Diff for /imach/src/imach.c between versions 1.46 and 1.117

version 1.46, 2002/05/30 17:44:35 version 1.117, 2006/03/14 17:16:22
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.117  2006/03/14 17:16:22  brouard
      (Module): varevsij Comments added explaining the second
   This program computes Healthy Life Expectancies from    table of variances if popbased=1 .
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   first survey ("cross") where individuals from different ages are    (Module): Function pstamp added
   interviewed on their health status or degree of disability (in the    (Module): Version 0.98d
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.116  2006/03/06 10:29:27  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Variance-covariance wrong links and
   computed from the time spent in each health state according to a    varian-covariance of ej. is needed (Saito).
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.115  2006/02/27 12:17:45  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): One freematrix added in mlikeli! 0.98c
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.114  2006/02/26 12:57:58  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Some improvements in processing parameter
   'age' is age and 'sex' is a covariate. If you want to have a more    filename with strsep.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.113  2006/02/24 14:20:24  brouard
   you to do it.  More covariates you add, slower the    (Module): Memory leaks checks with valgrind and:
   convergence.    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.112  2006/01/30 09:55:26  brouard
   identical for each individual. Also, if a individual missed an    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   hPijx is the probability to be observed in state i at age x+h    (Module): Comments can be added in data file. Missing date values
   conditional to the observed state i at age x. The delay 'h' can be    can be a simple dot '.'.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.110  2006/01/25 00:51:50  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Lots of cleaning and bugs added (Gompertz)
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.109  2006/01/24 19:37:15  brouard
   hPijx.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.108  2006/01/19 18:05:42  lievre
   of the life expectancies. It also computes the prevalence limits.    Gnuplot problem appeared...
      To be fixed
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.107  2006/01/19 16:20:37  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Test existence of gnuplot in imach path
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.106  2006/01/19 13:24:36  brouard
   software can be distributed freely for non commercial use. Latest version    Some cleaning and links added in html output
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.105  2006/01/05 20:23:19  lievre
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.104  2005/09/30 16:11:43  lievre
 #include <stdlib.h>    (Module): sump fixed, loop imx fixed, and simplifications.
 #include <unistd.h>    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 #define MAXLINE 256    (instead of missing=-1 in earlier versions) and his/her
 #define GNUPLOTPROGRAM "gnuplot"    contributions to the likelihood is 1 - Prob of dying from last
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define FILENAMELENGTH 80    the healthy state at last known wave). Version is 0.98
 /*#define DEBUG*/  
 #define windows    Revision 1.103  2005/09/30 15:54:49  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.102  2004/09/15 17:31:30  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Add the possibility to read data file including tab characters.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.101  2004/09/15 10:38:38  brouard
 #define NINTERVMAX 8    Fix on curr_time
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.100  2004/07/12 18:29:06  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Add version for Mac OS X. Just define UNIX in Makefile
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define AGESUP 130    *** empty log message ***
 #define AGEBASE 40  
     Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 int erreur; /* Error number */    directly from the data i.e. without the need of knowing the health
 int nvar;    state at each age, but using a Gompertz model: log u =a + b*age .
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    This is the basic analysis of mortality and should be done before any
 int npar=NPARMAX;    other analysis, in order to test if the mortality estimated from the
 int nlstate=2; /* Number of live states */    cross-longitudinal survey is different from the mortality estimated
 int ndeath=1; /* Number of dead states */    from other sources like vital statistic data.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    The same imach parameter file can be used but the option for mle should be -3.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Agnès, who wrote this part of the code, tried to keep most of the
 int maxwav; /* Maxim number of waves */    former routines in order to include the new code within the former code.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    The output is very simple: only an estimate of the intercept and of
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    the slope with 95% confident intervals.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Current limitations:
 double **oldm, **newm, **savm; /* Working pointers to matrices */    A) Even if you enter covariates, i.e. with the
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    B) There is no computation of Life Expectancy nor Life Table.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficreseij;    Revision 1.97  2004/02/20 13:25:42  lievre
   char filerese[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
  FILE  *ficresvij;    suppressed.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.96  2003/07/15 15:38:55  brouard
   char fileresvpl[FILENAMELENGTH];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.95  2003/07/08 07:54:34  brouard
 #define FTOL 1.0e-10    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define NRANSI    matrix (cov(a12,c31) instead of numbers.
 #define ITMAX 200  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define TOL 2.0e-4    Just cleaning
   
 #define CGOLD 0.3819660    Revision 1.93  2003/06/25 16:33:55  brouard
 #define ZEPS 1.0e-10    (Module): On windows (cygwin) function asctime_r doesn't
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.92  2003/06/25 16:30:45  brouard
 #define TINY 1.0e-20    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.91  2003/06/25 15:30:29  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Duplicated warning errors corrected.
      (Repository): Elapsed time after each iteration is now output. It
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    helps to forecast when convergence will be reached. Elapsed time
 #define rint(a) floor(a+0.5)    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.90  2003/06/24 12:34:15  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int imx;    of the covariance matrix to be input.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 int estepm;    mle=-1 a template is output in file "or"mypar.txt with the design
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    of the covariance matrix to be input.
   
 int m,nb;    Revision 1.88  2003/06/23 17:54:56  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.87  2003/06/18 12:26:01  brouard
 double dateintmean=0;    Version 0.96
   
 double *weight;    Revision 1.86  2003/06/17 20:04:08  brouard
 int **s; /* Status */    (Module): Change position of html and gnuplot routines and added
 double *agedc, **covar, idx;    routine fileappend.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.85  2003/06/17 13:12:43  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    * imach.c (Repository): Check when date of death was earlier that
 double ftolhess; /* Tolerance for computing hessian */    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 /**************** split *************************/    was wrong (infinity). We still send an "Error" but patch by
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    assuming that the date of death was just one stepm after the
 {    interview.
    char *s;                             /* pointer */    (Repository): Because some people have very long ID (first column)
    int  l1, l2;                         /* length counters */    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
    l1 = strlen( path );                 /* length of path */    truncation)
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Repository): No more line truncation errors.
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.84  2003/06/13 21:44:43  brouard
 #else    * imach.c (Repository): Replace "freqsummary" at a correct
    s = strrchr( path, '/' );            /* find last / */    place. It differs from routine "prevalence" which may be called
 #endif    many times. Probs is memory consuming and must be used with
    if ( s == NULL ) {                   /* no directory, so use current */    parcimony.
 #if     defined(__bsd__)                /* get current working directory */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       extern char       *getwd( );  
     Revision 1.83  2003/06/10 13:39:11  lievre
       if ( getwd( dirc ) == NULL ) {    *** empty log message ***
 #else  
       extern char       *getcwd( );    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  */
          return( GLOCK_ERROR_GETCWD );  /*
       }     Interpolated Markov Chain
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Short summary of the programme:
       s++;                              /* after this, the filename */    
       l2 = strlen( s );                 /* length of filename */    This program computes Healthy Life Expectancies from
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       strcpy( name, s );                /* save file name */    first survey ("cross") where individuals from different ages are
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    interviewed on their health status or degree of disability (in the
       dirc[l1-l2] = 0;                  /* add zero */    case of a health survey which is our main interest) -2- at least a
    }    second wave of interviews ("longitudinal") which measure each change
    l1 = strlen( dirc );                 /* length of directory */    (if any) in individual health status.  Health expectancies are
 #ifdef windows    computed from the time spent in each health state according to a
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    model. More health states you consider, more time is necessary to reach the
 #else    Maximum Likelihood of the parameters involved in the model.  The
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    simplest model is the multinomial logistic model where pij is the
 #endif    probability to be observed in state j at the second wave
    s = strrchr( name, '.' );            /* find last / */    conditional to be observed in state i at the first wave. Therefore
    s++;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    strcpy(ext,s);                       /* save extension */    'age' is age and 'sex' is a covariate. If you want to have a more
    l1= strlen( name);    complex model than "constant and age", you should modify the program
    l2= strlen( s)+1;    where the markup *Covariates have to be included here again* invites
    strncpy( finame, name, l1-l2);    you to do it.  More covariates you add, slower the
    finame[l1-l2]= 0;    convergence.
    return( 0 );                         /* we're done */  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /******************************************/    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 void replace(char *s, char*t)  
 {    hPijx is the probability to be observed in state i at age x+h
   int i;    conditional to the observed state i at age x. The delay 'h' can be
   int lg=20;    split into an exact number (nh*stepm) of unobserved intermediate
   i=0;    states. This elementary transition (by month, quarter,
   lg=strlen(t);    semester or year) is modelled as a multinomial logistic.  The hPx
   for(i=0; i<= lg; i++) {    matrix is simply the matrix product of nh*stepm elementary matrices
     (s[i] = t[i]);    and the contribution of each individual to the likelihood is simply
     if (t[i]== '\\') s[i]='/';    hPijx.
   }  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 int nbocc(char *s, char occ)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int i,j=0;             Institut national d'études démographiques, Paris.
   int lg=20;    This software have been partly granted by Euro-REVES, a concerted action
   i=0;    from the European Union.
   lg=strlen(s);    It is copyrighted identically to a GNU software product, ie programme and
   for(i=0; i<= lg; i++) {    software can be distributed freely for non commercial use. Latest version
   if  (s[i] == occ ) j++;    can be accessed at http://euroreves.ined.fr/imach .
   }  
   return j;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 void cutv(char *u,char *v, char*t, char occ)    **********************************************************************/
 {  /*
   int i,lg,j,p=0;    main
   i=0;    read parameterfile
   for(j=0; j<=strlen(t)-1; j++) {    read datafile
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    concatwav
   }    freqsummary
     if (mle >= 1)
   lg=strlen(t);      mlikeli
   for(j=0; j<p; j++) {    print results files
     (u[j] = t[j]);    if mle==1 
   }       computes hessian
      u[p]='\0';    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
    for(j=0; j<= lg; j++) {    open gnuplot file
     if (j>=(p+1))(v[j-p-1] = t[j]);    open html file
   }    period (stable) prevalence
 }     for age prevalim()
     h Pij x
 /********************** nrerror ********************/    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 void nrerror(char error_text[])    health expectancies
 {    Variance-covariance of DFLE
   fprintf(stderr,"ERREUR ...\n");    prevalence()
   fprintf(stderr,"%s\n",error_text);     movingaverage()
   exit(1);    varevsij() 
 }    if popbased==1 varevsij(,popbased)
 /*********************** vector *******************/    total life expectancies
 double *vector(int nl, int nh)    Variance of period (stable) prevalence
 {   end
   double *v;  */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  
 }   
   #include <math.h>
 /************************ free vector ******************/  #include <stdio.h>
 void free_vector(double*v, int nl, int nh)  #include <stdlib.h>
 {  #include <string.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <unistd.h>
 }  
   #include <limits.h>
 /************************ivector *******************************/  #include <sys/types.h>
 int *ivector(long nl,long nh)  #include <sys/stat.h>
 {  #include <errno.h>
   int *v;  extern int errno;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  /* #include <sys/time.h> */
   return v-nl+NR_END;  #include <time.h>
 }  #include "timeval.h"
   
 /******************free ivector **************************/  /* #include <libintl.h> */
 void free_ivector(int *v, long nl, long nh)  /* #define _(String) gettext (String) */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /******************* imatrix *******************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define FILENAMELENGTH 132
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   int **m;  
    #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   /* allocate pointers to rows */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NINTERVMAX 8
   m += NR_END;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m -= nrl;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
    #define MAXN 20000
   /* allocate rows and set pointers to them */  #define YEARM 12. /* Number of months per year */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define AGESUP 130
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define AGEBASE 40
   m[nrl] += NR_END;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m[nrl] -= ncl;  #ifdef UNIX
    #define DIRSEPARATOR '/'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   /* return pointer to array of pointers to rows */  #else
   return m;  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /****************** free_imatrix *************************/  #endif
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  /* $Id$ */
       long nch,ncl,nrh,nrl;  /* $State$ */
      /* free an int matrix allocated by imatrix() */  
 {  char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG) (m+nrl-NR_END));  char strstart[80];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /******************* matrix *******************************/  int nvar;
 double **matrix(long nrl, long nrh, long ncl, long nch)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 {  int npar=NPARMAX;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int nlstate=2; /* Number of live states */
   double **m;  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int popbased=0;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  int *wav; /* Number of waves for this individuual 0 is possible */
   m -= nrl;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl] += NR_END;                     to the likelihood and the sum of weights (done by funcone)*/
   m[nrl] -= ncl;  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return m;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /*************************free matrix ************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficlog, *ficrespow;
   free((FREE_ARG)(m+nrl-NR_END));  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /******************* ma3x *******************************/  double sw; /* Sum of weights */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  FILE *ficresilk;
   double ***m;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *fichtm, *fichtmcov; /* Html File */
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficreseij;
   m += NR_END;  char filerese[FILENAMELENGTH];
   m -= nrl;  FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficrescveij;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerescve[FILENAMELENGTH];
   m[nrl] += NR_END;  FILE  *ficresvij;
   m[nrl] -= ncl;  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m[nrl][ncl] -= nll;  char command[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  int  outcmd=0;
     m[nrl][j]=m[nrl][j-1]+nlay;  
    char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char filelog[FILENAMELENGTH]; /* Log file */
     for (j=ncl+1; j<=nch; j++)  char filerest[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  char fileregp[FILENAMELENGTH];
   }  char popfile[FILENAMELENGTH];
   return m;  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /*************************free ma3x ************************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  struct timezone tzp;
 {  extern int gettimeofday();
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  long time_value;
   free((FREE_ARG)(m+nrl-NR_END));  extern long time();
 }  char strcurr[80], strfor[80];
   
 /***************** f1dim *************************/  char *endptr;
 extern int ncom;  long lval;
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #define NR_END 1
    #define FREE_ARG char*
 double f1dim(double x)  #define FTOL 1.0e-10
 {  
   int j;  #define NRANSI 
   double f;  #define ITMAX 200 
   double *xt;  
    #define TOL 2.0e-4 
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define CGOLD 0.3819660 
   f=(*nrfunc)(xt);  #define ZEPS 1.0e-10 
   free_vector(xt,1,ncom);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   return f;  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /*****************brent *************************/  #define TINY 1.0e-20 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  static double maxarg1,maxarg2;
   int iter;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double a,b,d,etemp;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double fu,fv,fw,fx;    
   double ftemp;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define rint(a) floor(a+0.5)
   double e=0.0;  
    static double sqrarg;
   a=(ax < cx ? ax : cx);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   b=(ax > cx ? ax : cx);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   x=w=v=bx;  int agegomp= AGEGOMP;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  int imx; 
     xm=0.5*(a+b);  int stepm=1;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /* Stepm, step in month: minimum step interpolation*/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  int estepm;
 #ifdef DEBUG  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int m,nb;
 #endif  long *num;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       *xmin=x;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       return fx;  double **pmmij, ***probs;
     }  double *ageexmed,*agecens;
     ftemp=fu;  double dateintmean=0;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  double *weight;
       q=(x-v)*(fx-fw);  int **s; /* Status */
       p=(x-v)*q-(x-w)*r;  double *agedc, **covar, idx;
       q=2.0*(q-r);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       if (q > 0.0) p = -p;  double *lsurv, *lpop, *tpop;
       q=fabs(q);  
       etemp=e;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       e=d;  double ftolhess; /* Tolerance for computing hessian */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /**************** split *************************/
       else {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         d=p/q;  {
         u=x+d;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         if (u-a < tol2 || b-u < tol2)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
           d=SIGN(tol1,xm-x);    */ 
       }    char  *ss;                            /* pointer */
     } else {    int   l1, l2;                         /* length counters */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    l1 = strlen(path );                   /* length of path */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     fu=(*f)(u);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if (fu <= fx) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       if (u >= x) a=x; else b=x;      strcpy( name, path );               /* we got the fullname name because no directory */
       SHFT(v,w,x,u)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         SHFT(fv,fw,fx,fu)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         } else {      /* get current working directory */
           if (u < x) a=u; else b=u;      /*    extern  char* getcwd ( char *buf , int len);*/
           if (fu <= fw || w == x) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
             v=w;        return( GLOCK_ERROR_GETCWD );
             w=u;      }
             fv=fw;      /* got dirc from getcwd*/
             fw=fu;      printf(" DIRC = %s \n",dirc);
           } else if (fu <= fv || v == x || v == w) {    } else {                              /* strip direcotry from path */
             v=u;      ss++;                               /* after this, the filename */
             fv=fu;      l2 = strlen( ss );                  /* length of filename */
           }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         }      strcpy( name, ss );         /* save file name */
   }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   nrerror("Too many iterations in brent");      dirc[l1-l2] = 0;                    /* add zero */
   *xmin=x;      printf(" DIRC2 = %s \n",dirc);
   return fx;    }
 }    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
 /****************** mnbrak ***********************/    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      dirc[l1+1] = 0; 
             double (*func)(double))      printf(" DIRC3 = %s \n",dirc);
 {    }
   double ulim,u,r,q, dum;    ss = strrchr( name, '.' );            /* find last / */
   double fu;    if (ss >0){
        ss++;
   *fa=(*func)(*ax);      strcpy(ext,ss);                     /* save extension */
   *fb=(*func)(*bx);      l1= strlen( name);
   if (*fb > *fa) {      l2= strlen(ss)+1;
     SHFT(dum,*ax,*bx,dum)      strncpy( finame, name, l1-l2);
       SHFT(dum,*fb,*fa,dum)      finame[l1-l2]= 0;
       }    }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    return( 0 );                          /* we're done */
   while (*fb > *fc) {  }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /******************************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  void replace_back_to_slash(char *s, char*t)
     if ((*bx-u)*(u-*cx) > 0.0) {  {
       fu=(*func)(u);    int i;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    int lg=0;
       fu=(*func)(u);    i=0;
       if (fu < *fc) {    lg=strlen(t);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    for(i=0; i<= lg; i++) {
           SHFT(*fb,*fc,fu,(*func)(u))      (s[i] = t[i]);
           }      if (t[i]== '\\') s[i]='/';
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    }
       u=ulim;  }
       fu=(*func)(u);  
     } else {  int nbocc(char *s, char occ)
       u=(*cx)+GOLD*(*cx-*bx);  {
       fu=(*func)(u);    int i,j=0;
     }    int lg=20;
     SHFT(*ax,*bx,*cx,u)    i=0;
       SHFT(*fa,*fb,*fc,fu)    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /*************** linmin ************************/    return j;
   }
 int ncom;  
 double *pcom,*xicom;  void cutv(char *u,char *v, char*t, char occ)
 double (*nrfunc)(double []);  {
      /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 {       gives u="abcedf" and v="ghi2j" */
   double brent(double ax, double bx, double cx,    int i,lg,j,p=0;
                double (*f)(double), double tol, double *xmin);    i=0;
   double f1dim(double x);    for(j=0; j<=strlen(t)-1; j++) {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
               double *fc, double (*func)(double));    }
   int j;  
   double xx,xmin,bx,ax;    lg=strlen(t);
   double fx,fb,fa;    for(j=0; j<p; j++) {
        (u[j] = t[j]);
   ncom=n;    }
   pcom=vector(1,n);       u[p]='\0';
   xicom=vector(1,n);  
   nrfunc=func;     for(j=0; j<= lg; j++) {
   for (j=1;j<=n;j++) {      if (j>=(p+1))(v[j-p-1] = t[j]);
     pcom[j]=p[j];    }
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  /********************** nrerror ********************/
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  void nrerror(char error_text[])
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    fprintf(stderr,"ERREUR ...\n");
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fprintf(stderr,"%s\n",error_text);
 #endif    exit(EXIT_FAILURE);
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  /*********************** vector *******************/
     p[j] += xi[j];  double *vector(int nl, int nh)
   }  {
   free_vector(xicom,1,n);    double *v;
   free_vector(pcom,1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 }    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 /*************** powell ************************/  }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /************************ free vector ******************/
 {  void free_vector(double*v, int nl, int nh)
   void linmin(double p[], double xi[], int n, double *fret,  {
               double (*func)(double []));    free((FREE_ARG)(v+nl-NR_END));
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /************************ivector *******************************/
   double *xits;  int *ivector(long nl,long nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    int *v;
   xit=vector(1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   xits=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   *fret=(*func)(p);    return v-nl+NR_END;
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /******************free ivector **************************/
     ibig=0;  void free_ivector(int *v, long nl, long nh)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /************************lvector *******************************/
     for (i=1;i<=n;i++) {  long *lvector(long nl,long nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    long *v;
 #ifdef DEBUG    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       printf("fret=%lf \n",*fret);    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /******************free lvector **************************/
         del=fabs(fptt-(*fret));  void free_lvector(long *v, long nl, long nh)
         ibig=i;  {
       }    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /******************* imatrix *******************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         printf(" x(%d)=%.12e",j,xit[j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
       for(j=1;j<=n;j++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         printf(" p=%.12e",p[j]);    int **m; 
       printf("\n");    
 #endif    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #ifdef DEBUG    m += NR_END; 
       int k[2],l;    m -= nrl; 
       k[0]=1;    
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));    /* allocate rows and set pointers to them */ 
       for (j=1;j<=n;j++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         printf(" %.12e",p[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       printf("\n");    m[nrl] += NR_END; 
       for(l=0;l<=1;l++) {    m[nrl] -= ncl; 
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    
         }    /* return pointer to array of pointers to rows */ 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return m; 
       }  } 
 #endif  
   /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
       free_vector(xit,1,n);        int **m;
       free_vector(xits,1,n);        long nch,ncl,nrh,nrl; 
       free_vector(ptt,1,n);       /* free an int matrix allocated by imatrix() */ 
       free_vector(pt,1,n);  { 
       return;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  } 
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /******************* matrix *******************************/
       xit[j]=p[j]-pt[j];  double **matrix(long nrl, long nrh, long ncl, long nch)
       pt[j]=p[j];  {
     }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     fptt=(*func)(ptt);    double **m;
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (t < 0.0) {    if (!m) nrerror("allocation failure 1 in matrix()");
         linmin(p,xit,n,fret,func);    m += NR_END;
         for (j=1;j<=n;j++) {    m -= nrl;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #ifdef DEBUG    m[nrl] += NR_END;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl] -= ncl;
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf("\n");    return m;
 #endif    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       }     */
     }  }
   }  
 }  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 /**** Prevalence limit ****************/  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double **matprod2();    double ***m;
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double agefin, delaymax=50 ; /* Max number of years to converge */    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   for (ii=1;ii<=nlstate+ndeath;ii++)    m -= nrl;
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
    cov[1]=1.;    m[nrl] -= ncl;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     /* Covariates have to be included here again */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      cov[2]=agefin;    m[nrl][ncl] += NR_END;
      m[nrl][ncl] -= nll;
       for (k=1; k<=cptcovn;k++) {    for (j=ncl+1; j<=nch; j++) 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      m[nrl][j]=m[nrl][j-1]+nlay;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    
       }    for (i=nrl+1; i<=nrh; i++) {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (k=1; k<=cptcovprod;k++)      for (j=ncl+1; j<=nch; j++) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        m[i][j]=m[i][j-1]+nlay;
     }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    return m; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    */
   }
     savm=oldm;  
     oldm=newm;  /*************************free ma3x ************************/
     maxmax=0.;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       max=0.;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(m+nrl-NR_END));
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /*************** function subdirf ***********/
         max=FMAX(max,prlim[i][j]);  char *subdirf(char fileres[])
         min=FMIN(min,prlim[i][j]);  {
       }    /* Caution optionfilefiname is hidden */
       maxmin=max-min;    strcpy(tmpout,optionfilefiname);
       maxmax=FMAX(maxmax,maxmin);    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
     if(maxmax < ftolpl){    return tmpout;
       return prlim;  }
     }  
   }  /*************** function subdirf2 ***********/
 }  char *subdirf2(char fileres[], char *preop)
   {
 /*************** transition probabilities ***************/    
     /* Caution optionfilefiname is hidden */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   double s1, s2;    strcat(tmpout,preop);
   /*double t34;*/    strcat(tmpout,fileres);
   int i,j,j1, nc, ii, jj;    return tmpout;
   }
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /*************** function subdirf3 ***********/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *subdirf3(char fileres[], char *preop, char *preop2)
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       ps[i][j]=s2;    strcat(tmpout,"/");
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     for(j=i+1; j<=nlstate+ndeath;j++){    strcat(tmpout,fileres);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return tmpout;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /***************** f1dim *************************/
       ps[i][j]=s2;  extern int ncom; 
     }  extern double *pcom,*xicom;
   }  extern double (*nrfunc)(double []); 
     /*ps[3][2]=1;*/   
   double f1dim(double x) 
   for(i=1; i<= nlstate; i++){  { 
      s1=0;    int j; 
     for(j=1; j<i; j++)    double f;
       s1+=exp(ps[i][j]);    double *xt; 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       s1+=exp(ps[i][j]);    xt=vector(1,ncom); 
     ps[i][i]=1./(s1+1.);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for(j=1; j<i; j++)    f=(*nrfunc)(xt); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free_vector(xt,1,ncom); 
     for(j=i+1; j<=nlstate+ndeath; j++)    return f; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  { 
     for(jj=1; jj<= nlstate+ndeath; jj++){    int iter; 
       ps[ii][jj]=0;    double a,b,d,etemp;
       ps[ii][ii]=1;    double fu,fv,fw,fx;
     }    double ftemp;
   }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
    
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    a=(ax < cx ? ax : cx); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    b=(ax > cx ? ax : cx); 
      printf("%lf ",ps[ii][jj]);    x=w=v=bx; 
    }    fw=fv=fx=(*f)(x); 
     printf("\n ");    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     printf("\n ");printf("%lf ",cov[2]);*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /*      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      printf(".");fflush(stdout);
   goto end;*/      fprintf(ficlog,".");fflush(ficlog);
     return ps;  #ifdef DEBUG
 }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /**************** Product of 2 matrices ******************/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 {        *xmin=x; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        return fx; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      } 
   /* in, b, out are matrice of pointers which should have been initialized      ftemp=fu;
      before: only the contents of out is modified. The function returns      if (fabs(e) > tol1) { 
      a pointer to pointers identical to out */        r=(x-w)*(fx-fv); 
   long i, j, k;        q=(x-v)*(fx-fw); 
   for(i=nrl; i<= nrh; i++)        p=(x-v)*q-(x-w)*r; 
     for(k=ncolol; k<=ncoloh; k++)        q=2.0*(q-r); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        if (q > 0.0) p = -p; 
         out[i][k] +=in[i][j]*b[j][k];        q=fabs(q); 
         etemp=e; 
   return out;        e=d; 
 }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 /************* Higher Matrix Product ***************/          d=p/q; 
           u=x+d; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        } 
      duration (i.e. until      } else { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      } 
      (typically every 2 years instead of every month which is too big).      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      Model is determined by parameters x and covariates have to be      fu=(*f)(u); 
      included manually here.      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
      */        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   int i, j, d, h, k;          } else { 
   double **out, cov[NCOVMAX];            if (u < x) a=u; else b=u; 
   double **newm;            if (fu <= fw || w == x) { 
               v=w; 
   /* Hstepm could be zero and should return the unit matrix */              w=u; 
   for (i=1;i<=nlstate+ndeath;i++)              fv=fw; 
     for (j=1;j<=nlstate+ndeath;j++){              fw=fu; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);            } else if (fu <= fv || v == x || v == w) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);              v=u; 
     }              fv=fu; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            } 
   for(h=1; h <=nhstepm; h++){          } 
     for(d=1; d <=hstepm; d++){    } 
       newm=savm;    nrerror("Too many iterations in brent"); 
       /* Covariates have to be included here again */    *xmin=x; 
       cov[1]=1.;    return fx; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /****************** mnbrak ***********************/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              double (*func)(double)) 
   { 
     double ulim,u,r,q, dum;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double fu; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/   
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *fa=(*func)(*ax); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    *fb=(*func)(*bx); 
       savm=oldm;    if (*fb > *fa) { 
       oldm=newm;      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
     for(i=1; i<=nlstate+ndeath; i++)        } 
       for(j=1;j<=nlstate+ndeath;j++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
         po[i][j][h]=newm[i][j];    *fc=(*func)(*cx); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    while (*fb > *fc) { 
          */      r=(*bx-*ax)*(*fb-*fc); 
       }      q=(*bx-*cx)*(*fb-*fa); 
   } /* end h */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   return po;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
 /*************** log-likelihood *************/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 double func( double *x)        fu=(*func)(u); 
 {        if (fu < *fc) { 
   int i, ii, j, k, mi, d, kk;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            SHFT(*fb,*fc,fu,(*func)(u)) 
   double **out;            } 
   double sw; /* Sum of weights */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double lli; /* Individual log likelihood */        u=ulim; 
   long ipmx;        fu=(*func)(u); 
   /*extern weight */      } else { 
   /* We are differentiating ll according to initial status */        u=(*cx)+GOLD*(*cx-*bx); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        fu=(*func)(u); 
   /*for(i=1;i<imx;i++)      } 
     printf(" %d\n",s[4][i]);      SHFT(*ax,*bx,*cx,u) 
   */        SHFT(*fa,*fb,*fc,fu) 
   cov[1]=1.;        } 
   } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*************** linmin ************************/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  int ncom; 
       for (ii=1;ii<=nlstate+ndeath;ii++)  double *pcom,*xicom;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double (*nrfunc)(double []); 
       for(d=0; d<dh[mi][i]; d++){   
         newm=savm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  { 
         for (kk=1; kk<=cptcovage;kk++) {    double brent(double ax, double bx, double cx, 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];                 double (*f)(double), double tol, double *xmin); 
         }    double f1dim(double x); 
            void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                double *fc, double (*func)(double)); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int j; 
         savm=oldm;    double xx,xmin,bx,ax; 
         oldm=newm;    double fx,fb,fa;
           
            ncom=n; 
       } /* end mult */    pcom=vector(1,n); 
          xicom=vector(1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    nrfunc=func; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    for (j=1;j<=n;j++) { 
       ipmx +=1;      pcom[j]=p[j]; 
       sw += weight[i];      xicom[j]=xi[j]; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    } 
     } /* end of wave */    ax=0.0; 
   } /* end of individual */    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #ifdef DEBUG
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   return -l;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }  #endif
     for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 /*********** Maximum Likelihood Estimation ***************/      p[j] += xi[j]; 
     } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    free_vector(xicom,1,n); 
 {    free_vector(pcom,1,n); 
   int i,j, iter;  } 
   double **xi,*delti;  
   double fret;  char *asc_diff_time(long time_sec, char ascdiff[])
   xi=matrix(1,npar,1,npar);  {
   for (i=1;i<=npar;i++)    long sec_left, days, hours, minutes;
     for (j=1;j<=npar;j++)    days = (time_sec) / (60*60*24);
       xi[i][j]=(i==j ? 1.0 : 0.0);    sec_left = (time_sec) % (60*60*24);
   printf("Powell\n");    hours = (sec_left) / (60*60) ;
   powell(p,xi,npar,ftol,&iter,&fret,func);    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    sec_left = (sec_left) % (60);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /*************** powell ************************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 {              double (*func)(double [])) 
   double  **a,**y,*x,pd;  { 
   double **hess;    void linmin(double p[], double xi[], int n, double *fret, 
   int i, j,jk;                double (*func)(double [])); 
   int *indx;    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   double hessii(double p[], double delta, int theta, double delti[]);    double fp,fptt;
   double hessij(double p[], double delti[], int i, int j);    double *xits;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int niterf, itmp;
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
     pt=vector(1,n); 
   hess=matrix(1,npar,1,npar);    ptt=vector(1,n); 
     xit=vector(1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    xits=vector(1,n); 
   for (i=1;i<=npar;i++){    *fret=(*func)(p); 
     printf("%d",i);fflush(stdout);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    for (*iter=1;;++(*iter)) { 
     /*printf(" %f ",p[i]);*/      fp=(*fret); 
     /*printf(" %lf ",hess[i][i]);*/      ibig=0; 
   }      del=0.0; 
        last_time=curr_time;
   for (i=1;i<=npar;i++) {      (void) gettimeofday(&curr_time,&tzp);
     for (j=1;j<=npar;j++)  {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       if (j>i) {      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         printf(".%d%d",i,j);fflush(stdout);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
         hess[i][j]=hessij(p,delti,i,j);      */
         hess[j][i]=hess[i][j];         for (i=1;i<=n;i++) {
         /*printf(" %lf ",hess[i][j]);*/        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
     }        fprintf(ficrespow," %.12lf", p[i]);
   }      }
   printf("\n");      printf("\n");
       fprintf(ficlog,"\n");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
        if(*iter <=3){
   a=matrix(1,npar,1,npar);        tm = *localtime(&curr_time.tv_sec);
   y=matrix(1,npar,1,npar);        strcpy(strcurr,asctime(&tm));
   x=vector(1,npar);  /*       asctime_r(&tm,strcurr); */
   indx=ivector(1,npar);        forecast_time=curr_time; 
   for (i=1;i<=npar;i++)        itmp = strlen(strcurr);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   ludcmp(a,npar,indx,&pd);          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (i=1;i<=npar;i++) x[i]=0;        for(niterf=10;niterf<=30;niterf+=10){
     x[j]=1;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     lubksb(a,npar,indx,x);          tmf = *localtime(&forecast_time.tv_sec);
     for (i=1;i<=npar;i++){  /*      asctime_r(&tmf,strfor); */
       matcov[i][j]=x[i];          strcpy(strfor,asctime(&tmf));
     }          itmp = strlen(strfor);
   }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   printf("\n#Hessian matrix#\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++) {        }
       printf("%.3e ",hess[i][j]);      }
     }      for (i=1;i<=n;i++) { 
     printf("\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   }        fptt=(*fret); 
   #ifdef DEBUG
   /* Recompute Inverse */        printf("fret=%lf \n",*fret);
   for (i=1;i<=npar;i++)        fprintf(ficlog,"fret=%lf \n",*fret);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #endif
   ludcmp(a,npar,indx,&pd);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   /*  printf("\n#Hessian matrix recomputed#\n");        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   for (j=1;j<=npar;j++) {          del=fabs(fptt-(*fret)); 
     for (i=1;i<=npar;i++) x[i]=0;          ibig=i; 
     x[j]=1;        } 
     lubksb(a,npar,indx,x);  #ifdef DEBUG
     for (i=1;i<=npar;i++){        printf("%d %.12e",i,(*fret));
       y[i][j]=x[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
       printf("%.3e ",y[i][j]);        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     printf("\n");          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   */        }
         for(j=1;j<=n;j++) {
   free_matrix(a,1,npar,1,npar);          printf(" p=%.12e",p[j]);
   free_matrix(y,1,npar,1,npar);          fprintf(ficlog," p=%.12e",p[j]);
   free_vector(x,1,npar);        }
   free_ivector(indx,1,npar);        printf("\n");
   free_matrix(hess,1,npar,1,npar);        fprintf(ficlog,"\n");
   #endif
       } 
 }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 /*************** hessian matrix ****************/        int k[2],l;
 double hessii( double x[], double delta, int theta, double delti[])        k[0]=1;
 {        k[1]=-1;
   int i;        printf("Max: %.12e",(*func)(p));
   int l=1, lmax=20;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double k1,k2;        for (j=1;j<=n;j++) {
   double p2[NPARMAX+1];          printf(" %.12e",p[j]);
   double res;          fprintf(ficlog," %.12e",p[j]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;        printf("\n");
   int k=0,kmax=10;        fprintf(ficlog,"\n");
   double l1;        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   fx=func(x);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for (i=1;i<=npar;i++) p2[i]=x[i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for(l=0 ; l <=lmax; l++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     l1=pow(10,l);          }
     delts=delt;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(k=1 ; k <kmax; k=k+1){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       delt = delta*(l1*k);        }
       p2[theta]=x[theta] +delt;  #endif
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;        free_vector(xit,1,n); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        free_vector(xits,1,n); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        free_vector(ptt,1,n); 
              free_vector(pt,1,n); 
 #ifdef DEBUG        return; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } 
 #endif      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      for (j=1;j<=n;j++) { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        ptt[j]=2.0*p[j]-pt[j]; 
         k=kmax;        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      } 
         k=kmax; l=lmax*10.;      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         delts=delt;        if (t < 0.0) { 
       }          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
   delti[theta]=delts;            xi[j][n]=xit[j]; 
   return res;          }
    #ifdef DEBUG
 }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double hessij( double x[], double delti[], int thetai,int thetaj)          for(j=1;j<=n;j++){
 {            printf(" %.12e",xit[j]);
   int i;            fprintf(ficlog," %.12e",xit[j]);
   int l=1, l1, lmax=20;          }
   double k1,k2,k3,k4,res,fx;          printf("\n");
   double p2[NPARMAX+1];          fprintf(ficlog,"\n");
   int k;  #endif
         }
   fx=func(x);      } 
   for (k=1; k<=2; k++) {    } 
     for (i=1;i<=npar;i++) p2[i]=x[i];  } 
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /**** Prevalence limit (stable or period prevalence)  ****************/
     k1=func(p2)-fx;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     k2=func(p2)-fx;       matrix by transitions matrix until convergence is reached */
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    int i, ii,j,k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double min, max, maxmin, maxmax,sumnew=0.;
     k3=func(p2)-fx;    double **matprod2();
      double **out, cov[NCOVMAX], **pmij();
     p2[thetai]=x[thetai]-delti[thetai]/k;    double **newm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double agefin, delaymax=50 ; /* Max number of years to converge */
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (ii=1;ii<=nlstate+ndeath;ii++)
 #ifdef DEBUG      for (j=1;j<=nlstate+ndeath;j++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif      }
   }  
   return res;     cov[1]=1.;
 }   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /************** Inverse of matrix **************/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 void ludcmp(double **a, int n, int *indx, double *d)      newm=savm;
 {      /* Covariates have to be included here again */
   int i,imax,j,k;       cov[2]=agefin;
   double big,dum,sum,temp;    
   double *vv;        for (k=1; k<=cptcovn;k++) {
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   vv=vector(1,n);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   *d=1.0;        }
   for (i=1;i<=n;i++) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     big=0.0;        for (k=1; k<=cptcovprod;k++)
     for (j=1;j<=n;j++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     vv[i]=1.0/big;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for (j=1;j<=n;j++) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for (i=1;i<j;i++) {  
       sum=a[i][j];      savm=oldm;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      oldm=newm;
       a[i][j]=sum;      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
     big=0.0;        min=1.;
     for (i=j;i<=n;i++) {        max=0.;
       sum=a[i][j];        for(i=1; i<=nlstate; i++) {
       for (k=1;k<j;k++)          sumnew=0;
         sum -= a[i][k]*a[k][j];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       a[i][j]=sum;          prlim[i][j]= newm[i][j]/(1-sumnew);
       if ( (dum=vv[i]*fabs(sum)) >= big) {          max=FMAX(max,prlim[i][j]);
         big=dum;          min=FMIN(min,prlim[i][j]);
         imax=i;        }
       }        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
     if (j != imax) {      }
       for (k=1;k<=n;k++) {      if(maxmax < ftolpl){
         dum=a[imax][k];        return prlim;
         a[imax][k]=a[j][k];      }
         a[j][k]=dum;    }
       }  }
       *d = -(*d);  
       vv[imax]=vv[j];  /*************** transition probabilities ***************/ 
     }  
     indx[j]=imax;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     if (a[j][j] == 0.0) a[j][j]=TINY;  {
     if (j != n) {    double s1, s2;
       dum=1.0/(a[j][j]);    /*double t34;*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    int i,j,j1, nc, ii, jj;
     }  
   }      for(i=1; i<= nlstate; i++){
   free_vector(vv,1,n);  /* Doesn't work */        for(j=1; j<i;j++){
 ;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }            /*s2 += param[i][j][nc]*cov[nc];*/
             s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 void lubksb(double **a, int n, int *indx, double b[])  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 {          }
   int i,ii=0,ip,j;          ps[i][j]=s2;
   double sum;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          }
   for (i=1;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath;j++){
     ip=indx[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     sum=b[ip];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     b[ip]=b[i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     if (ii)          }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          ps[i][j]=s2;
     else if (sum) ii=i;        }
     b[i]=sum;      }
   }      /*ps[3][2]=1;*/
   for (i=n;i>=1;i--) {      
     sum=b[i];      for(i=1; i<= nlstate; i++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        s1=0;
     b[i]=sum/a[i][i];        for(j=1; j<i; j++)
   }          s1+=exp(ps[i][j]);
 }        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
 /************ Frequencies ********************/        ps[i][i]=1./(s1+1.);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(j=1; j<i; j++)
 {  /* Some frequencies */          ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(j=i+1; j<=nlstate+ndeath; j++)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double ***freq; /* Frequencies */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double *pp;      } /* end i */
   double pos, k2, dateintsum=0,k2cpt=0;      
   FILE *ficresp;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   char fileresp[FILENAMELENGTH];        for(jj=1; jj<= nlstate+ndeath; jj++){
            ps[ii][jj]=0;
   pp=vector(1,nlstate);          ps[ii][ii]=1;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   strcpy(fileresp,"p");      }
   strcat(fileresp,fileres);      
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     exit(0);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   }  /*         printf("ddd %lf ",ps[ii][jj]); */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*       } */
   j1=0;  /*       printf("\n "); */
    /*        } */
   j=cptcoveff;  /*        printf("\n ");printf("%lf ",cov[2]); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}         /*
          for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for(k1=1; k1<=j;k1++){        goto end;*/
     for(i1=1; i1<=ncodemax[k1];i1++){      return ps;
       j1++;  }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  /**************** Product of 2 matrices ******************/
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       dateintsum=0;    /* in, b, out are matrice of pointers which should have been initialized 
       k2cpt=0;       before: only the contents of out is modified. The function returns
       for (i=1; i<=imx; i++) {       a pointer to pointers identical to out */
         bool=1;    long i, j, k;
         if  (cptcovn>0) {    for(i=nrl; i<= nrh; i++)
           for (z1=1; z1<=cptcoveff; z1++)      for(k=ncolol; k<=ncoloh; k++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(j=ncl,out[i][k]=0.; j<=nch; j++)
               bool=0;          out[i][k] +=in[i][j]*b[j][k];
         }  
         if (bool==1) {    return out;
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /************* Higher Matrix Product ***************/
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  {
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* Computes the transition matrix starting at age 'age' over 
               }       'nhstepm*hstepm*stepm' months (i.e. until
                     age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {       nhstepm*hstepm matrices. 
                 dateintsum=dateintsum+k2;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                 k2cpt++;       (typically every 2 years instead of every month which is too big 
               }       for the memory).
             }       Model is determined by parameters x and covariates have to be 
           }       included manually here. 
         }  
       }       */
          
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
       if  (cptcovn>0) {    double **newm;
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Hstepm could be zero and should return the unit matrix */
         fprintf(ficresp, "**********\n#");    for (i=1;i<=nlstate+ndeath;i++)
       }      for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=nlstate;i++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       fprintf(ficresp, "\n");      }
          /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    for(h=1; h <=nhstepm; h++){
         if(i==(int)agemax+3)      for(d=1; d <=hstepm; d++){
           printf("Total");        newm=savm;
         else        /* Covariates have to be included here again */
           printf("Age %d", i);        cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovprod;k++)
           for(m=-1, pos=0; m <=0 ; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           else        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){        oldm=newm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      }
             pp[jk] += freq[jk][m][i];      for(i=1; i<=nlstate+ndeath; i++)
         }        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
         for(jk=1,pos=0; jk <=nlstate ; jk++)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           pos += pp[jk];           */
         for(jk=1; jk <=nlstate ; jk++){        }
           if(pos>=1.e-5)    } /* end h */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    return po;
           else  }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /*************** log-likelihood *************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  double func( double *x)
               probs[i][jk][j1]= pp[jk]/pos;  {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    int i, ii, j, k, mi, d, kk;
             }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             else    double **out;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double sw; /* Sum of weights */
           }    double lli; /* Individual log likelihood */
         }    int s1, s2;
            double bbh, survp;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    long ipmx;
           for(m=-1; m <=nlstate+ndeath; m++)    /*extern weight */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /* We are differentiating ll according to initial status */
         if(i <= (int) agemax)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           fprintf(ficresp,"\n");    /*for(i=1;i<imx;i++) 
         printf("\n");      printf(" %d\n",s[4][i]);
       }    */
     }    cov[1]=1.;
   }  
   dateintmean=dateintsum/k2cpt;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   fclose(ficresp);    if(mle==1){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(pp,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   /* End of Freq */          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Prevalence ********************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            }
 {  /* Some frequencies */          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***freq; /* Frequencies */            for (kk=1; kk<=cptcovage;kk++) {
   double *pp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double pos, k2;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   pp=vector(1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            savm=oldm;
              oldm=newm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } /* end mult */
   j1=0;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   j=cptcoveff;          /* But now since version 0.9 we anticipate for bias at large stepm.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   for(k1=1; k1<=j;k1++){           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(i1=1; i1<=ncodemax[k1];i1++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       j1++;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                 * probability in order to take into account the bias as a fraction of the way
       for (i=-1; i<=nlstate+ndeath; i++)             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * -stepm/2 to stepm/2 .
           for(m=agemin; m <= agemax+3; m++)           * For stepm=1 the results are the same as for previous versions of Imach.
             freq[i][jk][m]=0;           * For stepm > 1 the results are less biased than in previous versions. 
                 */
       for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
         bool=1;          s2=s[mw[mi+1][i]][i];
         if  (cptcovn>0) {          bbh=(double)bh[mi][i]/(double)stepm; 
           for (z1=1; z1<=cptcoveff; z1++)          /* bias bh is positive if real duration
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * is higher than the multiple of stepm and negative otherwise.
               bool=0;           */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         if (bool==1) {          if( s2 > nlstate){ 
           for(m=firstpass; m<=lastpass; m++){            /* i.e. if s2 is a death state and if the date of death is known 
             k2=anint[m][i]+(mint[m][i]/12.);               then the contribution to the likelihood is the probability to 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {               die between last step unit time and current  step unit time, 
               if(agev[m][i]==0) agev[m][i]=agemax+1;               which is also equal to probability to die before dh 
               if(agev[m][i]==1) agev[m][i]=agemax+2;               minus probability to die before dh-stepm . 
               if (m<lastpass) {               In version up to 0.92 likelihood was computed
                 if (calagedate>0)          as if date of death was unknown. Death was treated as any other
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          health state: the date of the interview describes the actual state
                 else          and not the date of a change in health state. The former idea was
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          to consider that at each interview the state was recorded
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          (healthy, disable or death) and IMaCh was corrected; but when we
               }          introduced the exact date of death then we should have modified
             }          the contribution of an exact death to the likelihood. This new
           }          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
       for(i=(int)agemin; i <= (int)agemax+3; i++){          interview up to one month before death multiplied by the
         for(jk=1; jk <=nlstate ; jk++){          probability to die within a month. Thanks to Chris
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          Jackson for correcting this bug.  Former versions increased
             pp[jk] += freq[jk][m][i];          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
         for(jk=1; jk <=nlstate ; jk++){          lower mortality.
           for(m=-1, pos=0; m <=0 ; m++)            */
             pos += freq[jk][m][i];            lli=log(out[s1][s2] - savm[s1][s2]);
         }  
          
         for(jk=1; jk <=nlstate ; jk++){          } else if  (s2==-2) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (j=1,survp=0. ; j<=nlstate; j++) 
             pp[jk] += freq[jk][m][i];              survp += out[s1][j];
         }            lli= survp;
                  }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          
                  else if  (s2==-4) {
         for(jk=1; jk <=nlstate ; jk++){                for (j=3,survp=0. ; j<=nlstate; j++) 
           if( i <= (int) agemax){              survp += out[s1][j];
             if(pos>=1.e-5){            lli= survp;
               probs[i][jk][j1]= pp[jk]/pos;          }
             }          
           }          else if  (s2==-5) {
         }            for (j=1,survp=0. ; j<=2; j++) 
                      survp += out[s1][j];
       }            lli= survp;
     }          }
   }  
   
            else{
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   free_vector(pp,1,nlstate);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
 }  /* End of Freq */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /************* Waves Concatenation ***************/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        } /* end of wave */
      Death is a valid wave (if date is known).      } /* end of individual */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }  else if(mle==2){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      and mw[mi+1][i]. dh depends on stepm.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, mi, m;            for (j=1;j<=nlstate+ndeath;j++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      double sum=0., jmean=0.;*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   int j, k=0,jk, ju, jl;          for(d=0; d<=dh[mi][i]; d++){
   double sum=0.;            newm=savm;
   jmin=1e+5;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmax=-1;            for (kk=1; kk<=cptcovage;kk++) {
   jmean=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){            }
     mi=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     m=firstpass;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     while(s[m][i] <= nlstate){            savm=oldm;
       if(s[m][i]>=1)            oldm=newm;
         mw[++mi][i]=m;          } /* end mult */
       if(m >=lastpass)        
         break;          s1=s[mw[mi][i]][i];
       else          s2=s[mw[mi+1][i]][i];
         m++;          bbh=(double)bh[mi][i]/(double)stepm; 
     }/* end while */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (s[m][i] > nlstate){          ipmx +=1;
       mi++;     /* Death is another wave */          sw += weight[i];
       /* if(mi==0)  never been interviewed correctly before death */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          /* Only death is a correct wave */        } /* end of wave */
       mw[mi][i]=m;      } /* end of individual */
     }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     wav[i]=mi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(mi==0)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)          for(d=0; d<dh[mi][i]; d++){
         dh[mi][i]=1;            newm=savm;
       else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {            for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           k=k+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j >= jmax) jmax=j;            savm=oldm;
           if (j <= jmin) jmin=j;            oldm=newm;
           sum=sum+j;          } /* end mult */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         else{          bbh=(double)bh[mi][i]/(double)stepm; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           k=k+1;          ipmx +=1;
           if (j >= jmax) jmax=j;          sw += weight[i];
           else if (j <= jmin)jmin=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        } /* end of wave */
           sum=sum+j;      } /* end of individual */
         }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         jk= j/stepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         jl= j -jk*stepm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         ju= j -(jk+1)*stepm;        for(mi=1; mi<= wav[i]-1; mi++){
         if(jl <= -ju)          for (ii=1;ii<=nlstate+ndeath;ii++)
           dh[mi][i]=jk;            for (j=1;j<=nlstate+ndeath;j++){
         else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(dh[mi][i]==0)            }
           dh[mi][i]=1; /* At least one step */          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   jmean=sum/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            }
  }          
 /*********** Tricode ****************************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void tricode(int *Tvar, int **nbcode, int imx)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   int Ndum[20],ij=1, k, j, i;            oldm=newm;
   int cptcode=0;          } /* end mult */
   cptcoveff=0;        
            s1=s[mw[mi][i]][i];
   for (k=0; k<19; k++) Ndum[k]=0;          s2=s[mw[mi+1][i]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          }else{
     for (i=1; i<=imx; i++) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       ij=(int)(covar[Tvar[j]][i]);          }
       Ndum[ij]++;          ipmx +=1;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          sw += weight[i];
       if (ij > cptcode) cptcode=ij;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
     for (i=0; i<=cptcode; i++) {      } /* end of individual */
       if(Ndum[i]!=0) ncodemax[j]++;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ij=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1; i<=ncodemax[j]; i++) {            for (j=1;j<=nlstate+ndeath;j++){
       for (k=0; k<=19; k++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (Ndum[k] != 0) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           nbcode[Tvar[j]][ij]=k;            }
                    for(d=0; d<dh[mi][i]; d++){
           ij++;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (ij > ncodemax[j]) break;            for (kk=1; kk<=cptcovage;kk++) {
       }                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }            
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (k=0; k<19; k++) Ndum[k]=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
  for (i=1; i<=ncovmodel-2; i++) {            oldm=newm;
       ij=Tvar[i];          } /* end mult */
       Ndum[ij]++;        
     }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
  ij=1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
  for (i=1; i<=10; i++) {          ipmx +=1;
    if((Ndum[i]!=0) && (i<=ncovcol)){          sw += weight[i];
      Tvaraff[ij]=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      ij++;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
    }        } /* end of wave */
  }      } /* end of individual */
      } /* End of if */
     cptcoveff=ij-1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*********** Health Expectancies ****************/    return -l;
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
   /*************** log-likelihood *************/
 {  double funcone( double *x)
   /* Health expectancies */  {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    /* Same as likeli but slower because of a lot of printf and if */
   double age, agelim, hf;    int i, ii, j, k, mi, d, kk;
   double ***p3mat,***varhe;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double **dnewm,**doldm;    double **out;
   double *xp;    double lli; /* Individual log likelihood */
   double **gp, **gm;    double llt;
   double ***gradg, ***trgradg;    int s1, s2;
   int theta;    double bbh, survp;
     /*extern weight */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    /* We are differentiating ll according to initial status */
   xp=vector(1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   dnewm=matrix(1,nlstate*2,1,npar);    /*for(i=1;i<imx;i++) 
   doldm=matrix(1,nlstate*2,1,nlstate*2);      printf(" %d\n",s[4][i]);
      */
   fprintf(ficreseij,"# Health expectancies\n");    cov[1]=1.;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficreseij,"\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   if(estepm < stepm){        for (ii=1;ii<=nlstate+ndeath;ii++)
     printf ("Problem %d lower than %d\n",estepm, stepm);          for (j=1;j<=nlstate+ndeath;j++){
   }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   else  hstepm=estepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* We compute the life expectancy from trapezoids spaced every estepm months          }
    * This is mainly to measure the difference between two models: for example        for(d=0; d<dh[mi][i]; d++){
    * if stepm=24 months pijx are given only every 2 years and by summing them          newm=savm;
    * we are calculating an estimate of the Life Expectancy assuming a linear          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * progression inbetween and thus overestimating or underestimating according          for (kk=1; kk<=cptcovage;kk++) {
    * to the curvature of the survival function. If, for the same date, we            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          }
    * to compare the new estimate of Life expectancy with the same linear          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * hypothesis. A more precise result, taking into account a more precise                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * curvature will be obtained if estepm is as small as stepm. */          savm=oldm;
           oldm=newm;
   /* For example we decided to compute the life expectancy with the smallest unit */        } /* end mult */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        
      nhstepm is the number of hstepm from age to agelim        s1=s[mw[mi][i]][i];
      nstepm is the number of stepm from age to agelin.        s2=s[mw[mi+1][i]][i];
      Look at hpijx to understand the reason of that which relies in memory size        bbh=(double)bh[mi][i]/(double)stepm; 
      and note for a fixed period like estepm months */        /* bias is positive if real duration
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the         * is higher than the multiple of stepm and negative otherwise.
      survival function given by stepm (the optimization length). Unfortunately it         */
      means that if the survival funtion is printed only each two years of age and if        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli=log(out[s1][s2] - savm[s1][s2]);
      results. So we changed our mind and took the option of the best precision.        } else if (mle==1){
   */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   agelim=AGESUP;        } else if(mle==3){  /* exponential inter-extrapolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     /* nhstepm age range expressed in number of stepm */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          lli=log(out[s1][s2]); /* Original formula */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     /* if (stepm >= YEARM) hstepm=1;*/          lli=log(out[s1][s2]); /* Original formula */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        } /* End of if */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ipmx +=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        sw += weight[i];
     gp=matrix(0,nhstepm,1,nlstate*2);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gm=matrix(0,nhstepm,1,nlstate*2);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */   %10.6f %10.6f %10.6f ", \
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                    num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                    2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     /* Computing Variances of health expectancies */          }
           fprintf(ficresilk," %10.6f\n", -llt);
      for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){      } /* end of wave */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    } /* end of individual */
       }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       cptj=0;    if(globpr==0){ /* First time we count the contributions and weights */
       for(j=1; j<= nlstate; j++){      gipmx=ipmx;
         for(i=1; i<=nlstate; i++){      gsw=sw;
           cptj=cptj+1;    }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    return -l;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  
       }  /*************** function likelione ***********/
        void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
        {
       for(i=1; i<=npar; i++)    /* This routine should help understanding what is done with 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       the selection of individuals/waves and
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         to check the exact contribution to the likelihood.
             Plotting could be done.
       cptj=0;     */
       for(j=1; j<= nlstate; j++){    int k;
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    if(*globpri !=0){ /* Just counts and sums, no printings */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      strcpy(fileresilk,"ilk"); 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      strcat(fileresilk,fileres);
           }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         }        printf("Problem with resultfile: %s\n", fileresilk);
       }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(j=1; j<= nlstate*2; j++)      }
         for(h=0; h<=nhstepm-1; h++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      }      for(k=1; k<=nlstate; k++) 
            fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 /* End theta */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
     *fretone=(*funcone)(p);
      for(h=0; h<=nhstepm-1; h++)    if(*globpri !=0){
       for(j=1; j<=nlstate*2;j++)      fclose(ficresilk);
         for(theta=1; theta <=npar; theta++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           trgradg[h][j][theta]=gradg[h][theta][j];      fflush(fichtm); 
          } 
     return;
      for(i=1;i<=nlstate*2;i++)  }
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;  
   /*********** Maximum Likelihood Estimation ***************/
      printf("%d|",(int)age);fflush(stdout);  
      for(h=0;h<=nhstepm-1;h++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(k=0;k<=nhstepm-1;k++){  {
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    int i,j, iter;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double **xi;
         for(i=1;i<=nlstate*2;i++)    double fret;
           for(j=1;j<=nlstate*2;j++)    double fretone; /* Only one call to likelihood */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    /*  char filerespow[FILENAMELENGTH];*/
       }    xi=matrix(1,npar,1,npar);
     }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
              xi[i][j]=(i==j ? 1.0 : 0.0);
     /* Computing expectancies */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(i=1; i<=nlstate;i++)    strcpy(filerespow,"pow"); 
       for(j=1; j<=nlstate;j++)    strcat(filerespow,fileres);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      printf("Problem with resultfile: %s\n", filerespow);
                fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
         }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     fprintf(ficreseij,"%3.0f",age );        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     cptj=0;    fprintf(ficrespow,"\n");
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    powell(p,xi,npar,ftol,&iter,&fret,func);
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    free_matrix(xi,1,npar,1,npar);
       }    fclose(ficrespow);
     fprintf(ficreseij,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
        fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_matrix(gm,0,nhstepm,1,nlstate*2);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /**** Computes Hessian and covariance matrix ***/
   }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   free_vector(xp,1,npar);  {
   free_matrix(dnewm,1,nlstate*2,1,npar);    double  **a,**y,*x,pd;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    double **hess;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    int i, j,jk;
 }    int *indx;
   
 /************ Variance ******************/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 {    void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* Variance of health expectancies */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double gompertz(double p[]);
   double **newm;    hess=matrix(1,npar,1,npar);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;    printf("\nCalculation of the hessian matrix. Wait...\n");
   int k, cptcode;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double *xp;    for (i=1;i<=npar;i++){
   double **gp, **gm;      printf("%d",i);fflush(stdout);
   double ***gradg, ***trgradg;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double ***p3mat;     
   double age,agelim, hf;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   int theta;      
       /*  printf(" %f ",p[i]);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for (j=1;j<=npar;j++)  {
   fprintf(ficresvij,"\n");        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   xp=vector(1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   dnewm=matrix(1,nlstate,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   doldm=matrix(1,nlstate,1,nlstate);          
            hess[j][i]=hess[i][j];    
   if(estepm < stepm){          /*printf(" %lf ",hess[i][j]);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);        }
   }      }
   else  hstepm=estepm;      }
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficlog,"\n");
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      Look at hpijx to understand the reason of that which relies in memory size    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      and note for a fixed period like k years */    
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    a=matrix(1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    y=matrix(1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if    x=vector(1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    indx=ivector(1,npar);
      results. So we changed our mind and took the option of the best precision.    for (i=1;i<=npar;i++)
   */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    ludcmp(a,npar,indx,&pd);
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (j=1;j<=npar;j++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1;i<=npar;i++) x[i]=0;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      x[j]=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      lubksb(a,npar,indx,x);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (i=1;i<=npar;i++){ 
     gp=matrix(0,nhstepm,1,nlstate);        matcov[i][j]=x[i];
     gm=matrix(0,nhstepm,1,nlstate);      }
     }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("\n#Hessian matrix#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
       if (popbased==1) {      }
         for(i=1; i<=nlstate;i++)      printf("\n");
           prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficlog,"\n");
       }    }
    
       for(j=1; j<= nlstate; j++){    /* Recompute Inverse */
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    ludcmp(a,npar,indx,&pd);
         }  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
      
       for(i=1; i<=npar; i++) /* Computes gradient */    for (j=1;j<=npar;j++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) x[i]=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        x[j]=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
       if (popbased==1) {        y[i][j]=x[i];
         for(i=1; i<=nlstate;i++)        printf("%.3e ",y[i][j]);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
       printf("\n");
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
       for(j=1; j<= nlstate; j++)    free_ivector(indx,1,npar);
         for(h=0; h<=nhstepm; h++){    free_matrix(hess,1,npar,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  
     } /* End theta */  }
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(h=0; h<=nhstepm; h++)  {
       for(j=1; j<=nlstate;j++)    int i;
         for(theta=1; theta <=npar; theta++)    int l=1, lmax=20;
           trgradg[h][j][theta]=gradg[h][theta][j];    double k1,k2;
     double p2[NPARMAX+1];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double res;
     for(i=1;i<=nlstate;i++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(j=1;j<=nlstate;j++)    double fx;
         vareij[i][j][(int)age] =0.;    int k=0,kmax=10;
     double l1;
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    fx=func(x);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++) p2[i]=x[i];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    for(l=0 ; l <=lmax; l++){
         for(i=1;i<=nlstate;i++)      l1=pow(10,l);
           for(j=1;j<=nlstate;j++)      delts=delt;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for(k=1 ; k <kmax; k=k+1){
       }        delt = delta*(l1*k);
     }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
     fprintf(ficresvij,"%.0f ",age );        p2[theta]=x[theta]-delt;
     for(i=1; i<=nlstate;i++)        k2=func(p2)-fx;
       for(j=1; j<=nlstate;j++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
     fprintf(ficresvij,"\n");  #ifdef DEBUG
     free_matrix(gp,0,nhstepm,1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_matrix(gm,0,nhstepm,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  #endif
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   } /* End age */          k=kmax;
          }
   free_vector(xp,1,npar);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   free_matrix(doldm,1,nlstate,1,npar);          k=kmax; l=lmax*10.;
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 }          delts=delt;
         }
 /************ Variance of prevlim ******************/      }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {    delti[theta]=delts;
   /* Variance of prevalence limit */    return res; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    
   double **newm;  }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   int k, cptcode;  {
   double *xp;    int i;
   double *gp, *gm;    int l=1, l1, lmax=20;
   double **gradg, **trgradg;    double k1,k2,k3,k4,res,fx;
   double age,agelim;    double p2[NPARMAX+1];
   int theta;    int k;
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    fx=func(x);
   fprintf(ficresvpl,"# Age");    for (k=1; k<=2; k++) {
   for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++) p2[i]=x[i];
       fprintf(ficresvpl," %1d-%1d",i,i);      p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresvpl,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   xp=vector(1,npar);    
   dnewm=matrix(1,nlstate,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   doldm=matrix(1,nlstate,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
   hstepm=1*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      p2[thetai]=x[thetai]-delti[thetai]/k;
   agelim = AGESUP;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      k3=func(p2)-fx;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     if (stepm >= YEARM) hstepm=1;      p2[thetai]=x[thetai]-delti[thetai]/k;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gradg=matrix(1,npar,1,nlstate);      k4=func(p2)-fx;
     gp=vector(1,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     gm=vector(1,nlstate);  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1; i<=npar; i++){ /* Computes gradient */  #endif
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    return res;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  /************** Inverse of matrix **************/
      void ludcmp(double **a, int n, int *indx, double *d) 
       for(i=1; i<=npar; i++) /* Computes gradient */  { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i,imax,j,k; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double big,dum,sum,temp; 
       for(i=1;i<=nlstate;i++)    double *vv; 
         gm[i] = prlim[i][i];   
     vv=vector(1,n); 
       for(i=1;i<=nlstate;i++)    *d=1.0; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    for (i=1;i<=n;i++) { 
     } /* End theta */      big=0.0; 
       for (j=1;j<=n;j++) 
     trgradg =matrix(1,nlstate,1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for(j=1; j<=nlstate;j++)      vv[i]=1.0/big; 
       for(theta=1; theta <=npar; theta++)    } 
         trgradg[j][theta]=gradg[theta][j];    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
     for(i=1;i<=nlstate;i++)        sum=a[i][j]; 
       varpl[i][(int)age] =0.;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        a[i][j]=sum; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      } 
     for(i=1;i<=nlstate;i++)      big=0.0; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
     fprintf(ficresvpl,"%.0f ",age );        for (k=1;k<j;k++) 
     for(i=1; i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        a[i][j]=sum; 
     fprintf(ficresvpl,"\n");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_vector(gp,1,nlstate);          big=dum; 
     free_vector(gm,1,nlstate);          imax=i; 
     free_matrix(gradg,1,npar,1,nlstate);        } 
     free_matrix(trgradg,1,nlstate,1,npar);      } 
   } /* End age */      if (j != imax) { 
         for (k=1;k<=n;k++) { 
   free_vector(xp,1,npar);          dum=a[imax][k]; 
   free_matrix(doldm,1,nlstate,1,npar);          a[imax][k]=a[j][k]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);          a[j][k]=dum; 
         } 
 }        *d = -(*d); 
         vv[imax]=vv[j]; 
 /************ Variance of one-step probabilities  ******************/      } 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      indx[j]=imax; 
 {      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int i, j, i1, k1, j1, z1;      if (j != n) { 
   int k=0,l, cptcode;        dum=1.0/(a[j][j]); 
   double **dnewm,**doldm;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double *xp;      } 
   double *gp, *gm;    } 
   double **gradg, **trgradg;    free_vector(vv,1,n);  /* Doesn't work */
   double age,agelim, cov[NCOVMAX];  ;
   int theta;  } 
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];  void lubksb(double **a, int n, int *indx, double b[]) 
   char fileresprobcor[FILENAMELENGTH];  { 
     int i,ii=0,ip,j; 
   strcpy(fileresprob,"prob");    double sum; 
   strcat(fileresprob,fileres);   
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for (i=1;i<=n;i++) { 
     printf("Problem with resultfile: %s\n", fileresprob);      ip=indx[i]; 
   }      sum=b[ip]; 
   strcpy(fileresprobcov,"probcov");      b[ip]=b[i]; 
   strcat(fileresprobcov,fileres);      if (ii) 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     printf("Problem with resultfile: %s\n", fileresprobcov);      else if (sum) ii=i; 
   }      b[i]=sum; 
   strcpy(fileresprobcor,"probcor");    } 
   strcat(fileresprobcor,fileres);    for (i=n;i>=1;i--) { 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      sum=b[i]; 
     printf("Problem with resultfile: %s\n", fileresprobcor);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    } 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  } 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
    void pstamp(FILE *fichier)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  {
   fprintf(ficresprob,"# Age");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  }
   fprintf(ficresprobcov,"# Age");  
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  /************ Frequencies ********************/
   fprintf(ficresprobcov,"# Age");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   for(i=1; i<=nlstate;i++)  {  /* Some frequencies */
     for(j=1; j<=(nlstate+ndeath);j++){    
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    int first;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    double ***freq; /* Frequencies */
     }      double *pp, **prop;
   fprintf(ficresprob,"\n");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(ficresprobcov,"\n");    char fileresp[FILENAMELENGTH];
   fprintf(ficresprobcor,"\n");    
   xp=vector(1,npar);    pp=vector(1,nlstate);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    strcpy(fileresp,"p");
      strcat(fileresp,fileres);
   cov[1]=1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   j=cptcoveff;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   j1=0;      exit(0);
   for(k1=1; k1<=1;k1++){    }
     for(i1=1; i1<=ncodemax[k1];i1++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1++;    j1=0;
     
     if  (cptcovn>0) {    j=cptcoveff;
       fprintf(ficresprob, "\n#********** Variable ");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficresprobcov, "\n#********** Variable ");  
       fprintf(ficresprobcor, "\n#********** Variable ");    first=1;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficresprob, "**********\n#");    for(k1=1; k1<=j;k1++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresprobcov, "**********\n#");        j1++;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fprintf(ficresprobcor, "**********\n#");          scanf("%d", i);*/
     }        for (i=-5; i<=nlstate+ndeath; i++)  
              for (jk=-5; jk<=nlstate+ndeath; jk++)  
       for (age=bage; age<=fage; age ++){            for(m=iagemin; m <= iagemax+3; m++)
         cov[2]=age;              freq[i][jk][m]=0;
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          prop[i][m]=0;
         for (k=1; k<=cptcovprod;k++)        
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        dateintsum=0;
                k2cpt=0;
         gradg=matrix(1,npar,1,9);        for (i=1; i<=imx; i++) {
         trgradg=matrix(1,9,1,npar);          bool=1;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          if  (cptcovn>0) {
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(theta=1; theta <=npar; theta++){                bool=0;
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          if (bool==1){
                      for(m=firstpass; m<=lastpass; m++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
                        /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           k=0;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for(i=1; i<= (nlstate+ndeath); i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             for(j=1; j<=(nlstate+ndeath);j++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               k=k+1;                if (m<lastpass) {
               gp[k]=pmmij[i][j];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           }                }
                          
           for(i=1; i<=npar; i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                  dateintsum=dateintsum+k2;
                      k2cpt++;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                }
           k=0;                /*}*/
           for(i=1; i<=(nlstate+ndeath); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;        }
               gm[k]=pmmij[i][j];         
             }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           }        pstamp(ficresp);
              if  (cptcovn>0) {
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          fprintf(ficresp, "\n#********** Variable "); 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresp, "**********\n#");
         }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        for(i=1; i<=nlstate;i++) 
           for(theta=1; theta <=npar; theta++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             trgradg[j][theta]=gradg[theta][j];        fprintf(ficresp, "\n");
                
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        for(i=iagemin; i <= iagemax+3; i++){
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          if(i==iagemax+3){
                    fprintf(ficlog,"Total");
         pmij(pmmij,cov,ncovmodel,x,nlstate);          }else{
                    if(first==1){
         k=0;              first=0;
         for(i=1; i<=(nlstate+ndeath); i++){              printf("See log file for details...\n");
           for(j=1; j<=(nlstate+ndeath);j++){            }
             k=k+1;            fprintf(ficlog,"Age %d", i);
             gm[k]=pmmij[i][j];          }
           }          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                    pp[jk] += freq[jk][m][i]; 
         /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          for(jk=1; jk <=nlstate ; jk++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            for(m=-1, pos=0; m <=0 ; m++)
      }*/              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
         fprintf(ficresprob,"\n%d ",(int)age);              if(first==1){
         fprintf(ficresprobcov,"\n%d ",(int)age);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(ficresprobcor,"\n%d ",(int)age);              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            }else{
           fprintf(ficresprob,"%12.3e (%12.3e) ",gm[i],sqrt(doldm[i][j]));              if(first==1)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficresprobcov,"%12.3e ",gm[i]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficresprobcor,"%12.3e ",gm[i]);            }
         }          }
         i=0;  
         for (k=1; k<=(nlstate);k++){          for(jk=1; jk <=nlstate ; jk++){
           for (l=1; l<=(nlstate+ndeath);l++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             i=i++;              pp[jk] += freq[jk][m][i];
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          }       
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             for (j=1; j<=i;j++){            pos += pp[jk];
               fprintf(ficresprobcov," %12.3e",doldm[i][j]);            posprop += prop[jk][i];
               fprintf(ficresprobcor," %12.3e",doldm[i][j]/sqrt(doldm[i][i])/sqrt(doldm[j][j]));          }
             }          for(jk=1; jk <=nlstate ; jk++){
           }            if(pos>=1.e-5){
         }              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            }else{
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }            }
   free_vector(xp,1,npar);            if( i <= iagemax){
   fclose(ficresprob);              if(pos>=1.e-5){
   fclose(ficresprobcov);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fclose(ficresprobcor);                /*probs[i][jk][j1]= pp[jk]/pos;*/
 }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
               else
 /******************* Printing html file ***********/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            }
                   int lastpass, int stepm, int weightopt, char model[],\          }
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          for(jk=-1; jk <=nlstate+ndeath; jk++)
                   char version[], int popforecast, int estepm ,\            for(m=-1; m <=nlstate+ndeath; m++)
                   double jprev1, double mprev1,double anprev1, \              if(freq[jk][m][i] !=0 ) {
                   double jprev2, double mprev2,double anprev2){              if(first==1)
   int jj1, k1, i1, cpt;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   FILE *fichtm;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /*char optionfilehtm[FILENAMELENGTH];*/              }
           if(i <= iagemax)
   strcpy(optionfilehtm,optionfile);            fprintf(ficresp,"\n");
   strcat(optionfilehtm,".htm");          if(first==1)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            printf("Others in log...\n");
     printf("Problem with %s \n",optionfilehtm), exit(0);          fprintf(ficlog,"\n");
   }        }
       }
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    dateintmean=dateintsum/k2cpt; 
 \n   
 Total number of observations=%d <br>\n    fclose(ficresp);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 <hr  size=\"2\" color=\"#EC5E5E\">    free_vector(pp,1,nlstate);
  <ul><li>Parameter files<br>\n    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    /* End of Freq */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  }
   
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  /************ Prevalence ********************/
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  {  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  - Life expectancies by age and initial health status (estepm=%2d months):       in each health status at the date of interview (if between dateprev1 and dateprev2).
    <a href=\"e%s\">e%s</a> <br>\n</li>", \       We still use firstpass and lastpass as another selection.
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    */
    
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    double ***freq; /* Frequencies */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    double *pp, **prop;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    double pos,posprop; 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    double  y2; /* in fractional years */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    int iagemin, iagemax;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    iagemin= (int) agemin;
     iagemax= (int) agemax;
  if(popforecast==1) fprintf(fichtm,"\n    /*pp=vector(1,nlstate);*/
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         <br>",fileres,fileres,fileres,fileres);    j1=0;
  else    
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    j=cptcoveff;
 fprintf(fichtm," <li>Graphs</li><p>");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
  m=cptcoveff;    for(k1=1; k1<=j;k1++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
  jj1=0;        
  for(k1=1; k1<=m;k1++){        for (i=1; i<=nlstate; i++)  
    for(i1=1; i1<=ncodemax[k1];i1++){          for(m=iagemin; m <= iagemax+3; m++)
      jj1++;            prop[i][m]=0.0;
      if (cptcovn > 0) {       
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for (i=1; i<=imx; i++) { /* Each individual */
        for (cpt=1; cpt<=cptcoveff;cpt++)          bool=1;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          if  (cptcovn>0) {
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            for (z1=1; z1<=cptcoveff; z1++) 
      }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      /* Pij */                bool=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          } 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              if (bool==1) { 
      /* Quasi-incidences */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        /* Stable prevalence in each health state */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        for(cpt=1; cpt<nlstate;cpt++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
        }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     for(cpt=1; cpt<=nlstate;cpt++) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                  prop[s[m][i]][iagemax+3] += weight[i]; 
 interval) in state (%d): v%s%d%d.png <br>                } 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                }
      }            } /* end selection of waves */
      for(cpt=1; cpt<=nlstate;cpt++) {          }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=iagemin; i <= iagemax+3; i++){  
      }          
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 health expectancies in states (1) and (2): e%s%d.png<br>            posprop += prop[jk][i]; 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          } 
 fprintf(fichtm,"\n</body>");  
    }          for(jk=1; jk <=nlstate ; jk++){     
  }            if( i <=  iagemax){ 
 fclose(fichtm);              if(posprop>=1.e-5){ 
 }                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
 /******************* Gnuplot file **************/            } 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          }/* end jk */ 
         }/* end i */ 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      } /* end i1 */
   int ng;    } /* end k1 */
   strcpy(optionfilegnuplot,optionfilefiname);    
   strcat(optionfilegnuplot,".gp");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    /*free_vector(pp,1,nlstate);*/
     printf("Problem with file %s",optionfilegnuplot);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  }  /* End of prevalence */
   
 #ifdef windows  /************* Waves Concatenation ***************/
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 m=pow(2,cptcoveff);  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  /* 1eme*/       Death is a valid wave (if date is known).
   for (cpt=1; cpt<= nlstate ; cpt ++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    for (k1=1; k1<= m ; k1 ++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
 #ifdef windows       */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    int i, mi, m;
 #endif    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 #ifdef unix       double sum=0., jmean=0.;*/
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    int first;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    int j, k=0,jk, ju, jl;
 #endif    double sum=0.;
     first=0;
 for (i=1; i<= nlstate ; i ++) {    jmin=1e+5;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    jmax=-1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    jmean=0.;
 }    for(i=1; i<=imx; i++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      mi=0;
     for (i=1; i<= nlstate ; i ++) {      m=firstpass;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      while(s[m][i] <= nlstate){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 }          mw[++mi][i]=m;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        if(m >=lastpass)
      for (i=1; i<= nlstate ; i ++) {          break;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        else
   else fprintf(ficgp," \%%*lf (\%%*lf)");          m++;
 }        }/* end while */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      if (s[m][i] > nlstate){
 #ifdef unix        mi++;     /* Death is another wave */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        /* if(mi==0)  never been interviewed correctly before death */
 #endif           /* Only death is a correct wave */
    }        mw[mi][i]=m;
   }      }
   /*2 eme*/  
       wav[i]=mi;
   for (k1=1; k1<= m ; k1 ++) {      if(mi==0){
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        nbwarn++;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        if(first==0){
              printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     for (i=1; i<= nlstate+1 ; i ++) {          first=1;
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        if(first==1){
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* end mi==0 */
 }      } /* End individuals */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    for(i=1; i<=imx; i++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(mi=1; mi<wav[i];mi++){
       for (j=1; j<= nlstate+1 ; j ++) {        if (stepm <=0)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          dh[mi][i]=1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        else{
 }            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficgp,"\" t\"\" w l 0,");            if (agedc[i] < 2*AGESUP) {
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for (j=1; j<= nlstate+1 ; j ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              else if(j<0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                nberr++;
 }                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                j=1; /* Temporary Dangerous patch */
       else fprintf(ficgp,"\" t\"\" w l 0,");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                }
   /*3eme*/              k=k+1;
               if (j >= jmax){
   for (k1=1; k1<= m ; k1 ++) {                jmax=j;
     for (cpt=1; cpt<= nlstate ; cpt ++) {                ijmax=i;
       k=2+nlstate*(2*cpt-2);              }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              if (j <= jmin){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                jmin=j;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                ijmin=i;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              sum=sum+j;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
           }
 */          else{
       for (i=1; i< nlstate ; i ++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
       }            k=k+1;
     }            if (j >= jmax) {
   }              jmax=j;
                ijmax=i;
   /* CV preval stat */            }
     for (k1=1; k1<= m ; k1 ++) {            else if (j <= jmin){
     for (cpt=1; cpt<nlstate ; cpt ++) {              jmin=j;
       k=3;              ijmin=i;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       for (i=1; i< nlstate ; i ++)            if(j<0){
         fprintf(ficgp,"+$%d",k+i+1);              nberr++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       l=3+(nlstate+ndeath)*cpt;            }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            sum=sum+j;
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;          jk= j/stepm;
         fprintf(ficgp,"+$%d",l+i+1);          jl= j -jk*stepm;
       }          ju= j -(jk+1)*stepm;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     }            if(jl==0){
   }                dh[mi][i]=jk;
                bh[mi][i]=0;
   /* proba elementaires */            }else{ /* We want a negative bias in order to only have interpolation ie
    for(i=1,jk=1; i <=nlstate; i++){                    * at the price of an extra matrix product in likelihood */
     for(k=1; k <=(nlstate+ndeath); k++){              dh[mi][i]=jk+1;
       if (k != i) {              bh[mi][i]=ju;
         for(j=1; j <=ncovmodel; j++){            }
                  }else{
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            if(jl <= -ju){
           jk++;              dh[mi][i]=jk;
           fprintf(ficgp,"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
         }                                   * is higher than the multiple of stepm and negative otherwise.
       }                                   */
     }            }
    }            else{
               dh[mi][i]=jk+1;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              bh[mi][i]=ju;
      for(jk=1; jk <=m; jk++) {            }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            if(dh[mi][i]==0){
        if (ng==2)              dh[mi][i]=1; /* At least one step */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");              bh[mi][i]=ju; /* At least one step */
        else              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
          fprintf(ficgp,"\nset title \"Probability\"\n");            }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          } /* end if mle */
        i=1;        }
        for(k2=1; k2<=nlstate; k2++) {      } /* end wave */
          k3=i;    }
          for(k=1; k<=(nlstate+ndeath); k++) {    jmean=sum/k;
            if (k != k2){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
              if(ng==2)    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);   }
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  /*********** Tricode ****************************/
              ij=1;  void tricode(int *Tvar, int **nbcode, int imx)
              for(j=3; j <=ncovmodel; j++) {  {
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int Ndum[20],ij=1, k, j, i, maxncov=19;
                  ij++;    int cptcode=0;
                }    cptcoveff=0; 
                else   
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (k=0; k<maxncov; k++) Ndum[k]=0;
              }    for (k=1; k<=7; k++) ncodemax[k]=0;
              fprintf(ficgp,")/(1");  
                  for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
              for(k1=1; k1 <=nlstate; k1++){        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                                 modality*/ 
                ij=1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                for(j=3; j <=ncovmodel; j++){        Ndum[ij]++; /*store the modality */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                    ij++;                                         Tvar[j]. If V=sex and male is 0 and 
                  }                                         female is 1, then  cptcode=1.*/
                  else      }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }      for (i=0; i<=cptcode; i++) {
                fprintf(ficgp,")");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
              }      }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      ij=1; 
              i=i+ncovmodel;      for (i=1; i<=ncodemax[j]; i++) {
            }        for (k=0; k<= maxncov; k++) {
          }          if (Ndum[k] != 0) {
        }            nbcode[Tvar[j]][ij]=k; 
      }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
    }            
    fclose(ficgp);            ij++;
 }  /* end gnuplot */          }
           if (ij > ncodemax[j]) break; 
         }  
 /*************** Moving average **************/      } 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    }  
   
   int i, cpt, cptcod;   for (k=0; k< maxncov; k++) Ndum[k]=0;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)   for (i=1; i<=ncovmodel-2; i++) { 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           mobaverage[(int)agedeb][i][cptcod]=0.;     ij=Tvar[i];
         Ndum[ij]++;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){   }
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   ij=1;
           for (cpt=0;cpt<=4;cpt++){   for (i=1; i<= maxncov; i++) {
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];     if((Ndum[i]!=0) && (i<=ncovcol)){
           }       Tvaraff[ij]=i; /*For printing */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;       ij++;
         }     }
       }   }
     }   
       cptcoveff=ij-1; /*Number of simple covariates*/
 }  }
   
   /*********** Health Expectancies ****************/
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  {
   int *popage;    /* Health expectancies, no variances */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double *popeffectif,*popcount;    double age, agelim, hf;
   double ***p3mat;    double ***p3mat;
   char fileresf[FILENAMELENGTH];    double eip;
   
  agelim=AGESUP;    pstamp(ficreseij);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++){
          fprintf(ficreseij," e%1d%1d ",i,j);
   strcpy(fileresf,"f");      }
   strcat(fileresf,fileres);      fprintf(ficreseij," e%1d. ",i);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    }
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficreseij,"\n");
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    
     if(estepm < stepm){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   if (mobilav==1) {    else  hstepm=estepm;   
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* We compute the life expectancy from trapezoids spaced every estepm months
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * progression in between and thus overestimating or underestimating according
   if (stepm<=12) stepsize=1;     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   agelim=AGESUP;     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   hstepm=1;     * curvature will be obtained if estepm is as small as stepm. */
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);    /* For example we decided to compute the life expectancy with the smallest unit */
   anprojmean=yp;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   yp2=modf((yp1*12),&yp);       nhstepm is the number of hstepm from age to agelim 
   mprojmean=yp;       nstepm is the number of stepm from age to agelin. 
   yp1=modf((yp2*30.5),&yp);       Look at hpijx to understand the reason of that which relies in memory size
   jprojmean=yp;       and note for a fixed period like estepm months */
   if(jprojmean==0) jprojmean=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if(mprojmean==0) jprojmean=1;       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   for(cptcov=1;cptcov<=i2;cptcov++){    */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       k=k+1;  
       fprintf(ficresf,"\n#******");    agelim=AGESUP;
       for(j=1;j<=cptcoveff;j++) {    /* nhstepm age range expressed in number of stepm */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficresf,"******\n");    /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficresf,"# StartingAge FinalAge");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        
          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         fprintf(ficresf,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           nhstepm = nhstepm/hstepm;  
                /* Computing  Variances of health expectancies */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           oldm=oldms;savm=savms;         decrease memory allocation */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         printf("%d|",(int)age);fflush(stdout);
               fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for (h=0; h<=nhstepm; h++){      /* Computing expectancies */
             if (h==(int) (calagedate+YEARM*cpt)) {      for(i=1; i<=nlstate;i++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<=nlstate;j++)
             }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             for(j=1; j<=nlstate+ndeath;j++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               kk1=0.;kk2=0;            
               for(i=1; i<=nlstate;i++) {                /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      fprintf(ficreseij,"%3.0f",age );
                 }      for(i=1; i<=nlstate;i++){
                        eip=0;
               }        for(j=1; j<=nlstate;j++){
               if (h==(int)(calagedate+12*cpt)){          eip +=eij[i][j][(int)age];
                 fprintf(ficresf," %.3f", kk1);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                                }
               }        fprintf(ficreseij,"%9.4f", eip );
             }      }
           }      fprintf(ficreseij,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    }
       }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    printf("\n");
   }    fprintf(ficlog,"\n");
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   
   fclose(ficresf);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 }  
 /************** Forecasting ******************/  {
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    /* Covariances of health expectancies eij and of total life expectancies according
       to initial status i, ei. .
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    */
   int *popage;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double age, agelim, hf;
   double *popeffectif,*popcount;    double ***p3matp, ***p3matm, ***varhe;
   double ***p3mat,***tabpop,***tabpopprev;    double **dnewm,**doldm;
   char filerespop[FILENAMELENGTH];    double *xp, *xm;
     double **gp, **gm;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***gradg, ***trgradg;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int theta;
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    double eip, vip;
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
      xm=vector(1,npar);
   strcpy(filerespop,"pop");    dnewm=matrix(1,nlstate*nlstate,1,npar);
   strcat(filerespop,fileres);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    
     printf("Problem with forecast resultfile: %s\n", filerespop);    pstamp(ficresstdeij);
   }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   printf("Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   if (mobilav==1) {      fprintf(ficresstdeij," e%1d. ",i);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(ficresstdeij,"\n");
   }  
     pstamp(ficrescveij);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   if (stepm<=12) stepsize=1;    fprintf(ficrescveij,"# Age");
      for(i=1; i<=nlstate;i++)
   agelim=AGESUP;      for(j=1; j<=nlstate;j++){
          cptj= (j-1)*nlstate+i;
   hstepm=1;        for(i2=1; i2<=nlstate;i2++)
   hstepm=hstepm/stepm;          for(j2=1; j2<=nlstate;j2++){
              cptj2= (j2-1)*nlstate+i2;
   if (popforecast==1) {            if(cptj2 <= cptj)
     if((ficpop=fopen(popfile,"r"))==NULL) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       printf("Problem with population file : %s\n",popfile);exit(0);          }
     }      }
     popage=ivector(0,AGESUP);    fprintf(ficrescveij,"\n");
     popeffectif=vector(0,AGESUP);    
     popcount=vector(0,AGESUP);    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     i=1;      }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
     imx=i;     * This is mainly to measure the difference between two models: for example
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   for(cptcov=1;cptcov<=i2;cptcov++){     * to the curvature of the survival function. If, for the same date, we 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       k=k+1;     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficrespop,"\n#******");     * hypothesis. A more precise result, taking into account a more precise
       for(j=1;j<=cptcoveff;j++) {     * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficrespop,"******\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficrespop,"# Age");       nhstepm is the number of hstepm from age to agelim 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       nstepm is the number of stepm from age to agelin. 
       if (popforecast==1)  fprintf(ficrespop," [Population]");       Look at hpijx to understand the reason of that which relies in memory size
             and note for a fixed period like estepm months */
       for (cpt=0; cpt<=0;cpt++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         survival function given by stepm (the optimization length). Unfortunately it
               means that if the survival funtion is printed only each two years of age and if
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       results. So we changed our mind and took the option of the best precision.
           nhstepm = nhstepm/hstepm;    */
              hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    /* If stepm=6 months */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* nhstepm age range expressed in number of stepm */
            agelim=AGESUP;
           for (h=0; h<=nhstepm; h++){    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             if (h==(int) (calagedate+YEARM*cpt)) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /* if (stepm >= YEARM) hstepm=1;*/
             }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               for(i=1; i<=nlstate;i++) {                  p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 if (mobilav==1)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                 else {    gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    gm=matrix(0,nhstepm,1,nlstate*nlstate);
                 }  
               }    for (age=bage; age<=fage; age ++){ 
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   /*fprintf(ficrespop," %.3f", kk1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/   
               }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             }  
             for(i=1; i<=nlstate;i++){      /* Computing  Variances of health expectancies */
               kk1=0.;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                 for(j=1; j<=nlstate;j++){         decrease memory allocation */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for(theta=1; theta <=npar; theta++){
                 }        for(i=1; i<=npar; i++){ 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<= nlstate; j++){
         }          for(i=1; i<=nlstate; i++){
       }            for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   /******/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(ij=1; ij<= nlstate*nlstate; ij++)
           nhstepm = nhstepm/hstepm;          for(h=0; h<=nhstepm-1; h++){
                      gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;      }/* End theta */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        
           for (h=0; h<=nhstepm; h++){      
             if (h==(int) (calagedate+YEARM*cpt)) {      for(h=0; h<=nhstepm-1; h++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<=nlstate*nlstate;j++)
             }          for(theta=1; theta <=npar; theta++)
             for(j=1; j<=nlstate+ndeath;j++) {            trgradg[h][j][theta]=gradg[h][theta][j];
               kk1=0.;kk2=0;      
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           for(ij=1;ij<=nlstate*nlstate;ij++)
               }        for(ji=1;ji<=nlstate*nlstate;ji++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          varhe[ij][ji][(int)age] =0.;
             }  
           }       printf("%d|",(int)age);fflush(stdout);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         }       for(h=0;h<=nhstepm-1;h++){
       }        for(k=0;k<=nhstepm-1;k++){
    }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
            for(ij=1;ij<=nlstate*nlstate;ij++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   if (popforecast==1) {        }
     free_ivector(popage,0,AGESUP);      }
     free_vector(popeffectif,0,AGESUP);      /* Computing expectancies */
     free_vector(popcount,0,AGESUP);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      for(i=1; i<=nlstate;i++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fclose(ficrespop);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 }            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 /***********************************************/  
 /**************** Main Program *****************/          }
 /***********************************************/  
       fprintf(ficresstdeij,"%3.0f",age );
 int main(int argc, char *argv[])      for(i=1; i<=nlstate;i++){
 {        eip=0.;
         vip=0.;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(j=1; j<=nlstate;j++){
   double agedeb, agefin,hf;          eip += eij[i][j][(int)age];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   double fret;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double **xi,tmp,delta;        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double dum; /* Dummy variable */      }
   double ***p3mat;      fprintf(ficresstdeij,"\n");
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];      fprintf(ficrescveij,"%3.0f",age );
   char title[MAXLINE];      for(i=1; i<=nlstate;i++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        for(j=1; j<=nlstate;j++){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          cptj= (j-1)*nlstate+i;
            for(i2=1; i2<=nlstate;i2++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
   char filerest[FILENAMELENGTH];              if(cptj2 <= cptj)
   char fileregp[FILENAMELENGTH];                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   char popfile[FILENAMELENGTH];            }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        }
   int firstobs=1, lastobs=10;      fprintf(ficrescveij,"\n");
   int sdeb, sfin; /* Status at beginning and end */     
   int c,  h , cpt,l;    }
   int ju,jl, mi;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   int mobilav=0,popforecast=0;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   int hstepm, nhstepm;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   double bage, fage, age, agelim, agebase;    fprintf(ficlog,"\n");
   double ftolpl=FTOL;  
   double **prlim;    free_vector(xm,1,npar);
   double *severity;    free_vector(xp,1,npar);
   double ***param; /* Matrix of parameters */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double  *p;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double **matcov; /* Matrix of covariance */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double ***delti3; /* Scale */  }
   double *delti; /* Scale */  
   double ***eij, ***vareij;  /************ Variance ******************/
   double **varpl; /* Variances of prevalence limits by age */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   double *epj, vepp;  {
   double kk1, kk2;    /* Variance of health expectancies */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
     double **dnewm,**doldm;
   char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    double **dnewmp,**doldmp;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
   char z[1]="c", occ;    double **gp, **gm;  /* for var eij */
 #include <sys/time.h>    double ***gradg, ***trgradg; /*for var eij */
 #include <time.h>    double **gradgp, **trgradgp; /* for var p point j */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   /* long total_usecs;    double ***p3mat;
   struct timeval start_time, end_time;    double age,agelim, hf;
      double ***mobaverage;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int theta;
   getcwd(pathcd, size);    char digit[4];
     char digitp[25];
   printf("\n%s",version);  
   if(argc <=1){    char fileresprobmorprev[FILENAMELENGTH];
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    if(popbased==1){
   }      if(mobilav!=0)
   else{        strcpy(digitp,"-populbased-mobilav-");
     strcpy(pathtot,argv[1]);      else strcpy(digitp,"-populbased-nomobil-");
   }    }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    else 
   /*cygwin_split_path(pathtot,path,optionfile);      strcpy(digitp,"-stablbased-");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   chdir(path);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   replace(pathc,path);      }
     }
 /*-------- arguments in the command line --------*/  
     strcpy(fileresprobmorprev,"prmorprev"); 
   strcpy(fileres,"r");    sprintf(digit,"%-d",ij);
   strcat(fileres, optionfilefiname);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcat(fileres,".txt");    /* Other files have txt extension */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   /*---------arguments file --------*/    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     goto end;    }
   }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
   strcpy(filereso,"o");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcat(filereso,fileres);    pstamp(ficresprobmorprev);
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   /* Reads comments: lines beginning with '#' */      for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     ungetc(c,ficpar);    }  
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"\n");
     puts(line);    fprintf(ficgp,"\n# Routine varevsij");
     fputs(line,ficparo);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   ungetc(c,ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    pstamp(ficresvij);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 while((c=getc(ficpar))=='#' && c!= EOF){    if(popbased==1)
     ungetc(c,ficpar);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     fgets(line, MAXLINE, ficpar);    else
     puts(line);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fputs(line,ficparo);    fprintf(ficresvij,"# Age");
   }    for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
        fprintf(ficresvij,"\n");
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;    xp=vector(1,npar);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   ncovmodel=2+cptcovn;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   /* Read guess parameters */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /* Reads comments: lines beginning with '#' */    gpp=vector(nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){    gmp=vector(nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fgets(line, MAXLINE, ficpar);    
     puts(line);    if(estepm < stepm){
     fputs(line,ficparo);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   ungetc(c,ficpar);    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for(i=1; i <=nlstate; i++)       nhstepm is the number of hstepm from age to agelim 
     for(j=1; j <=nlstate+ndeath-1; j++){       nstepm is the number of stepm from age to agelin. 
       fscanf(ficpar,"%1d%1d",&i1,&j1);       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficparo,"%1d%1d",i1,j1);       and note for a fixed period like k years */
       printf("%1d%1d",i,j);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(k=1; k<=ncovmodel;k++){       survival function given by stepm (the optimization length). Unfortunately it
         fscanf(ficpar," %lf",&param[i][j][k]);       means that if the survival funtion is printed every two years of age and if
         printf(" %lf",param[i][j][k]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficparo," %lf",param[i][j][k]);       results. So we changed our mind and took the option of the best precision.
       }    */
       fscanf(ficpar,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       printf("\n");    agelim = AGESUP;
       fprintf(ficparo,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   p=param[1][1];      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     puts(line);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        if (popbased==1) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          if(mobilav ==0){
   for(i=1; i <=nlstate; i++){            for(i=1; i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){              prlim[i][i]=probs[(int)age][i][ij];
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }else{ /* mobilav */ 
       printf("%1d%1d",i,j);            for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(k=1; k<=ncovmodel;k++){          }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        }
         printf(" %le",delti3[i][j][k]);    
         fprintf(ficparo," %le",delti3[i][j][k]);        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
       fscanf(ficpar,"\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       printf("\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficparo,"\n");          }
     }        }
   }        /* This for computing probability of death (h=1 means
   delti=delti3[1][1];           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   /* Reads comments: lines beginning with '#' */        */
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     ungetc(c,ficpar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fgets(line, MAXLINE, ficpar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     puts(line);        }    
     fputs(line,ficparo);        /* end probability of death */
   }  
   ungetc(c,ficpar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   matcov=matrix(1,npar,1,npar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for(i=1; i <=npar; i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fscanf(ficpar,"%s",&str);   
     printf("%s",str);        if (popbased==1) {
     fprintf(ficparo,"%s",str);          if(mobilav ==0){
     for(j=1; j <=i; j++){            for(i=1; i<=nlstate;i++)
       fscanf(ficpar," %le",&matcov[i][j]);              prlim[i][i]=probs[(int)age][i][ij];
       printf(" %.5le",matcov[i][j]);          }else{ /* mobilav */ 
       fprintf(ficparo," %.5le",matcov[i][j]);            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
     fscanf(ficpar,"\n");          }
     printf("\n");        }
     fprintf(ficparo,"\n");  
   }        for(j=1; j<= nlstate; j++){
   for(i=1; i <=npar; i++)          for(h=0; h<=nhstepm; h++){
     for(j=i+1;j<=npar;j++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       matcov[i][j]=matcov[j][i];              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
              }
   printf("\n");        }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
     /*-------- Rewriting paramater file ----------*/           as a weighted average of prlim.
      strcpy(rfileres,"r");    /* "Rparameterfile */        */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
      strcat(rfileres,".");    /* */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     if((ficres =fopen(rfileres,"w"))==NULL) {        }    
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        /* end probability of death */
     }  
     fprintf(ficres,"#%s\n",version);        for(j=1; j<= nlstate; j++) /* vareij */
              for(h=0; h<=nhstepm; h++){
     /*-------- data file ----------*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     if((fic=fopen(datafile,"r"))==NULL)    {          }
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     n= lastobs;        }
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);      } /* End theta */
     num=ivector(1,n);  
     moisnais=vector(1,n);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     annais=vector(1,n);  
     moisdc=vector(1,n);      for(h=0; h<=nhstepm; h++) /* veij */
     andc=vector(1,n);        for(j=1; j<=nlstate;j++)
     agedc=vector(1,n);          for(theta=1; theta <=npar; theta++)
     cod=ivector(1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     mint=matrix(1,maxwav,1,n);        for(theta=1; theta <=npar; theta++)
     anint=matrix(1,maxwav,1,n);          trgradgp[j][theta]=gradgp[theta][j];
     s=imatrix(1,maxwav+1,1,n);    
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     ncodemax=ivector(1,8);      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
     i=1;          vareij[i][j][(int)age] =0.;
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {      for(h=0;h<=nhstepm;h++){
                for(k=0;k<=nhstepm;k++){
         for (j=maxwav;j>=1;j--){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           strcpy(line,stra);          for(i=1;i<=nlstate;i++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1;j<=nlstate;j++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }        }
              }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          varppt[j][i]=doldmp[j][i];
         for (j=ncovcol;j>=1;j--){      /* end ppptj */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /*  x centered again */
         }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         num[i]=atol(stra);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      if (popbased==1) {
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
         i=i+1;            prlim[i][i]=probs[(int)age][i][ij];
       }        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
     /* printf("ii=%d", ij);            prlim[i][i]=mobaverage[(int)age][i][ij];
        scanf("%d",i);*/        }
   imx=i-1; /* Number of individuals */      }
                
   /* for (i=1; i<=imx; i++){      /* This for computing probability of death (h=1 means
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;         as a weighted average of prlim.
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      */
     }*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
    /*  for (i=1; i<=imx; i++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
      if (s[4][i]==9)  s[4][i]=-1;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }    
        /* end probability of death */
    
   /* Calculation of the number of parameter from char model*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   Tvar=ivector(1,15);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   Tprod=ivector(1,15);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   Tvaraff=ivector(1,15);        for(i=1; i<=nlstate;i++){
   Tvard=imatrix(1,15,1,2);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   Tage=ivector(1,15);              }
          } 
   if (strlen(model) >1){      fprintf(ficresprobmorprev,"\n");
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');      fprintf(ficresvij,"%.0f ",age );
     j1=nbocc(model,'*');      for(i=1; i<=nlstate;i++)
     cptcovn=j+1;        for(j=1; j<=nlstate;j++){
     cptcovprod=j1;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
            }
     strcpy(modelsav,model);      fprintf(ficresvij,"\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      free_matrix(gp,0,nhstepm,1,nlstate);
       printf("Error. Non available option model=%s ",model);      free_matrix(gm,0,nhstepm,1,nlstate);
       goto end;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=(j+1); i>=1;i--){    } /* End age */
       cutv(stra,strb,modelsav,'+');    free_vector(gpp,nlstate+1,nlstate+ndeath);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    free_vector(gmp,nlstate+1,nlstate+ndeath);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       /*scanf("%d",i);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if (strchr(strb,'*')) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         cutv(strd,strc,strb,'*');    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         if (strcmp(strc,"age")==0) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           cptcovprod--;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           cutv(strb,stre,strd,'V');  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           Tvar[i]=atoi(stre);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           cptcovage++;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
             Tage[cptcovage]=i;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
             /*printf("stre=%s ", stre);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         else if (strcmp(strd,"age")==0) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           cptcovprod--;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           cutv(strb,stre,strc,'V');  */
           Tvar[i]=atoi(stre);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           cptcovage++;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           Tage[cptcovage]=i;  
         }    free_vector(xp,1,npar);
         else {    free_matrix(doldm,1,nlstate,1,nlstate);
           cutv(strb,stre,strc,'V');    free_matrix(dnewm,1,nlstate,1,npar);
           Tvar[i]=ncovcol+k1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cutv(strb,strc,strd,'V');    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           Tprod[k1]=i;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tvard[k1][1]=atoi(strc);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           Tvard[k1][2]=atoi(stre);    fclose(ficresprobmorprev);
           Tvar[cptcovn+k2]=Tvard[k1][1];    fflush(ficgp);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fflush(fichtm); 
           for (k=1; k<=lastobs;k++)  }  /* end varevsij */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;  /************ Variance of prevlim ******************/
           k2=k2+2;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         }  {
       }    /* Variance of prevalence limit */
       else {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double **newm;
        /*  scanf("%d",i);*/    double **dnewm,**doldm;
       cutv(strd,strc,strb,'V');    int i, j, nhstepm, hstepm;
       Tvar[i]=atoi(strc);    int k, cptcode;
       }    double *xp;
       strcpy(modelsav,stra);      double *gp, *gm;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double **gradg, **trgradg;
         scanf("%d",i);*/    double age,agelim;
     }    int theta;
 }    
      pstamp(ficresvpl);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   printf("cptcovprod=%d ", cptcovprod);    fprintf(ficresvpl,"# Age");
   scanf("%d ",i);*/    for(i=1; i<=nlstate;i++)
     fclose(fic);        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    xp=vector(1,npar);
       for(i=1;i<=n;i++) weight[i]=1.0;    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     /*-calculation of age at interview from date of interview and age at death -*/    
     agev=matrix(1,maxwav,1,imx);    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for (i=1; i<=imx; i++) {    agelim = AGESUP;
       for(m=2; (m<= maxwav); m++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          anint[m][i]=9999;      if (stepm >= YEARM) hstepm=1;
          s[m][i]=-1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        }      gradg=matrix(1,npar,1,nlstate);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      gp=vector(1,nlstate);
       }      gm=vector(1,nlstate);
     }  
       for(theta=1; theta <=npar; theta++){
     for (i=1; i<=imx; i++)  {        for(i=1; i<=npar; i++){ /* Computes gradient */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(m=1; (m<= maxwav); m++){        }
         if(s[m][i] >0){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           if (s[m][i] >= nlstate+1) {        for(i=1;i<=nlstate;i++)
             if(agedc[i]>0)          gp[i] = prlim[i][i];
               if(moisdc[i]!=99 && andc[i]!=9999)      
                 agev[m][i]=agedc[i];        for(i=1; i<=npar; i++) /* Computes gradient */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            else {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               if (andc[i]!=9999){        for(i=1;i<=nlstate;i++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          gm[i] = prlim[i][i];
               agev[m][i]=-1;  
               }        for(i=1;i<=nlstate;i++)
             }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           }      } /* End theta */
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      trgradg =matrix(1,nlstate,1,npar);
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;      for(j=1; j<=nlstate;j++)
             else if(agev[m][i] <agemin){        for(theta=1; theta <=npar; theta++)
               agemin=agev[m][i];          trgradg[j][theta]=gradg[theta][j];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }      for(i=1;i<=nlstate;i++)
             else if(agev[m][i] >agemax){        varpl[i][(int)age] =0.;
               agemax=agev[m][i];      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
             }      for(i=1;i<=nlstate;i++)
             /*agev[m][i]=anint[m][i]-annais[i];*/        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             /*   agev[m][i] = age[i]+2*m;*/  
           }      fprintf(ficresvpl,"%.0f ",age );
           else { /* =9 */      for(i=1; i<=nlstate;i++)
             agev[m][i]=1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
             s[m][i]=-1;      fprintf(ficresvpl,"\n");
           }      free_vector(gp,1,nlstate);
         }      free_vector(gm,1,nlstate);
         else /*= 0 Unknown */      free_matrix(gradg,1,npar,1,nlstate);
           agev[m][i]=1;      free_matrix(trgradg,1,nlstate,1,npar);
       }    } /* End age */
      
     }    free_vector(xp,1,npar);
     for (i=1; i<=imx; i++)  {    free_matrix(doldm,1,nlstate,1,npar);
       for(m=1; (m<= maxwav); m++){    free_matrix(dnewm,1,nlstate,1,nlstate);
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");    }
           goto end;  
         }  /************ Variance of one-step probabilities  ******************/
       }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     }  {
     int i, j=0,  i1, k1, l1, t, tj;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     free_vector(severity,1,maxwav);    int first=1, first1;
     free_imatrix(outcome,1,maxwav+1,1,n);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     free_vector(moisnais,1,n);    double **dnewm,**doldm;
     free_vector(annais,1,n);    double *xp;
     /* free_matrix(mint,1,maxwav,1,n);    double *gp, *gm;
        free_matrix(anint,1,maxwav,1,n);*/    double **gradg, **trgradg;
     free_vector(moisdc,1,n);    double **mu;
     free_vector(andc,1,n);    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        int theta;
     wav=ivector(1,imx);    char fileresprob[FILENAMELENGTH];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    char fileresprobcov[FILENAMELENGTH];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    char fileresprobcor[FILENAMELENGTH];
      
     /* Concatenates waves */    double ***varpij;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
       Tcode=ivector(1,100);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprob);
       ncodemax[1]=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    }
          strcpy(fileresprobcov,"probcov"); 
    codtab=imatrix(1,100,1,10);    strcat(fileresprobcov,fileres);
    h=0;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
    m=pow(2,cptcoveff);      printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
    for(k=1;k<=cptcoveff; k++){    }
      for(i=1; i <=(m/pow(2,k));i++){    strcpy(fileresprobcor,"probcor"); 
        for(j=1; j <= ncodemax[k]; j++){    strcat(fileresprobcor,fileres);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
            h++;      printf("Problem with resultfile: %s\n", fileresprobcor);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    }
          }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       codtab[1][2]=1;codtab[2][2]=2; */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    /* for(i=1; i <=m ;i++){    pstamp(ficresprob);
       for(k=1; k <=cptcovn; k++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fprintf(ficresprob,"# Age");
       }    pstamp(ficresprobcov);
       printf("\n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       }    fprintf(ficresprobcov,"# Age");
       scanf("%d",i);*/    pstamp(ficresprobcor);
        fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(ficresprobcor,"# Age");
        and prints on file fileres'p'. */  
   
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=(nlstate+ndeath);j++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   /* fprintf(ficresprob,"\n");
          fprintf(ficresprobcov,"\n");
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficresprobcor,"\n");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     if(mle==1){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
        first=1;
     /*--------- results files --------------*/    fprintf(ficgp,"\n# Routine varprob");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
   
    jk=1;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    file %s<br>\n",optionfilehtmcov);
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      for(k=1; k <=(nlstate+ndeath); k++){  and drawn. It helps understanding how is the covariance between two incidences.\
        if (k != i)   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
          {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
            printf("%d%d ",i,k);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
            fprintf(ficres,"%1d%1d ",i,k);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
            for(j=1; j <=ncovmodel; j++){  standard deviations wide on each axis. <br>\
              printf("%f ",p[jk]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
              fprintf(ficres,"%f ",p[jk]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
              jk++;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
            }  
            printf("\n");    cov[1]=1;
            fprintf(ficres,"\n");    tj=cptcoveff;
          }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      }    j1=0;
    }    for(t=1; t<=tj;t++){
  if(mle==1){      for(i1=1; i1<=ncodemax[t];i1++){ 
     /* Computing hessian and covariance matrix */        j1++;
     ftolhess=ftol; /* Usually correct */        if  (cptcovn>0) {
     hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(ficresprob, "\n#********** Variable "); 
  }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          fprintf(ficresprob, "**********\n#\n");
     printf("# Scales (for hessian or gradient estimation)\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
      for(i=1,jk=1; i <=nlstate; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficresprobcov, "**********\n#\n");
         if (j!=i) {          
           fprintf(ficres,"%1d%1d",i,j);          fprintf(ficgp, "\n#********** Variable "); 
           printf("%1d%1d",i,j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(k=1; k<=ncovmodel;k++){          fprintf(ficgp, "**********\n#\n");
             printf(" %.5e",delti[jk]);          
             fprintf(ficres," %.5e",delti[jk]);          
             jk++;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           printf("\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficres,"\n");          
         }          fprintf(ficresprobcor, "\n#********** Variable ");    
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresprobcor, "**********\n#");    
            }
     k=1;        
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for (age=bage; age<=fage; age ++){ 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          cov[2]=age;
     for(i=1;i<=npar;i++){          for (k=1; k<=cptcovn;k++) {
       /*  if (k>nlstate) k=1;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       i1=(i-1)/(ncovmodel*nlstate)+1;          }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       printf("%s%d%d",alph[k],i1,tab[i]);*/          for (k=1; k<=cptcovprod;k++)
       fprintf(ficres,"%3d",i);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       printf("%3d",i);          
       for(j=1; j<=i;j++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         fprintf(ficres," %.5e",matcov[i][j]);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         printf(" %.5e",matcov[i][j]);          gp=vector(1,(nlstate)*(nlstate+ndeath));
       }          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficres,"\n");      
       printf("\n");          for(theta=1; theta <=npar; theta++){
       k++;            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                
     while((c=getc(ficpar))=='#' && c!= EOF){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       ungetc(c,ficpar);            
       fgets(line, MAXLINE, ficpar);            k=0;
       puts(line);            for(i=1; i<= (nlstate); i++){
       fputs(line,ficparo);              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
     ungetc(c,ficpar);                gp[k]=pmmij[i][j];
     estepm=0;              }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            }
     if (estepm==0 || estepm < stepm) estepm=stepm;            
     if (fage <= 2) {            for(i=1; i<=npar; i++)
       bage = ageminpar;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       fage = agemaxpar;      
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                k=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            for(i=1; i<=(nlstate); i++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                k=k+1;
                  gm[k]=pmmij[i][j];
     while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);       
     puts(line);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fputs(line,ficparo);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   }          }
   ungetc(c,ficpar);  
            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            for(theta=1; theta <=npar; theta++)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              trgradg[j][theta]=gradg[theta][j];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
                matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     ungetc(c,ficpar);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     puts(line);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fputs(line,ficparo);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }  
   ungetc(c,ficpar);          pmij(pmmij,cov,ncovmodel,x,nlstate);
            
           k=0;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          for(i=1; i<=(nlstate); i++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);              mu[k][(int) age]=pmmij[i][j];
   fprintf(ficparo,"pop_based=%d\n",popbased);              }
   fprintf(ficres,"pop_based=%d\n",popbased);            }
            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   while((c=getc(ficpar))=='#' && c!= EOF){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     ungetc(c,ficpar);              varpij[i][j][(int)age] = doldm[i][j];
     fgets(line, MAXLINE, ficpar);  
     puts(line);          /*printf("\n%d ",(int)age);
     fputs(line,ficparo);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   ungetc(c,ficpar);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficresprob,"\n%d ",(int)age);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
 while((c=getc(ficpar))=='#' && c!= EOF){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     ungetc(c,ficpar);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     fgets(line, MAXLINE, ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     puts(line);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     fputs(line,ficparo);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   }          }
   ungetc(c,ficpar);          i=0;
           for (k=1; k<=(nlstate);k++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            for (l=1; l<=(nlstate+ndeath);l++){ 
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              i=i++;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 /*------------ gnuplot -------------*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);              }
              }
 /*------------ free_vector  -------------*/          }/* end of loop for state */
  chdir(path);        } /* end of loop for age */
    
  free_ivector(wav,1,imx);        /* Confidence intervalle of pij  */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        /*
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficgp,"\nset noparametric;unset label");
  free_ivector(num,1,n);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  free_vector(agedc,1,n);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  fclose(ficparo);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  fclose(ficres);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 /*--------- index.htm --------*/        */
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
          for (k2=1; k2<=(nlstate);k2++){
   /*--------------- Prevalence limit --------------*/          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              if(l2==k2) continue;
   strcpy(filerespl,"pl");            j=(k2-1)*(nlstate+ndeath)+l2;
   strcat(filerespl,fileres);            for (k1=1; k1<=(nlstate);k1++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                if(l1==k1) continue;
   }                i=(k1-1)*(nlstate+ndeath)+l1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                if(i<=j) continue;
   fprintf(ficrespl,"#Prevalence limit\n");                for (age=bage; age<=fage; age ++){ 
   fprintf(ficrespl,"#Age ");                  if ((int)age %5==0){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficrespl,"\n");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   prlim=matrix(1,nlstate,1,nlstate);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    mu2=mu[j][(int) age]/stepm*YEARM;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    c12=cv12/sqrt(v1*v2);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* Computing eigen value of matrix of covariance */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   k=0;                    /* Eigen vectors */
   agebase=ageminpar;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   agelim=agemaxpar;                    /*v21=sqrt(1.-v11*v11); *//* error */
   ftolpl=1.e-10;                    v21=(lc1-v1)/cv12*v11;
   i1=cptcoveff;                    v12=-v21;
   if (cptcovn < 1){i1=1;}                    v22=v11;
                     tnalp=v21/v11;
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first1==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first1=0;
         k=k+1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    }
         fprintf(ficrespl,"\n#******");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         for(j=1;j<=cptcoveff;j++)                    /*printf(fignu*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         fprintf(ficrespl,"******\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                            if(first==1){
         for (age=agebase; age<=agelim; age++){                      first=0;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      fprintf(ficgp,"\nset parametric;unset label");
           fprintf(ficrespl,"%.0f",age );                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(ficrespl," %.5f", prlim[i][i]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           fprintf(ficrespl,"\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fclose(ficrespl);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   /*------------- h Pij x at various ages ------------*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   printf("Computing pij: result on file '%s' \n", filerespij);                    }else{
                        first=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   /*if (stepm<=24) stepsize=2;*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   agelim=AGESUP;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   hstepm=stepsize*YEARM; /* Every year of age */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
   k=0;                  } /* age mod 5 */
   for(cptcov=1;cptcov<=i1;cptcov++){                } /* end loop age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       k=k+1;                first=1;
         fprintf(ficrespij,"\n#****** ");              } /*l12 */
         for(j=1;j<=cptcoveff;j++)            } /* k12 */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          } /*l1 */
         fprintf(ficrespij,"******\n");        }/* k1 */
              } /* loop covariates */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           oldm=oldms;savm=savms;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_vector(xp,1,npar);
           fprintf(ficrespij,"# Age");    fclose(ficresprob);
           for(i=1; i<=nlstate;i++)    fclose(ficresprobcov);
             for(j=1; j<=nlstate+ndeath;j++)    fclose(ficresprobcor);
               fprintf(ficrespij," %1d-%1d",i,j);    fflush(ficgp);
           fprintf(ficrespij,"\n");    fflush(fichtmcov);
            for (h=0; h<=nhstepm; h++){  }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)  /******************* Printing html file ***********/
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             fprintf(ficrespij,"\n");                    int lastpass, int stepm, int weightopt, char model[],\
              }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    int popforecast, int estepm ,\
           fprintf(ficrespij,"\n");                    double jprev1, double mprev1,double anprev1, \
         }                    double jprev2, double mprev2,double anprev2){
     }    int jj1, k1, i1, cpt;
   }  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
   fclose(ficrespij);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   /*---------- Forecasting ------------------*/     fprintf(fichtm,"\
   if((stepm == 1) && (strcmp(model,".")==0)){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     fprintf(fichtm,"\
   }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   else{             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     erreur=108;     fprintf(fichtm,"\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   /*---------- Health expectancies and variances ------------*/  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   strcpy(filerest,"t");  
   strcat(filerest,fileres);   m=cptcoveff;
   if((ficrest=fopen(filerest,"w"))==NULL) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }   jj1=0;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   strcpy(filerese,"e");       if (cptcovn > 0) {
   strcat(filerese,fileres);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if((ficreseij=fopen(filerese,"w"))==NULL) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       }
        /* Pij */
  strcpy(fileresv,"v");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   strcat(fileresv,fileres);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       /* Quasi-incidences */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   calagedate=-1;         /* Period (stable) prevalence in each health state */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   k=0;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   for(cptcov=1;cptcov<=i1;cptcov++){         }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for(cpt=1; cpt<=nlstate;cpt++) {
       k=k+1;          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       fprintf(ficrest,"\n#****** ");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       for(j=1;j<=cptcoveff;j++)       }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     } /* end i1 */
       fprintf(ficrest,"******\n");   }/* End k1 */
    fprintf(fichtm,"</ul>");
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficreseij,"******\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       fprintf(ficresvij,"******\n");   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     fprintf(fichtm,"\
     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       oldm=oldms;savm=savms;   fprintf(fichtm,"\
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
         <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     fprintf(fichtm,"\
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     <a href=\"%s\">%s</a> <br>\n</li>",
       fprintf(ficrest,"\n");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
       epj=vector(1,nlstate+1);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       for(age=bage; age <=fage ;age++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   fprintf(fichtm,"\
         if (popbased==1) {   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
           for(i=1; i<=nlstate;i++)           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
             prlim[i][i]=probs[(int)age][i][k];   fprintf(fichtm,"\
         }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
                   subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  /*      <br>",fileres,fileres,fileres,fileres); */
           }  /*  else  */
           epj[nlstate+1] +=epj[j];  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         }   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)   m=cptcoveff;
             vepp += vareij[i][j][(int)age];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){   jj1=0;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));   for(k1=1; k1<=m;k1++){
         }     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficrest,"\n");       jj1++;
       }       if (cptcovn > 0) {
     }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
 free_matrix(mint,1,maxwav,1,n);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_vector(weight,1,n);       }
   fclose(ficreseij);       for(cpt=1; cpt<=nlstate;cpt++) {
   fclose(ficresvij);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fclose(ficrest);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   fclose(ficpar);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   free_vector(epj,1,nlstate+1);       }
         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   /*------- Variance limit prevalence------*/    health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   strcpy(fileresvpl,"vpl");     } /* end i1 */
   strcat(fileresvpl,fileres);   }/* End k1 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   fprintf(fichtm,"</ul>");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   fflush(fichtm);
     exit(0);  }
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    char dirfileres[132],optfileres[132];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       k=k+1;    int ng;
       fprintf(ficresvpl,"\n#****** ");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       for(j=1;j<=cptcoveff;j++)  /*     printf("Problem with file %s",optionfilegnuplot); */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       fprintf(ficresvpl,"******\n");  /*   } */
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    /*#ifdef windows */
       oldm=oldms;savm=savms;    fprintf(ficgp,"cd \"%s\" \n",pathc);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      /*#endif */
     }    m=pow(2,cptcoveff);
  }  
     strcpy(dirfileres,optionfilefiname);
   fclose(ficresvpl);    strcpy(optfileres,"vpl");
    /* 1eme*/
   /*---------- End : free ----------------*/    for (cpt=1; cpt<= nlstate ; cpt ++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"set xlabel \"Age\" \n\
    set ylabel \"Probability\" \n\
    set ter png small\n\
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  set size 0.65,0.65\n\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(matcov,1,npar,1,npar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_vector(delti,1,npar);       }
   free_matrix(agev,1,maxwav,1,imx);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if(erreur >0)         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("End of Imach with error or warning %d\n",erreur);       } 
   else   printf("End of Imach\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
   /*printf("Total time was %d uSec.\n", total_usecs);*/       }  
   /*------ End -----------*/       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
  end:    /*2 eme*/
 #ifdef windows    
   /* chdir(pathcd);*/    for (k1=1; k1<= m ; k1 ++) { 
 #endif      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
  /*system("wgnuplot graph.plt");*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      
  /*system("cd ../gp37mgw");*/      for (i=1; i<= nlstate+1 ; i ++) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        k=2*i;
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  strcat(plotcmd," ");        for (j=1; j<= nlstate+1 ; j ++) {
  strcat(plotcmd,optionfilegnuplot);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  system(plotcmd);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
 #ifdef windows        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   while (z[0] != 'q') {        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     /* chdir(path); */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        for (j=1; j<= nlstate+1 ; j ++) {
     scanf("%s",z);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     if (z[0] == 'c') system("./imach");          else fprintf(ficgp," \%%*lf (\%%*lf)");
     else if (z[0] == 'e') system(optionfilehtm);        }   
     else if (z[0] == 'g') system(plotcmd);        fprintf(ficgp,"\" t\"\" w l 0,");
     else if (z[0] == 'q') exit(0);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
 #endif          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.46  
changed lines
  Added in v.1.117


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>