Diff for /imach/html/doc/imach.htm between versions 1.1 and 1.5

version 1.1, 2004/06/16 12:05:30 version 1.5, 2005/06/10 08:54:06
Line 1 Line 1
 <!-- $Id$ --!>  <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
 <html>  <!-- saved from url=(0044)http://euroreves.ined.fr/imach/doc/imach.htm -->
   <!-- $Id$ --!><HTML><HEAD><TITLE>Computing Health Expectancies using IMaCh</TITLE>
 <head>  <META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
 <meta http-equiv="Content-Type"  <META content="MSHTML 5.00.3315.2870" name=GENERATOR></HEAD>
 content="text/html; charset=iso-8859-1">  <BODY bgColor=#ffffff>
 <meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">  <HR color=#ec5e5e SIZE=3>
 <title>Computing Health Expectancies using IMaCh</title>  
 <!-- Changed by: Agnes Lievre, 12-Oct-2000 -->  <H1 align=center><FONT color=#00006a>Computing Health Expectancies using
 <html>  IMaCh</FONT></H1>
   <H1 align=center><FONT color=#00006a size=5>(a Maximum Likelihood Computer
 <head>  Program using Interpolation of Markov Chains)</FONT></H1>
 <meta http-equiv="Content-Type"  <P align=center>&nbsp;</P>
 content="text/html; charset=iso-8859-1">  <P align=center><A href="http://www.ined.fr/"><IMG border=0 height=76
 <title>IMaCh</title>  src="Computing Health Expectancies using IMaCh_fichiers/logo-ined.gif"
 </head>  width=151></A><IMG height=75
   src="Computing Health Expectancies using IMaCh_fichiers/euroreves2.gif"
 <body bgcolor="#FFFFFF">  width=151></P>
   <H3 align=center><A href="http://www.ined.fr/"><FONT
 <hr size="3" color="#EC5E5E">  color=#00006a>INED</FONT></A><FONT color=#00006a> and </FONT><A
   href="http://euroreves.ined.fr/"><FONT color=#00006a>EUROREVES</FONT></A></H3>
 <h1 align="center"><font color="#00006A">Computing Health  <P align=center><FONT color=#00006a size=4><STRONG>Version 0.97, June
 Expectancies using IMaCh</font></h1>  2004</STRONG></FONT></P>
   <HR color=#ec5e5e SIZE=3>
 <h1 align="center"><font color="#00006A" size="5">(a Maximum  
 Likelihood Computer Program using Interpolation of Markov Chains)</font></h1>  <P align=center><FONT color=#00006a><STRONG>Authors of the program:
   </STRONG></FONT><A href="http://sauvy.ined.fr/brouard"><FONT
 <p align="center">&nbsp;</p>  color=#00006a><STRONG>Nicolas Brouard</STRONG></FONT></A><FONT
   color=#00006a><STRONG>, senior researcher at the </STRONG></FONT><A
 <p align="center"><a href="http://www.ined.fr/"><img  href="http://www.ined.fr/"><FONT color=#00006a><STRONG>Institut National
 src="logo-ined.gif" border="0" width="151" height="76"></a><img  d'Etudes Démographiques</STRONG></FONT></A><FONT color=#00006a><STRONG> (INED,
 src="euroreves2.gif" width="151" height="75"></p>  Paris) in the "Mortality, Health and Epidemiology" Research Unit
   </STRONG></FONT></P>
 <h3 align="center"><a href="http://www.ined.fr/"><font  <P align=center><FONT color=#00006a><STRONG>and Agnès Lièvre<BR
 color="#00006A">INED</font></a><font color="#00006A"> and </font><a  clear=left></STRONG></FONT></P>
 href="http://euroreves.ined.fr"><font color="#00006A">EUROREVES</font></a></h3>  <H4><FONT color=#00006a>Contribution to the mathematics: C. R. Heathcote
   </FONT><FONT color=#00006a size=2>(Australian National University,
 <p align="center"><font color="#00006A" size="4"><strong>Version  Canberra).</FONT></H4>
 0.8a, May 2002</strong></font></p>  <H4><FONT color=#00006a>Contact: Agnès Lièvre (</FONT><A
   href="mailto:lievre@ined.fr"><FONT
 <hr size="3" color="#EC5E5E">  color=#00006a><I>lievre@ined.fr</I></FONT></A><FONT color=#00006a>) </FONT></H4>
   <HR>
 <p align="center"><font color="#00006A"><strong>Authors of the  
 program: </strong></font><a href="http://sauvy.ined.fr/brouard"><font  <UL>
 color="#00006A"><strong>Nicolas Brouard</strong></font></a><font    <LI><A
 color="#00006A"><strong>, senior researcher at the </strong></font><a    href="http://euroreves.ined.fr/imach/doc/imach.htm#intro">Introduction</A>
 href="http://www.ined.fr"><font color="#00006A"><strong>Institut    <LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#data">On what kind
 National d'Etudes Démographiques</strong></font></a><font    of data can it be used?</A>
 color="#00006A"><strong> (INED, Paris) in the &quot;Mortality,    <LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#datafile">The data
 Health and Epidemiology&quot; Research Unit </strong></font></p>    file</A>
     <LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#biaspar">The
 <p align="center"><font color="#00006A"><strong>and Agnès    parameter file</A>
 Lièvre<br clear="left">    <LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#running">Running
 </strong></font></p>    Imach</A>
     <LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#output">Output files
 <h4><font color="#00006A">Contribution to the mathematics: C. R.    and graphs</A>
 Heathcote </font><font color="#00006A" size="2">(Australian    <LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#example">Exemple</A>
 National University, Canberra).</font></h4>    </LI></UL>
   <HR>
 <h4><font color="#00006A">Contact: Agnès Lièvre (</font><a  
 href="mailto:lievre@ined.fr"><font color="#00006A"><i>lievre@ined.fr</i></font></a><font  <H2><A name=intro><FONT color=#00006a>Introduction</FONT></A></H2>
 color="#00006A">) </font></h4>  <P>This program computes <B>Healthy Life Expectancies</B> from
   <B>cross-longitudinal data</B> using the methodology pioneered by Laditka and
 <hr>  Wolf (1). Within the family of Health Expectancies (HE), disability-free life
   expectancy (DFLE) is probably the most important index to monitor. In low
 <ul>  mortality countries, there is a fear that when mortality declines (and therefore total life expectancy improves), the increase will not be as great, leading to an <EM>Expansion of morbidity</EM>. Most of the data collected today,
     <li><a href="#intro">Introduction</a> </li>  in particular by the international <A href="http://www.reves.org/">REVES</A>
     <li><a href="#data">On what kind of data can it be used?</a></li>  network on Health Expectancy and the disability process, and most HE indices based on these data, are
     <li><a href="#datafile">The data file</a> </li>  <EM>cross-sectional</EM>. This means that the information collected comes from a
     <li><a href="#biaspar">The parameter file</a> </li>  single cross-sectional survey: people from a variety of ages (but often old people)
     <li><a href="#running">Running Imach</a> </li>  are surveyed on their health status at a single date. The proportion of people
     <li><a href="#output">Output files and graphs</a> </li>  disabled at each age can then be estimated at that date. This age-specific
     <li><a href="#example">Exemple</a> </li>  prevalence curve is used to distinguish, within the stationary population
 </ul>  (which, by definition, is the life table estimated from the vital statistics on
   mortality at the same date), the disabled population from the disability-free
 <hr>  population. Life expectancy (LE) (or total population divided by the yearly
   number of births or deaths of this stationary population) is then decomposed
 <h2><a name="intro"><font color="#00006A">Introduction</font></a></h2>  into disability-free life expectancy (DFLE) and disability life
   expectancy (DLE). This method of computing HE is usually called the Sullivan
 <p>This program computes <b>Healthy Life Expectancies</b> from <b>cross-longitudinal  method (after the author who first described it).</P>
 data</b> using the methodology pioneered by Laditka and Wolf (1).  <P>The age-specific proportions of people disabled (prevalence of disability) are
 Within the family of Health Expectancies (HE), Disability-free  dependent upon the historical flows from entering disability and recovering in the past. The age-specific forces (or incidence rates) of entering
 life expectancy (DFLE) is probably the most important index to  disability or recovering a good health, estimated over a recent period of time (as period forces of mortality), are reflecting current conditions and
 monitor. In low mortality countries, there is a fear that when  therefore can be used at each age to forecast the future of this cohort <EM>if
 mortality declines, the increase in DFLE is not proportionate to  nothing changes in the future</EM>, i.e to forecast the prevalence of disability of each cohort. Our finding (2) is that the period prevalence of disability
 the increase in total Life expectancy. This case is called the <em>Expansion  (computed from period incidences) is lower than the cross-sectional prevalence.
 of morbidity</em>. Most of the data collected today, in  For example if a country is improving its technology of prosthesis, the
 particular by the international <a href="http://www.reves.org">REVES</a>  incidence of recovering the ability to walk will be higher at each (old) age,
 network on Health expectancy, and most HE indices based on these  but the prevalence of disability will only slightly reflect an improvement because
 data, are <em>cross-sectional</em>. It means that the information  the prevalence is mostly affected by the history of the cohort and not by recent
 collected comes from a single cross-sectional survey: people from  period effects. To measure the period improvement we have to simulate the future
 various ages (but mostly old people) are surveyed on their health  of a cohort of new-borns entering or leaving the disability state or
 status at a single date. Proportion of people disabled at each  dying at each age according to the incidence rates measured today on different cohorts. The
 age, can then be measured at that date. This age-specific  proportion of people disabled at each age in this simulated cohort will be much
 prevalence curve is then used to distinguish, within the  lower that the proportions observed at each age in a cross-sectional survey.
 stationary population (which, by definition, is the life table  This new prevalence curve introduced in a life table will give a more realistic
 estimated from the vital statistics on mortality at the same  HE level than the Sullivan method which mostly reflects the history of health
 date), the disable population from the disability-free  conditions in a country.</P>
 population. Life expectancy (LE) (or total population divided by  <P>Therefore, the main question is how can we measure incidence rates from
 the yearly number of births or deaths of this stationary  cross-longitudinal surveys? This is the goal of the IMaCH program. From your
 population) is then decomposed into DFLE and DLE. This method of  data and using IMaCH you can estimate period HE as well as the Sullivan HE. In addition the standard errors of the HE are computed.</P>
 computing HE is usually called the Sullivan method (from the name  <P>A cross-longitudinal survey consists of a first survey ("cross") where
 of the author who first described it).</p>  individuals of different ages are interviewed about their health status or degree
   of disability. At least a second wave of interviews ("longitudinal") should
 <p>Age-specific proportions of people disable are very difficult  measure each individual new health status. Health expectancies are computed from
 to forecast because each proportion corresponds to historical  the transitions observed between waves (interviews) and are computed for each degree of
 conditions of the cohort and it is the result of the historical  severity of disability (number of health states). The more degrees of severity considered, the more
 flows from entering disability and recovering in the past until  time is necessary to reach the Maximum Likelihood of the parameters involved in
 today. The age-specific intensities (or incidence rates) of  the model. Considering only two states of disability (disabled and healthy) is
 entering disability or recovering a good health, are reflecting  generally enough but the computer program works also with more health
 actual conditions and therefore can be used at each age to  states.<BR><BR>The simplest model for the transition probabilities is the multinomial logistic model where
 forecast the future of this cohort. For example if a country is  <I>pij</I> is the probability to be observed in state <I>j</I> at the second
 improving its technology of prosthesis, the incidence of  wave conditional to be observed in state <EM>i</EM> at the first wave. Therefore
 recovering the ability to walk will be higher at each (old) age,  a simple model is: log<EM>(pij/pii)= aij + bij*age+ cij*sex,</EM> where
 but the prevalence of disability will only slightly reflect an  '<I>age</I>' is age and '<I>sex</I>' is a covariate. The advantage that this
 improve because the prevalence is mostly affected by the history  computer program claims, is that if the delay between waves is not
 of the cohort and not by recent period effects. To measure the  identical for each individual, or if some individual missed an interview, the
 period improvement we have to simulate the future of a cohort of  information is not rounded or lost, but taken into account using an
 new-borns entering or leaving at each age the disability state or  interpolation or extrapolation. <I>hPijx</I> is the probability to be observed
 dying according to the incidence rates measured today on  in state <I>i</I> at age <I>x+h</I> conditional on the observed state <I>i</I>
 different cohorts. The proportion of people disabled at each age  at age <I>x</I>. The delay '<I>h</I>' can be split into an exact number
 in this simulated cohort will be much lower (using the exemple of  (<I>nh*stepm</I>) of unobserved intermediate states. This elementary transition
 an improvement) that the proportions observed at each age in a  (by month or quarter, trimester, semester or year) is modeled as the above multinomial
 cross-sectional survey. This new prevalence curve introduced in a  logistic. The <I>hPx</I> matrix is simply the matrix product of <I>nh*stepm</I>
 life table will give a much more actual and realistic HE level  elementary matrices and the contribution of each individual to the likelihood is
 than the Sullivan method which mostly measured the History of  simply <I>hPijx</I>. <BR></P>
 health conditions in this country.</p>  <P>The program presented in this manual is a general program named
   <STRONG>IMaCh</STRONG> (for <STRONG>I</STRONG>nterpolated
 <p>Therefore, the main question is how to measure incidence rates  <STRONG>MA</STRONG>rkov <STRONG>CH</STRONG>ain), designed to analyse transitions from longitudinal surveys. The first step is the estimation of the set of the parameters of a model for the  
 from cross-longitudinal surveys? This is the goal of the IMaCH  transition probabilities between an initial state and a final state.
 program. From your data and using IMaCH you can estimate period  From there, the computer program produces indicators such as the observed and
 HE and not only Sullivan's HE. Also the standard errors of the HE  stationary prevalence, life expectancies and their variances both numerically and graphically. Our
 are computed.</p>  transition model consists of absorbing and non-absorbing states assuming the
   possibility of return across the non-absorbing states. The main advantage of
 <p>A cross-longitudinal survey consists in a first survey  this package, compared to other programs for the analysis of transition data
 (&quot;cross&quot;) where individuals from different ages are  (for example: Proc Catmod of SAS<SUP>®</SUP>) is that the whole individual
 interviewed on their health status or degree of disability. At  information is used even if an interview is missing, a state or a date is
 least a second wave of interviews (&quot;longitudinal&quot;)  unknown or when the delay between waves is not identical for each individual.
 should measure each new individual health status. Health  The program is dependent upon a set of parameters inputted by the user: selection of a sub-sample,
 expectancies are computed from the transitions observed between  number of absorbing and non-absorbing states, number of waves to be taken in account , a tolerance level for the
 waves and are computed for each degree of severity of disability  maximization function, the periodicity of the transitions (we can compute
 (number of life states). More degrees you consider, more time is  annual, quarterly or monthly transitions), covariates in the model. IMaCh works on
 necessary to reach the Maximum Likelihood of the parameters  Windows or on Unix platform.<BR></P>
 involved in the model. Considering only two states of disability  <HR>
 (disable and healthy) is generally enough but the computer  
 program works also with more health statuses.<br>  <P>(1) Laditka S. B. and Wolf, D. (1998), New Methods for Analyzing
 <br>  Active Life Expectancy. <I>Journal of Aging and Health</I>. Vol 10, No. 2. </P>
 The simplest model is the multinomial logistic model where <i>pij</i>  <P>(2) <A
 is the probability to be observed in state <i>j</i> at the second  href="http://taylorandfrancis.metapress.com/app/home/contribution.asp?wasp=1f99bwtvmk5yrb7hlhw3&amp;referrer=parent&amp;backto=issue,1,2;journal,2,5;linkingpublicationresults,1:300265,1">Lièvre
 wave conditional to be observed in state <em>i</em> at the first  A., Brouard N. and Heathcote Ch. (2003) Estimating Health Expectancies from
 wave. Therefore a simple model is: log<em>(pij/pii)= aij +  Cross-longitudinal surveys. <EM>Mathematical Population Studies</EM>.- 10(4),
 bij*age+ cij*sex,</em> where '<i>age</i>' is age and '<i>sex</i>'  pp. 211-248</A>
 is a covariate. The advantage that this computer program claims,  <HR>
 comes from that if the delay between waves is not identical for  
 each individual, or if some individual missed an interview, the  <H2><A name=data><FONT color=#00006a>What kind of data is required?</FONT></A></H2>
 information is not rounded or lost, but taken into account using  <P>The minimum data required for a transition model is the recording of a set of
 an interpolation or extrapolation. <i>hPijx</i> is the  individuals interviewed at a first date and interviewed once more. From the observations of an individual, we obtain a follow-up over
 probability to be observed in state <i>i</i> at age <i>x+h</i>  time of the occurrence of a specific event. In this documentation, the event is
 conditional to the observed state <i>i</i> at age <i>x</i>. The  related to health state, but the program can be applied to many
 delay '<i>h</i>' can be split into an exact number (<i>nh*stepm</i>)  longitudinal studies with different contexts. To build the data file
 of unobserved intermediate states. This elementary transition (by  as explained
 month or quarter trimester, semester or year) is modeled as a  in the next section, you must have the month and year of each interview and
 multinomial logistic. The <i>hPx</i> matrix is simply the matrix  the corresponding health state. In order to get age, date of birth (month
 product of <i>nh*stepm</i> elementary matrices and the  and year) are required (missing values are allowed for month). Date of death
 contribution of each individual to the likelihood is simply <i>hPijx</i>.  (month and year) is an important information also required if the individual is
 <br>  dead. Shorter steps (i.e. a month) will more closely take into account the
 </p>  survival time after the last interview.</P>
   <HR>
 <p>The program presented in this manual is a quite general  
 program named <strong>IMaCh</strong> (for <strong>I</strong>nterpolated  <H2><A name=datafile><FONT color=#00006a>The data file</FONT></A></H2>
 <strong>MA</strong>rkov <strong>CH</strong>ain), designed to  <P>In this example, 8,000 people have been interviewed in a cross-longitudinal
 analyse transition data from longitudinal surveys. The first step  survey of 4 waves (1984, 1986, 1988, 1990). Some people missed 1, 2 or 3
 is the parameters estimation of a transition probabilities model  interviews. Health states are healthy (1) and disabled (2). The survey is not a
 between an initial status and a final status. From there, the  real one but a simulation of the American Longitudinal Survey on Aging. The
 computer program produces some indicators such as observed and  disability state is defined as dependence in at least one of four ADLs (Activities
 stationary prevalence, life expectancies and their variances and  of daily living, like bathing, eating, walking). Therefore, even if the
 graphs. Our transition model consists in absorbing and  individuals interviewed in the sample are virtual, the information in
 non-absorbing states with the possibility of return across the  this sample is close to reality for the United States. Sex is not recorded
 non-absorbing states. The main advantage of this package,  is this sample. The LSOA survey is biased in the sense that people
 compared to other programs for the analysis of transition data  living in an institution were not included in the first interview in
 (For example: Proc Catmod of SAS<sup>®</sup>) is that the whole  1984. Thus the prevalence of disability observed in 1984 is lower than
 individual information is used even if an interview is missing, a  the true prevalence at old ages. However when people moved into an
 status or a date is unknown or when the delay between waves is  institution, they were interviewed there in 1986, 1988 and 1990. Thus
 not identical for each individual. The program can be executed  the incidences of disabilities are not biased. Cross-sectional
 according to parameters: selection of a sub-sample, number of  prevalences of disability at old ages are thus artificially increasing in 1986,
 absorbing and non-absorbing states, number of waves taken in  1988 and 1990 because of a greater proportion of the sample
 account (the user inputs the first and the last interview), a  institutionalized. Our article (Lièvre A., Brouard N. and Heathcote
 tolerance level for the maximization function, the periodicity of  Ch. (2003)) shows the opposite: the period prevalence based on the
 the transitions (we can compute annual, quarterly or monthly  incidences is lower at old  
 transitions), covariates in the model. It works on Windows or on  ages than the adjusted cross-sectional prevalence illustrating that
 Unix.<br>  there has been significant progress against disability.</P>
 </p>  <P>Each line of the data set (named <A
   href="http://euroreves.ined.fr/imach/doc/data1.txt">data1.txt</A> in this first
 <hr>  example) is an individual record. Fields are separated by blanks: </P>
   <UL>
 <p>(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), &quot;New    <LI><B>Index number</B>: positive number (field 1)
 Methods for Analyzing Active Life Expectancy&quot;. <i>Journal of    <LI><B>First covariate</B> positive number (field 2)
 Aging and Health</i>. Vol 10, No. 2. </p>    <LI><B>Second covariate</B> positive number (field 3)
     <LI><A name=Weight><B>Weight</B></A>: positive number (field 4) . In most
 <hr>    surveys individuals are weighted to account for stratification of the
     sample.
 <h2><a name="data"><font color="#00006A">On what kind of data can    <LI><B>Date of birth</B>: coded as mm/yyyy. Missing dates are coded as 99/9999
 it be used?</font></a></h2>    (field 5)
     <LI><B>Date of death</B>: coded as mm/yyyy. Missing dates are coded as 99/9999
 <p>The minimum data required for a transition model is the    (field 6)
 recording of a set of individuals interviewed at a first date and    <LI><B>Date of first interview</B>: coded as mm/yyyy. Missing dates are coded
 interviewed again at least one another time. From the    as 99/9999 (field 7)
 observations of an individual, we obtain a follow-up over time of    <LI><B>Status at first interview</B>: positive number. Missing values ar coded
 the occurrence of a specific event. In this documentation, the    -1. (field 8)
 event is related to health status at older ages, but the program    <LI><B>Date of second interview</B>: coded as mm/yyyy. Missing dates are coded
 can be applied on a lot of longitudinal studies in different    as 99/9999 (field 9)
 contexts. To build the data file explained into the next section,    <LI><STRONG>Status at second interview</STRONG> positive number. Missing
 you must have the month and year of each interview and the    values ar coded -1. (field 10)
 corresponding health status. But in order to get age, date of    <LI><B>Date of third interview</B>: coded as mm/yyyy. Missing dates are coded
 birth (month and year) is required (missing values is allowed for    as 99/9999 (field 11)
 month). Date of death (month and year) is an important    <LI><STRONG>Status at third interview</STRONG> positive number. Missing values
 information also required if the individual is dead. Shorter    ar coded -1. (field 12)
 steps (i.e. a month) will more closely take into account the    <LI><B>Date of fourth interview</B>: coded as mm/yyyy. Missing dates are coded
 survival time after the last interview.</p>    as 99/9999 (field 13)
     <LI><STRONG>Status at fourth interview</STRONG> positive number. Missing
 <hr>    values are coded -1. (field 14)
     <LI>etc </LI></UL>
 <h2><a name="datafile"><font color="#00006A">The data file</font></a></h2>  <P>&nbsp;</P>
   <P>If you do not wish to include information on weights or
 <p>In this example, 8,000 people have been interviewed in a  covariates, you must fill the column with a number (e.g. 1) since all
 cross-longitudinal survey of 4 waves (1984, 1986, 1988, 1990).  fields must be present.</P>
 Some people missed 1, 2 or 3 interviews. Health statuses are  <HR>
 healthy (1) and disable (2). The survey is not a real one. It is  
 a simulation of the American Longitudinal Survey on Aging. The  <H2><FONT color=#00006a>Your first example parameter file</FONT><A
 disability state is defined if the individual missed one of four  href="http://euroreves.ined.fr/imach"></A><A name=uio></A></H2>
 ADL (Activity of daily living, like bathing, eating, walking).  <H2><A name=biaspar></A>#Imach version 0.97b, June 2004, INED-EUROREVES </H2>
 Therefore, even is the individuals interviewed in the sample are  <P>This first line was a comment. Comments line start with a '#'.</P>
 virtual, the information brought with this sample is close to the  <H4><FONT color=#ff0000>First uncommented line</FONT></H4><PRE>title=1st_example datafile=data1.txt lastobs=8600 firstpass=1 lastpass=4</PRE>
 situation of the United States. Sex is not recorded is this  <UL>
 sample.</p>    <LI><B>title=</B> 1st_example is title of the run.
     <LI><B>datafile=</B> data1.txt is the name of the data set. Our example is a
 <p>Each line of the data set (named <a href="data1.txt">data1.txt</a>    six years follow-up survey. It consists of a baseline followed by 3
 in this first example) is an individual record which fields are: </p>    reinterviews.
     <LI><B>lastobs=</B> 8600 the program is able to run on a subsample where the
 <ul>    last observation number is lastobs. It can be set a bigger number than the
     <li><b>Index number</b>: positive number (field 1) </li>    real number of observations (e.g. 100000). In this example, maximisation will
     <li><b>First covariate</b> positive number (field 2) </li>    be done on the first 8600 records.
     <li><b>Second covariate</b> positive number (field 3) </li>    <LI><B>firstpass=1</B> , <B>lastpass=4 </B>If there are more than two interviews
     <li><a name="Weight"><b>Weight</b></a>: positive number    in the survey, the program can be run on selected transitions periods.
         (field 4) . In most surveys individuals are weighted    firstpass=1 means the first interview included in the calculation is the
         according to the stratification of the sample.</li>    baseline survey. lastpass=4 means that the last interview to be
     <li><b>Date of birth</b>: coded as mm/yyyy. Missing dates are    included will be by the 4th. </LI></UL>
         coded as 99/9999 (field 5) </li>  <P>&nbsp;</P>
     <li><b>Date of death</b>: coded as mm/yyyy. Missing dates are  <H4><A name=biaspar-2><FONT color=#ff0000>Second uncommented
         coded as 99/9999 (field 6) </li>  line</FONT></A></H4><PRE>ftol=1.e-08 stepm=1 ncovcol=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</PRE>
     <li><b>Date of first interview</b>: coded as mm/yyyy. Missing  <UL>
         dates are coded as 99/9999 (field 7) </li>    <LI><B>ftol=1e-8</B> Convergence tolerance on the function value in the
     <li><b>Status at first interview</b>: positive number.    maximisation of the likelihood. Choosing a correct value for ftol is
         Missing values ar coded -1. (field 8) </li>    difficult. 1e-8 is the correct value for a 32 bit computer.
     <li><b>Date of second interview</b>: coded as mm/yyyy.    <LI><B>stepm=1</B> The time unit in months for interpolation. Examples:
         Missing dates are coded as 99/9999 (field 9) </li>    <UL>
     <li><strong>Status at second interview</strong> positive      <LI>If stepm=1, the unit is a month
         number. Missing values ar coded -1. (field 10) </li>      <LI>If stepm=4, the unit is a trimester
     <li><b>Date of third interview</b>: coded as mm/yyyy. Missing      <LI>If stepm=12, the unit is a year
         dates are coded as 99/9999 (field 11) </li>      <LI>If stepm=24, the unit is two years
     <li><strong>Status at third interview</strong> positive      <LI>... </LI></UL>
         number. Missing values ar coded -1. (field 12) </li>    <LI><B>ncovcol=2</B> Number of covariate columns included in the datafile
     <li><b>Date of fourth interview</b>: coded as mm/yyyy.    before the column for the date of birth. You can include covariates
         Missing dates are coded as 99/9999 (field 13) </li>    that will not be used in the model as this number is not the number of covariates that will
     <li><strong>Status at fourth interview</strong> positive    be specified by the model. The 'model' syntax describes the covariates to be
         number. Missing values are coded -1. (field 14) </li>    taken into account during the run.
     <li>etc</li>    <LI><B>nlstate=2</B> Number of non-absorbing (alive) states. Here we have two
 </ul>    alive states: disability-free is coded 1 and disability is coded 2.
     <LI><B>ndeath=1</B> Number of absorbing states. The absorbing state death is
 <p>&nbsp;</p>    coded 3.
     <LI><B>maxwav=4</B> Number of waves in the datafile.
 <p>If your longitudinal survey do not include information about    <LI><A name=mle><B>mle</B></A><B>=1</B> Option for the Maximisation Likelihood
 weights or covariates, you must fill the column with a number    Estimation.
 (e.g. 1) because a missing field is not allowed.</p>    <UL>
       <LI>If mle=1 the program does the maximisation and the calculation of health
 <hr>      expectancies
       <LI>If mle=0 the program only does the calculation of the health
 <h2><font color="#00006A">Your first example parameter file</font><a      expectancies and other indices and graphs but without the maximization.
 href="http://euroreves.ined.fr/imach"></a><a name="uio"></a></h2>      There are also other possible values:
       <UL>
 <h2><a name="biaspar"></a>#Imach version 0.8a, May 2002,        <LI>If mle=-1 you get a template for the number of parameters
 INED-EUROREVES </h2>        and the size of the variance-covariance matrix. This is useful if the model is
         complex with many covariates.
 <p>This is a comment. Comments start with a '#'.</p>        <LI>If mle=-3 IMaCh computes the mortality but without any health status
         (May 2004)
 <h4><font color="#FF0000">First uncommented line</font></h4>        <LI>If mle=2 IMach likelihood corresponds to a linear interpolation
         <LI>If mle=3 IMach likelihood corresponds to an exponential
 <pre>title=1st_example datafile=data1.txt lastobs=8600 firstpass=1 lastpass=4</pre>        inter-extrapolation
         <LI>If mle=4 IMach likelihood corresponds to no inter-extrapolation, thus biasing the results.
 <ul>        <LI>If mle=5 IMach likelihood corresponds to no inter-extrapolation, and
     <li><b>title=</b> 1st_example is title of the run. </li>        before the correction of the Jackson's bug (avoid this). </LI></UL></LI></UL>
     <li><b>datafile=</b> data1.txt is the name of the data set.    <LI><B>weight=0</B> Provides the possibility of adding weights.
         Our example is a six years follow-up survey. It consists    <UL>
         in a baseline followed by 3 reinterviews. </li>      <LI>If weight=0 no weights are included
     <li><b>lastobs=</b> 8600 the program is able to run on a      <LI>If weight=1 the maximisation integrates the weights which are in field
         subsample where the last observation number is lastobs.      <A href="http://euroreves.ined.fr/imach/doc/imach.htm#Weight">4</A>
         It can be set a bigger number than the real number of    </LI></UL></LI></UL>
         observations (e.g. 100000). In this example, maximisation  <H4><FONT color=#ff0000>Covariates</FONT></H4>
         will be done on the 8600 first records. </li>  <P>Intercept and age are automatically included in the model. Additional
     <li><b>firstpass=1</b> , <b>lastpass=4 </b>In case of more  covariates can be included with the command: </P><PRE>model=<EM>list of covariates</EM></PRE>
         than two interviews in the survey, the program can be run  <UL>
         on selected transitions periods. firstpass=1 means the    <LI>if<STRONG> model=. </STRONG>then no covariates are included
         first interview included in the calculation is the    <LI>if <STRONG>model=V1</STRONG> the model includes the first covariate (field
         baseline survey. lastpass=4 means that the information    2)
         brought by the 4th interview is taken into account.</li>    <LI>if <STRONG>model=V2 </STRONG>the model includes the second covariate
 </ul>    (field 3)
     <LI>if <STRONG>model=V1+V2 </STRONG>the model includes the first and the
 <p>&nbsp;</p>    second covariate (fields 2 and 3)
     <LI>if <STRONG>model=V1*V2 </STRONG>the model includes the product of the
 <h4><a name="biaspar-2"><font color="#FF0000">Second uncommented    first and the second covariate (fields 2 and 3)
 line</font></a></h4>    <LI>if <STRONG>model=V1+V1*age</STRONG> the model includes the product
     covariate*age </LI></UL>
 <pre>ftol=1.e-08 stepm=1 ncovcol=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>  <P>In this example, we have two covariates in the data file (fields 2 and 3).
   The number of covariates included in the data file between the id and the date
 <ul>  of birth is ncovcol=2 (it was named ncov in version prior to 0.8). If you have 3
     <li><b>ftol=1e-8</b> Convergence tolerance on the function  covariates in the datafile (fields 2, 3 and 4), you will set ncovcol=3. Then you
         value in the maximisation of the likelihood. Choosing a  can run the programme with a new parametrisation taking into account the third
         correct value for ftol is difficult. 1e-8 is a correct  covariate. For example, <STRONG>model=V1+V3 </STRONG>estimates a model with the
         value for a 32 bits computer.</li>  first and third covariates. More complicated models can be used, but this will
     <li><b>stepm=1</b> Time unit in months for interpolation.  take more time to converge. With a simple model (no covariates), the programme
         Examples:<ul>  estimates 8 parameters. Adding covariates increases the number of parameters :
             <li>If stepm=1, the unit is a month </li>  12 for <STRONG>model=V1, </STRONG>16 for <STRONG>model=V1+V1*age </STRONG>and 20
             <li>If stepm=4, the unit is a trimester</li>  for <STRONG>model=V1+V2+V3.</STRONG></P>
             <li>If stepm=12, the unit is a year </li>  <H4><FONT color=#ff0000>Guess values for optimization</FONT><FONT color=#00006a>
             <li>If stepm=24, the unit is two years</li>  </FONT></H4>
             <li>... </li>  <P>You must write the initial guess values of the parameters for optimization.
         </ul>  The number of parameters, <EM>N</EM> depends on the number of absorbing states
     </li>  and non-absorbing states and on the number of covariates in the model (ncovmodel). <BR><EM>N</EM> is
     <li><b>ncovcol=2</b> Number of covariate columns in the  given by the formula <EM>N</EM>=(<EM>nlstate</EM> +
         datafile which precede the date of birth. Here you can  <EM>ndeath</EM>-1)*<EM>nlstate</EM>*<EM>ncovmodel</EM>&nbsp;. <BR><BR>Thus in
         put variables that won't necessary be used during the  the simple case with 2 covariates in the model(the model is log (pij/pii) = aij + bij * age
         run. It is not the number of covariates that will be  where intercept and age are the two covariates), and 2 health states (1 for
         specified by the model. The 'model' syntax describe the  disability-free and 2 for disability) and 1 absorbing state (3), you must enter
         covariates to take into account. </li>  8 initials values, a12, b12, a13, b13, a21, b21, a23, b23. You can start with
     <li><b>nlstate=2</b> Number of non-absorbing (alive) states.  zeros as in this example, but if you have a more precise set (for example from
         Here we have two alive states: disability-free is coded 1  an earlier run) you can enter it and it will speed up the convergence<BR>Each of the four
         and disability is coded 2. </li>  lines starts with indices "ij": <B>ij aij bij</B> </P>
     <li><b>ndeath=1</b> Number of absorbing states. The absorbing  <BLOCKQUOTE><PRE># Guess values of aij and bij in log (pij/pii) = aij + bij * age
         state death is coded 3. </li>  
     <li><b>maxwav=4</b> Number of waves in the datafile.</li>  
     <li><a name="mle"><b>mle</b></a><b>=1</b> Option for the  
         Maximisation Likelihood Estimation. <ul>  
             <li>If mle=1 the program does the maximisation and  
                 the calculation of health expectancies </li>  
             <li>If mle=0 the program only does the calculation of  
                 the health expectancies. </li>  
         </ul>  
     </li>  
     <li><b>weight=0</b> Possibility to add weights. <ul>  
             <li>If weight=0 no weights are included </li>  
             <li>If weight=1 the maximisation integrates the  
                 weights which are in field <a href="#Weight">4</a></li>  
         </ul>  
     </li>  
 </ul>  
   
 <h4><font color="#FF0000">Covariates</font></h4>  
   
 <p>Intercept and age are systematically included in the model.  
 Additional covariates can be included with the command: </p>  
   
 <pre>model=<em>list of covariates</em></pre>  
   
 <ul>  
     <li>if<strong> model=. </strong>then no covariates are  
         included</li>  
     <li>if <strong>model=V1</strong> the model includes the first  
         covariate (field 2)</li>  
     <li>if <strong>model=V2 </strong>the model includes the  
         second covariate (field 3)</li>  
     <li>if <strong>model=V1+V2 </strong>the model includes the  
         first and the second covariate (fields 2 and 3)</li>  
     <li>if <strong>model=V1*V2 </strong>the model includes the  
         product of the first and the second covariate (fields 2  
         and 3)</li>  
     <li>if <strong>model=V1+V1*age</strong> the model includes  
         the product covariate*age</li>  
 </ul>  
   
 <p>In this example, we have two covariates in the data file  
 (fields 2 and 3). The number of covariates included in the data  
 file between the id and the date of birth is ncovcol=2 (it was  
 named ncov in version prior to 0.8). If you have 3 covariates in  
 the datafile (fields 2, 3 and 4), you will set ncovcol=3. Then  
 you can run the programme with a new parametrisation taking into  
 account the third covariate. For example, <strong>model=V1+V3 </strong>estimates  
 a model with the first and third covariates. More complicated  
 models can be used, but it will takes more time to converge. With  
 a simple model (no covariates), the programme estimates 8  
 parameters. Adding covariates increases the number of parameters  
 : 12 for <strong>model=V1, </strong>16 for <strong>model=V1+V1*age  
 </strong>and 20 for <strong>model=V1+V2+V3.</strong></p>  
   
 <h4><font color="#FF0000">Guess values for optimization</font><font  
 color="#00006A"> </font></h4>  
   
 <p>You must write the initial guess values of the parameters for  
 optimization. The number of parameters, <em>N</em> depends on the  
 number of absorbing states and non-absorbing states and on the  
 number of covariates. <br>  
 <em>N</em> is given by the formula <em>N</em>=(<em>nlstate</em> +  
 <em>ndeath</em>-1)*<em>nlstate</em>*<em>ncovmodel</em>&nbsp;. <br>  
 <br>  
 Thus in the simple case with 2 covariates (the model is log  
 (pij/pii) = aij + bij * age where intercept and age are the two  
 covariates), and 2 health degrees (1 for disability-free and 2  
 for disability) and 1 absorbing state (3), you must enter 8  
 initials values, a12, b12, a13, b13, a21, b21, a23, b23. You can  
 start with zeros as in this example, but if you have a more  
 precise set (for example from an earlier run) you can enter it  
 and it will speed up them<br>  
 Each of the four lines starts with indices &quot;ij&quot;: <b>ij  
 aij bij</b> </p>  
   
 <blockquote>  
     <pre># Guess values of aij and bij in log (pij/pii) = aij + bij * age  
 12 -14.155633  0.110794  12 -14.155633  0.110794
 13  -7.925360  0.032091  13  -7.925360  0.032091
 21  -1.890135 -0.029473  21  -1.890135 -0.029473
 23  -6.234642  0.022315 </pre>  23  -6.234642  0.022315 </PRE></BLOCKQUOTE>
 </blockquote>  <P>or, to simplify (in most of cases it converges but there is no warranty!):
   </P>
 <p>or, to simplify (in most of cases it converges but there is no  <BLOCKQUOTE><PRE>12 0.0 0.0
 warranty!): </p>  
   
 <blockquote>  
     <pre>12 0.0 0.0  
 13 0.0 0.0  13 0.0 0.0
 21 0.0 0.0  21 0.0 0.0
 23 0.0 0.0</pre>  23 0.0 0.0</PRE></BLOCKQUOTE>
 </blockquote>  <P>In order to speed up the convergence you can make a first run with a large
   stepm i.e stepm=12 or 24 and then decrease the stepm until stepm=1 month. If
 <p>In order to speed up the convergence you can make a first run  newstepm is the new shorter stepm and stepm can be expressed as a multiple of
 with a large stepm i.e stepm=12 or 24 and then decrease the stepm  newstepm, like newstepm=n stepm, then the following approximation holds: </P><PRE>aij(stepm) = aij(n . stepm) - ln(n)
 until stepm=1 month. If newstepm is the new shorter stepm and  </PRE>
 stepm can be expressed as a multiple of newstepm, like newstepm=n  <P>and </P><PRE>bij(stepm) = bij(n . stepm) .</PRE>
 stepm, then the following approximation holds: </p>  <P>For example if you already ran with stepm=6 (a 6 months interval) and got:<BR></P><PRE># Parameters
   
 <pre>aij(stepm) = aij(n . stepm) - ln(n)  
 </pre>  
   
 <p>and </p>  
   
 <pre>bij(stepm) = bij(n . stepm) .</pre>  
   
 <p>For example if you already ran for a 6 months interval and  
 got:<br>  
 </p>  
   
 <pre># Parameters  
 12 -13.390179  0.126133  12 -13.390179  0.126133
 13  -7.493460  0.048069  13  -7.493460  0.048069
 21   0.575975 -0.041322  21   0.575975 -0.041322
 23  -4.748678  0.030626  23  -4.748678  0.030626
 </pre>  </PRE>
   <P>Then you now want to get the monthly estimates, you can guess the aij by
 <p>If you now want to get the monthly estimates, you can guess  subtracting ln(6)= 1.7917<BR>and running using<BR></P><PRE>12 -15.18193847  0.126133
 the aij by substracting ln(6)= 1,7917<br>  
 and running<br>  
 </p>  
   
 <pre>12 -15.18193847  0.126133  
 13 -9.285219469  0.048069  13 -9.285219469  0.048069
 21 -1.215784469 -0.041322  21 -1.215784469 -0.041322
 23 -6.540437469  0.030626  23 -6.540437469  0.030626
 </pre>  </PRE>
   <P>and get<BR></P><PRE>12 -15.029768 0.124347
 <p>and get<br>  
 </p>  
   
 <pre>12 -15.029768 0.124347  
 13 -8.472981 0.036599  13 -8.472981 0.036599
 21 -1.472527 -0.038394  21 -1.472527 -0.038394
 23 -6.553602 0.029856  23 -6.553602 0.029856
   
 which is closer to the results. The approximation is probably useful  <P>which is closer to the results. The approximation is probably useful
 only for very small intervals and we don't have enough experience to  only for very small intervals and we don't have enough experience to
 know if you will speed up the convergence or not.  know if you will speed up the convergence or not.<BR></P>
 </pre>  </PRE><PRE>         -ln(12)= -2.484
   
 <pre>         -ln(12)= -2.484  
  -ln(6/1)=-ln(6)= -1.791   -ln(6/1)=-ln(6)= -1.791
  -ln(3/1)=-ln(3)= -1.0986   -ln(3/1)=-ln(3)= -1.0986
 -ln(12/6)=-ln(2)= -0.693  -ln(12/6)=-ln(2)= -0.693
 </pre>  </PRE>In version 0.9 and higher you can still have valuable results even if your
   stepm parameter is bigger than a month. The idea is to run with bigger stepm in
 <h4><font color="#FF0000">Guess values for computing variances</font></h4>  order to have a quicker convergence at the price of a small bias. Once you know
   which model you want to fit, you can put stepm=1 and wait hours or days to get
 <p>This is an output if <a href="#mle">mle</a>=1. But it can be  the convergence! To get unbiased results even with large stepm we introduce the
 used as an input to get the various output data files (Health  idea of pseudo likelihood by interpolating two exact likelihoods. In
 expectancies, stationary prevalence etc.) and figures without  more detail:
 rerunning the rather long maximisation phase (mle=0). </p>  <P>If the interval of <EM>d</EM> months between two waves is not a multiple of
   'stepm', but is between <EM>(n-1) stepm</EM> and <EM>n stepm</EM> then
 <p>The scales are small values for the evaluation of numerical  both exact likelihoods are computed (the contribution to the likelihood at <EM>n
 derivatives. These derivatives are used to compute the hessian  stepm</EM> requires one matrix product more) (let us remember that we are
 matrix of the parameters, that is the inverse of the covariance  modelling the probability to be observed in a particular state after <EM>d</EM>
 matrix, and the variances of health expectancies. Each line  months being observed at a particular state at 0). The distance, (<EM>bh</EM> in
 consists in indices &quot;ij&quot; followed by the initial scales  the program), from the month of interview to the rounded date of <EM>n
 (zero to simplify) associated with aij and bij. </p>  stepm</EM> is computed. It can be negative (interview occurs before <EM>n
   stepm</EM>) or positive if the interview occurs after <EM>n stepm</EM> (and
 <ul>  before <EM>(n+1)stepm</EM>). <BR>Then the final contribution to the total
     <li>If mle=1 you can enter zeros:</li>  likelihood is a weighted average of these two exact likelihoods at <EM>n
     <li><blockquote>  stepm</EM> (out) and at <EM>(n-1)stepm</EM>(savm). We did not want to compute
             <pre># Scales (for hessian or gradient estimation)  the third likelihood at <EM>(n+1)stepm</EM> because it is too costly in time, so
   we used an extrapolation if <EM>bh</EM> is positive. <BR>The formula
   for the inter/extrapolation may vary according to the value of parameter mle: <PRE>mle=1          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
    
   mle=2   lli= (savm[s1][s2]&gt;(double)1.e-8 ? \
             log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])): \
             log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   mle=3   lli= (savm[s1][s2]&gt;1.e-8 ? \
             (1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]): \
             log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   
   mle=4   lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* No interpolation  */
           no need to save previous likelihood into memory.
   </PRE>
   <P>If the death occurs between the first and second pass, and for example more
   precisely between <EM>n stepm</EM> and <EM>(n+1)stepm</EM> the contribution of
   these people to the likelihood is simply the difference between the probability
   of dying before <EM>n stepm</EM> and the probability of dying before
   <EM>(n+1)stepm</EM>. There was a bug in version 0.8 and death was treated as any
   other state, i.e. as if it was an observed death at second pass. This was not
   precise but correct, although when information on the precise month of
   death came (death occuring prior to second pass) we did not change the
   likelihood accordingly. We thank Chris Jackson for correcting it. In earlier
   versions (fortunately before first publication) the total mortality
   was thus overestimated (people were dying too early) by about 10%. Version
   0.95 and higher are correct.
   
   <P>Our suggested choice is mle=1 . If stepm=1 there is no difference between
   various mle options (methods of interpolation). If stepm is big, like 12 or 24
   or 48 and mle=4 (no interpolation) the bias may be very important if the mean
   duration between two waves is not a multiple of stepm. See the appendix in our
   main publication concerning the sine curve of biases.
   <H4><FONT color=#ff0000>Guess values for computing variances</FONT></H4>
   <P>These values are output by the maximisation of the likelihood <A
   href="http://euroreves.ined.fr/imach/doc/imach.htm#mle">mle</A>=1 and
   can be used as an input for a second run in order to get the various output data
   files (Health expectancies, period prevalence etc.) and figures without
   rerunning the long maximisation phase (mle=0). </P>
   <P>The 'scales' are small values needed for the computing of numerical
   derivatives. These derivatives are used to compute the hessian matrix of the
   parameters, that is the inverse of the covariance matrix. They are often used
   for estimating variances and confidence intervals. Each line consists of indices
   "ij" followed by the initial scales (zero to simplify) associated with aij and
   bij. </P>
   <UL>
     <LI>If mle=1 you can enter zeros:
     <LI>
     <BLOCKQUOTE><PRE># Scales (for hessian or gradient estimation)
 12 0. 0.  12 0. 0.
 13 0. 0.  13 0. 0.
 21 0. 0.  21 0. 0.
 23 0. 0. </pre>  23 0. 0. </PRE></BLOCKQUOTE>
         </blockquote>    <LI>If mle=0 (no maximisation of Likelihood) you must enter a covariance
     </li>    matrix (usually obtained from an earlier run). </LI></UL>
     <li>If mle=0 you must enter a covariance matrix (usually  <H4><FONT color=#ff0000>Covariance matrix of parameters</FONT></H4>
         obtained from an earlier run).</li>  <P>The covariance matrix is output if <A
 </ul>  href="http://euroreves.ined.fr/imach/doc/imach.htm#mle">mle</A>=1. But it can be
   also be used as an input to get the various output data files (Health
 <h4><font color="#FF0000">Covariance matrix of parameters</font></h4>  expectancies, period prevalence etc.) and figures without rerunning
   the maximisation phase (mle=0). <BR>Each line starts with indices
 <p>This is an output if <a href="#mle">mle</a>=1. But it can be  "ijk" followed by the covariances  between aij and bij:<BR>
 used as an input to get the various output data files (Health  </P><PRE>   121 Var(a12)
 expectancies, stationary prevalence etc.) and figures without  
 rerunning the rather long maximisation phase (mle=0). <br>  
 Each line starts with indices &quot;ijk&quot; followed by the  
 covariances between aij and bij:<br>  
 </p>  
   
 <pre>  
    121 Var(a12)  
    122 Cov(b12,a12)  Var(b12)     122 Cov(b12,a12)  Var(b12)
           ...            ...
    232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23) </pre>     232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23) </PRE>
   <UL>
 <ul>    <LI>If mle=1 you can enter zeros.
     <li>If mle=1 you can enter zeros. </li>    <LI><PRE># Covariance matrix
     <li><pre># Covariance matrix  
 121 0.  121 0.
 122 0. 0.  122 0. 0.
 131 0. 0. 0.  131 0. 0. 0.
Line 538  covariances between aij and bij:<br> Line 470  covariances between aij and bij:<br>
 211 0. 0. 0. 0. 0.  211 0. 0. 0. 0. 0.
 212 0. 0. 0. 0. 0. 0.  212 0. 0. 0. 0. 0. 0.
 231 0. 0. 0. 0. 0. 0. 0.  231 0. 0. 0. 0. 0. 0. 0.
 232 0. 0. 0. 0. 0. 0. 0. 0.</pre>  232 0. 0. 0. 0. 0. 0. 0. 0.</PRE>
     </li>    <LI>If mle=0 you must enter a covariance matrix (usually obtained from an
     <li>If mle=0 you must enter a covariance matrix (usually    earlier run). </LI></UL>
         obtained from an earlier run). </li>  <H4><FONT color=#ff0000>Age range for calculation of stationary prevalences and
 </ul>  health expectancies</FONT></H4><PRE>agemin=70 agemax=100 bage=50 fage=100</PRE>
   <P>Once we obtained the estimated parameters, the program is able to calculate
 <h4><font color="#FF0000">Age range for calculation of stationary  period prevalence, transitions probabilities and life expectancies at any age.
 prevalences and health expectancies</font></h4>  Choice of the age range is useful for extrapolation. In this example,
   the age of people interviewed varies from 69 to 102 and the model is
 <pre>agemin=70 agemax=100 bage=50 fage=100</pre>  estimated using their exact ages. But if you are interested in the
   age-specific period prevalence you can start the simulation at an
 <pre>  exact age like 70 and stop at 100. Then the program  will draw at
 Once we obtained the estimated parameters, the program is able  least two curves describing the forecasted prevalences of two cohorts,
 to calculated stationary prevalence, transitions probabilities  one for healthy people at age 70 and the second for disabled people at
 and life expectancies at any age. Choice of age range is useful  the same initial age. And according to the mixing property
 for extrapolation. In our data file, ages varies from age 70 to  (ergodicity) and because of recovery, both prevalences will tend to be
 102. It is possible to get extrapolated stationary prevalence by  identical at later ages. Thus if you want to compute the prevalence at
 age ranging from agemin to agemax.  age 70, you should enter a lower agemin value.
   <P>Setting bage=50 (begin age) and fage=100 (final age), let the program compute
   life expectancy from age 'bage' to age 'fage'. As we use a model, we can
 Setting bage=50 (begin age) and fage=100 (final age), makes  interessingly compute life expectancy on a wider age range than the age range
 the program computing life expectancy from age 'bage' to age  from the data. But the model can be rather wrong on much larger intervals.
 'fage'. As we use a model, we can interessingly compute life  Program is limited to around 120 for upper age! <PRE></PRE>
 expectancy on a wider age range than the age range from the data.  <UL>
 But the model can be rather wrong on much larger intervals.    <LI><B>agemin=</B> Minimum age for calculation of the period prevalence
 Program is limited to around 120 for upper age!    <LI><B>agemax=</B> Maximum age for calculation of the period prevalence
 </pre>    <LI><B>bage=</B> Minimum age for calculation of the health expectancies
     <LI><B>fage=</B> Maximum age for calculation of the health expectancies
 <ul>  </LI></UL>
     <li><b>agemin=</b> Minimum age for calculation of the  <H4><A name=Computing><FONT color=#ff0000>Computing</FONT></A><FONT
         stationary prevalence </li>  color=#ff0000> the cross-sectional prevalence</FONT></H4><PRE>begin-prev-date=1/1/1984 end-prev-date=1/6/1988 estepm=1</PRE>
     <li><b>agemax=</b> Maximum age for calculation of the  <P>Statements 'begin-prev-date' and 'end-prev-date' allow the user to
         stationary prevalence </li>  select the period in which the observed prevalences in each state. In
     <li><b>bage=</b> Minimum age for calculation of the health  this example, the prevalences are calculated on data survey collected
         expectancies </li>  between 1 January 1984 and 1 June 1988. </P>
     <li><b>fage=</b> Maximum age for calculation of the health  <UL>
         expectancies </li>    <LI><STRONG>begin-prev-date= </STRONG>Starting date (day/month/year)
 </ul>    <LI><STRONG>end-prev-date= </STRONG>Final date (day/month/year)
     <LI><STRONG>estepm= </STRONG>Unit (in months).We compute the life expectancy
 <h4><a name="Computing"><font color="#FF0000">Computing</font></a><font    from trapezoids spaced every estepm months. This is mainly to measure the
 color="#FF0000"> the observed prevalence</font></h4>    difference between two models: for example if stepm=24 months pijx are given
     only every 2 years and by summing them we are calculating an estimate of the
 <pre>begin-prev-date=1/1/1984 end-prev-date=1/6/1988 estepm=1</pre>    Life Expectancy assuming a linear progression inbetween and thus
     overestimating or underestimating according to the curvature of the survival
 <pre>    function. If, for the same date, we estimate the model with stepm=1 month, we
 Statements 'begin-prev-date' and 'end-prev-date' allow to    can keep estepm to 24 months to compare the new estimate of Life expectancy
 select the period in which we calculate the observed prevalences    with the same linear hypothesis. A more precise result, taking into account a
 in each state. In this example, the prevalences are calculated on    more precise curvature will be obtained if estepm is as small as stepm.
 data survey collected between 1 january 1984 and 1 june 1988.  </LI></UL>
 </pre>  <H4><FONT color=#ff0000>Population- or status-based health
   expectancies</FONT></H4><PRE>pop_based=0</PRE>
 <ul>  <P>The program computes status-based health expectancies, i.e health
     <li><strong>begin-prev-date= </strong>Starting date  expectancies which depend on the initial health state. If you are healthy, your
         (day/month/year)</li>  healthy life expectancy (e11) is higher than if you were disabled (e21, with e11
     <li><strong>end-prev-date= </strong>Final date  &gt; e21).<BR>To compute a healthy life expectancy 'independent' of the initial
         (day/month/year)</li>  status we have to weight e11 and e21 according to the probability of
     <li><strong>estepm= </strong>Unit (in months).We compute the  being in each state at initial age which correspond to the proportions
         life expectancy from trapezoids spaced every estepm  of people in each health state (cross-sectional prevalences).
         months. This is mainly to measure the difference between  <P>We could also compute e12 and e12 and get e.2 by weighting them according to
         two models: for example if stepm=24 months pijx are given  the observed cross-sectional prevalences at initial age.
         only every 2 years and by summing them we are calculating  <P>In a similar way we could compute the total life expectancy by summing e.1
         an estimate of the Life Expectancy assuming a linear  and e.2 . <BR>The main difference between 'population based' and 'implied' or
         progression inbetween and thus overestimating or  'period' is in the weights used. 'Usually', cross-sectional prevalences of
         underestimating according to the curvature of the  disability are higher than period prevalences particularly at old ages. This is
         survival function. If, for the same date, we estimate the  true if the country is improving its health system by teaching people how to
         model with stepm=1 month, we can keep estepm to 24 months  prevent disability by promoting better screening, for example of people
         to compare the new estimate of Life expectancy with the  needing cataract surgery. Then the proportion of disabled people at
         same linear hypothesis. A more precise result, taking  age 90 will be lower than the current observed proportion.
         into account a more precise curvature will be obtained if  <P>Thus a better Health Expectancy and even a better Life Expectancy value is
         estepm is as small as stepm.</li>  given by forecasting not only the current lower mortality at all ages but also a
 </ul>  lower incidence of disability and higher recovery. <BR>Using the period
   prevalences as weight instead of the cross-sectional prevalences we are
 <h4><font color="#FF0000">Population- or status-based health  computing indices which are more specific to the current situations and
 expectancies</font></h4>  therefore more useful to predict improvements or regressions in the future as to
   compare different policies in various countries.
 <pre>pop_based=0</pre>  <UL>
     <LI><STRONG>popbased= 0 </STRONG>Health expectancies are computed at each age
 <p>The program computes status-based health expectancies, i.e    from period prevalences 'expected' at this initial age.
 health expectancies which depends on your initial health state.    <LI><STRONG>popbased= 1 </STRONG>Health expectancies are computed at each age
 If you are healthy your healthy life expectancy (e11) is higher    from cross-sectional 'observed' prevalence at the initial age. As all the
 than if you were disabled (e21, with e11 &gt; e21).<br>    population is not observed at the same exact date we define a short period
 To compute a healthy life expectancy independant of the initial    where the observed prevalence can be computed as follows:<BR>we simply sum all people
 status we have to weight e11 and e21 according to the probability    surveyed within these two exact dates who belong to a particular age group
 to be in each state at initial age or, with other word, according    (single year) at the date of interview and are in a particular health state.
 to the proportion of people in each state.<br>    Then it is easy to get the proportion of people in a particular
 We prefer computing a 'pure' period healthy life expectancy based    health state as a percentage of all people of the same age group.<BR>If both dates are spaced and are
 only on the transtion forces. Then the weights are simply the    covering two waves or more, people being interviewed twice or more are counted
 stationnary prevalences or 'implied' prevalences at the initial    twice or more. The program takes into account the selection of individuals
 age.<br>    interviewed between firstpass and lastpass too (we don't know if
 Some other people would like to use the cross-sectional    this is useful). </LI></UL>
 prevalences (the &quot;Sullivan prevalences&quot;) observed at  <H4><FONT color=#ff0000>Prevalence forecasting (Experimental)</FONT></H4><PRE>starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 </PRE>
 the initial age during a period of time <a href="#Computing">defined  <P>Prevalence and population projections are only available if the interpolation
 just above</a>. <br>  unit is a month, i.e. stepm=1 and if there are no covariate. The programme
 </p>  estimates the prevalence in each state at a precise date expressed in
   day/month/year. The programme computes one forecasted prevalence a year from a
 <ul>  starting date (1 January 1989 in this example) to a final date (1 January
     <li><strong>popbased= 0 </strong>Health expectancies are  1992). The statement mov_average allows computation of smoothed forecasted
         computed at each age from stationary prevalences  prevalences with a five-age moving average centered at the mid-age of the
         'expected' at this initial age.</li>  fiveyear-age period. <BR></P>
     <li><strong>popbased= 1 </strong>Health expectancies are  <H4><FONT color=#ff0000>Population forecasting (Experimental)</FONT></H4>
         computed at each age from cross-sectional 'observed'  <UL>
         prevalence at this initial age. As all the population is    <LI><STRONG>starting-proj-date</STRONG>= starting date (day/month/year) of
         not observed at the same exact date we define a short    forecasting
         period were the observed prevalence is computed.</li>    <LI><STRONG>final-proj-date= </STRONG>final date (day/month/year) of
 </ul>    forecasting
     <LI><STRONG>mov_average</STRONG>= smoothing with a five-age moving average
 <h4><font color="#FF0000">Prevalence forecasting ( Experimental)</font></h4>    centered at the mid-age of the fiveyear-age period. The command<STRONG>
     mov_average</STRONG> takes value 1 if the prevalences are smoothed and 0
 <pre>starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 </pre>    otherwise. </LI></UL>
   <UL type=disc>
 <p>Prevalence and population projections are only available if    <LI><B>popforecast= 0 </B>Option for population forecasting. If popforecast=1,
 the interpolation unit is a month, i.e. stepm=1 and if there are    the programme does the forecasting<B>.</B>
 no covariate. The programme estimates the prevalence in each    <LI><B>popfile= </B>name of the population file
 state at a precise date expressed in day/month/year. The    <LI><B>popfiledate=</B> date of the population population
 programme computes one forecasted prevalence a year from a    <LI><B>last-popfiledate</B>= date of the last population projection&nbsp;
 starting date (1 january of 1989 in this example) to a final date  </LI></UL>
 (1 january 1992). The statement mov_average allows to compute  <HR>
 smoothed forecasted prevalences with a five-age moving average  
 centered at the mid-age of the five-age period. <br>  <H2><A name=running></A><FONT color=#00006a>Running Imach with this
 </p>  example</FONT></H2>
   <P>We assume that you have already typed your <A
 <ul>  href="http://euroreves.ined.fr/imach/doc/biaspar.imach">1st_example parameter
     <li><strong>starting-proj-date</strong>= starting date  file</A> as explained <A
         (day/month/year) of forecasting</li>  href="http://euroreves.ined.fr/imach/doc/imach.htm#biaspar">above</A>. To run
     <li><strong>final-proj-date= </strong>final date  the program under Windows you should either: </P>
         (day/month/year) of forecasting</li>  <UL>
     <li><strong>mov_average</strong>= smoothing with a five-age    <LI>click on the imach.exe icon and either:
         moving average centered at the mid-age of the five-age    <UL>
         period. The command<strong> mov_average</strong> takes      <LI>enter the name of the parameter file which is for example
         value 1 if the prevalences are smoothed and 0 otherwise.</li>      <TT>C:\home\myname\lsoa\biaspar.imach</TT>
 </ul>      <LI>or locate the biaspar.imach icon in your folder such as
       <TT>C:\home\myname\lsoa</TT> and drag it, with your mouse, on the already
 <h4><font color="#FF0000">Last uncommented line : Population      open imach window. </LI></UL>
 forecasting </font></h4>    <LI>With version (0.97b) if you ran setup at installation, Windows is supposed
     to understand the ".imach" extension and you can right click the biaspar.imach
 <pre>popforecast=0 popfile=pyram.txt popfiledate=1/1/1989 last-popfiledate=1/1/1992</pre>    icon and either edit with wordpad (better than notepad) the parameter file or
     execute it with IMaCh. </LI></UL>
 <p>This command is available if the interpolation unit is a  <P>The time to converge depends on the step unit used (1 month is more
 month, i.e. stepm=1 and if popforecast=1. From a data file  precise but more cpu time consuming), on the number of cases, and on the number of
 including age and number of persons alive at the precise date  variables (covariates).
 &#145;popfiledate&#146;, you can forecast the number of persons  <P>The program outputs many files. Most of them are files which will be plotted
 in each state until date &#145;last-popfiledate&#146;. In this  for better understanding. </P>To run under Linux is mostly the same.
 example, the popfile <a href="pyram.txt"><b>pyram.txt</b></a>  <P>It is no more difficult to run IMaCh on a MacIntosh.
 includes real data which are the Japanese population in 1989.<br>  <HR>
 </p>  
   <H2><A name=output><FONT color=#00006a>Output of the program and graphs</FONT>
 <ul type="disc">  </A></H2>
     <li class="MsoNormal"  <P>Once the optimization is finished (once the convergence is reached), many
     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popforecast=  tables and graphics are produced.
         0 </b>Option for population forecasting. If  <P>The IMaCh program will create a subdirectory with the same name as your
         popforecast=1, the programme does the forecasting<b>.</b></li>  parameter file (here mypar) where all the tables and figures will be
     <li class="MsoNormal"  stored.<BR>Important files like the log file and the output parameter file
     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popfile=  (the latter contains the maximum likelihood estimates) are stored at
         </b>name of the population file</li>  the main level not in this subdirectory. Files with extension .log and
     <li class="MsoNormal"  .txt can be edited with a standard editor like wordpad or notepad or
     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popfiledate=</b>  even can be viewed with a browser like Internet Explorer or Mozilla.
         date of the population population</li>  <P>The main html file is also named with the same name <A
     <li class="MsoNormal"  href="http://euroreves.ined.fr/imach/doc/biaspar.htm">biaspar.htm</A>. You can
     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>last-popfiledate</b>=  click on it by holding your shift key in order to open it in another window
         date of the last population projection&nbsp;</li>  (Windows).
 </ul>  <P>Our grapher is Gnuplot, an interactive plotting program (GPL) which can
   also work in batch mode. A gnuplot reference manual is available <A
 <hr>  href="http://www.gnuplot.info/">here</A>. <BR>When the run is finished, and in
   order that the window doesn't disappear, the user should enter a character like
 <h2><a name="running"></a><font color="#00006A">Running Imach  <TT>q</TT> for quitting. <BR>These characters are:<BR></P>
 with this example</font></h2>  <UL>
     <LI>'e' for opening the main result html file <A
 <pre>We assume that you typed in your <a href="biaspar.imach">1st_example    href="http://euroreves.ined.fr/imach/doc/biaspar.htm"><STRONG>biaspar.htm</STRONG></A>
 parameter file</a> as explained <a href="#biaspar">above</a>.    file to edit the output files and graphs.
     <LI>'g' to graph again
 To run the program you should either:    <LI>'c' to start again the program from the beginning.
 </pre>    <LI>'q' for exiting. </LI></UL>The main gnuplot file is named
   <TT>biaspar.gp</TT> and can be edited (right click) and run again.
 <ul>  <P>Gnuplot is easy and you can use it to make more complex graphs. Just click on
     <li>click on the imach.exe icon and enter the name of the  gnuplot and type plot sin(x) to see how easy it is.
         parameter file which is for example <a  <H5><FONT size=4><STRONG>Results files </STRONG></FONT><BR><BR><FONT
         href="C:\usr\imach\mle\biaspar.imach">C:\usr\imach\mle\biaspar.imach</a>  color=#ec5e5e size=3><STRONG>- </STRONG></FONT><A
     </li>  name="cross-sectional prevalence in each state"><FONT color=#ec5e5e
     <li>You also can locate the biaspar.imach icon in <a  size=3><STRONG>cross-sectional prevalence in each state</STRONG></FONT></A><FONT
         href="C:\usr\imach\mle">C:\usr\imach\mle</a> with your  color=#ec5e5e size=3><STRONG> (and at first pass)</STRONG></FONT><B>: </B><A
         mouse and drag it with the mouse on the imach window). </li>  href="http://euroreves.ined.fr/imach/doc/biaspar/prbiaspar.txt"><B>biaspar/prbiaspar.txt</B></A><BR></H5>
     <li>With latest version (0.7 and higher) if you setup windows  <P>The first line is the title and displays each field of the file. First column
         in order to understand &quot;.imach&quot; extension you  corresponds to age. Fields 2 and 6 are the proportion of individuals in states 1
         can right click the biaspar.imach icon and either edit  and 2 respectively as observed at first exam. Others fields are the numbers of
         with notepad the parameter file or execute it with imach  people in states 1, 2 or more. The number of columns increases if the number of
         or whatever. </li>  states is higher than 2.<BR>The header of the file is </P><PRE># Age Prev(1) N(1) N Age Prev(2) N(2) N
 </ul>  
   
 <pre>The time to converge depends on the step unit that you used (1  
 month is cpu consuming), on the number of cases, and on the  
 number of variables.  
   
   
 The program outputs many files. Most of them are files which  
 will be plotted for better understanding.  
   
 </pre>  
   
 <hr>  
   
 <h2><a name="output"><font color="#00006A">Output of the program  
 and graphs</font> </a></h2>  
   
 <p>Once the optimization is finished, some graphics can be made  
 with a grapher. We use Gnuplot which is an interactive plotting  
 program copyrighted but freely distributed. A gnuplot reference  
 manual is available <a href="http://www.gnuplot.info/">here</a>. <br>  
 When the running is finished, the user should enter a caracter  
 for plotting and output editing. <br>  
 These caracters are:<br>  
 </p>  
   
 <ul>  
     <li>'c' to start again the program from the beginning.</li>  
     <li>'e' opens the <a href="biaspar.htm"><strong>biaspar.htm</strong></a>  
         file to edit the output files and graphs. </li>  
     <li>'g' to graph again</li>  
     <li>'q' for exiting.</li>  
 </ul>  
   
 <h5><font size="4"><strong>Results files </strong></font><br>  
 <br>  
 <font color="#EC5E5E" size="3"><strong>- </strong></font><a  
 name="Observed prevalence in each state"><font color="#EC5E5E"  
 size="3"><strong>Observed prevalence in each state</strong></font></a><font  
 color="#EC5E5E" size="3"><strong> (and at first pass)</strong></font><b>:  
 </b><a href="prbiaspar.txt"><b>prbiaspar.txt</b></a><br>  
 </h5>  
   
 <p>The first line is the title and displays each field of the  
 file. The first column is age. The fields 2 and 6 are the  
 proportion of individuals in states 1 and 2 respectively as  
 observed during the first exam. Others fields are the numbers of  
 people in states 1, 2 or more. The number of columns increases if  
 the number of states is higher than 2.<br>  
 The header of the file is </p>  
   
 <pre># Age Prev(1) N(1) N Age Prev(2) N(2) N  
 70 1.00000 631 631 70 0.00000 0 631  70 1.00000 631 631 70 0.00000 0 631
 71 0.99681 625 627 71 0.00319 2 627  71 0.99681 625 627 71 0.00319 2 627
 72 0.97125 1115 1148 72 0.02875 33 1148 </pre>  72 0.97125 1115 1148 72 0.02875 33 1148 </PRE>
   <P>It means that at age 70 (between 70 and 71), the prevalence in state 1 is
 <p>It means that at age 70, the prevalence in state 1 is 1.000  1.000 and in state 2 is 0.00 . At age 71 the number of individuals in state 1 is
 and in state 2 is 0.00 . At age 71 the number of individuals in  625 and in state 2 is 2, hence the total number of people aged 71 is 625+2=627.
 state 1 is 625 and in state 2 is 2, hence the total number of  <BR></P>
 people aged 71 is 625+2=627. <br>  <H5><FONT color=#ec5e5e size=3><B>- Estimated parameters and covariance
 </p>  matrix</B></FONT><B>: </B><A
   href="http://euroreves.ined.fr/imach/doc/rbiaspar.txt"><B>rbiaspar.imach</B></A></H5>
 <h5><font color="#EC5E5E" size="3"><b>- Estimated parameters and  <P>This file contains all the maximisation results: </P><PRE> -2 log likelihood= 21660.918613445392
 covariance matrix</b></font><b>: </b><a href="rbiaspar.txt"><b>rbiaspar.imach</b></a></h5>  
   
 <p>This file contains all the maximisation results: </p>  
   
 <pre> -2 log likelihood= 21660.918613445392  
  Estimated parameters: a12 = -12.290174 b12 = 0.092161   Estimated parameters: a12 = -12.290174 b12 = 0.092161
                        a13 = -9.155590  b13 = 0.046627                         a13 = -9.155590  b13 = 0.046627
                        a21 = -2.629849  b21 = -0.022030                         a21 = -2.629849  b21 = -0.022030
Line 804  covariance matrix</b></font><b>: </b><a Line 679  covariance matrix</b></font><b>: </b><a
                     Var(b21) = 1.29229e-004                      Var(b21) = 1.29229e-004
                     Var(a23) = 4.48405e-001                      Var(a23) = 4.48405e-001
                     Var(b23) = 5.85631e-005                      Var(b23) = 5.85631e-005
  </pre>   </PRE>
   <P>By substitution of these parameters in the regression model, we obtain the
 <p>By substitution of these parameters in the regression model,  elementary transition probabilities:</P>
 we obtain the elementary transition probabilities:</p>  <P><IMG height=300
   src="Computing Health Expectancies using IMaCh_fichiers/pebiaspar11.png"
 <p><img src="pebiaspar1.gif" width="400" height="300"></p>  width=400></P>
   <H5><FONT color=#ec5e5e size=3><B>- Transition probabilities</B></FONT><B>:
 <h5><font color="#EC5E5E" size="3"><b>- Transition probabilities</b></font><b>:  </B><A
 </b><a href="pijrbiaspar.txt"><b>pijrbiaspar.txt</b></a></h5>  href="http://euroreves.ined.fr/imach/doc/biaspar/pijrbiaspar.txt"><B>biaspar/pijrbiaspar.txt</B></A></H5>
   <P>Here are the transitions probabilities Pij(x, x+nh). The second column is the
 <p>Here are the transitions probabilities Pij(x, x+nh) where nh  starting age x (from age 95 to 65), the third is age (x+nh) and the others are
 is a multiple of 2 years. The first column is the starting age x  the transition probabilities p11, p12, p13, p21, p22, p23. The first column
 (from age 50 to 100), the second is age (x+nh) and the others are  indicates the value of the covariate (without any other variable than age it is
 the transition probabilities p11, p12, p13, p21, p22, p23. For  equal to 1) For example, line 5 of the file is: </P><PRE>1 100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 </PRE>
 example, line 5 of the file is: </p>  <P>and this means: </P><PRE>p11(100,106)=0.02655
   
 <pre> 100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 </pre>  
   
 <p>and this means: </p>  
   
 <pre>p11(100,106)=0.02655  
 p12(100,106)=0.17622  p12(100,106)=0.17622
 p13(100,106)=0.79722  p13(100,106)=0.79722
 p21(100,106)=0.01809  p21(100,106)=0.01809
 p22(100,106)=0.13678  p22(100,106)=0.13678
 p22(100,106)=0.84513 </pre>  p22(100,106)=0.84513 </PRE>
   <H5><FONT color=#ec5e5e size=3><B>- </B></FONT><A
 <h5><font color="#EC5E5E" size="3"><b>- </b></font><a  name="Period prevalence in each state"><FONT color=#ec5e5e size=3><B>Period
 name="Stationary prevalence in each state"><font color="#EC5E5E"  prevalence in each state</B></FONT></A><B>: </B><A
 size="3"><b>Stationary prevalence in each state</b></font></a><b>:  href="http://euroreves.ined.fr/imach/doc/biaspar/plrbiaspar.txt"><B>biaspar/plrbiaspar.txt</B></A></H5><PRE>#Prevalence
 </b><a href="plrbiaspar.txt"><b>plrbiaspar.txt</b></a></h5>  
   
 <pre>#Prevalence  
 #Age 1-1 2-2  #Age 1-1 2-2
   
 #************  #************
 70 0.90134 0.09866  70 0.90134 0.09866
 71 0.89177 0.10823  71 0.89177 0.10823
 72 0.88139 0.11861  72 0.88139 0.11861
 73 0.87015 0.12985 </pre>  73 0.87015 0.12985 </PRE>
   <P>At age 70 the period prevalence is 0.90134 in state 1 and 0.09866 in state 2.
 <p>At age 70 the stationary prevalence is 0.90134 in state 1 and  This period prevalence differs from the cross-sectional prevalence and
 0.09866 in state 2. This stationary prevalence differs from  we explaining. The cross-sectional prevalence at age 70 results from
 observed prevalence. Here is the point. The observed prevalence  the incidence of disability, incidence of recovery and mortality which
 at age 70 results from the incidence of disability, incidence of  occurred in the past for the cohort. Period prevalence results from a
 recovery and mortality which occurred in the past of the cohort.  simulation with current incidences of disability, recovery and
 Stationary prevalence results from a simulation with actual  mortality estimated from this cross-longitudinal survey. It is a good
 incidences and mortality (estimated from this cross-longitudinal  prediction of the prevalence in the future if "nothing changes in the
 survey). It is the best predictive value of the prevalence in the  future". This is exactly what demographers do with a period life
 future if &quot;nothing changes in the future&quot;. This is  table. Life expectancy is the expected mean survival time if current
 exactly what demographers do with a Life table. Life expectancy  mortality rates (age-specific incidences of mortality) "remain
 is the expected mean time to survive if observed mortality rates  constant" in the future.
 (incidence of mortality) &quot;remains constant&quot; in the  </P>
 future. </p>  <H5><FONT color=#ec5e5e size=3><B>- Standard deviation of period
   prevalence</B></FONT><B>: </B><A
 <h5><font color="#EC5E5E" size="3"><b>- Standard deviation of  href="http://euroreves.ined.fr/imach/doc/biaspar/vplrbiaspar.txt"><B>biaspar/vplrbiaspar.txt</B></A></H5>
 stationary prevalence</b></font><b>: </b><a  <P>The period prevalence has to be compared with the cross-sectional prevalence.
 href="vplrbiaspar.txt"><b>vplrbiaspar.txt</b></a></h5>  But both are statistical estimates and therefore have confidence intervals.
   <BR>For the cross-sectional prevalence we generally need information on the
 <p>The stationary prevalence has to be compared with the observed  design of the surveys. It is usually not enough to consider the number of people
 prevalence by age. But both are statistical estimates and  surveyed at a particular age and to estimate a Bernouilli confidence interval
 subjected to stochastic errors due to the size of the sample, the  based on the prevalence at that age. But you can do it to have an idea of the
 design of the survey, and, for the stationary prevalence to the  randomness. At least you can get a visual appreciation of the randomness by
 model used and fitted. It is possible to compute the standard  looking at the fluctuation over ages.
 deviation of the stationary prevalence at each age.</p>  <P>For the period prevalence it is possible to estimate the confidence interval
   from the Hessian matrix (see the publication for details). We are supposing that
 <h5><font color="#EC5E5E" size="3">-Observed and stationary  the design of the survey will only alter the weight of each individual. IMaCh
 prevalence in state (2=disable) with confidence interval</font>:<b>  scales the weights of individuals-waves contributing to the likelihood by
 </b><a href="vbiaspar21.htm"><b>vbiaspar21.gif</b></a></h5>  making the sum of the weights equal to the sum of individuals-waves
   contributing: a weighted survey doesn't increase or decrease the size of the
 <p>This graph exhibits the stationary prevalence in state (2)  survey, it only give more weight to some individuals and thus less to the
 with the confidence interval in red. The green curve is the  others.
 observed prevalence (or proportion of individuals in state (2)).  <H5><FONT color=#ec5e5e size=3>-cross-sectional and period prevalence in state
 Without discussing the results (it is not the purpose here), we  (2=disable) with confidence interval</FONT>:<B> </B><A
 observe that the green curve is rather below the stationary  href="http://euroreves.ined.fr/imach/doc/biaspar/vbiaspar21.htm"><B>biaspar/vbiaspar21.png</B></A></H5>
 prevalence. It suggests an increase of the disability prevalence  <P>This graph exhibits the period prevalence in state (2) with the confidence
 in the future.</p>  interval in red. The green curve is the observed prevalence (or proportion of
   individuals in state (2)). Without discussing the results (it is not the purpose
 <p><img src="vbiaspar21.gif" width="400" height="300"></p>  here), we observe that the green curve is somewhat below the period
   prevalence. If the data were not biased by the non inclusion of people
 <h5><font color="#EC5E5E" size="3"><b>-Convergence to the  living in institutions we would have concluded that the prevalence of
 stationary prevalence of disability</b></font><b>: </b><a  disability will increase in the future (see the main publication if
 href="pbiaspar11.gif"><b>pbiaspar11.gif</b></a><br>  you are interested in real data and results which are opposite).</P>
 <img src="pbiaspar11.gif" width="400" height="300"> </h5>  <P><IMG height=300
   src="Computing Health Expectancies using IMaCh_fichiers/vbiaspar21.png"
 <p>This graph plots the conditional transition probabilities from  width=400></P>
 an initial state (1=healthy in red at the bottom, or 2=disable in  <H5><FONT color=#ec5e5e size=3><B>-Convergence to the period prevalence of
 green on top) at age <em>x </em>to the final state 2=disable<em> </em>at  disability</B></FONT><B>: </B><A
 age <em>x+h. </em>Conditional means at the condition to be alive  href="Computing Health Expectancies using IMaCh_fichiers/pbiaspar11.png"><B>biaspar/pbiaspar11.png</B></A><BR><IMG
 at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The  height=300
 curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>  src="Computing Health Expectancies using IMaCh_fichiers/pbiaspar11.png"
 + <em>hP22x) </em>converge with <em>h, </em>to the <em>stationary  width=400> </H5>
 prevalence of disability</em>. In order to get the stationary  <P>This graph plots the conditional transition probabilities from an initial
 prevalence at age 70 we should start the process at an earlier  state (1=healthy in red at the bottom, or 2=disabled in green on the top) at age
 age, i.e.50. If the disability state is defined by severe  <EM>x </EM>to the final state 2=disabled<EM> </EM>at age <EM>x+h
 disability criteria with only a few chance to recover, then the  </EM> where conditional means conditional on being alive at age <EM>x+h </EM>which is
 incidence of recovery is low and the time to convergence is  <I>hP12x</I> + <EM>hP22x</EM>. The curves <I>hP12x/(hP12x</I> + <EM>hP22x)
 probably longer. But we don't have experience yet.</p>  </EM>and <I>hP22x/(hP12x</I> + <EM>hP22x) </EM>converge with <EM>h, </EM>to the
   <EM>period prevalence of disability</EM>. In order to get the period prevalence
 <h5><font color="#EC5E5E" size="3"><b>- Life expectancies by age  at age 70 we should start the process at an earlier age, i.e.50. If the
 and initial health status with standard deviation</b></font><b>: </b><a  disability state is defined by severe disability criteria with only a
 href="erbiaspar.txt"><b>erbiaspar.txt</b></a></h5>  small chance of recovering, then the incidence of recovery is low and the time to convergence is
   probably longer. But we don't have experience of this yet.</P>
 <pre># Health expectancies  <H5><FONT color=#ec5e5e size=3><B>- Life expectancies by age and initial health
   status with standard deviation</B></FONT><B>: </B><A
   href="http://euroreves.ined.fr/imach/doc/biaspar/erbiaspar.txt"><B>biaspar/erbiaspar.txt</B></A></H5><PRE># Health expectancies
 # Age 1-1 (SE) 1-2 (SE) 2-1 (SE) 2-2 (SE)  # Age 1-1 (SE) 1-2 (SE) 2-1 (SE) 2-2 (SE)
 70 10.4171 (0.1517)    3.0433 (0.4733)    5.6641 (0.1121)    5.6907 (0.3366)   70   11.0180 (0.1277)    3.1950 (0.3635)    4.6500 (0.0871)    4.4807 (0.2187)
 71 9.9325 (0.1409)    3.0495 (0.4234)    5.2627 (0.1107)    5.6384 (0.3129)   71   10.4786 (0.1184)    3.2093 (0.3212)    4.3384 (0.0875)    4.4820 (0.2076)
 72 9.4603 (0.1319)    3.0540 (0.3770)    4.8810 (0.1099)    5.5811 (0.2907)   72    9.9551 (0.1103)    3.2236 (0.2827)    4.0426 (0.0885)    4.4827 (0.1966)
 73 9.0009 (0.1246)    3.0565 (0.3345)    4.5188 (0.1098)    5.5187 (0.2702)   73    9.4476 (0.1035)    3.2379 (0.2478)    3.7621 (0.0899)    4.4825 (0.1858)
 </pre>   74    8.9564 (0.0980)    3.2522 (0.2165)    3.4966 (0.0920)    4.4815 (0.1754)
    75    8.4815 (0.0937)    3.2665 (0.1887)    3.2457 (0.0946)    4.4798 (0.1656)
 <pre>For example 70 10.4171 (0.1517) 3.0433 (0.4733) 5.6641 (0.1121) 5.6907 (0.3366) means:   76    8.0230 (0.0905)    3.2806 (0.1645)    3.0090 (0.0979)    4.4772 (0.1565)
 e11=10.4171 e12=3.0433 e21=5.6641 e22=5.6907 </pre>   77    7.5810 (0.0884)    3.2946 (0.1438)    2.7860 (0.1017)    4.4738 (0.1484)
    78    7.1554 (0.0871)    3.3084 (0.1264)    2.5763 (0.1062)    4.4696 (0.1416)
 <pre><img src="expbiaspar21.gif" width="400" height="300"><img   79    6.7464 (0.0867)    3.3220 (0.1124)    2.3794 (0.1112)    4.4646 (0.1364)
 src="expbiaspar11.gif" width="400" height="300"></pre>   80    6.3538 (0.0868)    3.3354 (0.1014)    2.1949 (0.1168)    4.4587 (0.1331)
    81    5.9775 (0.0873)    3.3484 (0.0933)    2.0222 (0.1230)    4.4520 (0.1320)
 <p>For example, life expectancy of a healthy individual at age 70  </PRE><PRE>For example  70  11.0180 (0.1277) 3.1950 (0.3635) 4.6500 (0.0871)  4.4807 (0.2187)
 is 10.42 in the healthy state and 3.04 in the disability state  means
 (=13.46 years). If he was disable at age 70, his life expectancy  e11=11.0180 e12=3.1950 e21=4.6500 e22=4.4807 </PRE><PRE><IMG height=300 src="Computing Health Expectancies using IMaCh_fichiers/expbiaspar21.png" width=400><IMG height=300 src="Computing Health Expectancies using IMaCh_fichiers/expbiaspar11.png" width=400></PRE>
 will be shorter, 5.66 in the healthy state and 5.69 in the  <P>For example, life expectancy of a healthy individual at age 70 is 11.0 in the
 disability state (=11.35 years). The total life expectancy is a  healthy state and 3.2 in the disability state (total of 14.2 years). If he was
 weighted mean of both, 13.46 and 11.35; weight is the proportion  disabled at age 70, his life expectancy will be shorter, 4.65 years in the
 of people disabled at age 70. In order to get a pure period index  healthy state and 4.5 in the disability state (=9.15 years). The total life
 (i.e. based only on incidences) we use the <a  expectancy is a weighted mean of both, 14.2 and 9.15. The weight is the
 href="#Stationary prevalence in each state">computed or  proportion of people disabled at age 70. In order to get a period index (i.e.
 stationary prevalence</a> at age 70 (i.e. computed from  based only on incidences) we use the <A
 incidences at earlier ages) instead of the <a  href="http://euroreves.ined.fr/imach/doc/imach.htm#Period prevalence in each state">stable
 href="#Observed prevalence in each state">observed prevalence</a>  or period prevalence</A> at age 70 (i.e. computed from incidences at earlier
 (for example at first exam) (<a href="#Health expectancies">see  ages) instead of the <A
 below</a>).</p>  href="http://euroreves.ined.fr/imach/doc/imach.htm#cross-sectional prevalence in each state">cross-sectional
   prevalence</A> (observed for example at first interview) (<A
 <h5><font color="#EC5E5E" size="3"><b>- Variances of life  href="http://euroreves.ined.fr/imach/doc/imach.htm#Health expectancies">see
 expectancies by age and initial health status</b></font><b>: </b><a  below</A>).</P>
 href="vrbiaspar.txt"><b>vrbiaspar.txt</b></a></h5>  <H5><FONT color=#ec5e5e size=3><B>- Variances of life expectancies by age and
   initial health status</B></FONT><B>: </B><A
 <p>For example, the covariances of life expectancies Cov(ei,ej)  href="http://euroreves.ined.fr/imach/doc/biaspar/vrbiaspar.txt"><B>biaspar/vrbiaspar.txt</B></A></H5>
 at age 50 are (line 3) </p>  <P>For example, the covariances of life expectancies Cov(ei,ej) at age 50 are
   (line 3) </P><PRE>   Cov(e1,e1)=0.4776  Cov(e1,e2)=0.0488=Cov(e2,e1)  Cov(e2,e2)=0.0424</PRE>
 <pre>   Cov(e1,e1)=0.4776  Cov(e1,e2)=0.0488=Cov(e2,e1)  Cov(e2,e2)=0.0424</pre>  <H5><FONT color=#ec5e5e size=3><B>-Variances of one-step probabilities
   </B></FONT><B>: </B><A
 <h5><font color="#EC5E5E" size="3"><b>-Variances of one-step  href="http://euroreves.ined.fr/imach/doc/biaspar/probrbiaspar.txt"><B>biaspar/probrbiaspar.txt</B></A></H5>
 probabilities </b></font><b>: </b><a href="probrbiaspar.txt"><b>probrbiaspar.txt</b></a></h5>  <P>For example, at age 65</P><PRE>   p11=9.960e-001 standard deviation of p11=2.359e-004</PRE>
   <H5><FONT color=#ec5e5e size=3><B>- </B></FONT><A
 <p>For example, at age 65</p>  name="Health expectancies"><FONT color=#ec5e5e size=3><B>Health
   expectancies</B></FONT></A><FONT color=#ec5e5e size=3><B> with standard errors
 <pre>   p11=9.960e-001 standard deviation of p11=2.359e-004</pre>  in parentheses</B></FONT><B>: </B><A
   href="http://euroreves.ined.fr/imach/doc/biaspar/trbiaspar.txt"><FONT
 <h5><font color="#EC5E5E" size="3"><b>- </b></font><a  face="Courier New"><B>biaspar/trbiaspar.txt</B></FONT></A></H5><PRE>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </PRE><PRE>70 13.26 (0.22) 9.95 (0.20) 3.30 (0.14) </PRE>
 name="Health expectancies"><font color="#EC5E5E" size="3"><b>Health  <P>Thus, at age 70 the total life expectancy, e..=13.26 years is the weighted
 expectancies</b></font></a><font color="#EC5E5E" size="3"><b>  mean of e1.=13.46 and e2.=11.35 by the period prevalences at age 70 which are
 with standard errors in parentheses</b></font><b>: </b><a  0.90134 in state 1 and 0.09866 in state 2 respectively (the sum is equal to
 href="trbiaspar.txt"><font face="Courier New"><b>trbiaspar.txt</b></font></a></h5>  one). e.1=9.95 is the Disability-free life expectancy at age 70 (it is again a
   weighted mean of e11 and e21). e.2=3.30 is also the life expectancy at age 70 to
 <pre>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </pre>  be spent in the disability state.</P>
   <H5><FONT color=#ec5e5e size=3><B>-Total life expectancy by age and health
 <pre>70 13.26 (0.22) 9.95 (0.20) 3.30 (0.14) </pre>  expectancies in states (1=healthy) and (2=disable)</B></FONT><B>: </B><A
   href="Computing Health Expectancies using IMaCh_fichiers/ebiaspar1.png"><B>biaspar/ebiaspar1.png</B></A></H5>
 <p>Thus, at age 70 the total life expectancy, e..=13.26 years is  <P>This figure represents the health expectancies and the total life expectancy
 the weighted mean of e1.=13.46 and e2.=11.35 by the stationary  with a confidence interval (dashed line). </P><PRE>        <IMG height=300 src="Computing Health Expectancies using IMaCh_fichiers/ebiaspar1.png" width=400></PRE>
 prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in  <P>Standard deviations (obtained from the information matrix of the model) of
 state 2, respectively (the sum is equal to one). e.1=9.95 is the  these quantities are very useful. Cross-longitudinal surveys are costly and do
 Disability-free life expectancy at age 70 (it is again a weighted  not involve huge samples, generally a few thousands; therefore it is very
 mean of e11 and e21). e.2=3.30 is also the life expectancy at age  important to have an idea of the standard deviation of our estimates. It has
 70 to be spent in the disability state.</p>  been a big challenge to compute the Health Expectancy standard deviations. Don't
   be confused: life expectancy is, as any expected value, the mean of a
 <h5><font color="#EC5E5E" size="3"><b>-Total life expectancy by  distribution; but here we are not computing the standard deviation of the
 age and health expectancies in states (1=healthy) and (2=disable)</b></font><b>:  distribution, but the standard deviation of the estimate of the mean.</P>
 </b><a href="ebiaspar1.gif"><b>ebiaspar1.gif</b></a></h5>  <P>Our health expectancy estimates vary according to the sample size (and the
   standard deviations give confidence intervals of the estimates) but also
 <p>This figure represents the health expectancies and the total  according to the model fitted. We explain this in more detail.</P>
 life expectancy with the confident interval in dashed curve. </p>  <P>Choosing a model means at least two kind of choices. First we have to
   decide the number of disability states. And second we have to design, within
 <pre>        <img src="ebiaspar1.gif" width="400" height="300"></pre>  the logit model family, the model itself: variables, covariates, confounding
   factors etc. to be included.</P>
 <p>Standard deviations (obtained from the information matrix of  <P>The more disability states we have, the better is our demographical
 the model) of these quantities are very useful.  approximation of the disability process, but the smaller the number of
 Cross-longitudinal surveys are costly and do not involve huge  transitions between each state and the higher the noise in the
 samples, generally a few thousands; therefore it is very  measurement. We have not experimented enough with the various models
 important to have an idea of the standard deviation of our  to summarize the advantages and disadvantages, but it is important to
 estimates. It has been a big challenge to compute the Health  note that even if we had huge unbiased samples, the total life
 Expectancy standard deviations. Don't be confuse: life expectancy  expectancy computed from a cross-longitudinal survey would vary with
 is, as any expected value, the mean of a distribution; but here  the number of states. If we define only two states, alive or dead, we
 we are not computing the standard deviation of the distribution,  find the usual life expectancy where it is assumed that at each age,
 but the standard deviation of the estimate of the mean.</p>  people are at the same risk of dying. If we are differentiating the
   alive state into healthy and disabled, and as mortality from the
 <p>Our health expectancies estimates vary according to the sample  disabled state is higher than mortality from the healthy state, we are
 size (and the standard deviations give confidence intervals of  introducing heterogeneity in the risk of dying. The total mortality at
 the estimate) but also according to the model fitted. Let us  each age is the weighted mean of the mortality from each state by the
 explain it in more details.</p>  prevalence of each state. Therefore if the proportion of people at each age and
   in each state is different from the period equilibrium, there is no reason to
 <p>Choosing a model means ar least two kind of choices. First we  find the same total mortality at a particular age. Life expectancy, even if it
 have to decide the number of disability states. Second we have to  is a very useful tool, has a very strong hypothesis of homogeneity of the
 design, within the logit model family, the model: variables,  population. Our main purpose is not to measure differential mortality but to
 covariables, confonding factors etc. to be included.</p>  measure the expected time in a healthy or disabled state in order to maximise
   the former and minimize the latter. But the differential in mortality
 <p>More disability states we have, better is our demographical  complicates the measurement.</P>
 approach of the disability process, but smaller are the number of  <P>Incidences of disability or recovery are not affected by the number of states
 transitions between each state and higher is the noise in the  if these states are independent. But incidence estimates are dependent on the
 measurement. We do not have enough experiments of the various  specification of the model. The more covariates we add in the logit
 models to summarize the advantages and disadvantages, but it is  model the better
 important to say that even if we had huge and unbiased samples,  is the model, but some covariates are not well measured, some are confounding
 the total life expectancy computed from a cross-longitudinal  factors like in any statistical model. The procedure to "fit the best model' is
 survey, varies with the number of states. If we define only two  similar to logistic regression which itself is similar to regression analysis.
 states, alive or dead, we find the usual life expectancy where it  We haven't yet been sofar because we also have a severe limitation which is the
 is assumed that at each age, people are at the same risk to die.  speed of the convergence. On a Pentium III, 500 MHz, even the simplest model,
 If we are differentiating the alive state into healthy and  estimated by month on 8,000 people may take 4 hours to converge. Also, the IMaCh
 disable, and as the mortality from the disability state is higher  program is not a statistical package, and does not allow sophisticated design
 than the mortality from the healthy state, we are introducing  variables. If you need sophisticated design variable you have to them your self
 heterogeneity in the risk of dying. The total mortality at each  and and add them as ordinary variables. IMaCh allows up to 8 variables. The
 age is the weighted mean of the mortality in each state by the  current version of this program allows only to add simple variables like age+sex
 prevalence in each state. Therefore if the proportion of people  or age+sex+ age*sex but will never be general enough. But what is to remember,
 at each age and in each state is different from the stationary  is that incidences or probability of change from one state to another is
 equilibrium, there is no reason to find the same total mortality  affected by the variables specified into the model.</P>
 at a particular age. Life expectancy, even if it is a very useful  <P>Also, the age range of the people interviewed is linked the age range of the
 tool, has a very strong hypothesis of homogeneity of the  life expectancy which can be estimated by extrapolation. If your sample ranges
 population. Our main purpose is not to measure differential  from age 70 to 95, you can clearly estimate a life expectancy at age 70 and
 mortality but to measure the expected time in a healthy or  trust your confidence interval because it is mostly based on your sample size,
 disability state in order to maximise the former and minimize the  but if you want to estimate the life expectancy at age 50, you should rely in
 latter. But the differential in mortality complexifies the  the design of your model. Fitting a logistic model on a age range of 70 to 95
 measurement.</p>  and estimating probabilties of transition out of this age range, say at age 50,
   is very dangerous. At least you should remember that the confidence interval
 <p>Incidences of disability or recovery are not affected by the  given by the standard deviation of the health expectancies, are under the strong
 number of states if these states are independant. But incidences  assumption that your model is the 'true model', which is probably not the case
 estimates are dependant on the specification of the model. More  outside the age range of your sample.</P>
 covariates we added in the logit model better is the model, but  <H5><FONT color=#ec5e5e size=3><B>- Copy of the parameter file</B></FONT><B>:
 some covariates are not well measured, some are confounding  </B><A
 factors like in any statistical model. The procedure to &quot;fit  href="http://euroreves.ined.fr/imach/doc/orbiaspar.txt"><B>orbiaspar.txt</B></A></H5>
 the best model' is similar to logistic regression which itself is  <P>This copy of the parameter file can be useful to re-run the program while
 similar to regression analysis. We haven't yet been sofar because  saving the old output files. </P>
 we also have a severe limitation which is the speed of the  <H5><FONT color=#ec5e5e size=3><B>- Prevalence forecasting</B></FONT><B>: </B><A
 convergence. On a Pentium III, 500 MHz, even the simplest model,  href="http://euroreves.ined.fr/imach/doc/biaspar/frbiaspar.txt"><B>biaspar/frbiaspar.txt</B></A></H5>
 estimated by month on 8,000 people may take 4 hours to converge.  <P>First, we have estimated the observed prevalence between 1/1/1984 and
 Also, the program is not yet a statistical package, which permits  1/6/1988 (June, European syntax of dates). The mean date of all interviews
 a simple writing of the variables and the model to take into  (weighted average of the interviews performed between 1/1/1984 and 1/6/1988) is
 account in the maximisation. The actual program allows only to  estimated to be 13/9/1985, as written on the top on the file. Then we forecast
 add simple variables like age+sex or age+sex+ age*sex but will  the probability to be in each state. </P>
 never be general enough. But what is to remember, is that  <P>For example on 1/1/1989 : </P><PRE class=MsoNormal># StartingAge FinalAge P.1 P.2 P.3
 incidences or probability of change from one state to another is  
 affected by the variables specified into the model.</p>  
   
 <p>Also, the age range of the people interviewed has a link with  
 the age range of the life expectancy which can be estimated by  
 extrapolation. If your sample ranges from age 70 to 95, you can  
 clearly estimate a life expectancy at age 70 and trust your  
 confidence interval which is mostly based on your sample size,  
 but if you want to estimate the life expectancy at age 50, you  
 should rely in your model, but fitting a logistic model on a age  
 range of 70-95 and estimating probabilties of transition out of  
 this age range, say at age 50 is very dangerous. At least you  
 should remember that the confidence interval given by the  
 standard deviation of the health expectancies, are under the  
 strong assumption that your model is the 'true model', which is  
 probably not the case.</p>  
   
 <h5><font color="#EC5E5E" size="3"><b>- Copy of the parameter  
 file</b></font><b>: </b><a href="orbiaspar.txt"><b>orbiaspar.txt</b></a></h5>  
   
 <p>This copy of the parameter file can be useful to re-run the  
 program while saving the old output files. </p>  
   
 <h5><font color="#EC5E5E" size="3"><b>- Prevalence forecasting</b></font><b>:  
 </b><a href="frbiaspar.txt"><b>frbiaspar.txt</b></a></h5>  
   
 <p  
 style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">First,  
 we have estimated the observed prevalence between 1/1/1984 and  
 1/6/1988. The mean date of interview (weighed average of the  
 interviews performed between1/1/1984 and 1/6/1988) is estimated  
 to be 13/9/1985, as written on the top on the file. Then we  
 forecast the probability to be in each state. </p>  
   
 <p  
 style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">Example,  
 at date 1/1/1989 : </p>  
   
 <pre class="MsoNormal"># StartingAge FinalAge P.1 P.2 P.3  
 # Forecasting at date 1/1/1989  # Forecasting at date 1/1/1989
   73 0.807 0.078 0.115</pre>    73 0.807 0.078 0.115</PRE>
   <P>Since the minimum age is 70 on the 13/9/1985, the youngest forecasted age is
 <p  73. This means that at age a person aged 70 at 13/9/1989 has a probability to
 style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">Since  enter state1 of 0.807 at age 73 on 1/1/1989. Similarly, the probability to be in
 the minimum age is 70 on the 13/9/1985, the youngest forecasted  state 2 is 0.078 and the probability to die is 0.115. Then, on the 1/1/1989, the
 age is 73. This means that at age a person aged 70 at 13/9/1989  prevalence of disability at age 73 is estimated to be 0.088.</P>
 has a probability to enter state1 of 0.807 at age 73 on 1/1/1989.  <H5><FONT color=#ec5e5e size=3><B>- Population forecasting</B></FONT><B>: </B><A
 Similarly, the probability to be in state 2 is 0.078 and the  href="http://euroreves.ined.fr/imach/doc/biaspar/poprbiaspar.txt"><B>biaspar/poprbiaspar.txt</B></A></H5><PRE># Age P.1 P.2 P.3 [Population]
 probability to die is 0.115. Then, on the 1/1/1989, the  
 prevalence of disability at age 73 is estimated to be 0.088.</p>  
   
 <h5><font color="#EC5E5E" size="3"><b>- Population forecasting</b></font><b>:  
 </b><a href="poprbiaspar.txt"><b>poprbiaspar.txt</b></a></h5>  
   
 <pre># Age P.1 P.2 P.3 [Population]  
 # Forecasting at date 1/1/1989  # Forecasting at date 1/1/1989
 75 572685.22 83798.08  75 572685.22 83798.08
 74 621296.51 79767.99  74 621296.51 79767.99
 73 645857.70 69320.60 </pre>  73 645857.70 69320.60 </PRE><PRE># Forecasting at date 1/1/19909
   
 <pre># Forecasting at date 1/1/19909  
 76 442986.68 92721.14 120775.48  76 442986.68 92721.14 120775.48
 75 487781.02 91367.97 121915.51  75 487781.02 91367.97 121915.51
 74 512892.07 85003.47 117282.76 </pre>  74 512892.07 85003.47 117282.76 </PRE>
   <P>From the population file, we estimate the number of people in each state. At
 <p>From the population file, we estimate the number of people in  age 73, 645857 persons are in state 1 and 69320 are in state 2. One year latter,
 each state. At age 73, 645857 persons are in state 1 and 69320  512892 are still in state 1, 85003 are in state 2 and 117282 died before
 are in state 2. One year latter, 512892 are still in state 1,  1/1/1990.</P>
 85003 are in state 2 and 117282 died before 1/1/1990.</p>  <HR>
   
 <hr>  <H2><A name=example></A><FONT color=#00006a>Trying an example</FONT></H2>
   <P>Since you know how to run the program, it is time to test it on your own
 <h2><a name="example"></a><font color="#00006A">Trying an example</font></h2>  computer. Try for example on a parameter file named <A
   href="http://euroreves.ined.fr/imach/doc/imachpar.imach">imachpar.imach</A>
 <p>Since you know how to run the program, it is time to test it  which is a copy of <FONT face="Courier New" size=2>mypar.imach</FONT> included
 on your own computer. Try for example on a parameter file named <a  in the subdirectory of imach, <FONT face="Courier New" size=2>mytry</FONT>. Edit
 href="..\mytry\imachpar.imach">imachpar.imach</a> which is a copy  it and change the name of the data file to <FONT face="Courier New"
 of <font size="2" face="Courier New">mypar.imach</font> included  size=2>mydata.txt</FONT> if you don't want to copy it on the same directory. The
 in the subdirectory of imach, <font size="2" face="Courier New">mytry</font>.  file <FONT face="Courier New">mydata.txt</FONT> is a smaller file of 3,000
 Edit it to change the name of the data file to <font size="2"  people but still with 4 waves. </P>
 face="Courier New">..\data\mydata.txt</font> if you don't want to  <P>Right click on the .imach file and a window will popup with the string
 copy it on the same directory. The file <font face="Courier New">mydata.txt</font>  '<STRONG>Enter the parameter file name:'</STRONG></P>
 is a smaller file of 3,000 people but still with 4 waves. </p>  <TABLE border=1>
     <TBODY>
 <p>Click on the imach.exe icon to open a window. Answer to the    <TR>
 question:'<strong>Enter the parameter file name:'</strong></p>      <TD width="100%"><STRONG>IMACH, Version 0.97b</STRONG>
         <P><STRONG>Enter the parameter file name:
 <table border="1">    imachpar.imach</STRONG></P></TD></TR></TBODY></TABLE>
     <tr>  <P>Most of the data files or image files generated, will use the 'imachpar'
         <td width="100%"><strong>IMACH, Version 0.8a</strong><p><strong>Enter  string into their name. The running time is about 2-3 minutes on a Pentium III.
         the parameter file name: ..\mytry\imachpar.imach</strong></p>  If the execution worked correctly, the outputs files are created in the current
         </td>  directory, and should be the same as the mypar files initially included in the
     </tr>  directory <FONT face="Courier New" size=2>mytry</FONT>.</P>
 </table>  <UL>
     <LI><PRE><U>Output on the screen</U> The output screen looks like <A href="http://euroreves.ined.fr/imach/doc/biaspar.log">biaspar.log</A>
 <p>Most of the data files or image files generated, will use the  
 'imachpar' string into their name. The running time is about 2-3  
 minutes on a Pentium III. If the execution worked correctly, the  
 outputs files are created in the current directory, and should be  
 the same as the mypar files initially included in the directory <font  
 size="2" face="Courier New">mytry</font>.</p>  
   
 <ul>  
     <li><pre><u>Output on the screen</u> The output screen looks like <a  
 href="imachrun.LOG">this Log file</a>  
 #  #
   title=MLE datafile=mydaiata.txt lastobs=3000 firstpass=1 lastpass=3
 title=MLE datafile=..\data\mydata.txt lastobs=3000 firstpass=1 lastpass=3  ftol=1.000000e-008 stepm=24 ncovcol=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</PRE>
 ftol=1.000000e-008 stepm=24 ncovcol=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>    <LI><PRE>Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92
     </li>  
     <li><pre>Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92  
   
 Warning, no any valid information for:126 line=126  Warning, no any valid information for:126 line=126
 Warning, no any valid information for:2307 line=2307  Warning, no any valid information for:2307 line=2307
 Delay (in months) between two waves Min=21 Max=51 Mean=24.495826  Delay (in months) between two waves Min=21 Max=51 Mean=24.495826
 <font face="Times New Roman">These lines give some warnings on the data file and also some raw statistics on frequencies of transitions.</font>  <FONT face="Times New Roman">These lines give some warnings on the data file and also some raw statistics on frequencies of transitions.</FONT>
 Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]=12.5% 1.=222 prev[1]=94.1% 2.=14  Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]=12.5% 1.=222 prev[1]=94.1% 2.=14
  prev[2]=5.9% 1-1=8 11=200 12=7 13=15 2-1=2 21=6 22=7 23=1   prev[2]=5.9% 1-1=8 11=200 12=7 13=15 2-1=2 21=6 22=7 23=1
 Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 </pre>  Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 </PRE></LI></UL>It
     </li>  includes some warnings or errors which are very important for you. Be careful
 </ul>  with such warnings because your results may be biased if, for example, you have
   people who accepted to be interviewed at first pass but never after. Or if you
 <p>&nbsp;</p>  don't have the exact month of death. In such cases IMaCh doesn't take any
   initiative, it does only warn you. It is up to you to decide what to do with
 <ul>  these people. Excluding them is usually a wrong decision. It is better to decide
     <li>Maximisation with the Powell algorithm. 8 directions are  that the month of death is at the mid-interval between the last two waves for
         given corresponding to the 8 parameters. this can be  example.
         rather long to get convergence.<br>  <P>If you survey suffers from severe attrition, you have to analyse the
         <font size="1" face="Courier New"><br>  characteristics of the lost people and overweight people with same
         Powell iter=1 -2*LL=11531.405658264877 1 0.000000000000 2  characteristics for example.
         0.000000000000 3<br>  <P>By default, IMaCH warns and excludes these problematic people, but you have
         0.000000000000 4 0.000000000000 5 0.000000000000 6  to be careful with such results.
         0.000000000000 7 <br>  <P>&nbsp;</P>
         0.000000000000 8 0.000000000000<br>  <UL>
         1..........2.................3..........4.................5.........<br>    <LI>Maximisation with the Powell algorithm. 8 directions are given
         6................7........8...............<br>    corresponding to the 8 parameters. this can be rather long to get
         Powell iter=23 -2*LL=6744.954108371555 1 -12.967632334283    convergence.<BR><FONT face="Courier New" size=1><BR>Powell iter=1
         <br>    -2*LL=11531.405658264877 1 0.000000000000 2 0.000000000000 3<BR>0.000000000000
         2 0.135136681033 3 -7.402109728262 4 0.067844593326 <br>    4 0.000000000000 5 0.000000000000 6 0.000000000000 7 <BR>0.000000000000 8
         5 -0.673601538129 6 -0.006615504377 7 -5.051341616718 <br>    0.000000000000<BR>1..........2.................3..........4.................5.........<BR>6................7........8...............<BR>Powell
         8 0.051272038506<br>    iter=23 -2*LL=6744.954108371555 1 -12.967632334283 <BR>2 0.135136681033 3
         1..............2...........3..............4...........<br>    -7.402109728262 4 0.067844593326 <BR>5 -0.673601538129 6 -0.006615504377 7
         5..........6................7...........8.........<br>    -5.051341616718 <BR>8
         #Number of iterations = 23, -2 Log likelihood =    0.051272038506<BR>1..............2...........3..............4...........<BR>5..........6................7...........8.........<BR>#Number
         6744.954042573691<br>    of iterations = 23, -2 Log likelihood = 6744.954042573691<BR>#
         # Parameters<br>    Parameters<BR>12 -12.966061 0.135117 <BR>13 -7.401109 0.067831 <BR>21
         12 -12.966061 0.135117 <br>    -0.672648 -0.006627 <BR>23 -5.051297 0.051271 </FONT><BR>
         13 -7.401109 0.067831 <br>    <LI><PRE><FONT size=2>Calculation of the hessian matrix. Wait...
         21 -0.672648 -0.006627 <br>  
         23 -5.051297 0.051271 </font><br>  
         </li>  
     <li><pre><font size="2">Calculation of the hessian matrix. Wait...  
 12345678.12.13.14.15.16.17.18.23.24.25.26.27.28.34.35.36.37.38.45.46.47.48.56.57.58.67.68.78  12345678.12.13.14.15.16.17.18.23.24.25.26.27.28.34.35.36.37.38.45.46.47.48.56.57.58.67.68.78
   
 Inverting the hessian to get the covariance matrix. Wait...  Inverting the hessian to get the covariance matrix. Wait...
Line 1232  Computing Variance-covariance of DFLEs: Line 1036  Computing Variance-covariance of DFLEs:
 Computing Total LEs with variances: file 'trmypar.txt'  Computing Total LEs with variances: file 'trmypar.txt'
 Computing Variance-covariance of Prevalence limit: file 'vplrmypar.txt'  Computing Variance-covariance of Prevalence limit: file 'vplrmypar.txt'
 End of Imach  End of Imach
 </font></pre>  </FONT></PRE></LI></UL>
     </li>  <P><FONT size=3>Once the running is finished, the program requires a
 </ul>  character:</FONT></P>
   <TABLE border=1>
 <p><font size="3">Once the running is finished, the program    <TBODY>
 requires a caracter:</font></p>    <TR>
       <TD width="100%"><STRONG>Type e to edit output files, g to graph again, c
 <table border="1">        to start again, and q for exiting:</STRONG></TD></TR></TBODY></TABLE>In order to
     <tr>  have an idea of the time needed to reach convergence, IMaCh gives an estimation
         <td width="100%"><strong>Type e to edit output files, g  if the convergence needs 10, 20 or 30 iterations. It might be useful.
         to graph again, c to start again, and q for exiting:</strong></td>  <P><FONT size=3>First you should enter <STRONG>e </STRONG>to edit the master
     </tr>  file mypar.htm. </FONT></P>
 </table>  <UL>
     <LI><U>Outputs files</U> <BR><BR>- Copy of the parameter file: <A
 <p><font size="3">First you should enter <strong>e </strong>to    href="http://euroreves.ined.fr/imach/doc/ormypar.txt">ormypar.txt</A><BR>-
 edit the master file mypar.htm. </font></p>    Gnuplot file name: <A
     href="http://euroreves.ined.fr/imach/doc/mypar.gp.txt">mypar.gp.txt</A><BR>-
 <ul>    Cross-sectional prevalence in each state: <A
     <li><u>Outputs files</u> <br>    href="http://euroreves.ined.fr/imach/doc/prmypar.txt">prmypar.txt</A> <BR>-
         <br>    Period prevalence in each state: <A
         - Copy of the parameter file: <a href="ormypar.txt">ormypar.txt</a><br>    href="http://euroreves.ined.fr/imach/doc/plrmypar.txt">plrmypar.txt</A> <BR>-
         - Gnuplot file name: <a href="mypar.gp.txt">mypar.gp.txt</a><br>    Transition probabilities: <A
         - Observed prevalence in each state: <a    href="http://euroreves.ined.fr/imach/doc/pijrmypar.txt">pijrmypar.txt</A><BR>-
         href="prmypar.txt">prmypar.txt</a> <br>    Life expectancies by age and initial health status (estepm=24 months): <A
         - Stationary prevalence in each state: <a    href="http://euroreves.ined.fr/imach/doc/ermypar.txt">ermypar.txt</A> <BR>-
         href="plrmypar.txt">plrmypar.txt</a> <br>    Parameter file with estimated parameters and the covariance matrix: <A
         - Transition probabilities: <a href="pijrmypar.txt">pijrmypar.txt</a><br>    href="http://euroreves.ined.fr/imach/doc/rmypar.txt">rmypar.txt</A> <BR>-
         - Life expectancies by age and initial health status    Variance of one-step probabilities: <A
         (estepm=24 months): <a href="ermypar.txt">ermypar.txt</a>    href="http://euroreves.ined.fr/imach/doc/probrmypar.txt">probrmypar.txt</A>
         <br>    <BR>- Variances of life expectancies by age and initial health status
         - Parameter file with estimated parameters and the    (estepm=24 months): <A
         covariance matrix: <a href="rmypar.txt">rmypar.txt</a> <br>    href="http://euroreves.ined.fr/imach/doc/vrmypar.txt">vrmypar.txt</A><BR>-
         - Variance of one-step probabilities: <a    Health expectancies with their variances: <A
         href="probrmypar.txt">probrmypar.txt</a> <br>    href="http://euroreves.ined.fr/imach/doc/trmypar.txt">trmypar.txt</A> <BR>-
         - Variances of life expectancies by age and initial    Standard deviation of period prevalences: <A
         health status (estepm=24 months): <a href="vrmypar.txt">vrmypar.txt</a><br>    href="http://euroreves.ined.fr/imach/doc/vplrmypar.txt">vplrmypar.txt</A>
         - Health expectancies with their variances: <a    <BR>No population forecast: popforecast = 0 (instead of 1) or stepm = 24
         href="trmypar.txt">trmypar.txt</a> <br>    (instead of 1) or model=. (instead of .)<BR><BR>
         - Standard deviation of stationary prevalences: <a    <LI><U>Graphs</U> <BR><BR>-<A
         href="vplrmypar.txt">vplrmypar.txt</a> <br>    href="http://euroreves.ined.fr/imach/mytry/pemypar1.gif">One-step transition
         No population forecast: popforecast = 0 (instead of 1) or    probabilities</A><BR>-<A
         stepm = 24 (instead of 1) or model=. (instead of .)<br>    href="http://euroreves.ined.fr/imach/mytry/pmypar11.gif">Convergence to the
         <br>    period prevalence</A><BR>-<A
         </li>    href="http://euroreves.ined.fr/imach/mytry/vmypar11.gif">Cross-sectional and
     <li><u>Graphs</u> <br>    period prevalence in state (1) with the confident interval</A> <BR>-<A
         <br>    href="http://euroreves.ined.fr/imach/mytry/vmypar21.gif">Cross-sectional and
         -<a href="../mytry/pemypar1.gif">One-step transition    period prevalence in state (2) with the confident interval</A> <BR>-<A
         probabilities</a><br>    href="http://euroreves.ined.fr/imach/mytry/expmypar11.gif">Health life
         -<a href="../mytry/pmypar11.gif">Convergence to the    expectancies by age and initial health state (1)</A> <BR>-<A
         stationary prevalence</a><br>    href="http://euroreves.ined.fr/imach/mytry/expmypar21.gif">Health life
         -<a href="..\mytry\vmypar11.gif">Observed and stationary    expectancies by age and initial health state (2)</A> <BR>-<A
         prevalence in state (1) with the confident interval</a> <br>    href="http://euroreves.ined.fr/imach/mytry/emypar1.gif">Total life expectancy
         -<a href="..\mytry\vmypar21.gif">Observed and stationary    by age and health expectancies in states (1) and (2).</A> </LI></UL>
         prevalence in state (2) with the confident interval</a> <br>  <P>This software have been partly granted by <A
         -<a href="..\mytry\expmypar11.gif">Health life  href="http://euroreves.ined.fr/">Euro-REVES</A>, a concerted action from the
         expectancies by age and initial health state (1)</a> <br>  European Union. It will be copyrighted identically to a GNU software product,
         -<a href="..\mytry\expmypar21.gif">Health life  i.e. program and software can be distributed freely for non commercial use.
         expectancies by age and initial health state (2)</a> <br>  Sources are not widely distributed today. You can get them by asking us with a
         -<a href="..\mytry\emypar1.gif">Total life expectancy by  simple justification (name, email, institute) <A
         age and health expectancies in states (1) and (2).</a> </li>  href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</A> and <A
 </ul>  href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</A> .</P>
   <P>Latest version (0.97b of June 2004) can be accessed at <A
 <p>This software have been partly granted by <a  href="http://euroreves.ined.fr/imach">http://euroreves.ined.fr/imach</A><BR></P></BODY></HTML>
 href="http://euroreves.ined.fr">Euro-REVES</a>, a concerted  
 action from the European Union. It will be copyrighted  
 identically to a GNU software product, i.e. program and software  
 can be distributed freely for non commercial use. Sources are not  
 widely distributed today. You can get them by asking us with a  
 simple justification (name, email, institute) <a  
 href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</a> and <a  
 href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</a> .</p>  
   
 <p>Latest version (0.8a of May 2002) can be accessed at <a  
 href="http://euroreves.ined.fr/imach">http://euroreves.ined.fr/imach</a><br>  
 </p>  
 </body>  
 </html>  

Removed from v.1.1  
changed lines
  Added in v.1.5


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>