Diff for /imach/src/imach.c between versions 1.3 and 1.130

version 1.3, 2001/05/02 17:21:42 version 1.130, 2009/05/26 06:44:34
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.130  2009/05/26 06:44:34  brouard
   individuals from different ages are interviewed on their health status    (Module): Max Covariate is now set to 20 instead of 8. A
   or degree of  disability. At least a second wave of interviews    lot of cleaning with variables initialized to 0. Trying to make
   ("longitudinal") should  measure each new individual health status.    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.129  2007/08/31 13:49:27  lievre
   of life states). More degrees you consider, more time is necessary to    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.128  2006/06/30 13:02:05  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): Clarifications on computing e.j
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.127  2006/04/28 18:11:50  brouard
   is a covariate. If you want to have a more complex model than "constant and    (Module): Yes the sum of survivors was wrong since
   age", you should modify the program where the markup    imach-114 because nhstepm was no more computed in the age
     *Covariates have to be included here again* invites you to do it.    loop. Now we define nhstepma in the age loop.
   More covariates you add, less is the speed of the convergence.    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
   The advantage that this computer programme claims, comes from that if the    and then all the health expectancies with variances or standard
   delay between waves is not identical for each individual, or if some    deviation (needs data from the Hessian matrices) which slows the
   individual missed an interview, the information is not rounded or lost, but    computation.
   taken into account using an interpolation or extrapolation.    In the future we should be able to stop the program is only health
   hPijx is the probability to be    expectancies and graph are needed without standard deviations.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.126  2006/04/28 17:23:28  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Yes the sum of survivors was wrong since
   quarter trimester, semester or year) is model as a multinomial logistic.    imach-114 because nhstepm was no more computed in the age
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    loop. Now we define nhstepma in the age loop.
   and the contribution of each individual to the likelihood is simply hPijx.    Version 0.98h
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.125  2006/04/04 15:20:31  lievre
   of the life expectancies. It also computes the prevalence limits.    Errors in calculation of health expectancies. Age was not initialized.
      Forecasting file added.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.124  2006/03/22 17:13:53  lievre
   This software have been partly granted by Euro-REVES, a concerted action    Parameters are printed with %lf instead of %f (more numbers after the comma).
   from the European Union.    The log-likelihood is printed in the log file
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.123  2006/03/20 10:52:43  brouard
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): <title> changed, corresponds to .htm file
   **********************************************************************/    name. <head> headers where missing.
    
 #include <math.h>    * imach.c (Module): Weights can have a decimal point as for
 #include <stdio.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <stdlib.h>    otherwise the weight is truncated).
 #include <unistd.h>    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXLINE 256    Version 0.98g
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.122  2006/03/20 09:45:41  brouard
 #define windows    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    otherwise the weight is truncated).
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Modification of warning when the covariates values are not 0 or
     1.
 #define NINTERVMAX 8    Version 0.98g
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.121  2006/03/16 17:45:01  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): Comments concerning covariates added
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    * imach.c (Module): refinements in the computation of lli if
 #define AGESUP 130    status=-2 in order to have more reliable computation if stepm is
 #define AGEBASE 40    not 1 month. Version 0.98f
   
     Revision 1.120  2006/03/16 15:10:38  lievre
 int nvar;    (Module): refinements in the computation of lli if
 static int cptcov;    status=-2 in order to have more reliable computation if stepm is
 int cptcovn;    not 1 month. Version 0.98f
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.119  2006/03/15 17:42:26  brouard
 int ndeath=1; /* Number of dead states */    (Module): Bug if status = -2, the loglikelihood was
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    computed as likelihood omitting the logarithm. Version O.98e
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.118  2006/03/14 18:20:07  brouard
 int maxwav; /* Maxim number of waves */    (Module): varevsij Comments added explaining the second
 int mle, weightopt;    table of variances if popbased=1 .
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Function pstamp added
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Version 0.98d
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    Revision 1.117  2006/03/14 17:16:22  brouard
 FILE *ficgp, *fichtm;    (Module): varevsij Comments added explaining the second
 FILE *ficreseij;    table of variances if popbased=1 .
   char filerese[FILENAMELENGTH];    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  FILE  *ficresvij;    (Module): Function pstamp added
   char fileresv[FILENAMELENGTH];    (Module): Version 0.98d
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   
     Revision 1.115  2006/02/27 12:17:45  brouard
 #define NR_END 1    (Module): One freematrix added in mlikeli! 0.98c
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 #define NRANSI    filename with strsep.
 #define ITMAX 200  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define TOL 2.0e-4    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 #define CGOLD 0.3819660    allocation too.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.111  2006/01/25 20:38:18  brouard
 #define TINY 1.0e-20    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 static double maxarg1,maxarg2;    can be a simple dot '.'.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.108  2006/01/19 18:05:42  lievre
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Gnuplot problem appeared...
     To be fixed
 int imx;  
 int stepm;    Revision 1.107  2006/01/19 16:20:37  brouard
 /* Stepm, step in month: minimum step interpolation*/    Test existence of gnuplot in imach path
   
 int m,nb;    Revision 1.106  2006/01/19 13:24:36  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    Some cleaning and links added in html output
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij;    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 double *weight;  
 int **s; /* Status */    Revision 1.104  2005/09/30 16:11:43  lievre
 double *agedc, **covar, idx;    (Module): sump fixed, loop imx fixed, and simplifications.
 int **nbcode, *Tcode, *Tvar, **codtab;    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (instead of missing=-1 in earlier versions) and his/her
 double ftolhess; /* Tolerance for computing hessian */    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 /******************************************/  
     Revision 1.103  2005/09/30 15:54:49  lievre
 void replace(char *s, char*t)    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
   int i;    Revision 1.102  2004/09/15 17:31:30  brouard
   int lg=20;    Add the possibility to read data file including tab characters.
   i=0;  
   lg=strlen(t);    Revision 1.101  2004/09/15 10:38:38  brouard
   for(i=0; i<= lg; i++) {    Fix on curr_time
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.100  2004/07/12 18:29:06  brouard
   }    Add version for Mac OS X. Just define UNIX in Makefile
 }  
     Revision 1.99  2004/06/05 08:57:40  brouard
 int nbocc(char *s, char occ)    *** empty log message ***
 {  
   int i,j=0;    Revision 1.98  2004/05/16 15:05:56  brouard
   int lg=20;    New version 0.97 . First attempt to estimate force of mortality
   i=0;    directly from the data i.e. without the need of knowing the health
   lg=strlen(s);    state at each age, but using a Gompertz model: log u =a + b*age .
   for(i=0; i<= lg; i++) {    This is the basic analysis of mortality and should be done before any
   if  (s[i] == occ ) j++;    other analysis, in order to test if the mortality estimated from the
   }    cross-longitudinal survey is different from the mortality estimated
   return j;    from other sources like vital statistic data.
 }  
     The same imach parameter file can be used but the option for mle should be -3.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Agnès, who wrote this part of the code, tried to keep most of the
   int i,lg,j,p;    former routines in order to include the new code within the former code.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    The output is very simple: only an estimate of the intercept and of
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    the slope with 95% confident intervals.
   }  
     Current limitations:
   lg=strlen(t);    A) Even if you enter covariates, i.e. with the
   for(j=0; j<p; j++) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     (u[j] = t[j]);    B) There is no computation of Life Expectancy nor Life Table.
     u[p]='\0';  
   }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
    for(j=0; j<= lg; j++) {    suppressed.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.96  2003/07/15 15:38:55  brouard
 }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 /********************** nrerror ********************/  
     Revision 1.95  2003/07/08 07:54:34  brouard
 void nrerror(char error_text[])    * imach.c (Repository):
 {    (Repository): Using imachwizard code to output a more meaningful covariance
   fprintf(stderr,"ERREUR ...\n");    matrix (cov(a12,c31) instead of numbers.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.94  2003/06/27 13:00:02  brouard
 }    Just cleaning
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   double *v;    exist so I changed back to asctime which exists.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Version 0.96b
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.91  2003/06/25 15:30:29  brouard
 {    * imach.c (Repository): Duplicated warning errors corrected.
   free((FREE_ARG)(v+nl-NR_END));    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 /************************ivector *******************************/    concerning matrix of covariance. It has extension -cov.htm.
 int *ivector(long nl,long nh)  
 {    Revision 1.90  2003/06/24 12:34:15  brouard
   int *v;    (Module): Some bugs corrected for windows. Also, when
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!v) nrerror("allocation failure in ivector");    of the covariance matrix to be input.
   return v-nl+NR_END;  
 }    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 /******************free ivector **************************/    mle=-1 a template is output in file "or"mypar.txt with the design
 void free_ivector(int *v, long nl, long nh)    of the covariance matrix to be input.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.88  2003/06/23 17:54:56  brouard
 }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 /******************* imatrix *******************************/    Revision 1.87  2003/06/18 12:26:01  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Version 0.96
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.86  2003/06/17 20:04:08  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Change position of html and gnuplot routines and added
   int **m;    routine fileappend.
    
   /* allocate pointers to rows */    Revision 1.85  2003/06/17 13:12:43  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    * imach.c (Repository): Check when date of death was earlier that
   if (!m) nrerror("allocation failure 1 in matrix()");    current date of interview. It may happen when the death was just
   m += NR_END;    prior to the death. In this case, dh was negative and likelihood
   m -= nrl;    was wrong (infinity). We still send an "Error" but patch by
      assuming that the date of death was just one stepm after the
      interview.
   /* allocate rows and set pointers to them */    (Repository): Because some people have very long ID (first column)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    we changed int to long in num[] and we added a new lvector for
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    memory allocation. But we also truncated to 8 characters (left
   m[nrl] += NR_END;    truncation)
   m[nrl] -= ncl;    (Repository): No more line truncation errors.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
   /* return pointer to array of pointers to rows */    place. It differs from routine "prevalence" which may be called
   return m;    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.83  2003/06/10 13:39:11  lievre
       int **m;    *** empty log message ***
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  */
 }  /*
      Interpolated Markov Chain
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Short summary of the programme:
 {    
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    This program computes Healthy Life Expectancies from
   double **m;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    interviewed on their health status or degree of disability (in the
   if (!m) nrerror("allocation failure 1 in matrix()");    case of a health survey which is our main interest) -2- at least a
   m += NR_END;    second wave of interviews ("longitudinal") which measure each change
   m -= nrl;    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    model. More health states you consider, more time is necessary to reach the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Maximum Likelihood of the parameters involved in the model.  The
   m[nrl] += NR_END;    simplest model is the multinomial logistic model where pij is the
   m[nrl] -= ncl;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   return m;    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /*************************free matrix ************************/    you to do it.  More covariates you add, slower the
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    convergence.
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    The advantage of this computer programme, compared to a simple
   free((FREE_ARG)(m+nrl-NR_END));    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /******************* ma3x *******************************/    account using an interpolation or extrapolation.  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    hPijx is the probability to be observed in state i at age x+h
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    conditional to the observed state i at age x. The delay 'h' can be
   double ***m;    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    semester or year) is modelled as a multinomial logistic.  The hPx
   if (!m) nrerror("allocation failure 1 in matrix()");    matrix is simply the matrix product of nh*stepm elementary matrices
   m += NR_END;    and the contribution of each individual to the likelihood is simply
   m -= nrl;    hPijx.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Also this programme outputs the covariance matrix of the parameters but also
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    of the life expectancies. It also computes the period (stable) prevalence. 
   m[nrl] += NR_END;    
   m[nrl] -= ncl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    It is copyrighted identically to a GNU software product, ie programme and
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    software can be distributed freely for non commercial use. Latest version
   m[nrl][ncl] += NR_END;    can be accessed at http://euroreves.ined.fr/imach .
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     m[nrl][j]=m[nrl][j-1]+nlay;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   for (i=nrl+1; i<=nrh; i++) {    **********************************************************************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /*
     for (j=ncl+1; j<=nch; j++)    main
       m[i][j]=m[i][j-1]+nlay;    read parameterfile
   }    read datafile
   return m;    concatwav
 }    freqsummary
     if (mle >= 1)
 /*************************free ma3x ************************/      mlikeli
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    print results files
 {    if mle==1 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));       computes hessian
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    read end of parameter file: agemin, agemax, bage, fage, estepm
   free((FREE_ARG)(m+nrl-NR_END));        begin-prev-date,...
 }    open gnuplot file
     open html file
 /***************** f1dim *************************/    period (stable) prevalence
 extern int ncom;     for age prevalim()
 extern double *pcom,*xicom;    h Pij x
 extern double (*nrfunc)(double []);    variance of p varprob
      forecasting if prevfcast==1 prevforecast call prevalence()
 double f1dim(double x)    health expectancies
 {    Variance-covariance of DFLE
   int j;    prevalence()
   double f;     movingaverage()
   double *xt;    varevsij() 
      if popbased==1 varevsij(,popbased)
   xt=vector(1,ncom);    total life expectancies
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Variance of period (stable) prevalence
   f=(*nrfunc)(xt);   end
   free_vector(xt,1,ncom);  */
   return f;  
 }  
   
 /*****************brent *************************/   
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #include <math.h>
 {  #include <stdio.h>
   int iter;  #include <stdlib.h>
   double a,b,d,etemp;  #include <string.h>
   double fu,fv,fw,fx;  #include <unistd.h>
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #include <limits.h>
   double e=0.0;  #include <sys/types.h>
    #include <sys/stat.h>
   a=(ax < cx ? ax : cx);  #include <errno.h>
   b=(ax > cx ? ax : cx);  extern int errno;
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /* #include <sys/time.h> */
   for (iter=1;iter<=ITMAX;iter++) {  #include <time.h>
     xm=0.5*(a+b);  #include "timeval.h"
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /* #include <libintl.h> */
     printf(".");fflush(stdout);  /* #define _(String) gettext (String) */
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define MAXLINE 256
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  #define GNUPLOTPROGRAM "gnuplot"
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       *xmin=x;  #define FILENAMELENGTH 132
       return fx;  
     }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     ftemp=fu;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       q=(x-v)*(fx-fw);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  #define NINTERVMAX 8
       if (q > 0.0) p = -p;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       q=fabs(q);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       etemp=e;  #define NCOVMAX 20 /* Maximum number of covariates */
       e=d;  #define MAXN 20000
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define YEARM 12. /* Number of months per year */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define AGESUP 130
       else {  #define AGEBASE 40
         d=p/q;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
         u=x+d;  #ifdef UNIX
         if (u-a < tol2 || b-u < tol2)  #define DIRSEPARATOR '/'
           d=SIGN(tol1,xm-x);  #define CHARSEPARATOR "/"
       }  #define ODIRSEPARATOR '\\'
     } else {  #else
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define DIRSEPARATOR '\\'
     }  #define CHARSEPARATOR "\\"
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define ODIRSEPARATOR '/'
     fu=(*f)(u);  #endif
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /* $Id$ */
       SHFT(v,w,x,u)  /* $State$ */
         SHFT(fv,fw,fx,fu)  
         } else {  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
           if (u < x) a=u; else b=u;  char fullversion[]="$Revision$ $Date$"; 
           if (fu <= fw || w == x) {  char strstart[80];
             v=w;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
             w=u;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
             fv=fw;  int nvar=0;
             fw=fu;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
           } else if (fu <= fv || v == x || v == w) {  int npar=NPARMAX;
             v=u;  int nlstate=2; /* Number of live states */
             fv=fu;  int ndeath=1; /* Number of dead states */
           }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         }  int popbased=0;
   }  
   nrerror("Too many iterations in brent");  int *wav; /* Number of waves for this individuual 0 is possible */
   *xmin=x;  int maxwav=0; /* Maxim number of waves */
   return fx;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 /****************** mnbrak ***********************/                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
             double (*func)(double))  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double ulim,u,r,q, dum;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double fu;  double jmean=1; /* Mean space between 2 waves */
    double **oldm, **newm, **savm; /* Working pointers to matrices */
   *fa=(*func)(*ax);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   *fb=(*func)(*bx);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (*fb > *fa) {  FILE *ficlog, *ficrespow;
     SHFT(dum,*ax,*bx,dum)  int globpr=0; /* Global variable for printing or not */
       SHFT(dum,*fb,*fa,dum)  double fretone; /* Only one call to likelihood */
       }  long ipmx=0; /* Number of contributions */
   *cx=(*bx)+GOLD*(*bx-*ax);  double sw; /* Sum of weights */
   *fc=(*func)(*cx);  char filerespow[FILENAMELENGTH];
   while (*fb > *fc) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     r=(*bx-*ax)*(*fb-*fc);  FILE *ficresilk;
     q=(*bx-*cx)*(*fb-*fa);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  FILE *ficresprobmorprev;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  FILE *fichtm, *fichtmcov; /* Html File */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  FILE *ficreseij;
     if ((*bx-u)*(u-*cx) > 0.0) {  char filerese[FILENAMELENGTH];
       fu=(*func)(u);  FILE *ficresstdeij;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char fileresstde[FILENAMELENGTH];
       fu=(*func)(u);  FILE *ficrescveij;
       if (fu < *fc) {  char filerescve[FILENAMELENGTH];
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  FILE  *ficresvij;
           SHFT(*fb,*fc,fu,(*func)(u))  char fileresv[FILENAMELENGTH];
           }  FILE  *ficresvpl;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char fileresvpl[FILENAMELENGTH];
       u=ulim;  char title[MAXLINE];
       fu=(*func)(u);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     } else {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       u=(*cx)+GOLD*(*cx-*bx);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       fu=(*func)(u);  char command[FILENAMELENGTH];
     }  int  outcmd=0;
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       }  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /*************** linmin ************************/  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 int ncom;  
 double *pcom,*xicom;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double (*nrfunc)(double []);  
    struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  struct timezone tzp;
 {  extern int gettimeofday();
   double brent(double ax, double bx, double cx,  struct tm tmg, tm, tmf, *gmtime(), *localtime();
                double (*f)(double), double tol, double *xmin);  long time_value;
   double f1dim(double x);  extern long time();
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  char strcurr[80], strfor[80];
               double *fc, double (*func)(double));  
   int j;  char *endptr;
   double xx,xmin,bx,ax;  long lval;
   double fx,fb,fa;  double dval;
    
   ncom=n;  #define NR_END 1
   pcom=vector(1,n);  #define FREE_ARG char*
   xicom=vector(1,n);  #define FTOL 1.0e-10
   nrfunc=func;  
   for (j=1;j<=n;j++) {  #define NRANSI 
     pcom[j]=p[j];  #define ITMAX 200 
     xicom[j]=xi[j];  
   }  #define TOL 2.0e-4 
   ax=0.0;  
   xx=1.0;  #define CGOLD 0.3819660 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define ZEPS 1.0e-10 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define GOLD 1.618034 
 #endif  #define GLIMIT 100.0 
   for (j=1;j<=n;j++) {  #define TINY 1.0e-20 
     xi[j] *= xmin;  
     p[j] += xi[j];  static double maxarg1,maxarg2;
   }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free_vector(xicom,1,n);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free_vector(pcom,1,n);    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  static double sqrarg;
             double (*func)(double []))  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   void linmin(double p[], double xi[], int n, double *fret,  int agegomp= AGEGOMP;
               double (*func)(double []));  
   int i,ibig,j;  int imx; 
   double del,t,*pt,*ptt,*xit;  int stepm=1;
   double fp,fptt;  /* Stepm, step in month: minimum step interpolation*/
   double *xits;  
   pt=vector(1,n);  int estepm;
   ptt=vector(1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   xit=vector(1,n);  
   xits=vector(1,n);  int m,nb;
   *fret=(*func)(p);  long *num;
   for (j=1;j<=n;j++) pt[j]=p[j];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (*iter=1;;++(*iter)) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     fp=(*fret);  double **pmmij, ***probs;
     ibig=0;  double *ageexmed,*agecens;
     del=0.0;  double dateintmean=0;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  double *weight;
       printf(" %d %.12f",i, p[i]);  int **s; /* Status */
     printf("\n");  double *agedc, **covar, idx;
     for (i=1;i<=n;i++) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  double *lsurv, *lpop, *tpop;
       fptt=(*fret);  
 #ifdef DEBUG  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       printf("fret=%lf \n",*fret);  double ftolhess; /* Tolerance for computing hessian */
 #endif  
       printf("%d",i);fflush(stdout);  /**************** split *************************/
       linmin(p,xit,n,fret,func);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         ibig=i;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       }    */ 
 #ifdef DEBUG    char  *ss;                            /* pointer */
       printf("%d %.12e",i,(*fret));    int   l1, l2;                         /* length counters */
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    l1 = strlen(path );                   /* length of path */
         printf(" x(%d)=%.12e",j,xit[j]);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       for(j=1;j<=n;j++)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         printf(" p=%.12e",p[j]);      strcpy( name, path );               /* we got the fullname name because no directory */
       printf("\n");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 #endif        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     }      /* get current working directory */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      /*    extern  char* getcwd ( char *buf , int len);*/
 #ifdef DEBUG      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       int k[2],l;        return( GLOCK_ERROR_GETCWD );
       k[0]=1;      }
       k[1]=-1;      /* got dirc from getcwd*/
       printf("Max: %.12e",(*func)(p));      printf(" DIRC = %s \n",dirc);
       for (j=1;j<=n;j++)    } else {                              /* strip direcotry from path */
         printf(" %.12e",p[j]);      ss++;                               /* after this, the filename */
       printf("\n");      l2 = strlen( ss );                  /* length of filename */
       for(l=0;l<=1;l++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         for (j=1;j<=n;j++) {      strcpy( name, ss );         /* save file name */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      dirc[l1-l2] = 0;                    /* add zero */
         }      printf(" DIRC2 = %s \n",dirc);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
       }    /* We add a separator at the end of dirc if not exists */
 #endif    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
       free_vector(xit,1,n);      dirc[l1+1] = 0; 
       free_vector(xits,1,n);      printf(" DIRC3 = %s \n",dirc);
       free_vector(ptt,1,n);    }
       free_vector(pt,1,n);    ss = strrchr( name, '.' );            /* find last / */
       return;    if (ss >0){
     }      ss++;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      strcpy(ext,ss);                     /* save extension */
     for (j=1;j<=n;j++) {      l1= strlen( name);
       ptt[j]=2.0*p[j]-pt[j];      l2= strlen(ss)+1;
       xit[j]=p[j]-pt[j];      strncpy( finame, name, l1-l2);
       pt[j]=p[j];      finame[l1-l2]= 0;
     }    }
     fptt=(*func)(ptt);  
     if (fptt < fp) {    return( 0 );                          /* we're done */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /******************************************/
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  void replace_back_to_slash(char *s, char*t)
         }  {
 #ifdef DEBUG    int i;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int lg=0;
         for(j=1;j<=n;j++)    i=0;
           printf(" %.12e",xit[j]);    lg=strlen(t);
         printf("\n");    for(i=0; i<= lg; i++) {
 #endif      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
     }    }
   }  }
 }  
   int nbocc(char *s, char occ)
 /**** Prevalence limit ****************/  {
     int i,j=0;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    int lg=20;
 {    i=0;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    lg=strlen(s);
      matrix by transitions matrix until convergence is reached */    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
   int i, ii,j,k;    }
   double min, max, maxmin, maxmax,sumnew=0.;    return j;
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  void cutv(char *u,char *v, char*t, char occ)
   double agefin, delaymax=50 ; /* Max number of years to converge */  {
     /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   for (ii=1;ii<=nlstate+ndeath;ii++)       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     for (j=1;j<=nlstate+ndeath;j++){       gives u="abcedf" and v="ghi2j" */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int i,lg,j,p=0;
     }    i=0;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for(j=0; j<=strlen(t)-1; j++) {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     newm=savm;    }
     /* Covariates have to be included here again */  
     cov[1]=1.;    lg=strlen(t);
     cov[2]=agefin;    for(j=0; j<p; j++) {
     if (cptcovn>0){      (u[j] = t[j]);
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    }
     }       u[p]='\0';
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
      for(j=0; j<= lg; j++) {
     savm=oldm;      if (j>=(p+1))(v[j-p-1] = t[j]);
     oldm=newm;    }
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  /********************** nrerror ********************/
       max=0.;  
       for(i=1; i<=nlstate; i++) {  void nrerror(char error_text[])
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    fprintf(stderr,"ERREUR ...\n");
         prlim[i][j]= newm[i][j]/(1-sumnew);    fprintf(stderr,"%s\n",error_text);
         max=FMAX(max,prlim[i][j]);    exit(EXIT_FAILURE);
         min=FMIN(min,prlim[i][j]);  }
       }  /*********************** vector *******************/
       maxmin=max-min;  double *vector(int nl, int nh)
       maxmax=FMAX(maxmax,maxmin);  {
     }    double *v;
     if(maxmax < ftolpl){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       return prlim;    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
   }  }
 }  
   /************************ free vector ******************/
 /*************** transition probabilities **********/  void free_vector(double*v, int nl, int nh)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double s1, s2;  
   /*double t34;*/  /************************ivector *******************************/
   int i,j,j1, nc, ii, jj;  int *ivector(long nl,long nh)
   {
     for(i=1; i<= nlstate; i++){    int *v;
     for(j=1; j<i;j++){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!v) nrerror("allocation failure in ivector");
         /*s2 += param[i][j][nc]*cov[nc];*/    return v-nl+NR_END;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /******************free ivector **************************/
       ps[i][j]=s2;  void free_ivector(int *v, long nl, long nh)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    free((FREE_ARG)(v+nl-NR_END));
     for(j=i+1; j<=nlstate+ndeath;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /************************lvector *******************************/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  long *lvector(long nl,long nh)
       }  {
       ps[i][j]=s2;    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   for(i=1; i<= nlstate; i++){    return v-nl+NR_END;
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /******************free lvector **************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  void free_lvector(long *v, long nl, long nh)
       s1+=exp(ps[i][j]);  {
     ps[i][i]=1./(s1+1.);    free((FREE_ARG)(v+nl-NR_END));
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /******************* imatrix *******************************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   } /* end i */  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    int **m; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    
       ps[ii][jj]=0;    /* allocate pointers to rows */ 
       ps[ii][ii]=1;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
     m -= nrl; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    
     for(jj=1; jj<= nlstate+ndeath; jj++){    
      printf("%lf ",ps[ii][jj]);    /* allocate rows and set pointers to them */ 
    }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     printf("\n ");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     }    m[nrl] += NR_END; 
     printf("\n ");printf("%lf ",cov[2]);*/    m[nrl] -= ncl; 
 /*    
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   goto end;*/    
     return ps;    /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
 /**************** Product of 2 matrices ******************/  
   /****************** free_imatrix *************************/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        long nch,ncl,nrh,nrl; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */       /* free an int matrix allocated by imatrix() */ 
   /* in, b, out are matrice of pointers which should have been initialized  { 
      before: only the contents of out is modified. The function returns    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      a pointer to pointers identical to out */    free((FREE_ARG) (m+nrl-NR_END)); 
   long i, j, k;  } 
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  /******************* matrix *******************************/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  double **matrix(long nrl, long nrh, long ncl, long nch)
         out[i][k] +=in[i][j]*b[j][k];  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   return out;    double **m;
 }  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /************* Higher Matrix Product ***************/    m += NR_END;
     m -= nrl;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      duration (i.e. until    m[nrl] += NR_END;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    m[nrl] -= ncl;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      Model is determined by parameters x and covariates have to be    return m;
      included manually here.    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
      */  }
   
   int i, j, d, h, k;  /*************************free matrix ************************/
   double **out, cov[NCOVMAX];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double **newm;  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* Hstepm could be zero and should return the unit matrix */    free((FREE_ARG)(m+nrl-NR_END));
   for (i=1;i<=nlstate+ndeath;i++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /******************* ma3x *******************************/
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   for(h=1; h <=nhstepm; h++){    double ***m;
     for(d=1; d <=hstepm; d++){  
       newm=savm;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       /* Covariates have to be included here again */    if (!m) nrerror("allocation failure 1 in matrix()");
       cov[1]=1.;    m += NR_END;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    m -= nrl;
       if (cptcovn>0){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    m[nrl] += NR_END;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    m[nrl] -= ncl;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       savm=oldm;  
       oldm=newm;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for(i=1; i<=nlstate+ndeath; i++)    m[nrl][ncl] += NR_END;
       for(j=1;j<=nlstate+ndeath;j++) {    m[nrl][ncl] -= nll;
         po[i][j][h]=newm[i][j];    for (j=ncl+1; j<=nch; j++) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      m[nrl][j]=m[nrl][j-1]+nlay;
          */    
       }    for (i=nrl+1; i<=nrh; i++) {
   } /* end h */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   return po;      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
     return m; 
 /*************** log-likelihood *************/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 double func( double *x)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 {    */
   int i, ii, j, k, mi, d;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /*************************free ma3x ************************/
   double sw; /* Sum of weights */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double lli; /* Individual log likelihood */  {
   long ipmx;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   /*extern weight */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* We are differentiating ll according to initial status */    free((FREE_ARG)(m+nrl-NR_END));
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  }
   /*for(i=1;i<imx;i++)  
 printf(" %d\n",s[4][i]);  /*************** function subdirf ***********/
   */  char *subdirf(char fileres[])
   {
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /* Caution optionfilefiname is hidden */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    strcpy(tmpout,optionfilefiname);
        for(mi=1; mi<= wav[i]-1; mi++){    strcat(tmpout,"/"); /* Add to the right */
       for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,fileres);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return tmpout;
             for(d=0; d<dh[mi][i]; d++){  }
         newm=savm;  
           cov[1]=1.;  /*************** function subdirf2 ***********/
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  char *subdirf2(char fileres[], char *preop)
           if (cptcovn>0){  {
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];    
             }    /* Caution optionfilefiname is hidden */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    strcpy(tmpout,optionfilefiname);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,"/");
           savm=oldm;    strcat(tmpout,preop);
           oldm=newm;    strcat(tmpout,fileres);
     return tmpout;
   }
       } /* end mult */  
      /*************** function subdirf3 ***********/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  char *subdirf3(char fileres[], char *preop, char *preop2)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  {
       ipmx +=1;    
       sw += weight[i];    /* Caution optionfilefiname is hidden */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    strcpy(tmpout,optionfilefiname);
     } /* end of wave */    strcat(tmpout,"/");
   } /* end of individual */    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    strcat(tmpout,fileres);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    return tmpout;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  }
   return -l;  
 }  /***************** f1dim *************************/
   extern int ncom; 
   extern double *pcom,*xicom;
 /*********** Maximum Likelihood Estimation ***************/  extern double (*nrfunc)(double []); 
    
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  double f1dim(double x) 
 {  { 
   int i,j, iter;    int j; 
   double **xi,*delti;    double f;
   double fret;    double *xt; 
   xi=matrix(1,npar,1,npar);   
   for (i=1;i<=npar;i++)    xt=vector(1,ncom); 
     for (j=1;j<=npar;j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    f=(*nrfunc)(xt); 
   printf("Powell\n");    free_vector(xt,1,ncom); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    return f; 
   } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 }  { 
     int iter; 
 /**** Computes Hessian and covariance matrix ***/    double a,b,d,etemp;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double fu,fv,fw,fx;
 {    double ftemp;
   double  **a,**y,*x,pd;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double **hess;    double e=0.0; 
   int i, j,jk;   
   int *indx;    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   double hessii(double p[], double delta, int theta, double delti[]);    x=w=v=bx; 
   double hessij(double p[], double delti[], int i, int j);    fw=fv=fx=(*f)(x); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for (iter=1;iter<=ITMAX;iter++) { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   hess=matrix(1,npar,1,npar);      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   printf("\nCalculation of the hessian matrix. Wait...\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     printf("%d",i);fflush(stdout);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     hess[i][i]=hessii(p,ftolhess,i,delti);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     /*printf(" %f ",p[i]);*/  #endif
   }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
   for (i=1;i<=npar;i++) {        return fx; 
     for (j=1;j<=npar;j++)  {      } 
       if (j>i) {      ftemp=fu;
         printf(".%d%d",i,j);fflush(stdout);      if (fabs(e) > tol1) { 
         hess[i][j]=hessij(p,delti,i,j);        r=(x-w)*(fx-fv); 
         hess[j][i]=hess[i][j];        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
   }        if (q > 0.0) p = -p; 
   printf("\n");        q=fabs(q); 
         etemp=e; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        e=d; 
          if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   a=matrix(1,npar,1,npar);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   y=matrix(1,npar,1,npar);        else { 
   x=vector(1,npar);          d=p/q; 
   indx=ivector(1,npar);          u=x+d; 
   for (i=1;i<=npar;i++)          if (u-a < tol2 || b-u < tol2) 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            d=SIGN(tol1,xm-x); 
   ludcmp(a,npar,indx,&pd);        } 
       } else { 
   for (j=1;j<=npar;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (i=1;i<=npar;i++) x[i]=0;      } 
     x[j]=1;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     lubksb(a,npar,indx,x);      fu=(*f)(u); 
     for (i=1;i<=npar;i++){      if (fu <= fx) { 
       matcov[i][j]=x[i];        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
   }          SHFT(fv,fw,fx,fu) 
           } else { 
   printf("\n#Hessian matrix#\n");            if (u < x) a=u; else b=u; 
   for (i=1;i<=npar;i++) {            if (fu <= fw || w == x) { 
     for (j=1;j<=npar;j++) {              v=w; 
       printf("%.3e ",hess[i][j]);              w=u; 
     }              fv=fw; 
     printf("\n");              fw=fu; 
   }            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
   /* Recompute Inverse */              fv=fu; 
   for (i=1;i<=npar;i++)            } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          } 
   ludcmp(a,npar,indx,&pd);    } 
     nrerror("Too many iterations in brent"); 
   /*  printf("\n#Hessian matrix recomputed#\n");    *xmin=x; 
     return fx; 
   for (j=1;j<=npar;j++) {  } 
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /****************** mnbrak ***********************/
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       y[i][j]=x[i];              double (*func)(double)) 
       printf("%.3e ",y[i][j]);  { 
     }    double ulim,u,r,q, dum;
     printf("\n");    double fu; 
   }   
   */    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   free_matrix(a,1,npar,1,npar);    if (*fb > *fa) { 
   free_matrix(y,1,npar,1,npar);      SHFT(dum,*ax,*bx,dum) 
   free_vector(x,1,npar);        SHFT(dum,*fb,*fa,dum) 
   free_ivector(indx,1,npar);        } 
   free_matrix(hess,1,npar,1,npar);    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 }      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 /*************** hessian matrix ****************/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 double hessii( double x[], double delta, int theta, double delti[])        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   int i;      if ((*bx-u)*(u-*cx) > 0.0) { 
   int l=1, lmax=20;        fu=(*func)(u); 
   double k1,k2;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double p2[NPARMAX+1];        fu=(*func)(u); 
   double res;        if (fu < *fc) { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double fx;            SHFT(*fb,*fc,fu,(*func)(u)) 
   int k=0,kmax=10;            } 
   double l1;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   fx=func(x);        fu=(*func)(u); 
   for (i=1;i<=npar;i++) p2[i]=x[i];      } else { 
   for(l=0 ; l <=lmax; l++){        u=(*cx)+GOLD*(*cx-*bx); 
     l1=pow(10,l);        fu=(*func)(u); 
     delts=delt;      } 
     for(k=1 ; k <kmax; k=k+1){      SHFT(*ax,*bx,*cx,u) 
       delt = delta*(l1*k);        SHFT(*fa,*fb,*fc,fu) 
       p2[theta]=x[theta] +delt;        } 
       k1=func(p2)-fx;  } 
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  /*************** linmin ************************/
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  int ncom; 
        double *pcom,*xicom;
 #ifdef DEBUG  double (*nrfunc)(double []); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);   
 #endif  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double brent(double ax, double bx, double cx, 
         k=kmax;                 double (*f)(double), double tol, double *xmin); 
       }    double f1dim(double x); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         k=kmax; l=lmax*10.;                double *fc, double (*func)(double)); 
       }    int j; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double xx,xmin,bx,ax; 
         delts=delt;    double fx,fb,fa;
       }   
     }    ncom=n; 
   }    pcom=vector(1,n); 
   delti[theta]=delts;    xicom=vector(1,n); 
   return res;    nrfunc=func; 
      for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 double hessij( double x[], double delti[], int thetai,int thetaj)    } 
 {    ax=0.0; 
   int i;    xx=1.0; 
   int l=1, l1, lmax=20;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double k1,k2,k3,k4,res,fx;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double p2[NPARMAX+1];  #ifdef DEBUG
   int k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fx=func(x);  #endif
   for (k=1; k<=2; k++) {    for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++) p2[i]=x[i];      xi[j] *= xmin; 
     p2[thetai]=x[thetai]+delti[thetai]/k;      p[j] += xi[j]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    } 
     k1=func(p2)-fx;    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
     p2[thetai]=x[thetai]+delti[thetai]/k;  } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  char *asc_diff_time(long time_sec, char ascdiff[])
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    long sec_left, days, hours, minutes;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    days = (time_sec) / (60*60*24);
     k3=func(p2)-fx;    sec_left = (time_sec) % (60*60*24);
      hours = (sec_left) / (60*60) ;
     p2[thetai]=x[thetai]-delti[thetai]/k;    sec_left = (sec_left) %(60*60);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    minutes = (sec_left) /60;
     k4=func(p2)-fx;    sec_left = (sec_left) % (60);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 #ifdef DEBUG    return ascdiff;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  }
 #endif  
   }  /*************** powell ************************/
   return res;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 }              double (*func)(double [])) 
   { 
 /************** Inverse of matrix **************/    void linmin(double p[], double xi[], int n, double *fret, 
 void ludcmp(double **a, int n, int *indx, double *d)                double (*func)(double [])); 
 {    int i,ibig,j; 
   int i,imax,j,k;    double del,t,*pt,*ptt,*xit;
   double big,dum,sum,temp;    double fp,fptt;
   double *vv;    double *xits;
      int niterf, itmp;
   vv=vector(1,n);  
   *d=1.0;    pt=vector(1,n); 
   for (i=1;i<=n;i++) {    ptt=vector(1,n); 
     big=0.0;    xit=vector(1,n); 
     for (j=1;j<=n;j++)    xits=vector(1,n); 
       if ((temp=fabs(a[i][j])) > big) big=temp;    *fret=(*func)(p); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    for (j=1;j<=n;j++) pt[j]=p[j]; 
     vv[i]=1.0/big;    for (*iter=1;;++(*iter)) { 
   }      fp=(*fret); 
   for (j=1;j<=n;j++) {      ibig=0; 
     for (i=1;i<j;i++) {      del=0.0; 
       sum=a[i][j];      last_time=curr_time;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      (void) gettimeofday(&curr_time,&tzp);
       a[i][j]=sum;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     big=0.0;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     for (i=j;i<=n;i++) {     for (i=1;i<=n;i++) {
       sum=a[i][j];        printf(" %d %.12f",i, p[i]);
       for (k=1;k<j;k++)        fprintf(ficlog," %d %.12lf",i, p[i]);
         sum -= a[i][k]*a[k][j];        fprintf(ficrespow," %.12lf", p[i]);
       a[i][j]=sum;      }
       if ( (dum=vv[i]*fabs(sum)) >= big) {      printf("\n");
         big=dum;      fprintf(ficlog,"\n");
         imax=i;      fprintf(ficrespow,"\n");fflush(ficrespow);
       }      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
     if (j != imax) {        strcpy(strcurr,asctime(&tm));
       for (k=1;k<=n;k++) {  /*       asctime_r(&tm,strcurr); */
         dum=a[imax][k];        forecast_time=curr_time; 
         a[imax][k]=a[j][k];        itmp = strlen(strcurr);
         a[j][k]=dum;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       }          strcurr[itmp-1]='\0';
       *d = -(*d);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       vv[imax]=vv[j];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        for(niterf=10;niterf<=30;niterf+=10){
     indx[j]=imax;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     if (a[j][j] == 0.0) a[j][j]=TINY;          tmf = *localtime(&forecast_time.tv_sec);
     if (j != n) {  /*      asctime_r(&tmf,strfor); */
       dum=1.0/(a[j][j]);          strcpy(strfor,asctime(&tmf));
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          itmp = strlen(strfor);
     }          if(strfor[itmp-1]=='\n')
   }          strfor[itmp-1]='\0';
   free_vector(vv,1,n);  /* Doesn't work */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 ;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 }        }
       }
 void lubksb(double **a, int n, int *indx, double b[])      for (i=1;i<=n;i++) { 
 {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int i,ii=0,ip,j;        fptt=(*fret); 
   double sum;  #ifdef DEBUG
          printf("fret=%lf \n",*fret);
   for (i=1;i<=n;i++) {        fprintf(ficlog,"fret=%lf \n",*fret);
     ip=indx[i];  #endif
     sum=b[ip];        printf("%d",i);fflush(stdout);
     b[ip]=b[i];        fprintf(ficlog,"%d",i);fflush(ficlog);
     if (ii)        linmin(p,xit,n,fret,func); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        if (fabs(fptt-(*fret)) > del) { 
     else if (sum) ii=i;          del=fabs(fptt-(*fret)); 
     b[i]=sum;          ibig=i; 
   }        } 
   for (i=n;i>=1;i--) {  #ifdef DEBUG
     sum=b[i];        printf("%d %.12e",i,(*fret));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        fprintf(ficlog,"%d %.12e",i,(*fret));
     b[i]=sum/a[i][i];        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        for(j=1;j<=n;j++) {
 {  /* Some frequencies */          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */        printf("\n");
   double *pp;        fprintf(ficlog,"\n");
   double pos;  #endif
   FILE *ficresp;      } 
   char fileresp[FILENAMELENGTH];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   pp=vector(1,nlstate);        int k[2],l;
         k[0]=1;
   strcpy(fileresp,"p");        k[1]=-1;
   strcat(fileresp,fileres);        printf("Max: %.12e",(*func)(p));
   if((ficresp=fopen(fileresp,"w"))==NULL) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for (j=1;j<=n;j++) {
     exit(0);          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        }
   j1=0;        printf("\n");
         fprintf(ficlog,"\n");
   j=cptcovn;        for(l=0;l<=1;l++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for(k1=1; k1<=j;k1++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
    for(i1=1; i1<=ncodemax[k1];i1++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
        j1++;          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for (i=-1; i<=nlstate+ndeath; i++)            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          for (jk=-1; jk<=nlstate+ndeath; jk++)          }
            for(m=agemin; m <= agemax+3; m++)  #endif
              freq[i][jk][m]=0;  
          
        for (i=1; i<=imx; i++) {        free_vector(xit,1,n); 
          bool=1;        free_vector(xits,1,n); 
          if  (cptcovn>0) {        free_vector(ptt,1,n); 
            for (z1=1; z1<=cptcovn; z1++)        free_vector(pt,1,n); 
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;        return; 
          }      } 
           if (bool==1) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
            for(m=firstpass; m<=lastpass-1; m++){      for (j=1;j<=n;j++) { 
              if(agev[m][i]==0) agev[m][i]=agemax+1;        ptt[j]=2.0*p[j]-pt[j]; 
              if(agev[m][i]==1) agev[m][i]=agemax+2;        xit[j]=p[j]-pt[j]; 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        pt[j]=p[j]; 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      } 
            }      fptt=(*func)(ptt); 
          }      if (fptt < fp) { 
        }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if  (cptcovn>0) {        if (t < 0.0) { 
          fprintf(ficresp, "\n#Variable");          linmin(p,xit,n,fret,func); 
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          for (j=1;j<=n;j++) { 
        }            xi[j][ibig]=xi[j][n]; 
        fprintf(ficresp, "\n#");            xi[j][n]=xit[j]; 
        for(i=1; i<=nlstate;i++)          }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  #ifdef DEBUG
        fprintf(ficresp, "\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                  fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(i=(int)agemin; i <= (int)agemax+3; i++){          for(j=1;j<=n;j++){
     if(i==(int)agemax+3)            printf(" %.12e",xit[j]);
       printf("Total");            fprintf(ficlog," %.12e",xit[j]);
     else          }
       printf("Age %d", i);          printf("\n");
     for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"\n");
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  #endif
         pp[jk] += freq[jk][m][i];        }
     }      } 
     for(jk=1; jk <=nlstate ; jk++){    } 
       for(m=-1, pos=0; m <=0 ; m++)  } 
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)  /**** Prevalence limit (stable or period prevalence)  ****************/
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
     }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for(jk=1; jk <=nlstate ; jk++){       matrix by transitions matrix until convergence is reached */
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
     for(jk=1,pos=0; jk <=nlstate ; jk++)    double **matprod2();
       pos += pp[jk];    double **out, cov[NCOVMAX], **pmij();
     for(jk=1; jk <=nlstate ; jk++){    double **newm;
       if(pos>=1.e-5)    double agefin, delaymax=50 ; /* Max number of years to converge */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
       else    for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (j=1;j<=nlstate+ndeath;j++){
       if( i <= (int) agemax){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(pos>=1.e-5)      }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
       else     cov[1]=1.;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);   
       }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for(jk=-1; jk <=nlstate+ndeath; jk++)      newm=savm;
       for(m=-1; m <=nlstate+ndeath; m++)      /* Covariates have to be included here again */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);       cov[2]=agefin;
     if(i <= (int) agemax)    
       fprintf(ficresp,"\n");        for (k=1; k<=cptcovn;k++) {
     printf("\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
  }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   fclose(ficresp);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 }  /* End of Freq */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 /************* Waves Concatenation ***************/  
       savm=oldm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      oldm=newm;
 {      maxmax=0.;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for(j=1;j<=nlstate;j++){
      Death is a valid wave (if date is known).        min=1.;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        max=0.;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for(i=1; i<=nlstate; i++) {
      and mw[mi+1][i]. dh depends on stepm.          sumnew=0;
      */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   int i, mi, m;          max=FMAX(max,prlim[i][j]);
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          min=FMIN(min,prlim[i][j]);
 float sum=0.;        }
         maxmin=max-min;
   for(i=1; i<=imx; i++){        maxmax=FMAX(maxmax,maxmin);
     mi=0;      }
     m=firstpass;      if(maxmax < ftolpl){
     while(s[m][i] <= nlstate){        return prlim;
       if(s[m][i]>=1)      }
         mw[++mi][i]=m;    }
       if(m >=lastpass)  }
         break;  
       else  /*************** transition probabilities ***************/ 
         m++;  
     }/* end while */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     if (s[m][i] > nlstate){  {
       mi++;     /* Death is another wave */    double s1, s2;
       /* if(mi==0)  never been interviewed correctly before death */    /*double t34;*/
          /* Only death is a correct wave */    int i,j,j1, nc, ii, jj;
       mw[mi][i]=m;  
     }      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
     wav[i]=mi;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if(mi==0)            /*s2 += param[i][j][nc]*cov[nc];*/
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
   for(i=1; i<=imx; i++){          ps[i][j]=s2;
     for(mi=1; mi<wav[i];mi++){  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       if (stepm <=0)        }
         dh[mi][i]=1;        for(j=i+1; j<=nlstate+ndeath;j++){
       else{          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         if (s[mw[mi+1][i]][i] > nlstate) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           if(j=0) j=1;  /* Survives at least one month after exam */          }
         }          ps[i][j]=s2;
         else{        }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      }
           k=k+1;      /*ps[3][2]=1;*/
           if (j >= jmax) jmax=j;      
           else if (j <= jmin)jmin=j;      for(i=1; i<= nlstate; i++){
           sum=sum+j;        s1=0;
         }        for(j=1; j<i; j++)
         jk= j/stepm;          s1+=exp(ps[i][j]);
         jl= j -jk*stepm;        for(j=i+1; j<=nlstate+ndeath; j++)
         ju= j -(jk+1)*stepm;          s1+=exp(ps[i][j]);
         if(jl <= -ju)        ps[i][i]=1./(s1+1.);
           dh[mi][i]=jk;        for(j=1; j<i; j++)
         else          ps[i][j]= exp(ps[i][j])*ps[i][i];
           dh[mi][i]=jk+1;        for(j=i+1; j<=nlstate+ndeath; j++)
         if(dh[mi][i]==0)          ps[i][j]= exp(ps[i][j])*ps[i][i];
           dh[mi][i]=1; /* At least one step */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       }      } /* end i */
     }      
   }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
 /*********** Tricode ****************************/          ps[ii][ii]=1;
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {      }
   int Ndum[80],ij, k, j, i;      
   int cptcode=0;  
   for (k=0; k<79; k++) Ndum[k]=0;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   for (k=1; k<=7; k++) ncodemax[k]=0;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   for (j=1; j<=cptcovn; j++) {  /*       } */
     for (i=1; i<=imx; i++) {  /*       printf("\n "); */
       ij=(int)(covar[Tvar[j]][i]);  /*        } */
       Ndum[ij]++;  /*        printf("\n ");printf("%lf ",cov[2]); */
       if (ij > cptcode) cptcode=ij;         /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        goto end;*/
     for (i=0; i<=cptcode; i++) {      return ps;
       if(Ndum[i]!=0) ncodemax[j]++;  }
     }  
    /**************** Product of 2 matrices ******************/
     ij=1;  
     for (i=1; i<=ncodemax[j]; i++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for (k=0; k<=79; k++) {  {
         if (Ndum[k] != 0) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           nbcode[Tvar[j]][ij]=k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           ij++;    /* in, b, out are matrice of pointers which should have been initialized 
         }       before: only the contents of out is modified. The function returns
         if (ij > ncodemax[j]) break;       a pointer to pointers identical to out */
       }      long i, j, k;
     }    for(i=nrl; i<= nrh; i++)
   }        for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
   
 /*********** Health Expectancies ****************/    return out;
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  
 {  
   /* Health expectancies */  /************* Higher Matrix Product ***************/
   int i, j, nhstepm, hstepm, h;  
   double age, agelim,hf;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double ***p3mat;  {
      /* Computes the transition matrix starting at age 'age' over 
   fprintf(ficreseij,"# Health expectancies\n");       'nhstepm*hstepm*stepm' months (i.e. until
   fprintf(ficreseij,"# Age");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for(i=1; i<=nlstate;i++)       nhstepm*hstepm matrices. 
     for(j=1; j<=nlstate;j++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       fprintf(ficreseij," %1d-%1d",i,j);       (typically every 2 years instead of every month which is too big 
   fprintf(ficreseij,"\n");       for the memory).
        Model is determined by parameters x and covariates have to be 
   hstepm=1*YEARM; /*  Every j years of age (in month) */       included manually here. 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
        */
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, j, d, h, k;
     /* nhstepm age range expressed in number of stepm */    double **out, cov[NCOVMAX];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    double **newm;
     /* Typically if 20 years = 20*12/6=40 stepm */  
     if (stepm >= YEARM) hstepm=1;    /* Hstepm could be zero and should return the unit matrix */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    for (i=1;i<=nlstate+ndeath;i++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=nlstate+ndeath;j++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        oldm[i][j]=(i==j ? 1.0 : 0.0);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        po[i][j][0]=(i==j ? 1.0 : 0.0);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
     for(i=1; i<=nlstate;i++)      for(d=1; d <=hstepm; d++){
       for(j=1; j<=nlstate;j++)        newm=savm;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        /* Covariates have to be included here again */
           eij[i][j][(int)age] +=p3mat[i][j][h];        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
            for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     hf=1;        for (k=1; k<=cptcovage;k++)
     if (stepm >= YEARM) hf=stepm/YEARM;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fprintf(ficreseij,"%.0f",age );        for (k=1; k<=cptcovprod;k++)
     for(i=1; i<=nlstate;i++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);  
       }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     fprintf(ficreseij,"\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 }        savm=oldm;
         oldm=newm;
 /************ Variance ******************/      }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(i=1; i<=nlstate+ndeath; i++)
 {        for(j=1;j<=nlstate+ndeath;j++) {
   /* Variance of health expectancies */          po[i][j][h]=newm[i][j];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   double **newm;        }
   double **dnewm,**doldm;      /*printf("h=%d ",h);*/
   int i, j, nhstepm, hstepm, h;    } /* end h */
   int k, cptcode;  /*     printf("\n H=%d \n",h); */
    double *xp;    return po;
   double **gp, **gm;  }
   double ***gradg, ***trgradg;  
   double ***p3mat;  
   double age,agelim;  /*************** log-likelihood *************/
   int theta;  double func( double *x)
   {
    fprintf(ficresvij,"# Covariances of life expectancies\n");    int i, ii, j, k, mi, d, kk;
   fprintf(ficresvij,"# Age");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for(i=1; i<=nlstate;i++)    double **out;
     for(j=1; j<=nlstate;j++)    double sw; /* Sum of weights */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double lli; /* Individual log likelihood */
   fprintf(ficresvij,"\n");    int s1, s2;
     double bbh, survp;
   xp=vector(1,npar);    long ipmx;
   dnewm=matrix(1,nlstate,1,npar);    /*extern weight */
   doldm=matrix(1,nlstate,1,nlstate);    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   hstepm=1*YEARM; /* Every year of age */    /*for(i=1;i<imx;i++) 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      printf(" %d\n",s[4][i]);
   agelim = AGESUP;    */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    cov[1]=1.;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(mle==1){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gp=matrix(0,nhstepm,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gm=matrix(0,nhstepm,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(theta=1; theta <=npar; theta++){            for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=npar; i++){ /* Computes gradient */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(d=0; d<dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            newm=savm;
       for(j=1; j<= nlstate; j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){            for (kk=1; kk<=cptcovage;kk++) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
       for(i=1; i<=npar; i++) /* Computes gradient */            oldm=newm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          } /* end mult */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(j=1; j<= nlstate; j++){          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(h=0; h<=nhstepm; h++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for(j=1; j<= nlstate; j++)           * probability in order to take into account the bias as a fraction of the way
         for(h=0; h<=nhstepm; h++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           * -stepm/2 to stepm/2 .
         }           * For stepm=1 the results are the same as for previous versions of Imach.
     } /* End theta */           * For stepm > 1 the results are less biased than in previous versions. 
            */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for(h=0; h<=nhstepm; h++)          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<=nlstate;j++)          /* bias bh is positive if real duration
         for(theta=1; theta <=npar; theta++)           * is higher than the multiple of stepm and negative otherwise.
           trgradg[h][j][theta]=gradg[h][theta][j];           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for(i=1;i<=nlstate;i++)          if( s2 > nlstate){ 
       for(j=1;j<=nlstate;j++)            /* i.e. if s2 is a death state and if the date of death is known 
         vareij[i][j][(int)age] =0.;               then the contribution to the likelihood is the probability to 
     for(h=0;h<=nhstepm;h++){               die between last step unit time and current  step unit time, 
       for(k=0;k<=nhstepm;k++){               which is also equal to probability to die before dh 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);               minus probability to die before dh-stepm . 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);               In version up to 0.92 likelihood was computed
         for(i=1;i<=nlstate;i++)          as if date of death was unknown. Death was treated as any other
           for(j=1;j<=nlstate;j++)          health state: the date of the interview describes the actual state
             vareij[i][j][(int)age] += doldm[i][j];          and not the date of a change in health state. The former idea was
       }          to consider that at each interview the state was recorded
     }          (healthy, disable or death) and IMaCh was corrected; but when we
     h=1;          introduced the exact date of death then we should have modified
     if (stepm >= YEARM) h=stepm/YEARM;          the contribution of an exact death to the likelihood. This new
     fprintf(ficresvij,"%.0f ",age );          contribution is smaller and very dependent of the step unit
     for(i=1; i<=nlstate;i++)          stepm. It is no more the probability to die between last interview
       for(j=1; j<=nlstate;j++){          and month of death but the probability to survive from last
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
     fprintf(ficresvij,"\n");          Jackson for correcting this bug.  Former versions increased
     free_matrix(gp,0,nhstepm,1,nlstate);          mortality artificially. The bad side is that we add another loop
     free_matrix(gm,0,nhstepm,1,nlstate);          which slows down the processing. The difference can be up to 10%
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          lower mortality.
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli=log(out[s1][s2] - savm[s1][s2]);
   } /* End age */  
    
   free_vector(xp,1,npar);          } else if  (s2==-2) {
   free_matrix(doldm,1,nlstate,1,npar);            for (j=1,survp=0. ; j<=nlstate; j++) 
   free_matrix(dnewm,1,nlstate,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
 }            lli= log(survp);
           }
 /************ Variance of prevlim ******************/          
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          else if  (s2==-4) { 
 {            for (j=3,survp=0. ; j<=nlstate; j++)  
   /* Variance of prevalence limit */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            lli= log(survp); 
   double **newm;          } 
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;          else if  (s2==-5) { 
   int k, cptcode;            for (j=1,survp=0. ; j<=2; j++)  
   double *xp;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double *gp, *gm;            lli= log(survp); 
   double **gradg, **trgradg;          } 
   double age,agelim;          
   int theta;          else{
                lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   fprintf(ficresvpl,"# Age");          } 
   for(i=1; i<=nlstate;i++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       fprintf(ficresvpl," %1d-%1d",i,i);          /*if(lli ==000.0)*/
   fprintf(ficresvpl,"\n");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
   xp=vector(1,npar);          sw += weight[i];
   dnewm=matrix(1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   doldm=matrix(1,nlstate,1,nlstate);        } /* end of wave */
        } /* end of individual */
   hstepm=1*YEARM; /* Every year of age */    }  else if(mle==2){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   agelim = AGESUP;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(mi=1; mi<= wav[i]-1; mi++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (stepm >= YEARM) hstepm=1;            for (j=1;j<=nlstate+ndeath;j++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=matrix(1,npar,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=vector(1,nlstate);            }
     gm=vector(1,nlstate);          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
     for(theta=1; theta <=npar; theta++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++){ /* Computes gradient */            for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1;i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         gp[i] = prlim[i][i];            savm=oldm;
                oldm=newm;
       for(i=1; i<=npar; i++) /* Computes gradient */          } /* end mult */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s1=s[mw[mi][i]][i];
       for(i=1;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
         gm[i] = prlim[i][i];          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(i=1;i<=nlstate;i++)          ipmx +=1;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          sw += weight[i];
     } /* End theta */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     trgradg =matrix(1,nlstate,1,npar);      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
     for(j=1; j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(theta=1; theta <=npar; theta++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         trgradg[j][theta]=gradg[theta][j];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       varpl[i][(int)age] =0.;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            }
     for(i=1;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficresvpl,"%.0f ",age );            for (kk=1; kk<=cptcovage;kk++) {
     for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            }
     fprintf(ficresvpl,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_vector(gp,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_vector(gm,1,nlstate);            savm=oldm;
     free_matrix(gradg,1,npar,1,nlstate);            oldm=newm;
     free_matrix(trgradg,1,nlstate,1,npar);          } /* end mult */
   } /* End age */        
           s1=s[mw[mi][i]][i];
   free_vector(xp,1,npar);          s2=s[mw[mi+1][i]][i];
   free_matrix(doldm,1,nlstate,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_matrix(dnewm,1,nlstate,1,nlstate);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
 /***********************************************/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 /**************** Main Program *****************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /***********************************************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /*int main(int argc, char *argv[])*/          for (ii=1;ii<=nlstate+ndeath;ii++)
 int main()            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;            }
   double agedeb, agefin,hf;          for(d=0; d<dh[mi][i]; d++){
   double agemin=1.e20, agemax=-1.e20;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double fret;            for (kk=1; kk<=cptcovage;kk++) {
   double **xi,tmp,delta;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   double dum; /* Dummy variable */          
   double ***p3mat;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int *indx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char line[MAXLINE], linepar[MAXLINE];            savm=oldm;
   char title[MAXLINE];            oldm=newm;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          } /* end mult */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        
   char filerest[FILENAMELENGTH];          s1=s[mw[mi][i]][i];
   char fileregp[FILENAMELENGTH];          s2=s[mw[mi+1][i]][i];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          if( s2 > nlstate){ 
   int firstobs=1, lastobs=10;            lli=log(out[s1][s2] - savm[s1][s2]);
   int sdeb, sfin; /* Status at beginning and end */          }else{
   int c,  h , cpt,l;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int ju,jl, mi;          }
   int i1,j1, k1,jk,aa,bb, stepsize;          ipmx +=1;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int hstepm, nhstepm;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double bage, fage, age, agelim, agebase;        } /* end of wave */
   double ftolpl=FTOL;      } /* end of individual */
   double **prlim;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double *severity;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***param; /* Matrix of parameters */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double  *p;        for(mi=1; mi<= wav[i]-1; mi++){
   double **matcov; /* Matrix of covariance */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***delti3; /* Scale */            for (j=1;j<=nlstate+ndeath;j++){
   double *delti; /* Scale */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***eij, ***vareij;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **varpl; /* Variances of prevalence limits by age */            }
   double *epj, vepp;          for(d=0; d<dh[mi][i]; d++){
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";            newm=savm;
   char *alph[]={"a","a","b","c","d","e"}, str[4];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char z[1]="c", occ;            for (kk=1; kk<=cptcovage;kk++) {
 #include <sys/time.h>              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 #include <time.h>            }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          
   /* long total_usecs;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   struct timeval start_time, end_time;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            oldm=newm;
           } /* end mult */
         
   printf("\nIMACH, Version 0.63");          s1=s[mw[mi][i]][i];
   printf("\nEnter the parameter file name: ");          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 #ifdef windows          ipmx +=1;
   scanf("%s",pathtot);          sw += weight[i];
   getcwd(pathcd, size);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   cutv(path,optionfile,pathtot,'\\');          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   chdir(path);        } /* end of wave */
   replace(pathc,path);      } /* end of individual */
 #endif    } /* End of if */
 #ifdef unix    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   scanf("%s",optionfile);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 #endif    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
 /*-------- arguments in the command line --------*/  }
   
   strcpy(fileres,"r");  /*************** log-likelihood *************/
   strcat(fileres, optionfile);  double funcone( double *x)
   {
   /*---------arguments file --------*/    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     printf("Problem with optionfile %s\n",optionfile);    double **out;
     goto end;    double lli; /* Individual log likelihood */
   }    double llt;
     int s1, s2;
   strcpy(filereso,"o");    double bbh, survp;
   strcat(filereso,fileres);    /*extern weight */
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* We are differentiating ll according to initial status */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   /* Reads comments: lines beginning with '#' */    */
   while((c=getc(ficpar))=='#' && c!= EOF){    cov[1]=1.;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     puts(line);  
     fputs(line,ficparo);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   ungetc(c,ficpar);      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          for (j=1;j<=nlstate+ndeath;j++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   covar=matrix(1,NCOVMAX,1,n);            for(d=0; d<dh[mi][i]; d++){
   if (strlen(model)<=1) cptcovn=0;          newm=savm;
   else {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     j=0;          for (kk=1; kk<=cptcovage;kk++) {
     j=nbocc(model,'+');            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     cptcovn=j+1;          }
   }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   ncovmodel=2+cptcovn;          savm=oldm;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          oldm=newm;
          } /* end mult */
   /* Read guess parameters */        
   /* Reads comments: lines beginning with '#' */        s1=s[mw[mi][i]][i];
   while((c=getc(ficpar))=='#' && c!= EOF){        s2=s[mw[mi+1][i]][i];
     ungetc(c,ficpar);        bbh=(double)bh[mi][i]/(double)stepm; 
     fgets(line, MAXLINE, ficpar);        /* bias is positive if real duration
     puts(line);         * is higher than the multiple of stepm and negative otherwise.
     fputs(line,ficparo);         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   ungetc(c,ficpar);          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if  (s2==-2) {
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for (j=1,survp=0. ; j<=nlstate; j++) 
     for(i=1; i <=nlstate; i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(j=1; j <=nlstate+ndeath-1; j++){          lli= log(survp);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }else if (mle==1){
       fprintf(ficparo,"%1d%1d",i1,j1);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       printf("%1d%1d",i,j);        } else if(mle==2){
       for(k=1; k<=ncovmodel;k++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         fscanf(ficpar," %lf",&param[i][j][k]);        } else if(mle==3){  /* exponential inter-extrapolation */
         printf(" %lf",param[i][j][k]);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         fprintf(ficparo," %lf",param[i][j][k]);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       }          lli=log(out[s1][s2]); /* Original formula */
       fscanf(ficpar,"\n");        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       printf("\n");          lli=log(out[s1][s2]); /* Original formula */
       fprintf(ficparo,"\n");        } /* End of if */
     }        ipmx +=1;
          sw += weight[i];
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   p=param[1][1];  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          if(globpr){
   /* Reads comments: lines beginning with '#' */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   while((c=getc(ficpar))=='#' && c!= EOF){   %11.6f %11.6f %11.6f ", \
     ungetc(c,ficpar);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     fgets(line, MAXLINE, ficpar);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     puts(line);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fputs(line,ficparo);            llt +=ll[k]*gipmx/gsw;
   }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   ungetc(c,ficpar);          }
           fprintf(ficresilk," %10.6f\n", -llt);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      } /* end of wave */
   for(i=1; i <=nlstate; i++){    } /* end of individual */
     for(j=1; j <=nlstate+ndeath-1; j++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       printf("%1d%1d",i,j);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficparo,"%1d%1d",i1,j1);    if(globpr==0){ /* First time we count the contributions and weights */
       for(k=1; k<=ncovmodel;k++){      gipmx=ipmx;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      gsw=sw;
         printf(" %le",delti3[i][j][k]);    }
         fprintf(ficparo," %le",delti3[i][j][k]);    return -l;
       }  }
       fscanf(ficpar,"\n");  
       printf("\n");  
       fprintf(ficparo,"\n");  /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }  {
   delti=delti3[1][1];    /* This routine should help understanding what is done with 
         the selection of individuals/waves and
   /* Reads comments: lines beginning with '#' */       to check the exact contribution to the likelihood.
   while((c=getc(ficpar))=='#' && c!= EOF){       Plotting could be done.
     ungetc(c,ficpar);     */
     fgets(line, MAXLINE, ficpar);    int k;
     puts(line);  
     fputs(line,ficparo);    if(*globpri !=0){ /* Just counts and sums, no printings */
   }      strcpy(fileresilk,"ilk"); 
   ungetc(c,ficpar);      strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   matcov=matrix(1,npar,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   for(i=1; i <=npar; i++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fscanf(ficpar,"%s",&str);      }
     printf("%s",str);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     fprintf(ficparo,"%s",str);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(j=1; j <=i; j++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       fscanf(ficpar," %le",&matcov[i][j]);      for(k=1; k<=nlstate; k++) 
       printf(" %.5le",matcov[i][j]);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficparo," %.5le",matcov[i][j]);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }    }
     fscanf(ficpar,"\n");  
     printf("\n");    *fretone=(*funcone)(p);
     fprintf(ficparo,"\n");    if(*globpri !=0){
   }      fclose(ficresilk);
   for(i=1; i <=npar; i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(j=i+1;j<=npar;j++)      fflush(fichtm); 
       matcov[i][j]=matcov[j][i];    } 
        return;
   printf("\n");  }
   
   
    if(mle==1){  /*********** Maximum Likelihood Estimation ***************/
     /*-------- data file ----------*/  
     if((ficres =fopen(fileres,"w"))==NULL) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       printf("Problem with resultfile: %s\n", fileres);goto end;  {
     }    int i,j, iter;
     fprintf(ficres,"#%s\n",version);    double **xi;
        double fret;
     if((fic=fopen(datafile,"r"))==NULL)    {    double fretone; /* Only one call to likelihood */
       printf("Problem with datafile: %s\n", datafile);goto end;    /*  char filerespow[FILENAMELENGTH];*/
     }    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     n= lastobs;      for (j=1;j<=npar;j++)
     severity = vector(1,maxwav);        xi[i][j]=(i==j ? 1.0 : 0.0);
     outcome=imatrix(1,maxwav+1,1,n);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     num=ivector(1,n);    strcpy(filerespow,"pow"); 
     moisnais=vector(1,n);    strcat(filerespow,fileres);
     annais=vector(1,n);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     moisdc=vector(1,n);      printf("Problem with resultfile: %s\n", filerespow);
     andc=vector(1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     agedc=vector(1,n);    }
     cod=ivector(1,n);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     weight=vector(1,n);    for (i=1;i<=nlstate;i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      for(j=1;j<=nlstate+ndeath;j++)
     mint=matrix(1,maxwav,1,n);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     anint=matrix(1,maxwav,1,n);    fprintf(ficrespow,"\n");
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);        powell(p,xi,npar,ftol,&iter,&fret,func);
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     i=1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     while (fgets(line, MAXLINE, fic) != NULL)    {    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
          
         for (j=maxwav;j>=1;j--){  }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);  /**** Computes Hessian and covariance matrix ***/
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  {
         }    double  **a,**y,*x,pd;
            double **hess;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int i, j,jk;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int *indx;
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for (j=ncov;j>=1;j--){    double gompertz(double p[]);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    hess=matrix(1,npar,1,npar);
         }  
         num[i]=atol(stra);    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
         i=i+1;      fprintf(ficlog,"%d",i);fflush(ficlog);
       }     
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
     /*scanf("%d",i);*/      /*  printf(" %f ",p[i]);
   imx=i-1; /* Number of individuals */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
   /* Calculation of the number of parameter from char model*/    
   Tvar=ivector(1,8);        for (i=1;i<=npar;i++) {
          for (j=1;j<=npar;j++)  {
   if (strlen(model) >1){        if (j>i) { 
     j=0;          printf(".%d%d",i,j);fflush(stdout);
     j=nbocc(model,'+');          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     cptcovn=j+1;          hess[i][j]=hessij(p,delti,i,j,func,npar);
              
     strcpy(modelsav,model);          hess[j][i]=hess[i][j];    
     if (j==0) {          /*printf(" %lf ",hess[i][j]);*/
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);        }
     }      }
     else {    }
       for(i=j; i>=1;i--){    printf("\n");
         cutv(stra,strb,modelsav,'+');    fprintf(ficlog,"\n");
         if (strchr(strb,'*')) {  
           cutv(strd,strc,strb,'*');    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           cutv(strb,strc,strd,'V');    
           for (k=1; k<=lastobs;k++)    a=matrix(1,npar,1,npar);
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    y=matrix(1,npar,1,npar);
         }    x=vector(1,npar);
         else {cutv(strd,strc,strb,'V');    indx=ivector(1,npar);
         Tvar[i+1]=atoi(strc);    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         strcpy(modelsav,stra);      ludcmp(a,npar,indx,&pd);
       }  
       cutv(strd,strc,stra,'V');    for (j=1;j<=npar;j++) {
       Tvar[1]=atoi(strc);      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
   }      lubksb(a,npar,indx,x);
   /*printf("tvar=%d ",Tvar[1]);      for (i=1;i<=npar;i++){ 
   scanf("%d ",i);*/        matcov[i][j]=x[i];
     fclose(fic);      }
     }
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;    printf("\n#Hessian matrix#\n");
     }    fprintf(ficlog,"\n#Hessian matrix#\n");
     /*-calculation of age at interview from date of interview and age at death -*/    for (i=1;i<=npar;i++) { 
     agev=matrix(1,maxwav,1,imx);      for (j=1;j<=npar;j++) { 
            printf("%.3e ",hess[i][j]);
     for (i=1; i<=imx; i++)  {        fprintf(ficlog,"%.3e ",hess[i][j]);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      }
       for(m=1; (m<= maxwav); m++){      printf("\n");
         if(s[m][i] >0){      fprintf(ficlog,"\n");
           if (s[m][i] == nlstate+1) {    }
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)    /* Recompute Inverse */
               agev[m][i]=agedc[i];    for (i=1;i<=npar;i++)
             else{      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    ludcmp(a,npar,indx,&pd);
               agev[m][i]=-1;  
             }    /*  printf("\n#Hessian matrix recomputed#\n");
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    for (j=1;j<=npar;j++) {
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for (i=1;i<=npar;i++) x[i]=0;
             if(mint[m][i]==99 || anint[m][i]==9999)      x[j]=1;
               agev[m][i]=1;      lubksb(a,npar,indx,x);
             else if(agev[m][i] <agemin){      for (i=1;i<=npar;i++){ 
               agemin=agev[m][i];        y[i][j]=x[i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        printf("%.3e ",y[i][j]);
             }        fprintf(ficlog,"%.3e ",y[i][j]);
             else if(agev[m][i] >agemax){      }
               agemax=agev[m][i];      printf("\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      fprintf(ficlog,"\n");
             }    }
             /*agev[m][i]=anint[m][i]-annais[i];*/    */
             /*   agev[m][i] = age[i]+2*m;*/  
           }    free_matrix(a,1,npar,1,npar);
           else { /* =9 */    free_matrix(y,1,npar,1,npar);
             agev[m][i]=1;    free_vector(x,1,npar);
             s[m][i]=-1;    free_ivector(indx,1,npar);
           }    free_matrix(hess,1,npar,1,npar);
         }  
         else /*= 0 Unknown */  
           agev[m][i]=1;  }
       }  
      /*************** hessian matrix ****************/
     }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for (i=1; i<=imx; i++)  {  {
       for(m=1; (m<= maxwav); m++){    int i;
         if (s[m][i] > (nlstate+ndeath)) {    int l=1, lmax=20;
           printf("Error: Wrong value in nlstate or ndeath\n");      double k1,k2;
           goto end;    double p2[NPARMAX+1];
         }    double res;
       }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }    double fx;
     int k=0,kmax=10;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double l1;
   
     free_vector(severity,1,maxwav);    fx=func(x);
     free_imatrix(outcome,1,maxwav+1,1,n);    for (i=1;i<=npar;i++) p2[i]=x[i];
     free_vector(moisnais,1,n);    for(l=0 ; l <=lmax; l++){
     free_vector(annais,1,n);      l1=pow(10,l);
     free_matrix(mint,1,maxwav,1,n);      delts=delt;
     free_matrix(anint,1,maxwav,1,n);      for(k=1 ; k <kmax; k=k+1){
     free_vector(moisdc,1,n);        delt = delta*(l1*k);
     free_vector(andc,1,n);        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
            p2[theta]=x[theta]-delt;
     wav=ivector(1,imx);        k2=func(p2)-fx;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
            
     /* Concatenates waves */  #ifdef DEBUG
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
 Tcode=ivector(1,100);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
    nbcode=imatrix(1,nvar,1,8);          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
    ncodemax[1]=1;          k=kmax;
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
    codtab=imatrix(1,100,1,10);          k=kmax; l=lmax*10.;
    h=0;        }
    m=pow(2,cptcovn);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
    for(k=1;k<=cptcovn; k++){        }
      for(i=1; i <=(m/pow(2,k));i++){      }
        for(j=1; j <= ncodemax[k]; j++){    }
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    delti[theta]=delts;
            h++;    return res; 
            if (h>m) h=1;codtab[h][k]=j;    
          }  }
        }  
      }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
    }  {
     int i;
    /*for(i=1; i <=m ;i++){    int l=1, l1, lmax=20;
      for(k=1; k <=cptcovn; k++){    double k1,k2,k3,k4,res,fx;
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    double p2[NPARMAX+1];
      }    int k;
      printf("\n");  
    }*/    fx=func(x);
    /*scanf("%d",i);*/    for (k=1; k<=2; k++) {
          for (i=1;i<=npar;i++) p2[i]=x[i];
    /* Calculates basic frequencies. Computes observed prevalence at single age      p2[thetai]=x[thetai]+delti[thetai]/k;
        and prints on file fileres'p'. */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      k1=func(p2)-fx;
     
       p2[thetai]=x[thetai]+delti[thetai]/k;
   /*scanf("%d ",i);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
     
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      p2[thetai]=x[thetai]-delti[thetai]/k;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      k3=func(p2)-fx;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     /* For Powell, parameters are in a vector p[] starting at p[1]      k4=func(p2)-fx;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  #ifdef DEBUG
          printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
        }
     /*--------- results files --------------*/    return res;
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  }
      
    jk=1;  /************** Inverse of matrix **************/
    fprintf(ficres,"# Parameters\n");  void ludcmp(double **a, int n, int *indx, double *d) 
    printf("# Parameters\n");  { 
    for(i=1,jk=1; i <=nlstate; i++){    int i,imax,j,k; 
      for(k=1; k <=(nlstate+ndeath); k++){    double big,dum,sum,temp; 
        if (k != i)    double *vv; 
          {   
            printf("%d%d ",i,k);    vv=vector(1,n); 
            fprintf(ficres,"%1d%1d ",i,k);    *d=1.0; 
            for(j=1; j <=ncovmodel; j++){    for (i=1;i<=n;i++) { 
              printf("%f ",p[jk]);      big=0.0; 
              fprintf(ficres,"%f ",p[jk]);      for (j=1;j<=n;j++) 
              jk++;        if ((temp=fabs(a[i][j])) > big) big=temp; 
            }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
            printf("\n");      vv[i]=1.0/big; 
            fprintf(ficres,"\n");    } 
          }    for (j=1;j<=n;j++) { 
      }      for (i=1;i<j;i++) { 
    }        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     /* Computing hessian and covariance matrix */        a[i][j]=sum; 
     ftolhess=ftol; /* Usually correct */      } 
     hesscov(matcov, p, npar, delti, ftolhess, func);      big=0.0; 
     fprintf(ficres,"# Scales\n");      for (i=j;i<=n;i++) { 
     printf("# Scales\n");        sum=a[i][j]; 
      for(i=1,jk=1; i <=nlstate; i++){        for (k=1;k<j;k++) 
       for(j=1; j <=nlstate+ndeath; j++){          sum -= a[i][k]*a[k][j]; 
         if (j!=i) {        a[i][j]=sum; 
           fprintf(ficres,"%1d%1d",i,j);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           printf("%1d%1d",i,j);          big=dum; 
           for(k=1; k<=ncovmodel;k++){          imax=i; 
             printf(" %.5e",delti[jk]);        } 
             fprintf(ficres," %.5e",delti[jk]);      } 
             jk++;      if (j != imax) { 
           }        for (k=1;k<=n;k++) { 
           printf("\n");          dum=a[imax][k]; 
           fprintf(ficres,"\n");          a[imax][k]=a[j][k]; 
         }          a[j][k]=dum; 
       }        } 
       }        *d = -(*d); 
            vv[imax]=vv[j]; 
     k=1;      } 
     fprintf(ficres,"# Covariance\n");      indx[j]=imax; 
     printf("# Covariance\n");      if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(i=1;i<=npar;i++){      if (j != n) { 
       /*  if (k>nlstate) k=1;        dum=1.0/(a[j][j]); 
       i1=(i-1)/(ncovmodel*nlstate)+1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      } 
       printf("%s%d%d",alph[k],i1,tab[i]);*/    } 
       fprintf(ficres,"%3d",i);    free_vector(vv,1,n);  /* Doesn't work */
       printf("%3d",i);  ;
       for(j=1; j<=i;j++){  } 
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
       fprintf(ficres,"\n");    int i,ii=0,ip,j; 
       printf("\n");    double sum; 
       k++;   
     }    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
     while((c=getc(ficpar))=='#' && c!= EOF){      sum=b[ip]; 
       ungetc(c,ficpar);      b[ip]=b[i]; 
       fgets(line, MAXLINE, ficpar);      if (ii) 
       puts(line);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       fputs(line,ficparo);      else if (sum) ii=i; 
     }      b[i]=sum; 
     ungetc(c,ficpar);    } 
      for (i=n;i>=1;i--) { 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      sum=b[i]; 
          for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     if (fage <= 2) {      b[i]=sum/a[i][i]; 
       bage = agemin;    } 
       fage = agemax;  } 
     }  
   void pstamp(FILE *fichier)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  {
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 /*------------ gnuplot -------------*/  }
 chdir(pathcd);  
   if((ficgp=fopen("graph.plt","w"))==NULL) {  /************ Frequencies ********************/
     printf("Problem with file graph.gp");goto end;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   }  {  /* Some frequencies */
 #ifdef windows    
   fprintf(ficgp,"cd \"%s\" \n",pathc);    int i, m, jk, k1,i1, j1, bool, z1,j;
 #endif    int first;
 m=pow(2,cptcovn);    double ***freq; /* Frequencies */
      double *pp, **prop;
  /* 1eme*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    char fileresp[FILENAMELENGTH];
    for (k1=1; k1<= m ; k1 ++) {    
     pp=vector(1,nlstate);
 #ifdef windows    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    strcpy(fileresp,"p");
 #endif    strcat(fileresp,fileres);
 #ifdef unix    if((ficresp=fopen(fileresp,"w"))==NULL) {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      printf("Problem with prevalence resultfile: %s\n", fileresp);
 #endif      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
 for (i=1; i<= nlstate ; i ++) {    }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    j1=0;
 }    
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    j=cptcoveff;
     for (i=1; i<= nlstate ; i ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    first=1;
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    for(k1=1; k1<=j;k1++){
      for (i=1; i<= nlstate ; i ++) {      for(i1=1; i1<=ncodemax[k1];i1++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        j1++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 }            scanf("%d", i);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        for (i=-5; i<=nlstate+ndeath; i++)  
 #ifdef unix          for (jk=-5; jk<=nlstate+ndeath; jk++)  
 fprintf(ficgp,"\nset ter gif small size 400,300");            for(m=iagemin; m <= iagemax+3; m++)
 #endif              freq[i][jk][m]=0;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }      for (i=1; i<=nlstate; i++)  
   }        for(m=iagemin; m <= iagemax+3; m++)
   /*2 eme*/          prop[i][m]=0;
         
   for (k1=1; k1<= m ; k1 ++) {        dateintsum=0;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);        k2cpt=0;
            for (i=1; i<=imx; i++) {
     for (i=1; i<= nlstate+1 ; i ++) {          bool=1;
       k=2*i;          if  (cptcovn>0) {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            for (z1=1; z1<=cptcoveff; z1++) 
       for (j=1; j<= nlstate+1 ; j ++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                bool=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            if (bool==1){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            for(m=firstpass; m<=lastpass; m++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              k2=anint[m][i]+(mint[m][i]/12.);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for (j=1; j<= nlstate+1 ; j ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                  if (m<lastpass) {
       fprintf(ficgp,"\" t\"\" w l 0,");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for (j=1; j<= nlstate+1 ; j ++) {                }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 }                    dateintsum=dateintsum+k2;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                  k2cpt++;
       else fprintf(ficgp,"\" t\"\" w l 0,");                }
     }                /*}*/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            }
   }          }
          }
   /*3eme*/         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
    for (k1=1; k1<= m ; k1 ++) {        pstamp(ficresp);
     for (cpt=1; cpt<= nlstate ; cpt ++) {        if  (cptcovn>0) {
       k=2+nlstate*(cpt-1);          fprintf(ficresp, "\n#********** Variable "); 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (i=1; i< nlstate ; i ++) {          fprintf(ficresp, "**********\n#");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        }
       }        for(i=1; i<=nlstate;i++) 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     }        fprintf(ficresp, "\n");
    }        
          for(i=iagemin; i <= iagemax+3; i++){
   /* CV preval stat */          if(i==iagemax+3){
     for (k1=1; k1<= m ; k1 ++) {            fprintf(ficlog,"Total");
     for (cpt=1; cpt<nlstate ; cpt ++) {          }else{
       k=3;            if(first==1){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);              first=0;
       for (i=1; i< nlstate ; i ++)              printf("See log file for details...\n");
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            fprintf(ficlog,"Age %d", i);
                }
       l=3+(nlstate+ndeath)*cpt;          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for (i=1; i< nlstate ; i ++) {              pp[jk] += freq[jk][m][i]; 
         l=3+(nlstate+ndeath)*cpt;          }
         fprintf(ficgp,"+$%d",l+i+1);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                pos += freq[jk][m][i];
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if(pp[jk]>=1.e-10){
     }              if(first==1){
   }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
   /* proba elementaires */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   for(i=1,jk=1; i <=nlstate; i++){            }else{
     for(k=1; k <=(nlstate+ndeath); k++){              if(first==1)
       if (k != i) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for(j=1; j <=ncovmodel; j++){            }
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);          }
           jk++;  
           fprintf(ficgp,"\n");          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       }              pp[jk] += freq[jk][m][i];
     }          }       
   }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for(jk=1; jk <=m; jk++) {            pos += pp[jk];
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            posprop += prop[jk][i];
   for(i=1; i <=nlstate; i++) {          }
     for(k=1; k <=(nlstate+ndeath); k++){          for(jk=1; jk <=nlstate ; jk++){
       if (k != i) {            if(pos>=1.e-5){
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);              if(first==1)
         for(j=3; j <=ncovmodel; j++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficgp,")/(1");            }else{
         for(k1=1; k1 <=(nlstate+ndeath); k1++)              if(first==1)
           if (k1 != i) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             for(j=3; j <=ncovmodel; j++)            }
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            if( i <= iagemax){
             fprintf(ficgp,")");              if(pos>=1.e-5){
           }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         fprintf(ficgp,") t \"p%d%d\" ", i,k);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
     }              else
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              }
   }          }
            
  fclose(ficgp);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     chdir(path);              if(freq[jk][m][i] !=0 ) {
     free_matrix(agev,1,maxwav,1,imx);              if(first==1)
     free_ivector(wav,1,imx);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              }
              if(i <= iagemax)
     free_imatrix(s,1,maxwav+1,1,n);            fprintf(ficresp,"\n");
              if(first==1)
                printf("Others in log...\n");
     free_ivector(num,1,n);          fprintf(ficlog,"\n");
     free_vector(agedc,1,n);        }
     free_vector(weight,1,n);      }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    }
     fclose(ficparo);    dateintmean=dateintsum/k2cpt; 
     fclose(ficres);   
    }    fclose(ficresp);
        free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    /*________fin mle=1_________*/    free_vector(pp,1,nlstate);
        free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
    }
     /* No more information from the sample is required now */  
   /* Reads comments: lines beginning with '#' */  /************ Prevalence ********************/
   while((c=getc(ficpar))=='#' && c!= EOF){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     ungetc(c,ficpar);  {  
     fgets(line, MAXLINE, ficpar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     puts(line);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fputs(line,ficparo);       We still use firstpass and lastpass as another selection.
   }    */
   ungetc(c,ficpar);   
      int i, m, jk, k1, i1, j1, bool, z1,j;
     double ***freq; /* Frequencies */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    double *pp, **prop;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    double pos,posprop; 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    double  y2; /* in fractional years */
 /*--------- index.htm --------*/    int iagemin, iagemax;
   
   if((fichtm=fopen("index.htm","w"))==NULL)    {    iagemin= (int) agemin;
     printf("Problem with index.htm \n");goto end;    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    j1=0;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    j=cptcoveff;
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    for(k1=1; k1<=j;k1++){
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      for(i1=1; i1<=ncodemax[k1];i1++){
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        j1++;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        
         for (i=1; i<=nlstate; i++)  
  fprintf(fichtm," <li>Graphs</li>\n<p>");          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
  m=cptcovn;       
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
  j1=0;          if  (cptcovn>0) {
  for(k1=1; k1<=m;k1++){            for (z1=1; z1<=cptcoveff; z1++) 
    for(i1=1; i1<=ncodemax[k1];i1++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
        j1++;                bool=0;
        if (cptcovn > 0) {          } 
          fprintf(fichtm,"<hr>************ Results for covariates");          if (bool==1) { 
          for (cpt=1; cpt<=cptcovn;cpt++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
          fprintf(fichtm," ************\n<hr>");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                    if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
        for(cpt=1; cpt<nlstate;cpt++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
        }                  prop[s[m][i]][iagemax+3] += weight[i]; 
     for(cpt=1; cpt<=nlstate;cpt++) {                } 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              }
 interval) in state (%d): v%s%d%d.gif <br>            } /* end selection of waves */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            }
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {        for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      }            posprop += prop[jk][i]; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          } 
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          for(jk=1; jk <=nlstate ; jk++){     
 fprintf(fichtm,"\n</body>");            if( i <=  iagemax){ 
    }              if(posprop>=1.e-5){ 
  }                probs[i][jk][j1]= prop[jk][i]/posprop;
 fclose(fichtm);              } else
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   /*--------------- Prevalence limit --------------*/            } 
            }/* end jk */ 
   strcpy(filerespl,"pl");        }/* end i */ 
   strcat(filerespl,fileres);      } /* end i1 */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    } /* end k1 */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    
   }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    /*free_vector(pp,1,nlstate);*/
   fprintf(ficrespl,"#Prevalence limit\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficrespl,"#Age ");  }  /* End of prevalence */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");  /************* Waves Concatenation ***************/
    
   prlim=matrix(1,nlstate,1,nlstate);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       Death is a valid wave (if date is known).
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   k=0;       and mw[mi+1][i]. dh depends on stepm.
   agebase=agemin;       */
   agelim=agemax;  
   ftolpl=1.e-10;    int i, mi, m;
   i1=cptcovn;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if (cptcovn < 1){i1=1;}       double sum=0., jmean=0.;*/
     int first;
   for(cptcov=1;cptcov<=i1;cptcov++){    int j, k=0,jk, ju, jl;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double sum=0.;
         k=k+1;    first=0;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    jmin=1e+5;
         fprintf(ficrespl,"\n#****** ");    jmax=-1;
         for(j=1;j<=cptcovn;j++)    jmean=0.;
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    for(i=1; i<=imx; i++){
         fprintf(ficrespl,"******\n");      mi=0;
              m=firstpass;
         for (age=agebase; age<=agelim; age++){      while(s[m][i] <= nlstate){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           fprintf(ficrespl,"%.0f",age );          mw[++mi][i]=m;
           for(i=1; i<=nlstate;i++)        if(m >=lastpass)
           fprintf(ficrespl," %.5f", prlim[i][i]);          break;
           fprintf(ficrespl,"\n");        else
         }          m++;
       }      }/* end while */
     }      if (s[m][i] > nlstate){
   fclose(ficrespl);        mi++;     /* Death is another wave */
   /*------------- h Pij x at various ages ------------*/        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        mw[mi][i]=m;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }      wav[i]=mi;
   printf("Computing pij: result on file '%s' \n", filerespij);      if(mi==0){
          nbwarn++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        if(first==0){
   if (stepm<=24) stepsize=2;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   agelim=AGESUP;        }
   hstepm=stepsize*YEARM; /* Every year of age */        if(first==1){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
          }
   k=0;      } /* end mi==0 */
   for(cptcov=1;cptcov<=i1;cptcov++){    } /* End individuals */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    for(i=1; i<=imx; i++){
         fprintf(ficrespij,"\n#****** ");      for(mi=1; mi<wav[i];mi++){
         for(j=1;j<=cptcovn;j++)        if (stepm <=0)
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          dh[mi][i]=1;
         fprintf(ficrespij,"******\n");        else{
                  if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            if (agedc[i] < 2*AGESUP) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              if(j==0) j=1;  /* Survives at least one month after exam */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              else if(j<0){
           oldm=oldms;savm=savms;                nberr++;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficrespij,"# Age");                j=1; /* Temporary Dangerous patch */
           for(i=1; i<=nlstate;i++)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             for(j=1; j<=nlstate+ndeath;j++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficrespij," %1d-%1d",i,j);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficrespij,"\n");              }
           for (h=0; h<=nhstepm; h++){              k=k+1;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              if (j >= jmax){
             for(i=1; i<=nlstate;i++)                jmax=j;
               for(j=1; j<=nlstate+ndeath;j++)                ijmax=i;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              }
             fprintf(ficrespij,"\n");              if (j <= jmin){
           }                jmin=j;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                ijmin=i;
           fprintf(ficrespij,"\n");              }
         }              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   fclose(ficrespij);          }
           else{
   /*---------- Health expectancies and variances ------------*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   strcpy(filerest,"t");  
   strcat(filerest,fileres);            k=k+1;
   if((ficrest=fopen(filerest,"w"))==NULL) {            if (j >= jmax) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              jmax=j;
   }              ijmax=i;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            }
             else if (j <= jmin){
               jmin=j;
   strcpy(filerese,"e");              ijmin=i;
   strcat(filerese,fileres);            }
   if((ficreseij=fopen(filerese,"w"))==NULL) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  strcpy(fileresv,"v");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcat(fileresv,fileres);            }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            sum=sum+j;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          }
   }          jk= j/stepm;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   k=0;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   for(cptcov=1;cptcov<=i1;cptcov++){            if(jl==0){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              dh[mi][i]=jk;
       k=k+1;              bh[mi][i]=0;
       fprintf(ficrest,"\n#****** ");            }else{ /* We want a negative bias in order to only have interpolation ie
       for(j=1;j<=cptcovn;j++)                    * at the price of an extra matrix product in likelihood */
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              dh[mi][i]=jk+1;
       fprintf(ficrest,"******\n");              bh[mi][i]=ju;
             }
       fprintf(ficreseij,"\n#****** ");          }else{
       for(j=1;j<=cptcovn;j++)            if(jl <= -ju){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              dh[mi][i]=jk;
       fprintf(ficreseij,"******\n");              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficresvij,"\n#****** ");                                   */
       for(j=1;j<=cptcovn;j++)            }
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            else{
       fprintf(ficresvij,"******\n");              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            }
       oldm=oldms;savm=savms;            if(dh[mi][i]==0){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                dh[mi][i]=1; /* At least one step */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              bh[mi][i]=ju; /* At least one step */
       oldm=oldms;savm=savms;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            }
                } /* end if mle */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      } /* end wave */
       fprintf(ficrest,"\n");    }
            jmean=sum/k;
       hf=1;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       if (stepm >= YEARM) hf=stepm/YEARM;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       epj=vector(1,nlstate+1);   }
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /*********** Tricode ****************************/
         fprintf(ficrest," %.0f",age);  void tricode(int *Tvar, int **nbcode, int imx)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
           }  
           epj[nlstate+1] +=epj[j];    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=19;
         }    int cptcode=0;
         for(i=1, vepp=0.;i <=nlstate;i++)    cptcoveff=0; 
           for(j=1;j <=nlstate;j++)   
             vepp += vareij[i][j][(int)age];    for (k=0; k<maxncov; k++) Ndum[k]=0;
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    for (k=1; k<=7; k++) ncodemax[k]=0;
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         fprintf(ficrest,"\n");                                 modality*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     }        Ndum[ij]++; /*store the modality */
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  fclose(ficreseij);                                         Tvar[j]. If V=sex and male is 0 and 
  fclose(ficresvij);                                         female is 1, then  cptcode=1.*/
   fclose(ficrest);      }
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);      for (i=0; i<=cptcode; i++) {
   /*scanf("%d ",i); */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   /*------- Variance limit prevalence------*/    
       ij=1; 
 strcpy(fileresvpl,"vpl");      for (i=1; i<=ncodemax[j]; i++) {
   strcat(fileresvpl,fileres);        for (k=0; k<= maxncov; k++) {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          if (Ndum[k] != 0) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            nbcode[Tvar[j]][ij]=k; 
     exit(0);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   }            
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            ij++;
           }
  k=0;          if (ij > ncodemax[j]) break; 
  for(cptcov=1;cptcov<=i1;cptcov++){        }  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } 
      k=k+1;    }  
      fprintf(ficresvpl,"\n#****** ");  
      for(j=1;j<=cptcovn;j++)   for (k=0; k< maxncov; k++) Ndum[k]=0;
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");   for (i=1; i<=ncovmodel-2; i++) { 
           /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      varpl=matrix(1,nlstate,(int) bage, (int) fage);     ij=Tvar[i];
      oldm=oldms;savm=savms;     Ndum[ij]++;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   }
    }  
  }   ij=1;
    for (i=1; i<= maxncov; i++) {
   fclose(ficresvpl);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   /*---------- End : free ----------------*/       ij++;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     }
     }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);   
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);   cptcoveff=ij-1; /*Number of simple covariates*/
    }
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  /*********** Health Expectancies ****************/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
    {
   free_matrix(matcov,1,npar,1,npar);    /* Health expectancies, no variances */
   free_vector(delti,1,npar);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      int nhstepma, nstepma; /* Decreasing with age */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double age, agelim, hf;
     double ***p3mat;
   printf("End of Imach\n");    double eip;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      pstamp(ficreseij);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficreseij,"# Age");
   /*------ End -----------*/    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
  end:        fprintf(ficreseij," e%1d%1d ",i,j);
 #ifdef windows      }
  chdir(pathcd);      fprintf(ficreseij," e%1d. ",i);
 #endif    }
  system("wgnuplot graph.plt");    fprintf(ficreseij,"\n");
   
 #ifdef windows    
   while (z[0] != 'q') {    if(estepm < stepm){
     chdir(pathcd);      printf ("Problem %d lower than %d\n",estepm, stepm);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    }
     scanf("%s",z);    else  hstepm=estepm;   
     if (z[0] == 'c') system("./imach");    /* We compute the life expectancy from trapezoids spaced every estepm months
     else if (z[0] == 'e') {     * This is mainly to measure the difference between two models: for example
       chdir(path);     * if stepm=24 months pijx are given only every 2 years and by summing them
       system("index.htm");     * we are calculating an estimate of the Life Expectancy assuming a linear 
     }     * progression in between and thus overestimating or underestimating according
     else if (z[0] == 'q') exit(0);     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 #endif     * to compare the new estimate of Life expectancy with the same linear 
 }     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sum the number of covariates including ages as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.3  
changed lines
  Added in v.1.130


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>