Diff for /imach/src/imach.c between versions 1.50 and 1.91

version 1.50, 2002/06/26 23:25:02 version 1.91, 2003/06/25 15:30:29
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
   This program computes Healthy Life Expectancies from    (Repository): Elapsed time after each iteration is now output. It
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    helps to forecast when convergence will be reached. Elapsed time
   first survey ("cross") where individuals from different ages are    is stamped in powell.  We created a new html file for the graphs
   interviewed on their health status or degree of disability (in the    concerning matrix of covariance. It has extension -cov.htm.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.90  2003/06/24 12:34:15  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Some bugs corrected for windows. Also, when
   computed from the time spent in each health state according to a    mle=-1 a template is output in file "or"mypar.txt with the design
   model. More health states you consider, more time is necessary to reach the    of the covariance matrix to be input.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.89  2003/06/24 12:30:52  brouard
   probability to be observed in state j at the second wave    (Module): Some bugs corrected for windows. Also, when
   conditional to be observed in state i at the first wave. Therefore    mle=-1 a template is output in file "or"mypar.txt with the design
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    of the covariance matrix to be input.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.88  2003/06/23 17:54:56  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.86  2003/06/17 20:04:08  brouard
   identical for each individual. Also, if a individual missed an    (Module): Change position of html and gnuplot routines and added
   intermediate interview, the information is lost, but taken into    routine fileappend.
   account using an interpolation or extrapolation.    
     Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Repository): Check when date of death was earlier that
   conditional to the observed state i at age x. The delay 'h' can be    current date of interview. It may happen when the death was just
   split into an exact number (nh*stepm) of unobserved intermediate    prior to the death. In this case, dh was negative and likelihood
   states. This elementary transition (by month or quarter trimester,    was wrong (infinity). We still send an "Error" but patch by
   semester or year) is model as a multinomial logistic.  The hPx    assuming that the date of death was just one stepm after the
   matrix is simply the matrix product of nh*stepm elementary matrices    interview.
   and the contribution of each individual to the likelihood is simply    (Repository): Because some people have very long ID (first column)
   hPijx.    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   Also this programme outputs the covariance matrix of the parameters but also    truncation)
   of the life expectancies. It also computes the prevalence limits.    (Repository): No more line truncation errors.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.84  2003/06/13 21:44:43  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Repository): Replace "freqsummary" at a correct
   This software have been partly granted by Euro-REVES, a concerted action    place. It differs from routine "prevalence" which may be called
   from the European Union.    many times. Probs is memory consuming and must be used with
   It is copyrighted identically to a GNU software product, ie programme and    parcimony.
   software can be distributed freely for non commercial use. Latest version    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.82  2003/06/05 15:57:20  brouard
 #include <stdlib.h>    Add log in  imach.c and  fullversion number is now printed.
 #include <unistd.h>  
   */
 #define MAXLINE 256  /*
 #define GNUPLOTPROGRAM "gnuplot"     Interpolated Markov Chain
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Short summary of the programme:
 /*#define DEBUG*/    
 #define windows    This program computes Healthy Life Expectancies from
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    case of a health survey which is our main interest) -2- at least a
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define NINTERVMAX 8    computed from the time spent in each health state according to a
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    model. More health states you consider, more time is necessary to reach the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Maximum Likelihood of the parameters involved in the model.  The
 #define NCOVMAX 8 /* Maximum number of covariates */    simplest model is the multinomial logistic model where pij is the
 #define MAXN 20000    probability to be observed in state j at the second wave
 #define YEARM 12. /* Number of months per year */    conditional to be observed in state i at the first wave. Therefore
 #define AGESUP 130    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define AGEBASE 40    'age' is age and 'sex' is a covariate. If you want to have a more
 #ifdef windows    complex model than "constant and age", you should modify the program
 #define DIRSEPARATOR '\\'    where the markup *Covariates have to be included here again* invites
 #define ODIRSEPARATOR '/'    you to do it.  More covariates you add, slower the
 #else    convergence.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    The advantage of this computer programme, compared to a simple
 #endif    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    intermediate interview, the information is lost, but taken into
 int erreur; /* Error number */    account using an interpolation or extrapolation.  
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    hPijx is the probability to be observed in state i at age x+h
 int npar=NPARMAX;    conditional to the observed state i at age x. The delay 'h' can be
 int nlstate=2; /* Number of live states */    split into an exact number (nh*stepm) of unobserved intermediate
 int ndeath=1; /* Number of dead states */    states. This elementary transition (by month, quarter,
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    semester or year) is modelled as a multinomial logistic.  The hPx
 int popbased=0;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 int *wav; /* Number of waves for this individuual 0 is possible */    hPijx.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Also this programme outputs the covariance matrix of the parameters but also
 int mle, weightopt;    of the life expectancies. It also computes the stable prevalence. 
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double jmean; /* Mean space between 2 waves */             Institut national d'études démographiques, Paris.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    This software have been partly granted by Euro-REVES, a concerted action
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    from the European Union.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    It is copyrighted identically to a GNU software product, ie programme and
 FILE *ficlog;    software can be distributed freely for non commercial use. Latest version
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    can be accessed at http://euroreves.ined.fr/imach .
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE *ficreseij;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 char filerese[FILENAMELENGTH];    
 FILE  *ficresvij;    **********************************************************************/
 char fileresv[FILENAMELENGTH];  /*
 FILE  *ficresvpl;    main
 char fileresvpl[FILENAMELENGTH];    read parameterfile
 char title[MAXLINE];    read datafile
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    concatwav
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    freqsummary
     if (mle >= 1)
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      mlikeli
 char filelog[FILENAMELENGTH]; /* Log file */    print results files
 char filerest[FILENAMELENGTH];    if mle==1 
 char fileregp[FILENAMELENGTH];       computes hessian
 char popfile[FILENAMELENGTH];    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    open gnuplot file
     open html file
 #define NR_END 1    stable prevalence
 #define FREE_ARG char*     for age prevalim()
 #define FTOL 1.0e-10    h Pij x
     variance of p varprob
 #define NRANSI    forecasting if prevfcast==1 prevforecast call prevalence()
 #define ITMAX 200    health expectancies
     Variance-covariance of DFLE
 #define TOL 2.0e-4    prevalence()
      movingaverage()
 #define CGOLD 0.3819660    varevsij() 
 #define ZEPS 1.0e-10    if popbased==1 varevsij(,popbased)
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    total life expectancies
     Variance of stable prevalence
 #define GOLD 1.618034   end
 #define GLIMIT 100.0  */
 #define TINY 1.0e-20  
   
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))   
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #include <math.h>
    #include <stdio.h>
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #include <stdlib.h>
 #define rint(a) floor(a+0.5)  #include <unistd.h>
   
 static double sqrarg;  #include <sys/time.h>
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #include <time.h>
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include "timeval.h"
   
 int imx;  #define MAXLINE 256
 int stepm;  #define GNUPLOTPROGRAM "gnuplot"
 /* Stepm, step in month: minimum step interpolation*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 int estepm;  /*#define DEBUG*/
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int m,nb;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double **pmmij, ***probs, ***mobaverage;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double dateintmean=0;  
   #define NINTERVMAX 8
 double *weight;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int **s; /* Status */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double *agedc, **covar, idx;  #define NCOVMAX 8 /* Maximum number of covariates */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define AGESUP 130
 double ftolhess; /* Tolerance for computing hessian */  #define AGEBASE 40
   #ifdef unix
 /**************** split *************************/  #define DIRSEPARATOR '/'
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define ODIRSEPARATOR '\\'
 {  #else
    char *s;                             /* pointer */  #define DIRSEPARATOR '\\'
    int  l1, l2;                         /* length counters */  #define ODIRSEPARATOR '/'
   #endif
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  /* $Id$ */
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  /* $State$ */
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  char fullversion[]="$Revision$ $Date$"; 
 #if     defined(__bsd__)                /* get current working directory */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       extern char       *getwd( );  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       if ( getwd( dirc ) == NULL ) {  int npar=NPARMAX;
 #else  int nlstate=2; /* Number of live states */
       extern char       *getcwd( );  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int popbased=0;
 #endif  
          return( GLOCK_ERROR_GETCWD );  int *wav; /* Number of waves for this individuual 0 is possible */
       }  int maxwav; /* Maxim number of waves */
       strcpy( name, path );             /* we've got it */  int jmin, jmax; /* min, max spacing between 2 waves */
    } else {                             /* strip direcotry from path */  int gipmx, gsw; /* Global variables on the number of contributions 
       s++;                              /* after this, the filename */                     to the likelihood and the sum of weights (done by funcone)*/
       l2 = strlen( s );                 /* length of filename */  int mle, weightopt;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       strcpy( name, s );                /* save file name */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       dirc[l1-l2] = 0;                  /* add zero */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    }  double jmean; /* Mean space between 2 waves */
    l1 = strlen( dirc );                 /* length of directory */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #ifdef windows  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #else  FILE *ficlog, *ficrespow;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int globpr; /* Global variable for printing or not */
 #endif  double fretone; /* Only one call to likelihood */
    s = strrchr( name, '.' );            /* find last / */  long ipmx; /* Number of contributions */
    s++;  double sw; /* Sum of weights */
    strcpy(ext,s);                       /* save extension */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    l1= strlen( name);  FILE *ficresilk;
    l2= strlen( s)+1;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    strncpy( finame, name, l1-l2);  FILE *ficresprobmorprev;
    finame[l1-l2]= 0;  FILE *fichtm, *fichtmcov; /* Html File */
    return( 0 );                         /* we're done */  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /******************************************/  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 void replace(char *s, char*t)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   int i;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int lg=20;  char tmpout[FILENAMELENGTH]; 
   i=0;  char command[FILENAMELENGTH];
   lg=strlen(t);  int  outcmd=0;
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  char lfileres[FILENAMELENGTH];
   }  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 int nbocc(char *s, char occ)  char popfile[FILENAMELENGTH];
 {  
   int i,j=0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   int lg=20;  
   i=0;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   lg=strlen(s);  struct timezone tzp;
   for(i=0; i<= lg; i++) {  extern int gettimeofday();
   if  (s[i] == occ ) j++;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   }  long time_value;
   return j;  extern long time();
 }  char strcurr[80], strfor[80];
   
 void cutv(char *u,char *v, char*t, char occ)  #define NR_END 1
 {  #define FREE_ARG char*
   /* cuts string t into u and v where u is ended by char occ excluding it  #define FTOL 1.0e-10
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */  #define NRANSI 
   int i,lg,j,p=0;  #define ITMAX 200 
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  #define TOL 2.0e-4 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   lg=strlen(t);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define GOLD 1.618034 
   }  #define GLIMIT 100.0 
      u[p]='\0';  #define TINY 1.0e-20 
   
    for(j=0; j<= lg; j++) {  static double maxarg1,maxarg2;
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /********************** nrerror ********************/  #define rint(a) floor(a+0.5)
   
 void nrerror(char error_text[])  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   fprintf(stderr,"ERREUR ...\n");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  int imx; 
 }  int stepm;
 /*********************** vector *******************/  /* Stepm, step in month: minimum step interpolation*/
 double *vector(int nl, int nh)  
 {  int estepm;
   double *v;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  int m,nb;
   return v-nl+NR_END;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /************************ free vector ******************/  double **pmmij, ***probs;
 void free_vector(double*v, int nl, int nh)  double dateintmean=0;
 {  
   free((FREE_ARG)(v+nl-NR_END));  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /************************ivector *******************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 int *ivector(long nl,long nh)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   int *v;  double ftolhess; /* Tolerance for computing hessian */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  /**************** split *************************/
   return v-nl+NR_END;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 /******************free ivector **************************/    int   l1, l2;                         /* length counters */
 void free_ivector(int *v, long nl, long nh)  
 {    l1 = strlen(path );                   /* length of path */
   free((FREE_ARG)(v+nl-NR_END));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 /******************* imatrix *******************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 int **imatrix(long nrl, long nrh, long ncl, long nch)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int **m;        return( GLOCK_ERROR_GETCWD );
        }
   /* allocate pointers to rows */      strcpy( name, path );               /* we've got it */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    } else {                              /* strip direcotry from path */
   if (!m) nrerror("allocation failure 1 in matrix()");      ss++;                               /* after this, the filename */
   m += NR_END;      l2 = strlen( ss );                  /* length of filename */
   m -= nrl;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
   /* allocate rows and set pointers to them */      dirc[l1-l2] = 0;                    /* add zero */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l1 = strlen( dirc );                  /* length of directory */
   m[nrl] += NR_END;    /*#ifdef windows
   m[nrl] -= ncl;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
    #else
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
    #endif
   /* return pointer to array of pointers to rows */    */
   return m;    ss = strrchr( name, '.' );            /* find last / */
 }    ss++;
     strcpy(ext,ss);                       /* save extension */
 /****************** free_imatrix *************************/    l1= strlen( name);
 void free_imatrix(m,nrl,nrh,ncl,nch)    l2= strlen(ss)+1;
       int **m;    strncpy( finame, name, l1-l2);
       long nch,ncl,nrh,nrl;    finame[l1-l2]= 0;
      /* free an int matrix allocated by imatrix() */    return( 0 );                          /* we're done */
 {  }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  
 }  /******************************************/
   
 /******************* matrix *******************************/  void replace_back_to_slash(char *s, char*t)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    int i;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    int lg=0;
   double **m;    i=0;
     lg=strlen(t);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(i=0; i<= lg; i++) {
   if (!m) nrerror("allocation failure 1 in matrix()");      (s[i] = t[i]);
   m += NR_END;      if (t[i]== '\\') s[i]='/';
   m -= nrl;    }
   }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int nbocc(char *s, char occ)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    int i,j=0;
     int lg=20;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    i=0;
   return m;    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /*************************free matrix ************************/    }
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    return j;
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  void cutv(char *u,char *v, char*t, char occ)
 }  {
     /* cuts string t into u and v where u is ended by char occ excluding it
 /******************* ma3x *******************************/       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       gives u="abcedf" and v="ghi2j" */
 {    int i,lg,j,p=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    i=0;
   double ***m;    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    lg=strlen(t);
   m -= nrl;    for(j=0; j<p; j++) {
       (u[j] = t[j]);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       u[p]='\0';
   m[nrl] += NR_END;  
   m[nrl] -= ncl;     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /********************** nrerror ********************/
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  void nrerror(char error_text[])
   for (j=ncl+1; j<=nch; j++)  {
     m[nrl][j]=m[nrl][j-1]+nlay;    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
   for (i=nrl+1; i<=nrh; i++) {    exit(EXIT_FAILURE);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)  /*********************** vector *******************/
       m[i][j]=m[i][j-1]+nlay;  double *vector(int nl, int nh)
   }  {
   return m;    double *v;
 }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /*************************free ma3x ************************/    return v-nl+NR_END;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /************************ free vector ******************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void free_vector(double*v, int nl, int nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /***************** f1dim *************************/  
 extern int ncom;  /************************ivector *******************************/
 extern double *pcom,*xicom;  int *ivector(long nl,long nh)
 extern double (*nrfunc)(double []);  {
      int *v;
 double f1dim(double x)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 {    if (!v) nrerror("allocation failure in ivector");
   int j;    return v-nl+NR_END;
   double f;  }
   double *xt;  
    /******************free ivector **************************/
   xt=vector(1,ncom);  void free_ivector(int *v, long nl, long nh)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    free((FREE_ARG)(v+nl-NR_END));
   free_vector(xt,1,ncom);  }
   return f;  
 }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    long *v;
 {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   int iter;    if (!v) nrerror("allocation failure in ivector");
   double a,b,d,etemp;    return v-nl+NR_END;
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /******************free lvector **************************/
   double e=0.0;  void free_lvector(long *v, long nl, long nh)
    {
   a=(ax < cx ? ax : cx);    free((FREE_ARG)(v+nl-NR_END));
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /******************* imatrix *******************************/
   for (iter=1;iter<=ITMAX;iter++) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     xm=0.5*(a+b);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  { 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     printf(".");fflush(stdout);    int **m; 
     fprintf(ficlog,".");fflush(ficlog);    
 #ifdef DEBUG    /* allocate pointers to rows */ 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m += NR_END; 
 #endif    m -= nrl; 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    
       *xmin=x;    
       return fx;    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     ftemp=fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     if (fabs(e) > tol1) {    m[nrl] += NR_END; 
       r=(x-w)*(fx-fv);    m[nrl] -= ncl; 
       q=(x-v)*(fx-fw);    
       p=(x-v)*q-(x-w)*r;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;    /* return pointer to array of pointers to rows */ 
       q=fabs(q);    return m; 
       etemp=e;  } 
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /****************** free_imatrix *************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  void free_imatrix(m,nrl,nrh,ncl,nch)
       else {        int **m;
         d=p/q;        long nch,ncl,nrh,nrl; 
         u=x+d;       /* free an int matrix allocated by imatrix() */ 
         if (u-a < tol2 || b-u < tol2)  { 
           d=SIGN(tol1,xm-x);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       }    free((FREE_ARG) (m+nrl-NR_END)); 
     } else {  } 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  /******************* matrix *******************************/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double **matrix(long nrl, long nrh, long ncl, long nch)
     fu=(*f)(u);  {
     if (fu <= fx) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       if (u >= x) a=x; else b=x;    double **m;
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         } else {    if (!m) nrerror("allocation failure 1 in matrix()");
           if (u < x) a=u; else b=u;    m += NR_END;
           if (fu <= fw || w == x) {    m -= nrl;
             v=w;  
             w=u;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             fv=fw;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             fw=fu;    m[nrl] += NR_END;
           } else if (fu <= fv || v == x || v == w) {    m[nrl] -= ncl;
             v=u;  
             fv=fu;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           }    return m;
         }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   }     */
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /****************** mnbrak ***********************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /******************* ma3x *******************************/
   double ulim,u,r,q, dum;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double fu;  {
      long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   *fa=(*func)(*ax);    double ***m;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     SHFT(dum,*ax,*bx,dum)    if (!m) nrerror("allocation failure 1 in matrix()");
       SHFT(dum,*fb,*fa,dum)    m += NR_END;
       }    m -= nrl;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   while (*fb > *fc) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     r=(*bx-*ax)*(*fb-*fc);    m[nrl] += NR_END;
     q=(*bx-*cx)*(*fb-*fa);    m[nrl] -= ncl;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m[nrl][ncl] += NR_END;
       fu=(*func)(u);    m[nrl][ncl] -= nll;
       if (fu < *fc) {    for (j=ncl+1; j<=nch; j++) 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      m[nrl][j]=m[nrl][j-1]+nlay;
           SHFT(*fb,*fc,fu,(*func)(u))    
           }    for (i=nrl+1; i<=nrh; i++) {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       u=ulim;      for (j=ncl+1; j<=nch; j++) 
       fu=(*func)(u);        m[i][j]=m[i][j-1]+nlay;
     } else {    }
       u=(*cx)+GOLD*(*cx-*bx);    return m; 
       fu=(*func)(u);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     SHFT(*ax,*bx,*cx,u)    */
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /*************** linmin ************************/  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 int ncom;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double *pcom,*xicom;    free((FREE_ARG)(m+nrl-NR_END));
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /***************** f1dim *************************/
 {  extern int ncom; 
   double brent(double ax, double bx, double cx,  extern double *pcom,*xicom;
                double (*f)(double), double tol, double *xmin);  extern double (*nrfunc)(double []); 
   double f1dim(double x);   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double f1dim(double x) 
               double *fc, double (*func)(double));  { 
   int j;    int j; 
   double xx,xmin,bx,ax;    double f;
   double fx,fb,fa;    double *xt; 
     
   ncom=n;    xt=vector(1,ncom); 
   pcom=vector(1,n);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   xicom=vector(1,n);    f=(*nrfunc)(xt); 
   nrfunc=func;    free_vector(xt,1,ncom); 
   for (j=1;j<=n;j++) {    return f; 
     pcom[j]=p[j];  } 
     xicom[j]=xi[j];  
   }  /*****************brent *************************/
   ax=0.0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   xx=1.0;  { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int iter; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    double a,b,d,etemp;
 #ifdef DEBUG    double fu,fv,fw,fx;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double ftemp;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #endif    double e=0.0; 
   for (j=1;j<=n;j++) {   
     xi[j] *= xmin;    a=(ax < cx ? ax : cx); 
     p[j] += xi[j];    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
   free_vector(xicom,1,n);    fw=fv=fx=(*f)(x); 
   free_vector(pcom,1,n);    for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /*************** powell ************************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      printf(".");fflush(stdout);
             double (*func)(double []))      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   void linmin(double p[], double xi[], int n, double *fret,      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
               double (*func)(double []));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i,ibig,j;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double del,t,*pt,*ptt,*xit;  #endif
   double fp,fptt;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double *xits;        *xmin=x; 
   pt=vector(1,n);        return fx; 
   ptt=vector(1,n);      } 
   xit=vector(1,n);      ftemp=fu;
   xits=vector(1,n);      if (fabs(e) > tol1) { 
   *fret=(*func)(p);        r=(x-w)*(fx-fv); 
   for (j=1;j<=n;j++) pt[j]=p[j];        q=(x-v)*(fx-fw); 
   for (*iter=1;;++(*iter)) {        p=(x-v)*q-(x-w)*r; 
     fp=(*fret);        q=2.0*(q-r); 
     ibig=0;        if (q > 0.0) p = -p; 
     del=0.0;        q=fabs(q); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        etemp=e; 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        e=d; 
     for (i=1;i<=n;i++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       printf(" %d %.12f",i, p[i]);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     fprintf(ficlog," %d %.12f",i, p[i]);        else { 
     printf("\n");          d=p/q; 
     fprintf(ficlog,"\n");          u=x+d; 
     for (i=1;i<=n;i++) {          if (u-a < tol2 || b-u < tol2) 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];            d=SIGN(tol1,xm-x); 
       fptt=(*fret);        } 
 #ifdef DEBUG      } else { 
       printf("fret=%lf \n",*fret);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       fprintf(ficlog,"fret=%lf \n",*fret);      } 
 #endif      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       printf("%d",i);fflush(stdout);      fu=(*f)(u); 
       fprintf(ficlog,"%d",i);fflush(ficlog);      if (fu <= fx) { 
       linmin(p,xit,n,fret,func);        if (u >= x) a=x; else b=x; 
       if (fabs(fptt-(*fret)) > del) {        SHFT(v,w,x,u) 
         del=fabs(fptt-(*fret));          SHFT(fv,fw,fx,fu) 
         ibig=i;          } else { 
       }            if (u < x) a=u; else b=u; 
 #ifdef DEBUG            if (fu <= fw || w == x) { 
       printf("%d %.12e",i,(*fret));              v=w; 
       fprintf(ficlog,"%d %.12e",i,(*fret));              w=u; 
       for (j=1;j<=n;j++) {              fv=fw; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);              fw=fu; 
         printf(" x(%d)=%.12e",j,xit[j]);            } else if (fu <= fv || v == x || v == w) { 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);              v=u; 
       }              fv=fu; 
       for(j=1;j<=n;j++) {            } 
         printf(" p=%.12e",p[j]);          } 
         fprintf(ficlog," p=%.12e",p[j]);    } 
       }    nrerror("Too many iterations in brent"); 
       printf("\n");    *xmin=x; 
       fprintf(ficlog,"\n");    return fx; 
 #endif  } 
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /****************** mnbrak ***********************/
 #ifdef DEBUG  
       int k[2],l;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       k[0]=1;              double (*func)(double)) 
       k[1]=-1;  { 
       printf("Max: %.12e",(*func)(p));    double ulim,u,r,q, dum;
       fprintf(ficlog,"Max: %.12e",(*func)(p));    double fu; 
       for (j=1;j<=n;j++) {   
         printf(" %.12e",p[j]);    *fa=(*func)(*ax); 
         fprintf(ficlog," %.12e",p[j]);    *fb=(*func)(*bx); 
       }    if (*fb > *fa) { 
       printf("\n");      SHFT(dum,*ax,*bx,dum) 
       fprintf(ficlog,"\n");        SHFT(dum,*fb,*fa,dum) 
       for(l=0;l<=1;l++) {        } 
         for (j=1;j<=n;j++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    *fc=(*func)(*cx); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    while (*fb > *fc) { 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      r=(*bx-*ax)*(*fb-*fc); 
         }      q=(*bx-*cx)*(*fb-*fa); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 #endif      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
       free_vector(xit,1,n);        fu=(*func)(u); 
       free_vector(xits,1,n);        if (fu < *fc) { 
       free_vector(ptt,1,n);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       free_vector(pt,1,n);            SHFT(*fb,*fc,fu,(*func)(u)) 
       return;            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        u=ulim; 
     for (j=1;j<=n;j++) {        fu=(*func)(u); 
       ptt[j]=2.0*p[j]-pt[j];      } else { 
       xit[j]=p[j]-pt[j];        u=(*cx)+GOLD*(*cx-*bx); 
       pt[j]=p[j];        fu=(*func)(u); 
     }      } 
     fptt=(*func)(ptt);      SHFT(*ax,*bx,*cx,u) 
     if (fptt < fp) {        SHFT(*fa,*fb,*fc,fu) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        } 
       if (t < 0.0) {  } 
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /*************** linmin ************************/
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  int ncom; 
         }  double *pcom,*xicom;
 #ifdef DEBUG  double (*nrfunc)(double []); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);   
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         for(j=1;j<=n;j++){  { 
           printf(" %.12e",xit[j]);    double brent(double ax, double bx, double cx, 
           fprintf(ficlog," %.12e",xit[j]);                 double (*f)(double), double tol, double *xmin); 
         }    double f1dim(double x); 
         printf("\n");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         fprintf(ficlog,"\n");                double *fc, double (*func)(double)); 
 #endif    int j; 
       }    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
   }   
 }    ncom=n; 
     pcom=vector(1,n); 
 /**** Prevalence limit ****************/    xicom=vector(1,n); 
     nrfunc=func; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      xicom[j]=xi[j]; 
      matrix by transitions matrix until convergence is reached */    } 
     ax=0.0; 
   int i, ii,j,k;    xx=1.0; 
   double min, max, maxmin, maxmax,sumnew=0.;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double **matprod2();    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double **out, cov[NCOVMAX], **pmij();  #ifdef DEBUG
   double **newm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double agefin, delaymax=50 ; /* Max number of years to converge */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (j=1;j<=n;j++) { 
     for (j=1;j<=nlstate+ndeath;j++){      xi[j] *= xmin; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      p[j] += xi[j]; 
     }    } 
     free_vector(xicom,1,n); 
    cov[1]=1.;    free_vector(pcom,1,n); 
    } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char *asc_diff_time(long time_sec, char ascdiff[])
     newm=savm;  {
     /* Covariates have to be included here again */    long sec_left, days, hours, minutes;
      cov[2]=agefin;    days = (time_sec) / (60*60*24);
      sec_left = (time_sec) % (60*60*24);
       for (k=1; k<=cptcovn;k++) {    hours = (sec_left) / (60*60) ;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    sec_left = (sec_left) %(60*60);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    minutes = (sec_left) /60;
       }    sec_left = (sec_left) % (60);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       for (k=1; k<=cptcovprod;k++)    return ascdiff;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*************** powell ************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/              double (*func)(double [])) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  { 
     void linmin(double p[], double xi[], int n, double *fret, 
     savm=oldm;                double (*func)(double [])); 
     oldm=newm;    int i,ibig,j; 
     maxmax=0.;    double del,t,*pt,*ptt,*xit;
     for(j=1;j<=nlstate;j++){    double fp,fptt;
       min=1.;    double *xits;
       max=0.;    int niterf, itmp;
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;    pt=vector(1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    ptt=vector(1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    xit=vector(1,n); 
         max=FMAX(max,prlim[i][j]);    xits=vector(1,n); 
         min=FMIN(min,prlim[i][j]);    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
       maxmin=max-min;    for (*iter=1;;++(*iter)) { 
       maxmax=FMAX(maxmax,maxmin);      fp=(*fret); 
     }      ibig=0; 
     if(maxmax < ftolpl){      del=0.0; 
       return prlim;      last_time=curr_time;
     }      (void) gettimeofday(&curr_time,&tzp);
   }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 /*************** transition probabilities ***************/      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   double s1, s2;      }
   /*double t34;*/      printf("\n");
   int i,j,j1, nc, ii, jj;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
     for(i=1; i<= nlstate; i++){      if(*iter <=3){
     for(j=1; j<i;j++){        tm = *localtime(&curr_time.tv_sec);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        asctime_r(&tm,strcurr);
         /*s2 += param[i][j][nc]*cov[nc];*/        forecast_time=curr_time;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        itmp = strlen(strcurr);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        if(strcurr[itmp-1]=='\n')
       }          strcurr[itmp-1]='\0';
       ps[i][j]=s2;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        for(niterf=10;niterf<=30;niterf+=10){
     for(j=i+1; j<=nlstate+ndeath;j++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          tmf = *localtime(&forecast_time.tv_sec);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          asctime_r(&tmf,strfor);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /*      strcpy(strfor,asctime(&tmf)); */
       }          itmp = strlen(strfor);
       ps[i][j]=s2;          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     /*ps[3][2]=1;*/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   for(i=1; i<= nlstate; i++){      }
      s1=0;      for (i=1;i<=n;i++) { 
     for(j=1; j<i; j++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       s1+=exp(ps[i][j]);        fptt=(*fret); 
     for(j=i+1; j<=nlstate+ndeath; j++)  #ifdef DEBUG
       s1+=exp(ps[i][j]);        printf("fret=%lf \n",*fret);
     ps[i][i]=1./(s1+1.);        fprintf(ficlog,"fret=%lf \n",*fret);
     for(j=1; j<i; j++)  #endif
       ps[i][j]= exp(ps[i][j])*ps[i][i];        printf("%d",i);fflush(stdout);
     for(j=i+1; j<=nlstate+ndeath; j++)        fprintf(ficlog,"%d",i);fflush(ficlog);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        linmin(p,xit,n,fret,func); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        if (fabs(fptt-(*fret)) > del) { 
   } /* end i */          del=fabs(fptt-(*fret)); 
           ibig=i; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
       ps[ii][jj]=0;        printf("%d %.12e",i,(*fret));
       ps[ii][ii]=1;        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        }
     for(jj=1; jj<= nlstate+ndeath; jj++){        for(j=1;j<=n;j++) {
      printf("%lf ",ps[ii][jj]);          printf(" p=%.12e",p[j]);
    }          fprintf(ficlog," p=%.12e",p[j]);
     printf("\n ");        }
     }        printf("\n");
     printf("\n ");printf("%lf ",cov[2]);*/        fprintf(ficlog,"\n");
 /*  #endif
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } 
   goto end;*/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     return ps;  #ifdef DEBUG
 }        int k[2],l;
         k[0]=1;
 /**************** Product of 2 matrices ******************/        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          printf(" %.12e",p[j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          fprintf(ficlog," %.12e",p[j]);
   /* in, b, out are matrice of pointers which should have been initialized        }
      before: only the contents of out is modified. The function returns        printf("\n");
      a pointer to pointers identical to out */        fprintf(ficlog,"\n");
   long i, j, k;        for(l=0;l<=1;l++) {
   for(i=nrl; i<= nrh; i++)          for (j=1;j<=n;j++) {
     for(k=ncolol; k<=ncoloh; k++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         out[i][k] +=in[i][j]*b[j][k];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   return out;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   #endif
 /************* Higher Matrix Product ***************/  
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        free_vector(xit,1,n); 
 {        free_vector(xits,1,n); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        free_vector(ptt,1,n); 
      duration (i.e. until        free_vector(pt,1,n); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        return; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      } 
      (typically every 2 years instead of every month which is too big).      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
      Model is determined by parameters x and covariates have to be      for (j=1;j<=n;j++) { 
      included manually here.        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
      */        pt[j]=p[j]; 
       } 
   int i, j, d, h, k;      fptt=(*func)(ptt); 
   double **out, cov[NCOVMAX];      if (fptt < fp) { 
   double **newm;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   /* Hstepm could be zero and should return the unit matrix */          linmin(p,xit,n,fret,func); 
   for (i=1;i<=nlstate+ndeath;i++)          for (j=1;j<=n;j++) { 
     for (j=1;j<=nlstate+ndeath;j++){            xi[j][ibig]=xi[j][n]; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);            xi[j][n]=xit[j]; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);          }
     }  #ifdef DEBUG
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(h=1; h <=nhstepm; h++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(d=1; d <=hstepm; d++){          for(j=1;j<=n;j++){
       newm=savm;            printf(" %.12e",xit[j]);
       /* Covariates have to be included here again */            fprintf(ficlog," %.12e",xit[j]);
       cov[1]=1.;          }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          printf("\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++)  #endif
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
       for (k=1; k<=cptcovprod;k++)      } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } 
   } 
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /**** Prevalence limit (stable prevalence)  ****************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  {
       savm=oldm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       oldm=newm;       matrix by transitions matrix until convergence is reached */
     }  
     for(i=1; i<=nlstate+ndeath; i++)    int i, ii,j,k;
       for(j=1;j<=nlstate+ndeath;j++) {    double min, max, maxmin, maxmax,sumnew=0.;
         po[i][j][h]=newm[i][j];    double **matprod2();
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double **out, cov[NCOVMAX], **pmij();
          */    double **newm;
       }    double agefin, delaymax=50 ; /* Max number of years to converge */
   } /* end h */  
   return po;    for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
 /*************** log-likelihood *************/  
 double func( double *x)     cov[1]=1.;
 {   
   int i, ii, j, k, mi, d, kk;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double **out;      newm=savm;
   double sw; /* Sum of weights */      /* Covariates have to be included here again */
   double lli; /* Individual log likelihood */       cov[2]=agefin;
   long ipmx;    
   /*extern weight */        for (k=1; k<=cptcovn;k++) {
   /* We are differentiating ll according to initial status */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   /*for(i=1;i<imx;i++)        }
     printf(" %d\n",s[4][i]);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   */        for (k=1; k<=cptcovprod;k++)
   cov[1]=1.;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for(mi=1; mi<= wav[i]-1; mi++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      savm=oldm;
       for(d=0; d<dh[mi][i]; d++){      oldm=newm;
         newm=savm;      maxmax=0.;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(j=1;j<=nlstate;j++){
         for (kk=1; kk<=cptcovage;kk++) {        min=1.;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        max=0.;
         }        for(i=1; i<=nlstate; i++) {
                  sumnew=0;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          prlim[i][j]= newm[i][j]/(1-sumnew);
         savm=oldm;          max=FMAX(max,prlim[i][j]);
         oldm=newm;          min=FMIN(min,prlim[i][j]);
                }
                maxmin=max-min;
       } /* end mult */        maxmax=FMAX(maxmax,maxmin);
            }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      if(maxmax < ftolpl){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        return prlim;
       ipmx +=1;      }
       sw += weight[i];    }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
     } /* end of wave */  
   } /* end of individual */  /*************** transition probabilities ***************/ 
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double s1, s2;
   return -l;    /*double t34;*/
 }    int i,j,j1, nc, ii, jj;
   
       for(i=1; i<= nlstate; i++){
 /*********** Maximum Likelihood Estimation ***************/      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          /*s2 += param[i][j][nc]*cov[nc];*/
 {          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i,j, iter;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   double **xi,*delti;        }
   double fret;        ps[i][j]=s2;
   xi=matrix(1,npar,1,npar);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++)      for(j=i+1; j<=nlstate+ndeath;j++){
       xi[i][j]=(i==j ? 1.0 : 0.0);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   powell(p,xi,npar,ftol,&iter,&fret,func);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        ps[i][j]=s2;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    }
       /*ps[3][2]=1;*/
 }  
     for(i=1; i<= nlstate; i++){
 /**** Computes Hessian and covariance matrix ***/       s1=0;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(j=1; j<i; j++)
 {        s1+=exp(ps[i][j]);
   double  **a,**y,*x,pd;      for(j=i+1; j<=nlstate+ndeath; j++)
   double **hess;        s1+=exp(ps[i][j]);
   int i, j,jk;      ps[i][i]=1./(s1+1.);
   int *indx;      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   double hessii(double p[], double delta, int theta, double delti[]);      for(j=i+1; j<=nlstate+ndeath; j++)
   double hessij(double p[], double delti[], int i, int j);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   void lubksb(double **a, int npar, int *indx, double b[]) ;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   void ludcmp(double **a, int npar, int *indx, double *d) ;    } /* end i */
   
   hess=matrix(1,npar,1,npar);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
   printf("\nCalculation of the hessian matrix. Wait...\n");        ps[ii][jj]=0;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        ps[ii][ii]=1;
   for (i=1;i<=npar;i++){      }
     printf("%d",i);fflush(stdout);    }
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     /*printf(" %lf ",hess[i][i]);*/      for(jj=1; jj<= nlstate+ndeath; jj++){
   }       printf("%lf ",ps[ii][jj]);
       }
   for (i=1;i<=npar;i++) {      printf("\n ");
     for (j=1;j<=npar;j++)  {      }
       if (j>i) {      printf("\n ");printf("%lf ",cov[2]);*/
         printf(".%d%d",i,j);fflush(stdout);  /*
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
         hess[i][j]=hessij(p,delti,i,j);    goto end;*/
         hess[j][i]=hess[i][j];          return ps;
         /*printf(" %lf ",hess[i][j]);*/  }
       }  
     }  /**************** Product of 2 matrices ******************/
   }  
   printf("\n");  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   fprintf(ficlog,"\n");  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   a=matrix(1,npar,1,npar);       a pointer to pointers identical to out */
   y=matrix(1,npar,1,npar);    long i, j, k;
   x=vector(1,npar);    for(i=nrl; i<= nrh; i++)
   indx=ivector(1,npar);      for(k=ncolol; k<=ncoloh; k++)
   for (i=1;i<=npar;i++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          out[i][k] +=in[i][j]*b[j][k];
   ludcmp(a,npar,indx,&pd);  
     return out;
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  
     lubksb(a,npar,indx,x);  /************* Higher Matrix Product ***************/
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
   }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   printf("\n#Hessian matrix#\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   fprintf(ficlog,"\n#Hessian matrix#\n");       nhstepm*hstepm matrices. 
   for (i=1;i<=npar;i++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for (j=1;j<=npar;j++) {       (typically every 2 years instead of every month which is too big 
       printf("%.3e ",hess[i][j]);       for the memory).
       fprintf(ficlog,"%.3e ",hess[i][j]);       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
     printf("\n");  
     fprintf(ficlog,"\n");       */
   }  
     int i, j, d, h, k;
   /* Recompute Inverse */    double **out, cov[NCOVMAX];
   for (i=1;i<=npar;i++)    double **newm;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   /*  printf("\n#Hessian matrix recomputed#\n");      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   for (j=1;j<=npar;j++) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) x[i]=0;      }
     x[j]=1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     lubksb(a,npar,indx,x);    for(h=1; h <=nhstepm; h++){
     for (i=1;i<=npar;i++){      for(d=1; d <=hstepm; d++){
       y[i][j]=x[i];        newm=savm;
       printf("%.3e ",y[i][j]);        /* Covariates have to be included here again */
       fprintf(ficlog,"%.3e ",y[i][j]);        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     fprintf(ficlog,"\n");        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   */        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_ivector(indx,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_matrix(hess,1,npar,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
 }        oldm=newm;
       }
 /*************** hessian matrix ****************/      for(i=1; i<=nlstate+ndeath; i++)
 double hessii( double x[], double delta, int theta, double delti[])        for(j=1;j<=nlstate+ndeath;j++) {
 {          po[i][j][h]=newm[i][j];
   int i;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   int l=1, lmax=20;           */
   double k1,k2;        }
   double p2[NPARMAX+1];    } /* end h */
   double res;    return po;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  }
   double fx;  
   int k=0,kmax=10;  
   double l1;  /*************** log-likelihood *************/
   double func( double *x)
   fx=func(x);  {
   for (i=1;i<=npar;i++) p2[i]=x[i];    int i, ii, j, k, mi, d, kk;
   for(l=0 ; l <=lmax; l++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     l1=pow(10,l);    double **out;
     delts=delt;    double sw; /* Sum of weights */
     for(k=1 ; k <kmax; k=k+1){    double lli; /* Individual log likelihood */
       delt = delta*(l1*k);    int s1, s2;
       p2[theta]=x[theta] +delt;    double bbh, survp;
       k1=func(p2)-fx;    long ipmx;
       p2[theta]=x[theta]-delt;    /*extern weight */
       k2=func(p2)-fx;    /* We are differentiating ll according to initial status */
       /*res= (k1-2.0*fx+k2)/delt/delt; */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    /*for(i=1;i<imx;i++) 
            printf(" %d\n",s[4][i]);
 #ifdef DEBUG    */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    cov[1]=1.;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif    for(k=1; k<=nlstate; k++) ll[k]=0.;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    if(mle==1){
         k=kmax;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(mi=1; mi<= wav[i]-1; mi++){
         k=kmax; l=lmax*10.;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         delts=delt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   delti[theta]=delts;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   return res;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 double hessij( double x[], double delti[], int thetai,int thetaj)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   int i;            oldm=newm;
   int l=1, l1, lmax=20;          } /* end mult */
   double k1,k2,k3,k4,res,fx;        
   double p2[NPARMAX+1];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int k;          /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   fx=func(x);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (k=1; k<=2; k++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
     for (i=1;i<=npar;i++) p2[i]=x[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     p2[thetai]=x[thetai]+delti[thetai]/k;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * probability in order to take into account the bias as a fraction of the way
     k1=func(p2)-fx;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
     p2[thetai]=x[thetai]+delti[thetai]/k;           * For stepm=1 the results are the same as for previous versions of Imach.
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * For stepm > 1 the results are less biased than in previous versions. 
     k2=func(p2)-fx;           */
            s1=s[mw[mi][i]][i];
     p2[thetai]=x[thetai]-delti[thetai]/k;          s2=s[mw[mi+1][i]][i];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          bbh=(double)bh[mi][i]/(double)stepm; 
     k3=func(p2)-fx;          /* bias is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
     p2[thetai]=x[thetai]-delti[thetai]/k;           */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     k4=func(p2)-fx;          if( s2 > nlstate){ 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            /* i.e. if s2 is a death state and if the date of death is known then the contribution
 #ifdef DEBUG               to the likelihood is the probability to die between last step unit time and current 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);               step unit time, which is also the differences between probability to die before dh 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);               and probability to die before dh-stepm . 
 #endif               In version up to 0.92 likelihood was computed
   }          as if date of death was unknown. Death was treated as any other
   return res;          health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /************** Inverse of matrix **************/          (healthy, disable or death) and IMaCh was corrected; but when we
 void ludcmp(double **a, int n, int *indx, double *d)          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   int i,imax,j,k;          contribution is smaller and very dependent of the step unit
   double big,dum,sum,temp;          stepm. It is no more the probability to die between last interview
   double *vv;          and month of death but the probability to survive from last
            interview up to one month before death multiplied by the
   vv=vector(1,n);          probability to die within a month. Thanks to Chris
   *d=1.0;          Jackson for correcting this bug.  Former versions increased
   for (i=1;i<=n;i++) {          mortality artificially. The bad side is that we add another loop
     big=0.0;          which slows down the processing. The difference can be up to 10%
     for (j=1;j<=n;j++)          lower mortality.
       if ((temp=fabs(a[i][j])) > big) big=temp;            */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            lli=log(out[s1][s2] - savm[s1][s2]);
     vv[i]=1.0/big;          }else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (j=1;j<=n;j++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (i=1;i<j;i++) {          } 
       sum=a[i][j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*if(lli ==000.0)*/
       a[i][j]=sum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
     big=0.0;          sw += weight[i];
     for (i=j;i<=n;i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       sum=a[i][j];        } /* end of wave */
       for (k=1;k<j;k++)      } /* end of individual */
         sum -= a[i][k]*a[k][j];    }  else if(mle==2){
       a[i][j]=sum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         big=dum;        for(mi=1; mi<= wav[i]-1; mi++){
         imax=i;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != imax) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<=n;k++) {            }
         dum=a[imax][k];          for(d=0; d<=dh[mi][i]; d++){
         a[imax][k]=a[j][k];            newm=savm;
         a[j][k]=dum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       *d = -(*d);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       vv[imax]=vv[j];            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     indx[j]=imax;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (a[j][j] == 0.0) a[j][j]=TINY;            savm=oldm;
     if (j != n) {            oldm=newm;
       dum=1.0/(a[j][j]);          } /* end mult */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias and large stepm.
   free_vector(vv,1,n);  /* Doesn't work */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 ;           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 void lubksb(double **a, int n, int *indx, double b[])           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 {           * probability in order to take into account the bias as a fraction of the way
   int i,ii=0,ip,j;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double sum;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   for (i=1;i<=n;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
     ip=indx[i];           */
     sum=b[ip];          s1=s[mw[mi][i]][i];
     b[ip]=b[i];          s2=s[mw[mi+1][i]][i];
     if (ii)          bbh=(double)bh[mi][i]/(double)stepm; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /* bias is positive if real duration
     else if (sum) ii=i;           * is higher than the multiple of stepm and negative otherwise.
     b[i]=sum;           */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (i=n;i>=1;i--) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     sum=b[i];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     b[i]=sum/a[i][i];          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 }          ipmx +=1;
           sw += weight[i];
 /************ Frequencies ********************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        } /* end of wave */
 {  /* Some frequencies */      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int first;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***freq; /* Frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
   double *pp;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double pos, k2, dateintsum=0,k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
   FILE *ficresp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresp[FILENAMELENGTH];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   pp=vector(1,nlstate);          for(d=0; d<dh[mi][i]; d++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            newm=savm;
   strcpy(fileresp,"p");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcat(fileresp,fileres);            for (kk=1; kk<=cptcovage;kk++) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("Problem with prevalence resultfile: %s\n", fileresp);            }
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     exit(0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            oldm=newm;
   j1=0;          } /* end mult */
          
   j=cptcoveff;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   first=1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   for(k1=1; k1<=j;k1++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for(i1=1; i1<=ncodemax[k1];i1++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       j1++;           * probability in order to take into account the bias as a fraction of the way
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         scanf("%d", i);*/           * -stepm/2 to stepm/2 .
       for (i=-1; i<=nlstate+ndeath; i++)             * For stepm=1 the results are the same as for previous versions of Imach.
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * For stepm > 1 the results are less biased than in previous versions. 
           for(m=agemin; m <= agemax+3; m++)           */
             freq[i][jk][m]=0;          s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       dateintsum=0;          bbh=(double)bh[mi][i]/(double)stepm; 
       k2cpt=0;          /* bias is positive if real duration
       for (i=1; i<=imx; i++) {           * is higher than the multiple of stepm and negative otherwise.
         bool=1;           */
         if  (cptcovn>0) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           for (z1=1; z1<=cptcoveff; z1++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
               bool=0;          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if (bool==1) {          ipmx +=1;
           for(m=firstpass; m<=lastpass; m++){          sw += weight[i];
             k2=anint[m][i]+(mint[m][i]/12.);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        } /* end of wave */
               if(agev[m][i]==0) agev[m][i]=agemax+1;      } /* end of individual */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               if (m<lastpass) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
               }          for (ii=1;ii<=nlstate+ndeath;ii++)
                          for (j=1;j<=nlstate+ndeath;j++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 dateintsum=dateintsum+k2;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 k2cpt++;            }
               }          for(d=0; d<dh[mi][i]; d++){
             }            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if  (cptcovn>0) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresp, "\n#********** Variable ");            savm=oldm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            oldm=newm;
         fprintf(ficresp, "**********\n#");          } /* end mult */
       }        
       for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          s2=s[mw[mi+1][i]][i];
       fprintf(ficresp, "\n");          if( s2 > nlstate){ 
                  lli=log(out[s1][s2] - savm[s1][s2]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){          }else{
         if(i==(int)agemax+3){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           fprintf(ficlog,"Total");          }
         }else{          ipmx +=1;
           if(first==1){          sw += weight[i];
             first=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             printf("See log file for details...\n");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }        } /* end of wave */
           fprintf(ficlog,"Age %d", i);      } /* end of individual */
         }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pos=0; m <=0 ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(pp[jk]>=1.e-10){            }
             if(first==1){          for(d=0; d<dh[mi][i]; d++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (kk=1; kk<=cptcovage;kk++) {
           }else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(first==1)            }
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
             oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        
             pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(jk=1,pos=0; jk <=nlstate ; jk++)          ipmx +=1;
           pos += pp[jk];          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if(pos>=1.e-5){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
             if(first==1)        } /* end of wave */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end of individual */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    } /* End of if */
           }else{    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             if(first==1)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    return -l;
           }  }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /*************** log-likelihood *************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  double funcone( double *x)
               probs[i][jk][j1]= pp[jk]/pos;  {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    /* Same as likeli but slower because of a lot of printf and if */
             }    int i, ii, j, k, mi, d, kk;
             else    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double **out;
           }    double lli; /* Individual log likelihood */
         }    double llt;
            int s1, s2;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double bbh, survp;
           for(m=-1; m <=nlstate+ndeath; m++)    /*extern weight */
             if(freq[jk][m][i] !=0 ) {    /* We are differentiating ll according to initial status */
             if(first==1)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /*for(i=1;i<imx;i++) 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      printf(" %d\n",s[4][i]);
             }    */
         if(i <= (int) agemax)    cov[1]=1.;
           fprintf(ficresp,"\n");  
         if(first==1)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }      for(mi=1; mi<= wav[i]-1; mi++){
   }        for (ii=1;ii<=nlstate+ndeath;ii++)
   dateintmean=dateintsum/k2cpt;          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresp);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);        for(d=0; d<dh[mi][i]; d++){
            newm=savm;
   /* End of Freq */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Prevalence ********************/          }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {  /* Some frequencies */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            savm=oldm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          oldm=newm;
   double ***freq; /* Frequencies */        } /* end mult */
   double *pp;        
   double pos, k2;        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
   pp=vector(1,nlstate);        bbh=(double)bh[mi][i]/(double)stepm; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);         */
   j1=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
            lli=log(out[s1][s2] - savm[s1][s2]);
   j=cptcoveff;        } else if (mle==1){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          } else if(mle==2){
   for(k1=1; k1<=j;k1++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(i1=1; i1<=ncodemax[k1];i1++){        } else if(mle==3){  /* exponential inter-extrapolation */
       j1++;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for (i=-1; i<=nlstate+ndeath; i++)            lli=log(out[s1][s2]); /* Original formula */
         for (jk=-1; jk<=nlstate+ndeath; jk++)          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           for(m=agemin; m <= agemax+3; m++)          lli=log(out[s1][s2]); /* Original formula */
             freq[i][jk][m]=0;        } /* End of if */
              ipmx +=1;
       for (i=1; i<=imx; i++) {        sw += weight[i];
         bool=1;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for (z1=1; z1<=cptcoveff; z1++)        if(globpr){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
               bool=0;   %10.6f %10.6f %10.6f ", \
         }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         if (bool==1) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(m=firstpass; m<=lastpass; m++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             k2=anint[m][i]+(mint[m][i]/12.);            llt +=ll[k]*gipmx/gsw;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }
               if(agev[m][i]==1) agev[m][i]=agemax+2;          fprintf(ficresilk," %10.6f\n", -llt);
               if (m<lastpass) {        }
                 if (calagedate>0)      } /* end of wave */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    } /* end of individual */
                 else    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               }    if(globpr==0){ /* First time we count the contributions and weights */
             }      gipmx=ipmx;
           }      gsw=sw;
         }    }
       }    return -l;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  char *subdirf(char fileres[])
             pp[jk] += freq[jk][m][i];  {
         }    /* Caution optionfilefiname is hidden */
         for(jk=1; jk <=nlstate ; jk++){    strcpy(tmpout,optionfilefiname);
           for(m=-1, pos=0; m <=0 ; m++)    strcat(tmpout,"/"); /* Add to the right */
             pos += freq[jk][m][i];    strcat(tmpout,fileres);
         }    return tmpout;
          }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  char *subdirf2(char fileres[], char *preop)
             pp[jk] += freq[jk][m][i];  {
         }    
            strcpy(tmpout,optionfilefiname);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    strcat(tmpout,"/");
            strcat(tmpout,preop);
         for(jk=1; jk <=nlstate ; jk++){        strcat(tmpout,fileres);
           if( i <= (int) agemax){    return tmpout;
             if(pos>=1.e-5){  }
               probs[i][jk][j1]= pp[jk]/pos;  char *subdirf3(char fileres[], char *preop, char *preop2)
             }  {
           }    
         }/* end jk */    strcpy(tmpout,optionfilefiname);
       }/* end i */    strcat(tmpout,"/");
     } /* end i1 */    strcat(tmpout,preop);
   } /* end k1 */    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
      return tmpout;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  }
   free_vector(pp,1,nlstate);  
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 }  /* End of Freq */  {
     /* This routine should help understanding what is done with 
 /************* Waves Concatenation ***************/       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)       Plotting could be done.
 {     */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int k;
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    if(*globpri !=0){ /* Just counts and sums, no printings */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      strcpy(fileresilk,"ilk"); 
      and mw[mi+1][i]. dh depends on stepm.      strcat(fileresilk,fileres);
      */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   int i, mi, m;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      }
      double sum=0., jmean=0.;*/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int first;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int j, k=0,jk, ju, jl;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double sum=0.;      for(k=1; k<=nlstate; k++) 
   first=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   jmin=1e+5;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   jmax=-1;    }
   jmean=0.;  
   for(i=1; i<=imx; i++){    *fretone=(*funcone)(p);
     mi=0;    if(*globpri !=0){
     m=firstpass;      fclose(ficresilk);
     while(s[m][i] <= nlstate){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       if(s[m][i]>=1)      fflush(fichtm); 
         mw[++mi][i]=m;    } 
       if(m >=lastpass)    return;
         break;  }
       else  
         m++;  
     }/* end while */  /*********** Maximum Likelihood Estimation ***************/
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       /* if(mi==0)  never been interviewed correctly before death */  {
          /* Only death is a correct wave */    int i,j, iter;
       mw[mi][i]=m;    double **xi;
     }    double fret;
     double fretone; /* Only one call to likelihood */
     wav[i]=mi;    char filerespow[FILENAMELENGTH];
     if(mi==0){    xi=matrix(1,npar,1,npar);
       if(first==0){    for (i=1;i<=npar;i++)
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      for (j=1;j<=npar;j++)
         first=1;        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       if(first==1){    strcpy(filerespow,"pow"); 
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    strcat(filerespow,fileres);
       }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     } /* end mi==0 */      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
   for(i=1; i<=imx; i++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(mi=1; mi<wav[i];mi++){    for (i=1;i<=nlstate;i++)
       if (stepm <=0)      for(j=1;j<=nlstate+ndeath;j++)
         dh[mi][i]=1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       else{    fprintf(ficrespow,"\n");
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {    powell(p,xi,npar,ftol,&iter,&fret,func);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */    fclose(ficrespow);
           k=k+1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           if (j >= jmax) jmax=j;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           if (j <= jmin) jmin=j;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  }
           }  
         }  /**** Computes Hessian and covariance matrix ***/
         else{  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {
           k=k+1;    double  **a,**y,*x,pd;
           if (j >= jmax) jmax=j;    double **hess;
           else if (j <= jmin)jmin=j;    int i, j,jk;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    int *indx;
           sum=sum+j;  
         }    double hessii(double p[], double delta, int theta, double delti[]);
         jk= j/stepm;    double hessij(double p[], double delti[], int i, int j);
         jl= j -jk*stepm;    void lubksb(double **a, int npar, int *indx, double b[]) ;
         ju= j -(jk+1)*stepm;    void ludcmp(double **a, int npar, int *indx, double *d) ;
         if(jl <= -ju)  
           dh[mi][i]=jk;    hess=matrix(1,npar,1,npar);
         else  
           dh[mi][i]=jk+1;    printf("\nCalculation of the hessian matrix. Wait...\n");
         if(dh[mi][i]==0)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           dh[mi][i]=1; /* At least one step */    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
   }      hess[i][i]=hessii(p,ftolhess,i,delti);
   jmean=sum/k;      /*printf(" %f ",p[i]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      /*printf(" %lf ",hess[i][i]);*/
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    }
  }    
     for (i=1;i<=npar;i++) {
 /*********** Tricode ****************************/      for (j=1;j<=npar;j++)  {
 void tricode(int *Tvar, int **nbcode, int imx)        if (j>i) { 
 {          printf(".%d%d",i,j);fflush(stdout);
   int Ndum[20],ij=1, k, j, i;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int cptcode=0;          hess[i][j]=hessij(p,delti,i,j);
   cptcoveff=0;          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
   for (k=0; k<19; k++) Ndum[k]=0;        }
   for (k=1; k<=7; k++) ncodemax[k]=0;      }
     }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    printf("\n");
     for (i=1; i<=imx; i++) {    fprintf(ficlog,"\n");
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       if (ij > cptcode) cptcode=ij;    
     }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     for (i=0; i<=cptcode; i++) {    x=vector(1,npar);
       if(Ndum[i]!=0) ncodemax[j]++;    indx=ivector(1,npar);
     }    for (i=1;i<=npar;i++)
     ij=1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   
     for (i=1; i<=ncodemax[j]; i++) {    for (j=1;j<=npar;j++) {
       for (k=0; k<=19; k++) {      for (i=1;i<=npar;i++) x[i]=0;
         if (Ndum[k] != 0) {      x[j]=1;
           nbcode[Tvar[j]][ij]=k;      lubksb(a,npar,indx,x);
                for (i=1;i<=npar;i++){ 
           ij++;        matcov[i][j]=x[i];
         }      }
         if (ij > ncodemax[j]) break;    }
       }    
     }    printf("\n#Hessian matrix#\n");
   }      fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
  for (k=0; k<19; k++) Ndum[k]=0;      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
  for (i=1; i<=ncovmodel-2; i++) {        fprintf(ficlog,"%.3e ",hess[i][j]);
    ij=Tvar[i];      }
    Ndum[ij]++;      printf("\n");
  }      fprintf(ficlog,"\n");
     }
  ij=1;  
  for (i=1; i<=10; i++) {    /* Recompute Inverse */
    if((Ndum[i]!=0) && (i<=ncovcol)){    for (i=1;i<=npar;i++)
      Tvaraff[ij]=i;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      ij++;    ludcmp(a,npar,indx,&pd);
    }  
  }    /*  printf("\n#Hessian matrix recomputed#\n");
    
  cptcoveff=ij-1;    for (j=1;j<=npar;j++) {
 }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 /*********** Health Expectancies ****************/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
 {        fprintf(ficlog,"%.3e ",y[i][j]);
   /* Health expectancies */      }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      printf("\n");
   double age, agelim, hf;      fprintf(ficlog,"\n");
   double ***p3mat,***varhe;    }
   double **dnewm,**doldm;    */
   double *xp;  
   double **gp, **gm;    free_matrix(a,1,npar,1,npar);
   double ***gradg, ***trgradg;    free_matrix(y,1,npar,1,npar);
   int theta;    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    free_matrix(hess,1,npar,1,npar);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);  }
    
   fprintf(ficreseij,"# Health expectancies\n");  /*************** hessian matrix ****************/
   fprintf(ficreseij,"# Age");  double hessii( double x[], double delta, int theta, double delti[])
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    int i;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    int l=1, lmax=20;
   fprintf(ficreseij,"\n");    double k1,k2;
     double p2[NPARMAX+1];
   if(estepm < stepm){    double res;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
   else  hstepm=estepm;      int k=0,kmax=10;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double l1;
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    fx=func(x);
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (i=1;i<=npar;i++) p2[i]=x[i];
    * progression inbetween and thus overestimating or underestimating according    for(l=0 ; l <=lmax; l++){
    * to the curvature of the survival function. If, for the same date, we      l1=pow(10,l);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      delts=delt;
    * to compare the new estimate of Life expectancy with the same linear      for(k=1 ; k <kmax; k=k+1){
    * hypothesis. A more precise result, taking into account a more precise        delt = delta*(l1*k);
    * curvature will be obtained if estepm is as small as stepm. */        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
   /* For example we decided to compute the life expectancy with the smallest unit */        p2[theta]=x[theta]-delt;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        k2=func(p2)-fx;
      nhstepm is the number of hstepm from age to agelim        /*res= (k1-2.0*fx+k2)/delt/delt; */
      nstepm is the number of stepm from age to agelin.        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
      Look at hpijx to understand the reason of that which relies in memory size        
      and note for a fixed period like estepm months */  #ifdef DEBUG
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      survival function given by stepm (the optimization length). Unfortunately it        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      means that if the survival funtion is printed only each two years of age and if  #endif
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      results. So we changed our mind and took the option of the best precision.        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   */          k=kmax;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   agelim=AGESUP;          k=kmax; l=lmax*10.;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     /* nhstepm age range expressed in number of stepm */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          delts=delt;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        }
     /* if (stepm >= YEARM) hstepm=1;*/      }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    delti[theta]=delts;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    return res; 
     gp=matrix(0,nhstepm,1,nlstate*2);    
     gm=matrix(0,nhstepm,1,nlstate*2);  }
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  double hessij( double x[], double delti[], int thetai,int thetaj)
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      int i;
      int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double p2[NPARMAX+1];
     int k;
     /* Computing Variances of health expectancies */  
     fx=func(x);
      for(theta=1; theta <=npar; theta++){    for (k=1; k<=2; k++) {
       for(i=1; i<=npar; i++){      for (i=1;i<=npar;i++) p2[i]=x[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        k1=func(p2)-fx;
      
       cptj=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<= nlstate; j++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(i=1; i<=nlstate; i++){      k2=func(p2)-fx;
           cptj=cptj+1;    
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      p2[thetai]=x[thetai]-delti[thetai]/k;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }      k3=func(p2)-fx;
         }    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
            p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            k4=func(p2)-fx;
       for(i=1; i<=npar; i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #ifdef DEBUG
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
            fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       cptj=0;  #endif
       for(j=1; j<= nlstate; j++){    }
         for(i=1;i<=nlstate;i++){    return res;
           cptj=cptj+1;  }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /************** Inverse of matrix **************/
           }  void ludcmp(double **a, int n, int *indx, double *d) 
         }  { 
       }    int i,imax,j,k; 
       for(j=1; j<= nlstate*2; j++)    double big,dum,sum,temp; 
         for(h=0; h<=nhstepm-1; h++){    double *vv; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];   
         }    vv=vector(1,n); 
      }    *d=1.0; 
        for (i=1;i<=n;i++) { 
 /* End theta */      big=0.0; 
       for (j=1;j<=n;j++) 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      for(h=0; h<=nhstepm-1; h++)      vv[i]=1.0/big; 
       for(j=1; j<=nlstate*2;j++)    } 
         for(theta=1; theta <=npar; theta++)    for (j=1;j<=n;j++) { 
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1;i<j;i++) { 
              sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      for(i=1;i<=nlstate*2;i++)        a[i][j]=sum; 
       for(j=1;j<=nlstate*2;j++)      } 
         varhe[i][j][(int)age] =0.;      big=0.0; 
       for (i=j;i<=n;i++) { 
      printf("%d|",(int)age);fflush(stdout);        sum=a[i][j]; 
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        for (k=1;k<j;k++) 
      for(h=0;h<=nhstepm-1;h++){          sum -= a[i][k]*a[k][j]; 
       for(k=0;k<=nhstepm-1;k++){        a[i][j]=sum; 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          big=dum; 
         for(i=1;i<=nlstate*2;i++)          imax=i; 
           for(j=1;j<=nlstate*2;j++)        } 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      } 
       }      if (j != imax) { 
     }        for (k=1;k<=n;k++) { 
     /* Computing expectancies */          dum=a[imax][k]; 
     for(i=1; i<=nlstate;i++)          a[imax][k]=a[j][k]; 
       for(j=1; j<=nlstate;j++)          a[j][k]=dum; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        } 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        *d = -(*d); 
                  vv[imax]=vv[j]; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      } 
       indx[j]=imax; 
         }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
     fprintf(ficreseij,"%3.0f",age );        dum=1.0/(a[j][j]); 
     cptj=0;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(i=1; i<=nlstate;i++)      } 
       for(j=1; j<=nlstate;j++){    } 
         cptj++;    free_vector(vv,1,n);  /* Doesn't work */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  ;
       }  } 
     fprintf(ficreseij,"\n");  
      void lubksb(double **a, int n, int *indx, double b[]) 
     free_matrix(gm,0,nhstepm,1,nlstate*2);  { 
     free_matrix(gp,0,nhstepm,1,nlstate*2);    int i,ii=0,ip,j; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    double sum; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);   
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=n;i++) { 
   }      ip=indx[i]; 
   printf("\n");      sum=b[ip]; 
   fprintf(ficlog,"\n");      b[ip]=b[i]; 
       if (ii) 
   free_vector(xp,1,npar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   free_matrix(dnewm,1,nlstate*2,1,npar);      else if (sum) ii=i; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      b[i]=sum; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    } 
 }    for (i=n;i>=1;i--) { 
       sum=b[i]; 
 /************ Variance ******************/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      b[i]=sum/a[i][i]; 
 {    } 
   /* Variance of health expectancies */  } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   /* double **newm;*/  /************ Frequencies ********************/
   double **dnewm,**doldm;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   double **dnewmp,**doldmp;  {  /* Some frequencies */
   int i, j, nhstepm, hstepm, h, nstepm ;    
   int k, cptcode;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double *xp;    int first;
   double **gp, **gm;  /* for var eij */    double ***freq; /* Frequencies */
   double ***gradg, ***trgradg; /*for var eij */    double *pp, **prop;
   double **gradgp, **trgradgp; /* for var p point j */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double *gpp, *gmp; /* for var p point j */    FILE *ficresp;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    char fileresp[FILENAMELENGTH];
   double ***p3mat;    
   double age,agelim, hf;    pp=vector(1,nlstate);
   int theta;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   char digit[4];    strcpy(fileresp,"p");
   char digitp[16];    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   char fileresprobmorprev[FILENAMELENGTH];      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   if(popbased==1)      exit(0);
     strcpy(digitp,"-populbased-");    }
   else    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     strcpy(digitp,"-stablbased-");    j1=0;
     
   strcpy(fileresprobmorprev,"prmorprev");    j=cptcoveff;
   sprintf(digit,"%-d",ij);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    first=1;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */  
   strcat(fileresprobmorprev,fileres);    for(k1=1; k1<=j;k1++){
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      for(i1=1; i1<=ncodemax[k1];i1++){
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        j1++;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }          scanf("%d", i);*/
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        for (i=-1; i<=nlstate+ndeath; i++)  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              freq[i][jk][m]=0;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);      for (i=1; i<=nlstate; i++)  
     for(i=1; i<=nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          prop[i][m]=0;
   }          
   fprintf(ficresprobmorprev,"\n");        dateintsum=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        k2cpt=0;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        for (i=1; i<=imx; i++) {
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          bool=1;
     exit(0);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
   else{              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fprintf(ficgp,"\n# Routine varevsij");                bool=0;
   }          }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          if (bool==1){
     printf("Problem with html file: %s\n", optionfilehtm);            for(m=firstpass; m<=lastpass; m++){
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              k2=anint[m][i]+(mint[m][i]/12.);
     exit(0);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   else{                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");                }
   fprintf(ficresvij,"# Age");                
   for(i=1; i<=nlstate;i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for(j=1; j<=nlstate;j++)                  dateintsum=dateintsum+k2;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                  k2cpt++;
   fprintf(ficresvij,"\n");                }
                 /*}*/
   xp=vector(1,npar);            }
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);        }
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);         
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        if  (cptcovn>0) {
   gpp=vector(nlstate+1,nlstate+ndeath);          fprintf(ficresp, "\n#********** Variable "); 
   gmp=vector(nlstate+1,nlstate+ndeath);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          fprintf(ficresp, "**********\n#");
          }
   if(estepm < stepm){        for(i=1; i<=nlstate;i++) 
     printf ("Problem %d lower than %d\n",estepm, stepm);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   }        fprintf(ficresp, "\n");
   else  hstepm=estepm;          
   /* For example we decided to compute the life expectancy with the smallest unit */        for(i=iagemin; i <= iagemax+3; i++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          if(i==iagemax+3){
      nhstepm is the number of hstepm from age to agelim            fprintf(ficlog,"Total");
      nstepm is the number of stepm from age to agelin.          }else{
      Look at hpijx to understand the reason of that which relies in memory size            if(first==1){
      and note for a fixed period like k years */              first=0;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              printf("See log file for details...\n");
      survival function given by stepm (the optimization length). Unfortunately it            }
      means that if the survival funtion is printed only each two years of age and if            fprintf(ficlog,"Age %d", i);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          }
      results. So we changed our mind and took the option of the best precision.          for(jk=1; jk <=nlstate ; jk++){
   */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              pp[jk] += freq[jk][m][i]; 
   agelim = AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(jk=1; jk <=nlstate ; jk++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for(m=-1, pos=0; m <=0 ; m++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              pos += freq[jk][m][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(pp[jk]>=1.e-10){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              if(first==1){
     gp=matrix(0,nhstepm,1,nlstate);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     gm=matrix(0,nhstepm,1,nlstate);              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
     for(theta=1; theta <=npar; theta++){              if(first==1)
       for(i=1; i<=npar; i++){ /* Computes gradient */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
           for(jk=1; jk <=nlstate ; jk++){
       if (popbased==1) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         for(i=1; i<=nlstate;i++)              pp[jk] += freq[jk][m][i];
           prlim[i][i]=probs[(int)age][i][ij];          }       
       }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
       for(j=1; j<= nlstate; j++){            posprop += prop[jk][i];
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            if(pos>=1.e-5){
         }              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       /* This for computing forces of mortality (h=1)as a weighted average */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){            }else{
         for(i=1; i<= nlstate; i++)              if(first==1)
           gpp[j] += prlim[i][i]*p3mat[i][j][1];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }                  fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       /* end force of mortality */            }
             if( i <= iagemax){
       for(i=1; i<=npar; i++) /* Computes gradient */              if(pos>=1.e-5){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  /*probs[i][jk][j1]= pp[jk]/pos;*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                }
       if (popbased==1) {              else
         for(i=1; i<=nlstate;i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           prlim[i][i]=probs[(int)age][i][ij];            }
       }          }
           
       for(j=1; j<= nlstate; j++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(h=0; h<=nhstepm; h++){            for(m=-1; m <=nlstate+ndeath; m++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              if(first==1)
         }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       /* This for computing force of mortality (h=1)as a weighted average */              }
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          if(i <= iagemax)
         for(i=1; i<= nlstate; i++)            fprintf(ficresp,"\n");
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          if(first==1)
       }                printf("Others in log...\n");
       /* end force of mortality */          fprintf(ficlog,"\n");
         }
       for(j=1; j<= nlstate; j++) /* vareij */      }
         for(h=0; h<=nhstepm; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    dateintmean=dateintsum/k2cpt; 
         }   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    fclose(ficresp);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       }    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     } /* End theta */    /* End of Freq */
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  
   /************ Prevalence ********************/
     for(h=0; h<=nhstepm; h++) /* veij */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for(j=1; j<=nlstate;j++)  {  
         for(theta=1; theta <=npar; theta++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           trgradg[h][j][theta]=gradg[h][theta][j];       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    */
       for(theta=1; theta <=npar; theta++)   
         trgradgp[j][theta]=gradgp[theta][j];    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double *pp, **prop;
     for(i=1;i<=nlstate;i++)    double pos,posprop; 
       for(j=1;j<=nlstate;j++)    double  y2; /* in fractional years */
         vareij[i][j][(int)age] =0.;    int iagemin, iagemax;
   
     for(h=0;h<=nhstepm;h++){    iagemin= (int) agemin;
       for(k=0;k<=nhstepm;k++){    iagemax= (int) agemax;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /*pp=vector(1,nlstate);*/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         for(i=1;i<=nlstate;i++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           for(j=1;j<=nlstate;j++)    j1=0;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     /* pptj */    for(k1=1; k1<=j;k1++){
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      for(i1=1; i1<=ncodemax[k1];i1++){
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        j1++;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        for (i=1; i<=nlstate; i++)  
         varppt[j][i]=doldmp[j][i];          for(m=iagemin; m <= iagemax+3; m++)
     /* end ppptj */            prop[i][m]=0.0;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);         
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
     if (popbased==1) {          if  (cptcovn>0) {
       for(i=1; i<=nlstate;i++)            for (z1=1; z1<=cptcoveff; z1++) 
         prlim[i][i]=probs[(int)age][i][ij];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
              } 
     /* This for computing force of mortality (h=1)as a weighted average */          if (bool==1) { 
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(i=1; i<= nlstate; i++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     }                    if(agev[m][i]==0) agev[m][i]=iagemax+1;
     /* end force of mortality */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1; i<=nlstate;i++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);                } 
       }              }
     }            } /* end selection of waves */
     fprintf(ficresprobmorprev,"\n");          }
         }
     fprintf(ficresvij,"%.0f ",age );        for(i=iagemin; i <= iagemax+3; i++){  
     for(i=1; i<=nlstate;i++)          
       for(j=1; j<=nlstate;j++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            posprop += prop[jk][i]; 
       }          } 
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){     
     free_matrix(gm,0,nhstepm,1,nlstate);            if( i <=  iagemax){ 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              if(posprop>=1.e-5){ 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                probs[i][jk][j1]= prop[jk][i]/posprop;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              } 
   } /* End age */            } 
   free_vector(gpp,nlstate+1,nlstate+ndeath);          }/* end jk */ 
   free_vector(gmp,nlstate+1,nlstate+ndeath);        }/* end i */ 
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      } /* end i1 */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    } /* end k1 */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    /*free_vector(pp,1,nlstate);*/
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  }  /* End of prevalence */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  /************* Waves Concatenation ***************/
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
   free_vector(xp,1,npar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   free_matrix(doldm,1,nlstate,1,nlstate);       Death is a valid wave (if date is known).
   free_matrix(dnewm,1,nlstate,1,npar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);       and mw[mi+1][i]. dh depends on stepm.
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       */
   fclose(ficresprobmorprev);  
   fclose(ficgp);    int i, mi, m;
   fclose(fichtm);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
 }    int first;
     int j, k=0,jk, ju, jl;
 /************ Variance of prevlim ******************/    double sum=0.;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    first=0;
 {    jmin=1e+5;
   /* Variance of prevalence limit */    jmax=-1;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    jmean=0.;
   double **newm;    for(i=1; i<=imx; i++){
   double **dnewm,**doldm;      mi=0;
   int i, j, nhstepm, hstepm;      m=firstpass;
   int k, cptcode;      while(s[m][i] <= nlstate){
   double *xp;        if(s[m][i]>=1)
   double *gp, *gm;          mw[++mi][i]=m;
   double **gradg, **trgradg;        if(m >=lastpass)
   double age,agelim;          break;
   int theta;        else
              m++;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      }/* end while */
   fprintf(ficresvpl,"# Age");      if (s[m][i] > nlstate){
   for(i=1; i<=nlstate;i++)        mi++;     /* Death is another wave */
       fprintf(ficresvpl," %1d-%1d",i,i);        /* if(mi==0)  never been interviewed correctly before death */
   fprintf(ficresvpl,"\n");           /* Only death is a correct wave */
         mw[mi][i]=m;
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);      wav[i]=mi;
        if(mi==0){
   hstepm=1*YEARM; /* Every year of age */        nbwarn++;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        if(first==0){
   agelim = AGESUP;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          first=1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
     if (stepm >= YEARM) hstepm=1;        if(first==1){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     gradg=matrix(1,npar,1,nlstate);        }
     gp=vector(1,nlstate);      } /* end mi==0 */
     gm=vector(1,nlstate);    } /* End individuals */
   
     for(theta=1; theta <=npar; theta++){    for(i=1; i<=imx; i++){
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(mi=1; mi<wav[i];mi++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if (stepm <=0)
       }          dh[mi][i]=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        else{
       for(i=1;i<=nlstate;i++)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         gp[i] = prlim[i][i];            if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for(i=1; i<=npar; i++) /* Computes gradient */              if(j==0) j=1;  /* Survives at least one month after exam */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              else if(j<0){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                nberr++;
       for(i=1;i<=nlstate;i++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         gm[i] = prlim[i][i];                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       for(i=1;i<=nlstate;i++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     } /* End theta */              }
               k=k+1;
     trgradg =matrix(1,nlstate,1,npar);              if (j >= jmax) jmax=j;
               if (j <= jmin) jmin=j;
     for(j=1; j<=nlstate;j++)              sum=sum+j;
       for(theta=1; theta <=npar; theta++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         trgradg[j][theta]=gradg[theta][j];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;          else{
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for(i=1;i<=nlstate;i++)            k=k+1;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
     fprintf(ficresvpl,"%.0f ",age );            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for(i=1; i<=nlstate;i++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            if(j<0){
     fprintf(ficresvpl,"\n");              nberr++;
     free_vector(gp,1,nlstate);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(gm,1,nlstate);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_matrix(gradg,1,npar,1,nlstate);            }
     free_matrix(trgradg,1,nlstate,1,npar);            sum=sum+j;
   } /* End age */          }
           jk= j/stepm;
   free_vector(xp,1,npar);          jl= j -jk*stepm;
   free_matrix(doldm,1,nlstate,1,npar);          ju= j -(jk+1)*stepm;
   free_matrix(dnewm,1,nlstate,1,nlstate);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
 }              dh[mi][i]=jk;
               bh[mi][i]=0;
 /************ Variance of one-step probabilities  ******************/            }else{ /* We want a negative bias in order to only have interpolation ie
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                    * at the price of an extra matrix product in likelihood */
 {              dh[mi][i]=jk+1;
   int i, j=0,  i1, k1, l1, t, tj;              bh[mi][i]=ju;
   int k2, l2, j1,  z1;            }
   int k=0,l, cptcode;          }else{
   int first=1, first1;            if(jl <= -ju){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              dh[mi][i]=jk;
   double **dnewm,**doldm;              bh[mi][i]=jl;       /* bias is positive if real duration
   double *xp;                                   * is higher than the multiple of stepm and negative otherwise.
   double *gp, *gm;                                   */
   double **gradg, **trgradg;            }
   double **mu;            else{
   double age,agelim, cov[NCOVMAX];              dh[mi][i]=jk+1;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              bh[mi][i]=ju;
   int theta;            }
   char fileresprob[FILENAMELENGTH];            if(dh[mi][i]==0){
   char fileresprobcov[FILENAMELENGTH];              dh[mi][i]=1; /* At least one step */
   char fileresprobcor[FILENAMELENGTH];              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   double ***varpij;            }
           } /* end if mle */
   strcpy(fileresprob,"prob");        }
   strcat(fileresprob,fileres);      } /* end wave */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprob);    jmean=sum/k;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   strcpy(fileresprobcov,"probcov");   }
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  /*********** Tricode ****************************/
     printf("Problem with resultfile: %s\n", fileresprobcov);  void tricode(int *Tvar, int **nbcode, int imx)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  {
   }    
   strcpy(fileresprobcor,"probcor");    int Ndum[20],ij=1, k, j, i, maxncov=19;
   strcat(fileresprobcor,fileres);    int cptcode=0;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    cptcoveff=0; 
     printf("Problem with resultfile: %s\n", fileresprobcor);   
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   }    for (k=1; k<=7; k++) ncodemax[k]=0;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                                 modality*/ 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        Ndum[ij]++; /*store the modality */
          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   fprintf(ficresprob,"# Age");                                         Tvar[j]. If V=sex and male is 0 and 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                                         female is 1, then  cptcode=1.*/
   fprintf(ficresprobcov,"# Age");      }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){      ij=1; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        for (k=0; k<= maxncov; k++) {
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          if (Ndum[k] != 0) {
     }              nbcode[Tvar[j]][ij]=k; 
   fprintf(ficresprob,"\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(ficresprobcov,"\n");            
   fprintf(ficresprobcor,"\n");            ij++;
   xp=vector(1,npar);          }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          if (ij > ncodemax[j]) break; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        }  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      } 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    }  
   first=1;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);   for (i=1; i<=ncovmodel-2; i++) { 
     exit(0);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   }     ij=Tvar[i];
   else{     Ndum[ij]++;
     fprintf(ficgp,"\n# Routine varprob");   }
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {   ij=1;
     printf("Problem with html file: %s\n", optionfilehtm);   for (i=1; i<= maxncov; i++) {
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);     if((Ndum[i]!=0) && (i<=ncovcol)){
     exit(0);       Tvaraff[ij]=i; /*For printing */
   }       ij++;
   else{     }
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");   }
     fprintf(fichtm,"\n");   
    cptcoveff=ij-1; /*Number of simple covariates*/
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  }
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  /*********** Health Expectancies ****************/
   
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   
    {
   cov[1]=1;    /* Health expectancies */
   tj=cptcoveff;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    double age, agelim, hf;
   j1=0;    double ***p3mat,***varhe;
   for(t=1; t<=tj;t++){    double **dnewm,**doldm;
     for(i1=1; i1<=ncodemax[t];i1++){    double *xp;
       j1++;    double **gp, **gm;
          double ***gradg, ***trgradg;
       if  (cptcovn>0) {    int theta;
         fprintf(ficresprob, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         fprintf(ficresprob, "**********\n#");    xp=vector(1,npar);
         fprintf(ficresprobcov, "\n#********** Variable ");    dnewm=matrix(1,nlstate*nlstate,1,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficresprobcov, "**********\n#");    
            fprintf(ficreseij,"# Health expectancies\n");
         fprintf(ficgp, "\n#********** Variable ");    fprintf(ficreseij,"# Age");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(i=1; i<=nlstate;i++)
         fprintf(ficgp, "**********\n#");      for(j=1; j<=nlstate;j++)
                fprintf(ficreseij," %1d-%1d (SE)",i,j);
            fprintf(ficreseij,"\n");
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if(estepm < stepm){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      printf ("Problem %d lower than %d\n",estepm, stepm);
            }
         fprintf(ficresprobcor, "\n#********** Variable ");        else  hstepm=estepm;   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* We compute the life expectancy from trapezoids spaced every estepm months
         fprintf(ficgp, "**********\n#");         * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
           * we are calculating an estimate of the Life Expectancy assuming a linear 
       for (age=bage; age<=fage; age ++){     * progression in between and thus overestimating or underestimating according
         cov[2]=age;     * to the curvature of the survival function. If, for the same date, we 
         for (k=1; k<=cptcovn;k++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];     * to compare the new estimate of Life expectancy with the same linear 
         }     * hypothesis. A more precise result, taking into account a more precise
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];     * curvature will be obtained if estepm is as small as stepm. */
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* For example we decided to compute the life expectancy with the smallest unit */
            /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));       nhstepm is the number of hstepm from age to agelim 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       nstepm is the number of stepm from age to agelin. 
         gp=vector(1,(nlstate)*(nlstate+ndeath));       Look at hpijx to understand the reason of that which relies in memory size
         gm=vector(1,(nlstate)*(nlstate+ndeath));       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for(theta=1; theta <=npar; theta++){       survival function given by stepm (the optimization length). Unfortunately it
           for(i=1; i<=npar; i++)       means that if the survival funtion is printed only each two years of age and if
             xp[i] = x[i] + (i==theta ?delti[theta]:0);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 results. So we changed our mind and took the option of the best precision.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    */
              hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           k=0;  
           for(i=1; i<= (nlstate); i++){    agelim=AGESUP;
             for(j=1; j<=(nlstate+ndeath);j++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               k=k+1;      /* nhstepm age range expressed in number of stepm */
               gp[k]=pmmij[i][j];      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           }      /* if (stepm >= YEARM) hstepm=1;*/
                nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           for(i=1; i<=npar; i++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          gp=matrix(0,nhstepm,1,nlstate*nlstate);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           k=0;  
           for(i=1; i<=(nlstate); i++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             for(j=1; j<=(nlstate+ndeath);j++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
               k=k+1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
               gm[k]=pmmij[i][j];   
             }  
           }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      /* Computing Variances of health expectancies */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(theta=1; theta <=npar; theta++)        }
             trgradg[j][theta]=gradg[theta][j];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        cptj=0;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        for(j=1; j<= nlstate; j++){
                  for(i=1; i<=nlstate; i++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);            cptj=cptj+1;
                    for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         k=0;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(i=1; i<=(nlstate); i++){            }
           for(j=1; j<=(nlstate+ndeath);j++){          }
             k=k+1;        }
             mu[k][(int) age]=pmmij[i][j];       
           }       
         }        for(i=1; i<=npar; i++) 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             varpij[i][j][(int)age] = doldm[i][j];        
         cptj=0;
         /*printf("\n%d ",(int)age);        for(j=1; j<= nlstate; j++){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for(i=1;i<=nlstate;i++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            cptj=cptj+1;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
      }*/  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficresprob,"\n%d ",(int)age);            }
         fprintf(ficresprobcov,"\n%d ",(int)age);          }
         fprintf(ficresprobcor,"\n%d ",(int)age);        }
         for(j=1; j<= nlstate*nlstate; j++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          for(h=0; h<=nhstepm-1; h++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);       } 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);     
         }  /* End theta */
         i=0;  
         for (k=1; k<=(nlstate);k++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           for (l=1; l<=(nlstate+ndeath);l++){  
             i=i++;       for(h=0; h<=nhstepm-1; h++)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        for(j=1; j<=nlstate*nlstate;j++)
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          for(theta=1; theta <=npar; theta++)
             for (j=1; j<=i;j++){            trgradg[h][j][theta]=gradg[h][theta][j];
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);       
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }       for(i=1;i<=nlstate*nlstate;i++)
           }        for(j=1;j<=nlstate*nlstate;j++)
         }/* end of loop for state */          varhe[i][j][(int)age] =0.;
       } /* end of loop for age */  
        printf("%d|",(int)age);fflush(stdout);
       /* Confidence intervalle of pij  */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       /*       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficgp,"\nset noparametric;unset label");        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          for(i=1;i<=nlstate*nlstate;i++)
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        }
       */      }
       /* Computing expectancies */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      for(i=1; i<=nlstate;i++)
       first1=1;        for(j=1; j<=nlstate;j++)
       for (k1=1; k1<=(nlstate);k1++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         for (l1=1; l1<=(nlstate+ndeath);l1++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           if(l1==k1) continue;            
           i=(k1-1)*(nlstate+ndeath)+l1;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for (k2=1; k2<=(nlstate);k2++){  
             for (l2=1; l2<=(nlstate+ndeath);l2++){          }
               if(l2==k2) continue;  
               j=(k2-1)*(nlstate+ndeath)+l2;      fprintf(ficreseij,"%3.0f",age );
               if(j<=i) continue;      cptj=0;
               for (age=bage; age<=fage; age ++){      for(i=1; i<=nlstate;i++)
                 if ((int)age %5==0){        for(j=1; j<=nlstate;j++){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          cptj++;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   mu1=mu[i][(int) age]/stepm*YEARM ;      fprintf(ficreseij,"\n");
                   mu2=mu[j][(int) age]/stepm*YEARM;     
                   /* Computing eigen value of matrix of covariance */      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   if(first1==1){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                     first1=0;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);    }
                   }    printf("\n");
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    fprintf(ficlog,"\n");
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    free_vector(xp,1,npar);
                   v21=sqrt(1.-v11*v11);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   v12=-v21;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   v22=v11;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   /*printf(fignu*/  }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */  /************ Variance ******************/
                   if(first==1){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                     first=0;  {
                     fprintf(ficgp,"\nset parametric;set nolabel");    /* Variance of health expectancies */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /* double **newm;*/
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);    double **dnewm,**doldm;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);    double **dnewmp,**doldmp;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);    int i, j, nhstepm, hstepm, h, nstepm ;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    int k, cptcode;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    double *xp;
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    double **gp, **gm;  /* for var eij */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    double ***gradg, ***trgradg; /*for var eij */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    double **gradgp, **trgradgp; /* for var p point j */
                     */    double *gpp, *gmp; /* for var p point j */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    double ***p3mat;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    double age,agelim, hf;
                   }else{    double ***mobaverage;
                     first=0;    int theta;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    char digit[4];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    char digitp[25];
                     /*  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    char fileresprobmorprev[FILENAMELENGTH];
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    if(popbased==1){
                     */      if(mobilav!=0)
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        strcpy(digitp,"-populbased-mobilav-");
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      else strcpy(digitp,"-populbased-nomobil-");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    }
                   }/* if first */    else 
                 } /* age mod 5 */      strcpy(digitp,"-stablbased-");
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);    if (mobilav!=0) {
               first=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             } /*l12 */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           } /* k12 */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         } /*l1 */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }/* k1 */      }
     } /* loop covariates */    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    strcpy(fileresprobmorprev,"prmorprev"); 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    sprintf(digit,"%-d",ij);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
   free_vector(xp,1,npar);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   fclose(ficresprob);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fclose(ficresprobcov);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   fclose(ficresprobcor);    }
   fclose(ficgp);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fclose(fichtm);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 /******************* Printing html file ***********/      fprintf(ficresprobmorprev," p.%-d SE",j);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      for(i=1; i<=nlstate;i++)
                   int lastpass, int stepm, int weightopt, char model[],\        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    }  
                   int popforecast, int estepm ,\    fprintf(ficresprobmorprev,"\n");
                   double jprev1, double mprev1,double anprev1, \    fprintf(ficgp,"\n# Routine varevsij");
                   double jprev2, double mprev2,double anprev2){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   int jj1, k1, i1, cpt;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*char optionfilehtm[FILENAMELENGTH];*/  /*   } */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("Problem with %s \n",optionfilehtm), exit(0);  
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   }    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      for(j=1; j<=nlstate;j++)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    fprintf(ficresvij,"\n");
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):    xp=vector(1,npar);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    dnewm=matrix(1,nlstate,1,npar);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
  m=cptcoveff;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
  jj1=0;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  for(k1=1; k1<=m;k1++){    
    for(i1=1; i1<=ncodemax[k1];i1++){    if(estepm < stepm){
      jj1++;      printf ("Problem %d lower than %d\n",estepm, stepm);
      if (cptcovn > 0) {    }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    else  hstepm=estepm;   
        for (cpt=1; cpt<=cptcoveff;cpt++)    /* For example we decided to compute the life expectancy with the smallest unit */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       nhstepm is the number of hstepm from age to agelim 
      }       nstepm is the number of stepm from age to agelin. 
      /* Pij */       Look at hpijx to understand the reason of that which relies in memory size
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>       and note for a fixed period like k years */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      /* Quasi-incidences */       survival function given by stepm (the optimization length). Unfortunately it
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>       means that if the survival funtion is printed every two years of age and if
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        /* Stable prevalence in each health state */       results. So we changed our mind and took the option of the best precision.
        for(cpt=1; cpt<nlstate;cpt++){    */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    agelim = AGESUP;
        }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      for(cpt=1; cpt<=nlstate;cpt++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      gp=matrix(0,nhstepm,1,nlstate);
 health expectancies in states (1) and (2): e%s%d.png<br>      gm=matrix(0,nhstepm,1,nlstate);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
    } /* end i1 */  
  }/* End k1 */      for(theta=1; theta <=npar; theta++){
  fprintf(fichtm,"</ul>");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        if (popbased==1) {
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          if(mobilav ==0){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            for(i=1; i<=nlstate;i++)
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              prlim[i][i]=probs[(int)age][i][ij];
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
  if(popforecast==1) fprintf(fichtm,"\n              prlim[i][i]=mobaverage[(int)age][i][ij];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        }
         <br>",fileres,fileres,fileres,fileres);    
  else        for(j=1; j<= nlstate; j++){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          for(h=0; h<=nhstepm; h++){
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  m=cptcoveff;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
         /* This for computing probability of death (h=1 means
  jj1=0;           computed over hstepm matrices product = hstepm*stepm months) 
  for(k1=1; k1<=m;k1++){           as a weighted average of prlim.
    for(i1=1; i1<=ncodemax[k1];i1++){        */
      jj1++;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
      if (cptcovn > 0) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
        for (cpt=1; cpt<=cptcoveff;cpt++)        }    
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        /* end probability of death */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      for(cpt=1; cpt<=nlstate;cpt++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 interval) in state (%d): v%s%d%d.png <br>        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     
      }        if (popbased==1) {
    } /* end i1 */          if(mobilav ==0){
  }/* End k1 */            for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"</ul>");              prlim[i][i]=probs[(int)age][i][ij];
 fclose(fichtm);          }else{ /* mobilav */ 
 }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
 /******************* Gnuplot file **************/          }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(j=1; j<= nlstate; j++){
   int ng;          for(h=0; h<=nhstepm; h++){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     printf("Problem with file %s",optionfilegnuplot);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);          }
   }        }
         /* This for computing probability of death (h=1 means
 #ifdef windows           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficgp,"cd \"%s\" \n",pathc);           as a weighted average of prlim.
 #endif        */
 m=pow(2,cptcoveff);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
  /* 1eme*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }    
    for (k1=1; k1<= m ; k1 ++) {        /* end probability of death */
   
 #ifdef windows        for(j=1; j<= nlstate; j++) /* vareij */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for(h=0; h<=nhstepm; h++){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 #endif          }
 #ifdef unix  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 #endif        }
   
 for (i=1; i<= nlstate ; i ++) {      } /* End theta */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(h=0; h<=nhstepm; h++) /* veij */
     for (i=1; i<= nlstate ; i ++) {        for(j=1; j<=nlstate;j++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(theta=1; theta <=npar; theta++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            trgradg[h][j][theta]=gradg[h][theta][j];
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      for (i=1; i<= nlstate ; i ++) {        for(theta=1; theta <=npar; theta++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          trgradgp[j][theta]=gradgp[theta][j];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 #ifdef unix      for(i=1;i<=nlstate;i++)
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        for(j=1;j<=nlstate;j++)
 #endif          vareij[i][j][(int)age] =0.;
    }  
   }      for(h=0;h<=nhstepm;h++){
   /*2 eme*/        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   for (k1=1; k1<= m ; k1 ++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          for(i=1;i<=nlstate;i++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     for (i=1; i<= nlstate+1 ; i ++) {        }
       k=2*i;      }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {      /* pptj */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 }        for(j=nlstate+1;j<=nlstate+ndeath;j++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          varppt[j][i]=doldmp[j][i];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      /* end ppptj */
       for (j=1; j<= nlstate+1 ; j ++) {      /*  x centered again */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 }     
       fprintf(ficgp,"\" t\"\" w l 0,");      if (popbased==1) {
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        if(mobilav ==0){
       for (j=1; j<= nlstate+1 ; j ++) {          for(i=1; i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            prlim[i][i]=probs[(int)age][i][ij];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }else{ /* mobilav */ 
 }            for(i=1; i<=nlstate;i++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            prlim[i][i]=mobaverage[(int)age][i][ij];
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }      }
   }               
        /* This for computing probability of death (h=1 means
   /*3eme*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   for (k1=1; k1<= m ; k1 ++) {      */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       k=2+nlstate*(2*cpt-2);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      }    
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      /* end probability of death */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 */        }
       for (i=1; i< nlstate ; i ++) {      } 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      fprintf(ficresprobmorprev,"\n");
   
       }      fprintf(ficresvij,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   /* CV preval stat */        }
     for (k1=1; k1<= m ; k1 ++) {      fprintf(ficresvij,"\n");
     for (cpt=1; cpt<nlstate ; cpt ++) {      free_matrix(gp,0,nhstepm,1,nlstate);
       k=3;      free_matrix(gm,0,nhstepm,1,nlstate);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (i=1; i< nlstate ; i ++)    } /* End age */
         fprintf(ficgp,"+$%d",k+i+1);    free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    free_vector(gmp,nlstate+1,nlstate+ndeath);
          free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       l=3+(nlstate+ndeath)*cpt;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for (i=1; i< nlstate ; i ++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         l=3+(nlstate+ndeath)*cpt;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         fprintf(ficgp,"+$%d",l+i+1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /* proba elementaires */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     for(k=1; k <=(nlstate+ndeath); k++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       if (k != i) {  */
         for(j=1; j <=ncovmodel; j++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           jk++;  
           fprintf(ficgp,"\n");    free_vector(xp,1,npar);
         }    free_matrix(doldm,1,nlstate,1,nlstate);
       }    free_matrix(dnewm,1,nlstate,1,npar);
     }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      for(jk=1; jk <=m; jk++) {    fclose(ficresprobmorprev);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    fflush(ficgp);
        if (ng==2)    fflush(fichtm); 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  }  /* end varevsij */
        else  
          fprintf(ficgp,"\nset title \"Probability\"\n");  /************ Variance of prevlim ******************/
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
        i=1;  {
        for(k2=1; k2<=nlstate; k2++) {    /* Variance of prevalence limit */
          k3=i;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
          for(k=1; k<=(nlstate+ndeath); k++) {    double **newm;
            if (k != k2){    double **dnewm,**doldm;
              if(ng==2)    int i, j, nhstepm, hstepm;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    int k, cptcode;
              else    double *xp;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    double *gp, *gm;
              ij=1;    double **gradg, **trgradg;
              for(j=3; j <=ncovmodel; j++) {    double age,agelim;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int theta;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     
                  ij++;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
                }    fprintf(ficresvpl,"# Age");
                else    for(i=1; i<=nlstate;i++)
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        fprintf(ficresvpl," %1d-%1d",i,i);
              }    fprintf(ficresvpl,"\n");
              fprintf(ficgp,")/(1");  
                  xp=vector(1,npar);
              for(k1=1; k1 <=nlstate; k1++){      dnewm=matrix(1,nlstate,1,npar);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    doldm=matrix(1,nlstate,1,nlstate);
                ij=1;    
                for(j=3; j <=ncovmodel; j++){    hstepm=1*YEARM; /* Every year of age */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    agelim = AGESUP;
                    ij++;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                  }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                  else      if (stepm >= YEARM) hstepm=1;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                }      gradg=matrix(1,npar,1,nlstate);
                fprintf(ficgp,")");      gp=vector(1,nlstate);
              }      gm=vector(1,nlstate);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for(theta=1; theta <=npar; theta++){
              i=i+ncovmodel;        for(i=1; i<=npar; i++){ /* Computes gradient */
            }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          } /* end k */        }
        } /* end k2 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      } /* end jk */        for(i=1;i<=nlstate;i++)
    } /* end ng */          gp[i] = prlim[i][i];
    fclose(ficgp);      
 }  /* end gnuplot */        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*************** Moving average **************/        for(i=1;i<=nlstate;i++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          gm[i] = prlim[i][i];
   
   int i, cpt, cptcod;        for(i=1;i<=nlstate;i++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       for (i=1; i<=nlstate;i++)      } /* End theta */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;      trgradg =matrix(1,nlstate,1,npar);
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(j=1; j<=nlstate;j++)
       for (i=1; i<=nlstate;i++){        for(theta=1; theta <=npar; theta++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          trgradg[j][theta]=gradg[theta][j];
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(i=1;i<=nlstate;i++)
           }        varpl[i][(int)age] =0.;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }      for(i=1;i<=nlstate;i++)
     }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      
 }      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 /************** Forecasting ******************/      fprintf(ficresvpl,"\n");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      free_matrix(gradg,1,npar,1,nlstate);
   int *popage;      free_matrix(trgradg,1,nlstate,1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    } /* End age */
   double *popeffectif,*popcount;  
   double ***p3mat;    free_vector(xp,1,npar);
   char fileresf[FILENAMELENGTH];    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  }
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /************ Variance of one-step probabilities  ******************/
    void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
    {
   strcpy(fileresf,"f");    int i, j=0,  i1, k1, l1, t, tj;
   strcat(fileresf,fileres);    int k2, l2, j1,  z1;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int k=0,l, cptcode;
     printf("Problem with forecast resultfile: %s\n", fileresf);    int first=1, first1;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double *xp;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    double *gp, *gm;
     double **gradg, **trgradg;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **mu;
     double age,agelim, cov[NCOVMAX];
   if (mobilav==1) {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int theta;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    double ***varpij;
    
   agelim=AGESUP;    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
   hstepm=1;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   hstepm=hstepm/stepm;      printf("Problem with resultfile: %s\n", fileresprob);
   yp1=modf(dateintmean,&yp);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   anprojmean=yp;    }
   yp2=modf((yp1*12),&yp);    strcpy(fileresprobcov,"probcov"); 
   mprojmean=yp;    strcat(fileresprobcov,fileres);
   yp1=modf((yp2*30.5),&yp);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   jprojmean=yp;      printf("Problem with resultfile: %s\n", fileresprobcov);
   if(jprojmean==0) jprojmean=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   if(mprojmean==0) jprojmean=1;    }
      strcpy(fileresprobcor,"probcor"); 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    strcat(fileresprobcor,fileres);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   for(cptcov=1;cptcov<=i2;cptcov++){      printf("Problem with resultfile: %s\n", fileresprobcor);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       k=k+1;    }
       fprintf(ficresf,"\n#******");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficresf,"******\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    
          fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
          fprintf(ficresprob,"# Age");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         fprintf(ficresf,"\n");    fprintf(ficresprobcov,"# Age");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    for(i=1; i<=nlstate;i++)
                for(j=1; j<=(nlstate+ndeath);j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           oldm=oldms;savm=savms;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresprobcor," p%1d-%1d ",i,j);
              }  
           for (h=0; h<=nhstepm; h++){   /* fprintf(ficresprob,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobcov,"\n");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobcor,"\n");
             }   */
             for(j=1; j<=nlstate+ndeath;j++) {   xp=vector(1,npar);
               kk1=0.;kk2=0;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               for(i=1; i<=nlstate;i++) {                  doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                 if (mobilav==1)    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                 else {    first=1;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficgp,"\n# Routine varprob");
                 }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                    fprintf(fichtm,"\n");
               }  
               if (h==(int)(calagedate+12*cpt)){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
                 fprintf(ficresf," %.3f", kk1);    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
                            file %s<br>\n",optionfilehtmcov);
               }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
             }  and drawn. It helps understanding how is the covariance between two incidences.\
           }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     }  standard deviations wide on each axis. <br>\
   }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
   fclose(ficresf);    cov[1]=1;
 }    tj=cptcoveff;
 /************** Forecasting ******************/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    j1=0;
      for(t=1; t<=tj;t++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(i1=1; i1<=ncodemax[t];i1++){ 
   int *popage;        j1++;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        if  (cptcovn>0) {
   double *popeffectif,*popcount;          fprintf(ficresprob, "\n#********** Variable "); 
   double ***p3mat,***tabpop,***tabpopprev;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char filerespop[FILENAMELENGTH];          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprobcov, "**********\n#\n");
   agelim=AGESUP;          
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          fprintf(ficgp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fprintf(ficgp, "**********\n#\n");
            
            
   strcpy(filerespop,"pop");          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   strcat(filerespop,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("Problem with forecast resultfile: %s\n", filerespop);          
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficresprobcor, "\n#********** Variable ");    
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficresprobcor, "**********\n#");    
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        }
         
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   if (mobilav==1) {          for (k=1; k<=cptcovn;k++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if (stepm<=12) stepsize=1;          
            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   agelim=AGESUP;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            gp=vector(1,(nlstate)*(nlstate+ndeath));
   hstepm=1;          gm=vector(1,(nlstate)*(nlstate+ndeath));
   hstepm=hstepm/stepm;      
            for(theta=1; theta <=npar; theta++){
   if (popforecast==1) {            for(i=1; i<=npar; i++)
     if((ficpop=fopen(popfile,"r"))==NULL) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       printf("Problem with population file : %s\n",popfile);exit(0);            
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     }            
     popage=ivector(0,AGESUP);            k=0;
     popeffectif=vector(0,AGESUP);            for(i=1; i<= (nlstate); i++){
     popcount=vector(0,AGESUP);              for(j=1; j<=(nlstate+ndeath);j++){
                    k=k+1;
     i=1;                  gp[k]=pmmij[i][j];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              }
                }
     imx=i;            
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
   for(cptcov=1;cptcov<=i2;cptcov++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            k=0;
       k=k+1;            for(i=1; i<=(nlstate); i++){
       fprintf(ficrespop,"\n#******");              for(j=1; j<=(nlstate+ndeath);j++){
       for(j=1;j<=cptcoveff;j++) {                k=k+1;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                gm[k]=pmmij[i][j];
       }              }
       fprintf(ficrespop,"******\n");            }
       fprintf(ficrespop,"# Age");       
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       if (popforecast==1)  fprintf(ficrespop," [Population]");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                }
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                    for(theta=1; theta <=npar; theta++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              trgradg[j][theta]=gradg[theta][j];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          
           nhstepm = nhstepm/hstepm;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                    matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           oldm=oldms;savm=savms;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                  free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          
             }          k=0;
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1; i<=(nlstate); i++){
               kk1=0.;kk2=0;            for(j=1; j<=(nlstate+ndeath);j++){
               for(i=1; i<=nlstate;i++) {                            k=k+1;
                 if (mobilav==1)              mu[k][(int) age]=pmmij[i][j];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                 }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               }              varpij[i][j][(int)age] = doldm[i][j];
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          /*printf("\n%d ",(int)age);
                   /*fprintf(ficrespop," %.3f", kk1);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }            }*/
             for(i=1; i<=nlstate;i++){  
               kk1=0.;          fprintf(ficresprob,"\n%d ",(int)age);
                 for(j=1; j<=nlstate;j++){          fprintf(ficresprobcov,"\n%d ",(int)age);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          fprintf(ficresprobcor,"\n%d ",(int)age);
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          i=0;
         }          for (k=1; k<=(nlstate);k++){
       }            for (l=1; l<=(nlstate+ndeath);l++){ 
                i=i++;
   /******/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {              for (j=1; j<=i;j++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              }
           nhstepm = nhstepm/hstepm;            }
                    }/* end of loop for state */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of loop for age */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /* Confidence intervalle of pij  */
           for (h=0; h<=nhstepm; h++){        /*
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficgp,"\nset noparametric;unset label");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
               kk1=0.;kk2=0;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               for(i=1; i<=nlstate;i++) {                        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
               }        */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           }        first1=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k2=1; k2<=(nlstate);k2++){
         }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       }            if(l2==k2) continue;
    }            j=(k2-1)*(nlstate+ndeath)+l2;
   }            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
   if (popforecast==1) {                if(i<=j) continue;
     free_ivector(popage,0,AGESUP);                for (age=bage; age<=fage; age ++){ 
     free_vector(popeffectif,0,AGESUP);                  if ((int)age %5==0){
     free_vector(popcount,0,AGESUP);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   fclose(ficrespop);                    mu2=mu[j][(int) age]/stepm*YEARM;
 }                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
 /***********************************************/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 /**************** Main Program *****************/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 /***********************************************/                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 int main(int argc, char *argv[])                    /*v21=sqrt(1.-v11*v11); *//* error */
 {                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                    v22=v11;
   double agedeb, agefin,hf;                    tnalp=v21/v11;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                    if(first1==1){
                       first1=0;
   double fret;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double **xi,tmp,delta;                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double dum; /* Dummy variable */                    /*printf(fignu*/
   double ***p3mat;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   int *indx;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   char line[MAXLINE], linepar[MAXLINE];                    if(first==1){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                      first=0;
   int firstobs=1, lastobs=10;                      fprintf(ficgp,"\nset parametric;unset label");
   int sdeb, sfin; /* Status at beginning and end */                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   int c,  h , cpt,l;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   int ju,jl, mi;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   int mobilav=0,popforecast=0;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   int hstepm, nhstepm;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   double bage, fage, age, agelim, agebase;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double ftolpl=FTOL;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double **prlim;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double *severity;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double ***param; /* Matrix of parameters */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double  *p;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double **matcov; /* Matrix of covariance */                    }else{
   double ***delti3; /* Scale */                      first=0;
   double *delti; /* Scale */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   double ***eij, ***vareij;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double **varpl; /* Variances of prevalence limits by age */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double *epj, vepp;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double kk1, kk2;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
                   } /* age mod 5 */
   char *alph[]={"a","a","b","c","d","e"}, str[4];                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
   char z[1]="c", occ;              } /*l12 */
 #include <sys/time.h>            } /* k12 */
 #include <time.h>          } /*l1 */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }/* k1 */
        } /* loop covariates */
   /* long total_usecs;    }
   struct timeval start_time, end_time;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    free_vector(xp,1,npar);
   getcwd(pathcd, size);    fclose(ficresprob);
     fclose(ficresprobcov);
   printf("\n%s",version);    fclose(ficresprobcor);
   if(argc <=1){    fflush(ficgp);
     printf("\nEnter the parameter file name: ");    fflush(fichtmcov);
     scanf("%s",pathtot);  }
   }  
   else{  
     strcpy(pathtot,argv[1]);  /******************* Printing html file ***********/
   }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                    int lastpass, int stepm, int weightopt, char model[],\
   /*cygwin_split_path(pathtot,path,optionfile);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                    int popforecast, int estepm ,\
   /* cutv(path,optionfile,pathtot,'\\');*/                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int jj1, k1, i1, cpt;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /*char optionfilehtm[FILENAMELENGTH];*/
   chdir(path);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   replace(pathc,path);  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
 /*-------- arguments in the command line --------*/  /*   } */
   
   /* Log file */     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   strcat(filelog, optionfilefiname);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
   strcat(filelog,".log");    /* */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
   if((ficlog=fopen(filelog,"w"))==NULL)    {   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
     printf("Problem with logfile %s\n",filelog);   - Life expectancies by age and initial health status (estepm=%2d months): \
     goto end;     <a href=\"%s\">%s</a> <br>\n</li>", \
   }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
   fprintf(ficlog,"Log filename:%s\n",filelog);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
   fprintf(ficlog,"\n%s",version);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
   fprintf(ficlog,"\nEnter the parameter file name: ");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   fflush(ficlog);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
   /* */   m=cptcoveff;
   strcpy(fileres,"r");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */   jj1=0;
    for(k1=1; k1<=m;k1++){
   /*---------arguments file --------*/     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       if (cptcovn > 0) {
     printf("Problem with optionfile %s\n",optionfile);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     goto end;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   strcpy(filereso,"o");       /* Pij */
   strcat(filereso,fileres);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   if((ficparo=fopen(filereso,"w"))==NULL) {  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     printf("Problem with Output resultfile: %s\n", filereso);       /* Quasi-incidences */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     goto end;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
   /* Reads comments: lines beginning with '#' */         for(cpt=1; cpt<nlstate;cpt++){
   while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     fgets(line, MAXLINE, ficpar);         }
     puts(line);       for(cpt=1; cpt<=nlstate;cpt++) {
     fputs(line,ficparo);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   ungetc(c,ficpar);       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  health expectancies in states (1) and (2): %s%d.png<br>\
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);     } /* end i1 */
 while((c=getc(ficpar))=='#' && c!= EOF){   }/* End k1 */
     ungetc(c,ficpar);   fprintf(fichtm,"</ul>");
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   ungetc(c,ficpar);   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
       - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   covar=matrix(0,NCOVMAX,1,n);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
   cptcovn=0;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
   ncovmodel=2+cptcovn;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
             subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
   /* Read guess parameters */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
   /* Reads comments: lines beginning with '#' */           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
   while((c=getc(ficpar))=='#' && c!= EOF){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     puts(line);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     fputs(line,ficparo);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   }  /*      <br>",fileres,fileres,fileres,fileres); */
   ungetc(c,ficpar);  /*  else  */
    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){   m=cptcoveff;
       fscanf(ficpar,"%1d%1d",&i1,&j1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fprintf(ficparo,"%1d%1d",i1,j1);  
       if(mle==1)   jj1=0;
         printf("%1d%1d",i,j);   for(k1=1; k1<=m;k1++){
       fprintf(ficlog,"%1d%1d",i,j);     for(i1=1; i1<=ncodemax[k1];i1++){
       for(k=1; k<=ncovmodel;k++){       jj1++;
         fscanf(ficpar," %lf",&param[i][j][k]);       if (cptcovn > 0) {
         if(mle==1){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           printf(" %lf",param[i][j][k]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
           fprintf(ficlog," %lf",param[i][j][k]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         else       }
           fprintf(ficlog," %lf",param[i][j][k]);       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(ficparo," %lf",param[i][j][k]);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
       }  interval) in state (%d): %s%d%d.png <br>\
       fscanf(ficpar,"\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       if(mle==1)       }
         printf("\n");     } /* end i1 */
       fprintf(ficlog,"\n");   }/* End k1 */
       fprintf(ficparo,"\n");   fprintf(fichtm,"</ul>");
     }   fflush(fichtm);
    }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   /******************* Gnuplot file **************/
   p=param[1][1];  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   /* Reads comments: lines beginning with '#' */    char dirfileres[132],optfileres[132];
   while((c=getc(ficpar))=='#' && c!= EOF){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     ungetc(c,ficpar);    int ng;
     fgets(line, MAXLINE, ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     puts(line);  /*     printf("Problem with file %s",optionfilegnuplot); */
     fputs(line,ficparo);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   ungetc(c,ficpar);  
     /*#ifdef windows */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      /*#endif */
   for(i=1; i <=nlstate; i++){    m=pow(2,cptcoveff);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcpy(dirfileres,optionfilefiname);
       printf("%1d%1d",i,j);    strcpy(optfileres,"vpl");
       fprintf(ficparo,"%1d%1d",i1,j1);   /* 1eme*/
       for(k=1; k<=ncovmodel;k++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);     for (k1=1; k1<= m ; k1 ++) {
         printf(" %le",delti3[i][j][k]);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficparo," %le",delti3[i][j][k]);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       }       fprintf(ficgp,"set xlabel \"Age\" \n\
       fscanf(ficpar,"\n");  set ylabel \"Probability\" \n\
       printf("\n");  set ter png small\n\
       fprintf(ficparo,"\n");  set size 0.65,0.65\n\
     }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   }  
   delti=delti3[1][1];       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /* Reads comments: lines beginning with '#' */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fgets(line, MAXLINE, ficpar);       for (i=1; i<= nlstate ; i ++) {
     puts(line);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fputs(line,ficparo);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       } 
   ungetc(c,ficpar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         for (i=1; i<= nlstate ; i ++) {
   matcov=matrix(1,npar,1,npar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(i=1; i <=npar; i++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fscanf(ficpar,"%s",&str);       }  
     if(mle==1)       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       printf("%s",str);     }
     fprintf(ficlog,"%s",str);    }
     fprintf(ficparo,"%s",str);    /*2 eme*/
     for(j=1; j <=i; j++){    
       fscanf(ficpar," %le",&matcov[i][j]);    for (k1=1; k1<= m ; k1 ++) { 
       if(mle==1){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         printf(" %.5le",matcov[i][j]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         fprintf(ficlog," %.5le",matcov[i][j]);      
       }      for (i=1; i<= nlstate+1 ; i ++) {
       else        k=2*i;
         fprintf(ficlog," %.5le",matcov[i][j]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficparo," %.5le",matcov[i][j]);        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fscanf(ficpar,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
     if(mle==1)        }   
       printf("\n");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     fprintf(ficlog,"\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     fprintf(ficparo,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   for(i=1; i <=npar; i++)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(j=i+1;j<=npar;j++)          else fprintf(ficgp," \%%*lf (\%%*lf)");
       matcov[i][j]=matcov[j][i];        }   
            fprintf(ficgp,"\" t\"\" w l 0,");
   if(mle==1)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("\n");        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficlog,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
     /*-------- Rewriting paramater file ----------*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      strcpy(rfileres,"r");    /* "Rparameterfile */        else fprintf(ficgp,"\" t\"\" w l 0,");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      }
      strcat(rfileres,".");    /* */    }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    
     if((ficres =fopen(rfileres,"w"))==NULL) {    /*3eme*/
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    for (k1=1; k1<= m ; k1 ++) { 
     }      for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficres,"#%s\n",version);        k=2+nlstate*(2*cpt-2);
            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     /*-------- data file ----------*/        fprintf(ficgp,"set ter png small\n\
     if((fic=fopen(datafile,"r"))==NULL)    {  set size 0.65,0.65\n\
       printf("Problem with datafile: %s\n", datafile);goto end;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     n= lastobs;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     severity = vector(1,maxwav);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     num=ivector(1,n);          
     moisnais=vector(1,n);        */
     annais=vector(1,n);        for (i=1; i< nlstate ; i ++) {
     moisdc=vector(1,n);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     andc=vector(1,n);          
     agedc=vector(1,n);        } 
     cod=ivector(1,n);      }
     weight=vector(1,n);    }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    /* CV preval stable (period) */
     anint=matrix(1,maxwav,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     s=imatrix(1,maxwav+1,1,n);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     adl=imatrix(1,maxwav+1,1,n);            k=3;
     tab=ivector(1,NCOVMAX);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     ncodemax=ivector(1,8);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
     i=1;  unset log y\n\
     while (fgets(line, MAXLINE, fic) != NULL)    {  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       if ((i >= firstobs) && (i <=lastobs)) {        
                for (i=1; i< nlstate ; i ++)
         for (j=maxwav;j>=1;j--){          fprintf(ficgp,"+$%d",k+i+1);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
           strcpy(line,stra);        
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        l=3+(nlstate+ndeath)*cpt;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         }        for (i=1; i< nlstate ; i ++) {
                  l=3+(nlstate+ndeath)*cpt;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"+$%d",l+i+1);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      } 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    }  
     
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /* proba elementaires */
         for (j=ncovcol;j>=1;j--){    for(i=1,jk=1; i <=nlstate; i++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(k=1; k <=(nlstate+ndeath); k++){
         }        if (k != i) {
         num[i]=atol(stra);          for(j=1; j <=ncovmodel; j++){
                    fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            jk++; 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            fprintf(ficgp,"\n");
           }
         i=i+1;        }
       }      }
     }     }
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   imx=i-1; /* Number of individuals */       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   /* for (i=1; i<=imx; i++){         if (ng==2)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;         else
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;           fprintf(ficgp,"\nset title \"Probability\"\n");
     }*/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
    /*  for (i=1; i<=imx; i++){         i=1;
      if (s[4][i]==9)  s[4][i]=-1;         for(k2=1; k2<=nlstate; k2++) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/           k3=i;
             for(k=1; k<=(nlstate+ndeath); k++) {
               if (k != k2){
   /* Calculation of the number of parameter from char model*/               if(ng==2)
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   Tprod=ivector(1,15);               else
   Tvaraff=ivector(1,15);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   Tvard=imatrix(1,15,1,2);               ij=1;
   Tage=ivector(1,15);                     for(j=3; j <=ncovmodel; j++) {
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   if (strlen(model) >1){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     j=0, j1=0, k1=1, k2=1;                   ij++;
     j=nbocc(model,'+');                 }
     j1=nbocc(model,'*');                 else
     cptcovn=j+1;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     cptcovprod=j1;               }
                   fprintf(ficgp,")/(1");
     strcpy(modelsav,model);               
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){               for(k1=1; k1 <=nlstate; k1++){   
       printf("Error. Non available option model=%s ",model);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       fprintf(ficlog,"Error. Non available option model=%s ",model);                 ij=1;
       goto end;                 for(j=3; j <=ncovmodel; j++){
     }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                         fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     for(i=(j+1); i>=1;i--){                     ij++;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                   }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                   else
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       /*scanf("%d",i);*/                 }
       if (strchr(strb,'*')) {  /* Model includes a product */                 fprintf(ficgp,")");
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/               }
         if (strcmp(strc,"age")==0) { /* Vn*age */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           cptcovprod--;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           cutv(strb,stre,strd,'V');               i=i+ncovmodel;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/             }
           cptcovage++;           } /* end k */
             Tage[cptcovage]=i;         } /* end k2 */
             /*printf("stre=%s ", stre);*/       } /* end jk */
         }     } /* end ng */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */     fflush(ficgp); 
           cptcovprod--;  }  /* end gnuplot */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);  
           cptcovage++;  /*************** Moving average **************/
           Tage[cptcovage]=i;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         }  
         else {  /* Age is not in the model */    int i, cpt, cptcod;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    int modcovmax =1;
           Tvar[i]=ncovcol+k1;    int mobilavrange, mob;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    double age;
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           Tvard[k1][2]=atoi(stre); /* n */                             a covariate has 2 modalities */
           Tvar[cptcovn+k2]=Tvard[k1][1];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      if(mobilav==1) mobilavrange=5; /* default */
           k1++;      else mobilavrange=mobilav;
           k2=k2+2;      for (age=bage; age<=fage; age++)
         }        for (i=1; i<=nlstate;i++)
       }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       else { /* no more sum */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      /* We keep the original values on the extreme ages bage, fage and for 
        /*  scanf("%d",i);*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       cutv(strd,strc,strb,'V');         we use a 5 terms etc. until the borders are no more concerned. 
       Tvar[i]=atoi(strc);      */ 
       }      for (mob=3;mob <=mobilavrange;mob=mob+2){
       strcpy(modelsav,stra);          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          for (i=1; i<=nlstate;i++){
         scanf("%d",i);*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     } /* end of loop + */              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   } /* end model */                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   printf("cptcovprod=%d ", cptcovprod);                }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   scanf("%d ",i);*/            }
     fclose(fic);          }
         }/* end age */
     /*  if(mle==1){*/      }/* end mob */
     if (weightopt != 1) { /* Maximisation without weights*/    }else return -1;
       for(i=1;i<=n;i++) weight[i]=1.0;    return 0;
     }  }/* End movingaverage */
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);  
   /************** Forecasting ******************/
     for (i=1; i<=imx; i++) {  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       for(m=2; (m<= maxwav); m++) {    /* proj1, year, month, day of starting projection 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       agemin, agemax range of age
          anint[m][i]=9999;       dateprev1 dateprev2 range of dates during which prevalence is computed
          s[m][i]=-1;       anproj2 year of en of projection (same day and month as proj1).
        }    */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       }    int *popage;
     }    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     for (i=1; i<=imx; i++)  {    double *popeffectif,*popcount;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double ***p3mat;
       for(m=1; (m<= maxwav); m++){    double ***mobaverage;
         if(s[m][i] >0){    char fileresf[FILENAMELENGTH];
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    agelim=AGESUP;
               if(moisdc[i]!=99 && andc[i]!=9999)    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                 agev[m][i]=agedc[i];   
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    strcpy(fileresf,"f"); 
            else {    strcat(fileresf,fileres);
               if (andc[i]!=9999){    if((ficresf=fopen(fileresf,"w"))==NULL) {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      printf("Problem with forecast resultfile: %s\n", fileresf);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
               agev[m][i]=-1;    }
               }    printf("Computing forecasting: result on file '%s' \n", fileresf);
             }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)    if (mobilav!=0) {
               agev[m][i]=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             else if(agev[m][i] <agemin){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               agemin=agev[m][i];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
             else if(agev[m][i] >agemax){    }
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
             }    if (stepm<=12) stepsize=1;
             /*agev[m][i]=anint[m][i]-annais[i];*/    if(estepm < stepm){
             /*   agev[m][i] = age[i]+2*m;*/      printf ("Problem %d lower than %d\n",estepm, stepm);
           }    }
           else { /* =9 */    else  hstepm=estepm;   
             agev[m][i]=1;  
             s[m][i]=-1;    hstepm=hstepm/stepm; 
           }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
         }                                 fractional in yp1 */
         else /*= 0 Unknown */    anprojmean=yp;
           agev[m][i]=1;    yp2=modf((yp1*12),&yp);
       }    mprojmean=yp;
        yp1=modf((yp2*30.5),&yp);
     }    jprojmean=yp;
     for (i=1; i<=imx; i++)  {    if(jprojmean==0) jprojmean=1;
       for(m=1; (m<= maxwav); m++){    if(mprojmean==0) jprojmean=1;
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      i1=cptcoveff;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      if (cptcovn < 1){i1=1;}
           goto end;    
         }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       }    
     }    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /*            if (h==(int)(YEARM*yearp)){ */
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     free_vector(severity,1,maxwav);        k=k+1;
     free_imatrix(outcome,1,maxwav+1,1,n);        fprintf(ficresf,"\n#******");
     free_vector(moisnais,1,n);        for(j=1;j<=cptcoveff;j++) {
     free_vector(annais,1,n);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     /* free_matrix(mint,1,maxwav,1,n);        }
        free_matrix(anint,1,maxwav,1,n);*/        fprintf(ficresf,"******\n");
     free_vector(moisdc,1,n);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     free_vector(andc,1,n);        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
                fprintf(ficresf," p%d%d",i,j);
     wav=ivector(1,imx);          fprintf(ficresf," p.%d",j);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
              fprintf(ficresf,"\n");
     /* Concatenates waves */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       Tcode=ivector(1,100);            nhstepm = nhstepm/hstepm; 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       ncodemax[1]=1;            oldm=oldms;savm=savms;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
                
    codtab=imatrix(1,100,1,10);            for (h=0; h<=nhstepm; h++){
    h=0;              if (h*hstepm/YEARM*stepm ==yearp) {
    m=pow(2,cptcoveff);                fprintf(ficresf,"\n");
                  for(j=1;j<=cptcoveff;j++) 
    for(k=1;k<=cptcoveff; k++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      for(i=1; i <=(m/pow(2,k));i++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
        for(j=1; j <= ncodemax[k]; j++){              } 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              for(j=1; j<=nlstate+ndeath;j++) {
            h++;                ppij=0.;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                for(i=1; i<=nlstate;i++) {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                  if (mobilav==1) 
          }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
        }                  else {
      }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
    }                  }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                  if (h*hstepm/YEARM*stepm== yearp) {
       codtab[1][2]=1;codtab[2][2]=2; */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
    /* for(i=1; i <=m ;i++){                  }
       for(k=1; k <=cptcovn; k++){                } /* end i */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                if (h*hstepm/YEARM*stepm==yearp) {
       }                  fprintf(ficresf," %.3f", ppij);
       printf("\n");                }
       }              }/* end j */
       scanf("%d",i);*/            } /* end h */
                free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    /* Calculates basic frequencies. Computes observed prevalence at single age          } /* end agec */
        and prints on file fileres'p'. */        } /* end yearp */
       } /* end cptcod */
        } /* end  cptcov */
             
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresf);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        /************** Forecasting *****not tested NB*************/
     /* For Powell, parameters are in a vector p[] starting at p[1]  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     if(mle==1){    double calagedatem, agelim, kk1, kk2;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double *popeffectif,*popcount;
     }    double ***p3mat,***tabpop,***tabpopprev;
        double ***mobaverage;
     /*--------- results files --------------*/    char filerespop[FILENAMELENGTH];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    jk=1;    agelim=AGESUP;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    for(i=1,jk=1; i <=nlstate; i++){    
      for(k=1; k <=(nlstate+ndeath); k++){    
        if (k != i)    strcpy(filerespop,"pop"); 
          {    strcat(filerespop,fileres);
            printf("%d%d ",i,k);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
            fprintf(ficlog,"%d%d ",i,k);      printf("Problem with forecast resultfile: %s\n", filerespop);
            fprintf(ficres,"%1d%1d ",i,k);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
            for(j=1; j <=ncovmodel; j++){    }
              printf("%f ",p[jk]);    printf("Computing forecasting: result on file '%s' \n", filerespop);
              fprintf(ficlog,"%f ",p[jk]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
            }  
            printf("\n");    if (mobilav!=0) {
            fprintf(ficlog,"\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fprintf(ficres,"\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    }      }
    if(mle==1){    }
      /* Computing hessian and covariance matrix */  
      ftolhess=ftol; /* Usually correct */    stepsize=(int) (stepm+YEARM-1)/YEARM;
      hesscov(matcov, p, npar, delti, ftolhess, func);    if (stepm<=12) stepsize=1;
    }    
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    agelim=AGESUP;
    printf("# Scales (for hessian or gradient estimation)\n");    
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    hstepm=1;
    for(i=1,jk=1; i <=nlstate; i++){    hstepm=hstepm/stepm; 
      for(j=1; j <=nlstate+ndeath; j++){    
        if (j!=i) {    if (popforecast==1) {
          fprintf(ficres,"%1d%1d",i,j);      if((ficpop=fopen(popfile,"r"))==NULL) {
          printf("%1d%1d",i,j);        printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"%1d%1d",i,j);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
          for(k=1; k<=ncovmodel;k++){      } 
            printf(" %.5e",delti[jk]);      popage=ivector(0,AGESUP);
            fprintf(ficlog," %.5e",delti[jk]);      popeffectif=vector(0,AGESUP);
            fprintf(ficres," %.5e",delti[jk]);      popcount=vector(0,AGESUP);
            jk++;      
          }      i=1;   
          printf("\n");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
          fprintf(ficlog,"\n");     
          fprintf(ficres,"\n");      imx=i;
        }      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
      }    }
    }  
        for(cptcov=1,k=0;cptcov<=i2;cptcov++){
    k=1;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        k=k+1;
    if(mle==1)        fprintf(ficrespop,"\n#******");
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for(j=1;j<=cptcoveff;j++) {
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    for(i=1;i<=npar;i++){        }
      /*  if (k>nlstate) k=1;        fprintf(ficrespop,"******\n");
          i1=(i-1)/(ncovmodel*nlstate)+1;        fprintf(ficrespop,"# Age");
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
          printf("%s%d%d",alph[k],i1,tab[i]);*/        if (popforecast==1)  fprintf(ficrespop," [Population]");
      fprintf(ficres,"%3d",i);        
      if(mle==1)        for (cpt=0; cpt<=0;cpt++) { 
        printf("%3d",i);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      fprintf(ficlog,"%3d",i);          
      for(j=1; j<=i;j++){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
        fprintf(ficres," %.5e",matcov[i][j]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
        if(mle==1)            nhstepm = nhstepm/hstepm; 
          printf(" %.5e",matcov[i][j]);            
        fprintf(ficlog," %.5e",matcov[i][j]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }            oldm=oldms;savm=savms;
      fprintf(ficres,"\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
      if(mle==1)          
        printf("\n");            for (h=0; h<=nhstepm; h++){
      fprintf(ficlog,"\n");              if (h==(int) (calagedatem+YEARM*cpt)) {
      k++;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
    }              } 
                  for(j=1; j<=nlstate+ndeath;j++) {
    while((c=getc(ficpar))=='#' && c!= EOF){                kk1=0.;kk2=0;
      ungetc(c,ficpar);                for(i=1; i<=nlstate;i++) {              
      fgets(line, MAXLINE, ficpar);                  if (mobilav==1) 
      puts(line);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
      fputs(line,ficparo);                  else {
    }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
    ungetc(c,ficpar);                  }
    estepm=0;                }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                if (h==(int)(calagedatem+12*cpt)){
    if (estepm==0 || estepm < stepm) estepm=stepm;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
    if (fage <= 2) {                    /*fprintf(ficrespop," %.3f", kk1);
      bage = ageminpar;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
      fage = agemaxpar;                }
    }              }
                  for(i=1; i<=nlstate;i++){
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                kk1=0.;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  for(j=1; j<=nlstate;j++){
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                      }
    while((c=getc(ficpar))=='#' && c!= EOF){                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
      ungetc(c,ficpar);              }
      fgets(line, MAXLINE, ficpar);  
      puts(line);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
      fputs(line,ficparo);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
    }            }
    ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /******/
      
    while((c=getc(ficpar))=='#' && c!= EOF){        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
      ungetc(c,ficpar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      fgets(line, MAXLINE, ficpar);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
      puts(line);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
      fputs(line,ficparo);            nhstepm = nhstepm/hstepm; 
    }            
    ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            for (h=0; h<=nhstepm; h++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fscanf(ficpar,"pop_based=%d\n",&popbased);              } 
   fprintf(ficparo,"pop_based=%d\n",popbased);                for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficres,"pop_based=%d\n",popbased);                  kk1=0.;kk2=0;
                  for(i=1; i<=nlstate;i++) {              
   while((c=getc(ficpar))=='#' && c!= EOF){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     puts(line);              }
     fputs(line,ficparo);            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);          }
         }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);     } 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
 while((c=getc(ficpar))=='#' && c!= EOF){    if (popforecast==1) {
     ungetc(c,ficpar);      free_ivector(popage,0,AGESUP);
     fgets(line, MAXLINE, ficpar);      free_vector(popeffectif,0,AGESUP);
     puts(line);      free_vector(popcount,0,AGESUP);
     fputs(line,ficparo);    }
   }    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  } /* End of popforecast */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  int fileappend(FILE *fichier, char *optionfich)
   {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
 /*------------ gnuplot -------------*/      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   strcpy(optionfilegnuplot,optionfilefiname);      return (0);
   strcat(optionfilegnuplot,".gp");    }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fflush(fichier);
     printf("Problem with file %s",optionfilegnuplot);    return (1);
   }  }
   fclose(ficgp);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  {
 /*--------- index.htm --------*/  
     char ca[32], cb[32], cc[32];
   strcpy(optionfilehtm,optionfile);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   strcat(optionfilehtm,".htm");    int numlinepar;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      jj=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for(j=1; j <=nlstate+ndeath; j++){
 \n        if(j==i) continue;
 Total number of observations=%d <br>\n        jj++;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        /*ca[0]= k+'a'-1;ca[1]='\0';*/
 <hr  size=\"2\" color=\"#EC5E5E\">        printf("%1d%1d",i,j);
  <ul><li><h4>Parameter files</h4>\n        fprintf(ficparo,"%1d%1d",i,j);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        for(k=1; k<=ncovmodel;k++){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n          /*        printf(" %lf",param[i][j][k]); */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   fclose(fichtm);          printf(" 0.");
           fprintf(ficparo," 0.");
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        }
          printf("\n");
 /*------------ free_vector  -------------*/        fprintf(ficparo,"\n");
  chdir(path);      }
      }
  free_ivector(wav,1,imx);    printf("# Scales (for hessian or gradient estimation)\n");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
  free_ivector(num,1,n);    for(i=1; i <=nlstate; i++){
  free_vector(agedc,1,n);      jj=0;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      for(j=1; j <=nlstate+ndeath; j++){
  fclose(ficparo);        if(j==i) continue;
  fclose(ficres);        jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
   /*--------------- Prevalence limit --------------*/        fflush(stdout);
          for(k=1; k<=ncovmodel;k++){
   strcpy(filerespl,"pl");          /*      printf(" %le",delti3[i][j][k]); */
   strcat(filerespl,fileres);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          printf(" 0.");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          fprintf(ficparo," 0.");
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }
   }        numlinepar++;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        printf("\n");
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficparo,"\n");
   fprintf(ficrespl,"#Prevalence limit\n");      }
   fprintf(ficrespl,"#Age ");    }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    printf("# Covariance matrix\n");
   fprintf(ficrespl,"\n");  /* # 121 Var(a12)\n\ */
    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   prlim=matrix(1,nlstate,1,nlstate);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   k=0;    fflush(stdout);
   agebase=ageminpar;    fprintf(ficparo,"# Covariance matrix\n");
   agelim=agemaxpar;    /* # 121 Var(a12)\n\ */
   ftolpl=1.e-10;    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   i1=cptcoveff;    /* #   ...\n\ */
   if (cptcovn < 1){i1=1;}    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
   for(cptcov=1;cptcov<=i1;cptcov++){    for(itimes=1;itimes<=2;itimes++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      jj=0;
         k=k+1;      for(i=1; i <=nlstate; i++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(j=1; j <=nlstate+ndeath; j++){
         fprintf(ficrespl,"\n#******");          if(j==i) continue;
         printf("\n#******");          for(k=1; k<=ncovmodel;k++){
         fprintf(ficlog,"\n#******");            jj++;
         for(j=1;j<=cptcoveff;j++) {            ca[0]= k+'a'-1;ca[1]='\0';
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(itimes==1){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              printf("#%1d%1d%d",i,j,k);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
         }            }else{
         fprintf(ficrespl,"******\n");              printf("%1d%1d%d",i,j,k);
         printf("******\n");              fprintf(ficparo,"%1d%1d%d",i,j,k);
         fprintf(ficlog,"******\n");              /*  printf(" %.5le",matcov[i][j]); */
                    }
         for (age=agebase; age<=agelim; age++){            ll=0;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for(li=1;li <=nlstate; li++){
           fprintf(ficrespl,"%.0f",age );              for(lj=1;lj <=nlstate+ndeath; lj++){
           for(i=1; i<=nlstate;i++)                if(lj==li) continue;
           fprintf(ficrespl," %.5f", prlim[i][i]);                for(lk=1;lk<=ncovmodel;lk++){
           fprintf(ficrespl,"\n");                  ll++;
         }                  if(ll<=jj){
       }                    cb[0]= lk +'a'-1;cb[1]='\0';
     }                    if(ll<jj){
   fclose(ficrespl);                      if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   /*------------- h Pij x at various ages ------------*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                        }else{
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                        printf(" 0.");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                        fprintf(ficparo," 0.");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                      }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                    }else{
   }                      if(itimes==1){
   printf("Computing pij: result on file '%s' \n", filerespij);                        printf(" Var(%s%1d%1d)",ca,i,j);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                        }else{
   stepsize=(int) (stepm+YEARM-1)/YEARM;                        printf(" 0.");
   /*if (stepm<=24) stepsize=2;*/                        fprintf(ficparo," 0.");
                       }
   agelim=AGESUP;                    }
   hstepm=stepsize*YEARM; /* Every year of age */                  }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                } /* end lk */
               } /* end lj */
   /* hstepm=1;   aff par mois*/            } /* end li */
             printf("\n");
   k=0;            fprintf(ficparo,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){            numlinepar++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          } /* end k*/
       k=k+1;        } /*end j */
         fprintf(ficrespij,"\n#****** ");      } /* end i */
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  } /* end of prwizard */
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /***********************************************/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /**************** Main Program *****************/
   /***********************************************/
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  
   int main(int argc, char *argv[])
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
           oldm=oldms;savm=savms;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           fprintf(ficrespij,"# Age");    int jj, imk;
           for(i=1; i<=nlstate;i++)    int numlinepar=0; /* Current linenumber of parameter file */
             for(j=1; j<=nlstate+ndeath;j++)    /*  FILE *fichtm; *//* Html File */
               fprintf(ficrespij," %1d-%1d",i,j);    /* FILE *ficgp;*/ /*Gnuplot File */
           fprintf(ficrespij,"\n");    double agedeb, agefin,hf;
            for (h=0; h<=nhstepm; h++){    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)    double fret;
               for(j=1; j<=nlstate+ndeath;j++)    double **xi,tmp,delta;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");    double dum; /* Dummy variable */
              }    double ***p3mat;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***mobaverage;
           fprintf(ficrespij,"\n");    int *indx;
         }    char line[MAXLINE], linepar[MAXLINE];
     }    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   }    char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
   fclose(ficrespij);    int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
   /*---------- Forecasting ------------------*/    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   if((stepm == 1) && (strcmp(model,".")==0)){    int mobilav=0,popforecast=0;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    int hstepm, nhstepm;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   }    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   else{  
     erreur=108;    double bage, fage, age, agelim, agebase;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double ftolpl=FTOL;
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double **prlim;
   }    double *severity;
      double ***param; /* Matrix of parameters */
     double  *p;
   /*---------- Health expectancies and variances ------------*/    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
   strcpy(filerest,"t");    double *delti; /* Scale */
   strcat(filerest,fileres);    double ***eij, ***vareij;
   if((ficrest=fopen(filerest,"w"))==NULL) {    double **varpl; /* Variances of prevalence limits by age */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double *epj, vepp;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    double kk1, kk2;
   }    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
   strcpy(filerese,"e");    char z[1]="c", occ;
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    char strstart[80], *strt, strtend[80];
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    char *stratrunc;
   }    int lstra;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    long total_usecs;
    
   strcpy(fileresv,"v");    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   strcat(fileresv,fileres);    (void) gettimeofday(&start_time,&tzp);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    curr_time=start_time;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    tm = *localtime(&start_time.tv_sec);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    tmg = *gmtime(&start_time.tv_sec);
   }    strcpy(strstart,asctime(&tm));
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /*  printf("Localtime (at start)=%s",strstart); */
   calagedate=-1;  /*  tp.tv_sec = tp.tv_sec +86400; */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   k=0;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   tmg.tm_hour=tmg.tm_hour + 1; */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*   tp.tv_sec = mktime(&tmg); */
       k=k+1;  /*   strt=asctime(&tmg); */
       fprintf(ficrest,"\n#****** ");  /*   printf("Time(after) =%s",strstart);  */
       for(j=1;j<=cptcoveff;j++)  /*  (void) time (&time_value);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       fprintf(ficrest,"******\n");  *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
       fprintf(ficreseij,"\n#****** ");  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
       for(j=1;j<=cptcoveff;j++)  */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    nberr=0; /* Number of errors and warnings */
     nbwarn=0;
       fprintf(ficresvij,"\n#****** ");    getcwd(pathcd, size);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("\n%s\n%s",version,fullversion);
       fprintf(ficresvij,"******\n");    if(argc <=1){
       printf("\nEnter the parameter file name: ");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      scanf("%s",pathtot);
       oldm=oldms;savm=savms;    }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      else{
        strcpy(pathtot,argv[1]);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    /*cygwin_split_path(pathtot,path,optionfile);
       if(popbased==1){      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    /* cutv(path,optionfile,pathtot,'\\');*/
        }  
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
      printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    chdir(path);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    strcpy(command,"mkdir ");
       fprintf(ficrest,"\n");    strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       epj=vector(1,nlstate+1);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       for(age=bage; age <=fage ;age++){      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /* fclose(ficlog); */
         if (popbased==1) {  /*     exit(1); */
           for(i=1; i<=nlstate;i++)    }
             prlim[i][i]=probs[(int)age][i][k];  /*   if((imk=mkdir(optionfilefiname))<0){ */
         }  /*     perror("mkdir"); */
          /*   } */
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    /*-------- arguments in the command line --------*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    /* Log file */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    strcat(filelog, optionfilefiname);
           }    strcat(filelog,".log");    /* */
           epj[nlstate+1] +=epj[j];    if((ficlog=fopen(filelog,"w"))==NULL)    {
         }      printf("Problem with logfile %s\n",filelog);
       goto end;
         for(i=1, vepp=0.;i <=nlstate;i++)    }
           for(j=1;j <=nlstate;j++)    fprintf(ficlog,"Log filename:%s\n",filelog);
             vepp += vareij[i][j][(int)age];    fprintf(ficlog,"\n%s\n%s",version,fullversion);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    fprintf(ficlog,"\nEnter the parameter file name: ");
         for(j=1;j <=nlstate;j++){    fprintf(ficlog,"pathtot=%s\n\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));   path=%s \n\
         }   optionfile=%s\n\
         fprintf(ficrest,"\n");   optionfilext=%s\n\
       }   optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     }  
   }    printf("Localtime (at start):%s",strstart);
 free_matrix(mint,1,maxwav,1,n);    fprintf(ficlog,"Localtime (at start): %s",strstart);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    fflush(ficlog);
     free_vector(weight,1,n);  /*   (void) gettimeofday(&curr_time,&tzp); */
   fclose(ficreseij);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   fclose(ficresvij);  
   fclose(ficrest);    /* */
   fclose(ficpar);    strcpy(fileres,"r");
   free_vector(epj,1,nlstate+1);    strcat(fileres, optionfilefiname);
      strcat(fileres,".txt");    /* Other files have txt extension */
   /*------- Variance limit prevalence------*/    
     /*---------arguments file --------*/
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      printf("Problem with optionfile %s\n",optionfile);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     exit(0);      fflush(ficlog);
   }      goto end;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    }
   
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(filereso,"o");
       k=k+1;    strcat(filereso,fileres);
       fprintf(ficresvpl,"\n#****** ");    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       for(j=1;j<=cptcoveff;j++)      printf("Problem with Output resultfile: %s\n", filereso);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fprintf(ficresvpl,"******\n");      fflush(ficlog);
            goto end;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    /* Reads comments: lines beginning with '#' */
     }    numlinepar=0;
  }    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   fclose(ficresvpl);      fgets(line, MAXLINE, ficpar);
       numlinepar++;
   /*---------- End : free ----------------*/      puts(line);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fputs(line,ficparo);
        fputs(line,ficlog);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    ungetc(c,ficpar);
    
      fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    numlinepar++;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
      fflush(ficlog);
   free_matrix(matcov,1,npar,1,npar);    while((c=getc(ficpar))=='#' && c!= EOF){
   free_vector(delti,1,npar);      ungetc(c,ficpar);
   free_matrix(agev,1,maxwav,1,imx);      fgets(line, MAXLINE, ficpar);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      numlinepar++;
       puts(line);
   fprintf(fichtm,"\n</body>");      fputs(line,ficparo);
   fclose(fichtm);      fputs(line,ficlog);
   fclose(ficgp);    }
      ungetc(c,ficpar);
   
   if(erreur >0){     
     printf("End of Imach with error or warning %d\n",erreur);    covar=matrix(0,NCOVMAX,1,n); 
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   }else{    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
    printf("End of Imach\n");  
    fprintf(ficlog,"End of Imach\n");    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   }    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   printf("See log file on %s\n",filelog);   
   fclose(ficlog);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
        printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      fclose (ficparo);
   /*------ End -----------*/      fclose (ficlog);
       exit(0);
     }
  end:    /* Read guess parameters */
 #ifdef windows    /* Reads comments: lines beginning with '#' */
   /* chdir(pathcd);*/    while((c=getc(ficpar))=='#' && c!= EOF){
 #endif      ungetc(c,ficpar);
  /*system("wgnuplot graph.plt");*/      fgets(line, MAXLINE, ficpar);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      numlinepar++;
  /*system("cd ../gp37mgw");*/      puts(line);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      fputs(line,ficparo);
  strcpy(plotcmd,GNUPLOTPROGRAM);      fputs(line,ficlog);
  strcat(plotcmd," ");    }
  strcat(plotcmd,optionfilegnuplot);    ungetc(c,ficpar);
  system(plotcmd);  
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 #ifdef windows    for(i=1; i <=nlstate; i++){
   while (z[0] != 'q') {      j=0;
     /* chdir(path); */      for(jj=1; jj <=nlstate+ndeath; jj++){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        if(jj==i) continue;
     scanf("%s",z);        j++;
     if (z[0] == 'c') system("./imach");        fscanf(ficpar,"%1d%1d",&i1,&j1);
     else if (z[0] == 'e') system(optionfilehtm);        if ((i1 != i) && (j1 != j)){
     else if (z[0] == 'g') system(plotcmd);          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
     else if (z[0] == 'q') exit(0);          exit(1);
   }        }
 #endif        fprintf(ficparo,"%1d%1d",i1,j1);
 }        if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.91


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>