv1[l]=0.0; | |
| rv1[k]=f; | |
| w[k]=x; | |
| } | |
| } | |
| free_vector(rv1,1,n); | |
| } | |
| /* end praxis */ | /* end praxis gegen */ |
| /*************** powell ************************/ | /*************** powell ************************/ |
| /* | /* |
| Line 3106 void powell(double p[], double **xi, int | Line 4257 void powell(double p[], double **xi, int |
| } | } |
| } | } |
| for (i=1;i<=n;i++) { /* For each direction i, maximisation after loading directions */ | for (i=1;i<=n;i++) { /* For each direction i, maximisation after loading directions */ |
| for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */ | for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales. xi is not changed but one dim xit */ |
| fptt=(*fret); | |
| fptt=(*fret); /* Computes likelihood for parameters xit */ | |
| #ifdef DEBUG | #ifdef DEBUG |
| printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret); | printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
| fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret); | fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
| Line 3115 void powell(double p[], double **xi, int | Line 4267 void powell(double p[], double **xi, int |
| printf("%d",i);fflush(stdout); /* print direction (parameter) i */ | printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
| fprintf(ficlog,"%d",i);fflush(ficlog); | fprintf(ficlog,"%d",i);fflush(ficlog); |
| #ifdef LINMINORIGINAL | #ifdef LINMINORIGINAL |
| linmin(p,xit,n,fret,func); /* New point i minimizing in direction xit i has coordinates p[j].*/ | linmin(p,xit,n,fret,func); /* New point i minimizing in direction xit, i has coordinates p[j].*/ |
| /* xit[j] gives the n coordinates of direction i as input.*/ | /* xit[j] gives the n coordinates of direction i as input.*/ |
| /* *fret gives the maximum value on direction xit */ | /* *fret gives the maximum value on direction xit */ |
| #else | #else |
| Line 3149 void powell(double p[], double **xi, int | Line 4301 void powell(double p[], double **xi, int |
| } /* end loop on each direction i */ | } /* end loop on each direction i */ |
| /* Convergence test will use last linmin estimation (fret) and compare to former iteration (fp) */ | /* Convergence test will use last linmin estimation (fret) and compare to former iteration (fp) */ |
| /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ | /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
| /* New value of last point Pn is not computed, P(n-1) */ | |
| for(j=1;j<=n;j++) { | for(j=1;j<=n;j++) { |
| if(flatdir[j] >0){ | if(flatdir[j] >0){ |
| printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); | printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
| Line 3171 void powell(double p[], double **xi, int | Line 4324 void powell(double p[], double **xi, int |
| /* the scales of the directions and the directions, because the are reset to canonical directions */ | /* the scales of the directions and the directions, because the are reset to canonical directions */ |
| /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ | /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
| /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long. */ | /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long. */ |
| #ifdef DEBUG | |
| int k[2],l; | |
| k[0]=1; | |
| k[1]=-1; | |
| printf("Max: %.12e",(*func)(p)); | |
| fprintf(ficlog,"Max: %.12e",(*func)(p)); | |
| for (j=1;j<=n;j++) { | |
| printf(" %.12e",p[j]); | |
| fprintf(ficlog," %.12e",p[j]); | |
| } | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| for(l=0;l<=1;l++) { | |
| for (j=1;j<=n;j++) { | |
| ptt[j]=p[j]+(p[j]-pt[j])*k[l]; | |
| printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | |
| fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | |
| } | |
| printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | |
| fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | |
| } | |
| #endif | |
| free_vector(xit,1,n); | free_vector(xit,1,n); |
| free_vector(xits,1,n); | free_vector(xits,1,n); |
| Line 3179 void powell(double p[], double **xi, int | Line 4354 void powell(double p[], double **xi, int |
| return; | return; |
| } /* enough precision */ | } /* enough precision */ |
| if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); | if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); |
| for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0)=2Pn-P0 */ | for (j=1;j<=n;j++) { /* Computes the extrapolated point and value f3, P_0 + 2 (P_n-P_0)=2Pn-P0 and xit is direction Pn-P0 */ |
| ptt[j]=2.0*p[j]-pt[j]; | ptt[j]=2.0*p[j]-pt[j]; |
| xit[j]=p[j]-pt[j]; /* Coordinate j of last direction xi_n=P_n-_0 */ | xit[j]=p[j]-pt[j]; /* Coordinate j of last direction xi_n=P_n-P_0 */ |
| #ifdef DEBUG | |
| printf("\n %d xit=%12.7g p=%12.7g pt=%12.7g ",j,xit[j],p[j],pt[j]); | printf("\n %d xit=%12.7g p=%12.7g pt=%12.7g ",j,xit[j],p[j],pt[j]); |
| pt[j]=p[j]; | #endif |
| pt[j]=p[j]; /* New P0 is Pn */ | |
| } | } |
| #ifdef DEBUG | |
| printf("\n"); | printf("\n"); |
| #endif | |
| fptt=(*func)(ptt); /* f_3 */ | fptt=(*func)(ptt); /* f_3 */ |
| #ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ | #ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in directions until some iterations are done */ |
| if (*iter <=4) { | if (*iter <=4) { |
| #else | #else |
| #endif | #endif |
| Line 3217 void powell(double p[], double **xi, int | Line 4396 void powell(double p[], double **xi, int |
| t= t- del*SQR(fp-fptt); | t= t- del*SQR(fp-fptt); |
| #endif | #endif |
| directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */ | directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */ |
| printf(" t=%g, directest=%g\n",t, directest); | #ifdef DEBUG |
| #ifdef POWELLNOTTRUECONJUGATE /* Searching for IBIG and testing for replacement */ | printf("t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
| fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); | |
| printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt), | |
| (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt)); | |
| fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt), | |
| (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt)); | |
| printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t); | |
| fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t); | |
| #endif | |
| #ifdef POWELLORIGINAL | #ifdef POWELLORIGINAL |
| if (t < 0.0) { /* Then we use it for new direction */ | if (t < 0.0) { /* Then we use it for new direction */ |
| #else /* Not POWELLOriginal but Brouard's */ | #else |
| if (directest*t < 0.0) { /* Contradiction between both tests */ | if (directest*t < 0.0) { /* Contradiction between both tests */ |
| printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); | printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
| printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); | printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
| fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); | fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
| fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); | fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
| } | } |
| if (directest < 0.0) { /* Then we use (P0, Pn) for new direction Xi_n or Xi_iBig */ | if (directest < 0.0) { /* Then we use it for new direction */ |
| #endif /* end POWELLOriginal */ | #endif |
| #endif /* POWELLNOTTRUECONJUGATE else means systematic replacement by new direction P_0P_n */ | #ifdef DEBUGLINMIN |
| printf("Before linmin in direction P%d-P0\n",n); | |
| for (j=1;j<=n;j++) { | |
| printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); | |
| fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); | |
| if(j % ncovmodel == 0){ | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| } | |
| } | |
| #endif | |
| #ifdef LINMINORIGINAL | #ifdef LINMINORIGINAL |
| /* xit[j]=p[j]-pt[j] */ | linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
| printf("\n Computes min on P_0, P_n direction iter=%d Bigter=%d\n",*iter,Bigter); | #else |
| linmin(p,xit,n,fret,func); /* computes minimum on P_0,P_n direction: changes p and rescales xit.*/ | |
| #else /* NOT LINMINORIGINAL but with searching for flat directions */ | |
| printf("\n Flat Computes min on P_0, P_n direction iter=%d Bigter=%d\n",*iter,Bigter); | |
| linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ | linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
| flatdir[i]=flat; /* Function is vanishing in that direction i */ | flatdir[i]=flat; /* Function is vanishing in that direction i */ |
| #endif | #endif |
| #ifdef POWELLNOTTRUECONJUGATE | #ifdef DEBUGLINMIN |
| #else | |
| #ifdef POWELLORIGINCONJUGATE | |
| for (j=1;j<=n;j++) { | for (j=1;j<=n;j++) { |
| xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ | printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
| xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ | fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
| } | if(j % ncovmodel == 0){ |
| #else | printf("\n"); |
| for (i=1;i<=n-1;i++) { | fprintf(ficlog,"\n"); |
| for (j=1;j<=n;j++) { | |
| xi[j][i]=xi[j][i+1]; /* Standard method of conjugate directions, not Powell who changes the nth direction by p0 pn . */ | |
| } | } |
| } | } |
| #endif | |
| for (j=1;j<=n;j++) { | for (j=1;j<=n;j++) { |
| xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ | |
| xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ | xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
| } | } |
| #endif /* POWELLORIGINCONJUGATE*/ | |
| #endif /*POWELLNOTTRUECONJUGATE*/ | |
| printf(" Standard method of conjugate directions\n"); | |
| printf("\n#A Before prax Bigter=%d model= 1 + age ", Bigter); | |
| for(j=1;j<=n;j++){ | |
| printf("%d \n",j); | |
| for(i=1;i<=n;i++){ | |
| printf(" %f",xi[j][i]); | |
| } | |
| } | |
| printf("\n"); | |
| #ifdef NOTMINFIT | |
| #else | |
| if(*iter >n){ | |
| /* if(Bigter >n){ */ | |
| printf("\n#Before prax Bigter=%d model= 1 + age ", Bigter); | |
| printf("\n"); | |
| for(j=1;j<=n;j++){ | |
| printf("%d \n",j); | |
| for(i=1;i<=n;i++){ | |
| printf(" %f",xi[j][i]); | |
| } | |
| } | |
| printf("\n"); | |
| /* | |
| * Calculate a new set of orthogonal directions before repeating | |
| * the main loop. | |
| * Transpose V for SVD (minfit) (because minfit returns the right V in ULV=A): | |
| */ | |
| printf(" Bigter=%d Calculate a new set of orthogonal directions before repeating the main loop.\n Transpose V for MINFIT:...\n",Bigter); | |
| transpose_in_place ( n, xi ); | |
| /* | |
| SVD/MINFIT finds the singular value decomposition of V. | |
| This gives the principal values and principal directions of the | |
| approximating quadratic form without squaring the condition number. | |
| */ | |
| printf(" SVDMINFIT finds the singular value decomposition of V. \n This gives the principal values and principal directions of the\n approximating quadratic form without squaring the condition number...\n"); | |
| double *d; /* eigenvalues of principal directions */ | |
| d=vector(1,n); | |
| svdminfit (xi, n, n, d ); /* In Brent's notation find d such that V=Q Diagonal(d) R, and Lambda=d^(-1/2) */ | |
| printf("\n#After prax model= 1 + age "); | |
| fprintf(ficlog,"\n#model= 1 + age "); | |
| if(nagesqr==1){ | |
| printf(" + age*age "); | |
| fprintf(ficlog," + age*age "); | |
| } | |
| for(j=1;j <=ncovmodel-2;j++){ | |
| if(Typevar[j]==0) { | |
| printf(" + V%d ",Tvar[j]); | |
| fprintf(ficlog," + V%d ",Tvar[j]); | |
| }else if(Typevar[j]==1) { | |
| printf(" + V%d*age ",Tvar[j]); | |
| fprintf(ficlog," + V%d*age ",Tvar[j]); | |
| }else if(Typevar[j]==2) { | |
| printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); | |
| fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); | |
| }else if(Typevar[j]==3) { | |
| printf(" + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); | |
| fprintf(ficlog," + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); | |
| } | |
| } | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| for(i=1,jk=1; i <=nlstate; i++){ | |
| for(k=1; k <=(nlstate+ndeath); k++){ | |
| if (k != i) { | |
| printf("%d%d ",i,k); | |
| fprintf(ficlog,"%d%d ",i,k); | |
| for(j=1; j <=ncovmodel; j++){ | |
| printf("%12.7f ",p[jk]); | |
| fprintf(ficlog,"%12.7f ",p[jk]); | |
| jk++; | |
| } | |
| printf("\n"); | |
| fprintf(ficlog,"\n"); | |
| } | |
| } | |
| } | |
| /* minfit ( n, vsmall, v, d ); */ | |
| /* v is overwritten with R. */ | |
| /* | |
| Heuristic numbers: | |
| If the axes may be badly scaled (which is to be avoided if | |
| possible), then set SCBD = 10. Otherwise set SCBD = 1. | |
| If the problem is known to be ill-conditioned, initialize ILLC = true. | |
| KTM is the number of iterations without improvement before the | |
| algorithm terminates. KTM = 4 is very cautious; usually KTM = 1 | |
| is satisfactory. | |
| */ | |
| double machep, small; | |
| double dmin; | |
| int illc=0; /* Local, int ILLC, is TRUE if the system is ill-conditioned. */ | |
| machep = DBL_EPSILON; | |
| small = machep * machep; | |
| /* m2 = dsqrt(machep); */ | |
| /* | |
| * Sort the eigenvalues and eigenvectors. | |
| */ | |
| printf(" Sort the eigenvalues and eigenvectors....\n"); | |
| svsort ( n, d, xi ); | |
| printf("Sorted Eigenvalues:\n"); | |
| for(i=1; i<=n;i++){ | |
| printf(" d[%d]=%g",i,d[i]); | |
| } | |
| printf("\n"); | |
| /* | |
| * Determine the smallest eigenvalue. | |
| */ | |
| printf(" Determine the smallest eigenvalue.\n"); | |
| dmin = fmax ( d[n], small ); | |
| /* | |
| * The ratio of the smallest to largest eigenvalue determines whether | |
| * the system is ill conditioned. | |
| */ | |
| if ( dmin < sqrt(machep) * d[1] ) { /* m2*d[0] */ | |
| illc = 1; | |
| } else { | |
| illc = 0; | |
| } | |
| printf(" The ratio of the smallest to largest eigenvalue determines whether\n \ | |
| the system is ill conditioned=%d . dmin=%.12lf < m2=%.12lf * d[1]=%.12lf \n",illc, dmin,sqrt(machep), d[1]); | |
| /* if ( 1.0 < scbd ) { */ | |
| /* r8vec_print ( n, z, " The scale factors:" ); */ | |
| /* } */ | |
| /* r8vec_print ( n, d, " Principal values of the quadratic form:" ); */ | |
| /* } */ | |
| /* if ( 3 < prin ) { */ | |
| /* r8mat_print ( n, n, v, " The principal axes:" ); */ | |
| /* } */ | |
| free_vector(d,1,n); | |
| /* | |
| * The main loop ends here. | |
| */ | |
| /* if ( 0 < prin ) */ | |
| /* { */ | |
| /* r8vec_print ( n, x, " X:" ); */ | |
| /* } */ | |
| } | |
| #endif /* NOTMINFIT */ | |
| #ifdef LINMINORIGINAL | #ifdef LINMINORIGINAL |
| #else | #else |
| for (j=1, flatd=0;j<=n;j++) { | for (j=1, flatd=0;j<=n;j++) { |
| Line 3429 void powell(double p[], double **xi, int | Line 4473 void powell(double p[], double **xi, int |
| free_vector(pt,1,n); | free_vector(pt,1,n); |
| return; | return; |
| #endif | #endif |
| } /* endif(flatd >0) */ | } |
| #endif | #endif |
| printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); | printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
| fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); | fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
| /* The minimization in direction $\xi_1$ gives $P_1$. From $P_1$ minimization in direction $\xi_2$ gives */ | |
| /* $P_2$. Minimization of line $P_2-P_1$ gives new starting point $P^{(1)}_0$ and direction $\xi_1$ is dropped and replaced by second */ | #ifdef DEBUG |
| /* direction $\xi_1^{(1)}=\xi_2$. Also second direction is replaced by new direction $\xi^{(1)}_2=P_2-P_0$. */ | printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
| fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | |
| /* At the second iteration, starting from $P_0^{(1)}$, minimization amongst $\xi^{(1)}_1$ gives point $P^{(1)}_1$. */ | for(j=1;j<=n;j++){ |
| /* Minimization amongst $\xi^{(1)}_2=(P_2-P_0)$ gives point $P^{(1)}_2$. As $P^{(2)}_1$ and */ | printf(" %lf",xit[j]); |
| /* $P^{(1)}_0$ are minimizing in the same direction $P^{(1)}_2 - P^{(1)}_1= P_2-P_0$, directions $P^{(1)}_2-P^{(1)}_0$ */ | fprintf(ficlog," %lf",xit[j]); |
| /* and $P_2-P_0$ (parallel to $\xi$ and $\xi^c$) are conjugate. } */ | } |
| #ifdef POWELLNOTTRUECONJUGATE | printf("\n"); |
| } /* end of t or directest negative */ | fprintf(ficlog,"\n"); |
| #endif | #endif |
| } /* end of t or directest negative */ | |
| printf(" Directest is positive, P_n-P_0 does not increase the conjugacy. n=%d\n",n); | |
| fprintf(ficlog," Directest is positive, P_n-P_0 does not increase the conjugacy. n=%d\n",n); | |
| #ifdef POWELLNOF3INFF1TEST | #ifdef POWELLNOF3INFF1TEST |
| #else | #else |
| } /* end if (fptt < fp) */ | } /* end if (fptt < fp) */ |
| #endif | #endif |
| #ifdef POWELLORIGINCONJUGATE | |
| } /* if (t < 0.0) */ | |
| #endif | |
| #ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ | #ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
| } /*NODIRECTIONCHANGEDUNTILNITER No change in drections until some iterations are done */ | } /*NODIRECTIONCHANGEDUNTILNITER No change in drections until some iterations are done */ |
| #else | #else |
| Line 3655 void powell(double p[], double **xi, int | Line 4699 void powell(double p[], double **xi, int |
| first++; | first++; |
| } | } |
| /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ | /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, |
| * (int)age, (int)delaymax, (int)agefin, ncvloop, | |
| * (int)age-(int)agefin); */ | |
| free_vector(min,1,nlstate); | free_vector(min,1,nlstate); |
| free_vector(max,1,nlstate); | free_vector(max,1,nlstate); |
| free_vector(meandiff,1,nlstate); | free_vector(meandiff,1,nlstate); |
| Line 3690 void powell(double p[], double **xi, int | Line 4736 void powell(double p[], double **xi, int |
| /* 0.51326036147820708, 0.48673963852179264} */ | /* 0.51326036147820708, 0.48673963852179264} */ |
| /* If we start from prlim again, prlim tends to a constant matrix */ | /* If we start from prlim again, prlim tends to a constant matrix */ |
| int i, ii,j,k, k1; | int i, ii,j, k1; |
| int first=0; | int first=0; |
| double *min, *max, *meandiff, maxmax,sumnew=0.; | double *min, *max, *meandiff, maxmax,sumnew=0.; |
| /* double **matprod2(); */ /* test */ | /* double **matprod2(); */ /* test */ |
| Line 3957 double **pmij(double **ps, double *cov, | Line 5003 double **pmij(double **ps, double *cov, |
| /* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too. | /* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too. |
| * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij. | * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij. |
| */ | */ |
| int i, ii, j,k; | int ii, j; |
| double **out, **pmij(); | double **pmij(); |
| double sumnew=0.; | double sumnew=0.; |
| double agefin; | double agefin; |
| double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */ | double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */ |
| Line 4172 double ***hpxij(double ***po, int nhstep | Line 5218 double ***hpxij(double ***po, int nhstep |
| */ | */ |
| int i, j, d, h, k, k1; | int i, j, d, h, k1; |
| double **out, cov[NCOVMAX+1]; | double **out, cov[NCOVMAX+1]; |
| double **newm; | double **newm; |
| double agexact; | double agexact; |
| double agebegin, ageend; | /*double agebegin, ageend;*/ |
| /* Hstepm could be zero and should return the unit matrix */ | /* Hstepm could be zero and should return the unit matrix */ |
| for (i=1;i<=nlstate+ndeath;i++) | for (i=1;i<=nlstate+ndeath;i++) |
| Line 4353 double ***hbxij(double ***po, int nhstep | Line 5399 double ***hbxij(double ***po, int nhstep |
| The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output | The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output |
| */ | */ |
| int i, j, d, h, k, k1; | int i, j, d, h, k1; |
| double **out, cov[NCOVMAX+1], **bmij(); | double **out, cov[NCOVMAX+1], **bmij(); |
| double **newm, ***newmm; | double **newm, ***newmm; |
| double agexact; | double agexact; |
| double agebegin, ageend; | /*double agebegin, ageend;*/ |
| double **oldm, **savm; | double **oldm, **savm; |
| newmm=po; /* To be saved */ | newmm=po; /* To be saved */ |
| Line 4876 double func( double *x) | Line 5922 double func( double *x) |
| double funcone( double *x) | double funcone( double *x) |
| { | { |
| /* Same as func but slower because of a lot of printf and if */ | /* Same as func but slower because of a lot of printf and if */ |
| int i, ii, j, k, mi, d, kk, kv=0, kf=0; | int i, ii, j, k, mi, d, kv=0, kf=0; |
| int ioffset=0; | int ioffset=0; |
| int ipos=0,iposold=0,ncovv=0; | int ipos=0,iposold=0,ncovv=0; |
| Line 5426 void likelione(FILE *ficres,double p[], | Line 6472 void likelione(FILE *ficres,double p[], |
| void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) | void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
| { | { |
| int i,j,k, jk, jkk=0, iter=0; | int i,j, jkk=0, iter=0; |
| double **xi; | double **xi; |
| double fret; | /*double fret;*/ |
| double fretone; /* Only one call to likelihood */ | /*double fretone;*/ /* Only one call to likelihood */ |
| /* char filerespow[FILENAMELENGTH];*/ | /* char filerespow[FILENAMELENGTH];*/ |
| double * p1; /* Shifted parameters from 0 instead of 1 */ | /*double * p1;*/ /* Shifted parameters from 0 instead of 1 */ |
| #ifdef NLOPT | #ifdef NLOPT |
| int creturn; | int creturn; |
| nlopt_opt opt; | nlopt_opt opt; |
| Line 5512 void mlikeli(FILE *ficres,double p[], in | Line 6558 void mlikeli(FILE *ficres,double p[], in |
| } | } |
| powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); | powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
| #else /* FLATSUP */ | #else /* FLATSUP */ |
| powell(p,xi,npar,ftol,&iter,&fret,func); | /* powell(p,xi,npar,ftol,&iter,&fret,func);*/ |
| /* praxis ( t0, h0, n, prin, x, beale_f ); */ | /* praxis ( t0, h0, n, prin, x, beale_f ); */ |
| /* int prin=4; */ | int prin=1; |
| /* double h0=0.25; */ | double h0=0.25; |
| double macheps; | |
| double fmin; | |
| macheps=pow(16.0,-13.0); | |
| /* #include "praxis.h" */ | /* #include "praxis.h" */ |
| /* Be careful that praxis start at x[0] and powell start at p[1] */ | /* Be careful that praxis start at x[0] and powell start at p[1] */ |
| /* praxis ( ftol, h0, npar, prin, p, func ); */ | /* praxis ( ftol, h0, npar, prin, p, func ); */ |
| /* p1= (p+1); /\* p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] *\/ */ | /* p1= (p+1); */ /* p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */ |
| /* printf("Praxis \n"); */ | printf("Praxis Gegenfurtner \n"); |
| /* fprintf(ficlog, "Praxis \n");fflush(ficlog); */ | fprintf(ficlog, "Praxis Gegenfurtner\n");fflush(ficlog); |
| /* praxis ( ftol, h0, npar, prin, p1, func ); */ | /* praxis ( ftol, h0, npar, prin, p1, func ); */ |
| /* printf("End Praxis\n"); */ | /* fmin = praxis(1.e-5,macheps, h, n, prin, x, func); */ |
| fmin = praxis(ftol,macheps, h0, npar, prin, p, func); | |
| printf("End Praxis\n"); | |
| #endif /* FLATSUP */ | #endif /* FLATSUP */ |
| #ifdef LINMINORIGINAL | #ifdef LINMINORIGINAL |
| Line 6654 void prevalence(double ***probs, double | Line 7705 void prevalence(double ***probs, double |
| int i, m, jk, j1, bool, z1,j, iv; | int i, m, jk, j1, bool, z1,j, iv; |
| int mi; /* Effective wave */ | int mi; /* Effective wave */ |
| int iage; | int iage; |
| double agebegin, ageend; | double agebegin; /*, ageend;*/ |
| double **prop; | double **prop; |
| double posprop; | double posprop; |
| Line 8541 void printinghtml(char fileresu[], char | Line 9592 void printinghtml(char fileresu[], char |
| int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \ | int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \ |
| double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \ | double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \ |
| double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){ | double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){ |
| int jj1, k1, i1, cpt, k4, nres; | int jj1, k1, cpt, nres; |
| /* In fact some results are already printed in fichtm which is open */ | /* In fact some results are already printed in fichtm which is open */ |
| fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ | fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
| <li><a href='#secondorder'>Result files (second order (variance)</a>\n \ | <li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
| Line 10405 void prevforecast(char fileres[], double | Line 11456 void prevforecast(char fileres[], double |
| */ | */ |
| /* double anprojd, mprojd, jprojd; */ | /* double anprojd, mprojd, jprojd; */ |
| /* double anprojf, mprojf, jprojf; */ | /* double anprojf, mprojf, jprojf; */ |
| int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; | int yearp, stepsize, hstepm, nhstepm, j, k, i, h, nres=0; |
| double agec; /* generic age */ | double agec; /* generic age */ |
| double agelim, ppij, yp,yp1,yp2; | double agelim, ppij; |
| double *popeffectif,*popcount; | /*double *popcount;*/ |
| double ***p3mat; | double ***p3mat; |
| /* double ***mobaverage; */ | /* double ***mobaverage; */ |
| char fileresf[FILENAMELENGTH]; | char fileresf[FILENAMELENGTH]; |
| Line 10556 void prevforecast(char fileres[], double | Line 11607 void prevforecast(char fileres[], double |
| anback2 year of end of backprojection (same day and month as back1). | anback2 year of end of backprojection (same day and month as back1). |
| prevacurrent and prev are prevalences. | prevacurrent and prev are prevalences. |
| */ | */ |
| int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; | int yearp, stepsize, hstepm, nhstepm, j, k, i, h, nres=0; |
| double agec; /* generic age */ | double agec; /* generic age */ |
| double agelim, ppij, ppi, yp,yp1,yp2; /* ,jintmean,mintmean,aintmean;*/ | double agelim, ppij, ppi; /* ,jintmean,mintmean,aintmean;*/ |
| double *popeffectif,*popcount; | /*double *popcount;*/ |
| double ***p3mat; | double ***p3mat; |
| /* double ***mobaverage; */ | /* double ***mobaverage; */ |
| char fileresfb[FILENAMELENGTH]; | char fileresfb[FILENAMELENGTH]; |
| Line 11242 void printinggnuplotmort(char fileresu[] | Line 12293 void printinggnuplotmort(char fileresu[] |
| char dirfileres[132],optfileres[132]; | char dirfileres[132],optfileres[132]; |
| int ng; | /*int ng;*/ |
| /*#ifdef windows */ | /*#ifdef windows */ |
| Line 11266 int readdata(char datafile[], int firsto | Line 12317 int readdata(char datafile[], int firsto |
| /*-------- data file ----------*/ | /*-------- data file ----------*/ |
| FILE *fic; | FILE *fic; |
| char dummy[]=" "; | char dummy[]=" "; |
| int i=0, j=0, n=0, iv=0, v; | int i = 0, j = 0, n = 0, iv = 0;/* , v;*/ |
| int lstra; | int lstra; |
| int linei, month, year,iout; | int linei, month, year,iout; |
| int noffset=0; /* This is the offset if BOM data file */ | int noffset=0; /* This is the offset if BOM data file */ |
| Line 11883 int decodemodel( char model[], int lasto | Line 12934 int decodemodel( char model[], int lasto |
| */ | */ |
| /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */ | /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
| { | { |
| int i, j, k, ks, v; | int i, j, k, ks;/* , v;*/ |
| int n,m; | int n,m; |
| int j1, k1, k11, k12, k2, k3, k4; | int j1, k1, k11, k12, k2, k3, k4; |
| char modelsav[300]; | char modelsav[300]; |
| Line 13311 int hPijx(double *p, int bage, int fage) | Line 14362 int hPijx(double *p, int bage, int fage) |
| int agelim; | int agelim; |
| int hstepm; | int hstepm; |
| int nhstepm; | int nhstepm; |
| int h, i, i1, j, k, k4, nres=0; | int h, i, i1, j, k, nres=0; |
| double agedeb; | double agedeb; |
| double ***p3mat; | double ***p3mat; |
| Line 13517 int main(int argc, char *argv[]) | Line 14568 int main(int argc, char *argv[]) |
| double fret; | double fret; |
| double dum=0.; /* Dummy variable */ | double dum=0.; /* Dummy variable */ |
| double ***p3mat; | /* double*** p3mat;*/ |
| /* double ***mobaverage; */ | /* double ***mobaverage; */ |
| double wald; | double wald; |
| Line 13530 int main(int argc, char *argv[]) | Line 14581 int main(int argc, char *argv[]) |
| char pathr[MAXLINE], pathimach[MAXLINE]; | char pathr[MAXLINE], pathimach[MAXLINE]; |
| char *tok, *val; /* pathtot */ | char *tok, *val; /* pathtot */ |
| /* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */ | /* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */ |
| int c, h , cpt, c2; | int c, h; /* c2; */ |
| int jl=0; | int jl=0; |
| int i1, j1, jk, stepsize=0; | int i1, j1, jk, stepsize=0; |
| int count=0; | int count=0; |
| Line 13565 int main(int argc, char *argv[]) | Line 14616 int main(int argc, char *argv[]) |
| double ***delti3; /* Scale */ | double ***delti3; /* Scale */ |
| double *delti; /* Scale */ | double *delti; /* Scale */ |
| double ***eij, ***vareij; | double ***eij, ***vareij; |
| double **varpl; /* Variances of prevalence limits by age */ | //double **varpl; /* Variances of prevalence limits by age */ |
| double *epj, vepp; | double *epj, vepp; |
| Line 13623 int main(int argc, char *argv[]) | Line 14674 int main(int argc, char *argv[]) |
| getcwd(pathcd, size); | getcwd(pathcd, size); |
| #endif | #endif |
| syscompilerinfo(0); | syscompilerinfo(0); |
| printf("\nIMaCh prax version minfit %s, %s\n%s",version, copyright, fullversion); | printf("\nIMaCh prax version %s, %s\n%s",version, copyright, fullversion); |
| if(argc <=1){ | if(argc <=1){ |
| printf("\nEnter the parameter file name: "); | printf("\nEnter the parameter file name: "); |
| if(!fgets(pathr,FILENAMELENGTH,stdin)){ | if(!fgets(pathr,FILENAMELENGTH,stdin)){ |
| Line 14525 This file: <a href=\"%s\">%s</a></br>Tit | Line 15576 This file: <a href=\"%s\">%s</a></br>Tit |
| /* Calculates basic frequencies. Computes observed prevalence at single age | /* Calculates basic frequencies. Computes observed prevalence at single age |
| and for any valid combination of covariates | and for any valid combination of covariates |
| and prints on file fileres'p'. */ | and prints on file fileres'p'. */ |
| freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ | freqsummary(fileres, p, pstart, (double)agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
| firstpass, lastpass, stepm, weightopt, model); | firstpass, lastpass, stepm, weightopt, model); |
| fprintf(fichtm,"\n"); | fprintf(fichtm,"\n"); |
| Line 15835 Please run with mle=-1 to get a correct | Line 16886 Please run with mle=-1 to get a correct |
| free_ivector(TmodelInvind,1,NCOVMAX); | free_ivector(TmodelInvind,1,NCOVMAX); |
| free_ivector(TmodelInvQind,1,NCOVMAX); | free_ivector(TmodelInvQind,1,NCOVMAX); |
| free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/ | /* free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /\* Could be elsewhere ?*\/ */ |
| free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); | free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
| /* free_imatrix(codtab,1,100,1,10); */ | /* free_imatrix(codtab,1,100,1,10); */ |