Diff for /imach/html/doc/imach.htm between versions 1.1 and 1.2

version 1.1, 2004/06/16 12:05:30 version 1.2, 2004/06/16 21:35:20
Line 4 Line 4
 <head>  <head>
 <meta http-equiv="Content-Type"  <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">  content="text/html; charset=iso-8859-1">
 <meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">  
 <title>Computing Health Expectancies using IMaCh</title>  <title>Computing Health Expectancies using IMaCh</title>
 <!-- Changed by: Agnes Lievre, 12-Oct-2000 -->  
 <html>  <html>
   
 <head>  <head>
Line 36  color="#00006A">INED</font></a><font col Line 34  color="#00006A">INED</font></a><font col
 href="http://euroreves.ined.fr"><font color="#00006A">EUROREVES</font></a></h3>  href="http://euroreves.ined.fr"><font color="#00006A">EUROREVES</font></a></h3>
   
 <p align="center"><font color="#00006A" size="4"><strong>Version  <p align="center"><font color="#00006A" size="4"><strong>Version
 0.8a, May 2002</strong></font></p>  0.97, June 2004</strong></font></p>
   
 <hr size="3" color="#EC5E5E">  <hr size="3" color="#EC5E5E">
   
Line 102  population) is then decomposed into DFLE Line 100  population) is then decomposed into DFLE
 computing HE is usually called the Sullivan method (from the name  computing HE is usually called the Sullivan method (from the name
 of the author who first described it).</p>  of the author who first described it).</p>
   
 <p>Age-specific proportions of people disable are very difficult  <p>Age-specific proportions of people disabled (prevalence of
 to forecast because each proportion corresponds to historical  disability) are dependent on the historical flows from entering
 conditions of the cohort and it is the result of the historical  disability and recovering in the past until today. The age-specific
 flows from entering disability and recovering in the past until  forces (or incidence rates), estimated over a recent period of time
 today. The age-specific intensities (or incidence rates) of  (like for period forces of mortality), of entering disability or
 entering disability or recovering a good health, are reflecting  recovering a good health, are reflecting current conditions and
 actual conditions and therefore can be used at each age to  therefore can be used at each age to forecast the future of this
 forecast the future of this cohort. For example if a country is  cohort<em>if nothing changes in the future</em>, i.e to forecast the
 improving its technology of prosthesis, the incidence of  prevalence of disability of each cohort. Our finding (2) is that the period
 recovering the ability to walk will be higher at each (old) age,  prevalence of disability (computed from period incidences) is lower
 but the prevalence of disability will only slightly reflect an  than the cross-sectional prevalence. For example if a country is
 improve because the prevalence is mostly affected by the history  improving its technology of prosthesis, the incidence of recovering
 of the cohort and not by recent period effects. To measure the  the ability to walk will be higher at each (old) age, but the
 period improvement we have to simulate the future of a cohort of  prevalence of disability will only slightly reflect an improve because
 new-borns entering or leaving at each age the disability state or  the prevalence is mostly affected by the history of the cohort and not
 dying according to the incidence rates measured today on  by recent period effects. To measure the period improvement we have to
 different cohorts. The proportion of people disabled at each age  simulate the future of a cohort of new-borns entering or leaving at
 in this simulated cohort will be much lower (using the exemple of  each age the disability state or dying according to the incidence
 an improvement) that the proportions observed at each age in a  rates measured today on different cohorts. The proportion of people
 cross-sectional survey. This new prevalence curve introduced in a  disabled at each age in this simulated cohort will be much lower that
 life table will give a much more actual and realistic HE level  the proportions observed at each age in a cross-sectional survey. This
 than the Sullivan method which mostly measured the History of  new prevalence curve introduced in a life table will give a more
 health conditions in this country.</p>  realistic HE level than the Sullivan method which mostly measured the
   History of health conditions in this country.</p>
   
 <p>Therefore, the main question is how to measure incidence rates  <p>Therefore, the main question is how to measure incidence rates
 from cross-longitudinal surveys? This is the goal of the IMaCH  from cross-longitudinal surveys? This is the goal of the IMaCH
Line 196  Unix.<br> Line 195  Unix.<br>
 <p>(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), &quot;New  <p>(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), &quot;New
 Methods for Analyzing Active Life Expectancy&quot;. <i>Journal of  Methods for Analyzing Active Life Expectancy&quot;. <i>Journal of
 Aging and Health</i>. Vol 10, No. 2. </p>  Aging and Health</i>. Vol 10, No. 2. </p>
   <p>(2) <a href=http://taylorandfrancis.metapress.com/app/home/contribution.asp?wasp=1f99bwtvmk5yrb7hlhw3&referrer=parent&backto=issue,1,2;journal,2,5;linkingpublicationresults,1:300265,1
   >Lièvre A., Brouard N. and Heathcote Ch. (2003) Estimating Health Expectancies
   from Cross-longitudinal surveys. <em>Mathematical Population Studies</em>.- 10(4), pp. 211-248</a>
   
 <hr>  <hr>
   
Line 223  survival time after the last interview.< Line 225  survival time after the last interview.<
 <h2><a name="datafile"><font color="#00006A">The data file</font></a></h2>  <h2><a name="datafile"><font color="#00006A">The data file</font></a></h2>
   
 <p>In this example, 8,000 people have been interviewed in a  <p>In this example, 8,000 people have been interviewed in a
 cross-longitudinal survey of 4 waves (1984, 1986, 1988, 1990).  cross-longitudinal survey of 4 waves (1984, 1986, 1988, 1990).  Some
 Some people missed 1, 2 or 3 interviews. Health statuses are  people missed 1, 2 or 3 interviews. Health statuses are healthy (1)
 healthy (1) and disable (2). The survey is not a real one. It is  and disable (2). The survey is not a real one. It is a simulation of
 a simulation of the American Longitudinal Survey on Aging. The  the American Longitudinal Survey on Aging. The disability state is
 disability state is defined if the individual missed one of four  defined if the individual missed one of four ADL (Activity of daily
 ADL (Activity of daily living, like bathing, eating, walking).  living, like bathing, eating, walking).  Therefore, even if the
 Therefore, even is the individuals interviewed in the sample are  individuals interviewed in the sample are virtual, the information
 virtual, the information brought with this sample is close to the  brought with this sample is close to the situation of the United
 situation of the United States. Sex is not recorded is this  States. Sex is not recorded is this sample. The LSOA survey is biased
 sample.</p>  in the sense that people living in an institution were not surveyed at
   first pass in 1984. Thus the prevalence of disability in 1984 is
   biased downwards at old ages. But when people left their household to
   an institution, they have been surveyed in their institution in 1986,
   1988 or 1990. Thus incidences are not biased. But cross-sectional
   prevalences of disability at old ages are thus artificially increasing
   in 1986, 1988 and 1990 because of a higher weight of people
   institutionalized in the sample. Our article shows the
   opposite: the period prevalence is lower at old ages than the
   adjusted cross-sectional prevalence proving important current progress
   against disability.</p>
   
 <p>Each line of the data set (named <a href="data1.txt">data1.txt</a>  <p>Each line of the data set (named <a href="data1.txt">data1.txt</a>
 in this first example) is an individual record which fields are: </p>  in this first example) is an individual record. Fields are separated
   by blanks: </p>
   
 <ul>  <ul>
     <li><b>Index number</b>: positive number (field 1) </li>      <li><b>Index number</b>: positive number (field 1) </li>
Line 278  weights or covariates, you must fill the Line 291  weights or covariates, you must fill the
 <h2><font color="#00006A">Your first example parameter file</font><a  <h2><font color="#00006A">Your first example parameter file</font><a
 href="http://euroreves.ined.fr/imach"></a><a name="uio"></a></h2>  href="http://euroreves.ined.fr/imach"></a><a name="uio"></a></h2>
   
 <h2><a name="biaspar"></a>#Imach version 0.8a, May 2002,  <h2><a name="biaspar"></a>#Imach version 0.97b, June 2004,
 INED-EUROREVES </h2>  INED-EUROREVES </h2>
   
 <p>This is a comment. Comments start with a '#'.</p>  <p>This first line was a comment. Comments line start with a '#'.</p>
   
 <h4><font color="#FF0000">First uncommented line</font></h4>  <h4><font color="#FF0000">First uncommented line</font></h4>
   
Line 326  line</font></a></h4> Line 339  line</font></a></h4>
             <li>... </li>              <li>... </li>
         </ul>          </ul>
     </li>      </li>
     <li><b>ncovcol=2</b> Number of covariate columns in the      <li><b>ncovcol=2</b> Number of covariate columns included in the
         datafile which precede the date of birth. Here you can          datafile before the column of the date of birth. You can have
         put variables that won't necessary be used during the  covariates that won't necessary be used during the
         run. It is not the number of covariates that will be          run. It is not the number of covariates that will be
         specified by the model. The 'model' syntax describe the          specified by the model. The 'model' syntax describes the
         covariates to take into account. </li>          covariates to be taken into account during the run. </li>
     <li><b>nlstate=2</b> Number of non-absorbing (alive) states.      <li><b>nlstate=2</b> Number of non-absorbing (alive) states.
         Here we have two alive states: disability-free is coded 1          Here we have two alive states: disability-free is coded 1
         and disability is coded 2. </li>          and disability is coded 2. </li>
Line 343  line</font></a></h4> Line 356  line</font></a></h4>
             <li>If mle=1 the program does the maximisation and              <li>If mle=1 the program does the maximisation and
                 the calculation of health expectancies </li>                  the calculation of health expectancies </li>
             <li>If mle=0 the program only does the calculation of              <li>If mle=0 the program only does the calculation of
                 the health expectancies. </li>                  the health expectancies and other indices and graphs
   but without the maximization.. </li>
                  There also other possible values:
             <ul>
               <li>If mle=-1 you get a template which can be useful if
   your model is complex with many covariates.</li>
               <li> If mle=-3 IMaCh computes the mortality but without
               any health status (May 2004)</li> <li>If mle=2 IMach
               likelihood corresponds to a linear interpolation</li> <li>
               If mle=3 IMach likelihood corresponds to an exponential
               inter-extrapolation</li>
               <li> If mle=4 IMach likelihood
               corresponds to no inter-extrapolation, and thus biasing
               the results. </li>
               <li> If mle=5 IMach likelihood
               corresponds to no inter-extrapolation, and before the
               correction of the Jackson's bug (avoid this).</li>
               </ul>
         </ul>          </ul>
     </li>      </li>
     <li><b>weight=0</b> Possibility to add weights. <ul>      <li><b>weight=0</b> Possibility to add weights. <ul>
Line 484  know if you will speed up the convergenc Line 514  know if you will speed up the convergenc
 -ln(12/6)=-ln(2)= -0.693  -ln(12/6)=-ln(2)= -0.693
 </pre>  </pre>
   
   In version 0.9 and higher you can still have valuable results even if
   your stepm parameter is bigger than a month. The idea is to run with
   bigger stepm in order to have a quicker convergence at the price of a
   small bias. Once you know which model you want to fit, you can put
   stepm=1 and wait hours or days to get the convergence!
   
   To get unbiased results even with large stepm we introduce the idea of
   pseudo likelihood by interpolating two exact likelihoods. Let us
   detail this:
   <p>
   If the interval of <em>d</em> months between two waves is not a
   mutliple of 'stepm', but is comprised between <em>(n-1) stepm</em> and
   <em>n stepm</em> then both exact likelihoods are computed (the
   contribution to the likelihood at <em>n stepm</em> requires one matrix
   product more) (let us remember that we are modelling the probability
   to be observed in a particular state after <em>d</em> months being
   observed at a particular state at 0). The distance, (<em>bh</em> in
   the program), from the month of interview to the rounded date of <em>n
   stepm</em> is computed. It can be negative (interview occurs before
   <em>n stepm</em>) or positive if the interview occurs after <em>n
   stepm</em> (and before <em>(n+1)stepm</em>).
   <br>
   Then the final contribution to the total likelihood is a weighted
   average of these two exact likelihoods at <em>n stepm</em> (out) and
   at <em>(n-1)stepm</em>(savm). We did not want to compute the third
   likelihood at <em>(n+1)stepm</em> because it is too costly in time, so
   we used an extrapolation if <em>bh</em> is positive.  <br> Formula of
   inter/extrapolation may vary according to the value of parameter mle:
   <pre>
   mle=1     lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   
   mle=2   lli= (savm[s1][s2]>(double)1.e-8 ? \
             log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])): \
             log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   mle=3   lli= (savm[s1][s2]>1.e-8 ? \
             (1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]): \
             log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   
   mle=4   lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* No interpolation  */
           no need to save previous likelihood into memory.
   </pre>
   <p>
   If the death occurs between first and second pass, and for example
   more precisely between <em>n stepm</em> and <em>(n+1)stepm</em> the
   contribution of this people to the likelihood is simply the difference
   between the probability of dying before <em>n stepm</em> and the
   probability of dying before <em>(n+1)stepm</em>. There was a bug in
   version 0.8 and death was treated as any other state, i.e. as if it
   was an observed death at second pass. This was not precise but
   correct, but when information on the precise month of death came
   (death occuring prior to second pass) we did not change the likelihood
   accordingly. Thanks to Chris Jackson for correcting us. In earlier
   versions (fortunately before first publication) the total mortality
   was overestimated (people were dying too early) of about 10%. Version
   0.95 and higher are correct.
   
   <p> Our suggested choice is mle=1 . If stepm=1 there is no difference
   between various mle options (methods of interpolation). If stepm is
   big, like 12 or 24 or 48 and mle=4 (no interpolation) the bias may be
   very important if the mean duration between two waves is not a
   multiple of stepm. See the appendix in our main publication concerning
   the sine curve of biases.
    
   
 <h4><font color="#FF0000">Guess values for computing variances</font></h4>  <h4><font color="#FF0000">Guess values for computing variances</font></h4>
   
 <p>This is an output if <a href="#mle">mle</a>=1. But it can be  <p>These values are output by the maximisation of the likelihood <a
 used as an input to get the various output data files (Health  href="#mle">mle</a>=1. These valuse can be used as an input of a
 expectancies, stationary prevalence etc.) and figures without  second run in order to get the various output data files (Health
 rerunning the rather long maximisation phase (mle=0). </p>  expectancies, period prevalence etc.) and figures without rerunning
   the long maximisation phase (mle=0). </p>
 <p>The scales are small values for the evaluation of numerical  
 derivatives. These derivatives are used to compute the hessian  <p>These 'scales' are small values needed for the computing of
 matrix of the parameters, that is the inverse of the covariance  numerical derivatives. These derivatives are used to compute the
 matrix, and the variances of health expectancies. Each line  hessian matrix of the parameters, that is the inverse of the
 consists in indices &quot;ij&quot; followed by the initial scales  covariance matrix. They are often used for estimating variances and
 (zero to simplify) associated with aij and bij. </p>  confidence intervals. Each line consists in indices &quot;ij&quot;
   followed by the initial scales (zero to simplify) associated with aij
   and bij. </p>
   
 <ul>  <ul>
     <li>If mle=1 you can enter zeros:</li>      <li>If mle=1 you can enter zeros:</li>
Line 508  consists in indices &quot;ij&quot; follo Line 604  consists in indices &quot;ij&quot; follo
 23 0. 0. </pre>  23 0. 0. </pre>
         </blockquote>          </blockquote>
     </li>      </li>
     <li>If mle=0 you must enter a covariance matrix (usually      <li>If mle=0 (no maximisation of Likelihood) you must enter a covariance matrix (usually
         obtained from an earlier run).</li>          obtained from an earlier run).</li>
 </ul>  </ul>
   
 <h4><font color="#FF0000">Covariance matrix of parameters</font></h4>  <h4><font color="#FF0000">Covariance matrix of parameters</font></h4>
   
 <p>This is an output if <a href="#mle">mle</a>=1. But it can be  <p>The covariance matrix is output if <a href="#mle">mle</a>=1. But it can be
 used as an input to get the various output data files (Health  also used as an input to get the various output data files (Health
 expectancies, stationary prevalence etc.) and figures without  expectancies, period prevalence etc.) and figures without
 rerunning the rather long maximisation phase (mle=0). <br>  rerunning the maximisation phase (mle=0). <br>
 Each line starts with indices &quot;ijk&quot; followed by the  Each line starts with indices &quot;ijk&quot; followed by the
 covariances between aij and bij:<br>  covariances between aij and bij:<br>
 </p>  </p>
Line 549  prevalences and health expectancies</fon Line 645  prevalences and health expectancies</fon
   
 <pre>agemin=70 agemax=100 bage=50 fage=100</pre>  <pre>agemin=70 agemax=100 bage=50 fage=100</pre>
   
 <pre>  <p>
 Once we obtained the estimated parameters, the program is able  Once we obtained the estimated parameters, the program is able
 to calculated stationary prevalence, transitions probabilities  to calculate period prevalence, transitions probabilities
 and life expectancies at any age. Choice of age range is useful  and life expectancies at any age. Choice of age range is useful
 for extrapolation. In our data file, ages varies from age 70 to  for extrapolation. In this example, age of people interviewed varies
 102. It is possible to get extrapolated stationary prevalence by  from 69 to 102 and the model is estimated using their exact ages. But
 age ranging from agemin to agemax.  if you are interested in the age-specific period prevalence you can
   start the simulation at an exact age like 70 and stop at 100. Then the
   program will draw at least two curves describing the forecasted
 Setting bage=50 (begin age) and fage=100 (final age), makes  prevalences of two cohorts, one for healthy people at age 70 and the second
 the program computing life expectancy from age 'bage' to age  for disabled people at the same initial age. And according to the
   mixing property (ergodicity) and because of recovery, both prevalences
   will tend to be identical at later ages. Thus if you want to compute
   the prevalence at age 70, you should enter a lower agemin value.
   
   <p>
   Setting bage=50 (begin age) and fage=100 (final age), let
   the program compute life expectancy from age 'bage' to age
 'fage'. As we use a model, we can interessingly compute life  'fage'. As we use a model, we can interessingly compute life
 expectancy on a wider age range than the age range from the data.  expectancy on a wider age range than the age range from the data.
 But the model can be rather wrong on much larger intervals.  But the model can be rather wrong on much larger intervals.
Line 568  Program is limited to around 120 for upp Line 671  Program is limited to around 120 for upp
   
 <ul>  <ul>
     <li><b>agemin=</b> Minimum age for calculation of the      <li><b>agemin=</b> Minimum age for calculation of the
         stationary prevalence </li>          period prevalence </li>
     <li><b>agemax=</b> Maximum age for calculation of the      <li><b>agemax=</b> Maximum age for calculation of the
         stationary prevalence </li>          period prevalence </li>
     <li><b>bage=</b> Minimum age for calculation of the health      <li><b>bage=</b> Minimum age for calculation of the health
         expectancies </li>          expectancies </li>
     <li><b>fage=</b> Maximum age for calculation of the health      <li><b>fage=</b> Maximum age for calculation of the health
Line 578  Program is limited to around 120 for upp Line 681  Program is limited to around 120 for upp
 </ul>  </ul>
   
 <h4><a name="Computing"><font color="#FF0000">Computing</font></a><font  <h4><a name="Computing"><font color="#FF0000">Computing</font></a><font
 color="#FF0000"> the observed prevalence</font></h4>  color="#FF0000"> the cross-sectional prevalence</font></h4>
   
 <pre>begin-prev-date=1/1/1984 end-prev-date=1/6/1988 estepm=1</pre>  <pre>begin-prev-date=1/1/1984 end-prev-date=1/6/1988 estepm=1</pre>
   
 <pre>  <p>
 Statements 'begin-prev-date' and 'end-prev-date' allow to  Statements 'begin-prev-date' and 'end-prev-date' allow to
 select the period in which we calculate the observed prevalences  select the period in which we calculate the observed prevalences
 in each state. In this example, the prevalences are calculated on  in each state. In this example, the prevalences are calculated on
 data survey collected between 1 january 1984 and 1 june 1988.  data survey collected between 1 january 1984 and 1 june 1988.
 </pre>  </p>
   
 <ul>  <ul>
     <li><strong>begin-prev-date= </strong>Starting date      <li><strong>begin-prev-date= </strong>Starting date
Line 615  expectancies</font></h4> Line 718  expectancies</font></h4>
   
 <pre>pop_based=0</pre>  <pre>pop_based=0</pre>
   
 <p>The program computes status-based health expectancies, i.e  <p>The program computes status-based health expectancies, i.e health
 health expectancies which depends on your initial health state.  expectancies which depend on the initial health state.  If you are
 If you are healthy your healthy life expectancy (e11) is higher  healthy, your healthy life expectancy (e11) is higher than if you were
 than if you were disabled (e21, with e11 &gt; e21).<br>  disabled (e21, with e11 &gt; e21).<br> To compute a healthy life
 To compute a healthy life expectancy independant of the initial  expectancy 'independent' of the initial status we have to weight e11
 status we have to weight e11 and e21 according to the probability  and e21 according to the probability to be in each state at initial
 to be in each state at initial age or, with other word, according  age which are corresponding to the proportions of people in each health
 to the proportion of people in each state.<br>  state (cross-sectional prevalences).<p>
 We prefer computing a 'pure' period healthy life expectancy based  
 only on the transtion forces. Then the weights are simply the  We could also compute e12 and e12 and get e.2 by weighting them
 stationnary prevalences or 'implied' prevalences at the initial  according to the observed cross-sectional prevalences at initial age.
 age.<br>  <p> In a similar way we could compute the total life expectancy by
 Some other people would like to use the cross-sectional  summing e.1 and e.2 .
 prevalences (the &quot;Sullivan prevalences&quot;) observed at  <br>
 the initial age during a period of time <a href="#Computing">defined  The main difference between 'population based' and 'implied' or
 just above</a>. <br>  'period' consists in the weights used. 'Usually', cross-sectional
 </p>  prevalences of disability are higher than period prevalences
   particularly at old ages. This is true if the country is improving its
   health system by teaching people how to prevent disability as by
   promoting better screening, for example of people needing cataracts
   surgeryand for many unknown reasons that this program may help to
   discover. Then the proportion of disabled people at age 90 will be
   lower than the current observed proportion.
   <p>
   Thus a better Health Expectancy and even a better Life Expectancy
   value is given by forecasting not only the current lower mortality at
   all ages but also a lower incidence of disability and higher recovery.
   <br> Using the period prevalences as weight instead of the
   cross-sectional prevalences we are computing indices which are more
   specific to the current situations and therefore more useful to
   predict improvements or regressions in the future as to compare
   different policies in various countries.
   
 <ul>  <ul>
     <li><strong>popbased= 0 </strong>Health expectancies are      <li><strong>popbased= 0 </strong>Health expectancies are computed
         computed at each age from stationary prevalences      at each age from period prevalences 'expected' at this initial
         'expected' at this initial age.</li>      age.</li>
     <li><strong>popbased= 1 </strong>Health expectancies are      <li><strong>popbased= 1 </strong>Health expectancies are
         computed at each age from cross-sectional 'observed'      computed at each age from cross-sectional 'observed' prevalence at
         prevalence at this initial age. As all the population is      this initial age. As all the population is not observed at the
         not observed at the same exact date we define a short      same exact date we define a short period were the observed
         period were the observed prevalence is computed.</li>      prevalence can be computed.<br>
   
    We simply sum all people surveyed within these two exact dates
    who belong to a particular age group (single year) at the date of
    interview and being in a particular health state. Then it is easy to
   get the proportion of people of a particular health status among all
   people of the same age group.<br>
   
   If both dates are spaced and are covering two waves or more, people
   being interviewed twice or more are counted twice or more. The program
   takes into account the selection of individuals interviewed between
   firstpass and lastpass too (we don't know if it can be useful).
   </li>
 </ul>  </ul>
   
 <h4><font color="#FF0000">Prevalence forecasting ( Experimental)</font></h4>  <h4><font color="#FF0000">Prevalence forecasting (Experimental)</font></h4>
   
 <pre>starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 </pre>  <pre>starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 </pre>
   
Line 659  smoothed forecasted prevalences with a f Line 789  smoothed forecasted prevalences with a f
 centered at the mid-age of the five-age period. <br>  centered at the mid-age of the five-age period. <br>
 </p>  </p>
   
   <h4><font color="#FF0000">Population forecasting (Experimental)</font></h4>
   
 <ul>  <ul>
     <li><strong>starting-proj-date</strong>= starting date      <li><strong>starting-proj-date</strong>= starting date
         (day/month/year) of forecasting</li>          (day/month/year) of forecasting</li>
Line 670  centered at the mid-age of the five-age Line 802  centered at the mid-age of the five-age
         value 1 if the prevalences are smoothed and 0 otherwise.</li>          value 1 if the prevalences are smoothed and 0 otherwise.</li>
 </ul>  </ul>
   
 <h4><font color="#FF0000">Last uncommented line : Population  
 forecasting </font></h4>  
   
 <pre>popforecast=0 popfile=pyram.txt popfiledate=1/1/1989 last-popfiledate=1/1/1992</pre>  
   
 <p>This command is available if the interpolation unit is a  
 month, i.e. stepm=1 and if popforecast=1. From a data file  
 including age and number of persons alive at the precise date  
 &#145;popfiledate&#146;, you can forecast the number of persons  
 in each state until date &#145;last-popfiledate&#146;. In this  
 example, the popfile <a href="pyram.txt"><b>pyram.txt</b></a>  
 includes real data which are the Japanese population in 1989.<br>  
 </p>  
   
 <ul type="disc">  <ul type="disc">
     <li class="MsoNormal"      <li><b>popforecast=
     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popforecast=  
         0 </b>Option for population forecasting. If          0 </b>Option for population forecasting. If
         popforecast=1, the programme does the forecasting<b>.</b></li>          popforecast=1, the programme does the forecasting<b>.</b></li>
     <li class="MsoNormal"      <li><b>popfile=
     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popfile=  
         </b>name of the population file</li>          </b>name of the population file</li>
     <li class="MsoNormal"      <li><b>popfiledate=</b>
     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popfiledate=</b>  
         date of the population population</li>          date of the population population</li>
     <li class="MsoNormal"      <li><b>last-popfiledate</b>=
     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>last-popfiledate</b>=  
         date of the last population projection&nbsp;</li>          date of the last population projection&nbsp;</li>
 </ul>  </ul>
   
Line 705  includes real data which are the Japanes Line 820  includes real data which are the Japanes
 <h2><a name="running"></a><font color="#00006A">Running Imach  <h2><a name="running"></a><font color="#00006A">Running Imach
 with this example</font></h2>  with this example</font></h2>
   
 <pre>We assume that you typed in your <a href="biaspar.imach">1st_example  <p>We assume that you already typed your <a href="biaspar.imach">1st_example
 parameter file</a> as explained <a href="#biaspar">above</a>.  parameter file</a> as explained <a href="#biaspar">above</a>.
   
 To run the program you should either:  To run the program under Windows you should either:
 </pre>  </p>
   
 <ul>  <ul>
     <li>click on the imach.exe icon and enter the name of the      <li>click on the imach.exe icon and either:
         parameter file which is for example <a        <ul>
         href="C:\usr\imach\mle\biaspar.imach">C:\usr\imach\mle\biaspar.imach</a>           <li>enter the name of the
     </li>          parameter file which is for example <tt>
     <li>You also can locate the biaspar.imach icon in <a  C:\home\myname\lsoa\biaspar.imach"</tt></li>
         href="C:\usr\imach\mle">C:\usr\imach\mle</a> with your      <li>or locate the biaspar.imach icon in your folder such as
         mouse and drag it with the mouse on the imach window). </li>      <tt>C:\home\myname\lsoa</tt>
     <li>With latest version (0.7 and higher) if you setup windows      and drag it, with your mouse, on the already open imach window. </li>
         in order to understand &quot;.imach&quot; extension you    </ul>
         can right click the biaspar.imach icon and either edit  
         with notepad the parameter file or execute it with imach   <li>With version (0.97b) if you ran setup at installation, Windows is
         or whatever. </li>   supposed to understand the &quot;.imach&quot; extension and you can
    right click the biaspar.imach icon and either edit with wordpad
    (better than notepad) the parameter file or execute it with
    IMaCh. </li>
 </ul>  </ul>
   
 <pre>The time to converge depends on the step unit that you used (1  <p>The time to converge depends on the step unit that you used (1
 month is cpu consuming), on the number of cases, and on the  month is more precise but more cpu consuming), on the number of cases,
 number of variables.  and on the number of variables (covariates).
   
   <p>
 The program outputs many files. Most of them are files which  The program outputs many files. Most of them are files which will be
 will be plotted for better understanding.  plotted for better understanding.
   
 </pre>  
   
   </p>
   To run under Linux it is mostly the same.
   <p>
   It is neither more difficult to run it under a MacIntosh.
 <hr>  <hr>
   
 <h2><a name="output"><font color="#00006A">Output of the program  <h2><a name="output"><font color="#00006A">Output of the program
 and graphs</font> </a></h2>  and graphs</font> </a></h2>
   
 <p>Once the optimization is finished, some graphics can be made  <p>Once the optimization is finished (once the convergence is
 with a grapher. We use Gnuplot which is an interactive plotting  reached), many tables and graphics are produced.<p>
 program copyrighted but freely distributed. A gnuplot reference  The IMaCh program will create a subdirectory of the same name as your
 manual is available <a href="http://www.gnuplot.info/">here</a>. <br>  parameter file (here mypar) where all the tables and figures will be
 When the running is finished, the user should enter a caracter  stored.<br>
 for plotting and output editing. <br>  
 These caracters are:<br>  Important files like the log file and the output parameter file (which
   contains the estimates of the maximisation) are stored at the main
   level not in this subdirectory. File with extension .log and .txt can
   be edited with a standard editor like wordpad or notepad or even can be
   viewed with a browser like Internet Explorer or Mozilla.
   
   <p> The main html file is also named with the same name <a
   href="biaspar.htm">biaspar.htm</a>. You can click on it by holding
   your shift key in order to open it in another window (Windows).
   <p>
    Our grapher is Gnuplot, it is an interactive plotting program (GPL) which
    can also work in batch. A gnuplot reference manual is available <a
    href="http://www.gnuplot.info/">here</a>. <br> When the run is
    finished, and in order that the window doesn't disappear, the user
    should enter a character like <tt>q</tt> for quitting. <br> These
    characters are:<br>
 </p>  </p>
   
 <ul>  <ul>
     <li>'c' to start again the program from the beginning.</li>      <li>'e' for opening the main result html file <a
     <li>'e' opens the <a href="biaspar.htm"><strong>biaspar.htm</strong></a>      href="biaspar.htm"><strong>biaspar.htm</strong></a> file to edit
         file to edit the output files and graphs. </li>      the output files and graphs. </li>
     <li>'g' to graph again</li>      <li>'g' to graph again</li>
       <li>'c' to start again the program from the beginning.</li>
     <li>'q' for exiting.</li>      <li>'q' for exiting.</li>
 </ul>  </ul>
   
   The main gnuplot file is named <tt>biaspar.gp</tt> and can be edited (right
   click) and run again.
   <p>Gnuplot is easy and you can use it to make more complex
   graphs. Just click on gnuplot and type plot sin(x) to see how easy it
   is.
   
   
 <h5><font size="4"><strong>Results files </strong></font><br>  <h5><font size="4"><strong>Results files </strong></font><br>
 <br>  <br>
 <font color="#EC5E5E" size="3"><strong>- </strong></font><a  <font color="#EC5E5E" size="3"><strong>- </strong></font><a
 name="Observed prevalence in each state"><font color="#EC5E5E"  name="cross-sectional prevalence in each state"><font color="#EC5E5E"
 size="3"><strong>Observed prevalence in each state</strong></font></a><font  size="3"><strong>cross-sectional prevalence in each state</strong></font></a><font
 color="#EC5E5E" size="3"><strong> (and at first pass)</strong></font><b>:  color="#EC5E5E" size="3"><strong> (and at first pass)</strong></font><b>:
 </b><a href="prbiaspar.txt"><b>prbiaspar.txt</b></a><br>  </b><a href="biaspar/prbiaspar.txt"><b>biaspar/prbiaspar.txt</b></a><br>
 </h5>  </h5>
   
 <p>The first line is the title and displays each field of the  <p>The first line is the title and displays each field of the
 file. The first column is age. The fields 2 and 6 are the  file. First column corresponds to age. Fields 2 and 6 are the
 proportion of individuals in states 1 and 2 respectively as  proportion of individuals in states 1 and 2 respectively as
 observed during the first exam. Others fields are the numbers of  observed at first exam. Others fields are the numbers of
 people in states 1, 2 or more. The number of columns increases if  people in states 1, 2 or more. The number of columns increases if
 the number of states is higher than 2.<br>  the number of states is higher than 2.<br>
 The header of the file is </p>  The header of the file is </p>
Line 780  The header of the file is </p> Line 922  The header of the file is </p>
 71 0.99681 625 627 71 0.00319 2 627  71 0.99681 625 627 71 0.00319 2 627
 72 0.97125 1115 1148 72 0.02875 33 1148 </pre>  72 0.97125 1115 1148 72 0.02875 33 1148 </pre>
   
 <p>It means that at age 70, the prevalence in state 1 is 1.000  <p>It means that at age 70 (between 70 and 71), the prevalence in state 1 is 1.000
 and in state 2 is 0.00 . At age 71 the number of individuals in  and in state 2 is 0.00 . At age 71 the number of individuals in
 state 1 is 625 and in state 2 is 2, hence the total number of  state 1 is 625 and in state 2 is 2, hence the total number of
 people aged 71 is 625+2=627. <br>  people aged 71 is 625+2=627. <br>
Line 809  covariance matrix</b></font><b>: </b><a Line 951  covariance matrix</b></font><b>: </b><a
 <p>By substitution of these parameters in the regression model,  <p>By substitution of these parameters in the regression model,
 we obtain the elementary transition probabilities:</p>  we obtain the elementary transition probabilities:</p>
   
 <p><img src="pebiaspar1.gif" width="400" height="300"></p>  <p><img src="biaspar/pebiaspar11.png" width="400" height="300"></p>
   
 <h5><font color="#EC5E5E" size="3"><b>- Transition probabilities</b></font><b>:  <h5><font color="#EC5E5E" size="3"><b>- Transition probabilities</b></font><b>:
 </b><a href="pijrbiaspar.txt"><b>pijrbiaspar.txt</b></a></h5>  </b><a href="biaspar/pijrbiaspar.txt"><b>biaspar/pijrbiaspar.txt</b></a></h5>
   
 <p>Here are the transitions probabilities Pij(x, x+nh) where nh  <p>Here are the transitions probabilities Pij(x, x+nh). The second
 is a multiple of 2 years. The first column is the starting age x  column is the starting age x (from age 95 to 65), the third is age
 (from age 50 to 100), the second is age (x+nh) and the others are  (x+nh) and the others are the transition probabilities p11, p12, p13,
 the transition probabilities p11, p12, p13, p21, p22, p23. For  p21, p22, p23. The first column indicates the value of the covariate
 example, line 5 of the file is: </p>  (without any other variable than age it is equal to 1) For example, line 5 of the file
   is: </p>
   
 <pre> 100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 </pre>  <pre>1 100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 </pre>
   
 <p>and this means: </p>  <p>and this means: </p>
   
Line 832  p22(100,106)=0.13678 Line 975  p22(100,106)=0.13678
 p22(100,106)=0.84513 </pre>  p22(100,106)=0.84513 </pre>
   
 <h5><font color="#EC5E5E" size="3"><b>- </b></font><a  <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
 name="Stationary prevalence in each state"><font color="#EC5E5E"  name="Period prevalence in each state"><font color="#EC5E5E"
 size="3"><b>Stationary prevalence in each state</b></font></a><b>:  size="3"><b>Period prevalence in each state</b></font></a><b>:
 </b><a href="plrbiaspar.txt"><b>plrbiaspar.txt</b></a></h5>  </b><a href="biaspar/plrbiaspar.txt"><b>biaspar/plrbiaspar.txt</b></a></h5>
   
 <pre>#Prevalence  <pre>#Prevalence
 #Age 1-1 2-2  #Age 1-1 2-2
Line 845  size="3"><b>Stationary prevalence in eac Line 988  size="3"><b>Stationary prevalence in eac
 72 0.88139 0.11861  72 0.88139 0.11861
 73 0.87015 0.12985 </pre>  73 0.87015 0.12985 </pre>
   
 <p>At age 70 the stationary prevalence is 0.90134 in state 1 and  <p>At age 70 the period prevalence is 0.90134 in state 1 and 0.09866
 0.09866 in state 2. This stationary prevalence differs from  in state 2. This period prevalence differs from the cross-sectional
 observed prevalence. Here is the point. The observed prevalence  prevalence. Here is the point. The cross-sectional prevalence at age
 at age 70 results from the incidence of disability, incidence of  70 results from the incidence of disability, incidence of recovery and
 recovery and mortality which occurred in the past of the cohort.  mortality which occurred in the past of the cohort.  Period prevalence
 Stationary prevalence results from a simulation with actual  results from a simulation with current incidences of disability,
 incidences and mortality (estimated from this cross-longitudinal  recovery and mortality estimated from this cross-longitudinal
 survey). It is the best predictive value of the prevalence in the  survey. It is a good predictin of the prevalence in the
 future if &quot;nothing changes in the future&quot;. This is  future if &quot;nothing changes in the future&quot;. This is exactly
 exactly what demographers do with a Life table. Life expectancy  what demographers do with a period life table. Life expectancy is the
 is the expected mean time to survive if observed mortality rates  expected mean survival time if current mortality rates (age-specific incidences
 (incidence of mortality) &quot;remains constant&quot; in the  of mortality) &quot;remain constant&quot; in the future. </p>
 future. </p>  
   
 <h5><font color="#EC5E5E" size="3"><b>- Standard deviation of  <h5><font color="#EC5E5E" size="3"><b>- Standard deviation of
 stationary prevalence</b></font><b>: </b><a  period prevalence</b></font><b>: </b><a
 href="vplrbiaspar.txt"><b>vplrbiaspar.txt</b></a></h5>  href="biaspar/vplrbiaspar.txt"><b>biaspar/vplrbiaspar.txt</b></a></h5>
   
 <p>The stationary prevalence has to be compared with the observed  <p>The period prevalence has to be compared with the cross-sectional
 prevalence by age. But both are statistical estimates and  prevalence. But both are statistical estimates and therefore
 subjected to stochastic errors due to the size of the sample, the  have confidence intervals.
 design of the survey, and, for the stationary prevalence to the  <b>For the cross-sectional prevalence we generally need information on
 model used and fitted. It is possible to compute the standard  the design of the surveys. It is usually not enough to consider the
 deviation of the stationary prevalence at each age.</p>  number of people surveyed at a particular age and to estimate a
   Bernouilli confidence interval based on the prevalence at that
   age. But you can do it to have an idea of the randomness. At least you
   can get a visual appreciation of the randomness by looking at the
   fluctuation over ages.
   
   <p> For the period prevalence it is possible to estimate the
   confidence interval from the Hessian matrix (see the publication for
   details). We are supposing that the design of the survey will only
   alter the weight of each individual. IMaCh is scaling the weights of
   individuals-waves contributing to the likelihood by making the sum of
   the weights equal to the sum of individuals-waves contributing: a
   weighted survey doesn't increase or decrease the size of the survey,
   it only give more weights to some individuals and thus less to the
   others.
   
 <h5><font color="#EC5E5E" size="3">-Observed and stationary  <h5><font color="#EC5E5E" size="3">-cross-sectional and period
 prevalence in state (2=disable) with confidence interval</font>:<b>  prevalence in state (2=disable) with confidence interval</font>:<b>
 </b><a href="vbiaspar21.htm"><b>vbiaspar21.gif</b></a></h5>  </b><a href="biaspar/vbiaspar21.htm"><b>biaspar/vbiaspar21.png</b></a></h5>
   
 <p>This graph exhibits the stationary prevalence in state (2)  <p>This graph exhibits the period prevalence in state (2) with the
 with the confidence interval in red. The green curve is the  confidence interval in red. The green curve is the observed prevalence
 observed prevalence (or proportion of individuals in state (2)).  (or proportion of individuals in state (2)).  Without discussing the
 Without discussing the results (it is not the purpose here), we  results (it is not the purpose here), we observe that the green curve
 observe that the green curve is rather below the stationary  is rather below the period prevalence. It the data where not biased by
 prevalence. It suggests an increase of the disability prevalence  the non inclusion of people living in institutions we would have
 in the future.</p>  concluded that the prevalence of disability will increase in the
   future (see the main publication if you are interested in real data
   and results which are opposite).</p>
   
 <p><img src="vbiaspar21.gif" width="400" height="300"></p>  <p><img src="biaspar/vbiaspar21.png" width="400" height="300"></p>
   
 <h5><font color="#EC5E5E" size="3"><b>-Convergence to the  <h5><font color="#EC5E5E" size="3"><b>-Convergence to the
 stationary prevalence of disability</b></font><b>: </b><a  period prevalence of disability</b></font><b>: </b><a
 href="pbiaspar11.gif"><b>pbiaspar11.gif</b></a><br>  href="biaspar/pbiaspar11.png"><b>biaspar/pbiaspar11.png</b></a><br>
 <img src="pbiaspar11.gif" width="400" height="300"> </h5>  <img src="biaspar/pbiaspar11.png" width="400" height="300"> </h5>
   
 <p>This graph plots the conditional transition probabilities from  <p>This graph plots the conditional transition probabilities from
 an initial state (1=healthy in red at the bottom, or 2=disable in  an initial state (1=healthy in red at the bottom, or 2=disable in
Line 895  green on top) at age <em>x </em>to the f Line 1053  green on top) at age <em>x </em>to the f
 age <em>x+h. </em>Conditional means at the condition to be alive  age <em>x+h. </em>Conditional means at the condition to be alive
 at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The  at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The
 curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>  curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>
 + <em>hP22x) </em>converge with <em>h, </em>to the <em>stationary  + <em>hP22x) </em>converge with <em>h, </em>to the <em>period
 prevalence of disability</em>. In order to get the stationary  prevalence of disability</em>. In order to get the period
 prevalence at age 70 we should start the process at an earlier  prevalence at age 70 we should start the process at an earlier
 age, i.e.50. If the disability state is defined by severe  age, i.e.50. If the disability state is defined by severe
 disability criteria with only a few chance to recover, then the  disability criteria with only a few chance to recover, then the
Line 905  probably longer. But we don't have exper Line 1063  probably longer. But we don't have exper
   
 <h5><font color="#EC5E5E" size="3"><b>- Life expectancies by age  <h5><font color="#EC5E5E" size="3"><b>- Life expectancies by age
 and initial health status with standard deviation</b></font><b>: </b><a  and initial health status with standard deviation</b></font><b>: </b><a
 href="erbiaspar.txt"><b>erbiaspar.txt</b></a></h5>  href="biaspar/erbiaspar.txt"><b>biaspar/erbiaspar.txt</b></a></h5>
   
 <pre># Health expectancies  <pre># Health expectancies
 # Age 1-1 (SE) 1-2 (SE) 2-1 (SE) 2-2 (SE)  # Age 1-1 (SE) 1-2 (SE) 2-1 (SE) 2-2 (SE)
 70 10.4171 (0.1517)    3.0433 (0.4733)    5.6641 (0.1121)    5.6907 (0.3366)   70   11.0180 (0.1277)    3.1950 (0.3635)    4.6500 (0.0871)    4.4807 (0.2187)
 71 9.9325 (0.1409)    3.0495 (0.4234)    5.2627 (0.1107)    5.6384 (0.3129)   71   10.4786 (0.1184)    3.2093 (0.3212)    4.3384 (0.0875)    4.4820 (0.2076)
 72 9.4603 (0.1319)    3.0540 (0.3770)    4.8810 (0.1099)    5.5811 (0.2907)   72    9.9551 (0.1103)    3.2236 (0.2827)    4.0426 (0.0885)    4.4827 (0.1966)
 73 9.0009 (0.1246)    3.0565 (0.3345)    4.5188 (0.1098)    5.5187 (0.2702)   73    9.4476 (0.1035)    3.2379 (0.2478)    3.7621 (0.0899)    4.4825 (0.1858)
    74    8.9564 (0.0980)    3.2522 (0.2165)    3.4966 (0.0920)    4.4815 (0.1754)
    75    8.4815 (0.0937)    3.2665 (0.1887)    3.2457 (0.0946)    4.4798 (0.1656)
    76    8.0230 (0.0905)    3.2806 (0.1645)    3.0090 (0.0979)    4.4772 (0.1565)
    77    7.5810 (0.0884)    3.2946 (0.1438)    2.7860 (0.1017)    4.4738 (0.1484)
    78    7.1554 (0.0871)    3.3084 (0.1264)    2.5763 (0.1062)    4.4696 (0.1416)
    79    6.7464 (0.0867)    3.3220 (0.1124)    2.3794 (0.1112)    4.4646 (0.1364)
    80    6.3538 (0.0868)    3.3354 (0.1014)    2.1949 (0.1168)    4.4587 (0.1331)
    81    5.9775 (0.0873)    3.3484 (0.0933)    2.0222 (0.1230)    4.4520 (0.1320)
 </pre>  </pre>
   
 <pre>For example 70 10.4171 (0.1517) 3.0433 (0.4733) 5.6641 (0.1121) 5.6907 (0.3366) means:  <pre>For example  70  11.0180 (0.1277) 3.1950 (0.3635) 4.6500 (0.0871)  4.4807 (0.2187)
 e11=10.4171 e12=3.0433 e21=5.6641 e22=5.6907 </pre>  means
   e11=11.0180 e12=3.1950 e21=4.6500 e22=4.4807 </pre>
   
 <pre><img src="expbiaspar21.gif" width="400" height="300"><img  <pre><img src="biaspar/expbiaspar21.png" width="400" height="300"><img
 src="expbiaspar11.gif" width="400" height="300"></pre>  src="biaspar/expbiaspar11.png" width="400" height="300"></pre>
   
 <p>For example, life expectancy of a healthy individual at age 70  <p>For example, life expectancy of a healthy individual at age 70
 is 10.42 in the healthy state and 3.04 in the disability state  is 11.0 in the healthy state and 3.2 in the disability state
 (=13.46 years). If he was disable at age 70, his life expectancy  (total of 14.2 years). If he was disable at age 70, his life expectancy
 will be shorter, 5.66 in the healthy state and 5.69 in the  will be shorter, 4.65 years in the healthy state and 4.5 in the
 disability state (=11.35 years). The total life expectancy is a  disability state (=9.15 years). The total life expectancy is a
 weighted mean of both, 13.46 and 11.35; weight is the proportion  weighted mean of both, 14.2 and 9.15. The weight is the proportion
 of people disabled at age 70. In order to get a pure period index  of people disabled at age 70. In order to get a period index
 (i.e. based only on incidences) we use the <a  (i.e. based only on incidences) we use the <a
 href="#Stationary prevalence in each state">computed or  href="#Period prevalence in each state">stable or
 stationary prevalence</a> at age 70 (i.e. computed from  period prevalence</a> at age 70 (i.e. computed from
 incidences at earlier ages) instead of the <a  incidences at earlier ages) instead of the <a
 href="#Observed prevalence in each state">observed prevalence</a>  href="#cross-sectional prevalence in each state">cross-sectional prevalence</a>
 (for example at first exam) (<a href="#Health expectancies">see  (observed for example at first medical exam) (<a href="#Health expectancies">see
 below</a>).</p>  below</a>).</p>
   
 <h5><font color="#EC5E5E" size="3"><b>- Variances of life  <h5><font color="#EC5E5E" size="3"><b>- Variances of life
 expectancies by age and initial health status</b></font><b>: </b><a  expectancies by age and initial health status</b></font><b>: </b><a
 href="vrbiaspar.txt"><b>vrbiaspar.txt</b></a></h5>  href="biaspar/vrbiaspar.txt"><b>biaspar/vrbiaspar.txt</b></a></h5>
   
 <p>For example, the covariances of life expectancies Cov(ei,ej)  <p>For example, the covariances of life expectancies Cov(ei,ej)
 at age 50 are (line 3) </p>  at age 50 are (line 3) </p>
Line 946  at age 50 are (line 3) </p> Line 1113  at age 50 are (line 3) </p>
 <pre>   Cov(e1,e1)=0.4776  Cov(e1,e2)=0.0488=Cov(e2,e1)  Cov(e2,e2)=0.0424</pre>  <pre>   Cov(e1,e1)=0.4776  Cov(e1,e2)=0.0488=Cov(e2,e1)  Cov(e2,e2)=0.0424</pre>
   
 <h5><font color="#EC5E5E" size="3"><b>-Variances of one-step  <h5><font color="#EC5E5E" size="3"><b>-Variances of one-step
 probabilities </b></font><b>: </b><a href="probrbiaspar.txt"><b>probrbiaspar.txt</b></a></h5>  probabilities </b></font><b>: </b><a href="biaspar/probrbiaspar.txt"><b>biaspar/probrbiaspar.txt</b></a></h5>
   
 <p>For example, at age 65</p>  <p>For example, at age 65</p>
   
Line 956  probabilities </b></font><b>: </b><a hre Line 1123  probabilities </b></font><b>: </b><a hre
 name="Health expectancies"><font color="#EC5E5E" size="3"><b>Health  name="Health expectancies"><font color="#EC5E5E" size="3"><b>Health
 expectancies</b></font></a><font color="#EC5E5E" size="3"><b>  expectancies</b></font></a><font color="#EC5E5E" size="3"><b>
 with standard errors in parentheses</b></font><b>: </b><a  with standard errors in parentheses</b></font><b>: </b><a
 href="trbiaspar.txt"><font face="Courier New"><b>trbiaspar.txt</b></font></a></h5>  href="biaspar/trbiaspar.txt"><font face="Courier New"><b>biaspar/trbiaspar.txt</b></font></a></h5>
   
 <pre>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </pre>  <pre>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </pre>
   
 <pre>70 13.26 (0.22) 9.95 (0.20) 3.30 (0.14) </pre>  <pre>70 13.26 (0.22) 9.95 (0.20) 3.30 (0.14) </pre>
   
 <p>Thus, at age 70 the total life expectancy, e..=13.26 years is  <p>Thus, at age 70 the total life expectancy, e..=13.26 years is
 the weighted mean of e1.=13.46 and e2.=11.35 by the stationary  the weighted mean of e1.=13.46 and e2.=11.35 by the period
 prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in  prevalences at age 70 which are 0.90134 in state 1 and 0.09866 in
 state 2, respectively (the sum is equal to one). e.1=9.95 is the  state 2 respectively (the sum is equal to one). e.1=9.95 is the
 Disability-free life expectancy at age 70 (it is again a weighted  Disability-free life expectancy at age 70 (it is again a weighted
 mean of e11 and e21). e.2=3.30 is also the life expectancy at age  mean of e11 and e21). e.2=3.30 is also the life expectancy at age
 70 to be spent in the disability state.</p>  70 to be spent in the disability state.</p>
   
 <h5><font color="#EC5E5E" size="3"><b>-Total life expectancy by  <h5><font color="#EC5E5E" size="3"><b>-Total life expectancy by
 age and health expectancies in states (1=healthy) and (2=disable)</b></font><b>:  age and health expectancies in states (1=healthy) and (2=disable)</b></font><b>:
 </b><a href="ebiaspar1.gif"><b>ebiaspar1.gif</b></a></h5>  </b><a href="biaspar/ebiaspar1.png"><b>biaspar/ebiaspar1.png</b></a></h5>
   
 <p>This figure represents the health expectancies and the total  <p>This figure represents the health expectancies and the total
 life expectancy with the confident interval in dashed curve. </p>  life expectancy with a confidence interval (dashed line). </p>
   
 <pre>        <img src="ebiaspar1.gif" width="400" height="300"></pre>  <pre>        <img src="biaspar/ebiaspar1.png" width="400" height="300"></pre>
   
 <p>Standard deviations (obtained from the information matrix of  <p>Standard deviations (obtained from the information matrix of
 the model) of these quantities are very useful.  the model) of these quantities are very useful.
Line 992  but the standard deviation of the estima Line 1159  but the standard deviation of the estima
   
 <p>Our health expectancies estimates vary according to the sample  <p>Our health expectancies estimates vary according to the sample
 size (and the standard deviations give confidence intervals of  size (and the standard deviations give confidence intervals of
 the estimate) but also according to the model fitted. Let us  the estimates) but also according to the model fitted. Let us
 explain it in more details.</p>  explain it in more details.</p>
   
 <p>Choosing a model means ar least two kind of choices. First we  <p>Choosing a model means at least two kind of choices. At first we
 have to decide the number of disability states. Second we have to  have to decide the number of disability states. And at second we have to
 design, within the logit model family, the model: variables,  design, within the logit model family, the model itself: variables,
 covariables, confonding factors etc. to be included.</p>  covariables, confounding factors etc. to be included.</p>
   
 <p>More disability states we have, better is our demographical  <p>More disability states we have, better is our demographical
 approach of the disability process, but smaller are the number of  approach of the disability process, but smaller are the number of
Line 1016  than the mortality from the healthy stat Line 1183  than the mortality from the healthy stat
 heterogeneity in the risk of dying. The total mortality at each  heterogeneity in the risk of dying. The total mortality at each
 age is the weighted mean of the mortality in each state by the  age is the weighted mean of the mortality in each state by the
 prevalence in each state. Therefore if the proportion of people  prevalence in each state. Therefore if the proportion of people
 at each age and in each state is different from the stationary  at each age and in each state is different from the period
 equilibrium, there is no reason to find the same total mortality  equilibrium, there is no reason to find the same total mortality
 at a particular age. Life expectancy, even if it is a very useful  at a particular age. Life expectancy, even if it is a very useful
 tool, has a very strong hypothesis of homogeneity of the  tool, has a very strong hypothesis of homogeneity of the
Line 1026  disability state in order to maximise th Line 1193  disability state in order to maximise th
 latter. But the differential in mortality complexifies the  latter. But the differential in mortality complexifies the
 measurement.</p>  measurement.</p>
   
 <p>Incidences of disability or recovery are not affected by the  <p>Incidences of disability or recovery are not affected by the number
 number of states if these states are independant. But incidences  of states if these states are independent. But incidences estimates
 estimates are dependant on the specification of the model. More  are dependent on the specification of the model. More covariates we
 covariates we added in the logit model better is the model, but  added in the logit model better is the model, but some covariates are
 some covariates are not well measured, some are confounding  not well measured, some are confounding factors like in any
 factors like in any statistical model. The procedure to &quot;fit  statistical model. The procedure to &quot;fit the best model' is
 the best model' is similar to logistic regression which itself is  similar to logistic regression which itself is similar to regression
 similar to regression analysis. We haven't yet been sofar because  analysis. We haven't yet been sofar because we also have a severe
 we also have a severe limitation which is the speed of the  limitation which is the speed of the convergence. On a Pentium III,
 convergence. On a Pentium III, 500 MHz, even the simplest model,  500 MHz, even the simplest model, estimated by month on 8,000 people
 estimated by month on 8,000 people may take 4 hours to converge.  may take 4 hours to converge.  Also, the IMaCh program is not a
 Also, the program is not yet a statistical package, which permits  statistical package, and does not allow sophisticated design
 a simple writing of the variables and the model to take into  variables. If you need sophisticated design variable you have to them
 account in the maximisation. The actual program allows only to  your self and and add them as ordinary variables. IMaCX allows up to 8
 add simple variables like age+sex or age+sex+ age*sex but will  variables. The current version of this program allows only to add
 never be general enough. But what is to remember, is that  simple variables like age+sex or age+sex+ age*sex but will never be
 incidences or probability of change from one state to another is  general enough. But what is to remember, is that incidences or
 affected by the variables specified into the model.</p>  probability of change from one state to another is affected by the
   variables specified into the model.</p>
   
 <p>Also, the age range of the people interviewed has a link with  <p>Also, the age range of the people interviewed is linked
 the age range of the life expectancy which can be estimated by  the age range of the life expectancy which can be estimated by
 extrapolation. If your sample ranges from age 70 to 95, you can  extrapolation. If your sample ranges from age 70 to 95, you can
 clearly estimate a life expectancy at age 70 and trust your  clearly estimate a life expectancy at age 70 and trust your
 confidence interval which is mostly based on your sample size,  confidence interval because it is mostly based on your sample size,
 but if you want to estimate the life expectancy at age 50, you  but if you want to estimate the life expectancy at age 50, you
 should rely in your model, but fitting a logistic model on a age  should rely in the design of your model. Fitting a logistic model on a age
 range of 70-95 and estimating probabilties of transition out of  range of 70 to 95 and estimating probabilties of transition out of
 this age range, say at age 50 is very dangerous. At least you  this age range, say at age 50, is very dangerous. At least you
 should remember that the confidence interval given by the  should remember that the confidence interval given by the
 standard deviation of the health expectancies, are under the  standard deviation of the health expectancies, are under the
 strong assumption that your model is the 'true model', which is  strong assumption that your model is the 'true model', which is
 probably not the case.</p>  probably not the case outside the age range of your sample.</p>
   
 <h5><font color="#EC5E5E" size="3"><b>- Copy of the parameter  <h5><font color="#EC5E5E" size="3"><b>- Copy of the parameter
 file</b></font><b>: </b><a href="orbiaspar.txt"><b>orbiaspar.txt</b></a></h5>  file</b></font><b>: </b><a href="orbiaspar.txt"><b>orbiaspar.txt</b></a></h5>
Line 1066  file</b></font><b>: </b><a href="orbiasp Line 1234  file</b></font><b>: </b><a href="orbiasp
 program while saving the old output files. </p>  program while saving the old output files. </p>
   
 <h5><font color="#EC5E5E" size="3"><b>- Prevalence forecasting</b></font><b>:  <h5><font color="#EC5E5E" size="3"><b>- Prevalence forecasting</b></font><b>:
 </b><a href="frbiaspar.txt"><b>frbiaspar.txt</b></a></h5>  </b><a href="biaspar/frbiaspar.txt"><b>biaspar/frbiaspar.txt</b></a></h5>
   
 <p  <p>
 style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">First,  
   First,
 we have estimated the observed prevalence between 1/1/1984 and  we have estimated the observed prevalence between 1/1/1984 and
 1/6/1988. The mean date of interview (weighed average of the  1/6/1988 (June, European syntax of dates). The mean date of all interviews (weighted average of the
 interviews performed between1/1/1984 and 1/6/1988) is estimated  interviews performed between 1/1/1984 and 1/6/1988) is estimated
 to be 13/9/1985, as written on the top on the file. Then we  to be 13/9/1985, as written on the top on the file. Then we
 forecast the probability to be in each state. </p>  forecast the probability to be in each state. </p>
   
 <p  <p>
 style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">Example,  For example on 1/1/1989 : </p>
 at date 1/1/1989 : </p>  
   
 <pre class="MsoNormal"># StartingAge FinalAge P.1 P.2 P.3  <pre class="MsoNormal"># StartingAge FinalAge P.1 P.2 P.3
 # Forecasting at date 1/1/1989  # Forecasting at date 1/1/1989
   73 0.807 0.078 0.115</pre>    73 0.807 0.078 0.115</pre>
   
 <p  <p>
 style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">Since  
 the minimum age is 70 on the 13/9/1985, the youngest forecasted  Since the minimum age is 70 on the 13/9/1985, the youngest forecasted
 age is 73. This means that at age a person aged 70 at 13/9/1989  age is 73. This means that at age a person aged 70 at 13/9/1989 has a
 has a probability to enter state1 of 0.807 at age 73 on 1/1/1989.  probability to enter state1 of 0.807 at age 73 on 1/1/1989.
 Similarly, the probability to be in state 2 is 0.078 and the  Similarly, the probability to be in state 2 is 0.078 and the
 probability to die is 0.115. Then, on the 1/1/1989, the  probability to die is 0.115. Then, on the 1/1/1989, the prevalence of
 prevalence of disability at age 73 is estimated to be 0.088.</p>  disability at age 73 is estimated to be 0.088.</p>
   
 <h5><font color="#EC5E5E" size="3"><b>- Population forecasting</b></font><b>:  <h5><font color="#EC5E5E" size="3"><b>- Population forecasting</b></font><b>:
 </b><a href="poprbiaspar.txt"><b>poprbiaspar.txt</b></a></h5>  </b><a href="biaspar/poprbiaspar.txt"><b>biaspar/poprbiaspar.txt</b></a></h5>
   
 <pre># Age P.1 P.2 P.3 [Population]  <pre># Age P.1 P.2 P.3 [Population]
 # Forecasting at date 1/1/1989  # Forecasting at date 1/1/1989
Line 1118  are in state 2. One year latter, 512892 Line 1286  are in state 2. One year latter, 512892
   
 <p>Since you know how to run the program, it is time to test it  <p>Since you know how to run the program, it is time to test it
 on your own computer. Try for example on a parameter file named <a  on your own computer. Try for example on a parameter file named <a
 href="..\mytry\imachpar.imach">imachpar.imach</a> which is a copy  href="imachpar.imach">imachpar.imach</a> which is a copy
 of <font size="2" face="Courier New">mypar.imach</font> included  of <font size="2" face="Courier New">mypar.imach</font> included
 in the subdirectory of imach, <font size="2" face="Courier New">mytry</font>.  in the subdirectory of imach, <font size="2" face="Courier New">mytry</font>.
 Edit it to change the name of the data file to <font size="2"  Edit it and change the name of the data file to <font size="2"
 face="Courier New">..\data\mydata.txt</font> if you don't want to  face="Courier New">mydata.txt</font> if you don't want to
 copy it on the same directory. The file <font face="Courier New">mydata.txt</font>  copy it on the same directory. The file <font face="Courier New">mydata.txt</font>
 is a smaller file of 3,000 people but still with 4 waves. </p>  is a smaller file of 3,000 people but still with 4 waves. </p>
   
 <p>Click on the imach.exe icon to open a window. Answer to the  <p>Right click on the .imach file and a window will popup with the
 question:'<strong>Enter the parameter file name:'</strong></p>  string '<strong>Enter the parameter file name:'</strong></p>
   
 <table border="1">  <table border="1">
     <tr>      <tr>
         <td width="100%"><strong>IMACH, Version 0.8a</strong><p><strong>Enter          <td width="100%"><strong>IMACH, Version 0.97b</strong><p><strong>Enter
         the parameter file name: ..\mytry\imachpar.imach</strong></p>          the parameter file name: imachpar.imach</strong></p>
         </td>          </td>
     </tr>      </tr>
 </table>  </table>
Line 1146  size="2" face="Courier New">mytry</font> Line 1314  size="2" face="Courier New">mytry</font>
   
 <ul>  <ul>
     <li><pre><u>Output on the screen</u> The output screen looks like <a      <li><pre><u>Output on the screen</u> The output screen looks like <a
 href="imachrun.LOG">this Log file</a>  href="biaspar.log">biaspar.log</a>
 #  #
   title=MLE datafile=mydaiata.txt lastobs=3000 firstpass=1 lastpass=3
 title=MLE datafile=..\data\mydata.txt lastobs=3000 firstpass=1 lastpass=3  
 ftol=1.000000e-008 stepm=24 ncovcol=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>  ftol=1.000000e-008 stepm=24 ncovcol=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>
     </li>      </li>
     <li><pre>Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92      <li><pre>Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92
Line 1163  Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2] Line 1330  Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]
 Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 </pre>  Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 </pre>
     </li>      </li>
 </ul>  </ul>
   It includes some warnings or errors which are very important for
   you. Be careful with such warnings because your results may be biased
   if, for example, you have people who accepted to be interviewed at
   first pass but never after. Or if you don't have the exact month of
   death. In such cases IMaCh doesn't take any initiative, it does only
   warn you. It is up to you to decide what to do with these
   people. Excluding them is usually a wrong decision. It is better to
   decide that the month of death is at the mid-interval between the last
   two waves for example.<p>
   
   If you survey suffers from severe attrition, you have to analyse the
   characteristics of the lost people and overweight people with same
   characteristics for example.
   <p>
   By default, IMaCH warns and excludes these problematic people, but you
   have to be careful with such results.
   
 <p>&nbsp;</p>  <p>&nbsp;</p>
   
Line 1237  End of Imach Line 1420  End of Imach
 </ul>  </ul>
   
 <p><font size="3">Once the running is finished, the program  <p><font size="3">Once the running is finished, the program
 requires a caracter:</font></p>  requires a character:</font></p>
   
 <table border="1">  <table border="1">
     <tr>      <tr>
Line 1246  requires a caracter:</font></p> Line 1429  requires a caracter:</font></p>
     </tr>      </tr>
 </table>  </table>
   
   In order to have an idea of the time needed to reach convergence,
   IMaCh gives an estimation if the convergence needs 10, 20 or 30
   iterations. It might be useful.
   
 <p><font size="3">First you should enter <strong>e </strong>to  <p><font size="3">First you should enter <strong>e </strong>to
 edit the master file mypar.htm. </font></p>  edit the master file mypar.htm. </font></p>
   
Line 1254  edit the master file mypar.htm. </font>< Line 1441  edit the master file mypar.htm. </font><
         <br>          <br>
         - Copy of the parameter file: <a href="ormypar.txt">ormypar.txt</a><br>          - Copy of the parameter file: <a href="ormypar.txt">ormypar.txt</a><br>
         - Gnuplot file name: <a href="mypar.gp.txt">mypar.gp.txt</a><br>          - Gnuplot file name: <a href="mypar.gp.txt">mypar.gp.txt</a><br>
         - Observed prevalence in each state: <a          - Cross-sectional prevalence in each state: <a
         href="prmypar.txt">prmypar.txt</a> <br>          href="prmypar.txt">prmypar.txt</a> <br>
         - Stationary prevalence in each state: <a          - Period prevalence in each state: <a
         href="plrmypar.txt">plrmypar.txt</a> <br>          href="plrmypar.txt">plrmypar.txt</a> <br>
         - Transition probabilities: <a href="pijrmypar.txt">pijrmypar.txt</a><br>          - Transition probabilities: <a href="pijrmypar.txt">pijrmypar.txt</a><br>
         - Life expectancies by age and initial health status          - Life expectancies by age and initial health status
Line 1270  edit the master file mypar.htm. </font>< Line 1457  edit the master file mypar.htm. </font><
         health status (estepm=24 months): <a href="vrmypar.txt">vrmypar.txt</a><br>          health status (estepm=24 months): <a href="vrmypar.txt">vrmypar.txt</a><br>
         - Health expectancies with their variances: <a          - Health expectancies with their variances: <a
         href="trmypar.txt">trmypar.txt</a> <br>          href="trmypar.txt">trmypar.txt</a> <br>
         - Standard deviation of stationary prevalences: <a          - Standard deviation of period prevalences: <a
         href="vplrmypar.txt">vplrmypar.txt</a> <br>          href="vplrmypar.txt">vplrmypar.txt</a> <br>
         No population forecast: popforecast = 0 (instead of 1) or          No population forecast: popforecast = 0 (instead of 1) or
         stepm = 24 (instead of 1) or model=. (instead of .)<br>          stepm = 24 (instead of 1) or model=. (instead of .)<br>
Line 1281  edit the master file mypar.htm. </font>< Line 1468  edit the master file mypar.htm. </font><
         -<a href="../mytry/pemypar1.gif">One-step transition          -<a href="../mytry/pemypar1.gif">One-step transition
         probabilities</a><br>          probabilities</a><br>
         -<a href="../mytry/pmypar11.gif">Convergence to the          -<a href="../mytry/pmypar11.gif">Convergence to the
         stationary prevalence</a><br>          period prevalence</a><br>
         -<a href="..\mytry\vmypar11.gif">Observed and stationary          -<a href="..\mytry\vmypar11.gif">Cross-sectional and period
         prevalence in state (1) with the confident interval</a> <br>          prevalence in state (1) with the confident interval</a> <br>
         -<a href="..\mytry\vmypar21.gif">Observed and stationary          -<a href="..\mytry\vmypar21.gif">Cross-sectional and period
         prevalence in state (2) with the confident interval</a> <br>          prevalence in state (2) with the confident interval</a> <br>
         -<a href="..\mytry\expmypar11.gif">Health life          -<a href="..\mytry\expmypar11.gif">Health life
         expectancies by age and initial health state (1)</a> <br>          expectancies by age and initial health state (1)</a> <br>
Line 1304  simple justification (name, email, insti Line 1491  simple justification (name, email, insti
 href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</a> and <a  href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</a> and <a
 href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</a> .</p>  href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</a> .</p>
   
 <p>Latest version (0.8a of May 2002) can be accessed at <a  <p>Latest version (0.97b of June 2004) can be accessed at <a
 href="http://euroreves.ined.fr/imach">http://euroreves.ined.fr/imach</a><br>  href="http://euroreves.ined.fr/imach">http://euroreves.ined.fr/imach</a><br>
 </p>  </p>
 </body>  </body>

Removed from v.1.1  
changed lines
  Added in v.1.2


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>