Diff for /imach/src/imach.c between versions 1.21 and 1.90

version 1.21, 2002/02/21 18:42:24 version 1.90, 2003/06/24 12:34:15
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.90  2003/06/24 12:34:15  brouard
   individuals from different ages are interviewed on their health status    (Module): Some bugs corrected for windows. Also, when
   or degree of  disability. At least a second wave of interviews    mle=-1 a template is output in file "or"mypar.txt with the design
   ("longitudinal") should  measure each new individual health status.    of the covariance matrix to be input.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.89  2003/06/24 12:30:52  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): Some bugs corrected for windows. Also, when
   reach the Maximum Likelihood of the parameters involved in the model.    mle=-1 a template is output in file "or"mypar.txt with the design
   The simplest model is the multinomial logistic model where pij is    of the covariance matrix to be input.
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.88  2003/06/23 17:54:56  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.87  2003/06/18 12:26:01  brouard
     *Covariates have to be included here again* invites you to do it.    Version 0.96
   More covariates you add, less is the speed of the convergence.  
     Revision 1.86  2003/06/17 20:04:08  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Change position of html and gnuplot routines and added
   delay between waves is not identical for each individual, or if some    routine fileappend.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx is the probability to be    * imach.c (Repository): Check when date of death was earlier that
   observed in state i at age x+h conditional to the observed state i at age    current date of interview. It may happen when the death was just
   x. The delay 'h' can be split into an exact number (nh*stepm) of    prior to the death. In this case, dh was negative and likelihood
   unobserved intermediate  states. This elementary transition (by month or    was wrong (infinity). We still send an "Error" but patch by
   quarter trimester, semester or year) is model as a multinomial logistic.    assuming that the date of death was just one stepm after the
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    interview.
   and the contribution of each individual to the likelihood is simply hPijx.    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
   Also this programme outputs the covariance matrix of the parameters but also    memory allocation. But we also truncated to 8 characters (left
   of the life expectancies. It also computes the prevalence limits.    truncation)
      (Repository): No more line truncation errors.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.84  2003/06/13 21:44:43  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository): Replace "freqsummary" at a correct
   from the European Union.    place. It differs from routine "prevalence" which may be called
   It is copyrighted identically to a GNU software product, ie programme and    many times. Probs is memory consuming and must be used with
   software can be distributed freely for non commercial use. Latest version    parcimony.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   **********************************************************************/  
      Revision 1.83  2003/06/10 13:39:11  lievre
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.82  2003/06/05 15:57:20  brouard
 #include <unistd.h>    Add log in  imach.c and  fullversion number is now printed.
   
 #define MAXLINE 256  */
 #define FILENAMELENGTH 80  /*
 /*#define DEBUG*/     Interpolated Markov Chain
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Short summary of the programme:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    
     This program computes Healthy Life Expectancies from
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 #define NINTERVMAX 8    case of a health survey which is our main interest) -2- at least a
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    second wave of interviews ("longitudinal") which measure each change
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (if any) in individual health status.  Health expectancies are
 #define NCOVMAX 8 /* Maximum number of covariates */    computed from the time spent in each health state according to a
 #define MAXN 20000    model. More health states you consider, more time is necessary to reach the
 #define YEARM 12. /* Number of months per year */    Maximum Likelihood of the parameters involved in the model.  The
 #define AGESUP 130    simplest model is the multinomial logistic model where pij is the
 #define AGEBASE 40    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int erreur; /* Error number */    'age' is age and 'sex' is a covariate. If you want to have a more
 int nvar;    complex model than "constant and age", you should modify the program
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    where the markup *Covariates have to be included here again* invites
 int npar=NPARMAX;    you to do it.  More covariates you add, slower the
 int nlstate=2; /* Number of live states */    convergence.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    The advantage of this computer programme, compared to a simple
 int popbased=0;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 int *wav; /* Number of waves for this individuual 0 is possible */    intermediate interview, the information is lost, but taken into
 int maxwav; /* Maxim number of waves */    account using an interpolation or extrapolation.  
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    hPijx is the probability to be observed in state i at age x+h
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    conditional to the observed state i at age x. The delay 'h' can be
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    split into an exact number (nh*stepm) of unobserved intermediate
 double jmean; /* Mean space between 2 waves */    states. This elementary transition (by month, quarter,
 double **oldm, **newm, **savm; /* Working pointers to matrices */    semester or year) is modelled as a multinomial logistic.  The hPx
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    matrix is simply the matrix product of nh*stepm elementary matrices
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    and the contribution of each individual to the likelihood is simply
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    hPijx.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Also this programme outputs the covariance matrix of the parameters but also
  FILE  *ficresvij;    of the life expectancies. It also computes the stable prevalence. 
   char fileresv[FILENAMELENGTH];    
  FILE  *ficresvpl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   char fileresvpl[FILENAMELENGTH];             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 #define NR_END 1    from the European Union.
 #define FREE_ARG char*    It is copyrighted identically to a GNU software product, ie programme and
 #define FTOL 1.0e-10    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define NRANSI  
 #define ITMAX 200    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define TOL 2.0e-4    
     **********************************************************************/
 #define CGOLD 0.3819660  /*
 #define ZEPS 1.0e-10    main
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    read parameterfile
     read datafile
 #define GOLD 1.618034    concatwav
 #define GLIMIT 100.0    freqsummary
 #define TINY 1.0e-20    if (mle >= 1)
       mlikeli
 static double maxarg1,maxarg2;    print results files
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    if mle==1 
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))       computes hessian
      read end of parameter file: agemin, agemax, bage, fage, estepm
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))        begin-prev-date,...
 #define rint(a) floor(a+0.5)    open gnuplot file
     open html file
 static double sqrarg;    stable prevalence
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)     for age prevalim()
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    h Pij x
     variance of p varprob
 int imx;    forecasting if prevfcast==1 prevforecast call prevalence()
 int stepm;    health expectancies
 /* Stepm, step in month: minimum step interpolation*/    Variance-covariance of DFLE
     prevalence()
 int m,nb;     movingaverage()
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    varevsij() 
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    if popbased==1 varevsij(,popbased)
 double **pmmij, ***probs, ***mobaverage;    total life expectancies
 double dateintmean=0;    Variance of stable prevalence
    end
 double *weight;  */
 int **s; /* Status */  
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
    
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #include <math.h>
 double ftolhess; /* Tolerance for computing hessian */  #include <stdio.h>
   #include <stdlib.h>
 /**************** split *************************/  #include <unistd.h>
 static  int split( char *path, char *dirc, char *name )  
 {  #include <sys/time.h>
    char *s;                             /* pointer */  #include <time.h>
    int  l1, l2;                         /* length counters */  #include "timeval.h"
   
    l1 = strlen( path );                 /* length of path */  #define MAXLINE 256
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define GNUPLOTPROGRAM "gnuplot"
    s = strrchr( path, '\\' );           /* find last / */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    if ( s == NULL ) {                   /* no directory, so use current */  #define FILENAMELENGTH 132
 #if     defined(__bsd__)                /* get current working directory */  /*#define DEBUG*/
       extern char       *getwd( );  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       if ( getwd( dirc ) == NULL ) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #else  
       extern char       *getcwd( );  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  #define NINTERVMAX 8
          return( GLOCK_ERROR_GETCWD );  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       strcpy( name, path );             /* we've got it */  #define NCOVMAX 8 /* Maximum number of covariates */
    } else {                             /* strip direcotry from path */  #define MAXN 20000
       s++;                              /* after this, the filename */  #define YEARM 12. /* Number of months per year */
       l2 = strlen( s );                 /* length of filename */  #define AGESUP 130
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define AGEBASE 40
       strcpy( name, s );                /* save file name */  #ifdef unix
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define DIRSEPARATOR '/'
       dirc[l1-l2] = 0;                  /* add zero */  #define ODIRSEPARATOR '\\'
    }  #else
    l1 = strlen( dirc );                 /* length of directory */  #define DIRSEPARATOR '\\'
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define ODIRSEPARATOR '/'
    return( 0 );                         /* we're done */  #endif
 }  
   /* $Id$ */
   /* $State$ */
 /******************************************/  
   char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
 void replace(char *s, char*t)  char fullversion[]="$Revision$ $Date$"; 
 {  int erreur; /* Error number */
   int i;  int nvar;
   int lg=20;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   i=0;  int npar=NPARMAX;
   lg=strlen(t);  int nlstate=2; /* Number of live states */
   for(i=0; i<= lg; i++) {  int ndeath=1; /* Number of dead states */
     (s[i] = t[i]);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     if (t[i]== '\\') s[i]='/';  int popbased=0;
   }  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 int nbocc(char *s, char occ)  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   int i,j=0;                     to the likelihood and the sum of weights (done by funcone)*/
   int lg=20;  int mle, weightopt;
   i=0;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   lg=strlen(s);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for(i=0; i<= lg; i++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if  (s[i] == occ ) j++;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   }  double jmean; /* Mean space between 2 waves */
   return j;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 void cutv(char *u,char *v, char*t, char occ)  FILE *ficlog, *ficrespow;
 {  int globpr; /* Global variable for printing or not */
   int i,lg,j,p=0;  double fretone; /* Only one call to likelihood */
   i=0;  long ipmx; /* Number of contributions */
   for(j=0; j<=strlen(t)-1; j++) {  double sw; /* Sum of weights */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   lg=strlen(t);  FILE *ficresprobmorprev;
   for(j=0; j<p; j++) {  FILE *fichtm; /* Html File */
     (u[j] = t[j]);  FILE *ficreseij;
   }  char filerese[FILENAMELENGTH];
      u[p]='\0';  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
    for(j=0; j<= lg; j++) {  FILE  *ficresvpl;
     if (j>=(p+1))(v[j-p-1] = t[j]);  char fileresvpl[FILENAMELENGTH];
   }  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 /********************** nrerror ********************/  char tmpout[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 void nrerror(char error_text[])  int  outcmd=0;
 {  
   fprintf(stderr,"ERREUR ...\n");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   fprintf(stderr,"%s\n",error_text);  char lfileres[FILENAMELENGTH];
   exit(1);  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
 /*********************** vector *******************/  char fileregp[FILENAMELENGTH];
 double *vector(int nl, int nh)  char popfile[FILENAMELENGTH];
 {  
   double *v;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  #define NR_END 1
   return v-nl+NR_END;  #define FREE_ARG char*
 }  #define FTOL 1.0e-10
   
 /************************ free vector ******************/  #define NRANSI 
 void free_vector(double*v, int nl, int nh)  #define ITMAX 200 
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /************************ivector *******************************/  #define ZEPS 1.0e-10 
 int *ivector(long nl,long nh)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   int *v;  #define GOLD 1.618034 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define GLIMIT 100.0 
   if (!v) nrerror("allocation failure in ivector");  #define TINY 1.0e-20 
   return v-nl+NR_END;  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /******************free ivector **************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void free_ivector(int *v, long nl, long nh)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   free((FREE_ARG)(v+nl-NR_END));  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /******************* imatrix *******************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  int imx; 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int stepm;
   int **m;  /* Stepm, step in month: minimum step interpolation*/
    
   /* allocate pointers to rows */  int estepm;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  int m,nb;
   m -= nrl;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   /* allocate rows and set pointers to them */  double **pmmij, ***probs;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  double dateintmean=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  double *weight;
   m[nrl] -= ncl;  int **s; /* Status */
    double *agedc, **covar, idx;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    
   /* return pointer to array of pointers to rows */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   return m;  double ftolhess; /* Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /****************** free_imatrix *************************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 void free_imatrix(m,nrl,nrh,ncl,nch)  {
       int **m;    char  *ss;                            /* pointer */
       long nch,ncl,nrh,nrl;    int   l1, l2;                         /* length counters */
      /* free an int matrix allocated by imatrix() */  
 {    l1 = strlen(path );                   /* length of path */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG) (m+nrl-NR_END));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /******************* matrix *******************************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 double **matrix(long nrl, long nrh, long ncl, long nch)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double **m;        return( GLOCK_ERROR_GETCWD );
       }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      strcpy( name, path );               /* we've got it */
   if (!m) nrerror("allocation failure 1 in matrix()");    } else {                              /* strip direcotry from path */
   m += NR_END;      ss++;                               /* after this, the filename */
   m -= nrl;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      strcpy( name, ss );         /* save file name */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl] += NR_END;      dirc[l1-l2] = 0;                    /* add zero */
   m[nrl] -= ncl;    }
     l1 = strlen( dirc );                  /* length of directory */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    /*#ifdef windows
   return m;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 /*************************free matrix ************************/  #endif
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    */
 {    ss = strrchr( name, '.' );            /* find last / */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    ss++;
   free((FREE_ARG)(m+nrl-NR_END));    strcpy(ext,ss);                       /* save extension */
 }    l1= strlen( name);
     l2= strlen(ss)+1;
 /******************* ma3x *******************************/    strncpy( finame, name, l1-l2);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    finame[l1-l2]= 0;
 {    return( 0 );                          /* we're done */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  }
   double ***m;  
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /******************************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  void replace_back_to_slash(char *s, char*t)
   m -= nrl;  {
     int i;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int lg=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    i=0;
   m[nrl] += NR_END;    lg=strlen(t);
   m[nrl] -= ncl;    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      if (t[i]== '\\') s[i]='/';
     }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  int nbocc(char *s, char occ)
   m[nrl][ncl] -= nll;  {
   for (j=ncl+1; j<=nch; j++)    int i,j=0;
     m[nrl][j]=m[nrl][j-1]+nlay;    int lg=20;
      i=0;
   for (i=nrl+1; i<=nrh; i++) {    lg=strlen(s);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    for(i=0; i<= lg; i++) {
     for (j=ncl+1; j<=nch; j++)    if  (s[i] == occ ) j++;
       m[i][j]=m[i][j-1]+nlay;    }
   }    return j;
   return m;  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /*************************free ma3x ************************/  {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* cuts string t into u and v where u is ended by char occ excluding it
 {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));       gives u="abcedf" and v="ghi2j" */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int i,lg,j,p=0;
   free((FREE_ARG)(m+nrl-NR_END));    i=0;
 }    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 /***************** f1dim *************************/    }
 extern int ncom;  
 extern double *pcom,*xicom;    lg=strlen(t);
 extern double (*nrfunc)(double []);    for(j=0; j<p; j++) {
        (u[j] = t[j]);
 double f1dim(double x)    }
 {       u[p]='\0';
   int j;  
   double f;     for(j=0; j<= lg; j++) {
   double *xt;      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /********************** nrerror ********************/
   free_vector(xt,1,ncom);  
   return f;  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /*****************brent *************************/    fprintf(stderr,"%s\n",error_text);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    exit(EXIT_FAILURE);
 {  }
   int iter;  /*********************** vector *******************/
   double a,b,d,etemp;  double *vector(int nl, int nh)
   double fu,fv,fw,fx;  {
   double ftemp;    double *v;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double e=0.0;    if (!v) nrerror("allocation failure in vector");
      return v-nl+NR_END;
   a=(ax < cx ? ax : cx);  }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  /************************ free vector ******************/
   fw=fv=fx=(*f)(x);  void free_vector(double*v, int nl, int nh)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    free((FREE_ARG)(v+nl-NR_END));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /************************ivector *******************************/
 #ifdef DEBUG  int *ivector(long nl,long nh)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    int *v;
 #endif    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    if (!v) nrerror("allocation failure in ivector");
       *xmin=x;    return v-nl+NR_END;
       return fx;  }
     }  
     ftemp=fu;  /******************free ivector **************************/
     if (fabs(e) > tol1) {  void free_ivector(int *v, long nl, long nh)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    free((FREE_ARG)(v+nl-NR_END));
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  /************************lvector *******************************/
       q=fabs(q);  long *lvector(long nl,long nh)
       etemp=e;  {
       e=d;    long *v;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!v) nrerror("allocation failure in ivector");
       else {    return v-nl+NR_END;
         d=p/q;  }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  /******************free lvector **************************/
           d=SIGN(tol1,xm-x);  void free_lvector(long *v, long nl, long nh)
       }  {
     } else {    free((FREE_ARG)(v+nl-NR_END));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /******************* imatrix *******************************/
     fu=(*f)(u);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     if (fu <= fx) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       if (u >= x) a=x; else b=x;  { 
       SHFT(v,w,x,u)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         SHFT(fv,fw,fx,fu)    int **m; 
         } else {    
           if (u < x) a=u; else b=u;    /* allocate pointers to rows */ 
           if (fu <= fw || w == x) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
             v=w;    if (!m) nrerror("allocation failure 1 in matrix()"); 
             w=u;    m += NR_END; 
             fv=fw;    m -= nrl; 
             fw=fu;    
           } else if (fu <= fv || v == x || v == w) {    
             v=u;    /* allocate rows and set pointers to them */ 
             fv=fu;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         }    m[nrl] += NR_END; 
   }    m[nrl] -= ncl; 
   nrerror("Too many iterations in brent");    
   *xmin=x;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   return fx;    
 }    /* return pointer to array of pointers to rows */ 
     return m; 
 /****************** mnbrak ***********************/  } 
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /****************** free_imatrix *************************/
             double (*func)(double))  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   double ulim,u,r,q, dum;        long nch,ncl,nrh,nrl; 
   double fu;       /* free an int matrix allocated by imatrix() */ 
    { 
   *fa=(*func)(*ax);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   *fb=(*func)(*bx);    free((FREE_ARG) (m+nrl-NR_END)); 
   if (*fb > *fa) {  } 
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /******************* matrix *******************************/
       }  double **matrix(long nrl, long nrh, long ncl, long nch)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   while (*fb > *fc) {    double **m;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m) nrerror("allocation failure 1 in matrix()");
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m += NR_END;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m -= nrl;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fu=(*func)(u);    m[nrl] += NR_END;
       if (fu < *fc) {    m[nrl] -= ncl;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           }    return m;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       u=ulim;     */
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /*************************free matrix ************************/
       fu=(*func)(u);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       SHFT(*fa,*fb,*fc,fu)    free((FREE_ARG)(m+nrl-NR_END));
       }  }
 }  
   /******************* ma3x *******************************/
 /*************** linmin ************************/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 int ncom;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 double *pcom,*xicom;    double ***m;
 double (*nrfunc)(double []);  
      m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if (!m) nrerror("allocation failure 1 in matrix()");
 {    m += NR_END;
   double brent(double ax, double bx, double cx,    m -= nrl;
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
               double *fc, double (*func)(double));    m[nrl] += NR_END;
   int j;    m[nrl] -= ncl;
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
   ncom=n;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   pcom=vector(1,n);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   xicom=vector(1,n);    m[nrl][ncl] += NR_END;
   nrfunc=func;    m[nrl][ncl] -= nll;
   for (j=1;j<=n;j++) {    for (j=ncl+1; j<=nch; j++) 
     pcom[j]=p[j];      m[nrl][j]=m[nrl][j-1]+nlay;
     xicom[j]=xi[j];    
   }    for (i=nrl+1; i<=nrh; i++) {
   ax=0.0;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   xx=1.0;      for (j=ncl+1; j<=nch; j++) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        m[i][j]=m[i][j-1]+nlay;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    }
 #ifdef DEBUG    return m; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #endif             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (j=1;j<=n;j++) {    */
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /*************************free ma3x ************************/
   free_vector(xicom,1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   free_vector(pcom,1,n);  {
 }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /*************** powell ************************/    free((FREE_ARG)(m+nrl-NR_END));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  }
             double (*func)(double []))  
 {  /***************** f1dim *************************/
   void linmin(double p[], double xi[], int n, double *fret,  extern int ncom; 
               double (*func)(double []));  extern double *pcom,*xicom;
   int i,ibig,j;  extern double (*nrfunc)(double []); 
   double del,t,*pt,*ptt,*xit;   
   double fp,fptt;  double f1dim(double x) 
   double *xits;  { 
   pt=vector(1,n);    int j; 
   ptt=vector(1,n);    double f;
   xit=vector(1,n);    double *xt; 
   xits=vector(1,n);   
   *fret=(*func)(p);    xt=vector(1,ncom); 
   for (j=1;j<=n;j++) pt[j]=p[j];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for (*iter=1;;++(*iter)) {    f=(*nrfunc)(xt); 
     fp=(*fret);    free_vector(xt,1,ncom); 
     ibig=0;    return f; 
     del=0.0;  } 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /*****************brent *************************/
       printf(" %d %.12f",i, p[i]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     printf("\n");  { 
     for (i=1;i<=n;i++) {    int iter; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    double a,b,d,etemp;
       fptt=(*fret);    double fu,fv,fw,fx;
 #ifdef DEBUG    double ftemp;
       printf("fret=%lf \n",*fret);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #endif    double e=0.0; 
       printf("%d",i);fflush(stdout);   
       linmin(p,xit,n,fret,func);    a=(ax < cx ? ax : cx); 
       if (fabs(fptt-(*fret)) > del) {    b=(ax > cx ? ax : cx); 
         del=fabs(fptt-(*fret));    x=w=v=bx; 
         ibig=i;    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
 #ifdef DEBUG      xm=0.5*(a+b); 
       printf("%d %.12e",i,(*fret));      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (j=1;j<=n;j++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      printf(".");fflush(stdout);
         printf(" x(%d)=%.12e",j,xit[j]);      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
       for(j=1;j<=n;j++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         printf(" p=%.12e",p[j]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("\n");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #endif  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        *xmin=x; 
 #ifdef DEBUG        return fx; 
       int k[2],l;      } 
       k[0]=1;      ftemp=fu;
       k[1]=-1;      if (fabs(e) > tol1) { 
       printf("Max: %.12e",(*func)(p));        r=(x-w)*(fx-fv); 
       for (j=1;j<=n;j++)        q=(x-v)*(fx-fw); 
         printf(" %.12e",p[j]);        p=(x-v)*q-(x-w)*r; 
       printf("\n");        q=2.0*(q-r); 
       for(l=0;l<=1;l++) {        if (q > 0.0) p = -p; 
         for (j=1;j<=n;j++) {        q=fabs(q); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        etemp=e; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        e=d; 
         }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }        else { 
 #endif          d=p/q; 
           u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
       free_vector(xit,1,n);            d=SIGN(tol1,xm-x); 
       free_vector(xits,1,n);        } 
       free_vector(ptt,1,n);      } else { 
       free_vector(pt,1,n);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       return;      } 
     }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      fu=(*f)(u); 
     for (j=1;j<=n;j++) {      if (fu <= fx) { 
       ptt[j]=2.0*p[j]-pt[j];        if (u >= x) a=x; else b=x; 
       xit[j]=p[j]-pt[j];        SHFT(v,w,x,u) 
       pt[j]=p[j];          SHFT(fv,fw,fx,fu) 
     }          } else { 
     fptt=(*func)(ptt);            if (u < x) a=u; else b=u; 
     if (fptt < fp) {            if (fu <= fw || w == x) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);              v=w; 
       if (t < 0.0) {              w=u; 
         linmin(p,xit,n,fret,func);              fv=fw; 
         for (j=1;j<=n;j++) {              fw=fu; 
           xi[j][ibig]=xi[j][n];            } else if (fu <= fv || v == x || v == w) { 
           xi[j][n]=xit[j];              v=u; 
         }              fv=fu; 
 #ifdef DEBUG            } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          } 
         for(j=1;j<=n;j++)    } 
           printf(" %.12e",xit[j]);    nrerror("Too many iterations in brent"); 
         printf("\n");    *xmin=x; 
 #endif    return fx; 
       }  } 
     }  
   }  /****************** mnbrak ***********************/
 }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 /**** Prevalence limit ****************/              double (*func)(double)) 
   { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double ulim,u,r,q, dum;
 {    double fu; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit   
      matrix by transitions matrix until convergence is reached */    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   int i, ii,j,k;    if (*fb > *fa) { 
   double min, max, maxmin, maxmax,sumnew=0.;      SHFT(dum,*ax,*bx,dum) 
   double **matprod2();        SHFT(dum,*fb,*fa,dum) 
   double **out, cov[NCOVMAX], **pmij();        } 
   double **newm;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)      r=(*bx-*ax)*(*fb-*fc); 
     for (j=1;j<=nlstate+ndeath;j++){      q=(*bx-*cx)*(*fb-*fa); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
    cov[1]=1.;      if ((*bx-u)*(u-*cx) > 0.0) { 
          fu=(*func)(u); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        fu=(*func)(u); 
     newm=savm;        if (fu < *fc) { 
     /* Covariates have to be included here again */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      cov[2]=agefin;            SHFT(*fb,*fc,fu,(*func)(u)) 
              } 
       for (k=1; k<=cptcovn;k++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        u=ulim; 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/        fu=(*func)(u); 
       }      } else { 
       for (k=1; k<=cptcovage;k++)        u=(*cx)+GOLD*(*cx-*bx); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fu=(*func)(u); 
       for (k=1; k<=cptcovprod;k++)      } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  } 
   
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /*************** linmin ************************/
   
     savm=oldm;  int ncom; 
     oldm=newm;  double *pcom,*xicom;
     maxmax=0.;  double (*nrfunc)(double []); 
     for(j=1;j<=nlstate;j++){   
       min=1.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       max=0.;  { 
       for(i=1; i<=nlstate; i++) {    double brent(double ax, double bx, double cx, 
         sumnew=0;                 double (*f)(double), double tol, double *xmin); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double f1dim(double x); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         max=FMAX(max,prlim[i][j]);                double *fc, double (*func)(double)); 
         min=FMIN(min,prlim[i][j]);    int j; 
       }    double xx,xmin,bx,ax; 
       maxmin=max-min;    double fx,fb,fa;
       maxmax=FMAX(maxmax,maxmin);   
     }    ncom=n; 
     if(maxmax < ftolpl){    pcom=vector(1,n); 
       return prlim;    xicom=vector(1,n); 
     }    nrfunc=func; 
   }    for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 /*************** transition probabilities ***************/    } 
     ax=0.0; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    xx=1.0; 
 {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double s1, s2;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /*double t34;*/  #ifdef DEBUG
   int i,j,j1, nc, ii, jj;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(i=1; i<= nlstate; i++){  #endif
     for(j=1; j<i;j++){    for (j=1;j<=n;j++) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      xi[j] *= xmin; 
         /*s2 += param[i][j][nc]*cov[nc];*/      p[j] += xi[j]; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    free_vector(xicom,1,n); 
       }    free_vector(pcom,1,n); 
       ps[i][j]=s2;  } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /*************** powell ************************/
     for(j=i+1; j<=nlstate+ndeath;j++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){              double (*func)(double [])) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
       ps[i][j]=(s2);    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
     /*ps[3][2]=1;*/    double *xits;
     pt=vector(1,n); 
   for(i=1; i<= nlstate; i++){    ptt=vector(1,n); 
      s1=0;    xit=vector(1,n); 
     for(j=1; j<i; j++)    xits=vector(1,n); 
       s1+=exp(ps[i][j]);    *fret=(*func)(p); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
       s1+=exp(ps[i][j]);    for (*iter=1;;++(*iter)) { 
     ps[i][i]=1./(s1+1.);      fp=(*fret); 
     for(j=1; j<i; j++)      ibig=0; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      del=0.0; 
     for(j=i+1; j<=nlstate+ndeath; j++)      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fprintf(ficrespow,"%d %.12f",*iter,*fret);
   } /* end i */      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficrespow," %.12lf", p[i]);
       ps[ii][jj]=0;      }
       ps[ii][ii]=1;      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");
       for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fptt=(*fret); 
     for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
      printf("%lf ",ps[ii][jj]);        printf("fret=%lf \n",*fret);
    }        fprintf(ficlog,"fret=%lf \n",*fret);
     printf("\n ");  #endif
     }        printf("%d",i);fflush(stdout);
     printf("\n ");printf("%lf ",cov[2]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
 /*        linmin(p,xit,n,fret,func); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        if (fabs(fptt-(*fret)) > del) { 
   goto end;*/          del=fabs(fptt-(*fret)); 
     return ps;          ibig=i; 
 }        } 
   #ifdef DEBUG
 /**************** Product of 2 matrices ******************/        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        for (j=1;j<=n;j++) {
 {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          printf(" x(%d)=%.12e",j,xit[j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /* in, b, out are matrice of pointers which should have been initialized        }
      before: only the contents of out is modified. The function returns        for(j=1;j<=n;j++) {
      a pointer to pointers identical to out */          printf(" p=%.12e",p[j]);
   long i, j, k;          fprintf(ficlog," p=%.12e",p[j]);
   for(i=nrl; i<= nrh; i++)        }
     for(k=ncolol; k<=ncoloh; k++)        printf("\n");
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        fprintf(ficlog,"\n");
         out[i][k] +=in[i][j]*b[j][k];  #endif
       } 
   return out;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 }  #ifdef DEBUG
         int k[2],l;
         k[0]=1;
 /************* Higher Matrix Product ***************/        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          printf(" %.12e",p[j]);
      duration (i.e. until          fprintf(ficlog," %.12e",p[j]);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        printf("\n");
      (typically every 2 years instead of every month which is too big).        fprintf(ficlog,"\n");
      Model is determined by parameters x and covariates have to be        for(l=0;l<=1;l++) {
      included manually here.          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i, j, d, h, k;          }
   double **out, cov[NCOVMAX];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double **newm;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   /* Hstepm could be zero and should return the unit matrix */  #endif
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);        free_vector(xit,1,n); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        free_vector(pt,1,n); 
   for(h=1; h <=nhstepm; h++){        return; 
     for(d=1; d <=hstepm; d++){      } 
       newm=savm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       /* Covariates have to be included here again */      for (j=1;j<=n;j++) { 
       cov[1]=1.;        ptt[j]=2.0*p[j]-pt[j]; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        xit[j]=p[j]-pt[j]; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        pt[j]=p[j]; 
       for (k=1; k<=cptcovage;k++)      } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fptt=(*func)(ptt); 
       for (k=1; k<=cptcovprod;k++)      if (fptt < fp) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          for (j=1;j<=n;j++) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/            xi[j][ibig]=xi[j][n]; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,            xi[j][n]=xit[j]; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          }
       savm=oldm;  #ifdef DEBUG
       oldm=newm;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(i=1; i<=nlstate+ndeath; i++)          for(j=1;j<=n;j++){
       for(j=1;j<=nlstate+ndeath;j++) {            printf(" %.12e",xit[j]);
         po[i][j][h]=newm[i][j];            fprintf(ficlog," %.12e",xit[j]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          }
          */          printf("\n");
       }          fprintf(ficlog,"\n");
   } /* end h */  #endif
   return po;        }
 }      } 
     } 
   } 
 /*************** log-likelihood *************/  
 double func( double *x)  /**** Prevalence limit (stable prevalence)  ****************/
 {  
   int i, ii, j, k, mi, d, kk;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double sw; /* Sum of weights */       matrix by transitions matrix until convergence is reached */
   double lli; /* Individual log likelihood */  
   long ipmx;    int i, ii,j,k;
   /*extern weight */    double min, max, maxmin, maxmax,sumnew=0.;
   /* We are differentiating ll according to initial status */    double **matprod2();
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double **out, cov[NCOVMAX], **pmij();
   /*for(i=1;i<imx;i++)    double **newm;
     printf(" %d\n",s[4][i]);    double agefin, delaymax=50 ; /* Max number of years to converge */
   */  
   cov[1]=1.;    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){     cov[1]=1.;
       for (ii=1;ii<=nlstate+ndeath;ii++)   
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(d=0; d<dh[mi][i]; d++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         newm=savm;      newm=savm;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      /* Covariates have to be included here again */
         for (kk=1; kk<=cptcovage;kk++) {       cov[2]=agefin;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    
         }        for (k=1; k<=cptcovn;k++) {
                  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         oldm=newm;        for (k=1; k<=cptcovprod;k++)
                  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          
       } /* end mult */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
              /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       ipmx +=1;  
       sw += weight[i];      savm=oldm;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      oldm=newm;
     } /* end of wave */      maxmax=0.;
   } /* end of individual */      for(j=1;j<=nlstate;j++){
         min=1.;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        max=0.;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for(i=1; i<=nlstate; i++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          sumnew=0;
   return -l;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
 /*********** Maximum Likelihood Estimation ***************/        }
         maxmin=max-min;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        maxmax=FMAX(maxmax,maxmin);
 {      }
   int i,j, iter;      if(maxmax < ftolpl){
   double **xi,*delti;        return prlim;
   double fret;      }
   xi=matrix(1,npar,1,npar);    }
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*************** transition probabilities ***************/ 
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double s1, s2;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /*double t34;*/
     int i,j,j1, nc, ii, jj;
 }  
       for(i=1; i<= nlstate; i++){
 /**** Computes Hessian and covariance matrix ***/      for(j=1; j<i;j++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {          /*s2 += param[i][j][nc]*cov[nc];*/
   double  **a,**y,*x,pd;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **hess;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   int i, j,jk;        }
   int *indx;        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double hessii(double p[], double delta, int theta, double delti[]);      }
   double hessij(double p[], double delti[], int i, int j);      for(j=i+1; j<=nlstate+ndeath;j++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   hess=matrix(1,npar,1,npar);        }
         ps[i][j]=s2;
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){    }
     printf("%d",i);fflush(stdout);      /*ps[3][2]=1;*/
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/    for(i=1; i<= nlstate; i++){
     /*printf(" %lf ",hess[i][i]);*/       s1=0;
   }      for(j=1; j<i; j++)
          s1+=exp(ps[i][j]);
   for (i=1;i<=npar;i++) {      for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=npar;j++)  {        s1+=exp(ps[i][j]);
       if (j>i) {      ps[i][i]=1./(s1+1.);
         printf(".%d%d",i,j);fflush(stdout);      for(j=1; j<i; j++)
         hess[i][j]=hessij(p,delti,i,j);        ps[i][j]= exp(ps[i][j])*ps[i][i];
         hess[j][i]=hess[i][j];          for(j=i+1; j<=nlstate+ndeath; j++)
         /*printf(" %lf ",hess[i][j]);*/        ps[i][j]= exp(ps[i][j])*ps[i][i];
       }      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }    } /* end i */
   }  
   printf("\n");    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        ps[ii][jj]=0;
          ps[ii][ii]=1;
   a=matrix(1,npar,1,npar);      }
   y=matrix(1,npar,1,npar);    }
   x=vector(1,npar);  
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      for(jj=1; jj<= nlstate+ndeath; jj++){
   ludcmp(a,npar,indx,&pd);       printf("%lf ",ps[ii][jj]);
      }
   for (j=1;j<=npar;j++) {      printf("\n ");
     for (i=1;i<=npar;i++) x[i]=0;      }
     x[j]=1;      printf("\n ");printf("%lf ",cov[2]);*/
     lubksb(a,npar,indx,x);  /*
     for (i=1;i<=npar;i++){    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       matcov[i][j]=x[i];    goto end;*/
     }      return ps;
   }  }
   
   printf("\n#Hessian matrix#\n");  /**************** Product of 2 matrices ******************/
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       printf("%.3e ",hess[i][j]);  {
     }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     printf("\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   /* Recompute Inverse */       a pointer to pointers identical to out */
   for (i=1;i<=npar;i++)    long i, j, k;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    for(i=nrl; i<= nrh; i++)
   ludcmp(a,npar,indx,&pd);      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   /*  printf("\n#Hessian matrix recomputed#\n");          out[i][k] +=in[i][j]*b[j][k];
   
   for (j=1;j<=npar;j++) {    return out;
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /************* Higher Matrix Product ***************/
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
     printf("\n");    /* Computes the transition matrix starting at age 'age' over 
   }       'nhstepm*hstepm*stepm' months (i.e. until
   */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   free_matrix(a,1,npar,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   free_matrix(y,1,npar,1,npar);       (typically every 2 years instead of every month which is too big 
   free_vector(x,1,npar);       for the memory).
   free_ivector(indx,1,npar);       Model is determined by parameters x and covariates have to be 
   free_matrix(hess,1,npar,1,npar);       included manually here. 
   
        */
 }  
     int i, j, d, h, k;
 /*************** hessian matrix ****************/    double **out, cov[NCOVMAX];
 double hessii( double x[], double delta, int theta, double delti[])    double **newm;
 {  
   int i;    /* Hstepm could be zero and should return the unit matrix */
   int l=1, lmax=20;    for (i=1;i<=nlstate+ndeath;i++)
   double k1,k2;      for (j=1;j<=nlstate+ndeath;j++){
   double p2[NPARMAX+1];        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double res;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      }
   double fx;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int k=0,kmax=10;    for(h=1; h <=nhstepm; h++){
   double l1;      for(d=1; d <=hstepm; d++){
         newm=savm;
   fx=func(x);        /* Covariates have to be included here again */
   for (i=1;i<=npar;i++) p2[i]=x[i];        cov[1]=1.;
   for(l=0 ; l <=lmax; l++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     l1=pow(10,l);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     delts=delt;        for (k=1; k<=cptcovage;k++)
     for(k=1 ; k <kmax; k=k+1){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       delt = delta*(l1*k);        for (k=1; k<=cptcovprod;k++)
       p2[theta]=x[theta] +delt;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                           pmij(pmmij,cov,ncovmodel,x,nlstate));
 #ifdef DEBUG        savm=oldm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        oldm=newm;
 #endif      }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      for(i=1; i<=nlstate+ndeath; i++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for(j=1;j<=nlstate+ndeath;j++) {
         k=kmax;          po[i][j][h]=newm[i][j];
       }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           */
         k=kmax; l=lmax*10.;        }
       }    } /* end h */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    return po;
         delts=delt;  }
       }  
     }  
   }  /*************** log-likelihood *************/
   delti[theta]=delts;  double func( double *x)
   return res;  {
      int i, ii, j, k, mi, d, kk;
 }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
 double hessij( double x[], double delti[], int thetai,int thetaj)    double sw; /* Sum of weights */
 {    double lli; /* Individual log likelihood */
   int i;    int s1, s2;
   int l=1, l1, lmax=20;    double bbh, survp;
   double k1,k2,k3,k4,res,fx;    long ipmx;
   double p2[NPARMAX+1];    /*extern weight */
   int k;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   fx=func(x);    /*for(i=1;i<imx;i++) 
   for (k=1; k<=2; k++) {      printf(" %d\n",s[4][i]);
     for (i=1;i<=npar;i++) p2[i]=x[i];    */
     p2[thetai]=x[thetai]+delti[thetai]/k;    cov[1]=1.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
     p2[thetai]=x[thetai]+delti[thetai]/k;    if(mle==1){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     k2=func(p2)-fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (j=1;j<=nlstate+ndeath;j++){
     k3=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]-delti[thetai]/k;            }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for(d=0; d<dh[mi][i]; d++){
     k4=func(p2)-fx;            newm=savm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 #ifdef DEBUG            for (kk=1; kk<=cptcovage;kk++) {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 #endif            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   return res;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************** Inverse of matrix **************/          } /* end mult */
 void ludcmp(double **a, int n, int *indx, double *d)        
 {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int i,imax,j,k;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double big,dum,sum,temp;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double *vv;           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
   vv=vector(1,n);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   *d=1.0;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for (i=1;i<=n;i++) {           * probability in order to take into account the bias as a fraction of the way
     big=0.0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     for (j=1;j<=n;j++)           * -stepm/2 to stepm/2 .
       if ((temp=fabs(a[i][j])) > big) big=temp;           * For stepm=1 the results are the same as for previous versions of Imach.
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           * For stepm > 1 the results are less biased than in previous versions. 
     vv[i]=1.0/big;           */
   }          s1=s[mw[mi][i]][i];
   for (j=1;j<=n;j++) {          s2=s[mw[mi+1][i]][i];
     for (i=1;i<j;i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
       sum=a[i][j];          /* bias is positive if real duration
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * is higher than the multiple of stepm and negative otherwise.
       a[i][j]=sum;           */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     big=0.0;          if( s2 > nlstate){ 
     for (i=j;i<=n;i++) {            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       sum=a[i][j];               to the likelihood is the probability to die between last step unit time and current 
       for (k=1;k<j;k++)               step unit time, which is also the differences between probability to die before dh 
         sum -= a[i][k]*a[k][j];               and probability to die before dh-stepm . 
       a[i][j]=sum;               In version up to 0.92 likelihood was computed
       if ( (dum=vv[i]*fabs(sum)) >= big) {          as if date of death was unknown. Death was treated as any other
         big=dum;          health state: the date of the interview describes the actual state
         imax=i;          and not the date of a change in health state. The former idea was
       }          to consider that at each interview the state was recorded
     }          (healthy, disable or death) and IMaCh was corrected; but when we
     if (j != imax) {          introduced the exact date of death then we should have modified
       for (k=1;k<=n;k++) {          the contribution of an exact death to the likelihood. This new
         dum=a[imax][k];          contribution is smaller and very dependent of the step unit
         a[imax][k]=a[j][k];          stepm. It is no more the probability to die between last interview
         a[j][k]=dum;          and month of death but the probability to survive from last
       }          interview up to one month before death multiplied by the
       *d = -(*d);          probability to die within a month. Thanks to Chris
       vv[imax]=vv[j];          Jackson for correcting this bug.  Former versions increased
     }          mortality artificially. The bad side is that we add another loop
     indx[j]=imax;          which slows down the processing. The difference can be up to 10%
     if (a[j][j] == 0.0) a[j][j]=TINY;          lower mortality.
     if (j != n) {            */
       dum=1.0/(a[j][j]);            lli=log(out[s1][s2] - savm[s1][s2]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          }else{
     }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   free_vector(vv,1,n);  /* Doesn't work */          } 
 ;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void lubksb(double **a, int n, int *indx, double b[])          ipmx +=1;
 {          sw += weight[i];
   int i,ii=0,ip,j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double sum;        } /* end of wave */
        } /* end of individual */
   for (i=1;i<=n;i++) {    }  else if(mle==2){
     ip=indx[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     sum=b[ip];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     b[ip]=b[i];        for(mi=1; mi<= wav[i]-1; mi++){
     if (ii)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            for (j=1;j<=nlstate+ndeath;j++){
     else if (sum) ii=i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   for (i=n;i>=1;i--) {          for(d=0; d<=dh[mi][i]; d++){
     sum=b[i];            newm=savm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     b[i]=sum/a[i][i];            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Frequencies ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
            } /* end mult */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        
   double ***freq; /* Frequencies */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double *pp;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double pos, k2, dateintsum=0,k2cpt=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   FILE *ficresp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   char fileresp[FILENAMELENGTH];           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   pp=vector(1,nlstate);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * probability in order to take into account the bias as a fraction of the way
   strcpy(fileresp,"p");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   strcat(fileresp,fileres);           * -stepm/2 to stepm/2 .
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * For stepm=1 the results are the same as for previous versions of Imach.
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * For stepm > 1 the results are less biased than in previous versions. 
     exit(0);           */
   }          s1=s[mw[mi][i]][i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          s2=s[mw[mi+1][i]][i];
   j1=0;          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
   j=cptcoveff;           * is higher than the multiple of stepm and negative otherwise.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           */
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(k1=1; k1<=j;k1++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
    for(i1=1; i1<=ncodemax[k1];i1++){          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
        j1++;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /*if(lli ==000.0)*/
          scanf("%d", i);*/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for (i=-1; i<=nlstate+ndeath; i++)            ipmx +=1;
          for (jk=-1; jk<=nlstate+ndeath; jk++)            sw += weight[i];
            for(m=agemin; m <= agemax+3; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              freq[i][jk][m]=0;        } /* end of wave */
       } /* end of individual */
         dateintsum=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
         k2cpt=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          bool=1;        for(mi=1; mi<= wav[i]-1; mi++){
          if  (cptcovn>0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
            for (z1=1; z1<=cptcoveff; z1++)            for (j=1;j<=nlstate+ndeath;j++){
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                bool=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          }            }
          if (bool==1) {          for(d=0; d<dh[mi][i]; d++){
            for(m=firstpass; m<=lastpass; m++){            newm=savm;
              k2=anint[m][i]+(mint[m][i]/12.);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              if ((k2>=dateprev1) && (k2<=dateprev2)) {            for (kk=1; kk<=cptcovage;kk++) {
                if(agev[m][i]==0) agev[m][i]=agemax+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                if(agev[m][i]==1) agev[m][i]=agemax+2;            }
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            savm=oldm;
                  dateintsum=dateintsum+k2;            oldm=newm;
                  k2cpt++;          } /* end mult */
                }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
              }          /* But now since version 0.9 we anticipate for bias and large stepm.
            }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
          }           * (in months) between two waves is not a multiple of stepm, we rounded to 
        }           * the nearest (and in case of equal distance, to the lowest) interval but now
         if  (cptcovn>0) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          fprintf(ficresp, "\n#********** Variable ");           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * probability in order to take into account the bias as a fraction of the way
        fprintf(ficresp, "**********\n#");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
        for(i=1; i<=nlstate;i++)           * For stepm=1 the results are the same as for previous versions of Imach.
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * For stepm > 1 the results are less biased than in previous versions. 
        fprintf(ficresp, "\n");           */
                  s1=s[mw[mi][i]][i];
   for(i=(int)agemin; i <= (int)agemax+3; i++){          s2=s[mw[mi+1][i]][i];
     if(i==(int)agemax+3)          bbh=(double)bh[mi][i]/(double)stepm; 
       printf("Total");          /* bias is positive if real duration
     else           * is higher than the multiple of stepm and negative otherwise.
       printf("Age %d", i);           */
     for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         pp[jk] += freq[jk][m][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
     for(jk=1; jk <=nlstate ; jk++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(m=-1, pos=0; m <=0 ; m++)          ipmx +=1;
         pos += freq[jk][m][i];          sw += weight[i];
       if(pp[jk]>=1.e-10)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        } /* end of wave */
       else      } /* end of individual */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
      }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1,pos=0; jk <=nlstate ; jk++)            }
       pos += pp[jk];          for(d=0; d<dh[mi][i]; d++){
     for(jk=1; jk <=nlstate ; jk++){            newm=savm;
       if(pos>=1.e-5)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (kk=1; kk<=cptcovage;kk++) {
       else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
       if( i <= (int) agemax){          
         if(pos>=1.e-5){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           probs[i][jk][j1]= pp[jk]/pos;            savm=oldm;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            oldm=newm;
         }          } /* end mult */
       else        
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
     for(jk=-1; jk <=nlstate+ndeath; jk++)            lli=log(out[s1][s2] - savm[s1][s2]);
       for(m=-1; m <=nlstate+ndeath; m++)          }else{
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     if(i <= (int) agemax)          }
       fprintf(ficresp,"\n");          ipmx +=1;
     printf("\n");          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  }        } /* end of wave */
   dateintmean=dateintsum/k2cpt;      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fclose(ficresp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(pp,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   /* End of Freq */            for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Prevalence ********************/            }
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for(d=0; d<dh[mi][i]; d++){
 {  /* Some frequencies */            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for (kk=1; kk<=cptcovage;kk++) {
   double ***freq; /* Frequencies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *pp;            }
   double pos, k2;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   pp=vector(1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            savm=oldm;
              oldm=newm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } /* end mult */
   j1=0;        
            s1=s[mw[mi][i]][i];
   j=cptcoveff;          s2=s[mw[mi+1][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            ipmx +=1;
  for(k1=1; k1<=j;k1++){          sw += weight[i];
     for(i1=1; i1<=ncodemax[k1];i1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       j1++;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
       for (i=-1; i<=nlstate+ndeath; i++)        } /* end of individual */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      } /* End of if */
           for(m=agemin; m <= agemax+3; m++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             freq[i][jk][m]=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
          l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for (i=1; i<=imx; i++) {    return -l;
         bool=1;  }
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  /*************** log-likelihood *************/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  double funcone( double *x)
               bool=0;  {
         }    /* Same as likeli but slower because of a lot of printf and if */
         if (bool==1) {    int i, ii, j, k, mi, d, kk;
           for(m=firstpass; m<=lastpass; m++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             k2=anint[m][i]+(mint[m][i]/12.);    double **out;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double lli; /* Individual log likelihood */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double llt;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int s1, s2;
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double bbh, survp;
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];      /*extern weight */
             }    /* We are differentiating ll according to initial status */
           }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
          */
         for(i=(int)agemin; i <= (int)agemax+3; i++){    cov[1]=1.;
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
               pp[jk] += freq[jk][m][i];  
           }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(jk=1; jk <=nlstate ; jk++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             for(m=-1, pos=0; m <=0 ; m++)      for(mi=1; mi<= wav[i]-1; mi++){
             pos += freq[jk][m][i];        for (ii=1;ii<=nlstate+ndeath;ii++)
         }          for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          for(jk=1; jk <=nlstate ; jk++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          }
              pp[jk] += freq[jk][m][i];        for(d=0; d<dh[mi][i]; d++){
          }          newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          for(jk=1; jk <=nlstate ; jk++){                    }
            if( i <= (int) agemax){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              if(pos>=1.e-5){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                probs[i][jk][j1]= pp[jk]/pos;          savm=oldm;
              }          oldm=newm;
            }        } /* end mult */
          }        
                  s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
     }        bbh=(double)bh[mi][i]/(double)stepm; 
   }        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
           */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   free_vector(pp,1,nlstate);          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if (mle==1){
 }  /* End of Freq */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
 /************* Waves Concatenation ***************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          lli=log(out[s1][s2]); /* Original formula */
      Death is a valid wave (if date is known).        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          lli=log(out[s1][s2]); /* Original formula */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        } /* End of if */
      and mw[mi+1][i]. dh depends on stepm.        ipmx +=1;
      */        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, mi, m;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        if(globpr){
      double sum=0., jmean=0.;*/          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
   int j, k=0,jk, ju, jl;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double sum=0.;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   jmin=1e+5;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   jmax=-1;            llt +=ll[k]*gipmx/gsw;
   jmean=0.;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   for(i=1; i<=imx; i++){          }
     mi=0;          fprintf(ficresilk," %10.6f\n", -llt);
     m=firstpass;        }
     while(s[m][i] <= nlstate){      } /* end of wave */
       if(s[m][i]>=1)    } /* end of individual */
         mw[++mi][i]=m;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if(m >=lastpass)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         break;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       else    if(globpr==0){ /* First time we count the contributions and weights */
         m++;      gipmx=ipmx;
     }/* end while */      gsw=sw;
     if (s[m][i] > nlstate){    }
       mi++;     /* Death is another wave */    return -l;
       /* if(mi==0)  never been interviewed correctly before death */  }
          /* Only death is a correct wave */  
       mw[mi][i]=m;  char *subdirf(char fileres[])
     }  {
     
     wav[i]=mi;    strcpy(tmpout,optionfilefiname);
     if(mi==0)    strcat(tmpout,"/"); /* Add to the right */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    strcat(tmpout,fileres);
   }    return tmpout;
   }
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  char *subdirf2(char fileres[], char *preop)
       if (stepm <=0)  {
         dh[mi][i]=1;    
       else{    strcpy(tmpout,optionfilefiname);
         if (s[mw[mi+1][i]][i] > nlstate) {    strcat(tmpout,"/");
           if (agedc[i] < 2*AGESUP) {    strcat(tmpout,preop);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    strcat(tmpout,fileres);
           if(j==0) j=1;  /* Survives at least one month after exam */    return tmpout;
           k=k+1;  }
           if (j >= jmax) jmax=j;  char *subdirf3(char fileres[], char *preop, char *preop2)
           if (j <= jmin) jmin=j;  {
           sum=sum+j;    
           /* if (j<10) printf("j=%d num=%d ",j,i); */    strcpy(tmpout,optionfilefiname);
           }    strcat(tmpout,"/");
         }    strcat(tmpout,preop);
         else{    strcat(tmpout,preop2);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    strcat(tmpout,fileres);
           k=k+1;    return tmpout;
           if (j >= jmax) jmax=j;  }
           else if (j <= jmin)jmin=j;  
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           sum=sum+j;  {
         }    /* This routine should help understanding what is done with 
         jk= j/stepm;       the selection of individuals/waves and
         jl= j -jk*stepm;       to check the exact contribution to the likelihood.
         ju= j -(jk+1)*stepm;       Plotting could be done.
         if(jl <= -ju)     */
           dh[mi][i]=jk;    int k;
         else  
           dh[mi][i]=jk+1;    if(*globpri !=0){ /* Just counts and sums, no printings */
         if(dh[mi][i]==0)      strcpy(fileresilk,"ilk"); 
           dh[mi][i]=1; /* At least one step */      strcat(fileresilk,fileres);
       }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     }        printf("Problem with resultfile: %s\n", fileresilk);
   }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   jmean=sum/k;      }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
  }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 /*********** Tricode ****************************/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 void tricode(int *Tvar, int **nbcode, int imx)      for(k=1; k<=nlstate; k++) 
 {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int Ndum[20],ij=1, k, j, i;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int cptcode=0;    }
   cptcoveff=0;  
      *fretone=(*funcone)(p);
   for (k=0; k<19; k++) Ndum[k]=0;    if(*globpri !=0){
   for (k=1; k<=7; k++) ncodemax[k]=0;      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      fflush(fichtm); 
     for (i=1; i<=imx; i++) {    } 
       ij=(int)(covar[Tvar[j]][i]);    return;
       Ndum[ij]++;  }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  
     }  /*********** Maximum Likelihood Estimation ***************/
   
     for (i=0; i<=cptcode; i++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       if(Ndum[i]!=0) ncodemax[j]++;  {
     }    int i,j, iter;
     ij=1;    double **xi;
     double fret;
     double fretone; /* Only one call to likelihood */
     for (i=1; i<=ncodemax[j]; i++) {    char filerespow[FILENAMELENGTH];
       for (k=0; k<=19; k++) {    xi=matrix(1,npar,1,npar);
         if (Ndum[k] != 0) {    for (i=1;i<=npar;i++)
           nbcode[Tvar[j]][ij]=k;      for (j=1;j<=npar;j++)
           ij++;        xi[i][j]=(i==j ? 1.0 : 0.0);
         }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         if (ij > ncodemax[j]) break;    strcpy(filerespow,"pow"); 
       }      strcat(filerespow,fileres);
     }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   }        printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
  for (k=0; k<19; k++) Ndum[k]=0;    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
  for (i=1; i<=ncovmodel-2; i++) {    for (i=1;i<=nlstate;i++)
       ij=Tvar[i];      for(j=1;j<=nlstate+ndeath;j++)
       Ndum[ij]++;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }    fprintf(ficrespow,"\n");
   
  ij=1;    powell(p,xi,npar,ftol,&iter,&fret,func);
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncov)){    fclose(ficrespow);
      Tvaraff[ij]=i;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      ij++;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  }  
    }
     cptcoveff=ij-1;  
 }  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 /*********** Health Expectancies ****************/  {
     double  **a,**y,*x,pd;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    double **hess;
 {    int i, j,jk;
   /* Health expectancies */    int *indx;
   int i, j, nhstepm, hstepm, h;  
   double age, agelim,hf;    double hessii(double p[], double delta, int theta, double delti[]);
   double ***p3mat;    double hessij(double p[], double delti[], int i, int j);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
   fprintf(ficreseij,"# Health expectancies\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficreseij,"\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   hstepm=1*YEARM; /*  Every j years of age (in month) */      printf("%d",i);fflush(stdout);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fprintf(ficlog,"%d",i);fflush(ficlog);
       hess[i][i]=hessii(p,ftolhess,i,delti);
   agelim=AGESUP;      /*printf(" %f ",p[i]);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /*printf(" %lf ",hess[i][i]);*/
     /* nhstepm age range expressed in number of stepm */    }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    
     /* Typically if 20 years = 20*12/6=40 stepm */    for (i=1;i<=npar;i++) {
     if (stepm >= YEARM) hstepm=1;      for (j=1;j<=npar;j++)  {
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        if (j>i) { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(".%d%d",i,j);fflush(stdout);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          hess[i][j]=hessij(p,delti,i,j);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
         }
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++)    }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    printf("\n");
           eij[i][j][(int)age] +=p3mat[i][j][h];    fprintf(ficlog,"\n");
         }  
        printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     hf=1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     if (stepm >= YEARM) hf=stepm/YEARM;    
     fprintf(ficreseij,"%.0f",age );    a=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    y=matrix(1,npar,1,npar);
       for(j=1; j<=nlstate;j++){    x=vector(1,npar);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
     fprintf(ficreseij,"\n");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    ludcmp(a,npar,indx,&pd);
   }  
 }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 /************ Variance ******************/      x[j]=1;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      lubksb(a,npar,indx,x);
 {      for (i=1;i<=npar;i++){ 
   /* Variance of health expectancies */        matcov[i][j]=x[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      }
   double **newm;    }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h;    printf("\n#Hessian matrix#\n");
   int k, cptcode;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double *xp;    for (i=1;i<=npar;i++) { 
   double **gp, **gm;      for (j=1;j<=npar;j++) { 
   double ***gradg, ***trgradg;        printf("%.3e ",hess[i][j]);
   double ***p3mat;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double age,agelim;      }
   int theta;      printf("\n");
       fprintf(ficlog,"\n");
    fprintf(ficresvij,"# Covariances of life expectancies\n");    }
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    /* Recompute Inverse */
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++)
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   fprintf(ficresvij,"\n");    ludcmp(a,npar,indx,&pd);
   
   xp=vector(1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   hstepm=1*YEARM; /* Every year of age */      x[j]=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      lubksb(a,npar,indx,x);
   agelim = AGESUP;      for (i=1;i<=npar;i++){ 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        y[i][j]=x[i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        printf("%.3e ",y[i][j]);
     if (stepm >= YEARM) hstepm=1;        fprintf(ficlog,"%.3e ",y[i][j]);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      fprintf(ficlog,"\n");
     gp=matrix(0,nhstepm,1,nlstate);    }
     gm=matrix(0,nhstepm,1,nlstate);    */
   
     for(theta=1; theta <=npar; theta++){    free_matrix(a,1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(y,1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_vector(x,1,npar);
       }    free_ivector(indx,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(hess,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   
       if (popbased==1) {  }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  /*************** hessian matrix ****************/
       }  double hessii( double x[], double delta, int theta, double delti[])
        {
       for(j=1; j<= nlstate; j++){    int i;
         for(h=0; h<=nhstepm; h++){    int l=1, lmax=20;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double k1,k2;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double p2[NPARMAX+1];
         }    double res;
       }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
        double fx;
       for(i=1; i<=npar; i++) /* Computes gradient */    int k=0,kmax=10;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double l1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
       if (popbased==1) {    for(l=0 ; l <=lmax; l++){
         for(i=1; i<=nlstate;i++)      l1=pow(10,l);
           prlim[i][i]=probs[(int)age][i][ij];      delts=delt;
       }      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
       for(j=1; j<= nlstate; j++){        p2[theta]=x[theta] +delt;
         for(h=0; h<=nhstepm; h++){        k1=func(p2)-fx;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        p2[theta]=x[theta]-delt;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        k2=func(p2)-fx;
         }        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
       for(j=1; j<= nlstate; j++)  #ifdef DEBUG
         for(h=0; h<=nhstepm; h++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }  #endif
     } /* End theta */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          k=kmax;
         }
     for(h=0; h<=nhstepm; h++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(j=1; j<=nlstate;j++)          k=kmax; l=lmax*10.;
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
     for(i=1;i<=nlstate;i++)        }
       for(j=1;j<=nlstate;j++)      }
         vareij[i][j][(int)age] =0.;    }
     for(h=0;h<=nhstepm;h++){    delti[theta]=delts;
       for(k=0;k<=nhstepm;k++){    return res; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  }
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  double hessij( double x[], double delti[], int thetai,int thetaj)
             vareij[i][j][(int)age] += doldm[i][j];  {
       }    int i;
     }    int l=1, l1, lmax=20;
     h=1;    double k1,k2,k3,k4,res,fx;
     if (stepm >= YEARM) h=stepm/YEARM;    double p2[NPARMAX+1];
     fprintf(ficresvij,"%.0f ",age );    int k;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    fx=func(x);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficresvij,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_matrix(gp,0,nhstepm,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(gm,0,nhstepm,1,nlstate);      k1=func(p2)-fx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   } /* End age */      k2=func(p2)-fx;
      
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      k3=func(p2)-fx;
     
 }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /************ Variance of prevlim ******************/      k4=func(p2)-fx;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 {  #ifdef DEBUG
   /* Variance of prevalence limit */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **newm;  #endif
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm;    return res;
   int k, cptcode;  }
   double *xp;  
   double *gp, *gm;  /************** Inverse of matrix **************/
   double **gradg, **trgradg;  void ludcmp(double **a, int n, int *indx, double *d) 
   double age,agelim;  { 
   int theta;    int i,imax,j,k; 
        double big,dum,sum,temp; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    double *vv; 
   fprintf(ficresvpl,"# Age");   
   for(i=1; i<=nlstate;i++)    vv=vector(1,n); 
       fprintf(ficresvpl," %1d-%1d",i,i);    *d=1.0; 
   fprintf(ficresvpl,"\n");    for (i=1;i<=n;i++) { 
       big=0.0; 
   xp=vector(1,npar);      for (j=1;j<=n;j++) 
   dnewm=matrix(1,nlstate,1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   doldm=matrix(1,nlstate,1,nlstate);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        vv[i]=1.0/big; 
   hstepm=1*YEARM; /* Every year of age */    } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for (j=1;j<=n;j++) { 
   agelim = AGESUP;      for (i=1;i<j;i++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        sum=a[i][j]; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     if (stepm >= YEARM) hstepm=1;        a[i][j]=sum; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } 
     gradg=matrix(1,npar,1,nlstate);      big=0.0; 
     gp=vector(1,nlstate);      for (i=j;i<=n;i++) { 
     gm=vector(1,nlstate);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
     for(theta=1; theta <=npar; theta++){          sum -= a[i][k]*a[k][j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        a[i][j]=sum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          imax=i; 
       for(i=1;i<=nlstate;i++)        } 
         gp[i] = prlim[i][i];      } 
          if (j != imax) { 
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1;k<=n;k++) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          dum=a[imax][k]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          a[imax][k]=a[j][k]; 
       for(i=1;i<=nlstate;i++)          a[j][k]=dum; 
         gm[i] = prlim[i][i];        } 
         *d = -(*d); 
       for(i=1;i<=nlstate;i++)        vv[imax]=vv[j]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      } 
     } /* End theta */      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
     trgradg =matrix(1,nlstate,1,npar);      if (j != n) { 
         dum=1.0/(a[j][j]); 
     for(j=1; j<=nlstate;j++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(theta=1; theta <=npar; theta++)      } 
         trgradg[j][theta]=gradg[theta][j];    } 
     free_vector(vv,1,n);  /* Doesn't work */
     for(i=1;i<=nlstate;i++)  ;
       varpl[i][(int)age] =0.;  } 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  void lubksb(double **a, int n, int *indx, double b[]) 
     for(i=1;i<=nlstate;i++)  { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int i,ii=0,ip,j; 
     double sum; 
     fprintf(ficresvpl,"%.0f ",age );   
     for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      ip=indx[i]; 
     fprintf(ficresvpl,"\n");      sum=b[ip]; 
     free_vector(gp,1,nlstate);      b[ip]=b[i]; 
     free_vector(gm,1,nlstate);      if (ii) 
     free_matrix(gradg,1,npar,1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     free_matrix(trgradg,1,nlstate,1,npar);      else if (sum) ii=i; 
   } /* End age */      b[i]=sum; 
     } 
   free_vector(xp,1,npar);    for (i=n;i>=1;i--) { 
   free_matrix(doldm,1,nlstate,1,npar);      sum=b[i]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
 }    } 
   } 
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  /************ Frequencies ********************/
 {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   int i, j;  {  /* Some frequencies */
   int k=0, cptcode;    
   double **dnewm,**doldm;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double *xp;    int first;
   double *gp, *gm;    double ***freq; /* Frequencies */
   double **gradg, **trgradg;    double *pp, **prop;
   double age,agelim, cov[NCOVMAX];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   int theta;    FILE *ficresp;
   char fileresprob[FILENAMELENGTH];    char fileresp[FILENAMELENGTH];
     
   strcpy(fileresprob,"prob");    pp=vector(1,nlstate);
   strcat(fileresprob,fileres);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    strcpy(fileresp,"p");
     printf("Problem with resultfile: %s\n", fileresprob);    strcat(fileresp,fileres);
   }    if((ficresp=fopen(fileresp,"w"))==NULL) {
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      printf("Problem with prevalence resultfile: %s\n", fileresp);
        fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   xp=vector(1,npar);    }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    j1=0;
      
   cov[1]=1;    j=cptcoveff;
   for (age=bage; age<=fage; age ++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     cov[2]=age;  
     gradg=matrix(1,npar,1,9);    first=1;
     trgradg=matrix(1,9,1,npar);  
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for(k1=1; k1<=j;k1++){
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
     for(theta=1; theta <=npar; theta++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(i=1; i<=npar; i++)          scanf("%d", i);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (i=-1; i<=nlstate+ndeath; i++)  
                for (jk=-1; jk<=nlstate+ndeath; jk++)  
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            for(m=iagemin; m <= iagemax+3; m++)
                  freq[i][jk][m]=0;
       k=0;  
       for(i=1; i<= (nlstate+ndeath); i++){      for (i=1; i<=nlstate; i++)  
         for(j=1; j<=(nlstate+ndeath);j++){        for(m=iagemin; m <= iagemax+3; m++)
            k=k+1;          prop[i][m]=0;
           gp[k]=pmmij[i][j];        
         }        dateintsum=0;
       }        k2cpt=0;
         for (i=1; i<=imx; i++) {
       for(i=1; i<=npar; i++)          bool=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          if  (cptcovn>0) {
                for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);                bool=0;
       k=0;          }
       for(i=1; i<=(nlstate+ndeath); i++){          if (bool==1){
         for(j=1; j<=(nlstate+ndeath);j++){            for(m=firstpass; m<=lastpass; m++){
           k=k+1;              k2=anint[m][i]+(mint[m][i]/12.);
           gm[k]=pmmij[i][j];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)                if (m<lastpass) {
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                
       for(theta=1; theta <=npar; theta++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       trgradg[j][theta]=gradg[theta][j];                  dateintsum=dateintsum+k2;
                    k2cpt++;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                /*}*/
             }
      pmij(pmmij,cov,ncovmodel,x,nlstate);          }
         }
      k=0;         
      for(i=1; i<=(nlstate+ndeath); i++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        for(j=1; j<=(nlstate+ndeath);j++){  
          k=k+1;        if  (cptcovn>0) {
          gm[k]=pmmij[i][j];          fprintf(ficresp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresp, "**********\n#");
              }
      /*printf("\n%d ",(int)age);        for(i=1; i<=nlstate;i++) 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                fprintf(ficresp, "\n");
         
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for(i=iagemin; i <= iagemax+3; i++){
      }*/          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   fprintf(ficresprob,"\n%d ",(int)age);          }else{
             if(first==1){
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              first=0;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              printf("See log file for details...\n");
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            }
   }            fprintf(ficlog,"Age %d", i);
           }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              pp[jk] += freq[jk][m][i]; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
 }          for(jk=1; jk <=nlstate ; jk++){
  free_vector(xp,1,npar);            for(m=-1, pos=0; m <=0 ; m++)
 fclose(ficresprob);              pos += freq[jk][m][i];
  exit(0);            if(pp[jk]>=1.e-10){
 }              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /***********************************************/              }
 /**************** Main Program *****************/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /***********************************************/            }else{
               if(first==1)
 /*int main(int argc, char *argv[])*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 int main()              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 {            }
           }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;          for(jk=1; jk <=nlstate ; jk++){
   double agemin=1.e20, agemax=-1.e20;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   double fret;          }       
   double **xi,tmp,delta;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   double dum; /* Dummy variable */            posprop += prop[jk][i];
   double ***p3mat;          }
   int *indx;          for(jk=1; jk <=nlstate ; jk++){
   char line[MAXLINE], linepar[MAXLINE];            if(pos>=1.e-5){
   char title[MAXLINE];              if(first==1)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   char filerest[FILENAMELENGTH];            }else{
   char fileregp[FILENAMELENGTH];              if(first==1)
   char popfile[FILENAMELENGTH];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int firstobs=1, lastobs=10;            }
   int sdeb, sfin; /* Status at beginning and end */            if( i <= iagemax){
   int c,  h , cpt,l;              if(pos>=1.e-5){
   int ju,jl, mi;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   int mobilav=0,popforecast=0;              }
   int hstepm, nhstepm;              else
   int *popage;/*boolprev=0 if date and zero if wave*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;            }
           }
   double bage, fage, age, agelim, agebase;          
   double ftolpl=FTOL;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double **prlim;            for(m=-1; m <=nlstate+ndeath; m++)
   double *severity;              if(freq[jk][m][i] !=0 ) {
   double ***param; /* Matrix of parameters */              if(first==1)
   double  *p;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double **matcov; /* Matrix of covariance */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double ***delti3; /* Scale */              }
   double *delti; /* Scale */          if(i <= iagemax)
   double ***eij, ***vareij;            fprintf(ficresp,"\n");
   double **varpl; /* Variances of prevalence limits by age */          if(first==1)
   double *epj, vepp;            printf("Others in log...\n");
   double kk1, kk2;          fprintf(ficlog,"\n");
   double *popeffectif,*popcount;        }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;      }
   double yp,yp1,yp2;    }
     dateintmean=dateintsum/k2cpt; 
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   char z[1]="c", occ;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 #include <sys/time.h>    /* End of Freq */
 #include <time.h>  }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
    /************ Prevalence ********************/
   /* long total_usecs;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   struct timeval start_time, end_time;  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
   printf("\nIMACH, Version 0.7");   
   printf("\nEnter the parameter file name: ");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
 #ifdef windows    double *pp, **prop;
   scanf("%s",pathtot);    double pos,posprop; 
   getcwd(pathcd, size);    double  y2; /* in fractional years */
   /*cygwin_split_path(pathtot,path,optionfile);    int iagemin, iagemax;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    iagemin= (int) agemin;
     iagemax= (int) agemax;
 split(pathtot, path,optionfile);    /*pp=vector(1,nlstate);*/
   chdir(path);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   replace(pathc,path);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 #endif    j1=0;
 #ifdef unix    
   scanf("%s",optionfile);    j=cptcoveff;
 #endif    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
 /*-------- arguments in the command line --------*/    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   strcpy(fileres,"r");        j1++;
   strcat(fileres, optionfile);        
         for (i=1; i<=nlstate; i++)  
   /*---------arguments file --------*/          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       
     printf("Problem with optionfile %s\n",optionfile);        for (i=1; i<=imx; i++) { /* Each individual */
     goto end;          bool=1;
   }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   strcpy(filereso,"o");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   strcat(filereso,fileres);                bool=0;
   if((ficparo=fopen(filereso,"w"))==NULL) {          } 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          if (bool==1) { 
   }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   /* Reads comments: lines beginning with '#' */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   while((c=getc(ficpar))=='#' && c!= EOF){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     ungetc(c,ficpar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fgets(line, MAXLINE, ficpar);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     puts(line);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     fputs(line,ficparo);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   ungetc(c,ficpar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);            } /* end selection of waves */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          }
 while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        for(i=iagemin; i <= iagemax+3; i++){  
     fgets(line, MAXLINE, ficpar);          
     puts(line);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fputs(line,ficparo);            posprop += prop[jk][i]; 
   }          } 
   ungetc(c,ficpar);  
            for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
   covar=matrix(0,NCOVMAX,1,n);              if(posprop>=1.e-5){ 
   cptcovn=0;                probs[i][jk][j1]= prop[jk][i]/posprop;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              } 
             } 
   ncovmodel=2+cptcovn;          }/* end jk */ 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        }/* end i */ 
        } /* end i1 */
   /* Read guess parameters */    } /* end k1 */
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     ungetc(c,ficpar);    /*free_vector(pp,1,nlstate);*/
     fgets(line, MAXLINE, ficpar);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     puts(line);  }  /* End of prevalence */
     fputs(line,ficparo);  
   }  /************* Waves Concatenation ***************/
   ungetc(c,ficpar);  
    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  {
     for(i=1; i <=nlstate; i++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     for(j=1; j <=nlstate+ndeath-1; j++){       Death is a valid wave (if date is known).
       fscanf(ficpar,"%1d%1d",&i1,&j1);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       fprintf(ficparo,"%1d%1d",i1,j1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       printf("%1d%1d",i,j);       and mw[mi+1][i]. dh depends on stepm.
       for(k=1; k<=ncovmodel;k++){       */
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);    int i, mi, m;
         fprintf(ficparo," %lf",param[i][j][k]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       }       double sum=0., jmean=0.;*/
       fscanf(ficpar,"\n");    int first;
       printf("\n");    int j, k=0,jk, ju, jl;
       fprintf(ficparo,"\n");    double sum=0.;
     }    first=0;
      jmin=1e+5;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    jmax=-1;
     jmean=0.;
   p=param[1][1];    for(i=1; i<=imx; i++){
        mi=0;
   /* Reads comments: lines beginning with '#' */      m=firstpass;
   while((c=getc(ficpar))=='#' && c!= EOF){      while(s[m][i] <= nlstate){
     ungetc(c,ficpar);        if(s[m][i]>=1)
     fgets(line, MAXLINE, ficpar);          mw[++mi][i]=m;
     puts(line);        if(m >=lastpass)
     fputs(line,ficparo);          break;
   }        else
   ungetc(c,ficpar);          m++;
       }/* end while */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      if (s[m][i] > nlstate){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        mi++;     /* Death is another wave */
   for(i=1; i <=nlstate; i++){        /* if(mi==0)  never been interviewed correctly before death */
     for(j=1; j <=nlstate+ndeath-1; j++){           /* Only death is a correct wave */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        mw[mi][i]=m;
       printf("%1d%1d",i,j);      }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){      wav[i]=mi;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      if(mi==0){
         printf(" %le",delti3[i][j][k]);        if(first==0){
         fprintf(ficparo," %le",delti3[i][j][k]);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       }          first=1;
       fscanf(ficpar,"\n");        }
       printf("\n");        if(first==1){
       fprintf(ficparo,"\n");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     }        }
   }      } /* end mi==0 */
   delti=delti3[1][1];    } /* End individuals */
    
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=imx; i++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for(mi=1; mi<wav[i];mi++){
     ungetc(c,ficpar);        if (stepm <=0)
     fgets(line, MAXLINE, ficpar);          dh[mi][i]=1;
     puts(line);        else{
     fputs(line,ficparo);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
   ungetc(c,ficpar);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   matcov=matrix(1,npar,1,npar);              else if(j<0){
   for(i=1; i <=npar; i++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fscanf(ficpar,"%s",&str);                j=1; /* Careful Patch */
     printf("%s",str);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficparo,"%s",str);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(j=1; j <=i; j++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       fscanf(ficpar," %le",&matcov[i][j]);              }
       printf(" %.5le",matcov[i][j]);              k=k+1;
       fprintf(ficparo," %.5le",matcov[i][j]);              if (j >= jmax) jmax=j;
     }              if (j <= jmin) jmin=j;
     fscanf(ficpar,"\n");              sum=sum+j;
     printf("\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(ficparo,"\n");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   }            }
   for(i=1; i <=npar; i++)          }
     for(j=i+1;j<=npar;j++)          else{
       matcov[i][j]=matcov[j][i];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   printf("\n");            k=k+1;
             if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
     /*-------- data file ----------*/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     if((ficres =fopen(fileres,"w"))==NULL) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       printf("Problem with resultfile: %s\n", fileres);goto end;            if(j<0){
     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficres,"#%s\n",version);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                }
     if((fic=fopen(datafile,"r"))==NULL)    {            sum=sum+j;
       printf("Problem with datafile: %s\n", datafile);goto end;          }
     }          jk= j/stepm;
           jl= j -jk*stepm;
     n= lastobs;          ju= j -(jk+1)*stepm;
     severity = vector(1,maxwav);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     outcome=imatrix(1,maxwav+1,1,n);            if(jl==0){
     num=ivector(1,n);              dh[mi][i]=jk;
     moisnais=vector(1,n);              bh[mi][i]=0;
     annais=vector(1,n);            }else{ /* We want a negative bias in order to only have interpolation ie
     moisdc=vector(1,n);                    * at the price of an extra matrix product in likelihood */
     andc=vector(1,n);              dh[mi][i]=jk+1;
     agedc=vector(1,n);              bh[mi][i]=ju;
     cod=ivector(1,n);            }
     weight=vector(1,n);          }else{
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            if(jl <= -ju){
     mint=matrix(1,maxwav,1,n);              dh[mi][i]=jk;
     anint=matrix(1,maxwav,1,n);              bh[mi][i]=jl;       /* bias is positive if real duration
     s=imatrix(1,maxwav+1,1,n);                                   * is higher than the multiple of stepm and negative otherwise.
     adl=imatrix(1,maxwav+1,1,n);                                       */
     tab=ivector(1,NCOVMAX);            }
     ncodemax=ivector(1,8);            else{
               dh[mi][i]=jk+1;
     i=1;              bh[mi][i]=ju;
     while (fgets(line, MAXLINE, fic) != NULL)    {            }
       if ((i >= firstobs) && (i <=lastobs)) {            if(dh[mi][i]==0){
                      dh[mi][i]=1; /* At least one step */
         for (j=maxwav;j>=1;j--){              bh[mi][i]=ju; /* At least one step */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           strcpy(line,stra);            }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          } /* end if mle */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }      } /* end wave */
            }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    jmean=sum/k;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /*********** Tricode ****************************/
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  void tricode(int *Tvar, int **nbcode, int imx)
         for (j=ncov;j>=1;j--){  {
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }    int Ndum[20],ij=1, k, j, i, maxncov=19;
         num[i]=atol(stra);    int cptcode=0;
            cptcoveff=0; 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
         i=i+1;  
       }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     /* printf("ii=%d", ij);                                 modality*/ 
        scanf("%d",i);*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   imx=i-1; /* Number of individuals */        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* for (i=1; i<=imx; i++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                                         Tvar[j]. If V=sex and male is 0 and 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                                         female is 1, then  cptcode=1.*/
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      }
     }  
       for (i=0; i<=cptcode; i++) {
     for (i=1; i<=imx; i++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      }
   
   /* Calculation of the number of parameter from char model*/      ij=1; 
   Tvar=ivector(1,15);      for (i=1; i<=ncodemax[j]; i++) {
   Tprod=ivector(1,15);        for (k=0; k<= maxncov; k++) {
   Tvaraff=ivector(1,15);          if (Ndum[k] != 0) {
   Tvard=imatrix(1,15,1,2);            nbcode[Tvar[j]][ij]=k; 
   Tage=ivector(1,15);                  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                
   if (strlen(model) >1){            ij++;
     j=0, j1=0, k1=1, k2=1;          }
     j=nbocc(model,'+');          if (ij > ncodemax[j]) break; 
     j1=nbocc(model,'*');        }  
     cptcovn=j+1;      } 
     cptcovprod=j1;    }  
      
       for (k=0; k< maxncov; k++) Ndum[k]=0;
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){   for (i=1; i<=ncovmodel-2; i++) { 
       printf("Error. Non available option model=%s ",model);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       goto end;     ij=Tvar[i];
     }     Ndum[ij]++;
       }
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');   ij=1;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   for (i=1; i<= maxncov; i++) {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/     if((Ndum[i]!=0) && (i<=ncovcol)){
       /*scanf("%d",i);*/       Tvaraff[ij]=i; /*For printing */
       if (strchr(strb,'*')) {       ij++;
         cutv(strd,strc,strb,'*');     }
         if (strcmp(strc,"age")==0) {   }
           cptcovprod--;   
           cutv(strb,stre,strd,'V');   cptcoveff=ij-1; /*Number of simple covariates*/
           Tvar[i]=atoi(stre);  }
           cptcovage++;  
             Tage[cptcovage]=i;  /*********** Health Expectancies ****************/
             /*printf("stre=%s ", stre);*/  
         }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;  {
           cutv(strb,stre,strc,'V');    /* Health expectancies */
           Tvar[i]=atoi(stre);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
           cptcovage++;    double age, agelim, hf;
           Tage[cptcovage]=i;    double ***p3mat,***varhe;
         }    double **dnewm,**doldm;
         else {    double *xp;
           cutv(strb,stre,strc,'V');    double **gp, **gm;
           Tvar[i]=ncov+k1;    double ***gradg, ***trgradg;
           cutv(strb,strc,strd,'V');    int theta;
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           Tvard[k1][2]=atoi(stre);    xp=vector(1,npar);
           Tvar[cptcovn+k2]=Tvard[k1][1];    dnewm=matrix(1,nlstate*nlstate,1,npar);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           for (k=1; k<=lastobs;k++)    
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fprintf(ficreseij,"# Health expectancies\n");
           k1++;    fprintf(ficreseij,"# Age");
           k2=k2+2;    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=nlstate;j++)
       }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       else {    fprintf(ficreseij,"\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    if(estepm < stepm){
       cutv(strd,strc,strb,'V');      printf ("Problem %d lower than %d\n",estepm, stepm);
       Tvar[i]=atoi(strc);    }
       }    else  hstepm=estepm;   
       strcpy(modelsav,stra);      /* We compute the life expectancy from trapezoids spaced every estepm months
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);     * This is mainly to measure the difference between two models: for example
         scanf("%d",i);*/     * if stepm=24 months pijx are given only every 2 years and by summing them
     }     * we are calculating an estimate of the Life Expectancy assuming a linear 
 }     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   printf("cptcovprod=%d ", cptcovprod);     * to compare the new estimate of Life expectancy with the same linear 
   scanf("%d ",i);*/     * hypothesis. A more precise result, taking into account a more precise
     fclose(fic);     * curvature will be obtained if estepm is as small as stepm. */
   
     /*  if(mle==1){*/    /* For example we decided to compute the life expectancy with the smallest unit */
     if (weightopt != 1) { /* Maximisation without weights*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(i=1;i<=n;i++) weight[i]=1.0;       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
     /*-calculation of age at interview from date of interview and age at death -*/       Look at hpijx to understand the reason of that which relies in memory size
     agev=matrix(1,maxwav,1,imx);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    for (i=1; i<=imx; i++)       survival function given by stepm (the optimization length). Unfortunately it
      for(m=2; (m<= maxwav); m++)       means that if the survival funtion is printed only each two years of age and if
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
          anint[m][i]=9999;       results. So we changed our mind and took the option of the best precision.
          s[m][i]=-1;    */
        }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      
     for (i=1; i<=imx; i++)  {    agelim=AGESUP;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(m=1; (m<= maxwav); m++){      /* nhstepm age range expressed in number of stepm */
         if(s[m][i] >0){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           if (s[m][i] == nlstate+1) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             if(agedc[i]>0)      /* if (stepm >= YEARM) hstepm=1;*/
               if(moisdc[i]!=99 && andc[i]!=9999)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               agev[m][i]=agedc[i];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             else {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
               if (andc[i]!=9999){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
               agev[m][i]=-1;  
               }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           else if(s[m][i] !=9){ /* Should no more exist */   
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){      /* Computing Variances of health expectancies */
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       for(theta=1; theta <=npar; theta++){
             }        for(i=1; i<=npar; i++){ 
             else if(agev[m][i] >agemax){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               agemax=agev[m][i];        }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             }    
             /*agev[m][i]=anint[m][i]-annais[i];*/        cptj=0;
             /*   agev[m][i] = age[i]+2*m;*/        for(j=1; j<= nlstate; j++){
           }          for(i=1; i<=nlstate; i++){
           else { /* =9 */            cptj=cptj+1;
             agev[m][i]=1;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
             s[m][i]=-1;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           }            }
         }          }
         else /*= 0 Unknown */        }
           agev[m][i]=1;       
       }       
            for(i=1; i<=npar; i++) 
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for (i=1; i<=imx; i++)  {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(m=1; (m<= maxwav); m++){        
         if (s[m][i] > (nlstate+ndeath)) {        cptj=0;
           printf("Error: Wrong value in nlstate or ndeath\n");          for(j=1; j<= nlstate; j++){
           goto end;          for(i=1;i<=nlstate;i++){
         }            cptj=cptj+1;
       }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     }  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            }
           }
     free_vector(severity,1,maxwav);        }
     free_imatrix(outcome,1,maxwav+1,1,n);        for(j=1; j<= nlstate*nlstate; j++)
     free_vector(moisnais,1,n);          for(h=0; h<=nhstepm-1; h++){
     free_vector(annais,1,n);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     /* free_matrix(mint,1,maxwav,1,n);          }
        free_matrix(anint,1,maxwav,1,n);*/       } 
     free_vector(moisdc,1,n);     
     free_vector(andc,1,n);  /* End theta */
   
           trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);       for(h=0; h<=nhstepm-1; h++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for(j=1; j<=nlstate*nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     /* Concatenates waves */            trgradg[h][j][theta]=gradg[h][theta][j];
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       
   
        for(i=1;i<=nlstate*nlstate;i++)
       Tcode=ivector(1,100);        for(j=1;j<=nlstate*nlstate;j++)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          varhe[i][j][(int)age] =0.;
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);       printf("%d|",(int)age);fflush(stdout);
             fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    codtab=imatrix(1,100,1,10);       for(h=0;h<=nhstepm-1;h++){
    h=0;        for(k=0;k<=nhstepm-1;k++){
    m=pow(2,cptcoveff);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
    for(k=1;k<=cptcoveff; k++){          for(i=1;i<=nlstate*nlstate;i++)
      for(i=1; i <=(m/pow(2,k));i++){            for(j=1;j<=nlstate*nlstate;j++)
        for(j=1; j <= ncodemax[k]; j++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        }
            h++;      }
            if (h>m) h=1;codtab[h][k]=j;      /* Computing expectancies */
          }      for(i=1; i<=nlstate;i++)
        }        for(j=1; j<=nlstate;j++)
      }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
    }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                
    /* Calculates basic frequencies. Computes observed prevalence at single age  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        and prints on file fileres'p'. */  
           }
      
          fprintf(ficreseij,"%3.0f",age );
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      cptj=0;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate;j++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          cptj++;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
              }
     /* For Powell, parameters are in a vector p[] starting at p[1]      fprintf(ficreseij,"\n");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */     
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     if(mle==1){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }
     /*--------- results files --------------*/    printf("\n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    fprintf(ficlog,"\n");
    
     free_vector(xp,1,npar);
    jk=1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
    fprintf(ficres,"# Parameters\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    printf("# Parameters\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    for(i=1,jk=1; i <=nlstate; i++){  }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)  /************ Variance ******************/
          {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
            printf("%d%d ",i,k);  {
            fprintf(ficres,"%1d%1d ",i,k);    /* Variance of health expectancies */
            for(j=1; j <=ncovmodel; j++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
              printf("%f ",p[jk]);    /* double **newm;*/
              fprintf(ficres,"%f ",p[jk]);    double **dnewm,**doldm;
              jk++;    double **dnewmp,**doldmp;
            }    int i, j, nhstepm, hstepm, h, nstepm ;
            printf("\n");    int k, cptcode;
            fprintf(ficres,"\n");    double *xp;
          }    double **gp, **gm;  /* for var eij */
      }    double ***gradg, ***trgradg; /*for var eij */
    }    double **gradgp, **trgradgp; /* for var p point j */
  if(mle==1){    double *gpp, *gmp; /* for var p point j */
     /* Computing hessian and covariance matrix */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     ftolhess=ftol; /* Usually correct */    double ***p3mat;
     hesscov(matcov, p, npar, delti, ftolhess, func);    double age,agelim, hf;
  }    double ***mobaverage;
     fprintf(ficres,"# Scales\n");    int theta;
     printf("# Scales\n");    char digit[4];
      for(i=1,jk=1; i <=nlstate; i++){    char digitp[25];
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    char fileresprobmorprev[FILENAMELENGTH];
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);    if(popbased==1){
           for(k=1; k<=ncovmodel;k++){      if(mobilav!=0)
             printf(" %.5e",delti[jk]);        strcpy(digitp,"-populbased-mobilav-");
             fprintf(ficres," %.5e",delti[jk]);      else strcpy(digitp,"-populbased-nomobil-");
             jk++;    }
           }    else 
           printf("\n");      strcpy(digitp,"-stablbased-");
           fprintf(ficres,"\n");  
         }    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
            fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     k=1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficres,"# Covariance\n");      }
     printf("# Covariance\n");    }
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;    strcpy(fileresprobmorprev,"prmorprev"); 
       i1=(i-1)/(ncovmodel*nlstate)+1;    sprintf(digit,"%-d",ij);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficres,"%3d",i);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       printf("%3d",i);    strcat(fileresprobmorprev,fileres);
       for(j=1; j<=i;j++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         fprintf(ficres," %.5e",matcov[i][j]);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         printf(" %.5e",matcov[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       }    }
       fprintf(ficres,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       printf("\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       k++;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresprobmorprev," p.%-d SE",j);
       ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
       fgets(line, MAXLINE, ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       puts(line);    }  
       fputs(line,ficparo);    fprintf(ficresprobmorprev,"\n");
     }    fprintf(ficgp,"\n# Routine varevsij");
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  /*   } */
        varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (fage <= 2) {  
       bage = agemin;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       fage = agemax;    fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
     fprintf(ficres,"# agemin agemax for life expectancy.\n");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
     while((c=getc(ficpar))=='#' && c!= EOF){    doldm=matrix(1,nlstate,1,nlstate);
     ungetc(c,ficpar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     fgets(line, MAXLINE, ficpar);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     puts(line);  
     fputs(line,ficparo);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   }    gpp=vector(nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    if(estepm < stepm){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      printf ("Problem %d lower than %d\n",estepm, stepm);
          }
   while((c=getc(ficpar))=='#' && c!= EOF){    else  hstepm=estepm;   
     ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
     fgets(line, MAXLINE, ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     puts(line);       nhstepm is the number of hstepm from age to agelim 
     fputs(line,ficparo);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   ungetc(c,ficpar);       and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       means that if the survival funtion is printed every two years of age and if
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   fscanf(ficpar,"pop_based=%d\n",&popbased);    */
    fprintf(ficparo,"pop_based=%d\n",popbased);      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    fprintf(ficres,"pop_based=%d\n",popbased);      agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   while((c=getc(ficpar))=='#' && c!= EOF){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     ungetc(c,ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fgets(line, MAXLINE, ficpar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     fputs(line,ficparo);      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   ungetc(c,ficpar);  
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);  
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      for(theta=1; theta <=npar; theta++){
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  /*------------ gnuplot -------------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 chdir(pathcd);  
   if((ficgp=fopen("graph.plt","w"))==NULL) {        if (popbased==1) {
     printf("Problem with file graph.gp");goto end;          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
 #ifdef windows              prlim[i][i]=probs[(int)age][i][ij];
   fprintf(ficgp,"cd \"%s\" \n",pathc);          }else{ /* mobilav */ 
 #endif            for(i=1; i<=nlstate;i++)
 m=pow(2,cptcoveff);              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {    
    for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
 #ifdef windows            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 #endif          }
 #ifdef unix        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        /* This for computing probability of death (h=1 means
 #endif           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
 for (i=1; i<= nlstate ; i ++) {        */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }    
     for (i=1; i<= nlstate ; i ++) {        /* end probability of death */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for (i=1; i<= nlstate ; i ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (popbased==1) {
 }            if(mobilav ==0){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            for(i=1; i<=nlstate;i++)
 #ifdef unix              prlim[i][i]=probs[(int)age][i][ij];
 fprintf(ficgp,"\nset ter gif small size 400,300");          }else{ /* mobilav */ 
 #endif            for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              prlim[i][i]=mobaverage[(int)age][i][ij];
    }          }
   }        }
   /*2 eme*/  
         for(j=1; j<= nlstate; j++){
   for (k1=1; k1<= m ; k1 ++) {          for(h=0; h<=nhstepm; h++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                  gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for (i=1; i<= nlstate+1 ; i ++) {          }
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        /* This for computing probability of death (h=1 means
       for (j=1; j<= nlstate+1 ; j ++) {           computed over hstepm matrices product = hstepm*stepm months) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");           as a weighted average of prlim.
   else fprintf(ficgp," \%%*lf (\%%*lf)");        */
 }          for(j=nlstate+1;j<=nlstate+ndeath;j++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        }    
       for (j=1; j<= nlstate+1 ; j ++) {        /* end probability of death */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate; j++) /* vareij */
 }            for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,"\" t\"\" w l 0,");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");      } /* End theta */
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   }  
        for(h=0; h<=nhstepm; h++) /* veij */
   /*3eme*/        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   for (k1=1; k1<= m ; k1 ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(cpt-1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        for(theta=1; theta <=npar; theta++)
       for (i=1; i< nlstate ; i ++) {          trgradgp[j][theta]=gradgp[theta][j];
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {      for(h=0;h<=nhstepm;h++){
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(k=0;k<=nhstepm;k++){
       k=3;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for (i=1; i< nlstate ; i ++)          for(i=1;i<=nlstate;i++)
         fprintf(ficgp,"+$%d",k+i+1);            for(j=1;j<=nlstate;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
              }
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    
       for (i=1; i< nlstate ; i ++) {      /* pptj */
         l=3+(nlstate+ndeath)*cpt;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficgp,"+$%d",l+i+1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          varppt[j][i]=doldmp[j][i];
     }      /* end ppptj */
   }        /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /* proba elementaires */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    for(i=1,jk=1; i <=nlstate; i++){   
     for(k=1; k <=(nlstate+ndeath); k++){      if (popbased==1) {
       if (k != i) {        if(mobilav ==0){
         for(j=1; j <=ncovmodel; j++){          for(i=1; i<=nlstate;i++)
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            prlim[i][i]=probs[(int)age][i][ij];
           /*fprintf(ficgp,"%s",alph[1]);*/        }else{ /* mobilav */ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(i=1; i<=nlstate;i++)
           jk++;            prlim[i][i]=mobaverage[(int)age][i][ij];
           fprintf(ficgp,"\n");        }
         }      }
       }               
     }      /* This for computing probability of death (h=1 means
     }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   for(jk=1; jk <=m; jk++) {      */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
    i=1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
    for(k2=1; k2<=nlstate; k2++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      k3=i;      }    
      for(k=1; k<=(nlstate+ndeath); k++) {      /* end probability of death */
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 ij=1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for(j=3; j <=ncovmodel; j++) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(i=1; i<=nlstate;i++){
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             ij++;        }
           }      } 
           else      fprintf(ficresprobmorprev,"\n");
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficgp,")/(1");      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++){
         for(k1=1; k1 <=nlstate; k1++){            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        }
 ij=1;      fprintf(ficresvij,"\n");
           for(j=3; j <=ncovmodel; j++){      free_matrix(gp,0,nhstepm,1,nlstate);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      free_matrix(gm,0,nhstepm,1,nlstate);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             ij++;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           else    } /* End age */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_vector(gpp,nlstate+1,nlstate+ndeath);
           }    free_vector(gmp,nlstate+1,nlstate+ndeath);
           fprintf(ficgp,")");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         i=i+ncovmodel;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
        }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   fclose(ficgp);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /* end gnuplot */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 chdir(path);  */
      /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     free_ivector(wav,1,imx);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      free_vector(xp,1,npar);
     free_ivector(num,1,n);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_vector(agedc,1,n);    free_matrix(dnewm,1,nlstate,1,npar);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fclose(ficparo);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     fclose(ficres);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     /*  }*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficresprobmorprev);
    /*________fin mle=1_________*/    fflush(ficgp);
        fflush(fichtm); 
   }  /* end varevsij */
    
     /* No more information from the sample is required now */  /************ Variance of prevlim ******************/
   /* Reads comments: lines beginning with '#' */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    /* Variance of prevalence limit */
     fgets(line, MAXLINE, ficpar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     puts(line);    double **newm;
     fputs(line,ficparo);    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
   ungetc(c,ficpar);    int k, cptcode;
      double *xp;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    double *gp, *gm;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    double **gradg, **trgradg;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    double age,agelim;
 /*--------- index.htm --------*/    int theta;
      
   strcpy(optionfilehtm,optionfile);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   strcat(optionfilehtm,".htm");    fprintf(ficresvpl,"# Age");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    for(i=1; i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtm);goto end;        fprintf(ficresvpl," %1d-%1d",i,i);
   }    fprintf(ficresvpl,"\n");
   
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">    xp=vector(1,npar);
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    dnewm=matrix(1,nlstate,1,npar);
 Total number of observations=%d <br>    doldm=matrix(1,nlstate,1,nlstate);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    
 <hr  size=\"2\" color=\"#EC5E5E\">    hstepm=1*YEARM; /* Every year of age */
 <li>Outputs files<br><br>\n    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    agelim = AGESUP;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      if (stepm >= YEARM) hstepm=1;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      gradg=matrix(1,npar,1,nlstate);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      gp=vector(1,nlstate);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      gm=vector(1,nlstate);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>  
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>      for(theta=1; theta <=npar; theta++){
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
  fprintf(fichtm," <li>Graphs</li><p>");        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  m=cptcoveff;        for(i=1;i<=nlstate;i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          gp[i] = prlim[i][i];
       
  j1=0;        for(i=1; i<=npar; i++) /* Computes gradient */
  for(k1=1; k1<=m;k1++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    for(i1=1; i1<=ncodemax[k1];i1++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        j1++;        for(i=1;i<=nlstate;i++)
        if (cptcovn > 0) {          gm[i] = prlim[i][i];
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)        for(i=1;i<=nlstate;i++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      } /* End theta */
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      trgradg =matrix(1,nlstate,1,npar);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){      for(j=1; j<=nlstate;j++)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for(theta=1; theta <=npar; theta++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          trgradg[j][theta]=gradg[theta][j];
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {      for(i=1;i<=nlstate;i++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        varpl[i][(int)age] =0.;
 interval) in state (%d): v%s%d%d.gif <br>      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      }      for(i=1;i<=nlstate;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      fprintf(ficresvpl,"%.0f ",age );
      }      for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 health expectancies in states (1) and (2): e%s%d.gif<br>      fprintf(ficresvpl,"\n");
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      free_vector(gp,1,nlstate);
 fprintf(fichtm,"\n</body>");      free_vector(gm,1,nlstate);
    }      free_matrix(gradg,1,npar,1,nlstate);
  }      free_matrix(trgradg,1,nlstate,1,npar);
 fclose(fichtm);    } /* End age */
   
   /*--------------- Prevalence limit --------------*/    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   strcpy(filerespl,"pl");    free_matrix(dnewm,1,nlstate,1,nlstate);
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }  /************ Variance of one-step probabilities  ******************/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   fprintf(ficrespl,"#Prevalence limit\n");  {
   fprintf(ficrespl,"#Age ");    int i, j=0,  i1, k1, l1, t, tj;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    int k2, l2, j1,  z1;
   fprintf(ficrespl,"\n");    int k=0,l, cptcode;
      int first=1, first1;
   prlim=matrix(1,nlstate,1,nlstate);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **dnewm,**doldm;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xp;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *gp, *gm;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **gradg, **trgradg;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double **mu;
   k=0;    double age,agelim, cov[NCOVMAX];
   agebase=agemin;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   agelim=agemax;    int theta;
   ftolpl=1.e-10;    char fileresprob[FILENAMELENGTH];
   i1=cptcoveff;    char fileresprobcov[FILENAMELENGTH];
   if (cptcovn < 1){i1=1;}    char fileresprobcor[FILENAMELENGTH];
   
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***varpij;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    strcpy(fileresprob,"prob"); 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    strcat(fileresprob,fileres);
         fprintf(ficrespl,"\n#******");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         for(j=1;j<=cptcoveff;j++)      printf("Problem with resultfile: %s\n", fileresprob);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         fprintf(ficrespl,"******\n");    }
            strcpy(fileresprobcov,"probcov"); 
         for (age=agebase; age<=agelim; age++){    strcat(fileresprobcov,fileres);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           fprintf(ficrespl,"%.0f",age );      printf("Problem with resultfile: %s\n", fileresprobcov);
           for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           fprintf(ficrespl," %.5f", prlim[i][i]);    }
           fprintf(ficrespl,"\n");    strcpy(fileresprobcor,"probcor"); 
         }    strcat(fileresprobcor,fileres);
       }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprobcor);
   fclose(ficrespl);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   /*------------- h Pij x at various ages ------------*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   printf("Computing pij: result on file '%s' \n", filerespij);    
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficresprob,"# Age");
   /*if (stepm<=24) stepsize=2;*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
   agelim=AGESUP;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficresprobcov,"# Age");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
    
   k=0;    for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){      for(j=1; j<=(nlstate+ndeath);j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       k=k+1;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficrespij,"\n#****** ");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         for(j=1;j<=cptcoveff;j++)      }  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   /* fprintf(ficresprob,"\n");
         fprintf(ficrespij,"******\n");    fprintf(ficresprobcov,"\n");
            fprintf(ficresprobcor,"\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   xp=vector(1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           oldm=oldms;savm=savms;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           fprintf(ficrespij,"# Age");    first=1;
           for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\n# Routine varprob");
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(fichtm,"\n");
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
             for(i=1; i<=nlstate;i++)    fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    cov[1]=1;
             fprintf(ficrespij,"\n");    tj=cptcoveff;
           }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    j1=0;
           fprintf(ficrespij,"\n");    for(t=1; t<=tj;t++){
         }      for(i1=1; i1<=ncodemax[t];i1++){ 
     }        j1++;
   }        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
   fclose(ficrespij);          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if(stepm == 1) {          fprintf(ficresprobcov, "**********\n#\n");
   /*---------- Forecasting ------------------*/          
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*printf("calage= %f", calagedate);*/          fprintf(ficgp, "**********\n#\n");
            
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcpy(fileresf,"f");          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcat(fileresf,fileres);          
   if((ficresf=fopen(fileresf,"w"))==NULL) {          fprintf(ficresprobcor, "\n#********** Variable ");    
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcor, "**********\n#");    
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }
         
   free_matrix(mint,1,maxwav,1,n);        for (age=bage; age<=fage; age ++){ 
   free_matrix(anint,1,maxwav,1,n);          cov[2]=age;
   free_matrix(agev,1,maxwav,1,imx);          for (k=1; k<=cptcovn;k++) {
   /* Mobile average */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   if (mobilav==1) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       for (i=1; i<=nlstate;i++)          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          gp=vector(1,(nlstate)*(nlstate+ndeath));
           mobaverage[(int)agedeb][i][cptcod]=0.;          gm=vector(1,(nlstate)*(nlstate+ndeath));
          
     for (agedeb=bage+4; agedeb<=fage; agedeb++){          for(theta=1; theta <=npar; theta++){
       for (i=1; i<=nlstate;i++){            for(i=1; i<=npar; i++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           for (cpt=0;cpt<=4;cpt++){            
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           }            
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            k=0;
         }            for(i=1; i<= (nlstate); i++){
       }              for(j=1; j<=(nlstate+ndeath);j++){
     }                  k=k+1;
   }                gp[k]=pmmij[i][j];
               }
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;            
             for(i=1; i<=npar; i++)
   agelim=AGESUP;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   /*hstepm=stepsize*YEARM; *//* Every year of age */      
   hstepm=1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */            k=0;
   yp1=modf(dateintmean,&yp);            for(i=1; i<=(nlstate); i++){
   anprojmean=yp;              for(j=1; j<=(nlstate+ndeath);j++){
   yp2=modf((yp1*12),&yp);                k=k+1;
   mprojmean=yp;                gm[k]=pmmij[i][j];
   yp1=modf((yp2*30.5),&yp);              }
   jprojmean=yp;            }
   if(jprojmean==0) jprojmean=1;       
   if(mprojmean==0) jprojmean=1;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          }
   
   if (popforecast==1) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     if((ficpop=fopen(popfile,"r"))==NULL)    {            for(theta=1; theta <=npar; theta++)
       printf("Problem with population file : %s\n",popfile);goto end;              trgradg[j][theta]=gradg[theta][j];
     }          
     popage=ivector(0,AGESUP);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     popeffectif=vector(0,AGESUP);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     popcount=vector(0,AGESUP);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     i=1;            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       {  
         i=i+1;          pmij(pmmij,cov,ncovmodel,x,nlstate);
       }          
     imx=i;          k=0;
              for(i=1; i<=(nlstate); i++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            for(j=1; j<=(nlstate+ndeath);j++){
   }              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
       k=k+1;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficresf,"\n#******");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       for(j=1;j<=cptcoveff;j++) {              varpij[i][j][(int)age] = doldm[i][j];
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }          /*printf("\n%d ",(int)age);
       fprintf(ficresf,"******\n");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficresf,"# StartingAge FinalAge");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       if (popforecast==1)  fprintf(ficresf," [Population]");            }*/
      
       for (cpt=0; cpt<4;cpt++) {          fprintf(ficresprob,"\n%d ",(int)age);
         fprintf(ficresf,"\n");          fprintf(ficresprobcov,"\n%d ",(int)age);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            fprintf(ficresprobcor,"\n%d ",(int)age);
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         nhstepm = nhstepm/hstepm;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         oldm=oldms;savm=savms;          i=0;
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (k=1; k<=(nlstate);k++){
                    for (l=1; l<=(nlstate+ndeath);l++){ 
         for (h=0; h<=nhstepm; h++){              i=i++;
           if (h==(int) (calagedate+YEARM*cpt)) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           }              for (j=1; j<=i;j++){
           for(j=1; j<=nlstate+ndeath;j++) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
             kk1=0.;kk2=0;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             for(i=1; i<=nlstate;i++) {                      }
               if (mobilav==1)            }
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }/* end of loop for state */
               else {        } /* end of loop for age */
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/        /* Confidence intervalle of pij  */
               }        /*
           fprintf(ficgp,"\nset noparametric;unset label");
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                    fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
             if (h==(int)(calagedate+12*cpt)){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               fprintf(ficresf," %.3f", kk1);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);        */
             }  
           }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         }        first1=1;
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k2=1; k2<=(nlstate);k2++){
       }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       }            if(l2==k2) continue;
     }            j=(k2-1)*(nlstate+ndeath)+l2;
   }            for (k1=1; k1<=(nlstate);k1++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   if (popforecast==1) {                if(l1==k1) continue;
     free_ivector(popage,0,AGESUP);                i=(k1-1)*(nlstate+ndeath)+l1;
     free_vector(popeffectif,0,AGESUP);                if(i<=j) continue;
     free_vector(popcount,0,AGESUP);                for (age=bage; age<=fage; age ++){ 
   }                  if ((int)age %5==0){
   free_imatrix(s,1,maxwav+1,1,n);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   free_vector(weight,1,n);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fclose(ficresf);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }/* End forecasting */                    mu1=mu[i][(int) age]/stepm*YEARM ;
   else{                    mu2=mu[j][(int) age]/stepm*YEARM;
     erreur=108;                    c12=cv12/sqrt(v1*v2);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);                    /* Computing eigen value of matrix of covariance */
   }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /*---------- Health expectancies and variances ------------*/                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   strcpy(filerest,"t");                    /*v21=sqrt(1.-v11*v11); *//* error */
   strcat(filerest,fileres);                    v21=(lc1-v1)/cv12*v11;
   if((ficrest=fopen(filerest,"w"))==NULL) {                    v12=-v21;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    v22=v11;
   }                    tnalp=v21/v11;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   strcpy(filerese,"e");                    }
   strcat(filerese,fileres);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if((ficreseij=fopen(filerese,"w"))==NULL) {                    /*printf(fignu*/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                    if(first==1){
                       first=0;
  strcpy(fileresv,"v");                      fprintf(ficgp,"\nset parametric;unset label");
   strcat(fileresv,fileres);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   k=0;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       k=k+1;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficrest,"\n#****** ");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficrest,"******\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficreseij,"\n#****** ");                    }else{
       for(j=1;j<=cptcoveff;j++)                      first=0;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
       fprintf(ficreseij,"******\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficresvij,"\n#****** ");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       for(j=1;j<=cptcoveff;j++)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficresvij,"******\n");                    }/* if first */
                   } /* age mod 5 */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                } /* end loop age */
       oldm=oldms;savm=savms;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                  first=1;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              } /*l12 */
       oldm=oldms;savm=savms;            } /* k12 */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          } /*l1 */
              }/* k1 */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      } /* loop covariates */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    }
       fprintf(ficrest,"\n");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
            free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       hf=1;    free_vector(xp,1,npar);
       if (stepm >= YEARM) hf=stepm/YEARM;    fclose(ficresprob);
       epj=vector(1,nlstate+1);    fclose(ficresprobcov);
       for(age=bage; age <=fage ;age++){    fclose(ficresprobcor);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /*  fclose(ficgp);*/
         if (popbased==1) {  }
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];  
         }  /******************* Printing html file ***********/
          void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         fprintf(ficrest," %.0f",age);                    int lastpass, int stepm, int weightopt, char model[],\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    int popforecast, int estepm ,\
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];                    double jprev1, double mprev1,double anprev1, \
           }                    double jprev2, double mprev2,double anprev2){
           epj[nlstate+1] +=epj[j];    int jj1, k1, i1, cpt;
         }    /*char optionfilehtm[FILENAMELENGTH];*/
         for(i=1, vepp=0.;i <=nlstate;i++)  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
           for(j=1;j <=nlstate;j++)  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
             vepp += vareij[i][j][(int)age];  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  /*   } */
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
         }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
         fprintf(ficrest,"\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
       }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
     }   - Life expectancies by age and initial health status (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>", \
                     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
                     stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  fclose(ficreseij);  
  fclose(ficresvij);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   fclose(ficrest);  
   fclose(ficpar);   m=cptcoveff;
   free_vector(epj,1,nlstate+1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /*  scanf("%d ",i); */  
    jj1=0;
   /*------- Variance limit prevalence------*/     for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
 strcpy(fileresvpl,"vpl");       jj1++;
   strcat(fileresvpl,fileres);       if (cptcovn > 0) {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     exit(0);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);       }
        /* Pij */
  k=0;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
  for(cptcov=1;cptcov<=i1;cptcov++){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       /* Quasi-incidences */
      k=k+1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
      fprintf(ficresvpl,"\n#****** ");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      for(j=1;j<=cptcoveff;j++)  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         /* Stable prevalence in each health state */
      fprintf(ficresvpl,"******\n");         for(cpt=1; cpt<nlstate;cpt++){
                 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
      oldm=oldms;savm=savms;         }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       for(cpt=1; cpt<=nlstate;cpt++) {
    }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
  }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
   fclose(ficresvpl);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   /*---------- End : free ----------------*/  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     } /* end i1 */
     }/* End k1 */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);   fprintf(fichtm,"</ul>");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
    
     fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
   free_matrix(matcov,1,npar,1,npar);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
   free_vector(delti,1,npar);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             rfileres,rfileres,\
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
   if(erreur >0)           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     printf("End of Imach with error %d\n",erreur);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
   else   printf("End of Imach\n");           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*printf("Total time was %d uSec.\n", total_usecs);*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*------ End -----------*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
  end:  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 #ifdef windows  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
  chdir(pathcd);  
 #endif   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  system("..\\gp37mgw\\wgnuplot graph.plt");  
    jj1=0;
 #ifdef windows   for(k1=1; k1<=m;k1++){
   while (z[0] != 'q') {     for(i1=1; i1<=ncodemax[k1];i1++){
     chdir(pathcd);       jj1++;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");       if (cptcovn > 0) {
     scanf("%s",z);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     if (z[0] == 'c') system("./imach");         for (cpt=1; cpt<=cptcoveff;cpt++) 
     else if (z[0] == 'e') {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       chdir(path);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       system(optionfilehtm);       }
     }       for(cpt=1; cpt<=nlstate;cpt++) {
     else if (z[0] == 'q') exit(0);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   }  interval) in state (%d): %s%d%d.png <br>\
 #endif  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 }       }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.21  
changed lines
  Added in v.1.90


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>