Diff for /imach/src/imach.c between versions 1.87 and 1.125

version 1.87, 2003/06/18 12:26:01 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   Version 0.96    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.86  2003/06/17 20:04:08  brouard  
   (Module): Change position of html and gnuplot routines and added    Revision 1.124  2006/03/22 17:13:53  lievre
   routine fileappend.    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Revision 1.85  2003/06/17 13:12:43  brouard  
   * imach.c (Repository): Check when date of death was earlier that    Revision 1.123  2006/03/20 10:52:43  brouard
   current date of interview. It may happen when the death was just    * imach.c (Module): <title> changed, corresponds to .htm file
   prior to the death. In this case, dh was negative and likelihood    name. <head> headers where missing.
   was wrong (infinity). We still send an "Error" but patch by  
   assuming that the date of death was just one stepm after the    * imach.c (Module): Weights can have a decimal point as for
   interview.    English (a comma might work with a correct LC_NUMERIC environment,
   (Repository): Because some people have very long ID (first column)    otherwise the weight is truncated).
   we changed int to long in num[] and we added a new lvector for    Modification of warning when the covariates values are not 0 or
   memory allocation. But we also truncated to 8 characters (left    1.
   truncation)    Version 0.98g
   (Repository): No more line truncation errors.  
     Revision 1.122  2006/03/20 09:45:41  brouard
   Revision 1.84  2003/06/13 21:44:43  brouard    (Module): Weights can have a decimal point as for
   * imach.c (Repository): Replace "freqsummary" at a correct    English (a comma might work with a correct LC_NUMERIC environment,
   place. It differs from routine "prevalence" which may be called    otherwise the weight is truncated).
   many times. Probs is memory consuming and must be used with    Modification of warning when the covariates values are not 0 or
   parcimony.    1.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.98g
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   *** empty log message ***    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.82  2003/06/05 15:57:20  brouard    * imach.c (Module): refinements in the computation of lli if
   Add log in  imach.c and  fullversion number is now printed.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 */  
 /*    Revision 1.120  2006/03/16 15:10:38  lievre
    Interpolated Markov Chain    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Short summary of the programme:    not 1 month. Version 0.98f
     
   This program computes Healthy Life Expectancies from    Revision 1.119  2006/03/15 17:42:26  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Bug if status = -2, the loglikelihood was
   first survey ("cross") where individuals from different ages are    computed as likelihood omitting the logarithm. Version O.98e
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.118  2006/03/14 18:20:07  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): varevsij Comments added explaining the second
   (if any) in individual health status.  Health expectancies are    table of variances if popbased=1 .
   computed from the time spent in each health state according to a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   model. More health states you consider, more time is necessary to reach the    (Module): Function pstamp added
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Version 0.98d
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.117  2006/03/14 17:16:22  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): varevsij Comments added explaining the second
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    table of variances if popbased=1 .
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   complex model than "constant and age", you should modify the program    (Module): Function pstamp added
   where the markup *Covariates have to be included here again* invites    (Module): Version 0.98d
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   The advantage of this computer programme, compared to a simple    varian-covariance of ej. is needed (Saito).
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.115  2006/02/27 12:17:45  brouard
   intermediate interview, the information is lost, but taken into    (Module): One freematrix added in mlikeli! 0.98c
   account using an interpolation or extrapolation.    
     Revision 1.114  2006/02/26 12:57:58  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Some improvements in processing parameter
   conditional to the observed state i at age x. The delay 'h' can be    filename with strsep.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.113  2006/02/24 14:20:24  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    (Module): Memory leaks checks with valgrind and:
   matrix is simply the matrix product of nh*stepm elementary matrices    datafile was not closed, some imatrix were not freed and on matrix
   and the contribution of each individual to the likelihood is simply    allocation too.
   hPijx.  
     Revision 1.112  2006/01/30 09:55:26  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.111  2006/01/25 20:38:18  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Lots of cleaning and bugs added (Gompertz)
            Institut national d'études démographiques, Paris.    (Module): Comments can be added in data file. Missing date values
   This software have been partly granted by Euro-REVES, a concerted action    can be a simple dot '.'.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.110  2006/01/25 00:51:50  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): Lots of cleaning and bugs added (Gompertz)
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.109  2006/01/24 19:37:15  brouard
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Comments (lines starting with a #) are allowed in data.
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.108  2006/01/19 18:05:42  lievre
   **********************************************************************/    Gnuplot problem appeared...
 /*    To be fixed
   main  
   read parameterfile    Revision 1.107  2006/01/19 16:20:37  brouard
   read datafile    Test existence of gnuplot in imach path
   concatwav  
   freqsummary    Revision 1.106  2006/01/19 13:24:36  brouard
   if (mle >= 1)    Some cleaning and links added in html output
     mlikeli  
   print results files    Revision 1.105  2006/01/05 20:23:19  lievre
   if mle==1     *** empty log message ***
      computes hessian  
   read end of parameter file: agemin, agemax, bage, fage, estepm    Revision 1.104  2005/09/30 16:11:43  lievre
       begin-prev-date,...    (Module): sump fixed, loop imx fixed, and simplifications.
   open gnuplot file    (Module): If the status is missing at the last wave but we know
   open html file    that the person is alive, then we can code his/her status as -2
   stable prevalence    (instead of missing=-1 in earlier versions) and his/her
    for age prevalim()    contributions to the likelihood is 1 - Prob of dying from last
   h Pij x    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   variance of p varprob    the healthy state at last known wave). Version is 0.98
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    Revision 1.103  2005/09/30 15:54:49  lievre
   Variance-covariance of DFLE    (Module): sump fixed, loop imx fixed, and simplifications.
   prevalence()  
    movingaverage()    Revision 1.102  2004/09/15 17:31:30  brouard
   varevsij()     Add the possibility to read data file including tab characters.
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Revision 1.101  2004/09/15 10:38:38  brouard
   Variance of stable prevalence    Fix on curr_time
  end  
 */    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   
     Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.98  2004/05/16 15:05:56  brouard
 #include <stdlib.h>    New version 0.97 . First attempt to estimate force of mortality
 #include <unistd.h>    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 #include <sys/time.h>    This is the basic analysis of mortality and should be done before any
 #include <time.h>    other analysis, in order to test if the mortality estimated from the
 #include "timeval.h"    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    The same imach parameter file can be used but the option for mle should be -3.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132    Agnès, who wrote this part of the code, tried to keep most of the
 /*#define DEBUG*/    former routines in order to include the new code within the former code.
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    The output is very simple: only an estimate of the intercept and of
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    the slope with 95% confident intervals.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Current limitations:
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define NINTERVMAX 8    B) There is no computation of Life Expectancy nor Life Table.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.97  2004/02/20 13:25:42  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    Version 0.96d. Population forecasting command line is (temporarily)
 #define MAXN 20000    suppressed.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.96  2003/07/15 15:38:55  brouard
 #define AGEBASE 40    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #ifdef unix    rewritten within the same printf. Workaround: many printfs.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.95  2003/07/08 07:54:34  brouard
 #else    * imach.c (Repository):
 #define DIRSEPARATOR '\\'    (Repository): Using imachwizard code to output a more meaningful covariance
 #define ODIRSEPARATOR '/'    matrix (cov(a12,c31) instead of numbers.
 #endif  
     Revision 1.94  2003/06/27 13:00:02  brouard
 /* $Id$ */    Just cleaning
 /* $State$ */  
     Revision 1.93  2003/06/25 16:33:55  brouard
 char version[]="Imach version 0.96, June 2003, INED-EUROREVES ";    (Module): On windows (cygwin) function asctime_r doesn't
 char fullversion[]="$Revision$ $Date$";     exist so I changed back to asctime which exists.
 int erreur; /* Error number */    (Module): Version 0.96b
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.92  2003/06/25 16:30:45  brouard
 int npar=NPARMAX;    (Module): On windows (cygwin) function asctime_r doesn't
 int nlstate=2; /* Number of live states */    exist so I changed back to asctime which exists.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.91  2003/06/25 15:30:29  brouard
 int popbased=0;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 int *wav; /* Number of waves for this individuual 0 is possible */    helps to forecast when convergence will be reached. Elapsed time
 int maxwav; /* Maxim number of waves */    is stamped in powell.  We created a new html file for the graphs
 int jmin, jmax; /* min, max spacing between 2 waves */    concerning matrix of covariance. It has extension -cov.htm.
 int gipmx, gsw; /* Global variables on the number of contributions   
                    to the likelihood and the sum of weights (done by funcone)*/    Revision 1.90  2003/06/24 12:34:15  brouard
 int mle, weightopt;    (Module): Some bugs corrected for windows. Also, when
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    mle=-1 a template is output in file "or"mypar.txt with the design
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    of the covariance matrix to be input.
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    Revision 1.89  2003/06/24 12:30:52  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Some bugs corrected for windows. Also, when
 double **oldm, **newm, **savm; /* Working pointers to matrices */    mle=-1 a template is output in file "or"mypar.txt with the design
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    of the covariance matrix to be input.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;    Revision 1.88  2003/06/23 17:54:56  brouard
 int globpr; /* Global variable for printing or not */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */    Revision 1.87  2003/06/18 12:26:01  brouard
 double sw; /* Sum of weights */    Version 0.96
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  
 FILE *ficresilk;    Revision 1.86  2003/06/17 20:04:08  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): Change position of html and gnuplot routines and added
 FILE *ficresprobmorprev;    routine fileappend.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.85  2003/06/17 13:12:43  brouard
 char filerese[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
 FILE  *ficresvij;    current date of interview. It may happen when the death was just
 char fileresv[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
 FILE  *ficresvpl;    was wrong (infinity). We still send an "Error" but patch by
 char fileresvpl[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
 char title[MAXLINE];    interview.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Repository): Because some people have very long ID (first column)
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    truncation)
 char filelog[FILENAMELENGTH]; /* Log file */    (Repository): No more line truncation errors.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.84  2003/06/13 21:44:43  brouard
 char popfile[FILENAMELENGTH];    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
     parcimony.
 #define NR_END 1    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define NRANSI   
 #define ITMAX 200     Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 #define TOL 2.0e-4   
   */
 #define CGOLD 0.3819660   /*
 #define ZEPS 1.0e-10      Interpolated Markov Chain
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   
     Short summary of the programme:
 #define GOLD 1.618034    
 #define GLIMIT 100.0     This program computes Healthy Life Expectancies from
 #define TINY 1.0e-20     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 static double maxarg1,maxarg2;    interviewed on their health status or degree of disability (in the
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    case of a health survey which is our main interest) -2- at least a
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    second wave of interviews ("longitudinal") which measure each change
       (if any) in individual health status.  Health expectancies are
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    computed from the time spent in each health state according to a
 #define rint(a) floor(a+0.5)    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 static double sqrarg;    simplest model is the multinomial logistic model where pij is the
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    probability to be observed in state j at the second wave
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int imx;     'age' is age and 'sex' is a covariate. If you want to have a more
 int stepm;    complex model than "constant and age", you should modify the program
 /* Stepm, step in month: minimum step interpolation*/    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 int estepm;    convergence.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     The advantage of this computer programme, compared to a simple
 int m,nb;    multinomial logistic model, is clear when the delay between waves is not
 long *num;    identical for each individual. Also, if a individual missed an
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    intermediate interview, the information is lost, but taken into
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    account using an interpolation or extrapolation.  
 double **pmmij, ***probs;  
 double dateintmean=0;    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 double *weight;    split into an exact number (nh*stepm) of unobserved intermediate
 int **s; /* Status */    states. This elementary transition (by month, quarter,
 double *agedc, **covar, idx;    semester or year) is modelled as a multinomial logistic.  The hPx
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    hPijx.
 double ftolhess; /* Tolerance for computing hessian */  
     Also this programme outputs the covariance matrix of the parameters but also
 /**************** split *************************/    of the life expectancies. It also computes the period (stable) prevalence.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )   
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   char  *ss;                            /* pointer */             Institut national d'études démographiques, Paris.
   int   l1, l2;                         /* length counters */    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
   l1 = strlen(path );                   /* length of path */    It is copyrighted identically to a GNU software product, ie programme and
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    software can be distributed freely for non commercial use. Latest version
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    can be accessed at http://euroreves.ined.fr/imach .
   if ( ss == NULL ) {                   /* no directory, so use current */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     /* get current working directory */   
     /*    extern  char* getcwd ( char *buf , int len);*/    **********************************************************************/
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /*
       return( GLOCK_ERROR_GETCWD );    main
     }    read parameterfile
     strcpy( name, path );               /* we've got it */    read datafile
   } else {                              /* strip direcotry from path */    concatwav
     ss++;                               /* after this, the filename */    freqsummary
     l2 = strlen( ss );                  /* length of filename */    if (mle >= 1)
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );      mlikeli
     strcpy( name, ss );         /* save file name */    print results files
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    if mle==1
     dirc[l1-l2] = 0;                    /* add zero */       computes hessian
   }    read end of parameter file: agemin, agemax, bage, fage, estepm
   l1 = strlen( dirc );                  /* length of directory */        begin-prev-date,...
   /*#ifdef windows    open gnuplot file
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    open html file
 #else    period (stable) prevalence
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }     for age prevalim()
 #endif    h Pij x
   */    variance of p varprob
   ss = strrchr( name, '.' );            /* find last / */    forecasting if prevfcast==1 prevforecast call prevalence()
   ss++;    health expectancies
   strcpy(ext,ss);                       /* save extension */    Variance-covariance of DFLE
   l1= strlen( name);    prevalence()
   l2= strlen(ss)+1;     movingaverage()
   strncpy( finame, name, l1-l2);    varevsij()
   finame[l1-l2]= 0;    if popbased==1 varevsij(,popbased)
   return( 0 );                          /* we're done */    total life expectancies
 }    Variance of period (stable) prevalence
    end
   */
 /******************************************/  
   
 void replace(char *s, char*t)  
 {   
   int i;  #include <math.h>
   int lg=20;  #include <stdio.h>
   i=0;  #include <stdlib.h>
   lg=strlen(t);  #include <string.h>
   for(i=0; i<= lg; i++) {  #include <unistd.h>
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #include <limits.h>
   }  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 int nbocc(char *s, char occ)  extern int errno;
 {  
   int i,j=0;  /* #include <sys/time.h> */
   int lg=20;  #include <time.h>
   i=0;  #include "timeval.h"
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  /* #include <libintl.h> */
   if  (s[i] == occ ) j++;  /* #define _(String) gettext (String) */
   }  
   return j;  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 void cutv(char *u,char *v, char*t, char occ)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
      gives u="abcedf" and v="ghi2j" */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   int i,lg,j,p=0;  
   i=0;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(j=0; j<=strlen(t)-1; j++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   lg=strlen(t);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   for(j=0; j<p; j++) {  #define NCOVMAX 8 /* Maximum number of covariates */
     (u[j] = t[j]);  #define MAXN 20000
   }  #define YEARM 12. /* Number of months per year */
      u[p]='\0';  #define AGESUP 130
   #define AGEBASE 40
    for(j=0; j<= lg; j++) {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #ifdef UNIX
   }  #define DIRSEPARATOR '/'
 }  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 /********************** nrerror ********************/  #else
   #define DIRSEPARATOR '\\'
 void nrerror(char error_text[])  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   fprintf(stderr,"ERREUR ...\n");  #endif
   fprintf(stderr,"%s\n",error_text);  
   exit(EXIT_FAILURE);  /* $Id$ */
 }  /* $State$ */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$";
   double *v;  char strstart[80];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in vector");  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   return v-nl+NR_END;  int nvar;
 }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 /************************ free vector ******************/  int nlstate=2; /* Number of live states */
 void free_vector(double*v, int nl, int nh)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   free((FREE_ARG)(v+nl-NR_END));  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /************************ivector *******************************/  int maxwav; /* Maxim number of waves */
 int *ivector(long nl,long nh)  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int ijmin, ijmax; /* Individuals having jmin and jmax */
   int *v;  int gipmx, gsw; /* Global variables on the number of contributions
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));                     to the likelihood and the sum of weights (done by funcone)*/
   if (!v) nrerror("allocation failure in ivector");  int mle, weightopt;
   return v-nl+NR_END;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /******************free ivector **************************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 void free_ivector(int *v, long nl, long nh)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free((FREE_ARG)(v+nl-NR_END));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /************************lvector *******************************/  int globpr; /* Global variable for printing or not */
 long *lvector(long nl,long nh)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   long *v;  double sw; /* Sum of weights */
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  char filerespow[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   return v-nl+NR_END;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /******************free lvector **************************/  FILE *fichtm, *fichtmcov; /* Html File */
 void free_lvector(long *v, long nl, long nh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficresstdeij;
 }  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
 /******************* imatrix *******************************/  char filerescve[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)   FILE  *ficresvij;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   char fileresv[FILENAMELENGTH];
 {   FILE  *ficresvpl;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   char fileresvpl[FILENAMELENGTH];
   int **m;   char title[MAXLINE];
     char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   /* allocate pointers to rows */   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");   char command[FILENAMELENGTH];
   m += NR_END;   int  outcmd=0;
   m -= nrl;   
     char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     
   /* allocate rows and set pointers to them */   char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   char filerest[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   char fileregp[FILENAMELENGTH];
   m[nrl] += NR_END;   char popfile[FILENAMELENGTH];
   m[nrl] -= ncl;   
     char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   
     struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   /* return pointer to array of pointers to rows */   struct timezone tzp;
   return m;   extern int gettimeofday();
 }   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /****************** free_imatrix *************************/  extern long time();
 void free_imatrix(m,nrl,nrh,ncl,nch)  char strcurr[80], strfor[80];
       int **m;  
       long nch,ncl,nrh,nrl;   char *endptr;
      /* free an int matrix allocated by imatrix() */   long lval;
 {   double dval;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   
   free((FREE_ARG) (m+nrl-NR_END));   #define NR_END 1
 }   #define FREE_ARG char*
   #define FTOL 1.0e-10
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define NRANSI
 {  #define ITMAX 200
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  #define TOL 2.0e-4
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define CGOLD 0.3819660
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ZEPS 1.0e-10
   m += NR_END;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   m -= nrl;  
   #define GOLD 1.618034
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define GLIMIT 100.0
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define TINY 1.0e-20
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   return m;   
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    */  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /*************************free matrix ************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 {  int agegomp= AGEGOMP;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int imx;
 }  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  int m,nb;
   long *num;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   if (!m) nrerror("allocation failure 1 in matrix()");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m += NR_END;  double **pmmij, ***probs;
   m -= nrl;  double *ageexmed,*agecens;
   double dateintmean=0;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double *weight;
   m[nrl] += NR_END;  int **s; /* Status */
   m[nrl] -= ncl;  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double *lsurv, *lpop, *tpop;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /**************** split *************************/
   for (j=ncl+1; j<=nch; j++)   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     m[nrl][j]=m[nrl][j-1]+nlay;  {
       /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   for (i=nrl+1; i<=nrh; i++) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    */
     for (j=ncl+1; j<=nch; j++)     char  *ss;                            /* pointer */
       m[i][j]=m[i][j-1]+nlay;    int   l1, l2;                         /* length counters */
   }  
   return m;     l1 = strlen(path );                   /* length of path */
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 }      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /*************************free ma3x ************************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG)(m+nrl-NR_END));      }
 }      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 /***************** f1dim *************************/    } else {                              /* strip direcotry from path */
 extern int ncom;       ss++;                               /* after this, the filename */
 extern double *pcom,*xicom;      l2 = strlen( ss );                  /* length of filename */
 extern double (*nrfunc)(double []);       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
 double f1dim(double x)       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {       dirc[l1-l2] = 0;                    /* add zero */
   int j;       printf(" DIRC2 = %s \n",dirc);
   double f;    }
   double *xt;     /* We add a separator at the end of dirc if not exists */
      l1 = strlen( dirc );                  /* length of directory */
   xt=vector(1,ncom);     if( dirc[l1-1] != DIRSEPARATOR ){
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];       dirc[l1] =  DIRSEPARATOR;
   f=(*nrfunc)(xt);       dirc[l1+1] = 0;
   free_vector(xt,1,ncom);       printf(" DIRC3 = %s \n",dirc);
   return f;     }
 }     ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /*****************brent *************************/      ss++;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)       strcpy(ext,ss);                     /* save extension */
 {       l1= strlen( name);
   int iter;       l2= strlen(ss)+1;
   double a,b,d,etemp;      strncpy( finame, name, l1-l2);
   double fu,fv,fw,fx;      finame[l1-l2]= 0;
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;   
   double e=0.0;     return( 0 );                          /* we're done */
    }
   a=(ax < cx ? ax : cx);   
   b=(ax > cx ? ax : cx);   
   x=w=v=bx;   /******************************************/
   fw=fv=fx=(*f)(x);   
   for (iter=1;iter<=ITMAX;iter++) {   void replace_back_to_slash(char *s, char*t)
     xm=0.5*(a+b);   {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     int i;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    int lg=0;
     printf(".");fflush(stdout);    i=0;
     fprintf(ficlog,".");fflush(ficlog);    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      (s[i] = t[i]);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      if (t[i]== '\\') s[i]='/';
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    }
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   
       *xmin=x;   int nbocc(char *s, char occ)
       return fx;   {
     }     int i,j=0;
     ftemp=fu;    int lg=20;
     if (fabs(e) > tol1) {     i=0;
       r=(x-w)*(fx-fv);     lg=strlen(s);
       q=(x-v)*(fx-fw);     for(i=0; i<= lg; i++) {
       p=(x-v)*q-(x-w)*r;     if  (s[i] == occ ) j++;
       q=2.0*(q-r);     }
       if (q > 0.0) p = -p;     return j;
       q=fabs(q);   }
       etemp=e;   
       e=d;   void cutv(char *u,char *v, char*t, char occ)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     /* cuts string t into u and v where u ends before first occurence of char 'occ'
       else {        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         d=p/q;        gives u="abcedf" and v="ghi2j" */
         u=x+d;     int i,lg,j,p=0;
         if (u-a < tol2 || b-u < tol2)     i=0;
           d=SIGN(tol1,xm-x);     for(j=0; j<=strlen(t)-1; j++) {
       }       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     } else {     }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   
     }     lg=strlen(t);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     for(j=0; j<p; j++) {
     fu=(*f)(u);       (u[j] = t[j]);
     if (fu <= fx) {     }
       if (u >= x) a=x; else b=x;        u[p]='\0';
       SHFT(v,w,x,u)   
         SHFT(fv,fw,fx,fu)      for(j=0; j<= lg; j++) {
         } else {       if (j>=(p+1))(v[j-p-1] = t[j]);
           if (u < x) a=u; else b=u;     }
           if (fu <= fw || w == x) {   }
             v=w;   
             w=u;   /********************** nrerror ********************/
             fv=fw;   
             fw=fu;   void nrerror(char error_text[])
           } else if (fu <= fv || v == x || v == w) {   {
             v=u;     fprintf(stderr,"ERREUR ...\n");
             fv=fu;     fprintf(stderr,"%s\n",error_text);
           }     exit(EXIT_FAILURE);
         }   }
   }   /*********************** vector *******************/
   nrerror("Too many iterations in brent");   double *vector(int nl, int nh)
   *xmin=x;   {
   return fx;     double *v;
 }     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /****************** mnbrak ***********************/    return v-nl+NR_END;
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   
             double (*func)(double))   /************************ free vector ******************/
 {   void free_vector(double*v, int nl, int nh)
   double ulim,u,r,q, dum;  {
   double fu;     free((FREE_ARG)(v+nl-NR_END));
    }
   *fa=(*func)(*ax);   
   *fb=(*func)(*bx);   /************************ivector *******************************/
   if (*fb > *fa) {   int *ivector(long nl,long nh)
     SHFT(dum,*ax,*bx,dum)   {
       SHFT(dum,*fb,*fa,dum)     int *v;
       }     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *cx=(*bx)+GOLD*(*bx-*ax);     if (!v) nrerror("allocation failure in ivector");
   *fc=(*func)(*cx);     return v-nl+NR_END;
   while (*fb > *fc) {   }
     r=(*bx-*ax)*(*fb-*fc);   
     q=(*bx-*cx)*(*fb-*fa);   /******************free ivector **************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   void free_ivector(int *v, long nl, long nh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   {
     ulim=(*bx)+GLIMIT*(*cx-*bx);     free((FREE_ARG)(v+nl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {   }
       fu=(*func)(u);   
     } else if ((*cx-u)*(u-ulim) > 0.0) {   /************************lvector *******************************/
       fu=(*func)(u);   long *lvector(long nl,long nh)
       if (fu < *fc) {   {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     long *v;
           SHFT(*fb,*fc,fu,(*func)(u))     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           }     if (!v) nrerror("allocation failure in ivector");
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     return v-nl+NR_END;
       u=ulim;   }
       fu=(*func)(u);   
     } else {   /******************free lvector **************************/
       u=(*cx)+GOLD*(*cx-*bx);   void free_lvector(long *v, long nl, long nh)
       fu=(*func)(u);   {
     }     free((FREE_ARG)(v+nl-NR_END));
     SHFT(*ax,*bx,*cx,u)   }
       SHFT(*fa,*fb,*fc,fu)   
       }   /******************* imatrix *******************************/
 }   int **imatrix(long nrl, long nrh, long ncl, long nch)
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
 /*************** linmin ************************/  {
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
 int ncom;     int **m;
 double *pcom,*xicom;   
 double (*nrfunc)(double []);     /* allocate pointers to rows */
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     if (!m) nrerror("allocation failure 1 in matrix()");
 {     m += NR_END;
   double brent(double ax, double bx, double cx,     m -= nrl;
                double (*f)(double), double tol, double *xmin);    
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     /* allocate rows and set pointers to them */
               double *fc, double (*func)(double));     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   int j;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double xx,xmin,bx,ax;     m[nrl] += NR_END;
   double fx,fb,fa;    m[nrl] -= ncl;
     
   ncom=n;     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   pcom=vector(1,n);    
   xicom=vector(1,n);     /* return pointer to array of pointers to rows */
   nrfunc=func;     return m;
   for (j=1;j<=n;j++) {   }
     pcom[j]=p[j];   
     xicom[j]=xi[j];   /****************** free_imatrix *************************/
   }   void free_imatrix(m,nrl,nrh,ncl,nch)
   ax=0.0;         int **m;
   xx=1.0;         long nch,ncl,nrh,nrl;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        /* free an int matrix allocated by imatrix() */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   {
 #ifdef DEBUG    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG) (m+nrl-NR_END));
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {   /******************* matrix *******************************/
     xi[j] *= xmin;   double **matrix(long nrl, long nrh, long ncl, long nch)
     p[j] += xi[j];   {
   }     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   free_vector(xicom,1,n);     double **m;
   free_vector(pcom,1,n);   
 }     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** powell ************************/    m += NR_END;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     m -= nrl;
             double (*func)(double []))   
 {     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   void linmin(double p[], double xi[], int n, double *fret,     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
               double (*func)(double []));     m[nrl] += NR_END;
   int i,ibig,j;     m[nrl] -= ncl;
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double *xits;    return m;
   pt=vector(1,n);     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   ptt=vector(1,n);      */
   xit=vector(1,n);   }
   xits=vector(1,n);   
   *fret=(*func)(p);   /*************************free matrix ************************/
   for (j=1;j<=n;j++) pt[j]=p[j];   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (*iter=1;;++(*iter)) {   {
     fp=(*fret);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     ibig=0;     free((FREE_ARG)(m+nrl-NR_END));
     del=0.0;   }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************* ma3x *******************************/
     fprintf(ficrespow,"%d %.12f",*iter,*fret);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for (i=1;i<=n;i++) {  {
       printf(" %d %.12f",i, p[i]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       fprintf(ficlog," %d %.12lf",i, p[i]);    double ***m;
       fprintf(ficrespow," %.12lf", p[i]);  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
     fprintf(ficlog,"\n");    m += NR_END;
     fprintf(ficrespow,"\n");    m -= nrl;
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fptt=(*fret);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #ifdef DEBUG    m[nrl] += NR_END;
       printf("fret=%lf \n",*fret);    m[nrl] -= ncl;
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("%d",i);fflush(stdout);  
       fprintf(ficlog,"%d",i);fflush(ficlog);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       linmin(p,xit,n,fret,func);     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       if (fabs(fptt-(*fret)) > del) {     m[nrl][ncl] += NR_END;
         del=fabs(fptt-(*fret));     m[nrl][ncl] -= nll;
         ibig=i;     for (j=ncl+1; j<=nch; j++)
       }       m[nrl][j]=m[nrl][j-1]+nlay;
 #ifdef DEBUG   
       printf("%d %.12e",i,(*fret));    for (i=nrl+1; i<=nrh; i++) {
       fprintf(ficlog,"%d %.12e",i,(*fret));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        m[i][j]=m[i][j-1]+nlay;
         printf(" x(%d)=%.12e",j,xit[j]);    }
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    return m;
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for(j=1;j<=n;j++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf(" p=%.12e",p[j]);    */
         fprintf(ficlog," p=%.12e",p[j]);  }
       }  
       printf("\n");  /*************************free ma3x ************************/
       fprintf(ficlog,"\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
     }     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /*************** function subdirf ***********/
       printf("Max: %.12e",(*func)(p));  char *subdirf(char fileres[])
       fprintf(ficlog,"Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
         printf(" %.12e",p[j]);    strcpy(tmpout,optionfilefiname);
         fprintf(ficlog," %.12e",p[j]);    strcat(tmpout,"/"); /* Add to the right */
       }    strcat(tmpout,fileres);
       printf("\n");    return tmpout;
       fprintf(ficlog,"\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /*************** function subdirf2 ***********/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  char *subdirf2(char fileres[], char *preop)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);   
         }    /* Caution optionfilefiname is hidden */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcpy(tmpout,optionfilefiname);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
 #endif    strcat(tmpout,fileres);
     return tmpout;
   }
       free_vector(xit,1,n);   
       free_vector(xits,1,n);   /*************** function subdirf3 ***********/
       free_vector(ptt,1,n);   char *subdirf3(char fileres[], char *preop, char *preop2)
       free_vector(pt,1,n);   {
       return;    
     }     /* Caution optionfilefiname is hidden */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     strcpy(tmpout,optionfilefiname);
     for (j=1;j<=n;j++) {     strcat(tmpout,"/");
       ptt[j]=2.0*p[j]-pt[j];     strcat(tmpout,preop);
       xit[j]=p[j]-pt[j];     strcat(tmpout,preop2);
       pt[j]=p[j];     strcat(tmpout,fileres);
     }     return tmpout;
     fptt=(*func)(ptt);   }
     if (fptt < fp) {   
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   /***************** f1dim *************************/
       if (t < 0.0) {   extern int ncom;
         linmin(p,xit,n,fret,func);   extern double *pcom,*xicom;
         for (j=1;j<=n;j++) {   extern double (*nrfunc)(double []);
           xi[j][ibig]=xi[j][n];    
           xi[j][n]=xit[j];   double f1dim(double x)
         }  {
 #ifdef DEBUG    int j;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double f;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double *xt;
         for(j=1;j<=n;j++){   
           printf(" %.12e",xit[j]);    xt=vector(1,ncom);
           fprintf(ficlog," %.12e",xit[j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
         }    f=(*nrfunc)(xt);
         printf("\n");    free_vector(xt,1,ncom);
         fprintf(ficlog,"\n");    return f;
 #endif  }
       }  
     }   /*****************brent *************************/
   }   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
 }   {
     int iter;
 /**** Prevalence limit (stable prevalence)  ****************/    double a,b,d,etemp;
     double fu,fv,fw,fx;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double ftemp;
 {    double p,q,r,tol1,tol2,u,v,w,x,xm;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double e=0.0;
      matrix by transitions matrix until convergence is reached */   
     a=(ax < cx ? ax : cx);
   int i, ii,j,k;    b=(ax > cx ? ax : cx);
   double min, max, maxmin, maxmax,sumnew=0.;    x=w=v=bx;
   double **matprod2();    fw=fv=fx=(*f)(x);
   double **out, cov[NCOVMAX], **pmij();    for (iter=1;iter<=ITMAX;iter++) {
   double **newm;      xm=0.5*(a+b);
   double agefin, delaymax=50 ; /* Max number of years to converge */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (ii=1;ii<=nlstate+ndeath;ii++)      printf(".");fflush(stdout);
     for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficlog,".");fflush(ficlog);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
    cov[1]=1.;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        *xmin=x;
     newm=savm;        return fx;
     /* Covariates have to be included here again */      }
      cov[2]=agefin;      ftemp=fu;
         if (fabs(e) > tol1) {
       for (k=1; k<=cptcovn;k++) {        r=(x-w)*(fx-fv);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        q=(x-v)*(fx-fw);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        p=(x-v)*q-(x-w)*r;
       }        q=2.0*(q-r);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if (q > 0.0) p = -p;
       for (k=1; k<=cptcovprod;k++)        q=fabs(q);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        etemp=e;
         e=d;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x));
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        else {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          d=p/q;
           u=x+d;
     savm=oldm;          if (u-a < tol2 || b-u < tol2)
     oldm=newm;            d=SIGN(tol1,xm-x);
     maxmax=0.;        }
     for(j=1;j<=nlstate;j++){      } else {
       min=1.;        d=CGOLD*(e=(x >= xm ? a-x : b-x));
       max=0.;      }
       for(i=1; i<=nlstate; i++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
         sumnew=0;      fu=(*f)(u);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      if (fu <= fx) {
         prlim[i][j]= newm[i][j]/(1-sumnew);        if (u >= x) a=x; else b=x;
         max=FMAX(max,prlim[i][j]);        SHFT(v,w,x,u)
         min=FMIN(min,prlim[i][j]);          SHFT(fv,fw,fx,fu)
       }          } else {
       maxmin=max-min;            if (u < x) a=u; else b=u;
       maxmax=FMAX(maxmax,maxmin);            if (fu <= fw || w == x) {
     }              v=w;
     if(maxmax < ftolpl){              w=u;
       return prlim;              fv=fw;
     }              fw=fu;
   }            } else if (fu <= fv || v == x || v == w) {
 }              v=u;
               fv=fu;
 /*************** transition probabilities ***************/             }
           }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    }
 {    nrerror("Too many iterations in brent");
   double s1, s2;    *xmin=x;
   /*double t34;*/    return fx;
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /****************** mnbrak ***********************/
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
         /*s2 += param[i][j][nc]*cov[nc];*/              double (*func)(double))
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double ulim,u,r,q, dum;
       }    double fu;
       ps[i][j]=s2;   
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    *fa=(*func)(*ax);
     }    *fb=(*func)(*bx);
     for(j=i+1; j<=nlstate+ndeath;j++){    if (*fb > *fa) {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      SHFT(dum,*ax,*bx,dum)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        SHFT(dum,*fb,*fa,dum)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        }
       }    *cx=(*bx)+GOLD*(*bx-*ax);
       ps[i][j]=s2;    *fc=(*func)(*cx);
     }    while (*fb > *fc) {
   }      r=(*bx-*ax)*(*fb-*fc);
     /*ps[3][2]=1;*/      q=(*bx-*cx)*(*fb-*fa);
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   for(i=1; i<= nlstate; i++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
      s1=0;      ulim=(*bx)+GLIMIT*(*cx-*bx);
     for(j=1; j<i; j++)      if ((*bx-u)*(u-*cx) > 0.0) {
       s1+=exp(ps[i][j]);        fu=(*func)(u);
     for(j=i+1; j<=nlstate+ndeath; j++)      } else if ((*cx-u)*(u-ulim) > 0.0) {
       s1+=exp(ps[i][j]);        fu=(*func)(u);
     ps[i][i]=1./(s1+1.);        if (fu < *fc) {
     for(j=1; j<i; j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
       ps[i][j]= exp(ps[i][j])*ps[i][i];            SHFT(*fb,*fc,fu,(*func)(u))
     for(j=i+1; j<=nlstate+ndeath; j++)            }
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        u=ulim;
   } /* end i */        fu=(*func)(u);
       } else {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        u=(*cx)+GOLD*(*cx-*bx);
     for(jj=1; jj<= nlstate+ndeath; jj++){        fu=(*func)(u);
       ps[ii][jj]=0;      }
       ps[ii][ii]=1;      SHFT(*ax,*bx,*cx,u)
     }        SHFT(*fa,*fb,*fc,fu)
   }        }
   }
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*************** linmin ************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  int ncom;
    }  double *pcom,*xicom;
     printf("\n ");  double (*nrfunc)(double []);
     }   
     printf("\n ");printf("%lf ",cov[2]);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double brent(double ax, double bx, double cx,
   goto end;*/                 double (*f)(double), double tol, double *xmin);
     return ps;    double f1dim(double x);
 }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
                 double *fc, double (*func)(double));
 /**************** Product of 2 matrices ******************/    int j;
     double xx,xmin,bx,ax;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double fx,fb,fa;
 {   
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    ncom=n;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    pcom=vector(1,n);
   /* in, b, out are matrice of pointers which should have been initialized     xicom=vector(1,n);
      before: only the contents of out is modified. The function returns    nrfunc=func;
      a pointer to pointers identical to out */    for (j=1;j<=n;j++) {
   long i, j, k;      pcom[j]=p[j];
   for(i=nrl; i<= nrh; i++)      xicom[j]=xi[j];
     for(k=ncolol; k<=ncoloh; k++)    }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    ax=0.0;
         out[i][k] +=in[i][j]*b[j][k];    xx=1.0;
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
   return out;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
 }  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /************* Higher Matrix Product ***************/  #endif
     for (j=1;j<=n;j++) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      xi[j] *= xmin;
 {      p[j] += xi[j];
   /* Computes the transition matrix starting at age 'age' over     }
      'nhstepm*hstepm*stepm' months (i.e. until    free_vector(xicom,1,n);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     free_vector(pcom,1,n);
      nhstepm*hstepm matrices.   }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big   char *asc_diff_time(long time_sec, char ascdiff[])
      for the memory).  {
      Model is determined by parameters x and covariates have to be     long sec_left, days, hours, minutes;
      included manually here.     days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
      */    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   int i, j, d, h, k;    minutes = (sec_left) /60;
   double **out, cov[NCOVMAX];    sec_left = (sec_left) % (60);
   double **newm;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*************** powell ************************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       po[i][j][0]=(i==j ? 1.0 : 0.0);              double (*func)(double []))
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    void linmin(double p[], double xi[], int n, double *fret,
   for(h=1; h <=nhstepm; h++){                double (*func)(double []));
     for(d=1; d <=hstepm; d++){    int i,ibig,j;
       newm=savm;    double del,t,*pt,*ptt,*xit;
       /* Covariates have to be included here again */    double fp,fptt;
       cov[1]=1.;    double *xits;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    int niterf, itmp;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)    pt=vector(1,n);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    ptt=vector(1,n);
       for (k=1; k<=cptcovprod;k++)    xit=vector(1,n);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    xits=vector(1,n);
     *fret=(*func)(p);
     for (j=1;j<=n;j++) pt[j]=p[j];
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    for (*iter=1;;++(*iter)) {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fp=(*fret);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,       ibig=0;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      del=0.0;
       savm=oldm;      last_time=curr_time;
       oldm=newm;      (void) gettimeofday(&curr_time,&tzp);
     }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for(i=1; i<=nlstate+ndeath; i++)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       for(j=1;j<=nlstate+ndeath;j++) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         po[i][j][h]=newm[i][j];     for (i=1;i<=n;i++) {
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        printf(" %d %.12f",i, p[i]);
          */        fprintf(ficlog," %d %.12lf",i, p[i]);
       }        fprintf(ficrespow," %.12lf", p[i]);
   } /* end h */      }
   return po;      printf("\n");
 }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 /*************** log-likelihood *************/        tm = *localtime(&curr_time.tv_sec);
 double func( double *x)        strcpy(strcurr,asctime(&tm));
 {  /*       asctime_r(&tm,strcurr); */
   int i, ii, j, k, mi, d, kk;        forecast_time=curr_time;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        itmp = strlen(strcurr);
   double **out;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double sw; /* Sum of weights */          strcurr[itmp-1]='\0';
   double lli; /* Individual log likelihood */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int s1, s2;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double bbh, survp;        for(niterf=10;niterf<=30;niterf+=10){
   long ipmx;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   /*extern weight */          tmf = *localtime(&forecast_time.tv_sec);
   /* We are differentiating ll according to initial status */  /*      asctime_r(&tmf,strfor); */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          strcpy(strfor,asctime(&tmf));
   /*for(i=1;i<imx;i++)           itmp = strlen(strfor);
     printf(" %d\n",s[4][i]);          if(strfor[itmp-1]=='\n')
   */          strfor[itmp-1]='\0';
   cov[1]=1.;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
       }
   if(mle==1){      for (i=1;i<=n;i++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (j=1;j<=n;j++) xit[j]=xi[j][i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        fptt=(*fret);
       for(mi=1; mi<= wav[i]-1; mi++){  #ifdef DEBUG
         for (ii=1;ii<=nlstate+ndeath;ii++)        printf("fret=%lf \n",*fret);
           for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"fret=%lf \n",*fret);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("%d",i);fflush(stdout);
           }        fprintf(ficlog,"%d",i);fflush(ficlog);
         for(d=0; d<dh[mi][i]; d++){        linmin(p,xit,n,fret,func);
           newm=savm;        if (fabs(fptt-(*fret)) > del) {
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          del=fabs(fptt-(*fret));
           for (kk=1; kk<=cptcovage;kk++) {          ibig=i;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        }
           }  #ifdef DEBUG
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf("%d %.12e",i,(*fret));
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog,"%d %.12e",i,(*fret));
           savm=oldm;        for (j=1;j<=n;j++) {
           oldm=newm;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         } /* end mult */          printf(" x(%d)=%.12e",j,xit[j]);
                 fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        }
         /* But now since version 0.9 we anticipate for bias and large stepm.        for(j=1;j<=n;j++) {
          * If stepm is larger than one month (smallest stepm) and if the exact delay           printf(" p=%.12e",p[j]);
          * (in months) between two waves is not a multiple of stepm, we rounded to           fprintf(ficlog," p=%.12e",p[j]);
          * the nearest (and in case of equal distance, to the lowest) interval but now        }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        printf("\n");
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        fprintf(ficlog,"\n");
          * probability in order to take into account the bias as a fraction of the way  #endif
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies      }
          * -stepm/2 to stepm/2 .      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
          * For stepm=1 the results are the same as for previous versions of Imach.  #ifdef DEBUG
          * For stepm > 1 the results are less biased than in previous versions.         int k[2],l;
          */        k[0]=1;
         s1=s[mw[mi][i]][i];        k[1]=-1;
         s2=s[mw[mi+1][i]][i];        printf("Max: %.12e",(*func)(p));
         bbh=(double)bh[mi][i]/(double)stepm;         fprintf(ficlog,"Max: %.12e",(*func)(p));
         /* bias is positive if real duration        for (j=1;j<=n;j++) {
          * is higher than the multiple of stepm and negative otherwise.          printf(" %.12e",p[j]);
          */          fprintf(ficlog," %.12e",p[j]);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        }
         if( s2 > nlstate){         printf("\n");
           /* i.e. if s2 is a death state and if the date of death is known then the contribution        fprintf(ficlog,"\n");
              to the likelihood is the probability to die between last step unit time and current         for(l=0;l<=1;l++) {
              step unit time, which is also the differences between probability to die before dh           for (j=1;j<=n;j++) {
              and probability to die before dh-stepm .             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              In version up to 0.92 likelihood was computed            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         as if date of death was unknown. Death was treated as any other            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         health state: the date of the interview describes the actual state          }
         and not the date of a change in health state. The former idea was          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         to consider that at each interview the state was recorded          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         (healthy, disable or death) and IMaCh was corrected; but when we        }
         introduced the exact date of death then we should have modified  #endif
         the contribution of an exact death to the likelihood. This new  
         contribution is smaller and very dependent of the step unit  
         stepm. It is no more the probability to die between last interview        free_vector(xit,1,n);
         and month of death but the probability to survive from last        free_vector(xits,1,n);
         interview up to one month before death multiplied by the        free_vector(ptt,1,n);
         probability to die within a month. Thanks to Chris        free_vector(pt,1,n);
         Jackson for correcting this bug.  Former versions increased        return;
         mortality artificially. The bad side is that we add another loop      }
         which slows down the processing. The difference can be up to 10%      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         lower mortality.      for (j=1;j<=n;j++) {
           */        ptt[j]=2.0*p[j]-pt[j];
           lli=log(out[s1][s2] - savm[s1][s2]);        xit[j]=p[j]-pt[j];
         }else{        pt[j]=p[j];
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      }
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */      fptt=(*func)(ptt);
         }       if (fptt < fp) {
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         /*if(lli ==000.0)*/        if (t < 0.0) {
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          linmin(p,xit,n,fret,func);
         ipmx +=1;          for (j=1;j<=n;j++) {
         sw += weight[i];            xi[j][ibig]=xi[j][n];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            xi[j][n]=xit[j];
       } /* end of wave */          }
     } /* end of individual */  #ifdef DEBUG
   }  else if(mle==2){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          for(j=1;j<=n;j++){
       for(mi=1; mi<= wav[i]-1; mi++){            printf(" %.12e",xit[j]);
         for (ii=1;ii<=nlstate+ndeath;ii++)            fprintf(ficlog," %.12e",xit[j]);
           for (j=1;j<=nlstate+ndeath;j++){          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("\n");
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"\n");
           }  #endif
         for(d=0; d<=dh[mi][i]; d++){        }
           newm=savm;      }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    }
           for (kk=1; kk<=cptcovage;kk++) {  }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }  /**** Prevalence limit (stable or period prevalence)  ****************/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           savm=oldm;  {
           oldm=newm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         } /* end mult */       matrix by transitions matrix until convergence is reached */
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */    int i, ii,j,k;
         /* But now since version 0.9 we anticipate for bias and large stepm.    double min, max, maxmin, maxmax,sumnew=0.;
          * If stepm is larger than one month (smallest stepm) and if the exact delay     double **matprod2();
          * (in months) between two waves is not a multiple of stepm, we rounded to     double **out, cov[NCOVMAX], **pmij();
          * the nearest (and in case of equal distance, to the lowest) interval but now    double **newm;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    double agefin, delaymax=50 ; /* Max number of years to converge */
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the  
          * probability in order to take into account the bias as a fraction of the way    for (ii=1;ii<=nlstate+ndeath;ii++)
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies      for (j=1;j<=nlstate+ndeath;j++){
          * -stepm/2 to stepm/2 .        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          * For stepm=1 the results are the same as for previous versions of Imach.      }
          * For stepm > 1 the results are less biased than in previous versions.   
          */     cov[1]=1.;
         s1=s[mw[mi][i]][i];   
         s2=s[mw[mi+1][i]][i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         bbh=(double)bh[mi][i]/(double)stepm;     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         /* bias is positive if real duration      newm=savm;
          * is higher than the multiple of stepm and negative otherwise.      /* Covariates have to be included here again */
          */       cov[2]=agefin;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */   
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        for (k=1; k<=cptcovn;k++) {
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         /*if(lli ==000.0)*/        }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         ipmx +=1;        for (k=1; k<=cptcovprod;k++)
         sw += weight[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       } /* end of wave */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     } /* end of individual */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }  else if(mle==3){  /* exponential inter-extrapolation */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){      savm=oldm;
         for (ii=1;ii<=nlstate+ndeath;ii++)      oldm=newm;
           for (j=1;j<=nlstate+ndeath;j++){      maxmax=0.;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(j=1;j<=nlstate;j++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        min=1.;
           }        max=0.;
         for(d=0; d<dh[mi][i]; d++){        for(i=1; i<=nlstate; i++) {
           newm=savm;          sumnew=0;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           for (kk=1; kk<=cptcovage;kk++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          max=FMAX(max,prlim[i][j]);
           }          min=FMIN(min,prlim[i][j]);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        maxmin=max-min;
           savm=oldm;        maxmax=FMAX(maxmax,maxmin);
           oldm=newm;      }
         } /* end mult */      if(maxmax < ftolpl){
               return prlim;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      }
         /* But now since version 0.9 we anticipate for bias and large stepm.    }
          * If stepm is larger than one month (smallest stepm) and if the exact delay   }
          * (in months) between two waves is not a multiple of stepm, we rounded to   
          * the nearest (and in case of equal distance, to the lowest) interval but now  /*************** transition probabilities ***************/
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          * probability in order to take into account the bias as a fraction of the way  {
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies    double s1, s2;
          * -stepm/2 to stepm/2 .    /*double t34;*/
          * For stepm=1 the results are the same as for previous versions of Imach.    int i,j,j1, nc, ii, jj;
          * For stepm > 1 the results are less biased than in previous versions.   
          */      for(i=1; i<= nlstate; i++){
         s1=s[mw[mi][i]][i];        for(j=1; j<i;j++){
         s2=s[mw[mi+1][i]][i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         bbh=(double)bh[mi][i]/(double)stepm;             /*s2 += param[i][j][nc]*cov[nc];*/
         /* bias is positive if real duration            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          * is higher than the multiple of stepm and negative otherwise.  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
          */          }
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */          ps[i][j]=s2;
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        }
         /*if(lli ==000.0)*/        for(j=i+1; j<=nlstate+ndeath;j++){
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         ipmx +=1;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         sw += weight[i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }
       } /* end of wave */          ps[i][j]=s2;
     } /* end of individual */        }
   }else if (mle==4){  /* ml=4 no inter-extrapolation */      }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      /*ps[3][2]=1;*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];     
       for(mi=1; mi<= wav[i]-1; mi++){      for(i=1; i<= nlstate; i++){
         for (ii=1;ii<=nlstate+ndeath;ii++)        s1=0;
           for (j=1;j<=nlstate+ndeath;j++){        for(j=1; j<i; j++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          s1+=exp(ps[i][j]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(j=i+1; j<=nlstate+ndeath; j++)
           }          s1+=exp(ps[i][j]);
         for(d=0; d<dh[mi][i]; d++){        ps[i][i]=1./(s1+1.);
           newm=savm;        for(j=1; j<i; j++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          ps[i][j]= exp(ps[i][j])*ps[i][i];
           for (kk=1; kk<=cptcovage;kk++) {        for(j=i+1; j<=nlstate+ndeath; j++)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          ps[i][j]= exp(ps[i][j])*ps[i][i];
           }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
               } /* end i */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,     
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           savm=oldm;        for(jj=1; jj<= nlstate+ndeath; jj++){
           oldm=newm;          ps[ii][jj]=0;
         } /* end mult */          ps[ii][ii]=1;
               }
         s1=s[mw[mi][i]][i];      }
         s2=s[mw[mi+1][i]][i];     
         if( s2 > nlstate){   
           lli=log(out[s1][s2] - savm[s1][s2]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }else{  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  /*         printf("ddd %lf ",ps[ii][jj]); */
         }  /*       } */
         ipmx +=1;  /*       printf("\n "); */
         sw += weight[i];  /*        } */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*        printf("\n ");printf("%lf ",cov[2]); */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */         /*
       } /* end of wave */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     } /* end of individual */        goto end;*/
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */      return ps;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){  /**************** Product of 2 matrices ******************/
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         for(d=0; d<dh[mi][i]; d++){    /* in, b, out are matrice of pointers which should have been initialized
           newm=savm;       before: only the contents of out is modified. The function returns
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       a pointer to pointers identical to out */
           for (kk=1; kk<=cptcovage;kk++) {    long i, j, k;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(i=nrl; i<= nrh; i++)
           }      for(k=ncolol; k<=ncoloh; k++)
                 for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          out[i][k] +=in[i][j]*b[j][k];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;    return out;
           oldm=newm;  }
         } /* end mult */  
         
         s1=s[mw[mi][i]][i];  /************* Higher Matrix Product ***************/
         s2=s[mw[mi+1][i]][i];  
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         ipmx +=1;  {
         sw += weight[i];    /* Computes the transition matrix starting at age 'age' over
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       'nhstepm*hstepm*stepm' months (i.e. until
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
       } /* end of wave */       nhstepm*hstepm matrices.
     } /* end of individual */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
   } /* End of if */       (typically every 2 years instead of every month which is too big
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];       for the memory).
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       Model is determined by parameters x and covariates have to be
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       included manually here.
   return -l;  
 }       */
   
 /*************** log-likelihood *************/    int i, j, d, h, k;
 double funcone( double *x)    double **out, cov[NCOVMAX];
 {    double **newm;
   /* Same as likeli but slower because of a lot of printf and if */  
   int i, ii, j, k, mi, d, kk;    /* Hstepm could be zero and should return the unit matrix */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (i=1;i<=nlstate+ndeath;i++)
   double **out;      for (j=1;j<=nlstate+ndeath;j++){
   double lli; /* Individual log likelihood */        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double llt;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int s1, s2;      }
   double bbh, survp;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /*extern weight */    for(h=1; h <=nhstepm; h++){
   /* We are differentiating ll according to initial status */      for(d=1; d <=hstepm; d++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        newm=savm;
   /*for(i=1;i<imx;i++)         /* Covariates have to be included here again */
     printf(" %d\n",s[4][i]);        cov[1]=1.;
   */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   cov[1]=1.;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         for (j=1;j<=nlstate+ndeath;j++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
           savm[ii][j]=(ii==j ? 1.0 : 0.0);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         }        savm=oldm;
       for(d=0; d<dh[mi][i]; d++){        oldm=newm;
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(i=1; i<=nlstate+ndeath; i++)
         for (kk=1; kk<=cptcovage;kk++) {        for(j=1;j<=nlstate+ndeath;j++) {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          po[i][j][h]=newm[i][j];
         }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;    } /* end h */
         oldm=newm;    return po;
       } /* end mult */  }
         
       s1=s[mw[mi][i]][i];  
       s2=s[mw[mi+1][i]][i];  /*************** log-likelihood *************/
       bbh=(double)bh[mi][i]/(double)stepm;   double func( double *x)
       /* bias is positive if real duration  {
        * is higher than the multiple of stepm and negative otherwise.    int i, ii, j, k, mi, d, kk;
        */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    double **out;
         lli=log(out[s1][s2] - savm[s1][s2]);    double sw; /* Sum of weights */
       } else if (mle==1){    double lli; /* Individual log likelihood */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */    int s1, s2;
       } else if(mle==2){    double bbh, survp;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    long ipmx;
       } else if(mle==3){  /* exponential inter-extrapolation */    /*extern weight */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    /* We are differentiating ll according to initial status */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         lli=log(out[s1][s2]); /* Original formula */    /*for(i=1;i<imx;i++)
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */      printf(" %d\n",s[4][i]);
         lli=log(out[s1][s2]); /* Original formula */    */
       } /* End of if */    cov[1]=1.;
       ipmx +=1;  
       sw += weight[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    if(mle==1){
       if(globpr){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  %10.6f %10.6f %10.6f ", \        for(mi=1; mi<= wav[i]-1; mi++){
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          for (ii=1;ii<=nlstate+ndeath;ii++)
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);            for (j=1;j<=nlstate+ndeath;j++){
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           llt +=ll[k]*gipmx/gsw;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            }
         }          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresilk," %10.6f\n", -llt);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     } /* end of wave */            for (kk=1; kk<=cptcovage;kk++) {
   } /* end of individual */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if(globpr==0){ /* First time we count the contributions and weights */            savm=oldm;
     gipmx=ipmx;            oldm=newm;
     gsw=sw;          } /* end mult */
   }       
   return -l;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay
            * (in months) between two waves is not a multiple of stepm, we rounded to
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))           * the nearest (and in case of equal distance, to the lowest) interval but now
 {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   /* This routine should help understanding what is done with            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      the selection of individuals/waves and           * probability in order to take into account the bias as a fraction of the way
      to check the exact contribution to the likelihood.           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
      Plotting could be done.           * -stepm/2 to stepm/2 .
    */           * For stepm=1 the results are the same as for previous versions of Imach.
   int k;           * For stepm > 1 the results are less biased than in previous versions.
            */
   if(*globpri !=0){ /* Just counts and sums no printings */          s1=s[mw[mi][i]][i];
     strcpy(fileresilk,"ilk");           s2=s[mw[mi+1][i]][i];
     strcat(fileresilk,fileres);          bbh=(double)bh[mi][i]/(double)stepm;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          /* bias bh is positive if real duration
       printf("Problem with resultfile: %s\n", fileresilk);           * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);           */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          if( s2 > nlstate){
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");            /* i.e. if s2 is a death state and if the date of death is known
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */               then the contribution to the likelihood is the probability to
     for(k=1; k<=nlstate; k++)                die between last step unit time and current  step unit time,
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);               which is also equal to probability to die before dh
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");               minus probability to die before dh-stepm .
   }               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   *fretone=(*funcone)(p);          health state: the date of the interview describes the actual state
   if(*globpri !=0){          and not the date of a change in health state. The former idea was
     fclose(ficresilk);          to consider that at each interview the state was recorded
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk,fileresilk);          (healthy, disable or death) and IMaCh was corrected; but when we
     fflush(fichtm);           introduced the exact date of death then we should have modified
   }           the contribution of an exact death to the likelihood. This new
   return;          contribution is smaller and very dependent of the step unit
 }          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
 /*********** Maximum Likelihood Estimation ***************/          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          Jackson for correcting this bug.  Former versions increased
 {          mortality artificially. The bad side is that we add another loop
   int i,j, iter;          which slows down the processing. The difference can be up to 10%
   double **xi;          lower mortality.
   double fret;            */
   double fretone; /* Only one call to likelihood */            lli=log(out[s1][s2] - savm[s1][s2]);
   char filerespow[FILENAMELENGTH];  
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)          } else if  (s2==-2) {
     for (j=1;j<=npar;j++)            for (j=1,survp=0. ; j<=nlstate; j++)
       xi[i][j]=(i==j ? 1.0 : 0.0);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            /*survp += out[s1][j]; */
   strcpy(filerespow,"pow");             lli= log(survp);
   strcat(filerespow,fileres);          }
   if((ficrespow=fopen(filerespow,"w"))==NULL) {         
     printf("Problem with resultfile: %s\n", filerespow);          else if  (s2==-4) {
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            for (j=3,survp=0. ; j<=nlstate; j++)  
   }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficrespow,"# Powell\n# iter -2*LL");            lli= log(survp);
   for (i=1;i<=nlstate;i++)          }
     for(j=1;j<=nlstate+ndeath;j++)  
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          else if  (s2==-5) {
   fprintf(ficrespow,"\n");            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   powell(p,xi,npar,ftol,&iter,&fret,func);            lli= log(survp);
           }
   fclose(ficrespow);         
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          else{
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           }
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /**** Computes Hessian and covariance matrix ***/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          ipmx +=1;
 {          sw += weight[i];
   double  **a,**y,*x,pd;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **hess;        } /* end of wave */
   int i, j,jk;      } /* end of individual */
   int *indx;    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double hessii(double p[], double delta, int theta, double delti[]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double hessij(double p[], double delti[], int i, int j);        for(mi=1; mi<= wav[i]-1; mi++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;          for (ii=1;ii<=nlstate+ndeath;ii++)
   void ludcmp(double **a, int npar, int *indx, double *d) ;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hess=matrix(1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   printf("\nCalculation of the hessian matrix. Wait...\n");          for(d=0; d<=dh[mi][i]; d++){
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");            newm=savm;
   for (i=1;i<=npar;i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("%d",i);fflush(stdout);            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficlog,"%d",i);fflush(ficlog);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     hess[i][i]=hessii(p,ftolhess,i,delti);            }
     /*printf(" %f ",p[i]);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /*printf(" %lf ",hess[i][i]);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
               oldm=newm;
   for (i=1;i<=npar;i++) {          } /* end mult */
     for (j=1;j<=npar;j++)  {       
       if (j>i) {           s1=s[mw[mi][i]][i];
         printf(".%d%d",i,j);fflush(stdout);          s2=s[mw[mi+1][i]][i];
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          bbh=(double)bh[mi][i]/(double)stepm;
         hess[i][j]=hessij(p,delti,i,j);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         hess[j][i]=hess[i][j];              ipmx +=1;
         /*printf(" %lf ",hess[i][j]);*/          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }      } /* end of individual */
   printf("\n");    }  else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficlog,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
               for (j=1;j<=nlstate+ndeath;j++){
   a=matrix(1,npar,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   y=matrix(1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   x=vector(1,npar);            }
   indx=ivector(1,npar);          for(d=0; d<dh[mi][i]; d++){
   for (i=1;i<=npar;i++)            newm=savm;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   ludcmp(a,npar,indx,&pd);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (j=1;j<=npar;j++) {            }
     for (i=1;i<=npar;i++) x[i]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     x[j]=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     lubksb(a,npar,indx,x);            savm=oldm;
     for (i=1;i<=npar;i++){             oldm=newm;
       matcov[i][j]=x[i];          } /* end mult */
     }       
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   printf("\n#Hessian matrix#\n");          bbh=(double)bh[mi][i]/(double)stepm;
   fprintf(ficlog,"\n#Hessian matrix#\n");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (i=1;i<=npar;i++) {           ipmx +=1;
     for (j=1;j<=npar;j++) {           sw += weight[i];
       printf("%.3e ",hess[i][j]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficlog,"%.3e ",hess[i][j]);        } /* end of wave */
     }      } /* end of individual */
     printf("\n");    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     fprintf(ficlog,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   /* Recompute Inverse */          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=npar;i++)            for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   ludcmp(a,npar,indx,&pd);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   /*  printf("\n#Hessian matrix recomputed#\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   for (j=1;j<=npar;j++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1;i<=npar;i++) x[i]=0;            for (kk=1; kk<=cptcovage;kk++) {
     x[j]=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     lubksb(a,npar,indx,x);            }
     for (i=1;i<=npar;i++){          
       y[i][j]=x[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       printf("%.3e ",y[i][j]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficlog,"%.3e ",y[i][j]);            savm=oldm;
     }            oldm=newm;
     printf("\n");          } /* end mult */
     fprintf(ficlog,"\n");       
   }          s1=s[mw[mi][i]][i];
   */          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){
   free_matrix(a,1,npar,1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   free_matrix(y,1,npar,1,npar);          }else{
   free_vector(x,1,npar);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_ivector(indx,1,npar);          }
   free_matrix(hess,1,npar,1,npar);          ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
 /*************** hessian matrix ****************/      } /* end of individual */
 double hessii( double x[], double delta, int theta, double delti[])    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int l=1, lmax=20;        for(mi=1; mi<= wav[i]-1; mi++){
   double k1,k2;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double p2[NPARMAX+1];            for (j=1;j<=nlstate+ndeath;j++){
   double res;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fx;            }
   int k=0,kmax=10;          for(d=0; d<dh[mi][i]; d++){
   double l1;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fx=func(x);            for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=npar;i++) p2[i]=x[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(l=0 ; l <=lmax; l++){            }
     l1=pow(10,l);         
     delts=delt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(k=1 ; k <kmax; k=k+1){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       delt = delta*(l1*k);            savm=oldm;
       p2[theta]=x[theta] +delt;            oldm=newm;
       k1=func(p2)-fx;          } /* end mult */
       p2[theta]=x[theta]-delt;       
       k2=func(p2)-fx;          s1=s[mw[mi][i]][i];
       /*res= (k1-2.0*fx+k2)/delt/delt; */          s2=s[mw[mi+1][i]][i];
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                 ipmx +=1;
 #ifdef DEBUG          sw += weight[i];
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 #endif        } /* end of wave */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      } /* end of individual */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    } /* End of if */
         k=kmax;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         k=kmax; l=lmax*10.;    return -l;
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   
         delts=delt;  /*************** log-likelihood *************/
       }  double funcone( double *x)
     }  {
   }    /* Same as likeli but slower because of a lot of printf and if */
   delti[theta]=delts;    int i, ii, j, k, mi, d, kk;
   return res;     double l, ll[NLSTATEMAX], cov[NCOVMAX];
       double **out;
 }    double lli; /* Individual log likelihood */
     double llt;
 double hessij( double x[], double delti[], int thetai,int thetaj)    int s1, s2;
 {    double bbh, survp;
   int i;    /*extern weight */
   int l=1, l1, lmax=20;    /* We are differentiating ll according to initial status */
   double k1,k2,k3,k4,res,fx;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double p2[NPARMAX+1];    /*for(i=1;i<imx;i++)
   int k;      printf(" %d\n",s[4][i]);
     */
   fx=func(x);    cov[1]=1.;
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     k1=func(p2)-fx;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for (j=1;j<=nlstate+ndeath;j++){
     k2=func(p2)-fx;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]-delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(d=0; d<dh[mi][i]; d++){
     k3=func(p2)-fx;          newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (kk=1; kk<=cptcovage;kk++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     k4=func(p2)-fx;          }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 #ifdef DEBUG                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          savm=oldm;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          oldm=newm;
 #endif        } /* end mult */
   }       
   return res;        s1=s[mw[mi][i]][i];
 }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;
 /************** Inverse of matrix **************/        /* bias is positive if real duration
 void ludcmp(double **a, int n, int *indx, double *d)          * is higher than the multiple of stepm and negative otherwise.
 {          */
   int i,imax,j,k;         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double big,dum,sum,temp;           lli=log(out[s1][s2] - savm[s1][s2]);
   double *vv;         } else if  (s2==-2) {
            for (j=1,survp=0. ; j<=nlstate; j++)
   vv=vector(1,n);             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   *d=1.0;           lli= log(survp);
   for (i=1;i<=n;i++) {         }else if (mle==1){
     big=0.0;           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (j=1;j<=n;j++)         } else if(mle==2){
       if ((temp=fabs(a[i][j])) > big) big=temp;           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");         } else if(mle==3){  /* exponential inter-extrapolation */
     vv[i]=1.0/big;           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   for (j=1;j<=n;j++) {           lli=log(out[s1][s2]); /* Original formula */
     for (i=1;i<j;i++) {         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       sum=a[i][j];           lli=log(out[s1][s2]); /* Original formula */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];         } /* End of if */
       a[i][j]=sum;         ipmx +=1;
     }         sw += weight[i];
     big=0.0;         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=j;i<=n;i++) {   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       sum=a[i][j];         if(globpr){
       for (k=1;k<j;k++)           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         sum -= a[i][k]*a[k][j];    %11.6f %11.6f %11.6f ", \
       a[i][j]=sum;                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       if ( (dum=vv[i]*fabs(sum)) >= big) {                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         big=dum;           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         imax=i;             llt +=ll[k]*gipmx/gsw;
       }             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     }           }
     if (j != imax) {           fprintf(ficresilk," %10.6f\n", -llt);
       for (k=1;k<=n;k++) {         }
         dum=a[imax][k];       } /* end of wave */
         a[imax][k]=a[j][k];     } /* end of individual */
         a[j][k]=dum;     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       *d = -(*d);     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       vv[imax]=vv[j];     if(globpr==0){ /* First time we count the contributions and weights */
     }       gipmx=ipmx;
     indx[j]=imax;       gsw=sw;
     if (a[j][j] == 0.0) a[j][j]=TINY;     }
     if (j != n) {     return -l;
       dum=1.0/(a[j][j]);   }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;   
     }   
   }   /*************** function likelione ***********/
   free_vector(vv,1,n);  /* Doesn't work */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 ;  {
 }     /* This routine should help understanding what is done with
        the selection of individuals/waves and
 void lubksb(double **a, int n, int *indx, double b[])        to check the exact contribution to the likelihood.
 {        Plotting could be done.
   int i,ii=0,ip,j;      */
   double sum;     int k;
    
   for (i=1;i<=n;i++) {     if(*globpri !=0){ /* Just counts and sums, no printings */
     ip=indx[i];       strcpy(fileresilk,"ilk");
     sum=b[ip];       strcat(fileresilk,fileres);
     b[ip]=b[i];       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     if (ii)         printf("Problem with resultfile: %s\n", fileresilk);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     else if (sum) ii=i;       }
     b[i]=sum;       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   }       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   for (i=n;i>=1;i--) {       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     sum=b[i];       for(k=1; k<=nlstate; k++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     b[i]=sum/a[i][i];       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }     }
 }   
     *fretone=(*funcone)(p);
 /************ Frequencies ********************/    if(*globpri !=0){
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)      fclose(ficresilk);
 {  /* Some frequencies */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         fflush(fichtm);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    }
   int first;    return;
   double ***freq; /* Frequencies */  }
   double *pp, **prop;  
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  /*********** Maximum Likelihood Estimation ***************/
   char fileresp[FILENAMELENGTH];  
     void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   pp=vector(1,nlstate);  {
   prop=matrix(1,nlstate,iagemin,iagemax+3);    int i,j, iter;
   strcpy(fileresp,"p");    double **xi;
   strcat(fileresp,fileres);    double fret;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double fretone; /* Only one call to likelihood */
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /*  char filerespow[FILENAMELENGTH];*/
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    xi=matrix(1,npar,1,npar);
     exit(0);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);        xi[i][j]=(i==j ? 1.0 : 0.0);
   j1=0;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow");
   j=cptcoveff;    strcat(filerespow,fileres);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   first=1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
   for(k1=1; k1<=j;k1++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=nlstate;i++)
       j1++;      for(j=1;j<=nlstate+ndeath;j++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         scanf("%d", i);*/    fprintf(ficrespow,"\n");
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      powell(p,xi,npar,ftol,&iter,&fret,func);
           for(m=iagemin; m <= iagemax+3; m++)  
             freq[i][jk][m]=0;    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     for (i=1; i<=nlstate; i++)      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(m=iagemin; m <= iagemax+3; m++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         prop[i][m]=0;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         
       dateintsum=0;  }
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  /**** Computes Hessian and covariance matrix ***/
         bool=1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)     double  **a,**y,*x,pd;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     double **hess;
               bool=0;    int i, j,jk;
         }    int *indx;
         if (bool==1){  
           for(m=firstpass; m<=lastpass; m++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
             k2=anint[m][i]+(mint[m][i]/12.);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    void lubksb(double **a, int npar, int *indx, double b[]) ;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    double gompertz(double p[]);
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    hess=matrix(1,npar,1,npar);
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    printf("\nCalculation of the hessian matrix. Wait...\n");
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
               }    for (i=1;i<=npar;i++){
                     printf("%d",i);fflush(stdout);
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      fprintf(ficlog,"%d",i);fflush(ficlog);
                 dateintsum=dateintsum+k2;     
                 k2cpt++;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
               }     
               /*}*/      /*  printf(" %f ",p[i]);
           }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         }    }
       }   
            for (i=1;i<=npar;i++) {
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      for (j=1;j<=npar;j++)  {
         if (j>i) {
       if  (cptcovn>0) {          printf(".%d%d",i,j);fflush(stdout);
         fprintf(ficresp, "\n#********** Variable ");           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
         fprintf(ficresp, "**********\n#");         
       }          hess[j][i]=hess[i][j];    
       for(i=1; i<=nlstate;i++)           /*printf(" %lf ",hess[i][j]);*/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        }
       fprintf(ficresp, "\n");      }
           }
       for(i=iagemin; i <= iagemax+3; i++){    printf("\n");
         if(i==iagemax+3){    fprintf(ficlog,"\n");
           fprintf(ficlog,"Total");  
         }else{    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           if(first==1){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
             first=0;   
             printf("See log file for details...\n");    a=matrix(1,npar,1,npar);
           }    y=matrix(1,npar,1,npar);
           fprintf(ficlog,"Age %d", i);    x=vector(1,npar);
         }    indx=ivector(1,npar);
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             pp[jk] += freq[jk][m][i];     ludcmp(a,npar,indx,&pd);
         }  
         for(jk=1; jk <=nlstate ; jk++){    for (j=1;j<=npar;j++) {
           for(m=-1, pos=0; m <=0 ; m++)      for (i=1;i<=npar;i++) x[i]=0;
             pos += freq[jk][m][i];      x[j]=1;
           if(pp[jk]>=1.e-10){      lubksb(a,npar,indx,x);
             if(first==1){      for (i=1;i<=npar;i++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        matcov[i][j]=x[i];
             }      }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    }
           }else{  
             if(first==1)    printf("\n#Hessian matrix#\n");
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    fprintf(ficlog,"\n#Hessian matrix#\n");
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=1;i<=npar;i++) {
           }      for (j=1;j<=npar;j++) {
         }        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      printf("\n");
             pp[jk] += freq[jk][m][i];      fprintf(ficlog,"\n");
         }           }
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){  
           pos += pp[jk];    /* Recompute Inverse */
           posprop += prop[jk][i];    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         for(jk=1; jk <=nlstate ; jk++){    ludcmp(a,npar,indx,&pd);
           if(pos>=1.e-5){  
             if(first==1)    /*  printf("\n#Hessian matrix recomputed#\n");
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for (j=1;j<=npar;j++) {
           }else{      for (i=1;i<=npar;i++) x[i]=0;
             if(first==1)      x[j]=1;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      lubksb(a,npar,indx,x);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1;i<=npar;i++){
           }        y[i][j]=x[i];
           if( i <= iagemax){        printf("%.3e ",y[i][j]);
             if(pos>=1.e-5){        fprintf(ficlog,"%.3e ",y[i][j]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      }
               /*probs[i][jk][j1]= pp[jk]/pos;*/      printf("\n");
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      fprintf(ficlog,"\n");
             }    }
             else    */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);  
           }    free_matrix(a,1,npar,1,npar);
         }    free_matrix(y,1,npar,1,npar);
             free_vector(x,1,npar);
         for(jk=-1; jk <=nlstate+ndeath; jk++)    free_ivector(indx,1,npar);
           for(m=-1; m <=nlstate+ndeath; m++)    free_matrix(hess,1,npar,1,npar);
             if(freq[jk][m][i] !=0 ) {  
             if(first==1)  
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  
             }  /*************** hessian matrix ****************/
         if(i <= iagemax)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           fprintf(ficresp,"\n");  {
         if(first==1)    int i;
           printf("Others in log...\n");    int l=1, lmax=20;
         fprintf(ficlog,"\n");    double k1,k2;
       }    double p2[NPARMAX+1];
     }    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   dateintmean=dateintsum/k2cpt;     double fx;
      int k=0,kmax=10;
   fclose(ficresp);    double l1;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);  
   free_vector(pp,1,nlstate);    fx=func(x);
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    for (i=1;i<=npar;i++) p2[i]=x[i];
   /* End of Freq */    for(l=0 ; l <=lmax; l++){
 }      l1=pow(10,l);
       delts=delt;
 /************ Prevalence ********************/      for(k=1 ; k <kmax; k=k+1){
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)        delt = delta*(l1*k);
 {          p2[theta]=x[theta] +delt;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people        k1=func(p2)-fx;
      in each health status at the date of interview (if between dateprev1 and dateprev2).        p2[theta]=x[theta]-delt;
      We still use firstpass and lastpass as another selection.        k2=func(p2)-fx;
   */        /*res= (k1-2.0*fx+k2)/delt/delt; */
          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;       
   double ***freq; /* Frequencies */  #ifdef DEBUG
   double *pp, **prop;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double pos,posprop;         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double  y2; /* in fractional years */  #endif
   int iagemin, iagemax;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   iagemin= (int) agemin;          k=kmax;
   iagemax= (int) agemax;        }
   /*pp=vector(1,nlstate);*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   prop=matrix(1,nlstate,iagemin,iagemax+3);           k=kmax; l=lmax*10.;
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        }
   j1=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
             delts=delt;
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
       }
   for(k1=1; k1<=j;k1++){    delti[theta]=delts;
     for(i1=1; i1<=ncodemax[k1];i1++){    return res;
       j1++;   
         }
       for (i=1; i<=nlstate; i++)    
         for(m=iagemin; m <= iagemax+3; m++)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           prop[i][m]=0.0;  {
          int i;
       for (i=1; i<=imx; i++) { /* Each individual */    int l=1, l1, lmax=20;
         bool=1;    double k1,k2,k3,k4,res,fx;
         if  (cptcovn>0) {    double p2[NPARMAX+1];
           for (z1=1; z1<=cptcoveff; z1++)     int k;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;    fx=func(x);
         }     for (k=1; k<=2; k++) {
         if (bool==1) {       for (i=1;i<=npar;i++) p2[i]=x[i];
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/      p2[thetai]=x[thetai]+delti[thetai]/k;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */      k1=func(p2)-fx;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;   
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      p2[thetai]=x[thetai]+delti[thetai]/k;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               if (s[m][i]>0 && s[m][i]<=nlstate) {       k2=func(p2)-fx;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/   
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];      p2[thetai]=x[thetai]-delti[thetai]/k;
                 prop[s[m][i]][iagemax+3] += weight[i];       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               }       k3=func(p2)-fx;
             }   
           } /* end selection of waves */      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
       for(i=iagemin; i <= iagemax+3; i++){        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           #ifdef DEBUG
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           posprop += prop[jk][i];       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }   #endif
     }
         for(jk=1; jk <=nlstate ; jk++){         return res;
           if( i <=  iagemax){   }
             if(posprop>=1.e-5){   
               probs[i][jk][j1]= prop[jk][i]/posprop;  /************** Inverse of matrix **************/
             }   void ludcmp(double **a, int n, int *indx, double *d)
           }   {
         }/* end jk */     int i,imax,j,k;
       }/* end i */     double big,dum,sum,temp;
     } /* end i1 */    double *vv;
   } /* end k1 */   
       vv=vector(1,n);
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    *d=1.0;
   /*free_vector(pp,1,nlstate);*/    for (i=1;i<=n;i++) {
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);      big=0.0;
 }  /* End of prevalence */      for (j=1;j<=n;j++)
         if ((temp=fabs(a[i][j])) > big) big=temp;
 /************* Waves Concatenation ***************/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       vv[i]=1.0/big;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    }
 {    for (j=1;j<=n;j++) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for (i=1;i<j;i++) {
      Death is a valid wave (if date is known).        sum=a[i][j];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]        a[i][j]=sum;
      and mw[mi+1][i]. dh depends on stepm.      }
      */      big=0.0;
       for (i=j;i<=n;i++) {
   int i, mi, m;        sum=a[i][j];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for (k=1;k<j;k++)
      double sum=0., jmean=0.;*/          sum -= a[i][k]*a[k][j];
   int first;        a[i][j]=sum;
   int j, k=0,jk, ju, jl;        if ( (dum=vv[i]*fabs(sum)) >= big) {
   double sum=0.;          big=dum;
   first=0;          imax=i;
   jmin=1e+5;        }
   jmax=-1;      }
   jmean=0.;      if (j != imax) {
   for(i=1; i<=imx; i++){        for (k=1;k<=n;k++) {
     mi=0;          dum=a[imax][k];
     m=firstpass;          a[imax][k]=a[j][k];
     while(s[m][i] <= nlstate){          a[j][k]=dum;
       if(s[m][i]>=1)        }
         mw[++mi][i]=m;        *d = -(*d);
       if(m >=lastpass)        vv[imax]=vv[j];
         break;      }
       else      indx[j]=imax;
         m++;      if (a[j][j] == 0.0) a[j][j]=TINY;
     }/* end while */      if (j != n) {
     if (s[m][i] > nlstate){        dum=1.0/(a[j][j]);
       mi++;     /* Death is another wave */        for (i=j+1;i<=n;i++) a[i][j] *= dum;
       /* if(mi==0)  never been interviewed correctly before death */      }
          /* Only death is a correct wave */    }
       mw[mi][i]=m;    free_vector(vv,1,n);  /* Doesn't work */
     }  ;
   }
     wav[i]=mi;  
     if(mi==0){  void lubksb(double **a, int n, int *indx, double b[])
       if(first==0){  {
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);    int i,ii=0,ip,j;
         first=1;    double sum;
       }   
       if(first==1){    for (i=1;i<=n;i++) {
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);      ip=indx[i];
       }      sum=b[ip];
     } /* end mi==0 */      b[ip]=b[i];
   } /* End individuals */      if (ii)
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
   for(i=1; i<=imx; i++){      else if (sum) ii=i;
     for(mi=1; mi<wav[i];mi++){      b[i]=sum;
       if (stepm <=0)    }
         dh[mi][i]=1;    for (i=n;i>=1;i--) {
       else{      sum=b[i];
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
           if (agedc[i] < 2*AGESUP) {      b[i]=sum/a[i][i];
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);     }
             if(j==0) j=1;  /* Survives at least one month after exam */  }
             else if(j<0){  
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  void pstamp(FILE *fichier)
               j=1; /* Careful Patch */  {
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  }
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);  
             }  /************ Frequencies ********************/
             k=k+1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             if (j >= jmax) jmax=j;  {  /* Some frequencies */
             if (j <= jmin) jmin=j;   
             sum=sum+j;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    int first;
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    double ***freq; /* Frequencies */
           }    double *pp, **prop;
         }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         else{    char fileresp[FILENAMELENGTH];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));   
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    pp=vector(1,nlstate);
           k=k+1;    prop=matrix(1,nlstate,iagemin,iagemax+3);
           if (j >= jmax) jmax=j;    strcpy(fileresp,"p");
           else if (j <= jmin)jmin=j;    strcat(fileresp,fileres);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    if((ficresp=fopen(fileresp,"w"))==NULL) {
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/      printf("Problem with prevalence resultfile: %s\n", fileresp);
           if(j<0){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      exit(0);
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    }
           }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           sum=sum+j;    j1=0;
         }   
         jk= j/stepm;    j=cptcoveff;
         jl= j -jk*stepm;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         ju= j -(jk+1)*stepm;  
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    first=1;
           if(jl==0){  
             dh[mi][i]=jk;    for(k1=1; k1<=j;k1++){
             bh[mi][i]=0;      for(i1=1; i1<=ncodemax[k1];i1++){
           }else{ /* We want a negative bias in order to only have interpolation ie        j1++;
                   * at the price of an extra matrix product in likelihood */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             dh[mi][i]=jk+1;          scanf("%d", i);*/
             bh[mi][i]=ju;        for (i=-5; i<=nlstate+ndeath; i++)  
           }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }else{            for(m=iagemin; m <= iagemax+3; m++)
           if(jl <= -ju){              freq[i][jk][m]=0;
             dh[mi][i]=jk;  
             bh[mi][i]=jl;       /* bias is positive if real duration      for (i=1; i<=nlstate; i++)  
                                  * is higher than the multiple of stepm and negative otherwise.        for(m=iagemin; m <= iagemax+3; m++)
                                  */          prop[i][m]=0;
           }       
           else{        dateintsum=0;
             dh[mi][i]=jk+1;        k2cpt=0;
             bh[mi][i]=ju;        for (i=1; i<=imx; i++) {
           }          bool=1;
           if(dh[mi][i]==0){          if  (cptcovn>0) {
             dh[mi][i]=1; /* At least one step */            for (z1=1; z1<=cptcoveff; z1++)
             bh[mi][i]=ju; /* At least one step */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/                bool=0;
           }          }
         } /* end if mle */          if (bool==1){
       }            for(m=firstpass; m<=lastpass; m++){
     } /* end wave */              k2=anint[m][i]+(mint[m][i]/12.);
   }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   jmean=sum/k;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
  }                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 /*********** Tricode ****************************/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 void tricode(int *Tvar, int **nbcode, int imx)                }
 {               
                   if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   int Ndum[20],ij=1, k, j, i, maxncov=19;                  dateintsum=dateintsum+k2;
   int cptcode=0;                  k2cpt++;
   cptcoveff=0;                 }
                  /*}*/
   for (k=0; k<maxncov; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {         
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                                modality*/         pstamp(ficresp);
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/        if  (cptcovn>0) {
       Ndum[ij]++; /*store the modality */          fprintf(ficresp, "\n#********** Variable ");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable           fprintf(ficresp, "**********\n#");
                                        Tvar[j]. If V=sex and male is 0 and         }
                                        female is 1, then  cptcode=1.*/        for(i=1; i<=nlstate;i++)
     }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     for (i=0; i<=cptcode; i++) {       
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        for(i=iagemin; i <= iagemax+3; i++){
     }          if(i==iagemax+3){
             fprintf(ficlog,"Total");
     ij=1;           }else{
     for (i=1; i<=ncodemax[j]; i++) {            if(first==1){
       for (k=0; k<= maxncov; k++) {              first=0;
         if (Ndum[k] != 0) {              printf("See log file for details...\n");
           nbcode[Tvar[j]][ij]=k;             }
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */            fprintf(ficlog,"Age %d", i);
                     }
           ij++;          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         if (ij > ncodemax[j]) break;               pp[jk] += freq[jk][m][i];
       }            }
     }           for(jk=1; jk <=nlstate ; jk++){
   }              for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
  for (k=0; k< maxncov; k++) Ndum[k]=0;            if(pp[jk]>=1.e-10){
               if(first==1){
  for (i=1; i<=ncovmodel-2; i++) {               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              }
    ij=Tvar[i];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    Ndum[ij]++;            }else{
  }              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  ij=1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  for (i=1; i<= maxncov; i++) {            }
    if((Ndum[i]!=0) && (i<=ncovcol)){          }
      Tvaraff[ij]=i; /*For printing */  
      ij++;          for(jk=1; jk <=nlstate ; jk++){
    }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  }              pp[jk] += freq[jk][m][i];
            }      
  cptcoveff=ij-1; /*Number of simple covariates*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 }            pos += pp[jk];
             posprop += prop[jk][i];
 /*********** Health Expectancies ****************/          }
           for(jk=1; jk <=nlstate ; jk++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            if(pos>=1.e-5){
               if(first==1)
 {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /* Health expectancies */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }else{
   double age, agelim, hf;              if(first==1)
   double ***p3mat,***varhe;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double **dnewm,**doldm;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double *xp;            }
   double **gp, **gm;            if( i <= iagemax){
   double ***gradg, ***trgradg;              if(pos>=1.e-5){
   int theta;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   xp=vector(1,npar);              }
   dnewm=matrix(1,nlstate*nlstate,1,npar);              else
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
               }
   fprintf(ficreseij,"# Health expectancies\n");          }
   fprintf(ficreseij,"# Age");         
   for(i=1; i<=nlstate;i++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
     for(j=1; j<=nlstate;j++)            for(m=-1; m <=nlstate+ndeath; m++)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              if(freq[jk][m][i] !=0 ) {
   fprintf(ficreseij,"\n");              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if(estepm < stepm){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf ("Problem %d lower than %d\n",estepm, stepm);              }
   }          if(i <= iagemax)
   else  hstepm=estepm;               fprintf(ficresp,"\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months          if(first==1)
    * This is mainly to measure the difference between two models: for example            printf("Others in log...\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them          fprintf(ficlog,"\n");
    * we are calculating an estimate of the Life Expectancy assuming a linear         }
    * progression in between and thus overestimating or underestimating according      }
    * to the curvature of the survival function. If, for the same date, we     }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    dateintmean=dateintsum/k2cpt;
    * to compare the new estimate of Life expectancy with the same linear    
    * hypothesis. A more precise result, taking into account a more precise    fclose(ficresp);
    * curvature will be obtained if estepm is as small as stepm. */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   /* For example we decided to compute the life expectancy with the smallest unit */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /* End of Freq */
      nhstepm is the number of hstepm from age to agelim   }
      nstepm is the number of stepm from age to agelin.   
      Look at hpijx to understand the reason of that which relies in memory size  /************ Prevalence ********************/
      and note for a fixed period like estepm months */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  {  
      survival function given by stepm (the optimization length). Unfortunately it    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      means that if the survival funtion is printed only each two years of age and if       in each health status at the date of interview (if between dateprev1 and dateprev2).
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        We still use firstpass and lastpass as another selection.
      results. So we changed our mind and took the option of the best precision.    */
   */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
   agelim=AGESUP;    double *pp, **prop;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double pos,posprop;
     /* nhstepm age range expressed in number of stepm */    double  y2; /* in fractional years */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);     int iagemin, iagemax;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */   
     /* if (stepm >= YEARM) hstepm=1;*/    iagemin= (int) agemin;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    iagemax= (int) agemax;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*pp=vector(1,nlstate);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     gm=matrix(0,nhstepm,1,nlstate*nlstate);    j1=0;
    
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    j=cptcoveff;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);     
      for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        j1++;
        
     /* Computing Variances of health expectancies */        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
      for(theta=1; theta <=npar; theta++){            prop[i][m]=0.0;
       for(i=1; i<=npar; i++){        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            if  (cptcovn>0) {
               for (z1=1; z1<=cptcoveff; z1++)
       cptj=0;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       for(j=1; j<= nlstate; j++){                bool=0;
         for(i=1; i<=nlstate; i++){          }
           cptj=cptj+1;          if (bool==1) {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
                      if (s[m][i]>0 && s[m][i]<=nlstate) {
       for(i=1; i<=npar; i++)                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                    prop[s[m][i]][iagemax+3] += weight[i];
                       }
       cptj=0;              }
       for(j=1; j<= nlstate; j++){            } /* end selection of waves */
         for(i=1;i<=nlstate;i++){          }
           cptj=cptj+1;        }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        for(i=iagemin; i <= iagemax+3; i++){  
          
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
           }            posprop += prop[jk][i];
         }          }
       }  
       for(j=1; j<= nlstate*nlstate; j++)          for(jk=1; jk <=nlstate ; jk++){    
         for(h=0; h<=nhstepm-1; h++){            if( i <=  iagemax){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              if(posprop>=1.e-5){
         }                probs[i][jk][j1]= prop[jk][i]/posprop;
      }               }
                }
 /* End theta */          }/* end jk */
         }/* end i */
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);      } /* end i1 */
     } /* end k1 */
      for(h=0; h<=nhstepm-1; h++)   
       for(j=1; j<=nlstate*nlstate;j++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for(theta=1; theta <=npar; theta++)    /*free_vector(pp,1,nlstate);*/
           trgradg[h][j][theta]=gradg[h][theta][j];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
        }  /* End of prevalence */
   
      for(i=1;i<=nlstate*nlstate;i++)  /************* Waves Concatenation ***************/
       for(j=1;j<=nlstate*nlstate;j++)  
         varhe[i][j][(int)age] =0.;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
      printf("%d|",(int)age);fflush(stdout);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);       Death is a valid wave (if date is known).
      for(h=0;h<=nhstepm-1;h++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for(k=0;k<=nhstepm-1;k++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);       and mw[mi+1][i]. dh depends on stepm.
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);       */
         for(i=1;i<=nlstate*nlstate;i++)  
           for(j=1;j<=nlstate*nlstate;j++)    int i, mi, m;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       }       double sum=0., jmean=0.;*/
     }    int first;
     /* Computing expectancies */    int j, k=0,jk, ju, jl;
     for(i=1; i<=nlstate;i++)    double sum=0.;
       for(j=1; j<=nlstate;j++)    first=0;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    jmin=1e+5;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    jmax=-1;
               jmean=0.;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for(i=1; i<=imx; i++){
       mi=0;
         }      m=firstpass;
       while(s[m][i] <= nlstate){
     fprintf(ficreseij,"%3.0f",age );        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     cptj=0;          mw[++mi][i]=m;
     for(i=1; i<=nlstate;i++)        if(m >=lastpass)
       for(j=1; j<=nlstate;j++){          break;
         cptj++;        else
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          m++;
       }      }/* end while */
     fprintf(ficreseij,"\n");      if (s[m][i] > nlstate){
            mi++;     /* Death is another wave */
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);        /* if(mi==0)  never been interviewed correctly before death */
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);           /* Only death is a correct wave */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);        mw[mi][i]=m;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }      wav[i]=mi;
   printf("\n");      if(mi==0){
   fprintf(ficlog,"\n");        nbwarn++;
         if(first==0){
   free_vector(xp,1,npar);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);          first=1;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);        }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);        if(first==1){
 }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
 /************ Variance ******************/      } /* end mi==0 */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)    } /* End individuals */
 {  
   /* Variance of health expectancies */    for(i=1; i<=imx; i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(mi=1; mi<wav[i];mi++){
   /* double **newm;*/        if (stepm <=0)
   double **dnewm,**doldm;          dh[mi][i]=1;
   double **dnewmp,**doldmp;        else{
   int i, j, nhstepm, hstepm, h, nstepm ;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   int k, cptcode;            if (agedc[i] < 2*AGESUP) {
   double *xp;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
   double **gp, **gm;  /* for var eij */              if(j==0) j=1;  /* Survives at least one month after exam */
   double ***gradg, ***trgradg; /*for var eij */              else if(j<0){
   double **gradgp, **trgradgp; /* for var p point j */                nberr++;
   double *gpp, *gmp; /* for var p point j */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */                j=1; /* Temporary Dangerous patch */
   double ***p3mat;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   double age,agelim, hf;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double ***mobaverage;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   int theta;              }
   char digit[4];              k=k+1;
   char digitp[25];              if (j >= jmax){
                 jmax=j;
   char fileresprobmorprev[FILENAMELENGTH];                ijmax=i;
               }
   if(popbased==1){              if (j <= jmin){
     if(mobilav!=0)                jmin=j;
       strcpy(digitp,"-populbased-mobilav-");                ijmin=i;
     else strcpy(digitp,"-populbased-nomobil-");              }
   }              sum=sum+j;
   else               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     strcpy(digitp,"-stablbased-");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   if (mobilav!=0) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          else{
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }            k=k+1;
   }            if (j >= jmax) {
               jmax=j;
   strcpy(fileresprobmorprev,"prmorprev");               ijmax=i;
   sprintf(digit,"%-d",ij);            }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            else if (j <= jmin){
   strcat(fileresprobmorprev,digit); /* Tvar to be done */              jmin=j;
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */              ijmin=i;
   strcat(fileresprobmorprev,fileres);            }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            if(j<0){
   }              nberr++;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);            }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);            sum=sum+j;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          }
     fprintf(ficresprobmorprev," p.%-d SE",j);          jk= j/stepm;
     for(i=1; i<=nlstate;i++)          jl= j -jk*stepm;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          ju= j -(jk+1)*stepm;
   }            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fprintf(ficresprobmorprev,"\n");            if(jl==0){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              bh[mi][i]=0;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            }else{ /* We want a negative bias in order to only have interpolation ie
     exit(0);                    * at the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
   else{              bh[mi][i]=ju;
     fprintf(ficgp,"\n# Routine varevsij");            }
   }          }else{
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */            if(jl <= -ju){
 /*     printf("Problem with html file: %s\n", optionfilehtm); */              dh[mi][i]=jk;
 /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */              bh[mi][i]=jl;       /* bias is positive if real duration
 /*     exit(0); */                                   * is higher than the multiple of stepm and negative otherwise.
 /*   } */                                   */
 /*   else{ */            }
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            else{
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);              dh[mi][i]=jk+1;
 /*   } */              bh[mi][i]=ju;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }
             if(dh[mi][i]==0){
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");              dh[mi][i]=1; /* At least one step */
   fprintf(ficresvij,"# Age");              bh[mi][i]=ju; /* At least one step */
   for(i=1; i<=nlstate;i++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for(j=1; j<=nlstate;j++)            }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          } /* end if mle */
   fprintf(ficresvij,"\n");        }
       } /* end wave */
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    jmean=sum/k;
   doldm=matrix(1,nlstate,1,nlstate);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);   }
   
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  /*********** Tricode ****************************/
   gpp=vector(nlstate+1,nlstate+ndeath);  void tricode(int *Tvar, int **nbcode, int imx)
   gmp=vector(nlstate+1,nlstate+ndeath);  {
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/   
       int Ndum[20],ij=1, k, j, i, maxncov=19;
   if(estepm < stepm){    int cptcode=0;
     printf ("Problem %d lower than %d\n",estepm, stepm);    cptcoveff=0;
   }   
   else  hstepm=estepm;       for (k=0; k<maxncov; k++) Ndum[k]=0;
   /* For example we decided to compute the life expectancy with the smallest unit */    for (k=1; k<=7; k++) ncodemax[k]=0;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   
      nhstepm is the number of hstepm from age to agelim     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      nstepm is the number of stepm from age to agelin.       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
      Look at hpijx to understand the reason of that which relies in memory size                                 modality*/
      and note for a fixed period like k years */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        Ndum[ij]++; /*store the modality */
      survival function given by stepm (the optimization length). Unfortunately it        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      means that if the survival funtion is printed every two years of age and if        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                                          Tvar[j]. If V=sex and male is 0 and
      results. So we changed our mind and took the option of the best precision.                                         female is 1, then  cptcode=1.*/
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   
   agelim = AGESUP;      for (i=0; i<=cptcode; i++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      ij=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (i=1; i<=ncodemax[j]; i++) {
     gp=matrix(0,nhstepm,1,nlstate);        for (k=0; k<= maxncov; k++) {
     gm=matrix(0,nhstepm,1,nlstate);          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k;
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for(theta=1; theta <=npar; theta++){           
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/            ij++;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }          if (ij > ncodemax[j]) break;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
     }  
       if (popbased==1) {  
         if(mobilav ==0){   for (k=0; k< maxncov; k++) Ndum[k]=0;
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];   for (i=1; i<=ncovmodel-2; i++) {
         }else{ /* mobilav */      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           for(i=1; i<=nlstate;i++)     ij=Tvar[i];
             prlim[i][i]=mobaverage[(int)age][i][ij];     Ndum[ij]++;
         }   }
       }  
      ij=1;
       for(j=1; j<= nlstate; j++){   for (i=1; i<= maxncov; i++) {
         for(h=0; h<=nhstepm; h++){     if((Ndum[i]!=0) && (i<=ncovcol)){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)       Tvaraff[ij]=i; /*For printing */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];       ij++;
         }     }
       }   }
       /* This for computing probability of death (h=1 means   
          computed over hstepm matrices product = hstepm*stepm months)    cptcoveff=ij-1; /*Number of simple covariates*/
          as a weighted average of prlim.  }
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  /*********** Health Expectancies ****************/
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       }      
       /* end probability of death */  {
     /* Health expectancies, no variances */
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double age, agelim, hf;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double ***p3mat;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double eip;
    
       if (popbased==1) {    pstamp(ficreseij);
         if(mobilav ==0){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           for(i=1; i<=nlstate;i++)    fprintf(ficreseij,"# Age");
             prlim[i][i]=probs[(int)age][i][ij];    for(i=1; i<=nlstate;i++){
         }else{ /* mobilav */       for(j=1; j<=nlstate;j++){
           for(i=1; i<=nlstate;i++)        fprintf(ficreseij," e%1d%1d ",i,j);
             prlim[i][i]=mobaverage[(int)age][i][ij];      }
         }      fprintf(ficreseij," e%1d. ",i);
       }    }
     fprintf(ficreseij,"\n");
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){   
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    if(estepm < stepm){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
       }    else  hstepm=estepm;  
       /* This for computing probability of death (h=1 means    /* We compute the life expectancy from trapezoids spaced every estepm months
          computed over hstepm matrices product = hstepm*stepm months)      * This is mainly to measure the difference between two models: for example
          as a weighted average of prlim.     * if stepm=24 months pijx are given only every 2 years and by summing them
       */     * we are calculating an estimate of the Life Expectancy assuming a linear
       for(j=nlstate+1;j<=nlstate+ndeath;j++){     * progression in between and thus overestimating or underestimating according
         for(i=1,gmp[j]=0.; i<= nlstate; i++)     * to the curvature of the survival function. If, for the same date, we
          gmp[j] += prlim[i][i]*p3mat[i][j][1];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }         * to compare the new estimate of Life expectancy with the same linear
       /* end probability of death */     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
       for(j=1; j<= nlstate; j++) /* vareij */  
         for(h=0; h<=nhstepm; h++){    /* For example we decided to compute the life expectancy with the smallest unit */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         }       nhstepm is the number of hstepm from age to agelim
        nstepm is the number of stepm from age to agelin.
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       Look at hpijx to understand the reason of that which relies in memory size
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
     } /* End theta */       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       results. So we changed our mind and took the option of the best precision.
     */
     for(h=0; h<=nhstepm; h++) /* veij */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    agelim=AGESUP;
           trgradg[h][j][theta]=gradg[h][theta][j];    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for(theta=1; theta <=npar; theta++)     
         trgradgp[j][theta]=gradgp[theta][j];  /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* if (stepm >= YEARM) hstepm=1;*/
     for(i=1;i<=nlstate;i++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1;j<=nlstate;j++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         vareij[i][j][(int)age] =0.;  
     for (age=bage; age<=fage; age ++){
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);     
         for(i=1;i<=nlstate;i++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           for(j=1;j<=nlstate;j++)     
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      printf("%d|",(int)age);fflush(stdout);
       }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }     
     
     /* pptj */      /* Computing expectancies */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      for(i=1; i<=nlstate;i++)
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        for(j=1; j<=nlstate;j++)
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         varppt[j][i]=doldmp[j][i];           
     /* end ppptj */            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     /*  x centered again */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);     
        fprintf(ficreseij,"%3.0f",age );
     if (popbased==1) {      for(i=1; i<=nlstate;i++){
       if(mobilav ==0){        eip=0;
         for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++){
           prlim[i][i]=probs[(int)age][i][ij];          eip +=eij[i][j][(int)age];
       }else{ /* mobilav */           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=mobaverage[(int)age][i][ij];        fprintf(ficreseij,"%9.4f", eip );
       }      }
     }      fprintf(ficreseij,"\n");
                   
     /* This for computing probability of death (h=1 means    }
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        as a weighted average of prlim.    printf("\n");
     */    fprintf(ficlog,"\n");
     for(j=nlstate+1;j<=nlstate+ndeath;j++){   
       for(i=1,gmp[j]=0.;i<= nlstate; i++)   }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }      void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     /* end probability of death */  
   {
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    /* Covariances of health expectancies eij and of total life expectancies according
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){     to initial status i, ei. .
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    */
       for(i=1; i<=nlstate;i++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    double age, agelim, hf;
       }    double ***p3matp, ***p3matm, ***varhe;
     }     double **dnewm,**doldm;
     fprintf(ficresprobmorprev,"\n");    double *xp, *xm;
     double **gp, **gm;
     fprintf(ficresvij,"%.0f ",age );    double ***gradg, ***trgradg;
     for(i=1; i<=nlstate;i++)    int theta;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double eip, vip;
       }  
     fprintf(ficresvij,"\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     free_matrix(gp,0,nhstepm,1,nlstate);    xp=vector(1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate);    xm=vector(1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
   } /* End age */    pstamp(ficresstdeij);
   free_vector(gpp,nlstate+1,nlstate+ndeath);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   free_vector(gmp,nlstate+1,nlstate+ndeath);    fprintf(ficresstdeij,"# Age");
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    for(i=1; i<=nlstate;i++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      for(j=1; j<=nlstate;j++)
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      fprintf(ficresstdeij," e%1d. ",i);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    }
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    fprintf(ficresstdeij,"\n");
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    pstamp(ficrescveij);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);    fprintf(ficrescveij,"# Age");
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);    for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);      for(j=1; j<=nlstate;j++){
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);        cptj= (j-1)*nlstate+i;
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        for(i2=1; i2<=nlstate;i2++)
 */          for(j2=1; j2<=nlstate;j2++){
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
   free_vector(xp,1,npar);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   free_matrix(doldm,1,nlstate,1,nlstate);          }
   free_matrix(dnewm,1,nlstate,1,npar);      }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficrescveij,"\n");
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);   
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    if(estepm < stepm){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficresprobmorprev);    }
   fclose(ficgp);    else  hstepm=estepm;  
 /*   fclose(fichtm); */    /* We compute the life expectancy from trapezoids spaced every estepm months
 }  /* end varevsij */     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
 /************ Variance of prevlim ******************/     * we are calculating an estimate of the Life Expectancy assuming a linear
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)     * progression in between and thus overestimating or underestimating according
 {     * to the curvature of the survival function. If, for the same date, we
   /* Variance of prevalence limit */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/     * to compare the new estimate of Life expectancy with the same linear
   double **newm;     * hypothesis. A more precise result, taking into account a more precise
   double **dnewm,**doldm;     * curvature will be obtained if estepm is as small as stepm. */
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    /* For example we decided to compute the life expectancy with the smallest unit */
   double *xp;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   double *gp, *gm;       nhstepm is the number of hstepm from age to agelim
   double **gradg, **trgradg;       nstepm is the number of stepm from age to agelin.
   double age,agelim;       Look at hpijx to understand the reason of that which relies in memory size
   int theta;       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresvpl,"# Age");       means that if the survival funtion is printed only each two years of age and if
   for(i=1; i<=nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
       fprintf(ficresvpl," %1d-%1d",i,i);       results. So we changed our mind and took the option of the best precision.
   fprintf(ficresvpl,"\n");    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    /* If stepm=6 months */
   doldm=matrix(1,nlstate,1,nlstate);    /* nhstepm age range expressed in number of stepm */
       agelim=AGESUP;
   hstepm=1*YEARM; /* Every year of age */    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   agelim = AGESUP;    /* if (stepm >= YEARM) hstepm=1;*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     if (stepm >= YEARM) hstepm=1;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=matrix(1,npar,1,nlstate);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     gp=vector(1,nlstate);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gm=vector(1,nlstate);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (age=bage; age<=fage; age ++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for(i=1;i<=nlstate;i++)   
         gp[i] = prlim[i][i];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       for(i=1; i<=npar; i++) /* Computes gradient */      /* Computing  Variances of health expectancies */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         decrease memory allocation */
       for(i=1;i<=nlstate;i++)      for(theta=1; theta <=npar; theta++){
         gm[i] = prlim[i][i];        for(i=1; i<=npar; i++){
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(i=1;i<=nlstate;i++)          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }
     } /* End theta */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     trgradg =matrix(1,nlstate,1,npar);   
         for(j=1; j<= nlstate; j++){
     for(j=1; j<=nlstate;j++)          for(i=1; i<=nlstate; i++){
       for(theta=1; theta <=npar; theta++)            for(h=0; h<=nhstepm-1; h++){
         trgradg[j][theta]=gradg[theta][j];              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     for(i=1;i<=nlstate;i++)            }
       varpl[i][(int)age] =0.;          }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);       
     for(i=1;i<=nlstate;i++)        for(ij=1; ij<= nlstate*nlstate; ij++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     fprintf(ficresvpl,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)      }/* End theta */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));     
     fprintf(ficresvpl,"\n");     
     free_vector(gp,1,nlstate);      for(h=0; h<=nhstepm-1; h++)
     free_vector(gm,1,nlstate);        for(j=1; j<=nlstate*nlstate;j++)
     free_matrix(gradg,1,npar,1,nlstate);          for(theta=1; theta <=npar; theta++)
     free_matrix(trgradg,1,nlstate,1,npar);            trgradg[h][j][theta]=gradg[h][theta][j];
   } /* End age */     
   
   free_vector(xp,1,npar);       for(ij=1;ij<=nlstate*nlstate;ij++)
   free_matrix(doldm,1,nlstate,1,npar);        for(ji=1;ji<=nlstate*nlstate;ji++)
   free_matrix(dnewm,1,nlstate,1,nlstate);          varhe[ij][ji][(int)age] =0.;
   
 }       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /************ Variance of one-step probabilities  ******************/       for(h=0;h<=nhstepm-1;h++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for(k=0;k<=nhstepm-1;k++){
 {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   int i, j=0,  i1, k1, l1, t, tj;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   int k2, l2, j1,  z1;          for(ij=1;ij<=nlstate*nlstate;ij++)
   int k=0,l, cptcode;            for(ji=1;ji<=nlstate*nlstate;ji++)
   int first=1, first1;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        }
   double **dnewm,**doldm;      }
   double *xp;  
   double *gp, *gm;      /* Computing expectancies */
   double **gradg, **trgradg;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double **mu;      for(i=1; i<=nlstate;i++)
   double age,agelim, cov[NCOVMAX];        for(j=1; j<=nlstate;j++)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   int theta;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   char fileresprob[FILENAMELENGTH];           
   char fileresprobcov[FILENAMELENGTH];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char fileresprobcor[FILENAMELENGTH];  
           }
   double ***varpij;  
       fprintf(ficresstdeij,"%3.0f",age );
   strcpy(fileresprob,"prob");       for(i=1; i<=nlstate;i++){
   strcat(fileresprob,fileres);        eip=0.;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        vip=0.;
     printf("Problem with resultfile: %s\n", fileresprob);        for(j=1; j<=nlstate;j++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          eip += eij[i][j][(int)age];
   }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   strcpy(fileresprobcov,"probcov");             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   strcat(fileresprobcov,fileres);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprobcov);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      }
   }      fprintf(ficresstdeij,"\n");
   strcpy(fileresprobcor,"probcor");   
   strcat(fileresprobcor,fileres);      fprintf(ficrescveij,"%3.0f",age );
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with resultfile: %s\n", fileresprobcor);        for(j=1; j<=nlstate;j++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          cptj= (j-1)*nlstate+i;
   }          for(i2=1; i2<=nlstate;i2++)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            for(j2=1; j2<=nlstate;j2++){
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              cptj2= (j2-1)*nlstate+i2;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              if(cptj2 <= cptj)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        }
         fprintf(ficrescveij,"\n");
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");     
   fprintf(ficresprob,"# Age");    }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   fprintf(ficresprobcov,"# Age");    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fprintf(ficresprobcov,"# Age");    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i<=nlstate;i++)    printf("\n");
     for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficlog,"\n");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    free_vector(xm,1,npar);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    free_vector(xp,1,npar);
     }      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  /* fprintf(ficresprob,"\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficresprobcov,"\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fprintf(ficresprobcor,"\n");  }
  */  
  xp=vector(1,npar);  /************ Variance ******************/
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  {
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    /* Variance of health expectancies */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   first=1;    /* double **newm;*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    double **dnewmp,**doldmp;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    int i, j, nhstepm, hstepm, h, nstepm ;
     exit(0);    int k, cptcode;
   }    double *xp;
   else{    double **gp, **gm;  /* for var eij */
     fprintf(ficgp,"\n# Routine varprob");    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */    double *gpp, *gmp; /* for var p point j */
 /*     printf("Problem with html file: %s\n", optionfilehtm); */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */    double ***p3mat;
 /*     exit(0); */    double age,agelim, hf;
 /*   } */    double ***mobaverage;
 /*   else{ */    int theta;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    char digit[4];
     fprintf(fichtm,"\n");    char digitp[25];
   
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    char fileresprobmorprev[FILENAMELENGTH];
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    if(popbased==1){
       if(mobilav!=0)
 /*   } */        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   cov[1]=1;    }
   tj=cptcoveff;    else
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      strcpy(digitp,"-stablbased-");
   j1=0;  
   for(t=1; t<=tj;t++){    if (mobilav!=0) {
     for(i1=1; i1<=ncodemax[t];i1++){       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       j1++;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       if  (cptcovn>0) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresprob, "\n#********** Variable ");         printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
         fprintf(ficresprob, "**********\n#\n");    }
         fprintf(ficresprobcov, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    strcpy(fileresprobmorprev,"prmorprev");
         fprintf(ficresprobcov, "**********\n#\n");    sprintf(digit,"%-d",ij);
             /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         fprintf(ficgp, "\n#********** Variable ");     strcat(fileresprobmorprev,digit); /* Tvar to be done */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         fprintf(ficgp, "**********\n#\n");    strcat(fileresprobmorprev,fileres);
             if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            
         fprintf(ficresprobcor, "\n#********** Variable ");        fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    pstamp(ficresprobmorprev);
         fprintf(ficresprobcor, "**********\n#");        fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for (age=bage; age<=fage; age ++){       fprintf(ficresprobmorprev," p.%-d SE",j);
         cov[2]=age;      for(i=1; i<=nlstate;i++)
         for (k=1; k<=cptcovn;k++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    }  
         }    fprintf(ficresprobmorprev,"\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fprintf(ficgp,"\n# Routine varevsij");
         for (k=1; k<=cptcovprod;k++)    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  /*   } */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    pstamp(ficresvij);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         if(popbased==1)
         for(theta=1; theta <=npar; theta++){      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
           for(i=1; i<=npar; i++)    else
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
               fprintf(ficresvij,"# Age");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate;j++)
           k=0;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
           for(i=1; i<= (nlstate); i++){    fprintf(ficresvij,"\n");
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    xp=vector(1,npar);
               gp[k]=pmmij[i][j];    dnewm=matrix(1,nlstate,1,npar);
             }    doldm=matrix(1,nlstate,1,nlstate);
           }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
               doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         gpp=vector(nlstate+1,nlstate+ndeath);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    gmp=vector(nlstate+1,nlstate+ndeath);
           k=0;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           for(i=1; i<=(nlstate); i++){   
             for(j=1; j<=(nlstate+ndeath);j++){    if(estepm < stepm){
               k=k+1;      printf ("Problem %d lower than %d\n",estepm, stepm);
               gm[k]=pmmij[i][j];    }
             }    else  hstepm=estepm;  
           }    /* For example we decided to compute the life expectancy with the smallest unit */
          /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        nhstepm is the number of hstepm from age to agelim
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];         nstepm is the number of stepm from age to agelin.
         }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for(theta=1; theta <=npar; theta++)       survival function given by stepm (the optimization length). Unfortunately it
             trgradg[j][theta]=gradg[theta][j];       means that if the survival funtion is printed every two years of age and if
                you sum them up and add 1 year (area under the trapezoids) you won't get the same
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        results. So we changed our mind and took the option of the best precision.
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    agelim = AGESUP;
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         pmij(pmmij,cov,ncovmodel,x,nlstate);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         k=0;      gp=matrix(0,nhstepm,1,nlstate);
         for(i=1; i<=(nlstate); i++){      gm=matrix(0,nhstepm,1,nlstate);
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];      for(theta=1; theta <=npar; theta++){
           }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             varpij[i][j][(int)age] = doldm[i][j];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         /*printf("\n%d ",(int)age);        if (popbased==1) {
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          if(mobilav ==0){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            for(i=1; i<=nlstate;i++)
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              prlim[i][i]=probs[(int)age][i][ij];
           }*/          }else{ /* mobilav */
             for(i=1; i<=nlstate;i++)
         fprintf(ficresprob,"\n%d ",(int)age);              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficresprobcov,"\n%d ",(int)age);          }
         fprintf(ficresprobcor,"\n%d ",(int)age);        }
    
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        for(j=1; j<= nlstate; j++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          for(h=0; h<=nhstepm; h++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          }
         }        }
         i=0;        /* This for computing probability of death (h=1 means
         for (k=1; k<=(nlstate);k++){           computed over hstepm matrices product = hstepm*stepm months)
           for (l=1; l<=(nlstate+ndeath);l++){            as a weighted average of prlim.
             i=i++;        */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             for (j=1; j<=i;j++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        }    
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        /* end probability of death */
             }  
           }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         }/* end of loop for state */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       } /* end of loop for age */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       /* Confidence intervalle of pij  */   
       /*        if (popbased==1) {
         fprintf(ficgp,"\nset noparametric;unset label");          if(mobilav ==0){
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          }else{ /* mobilav */
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          }
       */        }
   
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        for(j=1; j<= nlstate; j++){
       first1=1;          for(h=0; h<=nhstepm; h++){
       for (k2=1; k2<=(nlstate);k2++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         for (l2=1; l2<=(nlstate+ndeath);l2++){               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           if(l2==k2) continue;          }
           j=(k2-1)*(nlstate+ndeath)+l2;        }
           for (k1=1; k1<=(nlstate);k1++){        /* This for computing probability of death (h=1 means
             for (l1=1; l1<=(nlstate+ndeath);l1++){            computed over hstepm matrices product = hstepm*stepm months)
               if(l1==k1) continue;           as a weighted average of prlim.
               i=(k1-1)*(nlstate+ndeath)+l1;        */
               if(i<=j) continue;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               for (age=bage; age<=fage; age ++){           for(i=1,gmp[j]=0.; i<= nlstate; i++)
                 if ((int)age %5==0){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        }    
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        /* end probability of death */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;        for(j=1; j<= nlstate; j++) /* vareij */
                   mu2=mu[j][(int) age]/stepm*YEARM;          for(h=0; h<=nhstepm; h++){
                   c12=cv12/sqrt(v1*v2);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   /* Computing eigen value of matrix of covariance */          }
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   /* Eigen vectors */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        }
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;      } /* End theta */
                   v12=-v21;  
                   v22=v11;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   tnalp=v21/v11;  
                   if(first1==1){      for(h=0; h<=nhstepm; h++) /* veij */
                     first1=0;        for(j=1; j<=nlstate;j++)
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          for(theta=1; theta <=npar; theta++)
                   }            trgradg[h][j][theta]=gradg[h][theta][j];
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   /*printf(fignu*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        for(theta=1; theta <=npar; theta++)
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */          trgradgp[j][theta]=gradgp[theta][j];
                   if(first==1){   
                     first=0;  
                     fprintf(ficgp,"\nset parametric;unset label");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(j=1;j<=nlstate;j++)
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);          vareij[i][j][(int)age] =0.;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      for(h=0;h<=nhstepm;h++){
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        for(k=0;k<=nhstepm;k++){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(i=1;i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            for(j=1;j<=nlstate;j++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   }else{        }
                     first=0;      }
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);   
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      /* pptj */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   }/* if first */          varppt[j][i]=doldmp[j][i];
                 } /* age mod 5 */      /* end ppptj */
               } /* end loop age */      /*  x centered again */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
               first=1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             } /*l12 */   
           } /* k12 */      if (popbased==1) {
         } /*l1 */        if(mobilav ==0){
       }/* k1 */          for(i=1; i<=nlstate;i++)
     } /* loop covariates */            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          for(i=1; i<=nlstate;i++)
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            prlim[i][i]=mobaverage[(int)age][i][ij];
   free_vector(xp,1,npar);        }
   fclose(ficresprob);      }
   fclose(ficresprobcov);               
   fclose(ficresprobcor);      /* This for computing probability of death (h=1 means
   fclose(ficgp);         computed over hstepm (estepm) matrices product = hstepm*stepm months)
 }         as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 /******************* Printing html file ***********/        for(i=1,gmp[j]=0.;i<= nlstate; i++)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   int lastpass, int stepm, int weightopt, char model[],\      }    
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      /* end probability of death */
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   double jprev2, double mprev2,double anprev2){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int jj1, k1, i1, cpt;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   /*char optionfilehtm[FILENAMELENGTH];*/        for(i=1; i<=nlstate;i++){
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 /*     printf("Problem with %s \n",optionfilehtm), exit(0); */        }
 /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */      }
 /*   } */      fprintf(ficresprobmorprev,"\n");
   
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \      fprintf(ficresvij,"%.0f ",age );
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \      for(i=1; i<=nlstate;i++)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \        for(j=1; j<=nlstate;j++){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
  - Life expectancies by age and initial health status (estepm=%2d months): \        }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      fprintf(ficresvij,"\n");
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
  m=cptcoveff;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
  jj1=0;    free_vector(gmp,nlstate+1,nlstate+ndeath);
  for(k1=1; k1<=m;k1++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    for(i1=1; i1<=ncodemax[k1];i1++){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      jj1++;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      if (cptcovn > 0) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
        for (cpt=1; cpt<=cptcoveff;cpt++)   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
      /* Pij */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      /* Quasi-incidences */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \  */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
        /* Stable prevalence in each health state */    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \    free_vector(xp,1,npar);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    free_matrix(doldm,1,nlstate,1,nlstate);
        }    free_matrix(dnewm,1,nlstate,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    fclose(ficresprobmorprev);
 health expectancies in states (1) and (2): e%s%d.png<br>\    fflush(ficgp);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fflush(fichtm);
    } /* end i1 */  }  /* end varevsij */
  }/* End k1 */  
  fprintf(fichtm,"</ul>");  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\    /* Variance of prevalence limit */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\    double **newm;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\    double **dnewm,**doldm;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\    int i, j, nhstepm, hstepm;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\    int k, cptcode;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\    double *xp;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double *gp, *gm;
     double **gradg, **trgradg;
 /*  if(popforecast==1) fprintf(fichtm,"\n */    double age,agelim;
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    int theta;
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */   
 /*      <br>",fileres,fileres,fileres,fileres); */    pstamp(ficresvpl);
 /*  else  */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    fprintf(ficresvpl,"# Age");
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
  m=cptcoveff;    fprintf(ficresvpl,"\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     xp=vector(1,npar);
  jj1=0;    dnewm=matrix(1,nlstate,1,npar);
  for(k1=1; k1<=m;k1++){    doldm=matrix(1,nlstate,1,nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){   
      jj1++;    hstepm=1*YEARM; /* Every year of age */
      if (cptcovn > 0) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    agelim = AGESUP;
        for (cpt=1; cpt<=cptcoveff;cpt++)     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      if (stepm >= YEARM) hstepm=1;
      }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      for(cpt=1; cpt<=nlstate;cpt++) {      gradg=matrix(1,npar,1,nlstate);
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\      gp=vector(1,nlstate);
 interval) in state (%d): v%s%d%d.png <br>\      gm=vector(1,nlstate);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }      for(theta=1; theta <=npar; theta++){
    } /* end i1 */        for(i=1; i<=npar; i++){ /* Computes gradient */
  }/* End k1 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  fprintf(fichtm,"</ul>");        }
  fflush(fichtm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
 /******************* Gnuplot file **************/     
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int ng;        for(i=1;i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          gm[i] = prlim[i][i];
     printf("Problem with file %s",optionfilegnuplot);  
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        for(i=1;i<=nlstate;i++)
   }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   /*#ifdef windows */  
     fprintf(ficgp,"cd \"%s\" \n",pathc);      trgradg =matrix(1,nlstate,1,npar);
     /*#endif */  
 m=pow(2,cptcoveff);      for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
  /* 1eme*/          trgradg[j][theta]=gradg[theta][j];
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {      for(i=1;i<=nlstate;i++)
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        varpl[i][(int)age] =0.;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      for (i=1; i<= nlstate ; i ++) {      for(i=1;i<=nlstate;i++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }      fprintf(ficresvpl,"%.0f ",age );
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);      for(i=1; i<=nlstate;i++)
      for (i=1; i<= nlstate ; i ++) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficresvpl,"\n");
        else fprintf(ficgp," \%%*lf (\%%*lf)");      free_vector(gp,1,nlstate);
      }       free_vector(gm,1,nlstate);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);       free_matrix(gradg,1,npar,1,nlstate);
      for (i=1; i<= nlstate ; i ++) {      free_matrix(trgradg,1,nlstate,1,npar);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } /* End age */
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }      free_vector(xp,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    free_matrix(doldm,1,nlstate,1,npar);
    }    free_matrix(dnewm,1,nlstate,1,nlstate);
   }  
   /*2 eme*/  }
     
   for (k1=1; k1<= m ; k1 ++) {   /************ Variance of one-step probabilities  ******************/
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  {
         int i, j=0,  i1, k1, l1, t, tj;
     for (i=1; i<= nlstate+1 ; i ++) {    int k2, l2, j1,  z1;
       k=2*i;    int k=0,l, cptcode;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int first=1, first1;
       for (j=1; j<= nlstate+1 ; j ++) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp;
       }       double *gp, *gm;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double **gradg, **trgradg;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double **mu;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double age,agelim, cov[NCOVMAX];
       for (j=1; j<= nlstate+1 ; j ++) {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int theta;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    char fileresprob[FILENAMELENGTH];
       }       char fileresprobcov[FILENAMELENGTH];
       fprintf(ficgp,"\" t\"\" w l 0,");    char fileresprobcor[FILENAMELENGTH];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    double ***varpij;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(fileresprob,"prob");
       }       strcat(fileresprob,fileres);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       else fprintf(ficgp,"\" t\"\" w l 0,");      printf("Problem with resultfile: %s\n", fileresprob);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }    }
       strcpy(fileresprobcov,"probcov");
   /*3eme*/    strcat(fileresprobcov,fileres);
       if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {       printf("Problem with resultfile: %s\n", fileresprobcov);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       k=2+nlstate*(2*cpt-2);    }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    strcpy(fileresprobcor,"probcor");
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    strcat(fileresprobcor,fileres);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      printf("Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    }
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for (i=1; i< nlstate ; i ++) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             pstamp(ficresprob);
       }     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     }    fprintf(ficresprob,"# Age");
   }    pstamp(ficresprobcov);
       fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   /* CV preval stable (period) */    fprintf(ficresprobcov,"# Age");
   for (k1=1; k1<= m ; k1 ++) {     pstamp(ficresprobcor);
     for (cpt=1; cpt<=nlstate ; cpt ++) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       k=3;    fprintf(ficresprobcor,"# Age");
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
           for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++)      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp,"+$%d",k+i+1);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
               fprintf(ficresprobcor," p%1d-%1d ",i,j);
       l=3+(nlstate+ndeath)*cpt;      }  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   /* fprintf(ficresprob,"\n");
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresprobcov,"\n");
         l=3+(nlstate+ndeath)*cpt;    fprintf(ficresprobcor,"\n");
         fprintf(ficgp,"+$%d",l+i+1);   */
       }   xp=vector(1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   }      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   /* proba elementaires */    first=1;
   for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficgp,"\n# Routine varprob");
     for(k=1; k <=(nlstate+ndeath); k++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       if (k != i) {    fprintf(fichtm,"\n");
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           jk++;     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           fprintf(ficgp,"\n");    file %s<br>\n",optionfilehtmcov);
         }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       }  and drawn. It helps understanding how is the covariance between two incidences.\
     }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
    }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      for(jk=1; jk <=m; jk++) {  standard deviations wide on each axis. <br>\
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
        if (ng==2)   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
        else  
          fprintf(ficgp,"\nset title \"Probability\"\n");    cov[1]=1;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    tj=cptcoveff;
        i=1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        for(k2=1; k2<=nlstate; k2++) {    j1=0;
          k3=i;    for(t=1; t<=tj;t++){
          for(k=1; k<=(nlstate+ndeath); k++) {      for(i1=1; i1<=ncodemax[t];i1++){
            if (k != k2){        j1++;
              if(ng==2)        if  (cptcovn>0) {
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          fprintf(ficresprob, "\n#********** Variable ");
              else          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          fprintf(ficresprob, "**********\n#\n");
              ij=1;          fprintf(ficresprobcov, "\n#********** Variable ");
              for(j=3; j <=ncovmodel; j++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficresprobcov, "**********\n#\n");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);         
                  ij++;          fprintf(ficgp, "\n#********** Variable ");
                }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                else          fprintf(ficgp, "**********\n#\n");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         
              }         
              fprintf(ficgp,")/(1");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
                        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              for(k1=1; k1 <=nlstate; k1++){             fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);         
                ij=1;          fprintf(ficresprobcor, "\n#********** Variable ");    
                for(j=3; j <=ncovmodel; j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficresprobcor, "**********\n#");    
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                    ij++;       
                  }        for (age=bage; age<=fage; age ++){
                  else          cov[2]=age;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for (k=1; k<=cptcovn;k++) {
                }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                fprintf(ficgp,")");          }
              }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          for (k=1; k<=cptcovprod;k++)
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              i=i+ncovmodel;         
            }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
          } /* end k */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        } /* end k2 */          gp=vector(1,(nlstate)*(nlstate+ndeath));
      } /* end jk */          gm=vector(1,(nlstate)*(nlstate+ndeath));
    } /* end ng */     
    fclose(ficgp);           for(theta=1; theta <=npar; theta++){
 }  /* end gnuplot */            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
            
 /*************** Moving average **************/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){           
             k=0;
   int i, cpt, cptcod;            for(i=1; i<= (nlstate); i++){
   int modcovmax =1;              for(j=1; j<=(nlstate+ndeath);j++){
   int mobilavrange, mob;                k=k+1;
   double age;                gp[k]=pmmij[i][j];
               }
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose             }
                            a covariate has 2 modalities */           
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){     
     if(mobilav==1) mobilavrange=5; /* default */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     else mobilavrange=mobilav;            k=0;
     for (age=bage; age<=fage; age++)            for(i=1; i<=(nlstate); i++){
       for (i=1; i<=nlstate;i++)              for(j=1; j<=(nlstate+ndeath);j++){
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                k=k+1;
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                gm[k]=pmmij[i][j];
     /* We keep the original values on the extreme ages bage, fage and for               }
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2            }
        we use a 5 terms etc. until the borders are no more concerned.        
     */             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
     for (mob=3;mob <=mobilavrange;mob=mob+2){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){          }
         for (i=1; i<=nlstate;i++){  
           for (cptcod=1;cptcod<=modcovmax;cptcod++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];            for(theta=1; theta <=npar; theta++)
               for (cpt=1;cpt<=(mob-1)/2;cpt++){              trgradg[j][theta]=gradg[theta][j];
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];         
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
               }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }/* end age */          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     }/* end mob */  
   }else return -1;          pmij(pmmij,cov,ncovmodel,x,nlstate);
   return 0;         
 }/* End movingaverage */          k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
 /************** Forecasting ******************/              k=k+1;
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){              mu[k][(int) age]=pmmij[i][j];
   /* proj1, year, month, day of starting projection             }
      agemin, agemax range of age          }
      dateprev1 dateprev2 range of dates during which prevalence is computed          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
      anproj2 year of en of projection (same day and month as proj1).            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   */              varpij[i][j][(int)age] = doldm[i][j];
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  
   int *popage;          /*printf("\n%d ",(int)age);
   double agec; /* generic age */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   double *popeffectif,*popcount;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   double ***p3mat;            }*/
   double ***mobaverage;  
   char fileresf[FILENAMELENGTH];          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   agelim=AGESUP;          fprintf(ficresprobcor,"\n%d ",(int)age);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   strcpy(fileresf,"f");             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   strcat(fileresf,fileres);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     printf("Problem with forecast resultfile: %s\n", fileresf);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);          }
   }          i=0;
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for (k=1; k<=(nlstate);k++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);            for (l=1; l<=(nlstate+ndeath);l++){
               i=i++;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   if (mobilav!=0) {              for (j=1; j<=i;j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            }
     }          }/* end of loop for state */
   }        } /* end of loop for age */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;        /* Confidence intervalle of pij  */
   if (stepm<=12) stepsize=1;        /*
   if(estepm < stepm){          fprintf(ficgp,"\nset noparametric;unset label");
     printf ("Problem %d lower than %d\n",estepm, stepm);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   else  hstepm=estepm;             fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   hstepm=hstepm/stepm;           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                                fractional in yp1 */        */
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   mprojmean=yp;        first1=1;
   yp1=modf((yp2*30.5),&yp);        for (k2=1; k2<=(nlstate);k2++){
   jprojmean=yp;          for (l2=1; l2<=(nlstate+ndeath);l2++){
   if(jprojmean==0) jprojmean=1;            if(l2==k2) continue;
   if(mprojmean==0) jprojmean=1;            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   i1=cptcoveff;              for (l1=1; l1<=(nlstate+ndeath);l1++){
   if (cptcovn < 1){i1=1;}                if(l1==k1) continue;
                   i=(k1-1)*(nlstate+ndeath)+l1;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);                 if(i<=j) continue;
                   for (age=bage; age<=fage; age ++){
   fprintf(ficresf,"#****** Routine prevforecast **\n");                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 /*            if (h==(int)(YEARM*yearp)){ */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                    mu1=mu[i][(int) age]/stepm*YEARM ;
       k=k+1;                    mu2=mu[j][(int) age]/stepm*YEARM;
       fprintf(ficresf,"\n#******");                    c12=cv12/sqrt(v1*v2);
       for(j=1;j<=cptcoveff;j++) {                    /* Computing eigen value of matrix of covariance */
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       fprintf(ficresf,"******\n");                    /* Eigen vectors */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       for(j=1; j<=nlstate+ndeath;j++){                     /*v21=sqrt(1.-v11*v11); *//* error */
         for(i=1; i<=nlstate;i++)                                  v21=(lc1-v1)/cv12*v11;
           fprintf(ficresf," p%d%d",i,j);                    v12=-v21;
         fprintf(ficresf," p.%d",j);                    v22=v11;
       }                    tnalp=v21/v11;
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {                     if(first1==1){
         fprintf(ficresf,"\n");                      first1=0;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);                         printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
         for (agec=fage; agec>=(ageminpar-1); agec--){                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);                     /*printf(fignu*/
           nhstepm = nhstepm/hstepm;                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           oldm=oldms;savm=savms;                    if(first==1){
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);                        first=0;
                               fprintf(ficgp,"\nset parametric;unset label");
           for (h=0; h<=nhstepm; h++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             if (h*hstepm/YEARM*stepm ==yearp) {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               fprintf(ficresf,"\n");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
               for(j=1;j<=cptcoveff;j++)    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
             }                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             for(j=1; j<=nlstate+ndeath;j++) {                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               ppij=0.;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
               for(i=1; i<=nlstate;i++) {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 if (mobilav==1)                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                 else {                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                 }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                 if (h*hstepm/YEARM*stepm== yearp) {                    }else{
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);                      first=0;
                 }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
               } /* end i */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               if (h*hstepm/YEARM*stepm==yearp) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                 fprintf(ficresf," %.3f", ppij);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
               }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             }/* end j */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           } /* end h */                    }/* if first */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  } /* age mod 5 */
         } /* end agec */                } /* end loop age */
       } /* end yearp */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     } /* end cptcod */                first=1;
   } /* end  cptcov */              } /*l12 */
                    } /* k12 */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          } /*l1 */
         }/* k1 */
   fclose(ficresf);      } /* loop covariates */
 }    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 /************** Forecasting *****not tested NB*************/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_vector(xp,1,npar);
   int *popage;    fclose(ficresprob);
   double calagedatem, agelim, kk1, kk2;    fclose(ficresprobcov);
   double *popeffectif,*popcount;    fclose(ficresprobcor);
   double ***p3mat,***tabpop,***tabpopprev;    fflush(ficgp);
   double ***mobaverage;    fflush(fichtmcov);
   char filerespop[FILENAMELENGTH];  }
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /******************* Printing html file ***********/
   agelim=AGESUP;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                    int lastpass, int stepm, int weightopt, char model[],\
                       int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                    int popforecast, int estepm ,\
                       double jprev1, double mprev1,double anprev1, \
                       double jprev2, double mprev2,double anprev2){
   strcpy(filerespop,"pop");     int jj1, k1, i1, cpt;
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     printf("Problem with forecast resultfile: %s\n", filerespop);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  </ul>");
   }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   printf("Computing forecasting: result on file '%s' \n", filerespop);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   if (mobilav!=0) {     fprintf(fichtm,"\
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     fprintf(fichtm,"\
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     }     <a href=\"%s\">%s</a> <br>\n",
   }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
   stepsize=(int) (stepm+YEARM-1)/YEARM;   - Population projections by age and states: \
   if (stepm<=12) stepsize=1;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     
   agelim=AGESUP;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     
   hstepm=1;   m=cptcoveff;
   hstepm=hstepm/stepm;    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     
   if (popforecast==1) {   jj1=0;
     if((ficpop=fopen(popfile,"r"))==NULL) {   for(k1=1; k1<=m;k1++){
       printf("Problem with population file : %s\n",popfile);exit(0);     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);       jj1++;
     }        if (cptcovn > 0) {
     popage=ivector(0,AGESUP);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     popeffectif=vector(0,AGESUP);         for (cpt=1; cpt<=cptcoveff;cpt++)
     popcount=vector(0,AGESUP);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
              fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     i=1;          }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       /* Pij */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     imx=i;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       /* Quasi-incidences */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         /* Period (stable) prevalence in each health state */
       k=k+1;         for(cpt=1; cpt<nlstate;cpt++){
       fprintf(ficrespop,"\n#******");           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
       for(j=1;j<=cptcoveff;j++) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         }
       }       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficrespop,"******\n");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       fprintf(ficrespop,"# Age");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       }
       if (popforecast==1)  fprintf(ficrespop," [Population]");     } /* end i1 */
          }/* End k1 */
       for (cpt=0; cpt<=0;cpt++) {    fprintf(fichtm,"</ul>");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
           
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){    fprintf(fichtm,"\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           nhstepm = nhstepm/hstepm;    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
             
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           oldm=oldms;savm=savms;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     fprintf(fichtm,"\
            - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           for (h=0; h<=nhstepm; h++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   fprintf(fichtm,"\
             }    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             for(j=1; j<=nlstate+ndeath;j++) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
               kk1=0.;kk2=0;   fprintf(fichtm,"\
               for(i=1; i<=nlstate;i++) {                 - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                 if (mobilav==1)      <a href=\"%s\">%s</a> <br>\n</li>",
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                 else {   fprintf(fichtm,"\
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                 }     <a href=\"%s\">%s</a> <br>\n</li>",
               }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
               if (h==(int)(calagedatem+12*cpt)){   fprintf(fichtm,"\
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                   /*fprintf(ficrespop," %.3f", kk1);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/   fprintf(fichtm,"\
               }   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
             }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
             for(i=1; i<=nlstate;i++){   fprintf(fichtm,"\
               kk1=0.;   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
                 for(j=1; j<=nlstate;j++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   
                 }  /*  if(popforecast==1) fprintf(fichtm,"\n */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
             }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)   /*  else  */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           }   fflush(fichtm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         }  
       }   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /******/  
    jj1=0;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    for(k1=1; k1<=m;k1++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(i1=1; i1<=ncodemax[k1];i1++){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        jj1++;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        if (cptcovn > 0) {
           nhstepm = nhstepm/hstepm;          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                    for (cpt=1; cpt<=cptcoveff;cpt++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           oldm=oldms;savm=savms;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         }
           for (h=0; h<=nhstepm; h++){       for(cpt=1; cpt<=nlstate;cpt++) {
             if (h==(int) (calagedatem+YEARM*cpt)) {         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
             }   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
             for(j=1; j<=nlstate+ndeath;j++) {       }
               kk1=0.;kk2=0;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
               for(i=1; i<=nlstate;i++) {                health expectancies in states (1) and (2): %s%d.png<br>\
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
               }     } /* end i1 */
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);           }/* End k1 */
             }   fprintf(fichtm,"</ul>");
           }   fflush(fichtm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
         }  
       }  /******************* Gnuplot file **************/
    }   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
      char dirfileres[132],optfileres[132];
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   if (popforecast==1) {  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     free_ivector(popage,0,AGESUP);  /*     printf("Problem with file %s",optionfilegnuplot); */
     free_vector(popeffectif,0,AGESUP);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     free_vector(popcount,0,AGESUP);  /*   } */
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*#ifdef windows */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fclose(ficrespop);      /*#endif */
 } /* End of popforecast */    m=pow(2,cptcoveff);
   
 int fileappend(FILE *fichier, char *optionfich)    strcpy(dirfileres,optionfilefiname);
 {    strcpy(optfileres,"vpl");
   if((fichier=fopen(optionfich,"a"))==NULL) {   /* 1eme*/
     printf("Problem with file: %s\n", optionfich);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficlog,"Problem with file: %s\n", optionfich);     for (k1=1; k1<= m ; k1 ++) {
     return (0);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   fflush(fichier);       fprintf(ficgp,"set xlabel \"Age\" \n\
   return (1);  set ylabel \"Probability\" \n\
 }  set ter png small\n\
 /***********************************************/  set size 0.65,0.65\n\
 /**************** Main Program *****************/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 /***********************************************/  
        for (i=1; i<= nlstate ; i ++) {
 int main(int argc, char *argv[])         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 {         else fprintf(ficgp," \%%*lf (\%%*lf)");
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);       }
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   int jj;       for (i=1; i<= nlstate ; i ++) {
   int numlinepar=0; /* Current linenumber of parameter file */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*  FILE *fichtm; *//* Html File */         else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* FILE *ficgp;*/ /*Gnuplot File */       }
   double agedeb, agefin,hf;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   double fret;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   double **xi,tmp,delta;       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   double dum; /* Dummy variable */     }
   double ***p3mat;    }
   double ***mobaverage;    /*2 eme*/
   int *indx;   
   char line[MAXLINE], linepar[MAXLINE];    for (k1=1; k1<= m ; k1 ++) {
   char path[132],pathc[132],pathcd[132],pathtot[132],model[132];      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   int firstobs=1, lastobs=10;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   int sdeb, sfin; /* Status at beginning and end */     
   int c,  h , cpt,l;      for (i=1; i<= nlstate+1 ; i ++) {
   int ju,jl, mi;        k=2*i;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;         for (j=1; j<= nlstate+1 ; j ++) {
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   int mobilav=0,popforecast=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   int hstepm, nhstepm;        }  
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   double bage, fage, age, agelim, agebase;        for (j=1; j<= nlstate+1 ; j ++) {
   double ftolpl=FTOL;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   double **prlim;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   double *severity;        }  
   double ***param; /* Matrix of parameters */        fprintf(ficgp,"\" t\"\" w l 0,");
   double  *p;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   double **matcov; /* Matrix of covariance */        for (j=1; j<= nlstate+1 ; j ++) {
   double ***delti3; /* Scale */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   double *delti; /* Scale */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   double ***eij, ***vareij;        }  
   double **varpl; /* Variances of prevalence limits by age */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   double *epj, vepp;        else fprintf(ficgp,"\" t\"\" w l 0,");
   double kk1, kk2;      }
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    }
    
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /*3eme*/
    
     for (k1=1; k1<= m ; k1 ++) {
   char z[1]="c", occ;      for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        k=2+(nlstate+1)*(cpt-1);
   char *strt, *strtend;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   char *stratrunc;        fprintf(ficgp,"set ter png small\n\
   int lstra;  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   long total_usecs;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   struct timeval start_time, end_time, curr_time;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   struct timezone tzp;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   extern int gettimeofday();          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   struct tm tmg, tm, *gmtime(), *localtime();          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   long time_value;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   extern long time();         
          */
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for (i=1; i< nlstate ; i ++) {
   (void) gettimeofday(&start_time,&tzp);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   tm = *localtime(&start_time.tv_sec);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   tmg = *gmtime(&start_time.tv_sec);         
   strt=asctime(&tm);        }
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 /*  printf("Localtime (at start)=%s",strt); */      }
 /*  tp.tv_sec = tp.tv_sec +86400; */    }
 /*  tm = *localtime(&start_time.tv_sec); */   
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    /* CV preval stable (period) */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    for (k1=1; k1<= m ; k1 ++) {
 /*   tmg.tm_hour=tmg.tm_hour + 1; */      for (cpt=1; cpt<=nlstate ; cpt ++) {
 /*   tp.tv_sec = mktime(&tmg); */        k=3;
 /*   strt=asctime(&tmg); */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 /*   printf("Time(after) =%s",strt);  */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 /*  (void) time (&time_value);  set ter png small\nset size 0.65,0.65\n\
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);  unset log y\n\
 *  tm = *localtime(&time_value);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 *  strt=asctime(&tm);       
 *  printf("tim_value=%d,asctime=%s\n",time_value,strt);         for (i=1; i< nlstate ; i ++)
 */          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   getcwd(pathcd, size);       
         l=3+(nlstate+ndeath)*cpt;
   printf("\n%s\n%s",version,fullversion);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   if(argc <=1){        for (i=1; i< nlstate ; i ++) {
     printf("\nEnter the parameter file name: ");          l=3+(nlstate+ndeath)*cpt;
     scanf("%s",pathtot);          fprintf(ficgp,"+$%d",l+i+1);
   }        }
   else{        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
     strcpy(pathtot,argv[1]);      }
   }    }  
   /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/   
   /*cygwin_split_path(pathtot,path,optionfile);    /* proba elementaires */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    for(i=1,jk=1; i <=nlstate; i++){
   /* cutv(path,optionfile,pathtot,'\\');*/      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          for(j=1; j <=ncovmodel; j++){
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   chdir(path);            jk++;
   replace(pathc,path);            fprintf(ficgp,"\n");
           }
   /*-------- arguments in the command line --------*/        }
       }
   /* Log file */     }
   strcat(filelog, optionfilefiname);  
   strcat(filelog,".log");    /* */     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   if((ficlog=fopen(filelog,"w"))==NULL)    {       for(jk=1; jk <=m; jk++) {
     printf("Problem with logfile %s\n",filelog);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
     goto end;         if (ng==2)
   }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fprintf(ficlog,"Log filename:%s\n",filelog);         else
   fprintf(ficlog,"\n%s\n%s",version,fullversion);           fprintf(ficgp,"\nset title \"Probability\"\n");
   fprintf(ficlog,"\nEnter the parameter file name: ");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);         i=1;
          for(k2=1; k2<=nlstate; k2++) {
   printf("Localtime (at start)=%s",strt);           k3=i;
   fprintf(ficlog,"Localtime (at start)=%s",strt);           for(k=1; k<=(nlstate+ndeath); k++) {
   fflush(ficlog);             if (k != k2){
                if(ng==2)
   /* */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   strcpy(fileres,"r");               else
   strcat(fileres, optionfilefiname);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   strcat(fileres,".txt");    /* Other files have txt extension */               ij=1;
                for(j=3; j <=ncovmodel; j++) {
   /*---------arguments file --------*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                   ij++;
     printf("Problem with optionfile %s\n",optionfile);                 }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                 else
     fflush(ficlog);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     goto end;               }
   }               fprintf(ficgp,")/(1");
                
   strcpy(filereso,"o");               for(k1=1; k1 <=nlstate; k1++){  
   strcat(filereso,fileres);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   if((ficparo=fopen(filereso,"w"))==NULL) {                 ij=1;
     printf("Problem with Output resultfile: %s\n", filereso);                 for(j=3; j <=ncovmodel; j++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     fflush(ficlog);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     goto end;                     ij++;
   }                   }
                    else
   /* Reads comments: lines beginning with '#' */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   numlinepar=0;                 }
   while((c=getc(ficpar))=='#' && c!= EOF){                 fprintf(ficgp,")");
     ungetc(c,ficpar);               }
     fgets(line, MAXLINE, ficpar);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     numlinepar++;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     puts(line);               i=i+ncovmodel;
     fputs(line,ficparo);             }
     fputs(line,ficlog);           } /* end k */
   }         } /* end k2 */
   ungetc(c,ficpar);       } /* end jk */
      } /* end ng */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);     fflush(ficgp);
   numlinepar++;  }  /* end gnuplot */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  /*************** Moving average **************/
   fflush(ficlog);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    int i, cpt, cptcod;
     fgets(line, MAXLINE, ficpar);    int modcovmax =1;
     numlinepar++;    int mobilavrange, mob;
     puts(line);    double age;
     fputs(line,ficparo);  
     fputs(line,ficlog);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   }                             a covariate has 2 modalities */
   ungetc(c,ficpar);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
        if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   covar=matrix(0,NCOVMAX,1,n);       if(mobilav==1) mobilavrange=5; /* default */
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/      else mobilavrange=mobilav;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         /* We keep the original values on the extreme ages bage, fage and for
   /* Read guess parameters */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   /* Reads comments: lines beginning with '#' */         we use a 5 terms etc. until the borders are no more concerned.
   while((c=getc(ficpar))=='#' && c!= EOF){      */
     ungetc(c,ficpar);      for (mob=3;mob <=mobilavrange;mob=mob+2){
     fgets(line, MAXLINE, ficpar);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     numlinepar++;          for (i=1; i<=nlstate;i++){
     puts(line);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     fputs(line,ficparo);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     fputs(line,ficlog);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   ungetc(c,ficpar);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   for(i=1; i <=nlstate; i++){            }
     j=0;          }
     for(jj=1; jj <=nlstate+ndeath; jj++){        }/* end age */
       if(jj==i) continue;      }/* end mob */
       j++;    }else return -1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    return 0;
       if ((i1 != i) && (j1 != j)){  }/* End movingaverage */
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  
         exit(1);  
       }  /************** Forecasting ******************/
       fprintf(ficparo,"%1d%1d",i1,j1);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       if(mle==1)    /* proj1, year, month, day of starting projection
         printf("%1d%1d",i,j);       agemin, agemax range of age
       fprintf(ficlog,"%1d%1d",i,j);       dateprev1 dateprev2 range of dates during which prevalence is computed
       for(k=1; k<=ncovmodel;k++){       anproj2 year of en of projection (same day and month as proj1).
         fscanf(ficpar," %lf",&param[i][j][k]);    */
         if(mle==1){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           printf(" %lf",param[i][j][k]);    int *popage;
           fprintf(ficlog," %lf",param[i][j][k]);    double agec; /* generic age */
         }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         else    double *popeffectif,*popcount;
           fprintf(ficlog," %lf",param[i][j][k]);    double ***p3mat;
         fprintf(ficparo," %lf",param[i][j][k]);    double ***mobaverage;
       }    char fileresf[FILENAMELENGTH];
       fscanf(ficpar,"\n");  
       numlinepar++;    agelim=AGESUP;
       if(mle==1)    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         printf("\n");   
       fprintf(ficlog,"\n");    strcpy(fileresf,"f");
       fprintf(ficparo,"\n");    strcat(fileresf,fileres);
     }    if((ficresf=fopen(fileresf,"w"))==NULL) {
   }        printf("Problem with forecast resultfile: %s\n", fileresf);
   fflush(ficlog);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   p=param[1][1];  
       if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    if (mobilav!=0) {
     ungetc(c,ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fgets(line, MAXLINE, ficpar);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     numlinepar++;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fputs(line,ficparo);      }
     fputs(line,ficlog);    }
   }  
   ungetc(c,ficpar);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if(estepm < stepm){
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */      printf ("Problem %d lower than %d\n",estepm, stepm);
   for(i=1; i <=nlstate; i++){    }
     for(j=1; j <=nlstate+ndeath-1; j++){    else  hstepm=estepm;  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       if ((i1-i)*(j1-j)!=0){    hstepm=hstepm/stepm;
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
         exit(1);                                 fractional in yp1 */
       }    anprojmean=yp;
       printf("%1d%1d",i,j);    yp2=modf((yp1*12),&yp);
       fprintf(ficparo,"%1d%1d",i1,j1);    mprojmean=yp;
       fprintf(ficlog,"%1d%1d",i1,j1);    yp1=modf((yp2*30.5),&yp);
       for(k=1; k<=ncovmodel;k++){    jprojmean=yp;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    if(jprojmean==0) jprojmean=1;
         printf(" %le",delti3[i][j][k]);    if(mprojmean==0) jprojmean=1;
         fprintf(ficparo," %le",delti3[i][j][k]);  
         fprintf(ficlog," %le",delti3[i][j][k]);    i1=cptcoveff;
       }    if (cptcovn < 1){i1=1;}
       fscanf(ficpar,"\n");   
       numlinepar++;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
       printf("\n");   
       fprintf(ficparo,"\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       fprintf(ficlog,"\n");  
     }  /*            if (h==(int)(YEARM*yearp)){ */
   }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   fflush(ficlog);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   delti=delti3[1][1];        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */        }
           fprintf(ficresf,"******\n");
   /* Reads comments: lines beginning with '#' */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate+ndeath;j++){
     ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)              
     fgets(line, MAXLINE, ficpar);            fprintf(ficresf," p%d%d",i,j);
     numlinepar++;          fprintf(ficresf," p.%d",j);
     puts(line);        }
     fputs(line,ficparo);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
     fputs(line,ficlog);          fprintf(ficresf,"\n");
   }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   ungetc(c,ficpar);  
             for (agec=fage; agec>=(ageminpar-1); agec--){
   matcov=matrix(1,npar,1,npar);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   for(i=1; i <=npar; i++){            nhstepm = nhstepm/hstepm;
     fscanf(ficpar,"%s",&str);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if(mle==1)            oldm=oldms;savm=savms;
       printf("%s",str);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fprintf(ficlog,"%s",str);         
     fprintf(ficparo,"%s",str);            for (h=0; h<=nhstepm; h++){
     for(j=1; j <=i; j++){              if (h*hstepm/YEARM*stepm ==yearp) {
       fscanf(ficpar," %le",&matcov[i][j]);                fprintf(ficresf,"\n");
       if(mle==1){                for(j=1;j<=cptcoveff;j++)
         printf(" %.5le",matcov[i][j]);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       fprintf(ficlog," %.5le",matcov[i][j]);              }
       fprintf(ficparo," %.5le",matcov[i][j]);              for(j=1; j<=nlstate+ndeath;j++) {
     }                ppij=0.;
     fscanf(ficpar,"\n");                for(i=1; i<=nlstate;i++) {
     numlinepar++;                  if (mobilav==1)
     if(mle==1)                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       printf("\n");                  else {
     fprintf(ficlog,"\n");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     fprintf(ficparo,"\n");                  }
   }                  if (h*hstepm/YEARM*stepm== yearp) {
   for(i=1; i <=npar; i++)                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     for(j=i+1;j<=npar;j++)                  }
       matcov[i][j]=matcov[j][i];                } /* end i */
                    if (h*hstepm/YEARM*stepm==yearp) {
   if(mle==1)                  fprintf(ficresf," %.3f", ppij);
     printf("\n");                }
   fprintf(ficlog,"\n");              }/* end j */
             } /* end h */
   fflush(ficlog);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   /*-------- Rewriting paramater file ----------*/        } /* end yearp */
   strcpy(rfileres,"r");    /* "Rparameterfile */      } /* end cptcod */
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    } /* end  cptcov */
   strcat(rfileres,".");    /* */         
   strcat(rfileres,optionfilext);    /* Other files have txt extension */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficres =fopen(rfileres,"w"))==NULL) {  
     printf("Problem writing new parameter file: %s\n", fileres);goto end;    fclose(ficresf);
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  }
   }  
   fprintf(ficres,"#%s\n",version);  /************** Forecasting *****not tested NB*************/
       populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   /*-------- data file ----------*/   
   if((fic=fopen(datafile,"r"))==NULL)    {    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     printf("Problem with datafile: %s\n", datafile);goto end;    int *popage;
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    double calagedatem, agelim, kk1, kk2;
   }    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
   n= lastobs;    double ***mobaverage;
   severity = vector(1,maxwav);    char filerespop[FILENAMELENGTH];
   outcome=imatrix(1,maxwav+1,1,n);  
   num=lvector(1,n);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   moisnais=vector(1,n);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   annais=vector(1,n);    agelim=AGESUP;
   moisdc=vector(1,n);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   andc=vector(1,n);   
   agedc=vector(1,n);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   cod=ivector(1,n);   
   weight=vector(1,n);   
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    strcpy(filerespop,"pop");
   mint=matrix(1,maxwav,1,n);    strcat(filerespop,fileres);
   anint=matrix(1,maxwav,1,n);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   s=imatrix(1,maxwav+1,1,n);      printf("Problem with forecast resultfile: %s\n", filerespop);
   tab=ivector(1,NCOVMAX);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   ncodemax=ivector(1,8);    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
   i=1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   while (fgets(line, MAXLINE, fic) != NULL)    {  
     if ((i >= firstobs) && (i <=lastobs)) {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           
       for (j=maxwav;j>=1;j--){    if (mobilav!=0) {
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         strcpy(line,stra);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
             }
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    agelim=AGESUP;
    
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    hstepm=1;
       for (j=ncovcol;j>=1;j--){    hstepm=hstepm/stepm;
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   
       }     if (popforecast==1) {
       lstra=strlen(stra);      if((ficpop=fopen(popfile,"r"))==NULL) {
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */        printf("Problem with population file : %s\n",popfile);exit(0);
         stratrunc = &(stra[lstra-9]);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
         num[i]=atol(stratrunc);      }
       }      popage=ivector(0,AGESUP);
       else      popeffectif=vector(0,AGESUP);
         num[i]=atol(stra);      popcount=vector(0,AGESUP);
              
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      i=1;  
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       i=i+1;      imx=i;
     }      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   }    }
   /* printf("ii=%d", ij);  
      scanf("%d",i);*/    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   imx=i-1; /* Number of individuals */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   /* for (i=1; i<=imx; i++){        fprintf(ficrespop,"\n#******");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(j=1;j<=cptcoveff;j++) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        }
     }*/        fprintf(ficrespop,"******\n");
    /*  for (i=1; i<=imx; i++){        fprintf(ficrespop,"# Age");
      if (s[4][i]==9)  s[4][i]=-1;         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        if (popforecast==1)  fprintf(ficrespop," [Population]");
          
  for (i=1; i<=imx; i++)        for (cpt=0; cpt<=0;cpt++) {
            fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;         
      else weight[i]=1;*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   /* Calculation of the number of parameter from char model*/            nhstepm = nhstepm/hstepm;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */           
   Tprod=ivector(1,15);             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   Tvaraff=ivector(1,15);             oldm=oldms;savm=savms;
   Tvard=imatrix(1,15,1,2);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   Tage=ivector(1,15);               
                for (h=0; h<=nhstepm; h++){
   if (strlen(model) >1){ /* If there is at least 1 covariate */              if (h==(int) (calagedatem+YEARM*cpt)) {
     j=0, j1=0, k1=1, k2=1;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     j=nbocc(model,'+'); /* j=Number of '+' */              }
     j1=nbocc(model,'*'); /* j1=Number of '*' */              for(j=1; j<=nlstate+ndeath;j++) {
     cptcovn=j+1;                 kk1=0.;kk2=0;
     cptcovprod=j1; /*Number of products */                for(i=1; i<=nlstate;i++) {              
                       if (mobilav==1)
     strcpy(modelsav,model);                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                  else {
       printf("Error. Non available option model=%s ",model);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
       fprintf(ficlog,"Error. Non available option model=%s ",model);                  }
       goto end;                }
     }                if (h==(int)(calagedatem+12*cpt)){
                       tabpop[(int)(agedeb)][j][cptcod]=kk1;
     /* This loop fills the array Tvar from the string 'model'.*/                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     for(i=(j+1); i>=1;i--){                }
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */               }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */              for(i=1; i<=nlstate;i++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                kk1=0.;
       /*scanf("%d",i);*/                  for(j=1; j<=nlstate;j++){
       if (strchr(strb,'*')) {  /* Model includes a product */                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                  }
         if (strcmp(strc,"age")==0) { /* Vn*age */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
           cptcovprod--;              }
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
           cptcovage++;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             Tage[cptcovage]=i;            }
             /*printf("stre=%s ", stre);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }          }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        }
           cptcovprod--;   
           cutv(strb,stre,strc,'V');    /******/
           Tvar[i]=atoi(stre);  
           cptcovage++;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
           Tage[cptcovage]=i;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
         }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
         else {  /* Age is not in the model */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/            nhstepm = nhstepm/hstepm;
           Tvar[i]=ncovcol+k1;           
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tprod[k1]=i;            oldm=oldms;savm=savms;
           Tvard[k1][1]=atoi(strc); /* m*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           Tvard[k1][2]=atoi(stre); /* n */            for (h=0; h<=nhstepm; h++){
           Tvar[cptcovn+k2]=Tvard[k1][1];              if (h==(int) (calagedatem+YEARM*cpt)) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           for (k=1; k<=lastobs;k++)               }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              for(j=1; j<=nlstate+ndeath;j++) {
           k1++;                kk1=0.;kk2=0;
           k2=k2+2;                for(i=1; i<=nlstate;i++) {              
         }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       }                }
       else { /* no more sum */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              }
        /*  scanf("%d",i);*/            }
       cutv(strd,strc,strb,'V');            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       Tvar[i]=atoi(strc);          }
       }        }
       strcpy(modelsav,stra);       }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    }
         scanf("%d",i);*/   
     } /* end of loop + */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   } /* end model */  
       if (popforecast==1) {
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.      free_ivector(popage,0,AGESUP);
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    }
   printf("cptcovprod=%d ", cptcovprod);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   scanf("%d ",i);  } /* End of popforecast */
   fclose(fic);*/  
   int fileappend(FILE *fichier, char *optionfich)
     /*  if(mle==1){*/  {
   if (weightopt != 1) { /* Maximisation without weights*/    if((fichier=fopen(optionfich,"a"))==NULL) {
     for(i=1;i<=n;i++) weight[i]=1.0;      printf("Problem with file: %s\n", optionfich);
   }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     /*-calculation of age at interview from date of interview and age at death -*/      return (0);
   agev=matrix(1,maxwav,1,imx);    }
     fflush(fichier);
   for (i=1; i<=imx; i++) {    return (1);
     for(m=2; (m<= maxwav); m++) {  }
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  
         anint[m][i]=9999;  
         s[m][i]=-1;  /**************** function prwizard **********************/
       }  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){  {
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    /* Wizard to print covariance matrix template */
         s[m][i]=-1;  
       }    char ca[32], cb[32], cc[32];
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     int numlinepar;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);   
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     }    for(i=1; i <=nlstate; i++){
   }      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
   for (i=1; i<=imx; i++)  {        if(j==i) continue;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        jj++;
     for(m=firstpass; (m<= lastpass); m++){        /*ca[0]= k+'a'-1;ca[1]='\0';*/
       if(s[m][i] >0){        printf("%1d%1d",i,j);
         if (s[m][i] >= nlstate+1) {        fprintf(ficparo,"%1d%1d",i,j);
           if(agedc[i]>0)        for(k=1; k<=ncovmodel;k++){
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)          /*        printf(" %lf",param[i][j][k]); */
               agev[m][i]=agedc[i];          /*        fprintf(ficparo," %lf",param[i][j][k]); */
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          printf(" 0.");
             else {          fprintf(ficparo," 0.");
               if ((int)andc[i]!=9999){        }
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);        printf("\n");
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);        fprintf(ficparo,"\n");
                 agev[m][i]=-1;      }
               }    }
             }    printf("# Scales (for hessian or gradient estimation)\n");
         }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
         else if(s[m][i] !=9){ /* Standard case, age in fractional    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
                                  years but with the precision of a    for(i=1; i <=nlstate; i++){
                                  month */      jj=0;
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for(j=1; j <=nlstate+ndeath; j++){
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        if(j==i) continue;
             agev[m][i]=1;        jj++;
           else if(agev[m][i] <agemin){         fprintf(ficparo,"%1d%1d",i,j);
             agemin=agev[m][i];        printf("%1d%1d",i,j);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fflush(stdout);
           }        for(k=1; k<=ncovmodel;k++){
           else if(agev[m][i] >agemax){          /*      printf(" %le",delti3[i][j][k]); */
             agemax=agev[m][i];          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          printf(" 0.");
           }          fprintf(ficparo," 0.");
           /*agev[m][i]=anint[m][i]-annais[i];*/        }
           /*     agev[m][i] = age[i]+2*m;*/        numlinepar++;
         }        printf("\n");
         else { /* =9 */        fprintf(ficparo,"\n");
           agev[m][i]=1;      }
           s[m][i]=-1;    }
         }    printf("# Covariance matrix\n");
       }  /* # 121 Var(a12)\n\ */
       else /*= 0 Unknown */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
         agev[m][i]=1;  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     }  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   }  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   for (i=1; i<=imx; i++)  {  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     for(m=firstpass; (m<=lastpass); m++){  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       if (s[m][i] > (nlstate+ndeath)) {    fflush(stdout);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         fprintf(ficparo,"# Covariance matrix\n");
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         /* # 121 Var(a12)\n\ */
         goto end;    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       }    /* #   ...\n\ */
     }    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   }   
     for(itimes=1;itimes<=2;itimes++){
   /*for (i=1; i<=imx; i++){      jj=0;
   for (m=firstpass; (m<lastpass); m++){      for(i=1; i <=nlstate; i++){
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        for(j=1; j <=nlstate+ndeath; j++){
 }          if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
 }*/            jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            if(itimes==1){
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
   free_vector(severity,1,maxwav);            }else{
   free_imatrix(outcome,1,maxwav+1,1,n);              printf("%1d%1d%d",i,j,k);
   free_vector(moisnais,1,n);              fprintf(ficparo,"%1d%1d%d",i,j,k);
   free_vector(annais,1,n);              /*  printf(" %.5le",matcov[i][j]); */
   /* free_matrix(mint,1,maxwav,1,n);            }
      free_matrix(anint,1,maxwav,1,n);*/            ll=0;
   free_vector(moisdc,1,n);            for(li=1;li <=nlstate; li++){
   free_vector(andc,1,n);              for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                    for(lk=1;lk<=ncovmodel;lk++){
   wav=ivector(1,imx);                  ll++;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);                  if(ll<=jj){
   bh=imatrix(1,lastpass-firstpass+1,1,imx);                    cb[0]= lk +'a'-1;cb[1]='\0';
   mw=imatrix(1,lastpass-firstpass+1,1,imx);                    if(ll<jj){
                          if(itimes==1){
   /* Concatenates waves */                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */                        printf(" 0.");
                         fprintf(ficparo," 0.");
   Tcode=ivector(1,100);                      }
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                     }else{
   ncodemax[1]=1;                      if(itimes==1){
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);                        printf(" Var(%s%1d%1d)",ca,i,j);
                               fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of                       }else{
                                  the estimations*/                        printf(" 0.");
   h=0;                        fprintf(ficparo," 0.");
   m=pow(2,cptcoveff);                      }
                      }
   for(k=1;k<=cptcoveff; k++){                  }
     for(i=1; i <=(m/pow(2,k));i++){                } /* end lk */
       for(j=1; j <= ncodemax[k]; j++){              } /* end lj */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            } /* end li */
           h++;            printf("\n");
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            fprintf(ficparo,"\n");
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            numlinepar++;
         }           } /* end k*/
       }        } /*end j */
     }      } /* end i */
   }     } /* end itimes */
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   
      codtab[1][2]=1;codtab[2][2]=2; */  } /* end of prwizard */
   /* for(i=1; i <=m ;i++){   /******************* Gompertz Likelihood ******************************/
      for(k=1; k <=cptcovn; k++){  double gompertz(double x[])
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  {
      }    double A,B,L=0.0,sump=0.,num=0.;
      printf("\n");    int i,n=0; /* n is the size of the sample */
      }  
      scanf("%d",i);*/    for (i=0;i<=imx-1 ; i++) {
           sump=sump+weight[i];
   /*------------ gnuplot -------------*/      /*    sump=sump+1;*/
   strcpy(optionfilegnuplot,optionfilefiname);      num=num+1;
   strcat(optionfilegnuplot,".gp");    }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {   
     printf("Problem with file %s",optionfilegnuplot);   
   }    /* for (i=0; i<=imx; i++)
   else{       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     fprintf(ficgp,"\n# %s\n", version);   
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     for (i=1;i<=imx ; i++)
     fprintf(ficgp,"set missing 'NaNq'\n");      {
   }        if (cens[i] == 1 && wav[i]>1)
   fclose(ficgp);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   /*--------- index.htm --------*/       
         if (cens[i] == 0 && wav[i]>1)
   strcpy(optionfilehtm,optionfilefiname);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   strcat(optionfilehtm,".htm");               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {       
     printf("Problem with %s \n",optionfilehtm), exit(0);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   }        if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\      }
 \n\  
 <hr  size=\"2\" color=\"#EC5E5E\">\   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
  <ul><li><h4>Parameter files</h4>\n\   
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    return -2*L*num/sump;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\  }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\  
  - Date and time at start: %s</ul>\n",\  /******************* Printing html file ***********/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
           model,fileres,fileres,\                    int lastpass, int stepm, int weightopt, char model[],\
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);                    int imx,  double p[],double **matcov,double agemortsup){
   /*fclose(fichtm);*/    int i,k;
   fflush(fichtm);  
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
      and prints on file fileres'p'. */    for (i=1;i<=2;i++)
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */    fprintf(fichtm,"</ul>");
 /*     printf("Problem with file: %s\n", optionfilehtm); */  
 /*     fprintf(ficlog,"Problem with file: %s\n", optionfilehtm); */  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 /*   } */  
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
 /*   if(fileappend(fichtm, optionfilehtm)){ */   for (k=agegomp;k<(agemortsup-2);k++)
     fprintf(fichtm,"\n");     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\   
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    fflush(fichtm);
         imx,agemin,agemax,jmin,jmax,jmean);  }
 /*     fclose(fichtm); */  
 /*   } */  /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char dirfileres[132],optfileres[132];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int ng;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
       
        /*#ifdef windows */
   /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficgp,"cd \"%s\" \n",pathc);
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      /*#endif */
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
   
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    strcpy(dirfileres,optionfilefiname);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    strcpy(optfileres,"vpl");
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
   for (k=1; k<=npar;k++)    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     printf(" %d %8.5f",k,p[k]);    fprintf(ficgp, "set ter png small\n set log y\n");
   printf("\n");    fprintf(ficgp, "set size 0.65,0.65\n");
   globpr=1; /* to print the contributions */    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  }
   for (k=1; k<=npar;k++)  
     printf(" %d %8.5f",k,p[k]);  
   printf("\n");  
   if(mle>=1){ /* Could be 1 or 2 */  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
   }  /***********************************************/
       /**************** Main Program *****************/
   /*--------- results files --------------*/  /***********************************************/
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
     int main(int argc, char *argv[])
   {
   jk=1;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int linei, month, year,iout;
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int jj, ll, li, lj, lk, imk;
   for(i=1,jk=1; i <=nlstate; i++){    int numlinepar=0; /* Current linenumber of parameter file */
     for(k=1; k <=(nlstate+ndeath); k++){    int itimes;
       if (k != i)     int NDIM=2;
         {  
           printf("%d%d ",i,k);    char ca[32], cb[32], cc[32];
           fprintf(ficlog,"%d%d ",i,k);    char dummy[]="                         ";
           fprintf(ficres,"%1d%1d ",i,k);    /*  FILE *fichtm; *//* Html File */
           for(j=1; j <=ncovmodel; j++){    /* FILE *ficgp;*/ /*Gnuplot File */
             printf("%f ",p[jk]);    struct stat info;
             fprintf(ficlog,"%f ",p[jk]);    double agedeb, agefin,hf;
             fprintf(ficres,"%f ",p[jk]);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
             jk++;   
           }    double fret;
           printf("\n");    double **xi,tmp,delta;
           fprintf(ficlog,"\n");  
           fprintf(ficres,"\n");    double dum; /* Dummy variable */
         }    double ***p3mat;
     }    double ***mobaverage;
   }    int *indx;
   if(mle!=0){    char line[MAXLINE], linepar[MAXLINE];
     /* Computing hessian and covariance matrix */    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     ftolhess=ftol; /* Usually correct */    char pathr[MAXLINE], pathimach[MAXLINE];
     hesscov(matcov, p, npar, delti, ftolhess, func);    char **bp, *tok, *val; /* pathtot */
   }    int firstobs=1, lastobs=10;
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    int sdeb, sfin; /* Status at beginning and end */
   printf("# Scales (for hessian or gradient estimation)\n");    int c,  h , cpt,l;
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    int ju,jl, mi;
   for(i=1,jk=1; i <=nlstate; i++){    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     for(j=1; j <=nlstate+ndeath; j++){    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
       if (j!=i) {    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         fprintf(ficres,"%1d%1d",i,j);    int mobilav=0,popforecast=0;
         printf("%1d%1d",i,j);    int hstepm, nhstepm;
         fprintf(ficlog,"%1d%1d",i,j);    int agemortsup;
         for(k=1; k<=ncovmodel;k++){    float  sumlpop=0.;
           printf(" %.5e",delti[jk]);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
           fprintf(ficlog," %.5e",delti[jk]);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
           fprintf(ficres," %.5e",delti[jk]);  
           jk++;    double bage, fage, age, agelim, agebase;
         }    double ftolpl=FTOL;
         printf("\n");    double **prlim;
         fprintf(ficlog,"\n");    double *severity;
         fprintf(ficres,"\n");    double ***param; /* Matrix of parameters */
       }    double  *p;
     }    double **matcov; /* Matrix of covariance */
   }    double ***delti3; /* Scale */
        double *delti; /* Scale */
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double ***eij, ***vareij;
   if(mle==1)    double **varpl; /* Variances of prevalence limits by age */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double *epj, vepp;
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double kk1, kk2;
   for(i=1,k=1;i<=npar;i++){    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     /*  if (k>nlstate) k=1;    double **ximort;
         i1=(i-1)/(ncovmodel*nlstate)+1;     char *alph[]={"a","a","b","c","d","e"}, str[4];
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    int *dcwave;
         printf("%s%d%d",alph[k],i1,tab[i]);  
     */    char z[1]="c", occ;
     fprintf(ficres,"%3d",i);  
     if(mle==1)    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       printf("%3d",i);    char  *strt, strtend[80];
     fprintf(ficlog,"%3d",i);    char *stratrunc;
     for(j=1; j<=i;j++){    int lstra;
       fprintf(ficres," %.5e",matcov[i][j]);  
       if(mle==1)    long total_usecs;
         printf(" %.5e",matcov[i][j]);   
       fprintf(ficlog," %.5e",matcov[i][j]);  /*   setlocale (LC_ALL, ""); */
     }  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     fprintf(ficres,"\n");  /*   textdomain (PACKAGE); */
     if(mle==1)  /*   setlocale (LC_CTYPE, ""); */
       printf("\n");  /*   setlocale (LC_MESSAGES, ""); */
     fprintf(ficlog,"\n");  
     k++;    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   }    (void) gettimeofday(&start_time,&tzp);
        curr_time=start_time;
   while((c=getc(ficpar))=='#' && c!= EOF){    tm = *localtime(&start_time.tv_sec);
     ungetc(c,ficpar);    tmg = *gmtime(&start_time.tv_sec);
     fgets(line, MAXLINE, ficpar);    strcpy(strstart,asctime(&tm));
     puts(line);  
     fputs(line,ficparo);  /*  printf("Localtime (at start)=%s",strstart); */
   }  /*  tp.tv_sec = tp.tv_sec +86400; */
   ungetc(c,ficpar);  /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   estepm=0;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   if (estepm==0 || estepm < stepm) estepm=stepm;  /*   tp.tv_sec = mktime(&tmg); */
   if (fage <= 2) {  /*   strt=asctime(&tmg); */
     bage = ageminpar;  /*   printf("Time(after) =%s",strstart);  */
     fage = agemaxpar;  /*  (void) time (&time_value);
   }  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
      *  tm = *localtime(&time_value);
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  *  strstart=asctime(&tm);
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  */
      
   while((c=getc(ficpar))=='#' && c!= EOF){    nberr=0; /* Number of errors and warnings */
     ungetc(c,ficpar);    nbwarn=0;
     fgets(line, MAXLINE, ficpar);    getcwd(pathcd, size);
     puts(line);  
     fputs(line,ficparo);    printf("\n%s\n%s",version,fullversion);
   }    if(argc <=1){
   ungetc(c,ficpar);      printf("\nEnter the parameter file name: ");
         fgets(pathr,FILENAMELENGTH,stdin);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      i=strlen(pathr);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      if(pathr[i-1]=='\n')
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        pathr[i-1]='\0';
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);     for (tok = pathr; tok != NULL; ){
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        printf("Pathr |%s|\n",pathr);
            while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   while((c=getc(ficpar))=='#' && c!= EOF){        printf("val= |%s| pathr=%s\n",val,pathr);
     ungetc(c,ficpar);        strcpy (pathtot, val);
     fgets(line, MAXLINE, ficpar);        if(pathr[0] == '\0') break; /* Dirty */
     puts(line);      }
     fputs(line,ficparo);    }
   }    else{
   ungetc(c,ficpar);      strcpy(pathtot,argv[1]);
      }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;    /*cygwin_split_path(pathtot,path,optionfile);
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);       /* Split argv[0], imach program to get pathimach */
   fprintf(ficres,"pop_based=%d\n",popbased);       printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
       split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     ungetc(c,ficpar);   /*   strcpy(pathimach,argv[0]); */
     fgets(line, MAXLINE, ficpar);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     puts(line);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     fputs(line,ficparo);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   }    chdir(path); /* Can be a relative path */
   ungetc(c,ficpar);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);    strcpy(command,"mkdir ");
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    strcat(command,optionfilefiname);
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    if((outcmd=system(command)) != 0){
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   /* day and month of proj2 are not used but only year anproj2.*/      /* fclose(ficlog); */
   /*     exit(1); */
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);  /*   if((imk=mkdir(optionfilefiname))<0){ */
     fgets(line, MAXLINE, ficpar);  /*     perror("mkdir"); */
     puts(line);  /*   } */
     fputs(line,ficparo);  
   }    /*-------- arguments in the command line --------*/
   ungetc(c,ficpar);  
     /* Log file */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    strcat(filelog, optionfilefiname);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    strcat(filelog,".log");    /* */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      goto end;
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    }
     fprintf(ficlog,"Log filename:%s\n",filelog);
   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\   path=%s \n\
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   optionfile=%s\n\
     optionfilext=%s\n\
   /*------------ free_vector  -------------*/   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   chdir(path);  
      printf("Local time (at start):%s",strstart);
   free_ivector(wav,1,imx);    fprintf(ficlog,"Local time (at start): %s",strstart);
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fflush(ficlog);
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);  /*   (void) gettimeofday(&curr_time,&tzp); */
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   free_lvector(num,1,n);  
   free_vector(agedc,1,n);    /* */
   /*free_matrix(covar,0,NCOVMAX,1,n);*/    strcpy(fileres,"r");
   /*free_matrix(covar,1,NCOVMAX,1,n);*/    strcat(fileres, optionfilefiname);
   fclose(ficparo);    strcat(fileres,".txt");    /* Other files have txt extension */
   fclose(ficres);  
     /*---------arguments file --------*/
   
   /*--------------- Prevalence limit  (stable prevalence) --------------*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
         printf("Problem with optionfile %s\n",optionfile);
   strcpy(filerespl,"pl");      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   strcat(filerespl,fileres);      fflush(ficlog);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      goto end;
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    }
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;  
   }  
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);  
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    strcpy(filereso,"o");
   fprintf(ficrespl,"#Stable prevalence \n");    strcat(filereso,fileres);
   fprintf(ficrespl,"#Age ");    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      printf("Problem with Output resultfile: %s\n", filereso);
   fprintf(ficrespl,"\n");      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         fflush(ficlog);
   prlim=matrix(1,nlstate,1,nlstate);      goto end;
     }
   agebase=ageminpar;  
   agelim=agemaxpar;    /* Reads comments: lines beginning with '#' */
   ftolpl=1.e-10;    numlinepar=0;
   i1=cptcoveff;    while((c=getc(ficpar))=='#' && c!= EOF){
   if (cptcovn < 1){i1=1;}      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      numlinepar++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      puts(line);
       k=k+1;      fputs(line,ficparo);
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fputs(line,ficlog);
       fprintf(ficrespl,"\n#******");    }
       printf("\n#******");    ungetc(c,ficpar);
       fprintf(ficlog,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    numlinepar++;
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       }    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       fprintf(ficrespl,"******\n");    fflush(ficlog);
       printf("******\n");    while((c=getc(ficpar))=='#' && c!= EOF){
       fprintf(ficlog,"******\n");      ungetc(c,ficpar);
               fgets(line, MAXLINE, ficpar);
       for (age=agebase; age<=agelim; age++){      numlinepar++;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      puts(line);
         fprintf(ficrespl,"%.0f ",age );      fputs(line,ficparo);
         for(j=1;j<=cptcoveff;j++)      fputs(line,ficlog);
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         for(i=1; i<=nlstate;i++)    ungetc(c,ficpar);
           fprintf(ficrespl," %.5f", prlim[i][i]);  
         fprintf(ficrespl,"\n");     
       }    covar=matrix(0,NCOVMAX,1,n);
     }    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   }    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   fclose(ficrespl);  
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   /*------------- h Pij x at various ages ------------*/    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    delti=delti3[1][1];
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   }    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   printf("Computing pij: result on file '%s' \n", filerespij);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   /*if (stepm<=24) stepsize=2;*/      fclose (ficparo);
       fclose (ficlog);
   agelim=AGESUP;      goto end;
   hstepm=stepsize*YEARM; /* Every year of age */      exit(0);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     }
     else if(mle==-3) {
   /* hstepm=1;   aff par mois*/      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      matcov=matrix(1,npar,1,npar);
       k=k+1;    }
       fprintf(ficrespij,"\n#****** ");    else{
       for(j=1;j<=cptcoveff;j++)       /* Read guess parameters */
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* Reads comments: lines beginning with '#' */
       fprintf(ficrespij,"******\n");      while((c=getc(ficpar))=='#' && c!= EOF){
                 ungetc(c,ficpar);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fgets(line, MAXLINE, ficpar);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         numlinepar++;
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        puts(line);
         fputs(line,ficparo);
         /*        nhstepm=nhstepm*YEARM; aff par mois*/        fputs(line,ficlog);
       }
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      ungetc(c,ficpar);
         oldm=oldms;savm=savms;     
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");      for(i=1; i <=nlstate; i++){
         for(i=1; i<=nlstate;i++)        j=0;
           for(j=1; j<=nlstate+ndeath;j++)        for(jj=1; jj <=nlstate+ndeath; jj++){
             fprintf(ficrespij," %1d-%1d",i,j);          if(jj==i) continue;
         fprintf(ficrespij,"\n");          j++;
         for (h=0; h<=nhstepm; h++){          fscanf(ficpar,"%1d%1d",&i1,&j1);
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          if ((i1 != i) && (j1 != j)){
           for(i=1; i<=nlstate;i++)            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
             for(j=1; j<=nlstate+ndeath;j++)  It might be a problem of design; if ncovcol and the model are correct\n \
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
           fprintf(ficrespij,"\n");            exit(1);
         }          }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficrespij,"\n");          if(mle==1)
       }            printf("%1d%1d",i,j);
     }          fprintf(ficlog,"%1d%1d",i,j);
   }          for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);            if(mle==1){
               printf(" %lf",param[i][j][k]);
   fclose(ficrespij);              fprintf(ficlog," %lf",param[i][j][k]);
             }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            else
               fprintf(ficlog," %lf",param[i][j][k]);
   /*---------- Forecasting ------------------*/            fprintf(ficparo," %lf",param[i][j][k]);
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/          }
   if(prevfcast==1){          fscanf(ficpar,"\n");
     /*    if(stepm ==1){*/          numlinepar++;
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);          if(mle==1)
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/            printf("\n");
 /*      }  */          fprintf(ficlog,"\n");
 /*      else{ */          fprintf(ficparo,"\n");
 /*        erreur=108; */        }
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      }  
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      fflush(ficlog);
 /*      } */  
   }      p=param[1][1];
        
       /* Reads comments: lines beginning with '#' */
   /*---------- Health expectancies and variances ------------*/      while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
   strcpy(filerest,"t");        fgets(line, MAXLINE, ficpar);
   strcat(filerest,fileres);        numlinepar++;
   if((ficrest=fopen(filerest,"w"))==NULL) {        puts(line);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fputs(line,ficparo);
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        fputs(line,ficlog);
   }      }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       ungetc(c,ficpar);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
   strcpy(filerese,"e");          fscanf(ficpar,"%1d%1d",&i1,&j1);
   strcat(filerese,fileres);          if ((i1-i)*(j1-j)!=0){
   if((ficreseij=fopen(filerese,"w"))==NULL) {            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            exit(1);
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          }
   }          printf("%1d%1d",i,j);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficparo,"%1d%1d",i1,j1);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
   strcpy(fileresv,"v");            fscanf(ficpar,"%le",&delti3[i][j][k]);
   strcat(fileresv,fileres);            printf(" %le",delti3[i][j][k]);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            fprintf(ficparo," %le",delti3[i][j][k]);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            fprintf(ficlog," %le",delti3[i][j][k]);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);          }
   }          fscanf(ficpar,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          numlinepar++;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          printf("\n");
           fprintf(ficparo,"\n");
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */          fprintf(ficlog,"\n");
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        }
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      }
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      fflush(ficlog);
   */  
       delti=delti3[1][1];
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      /* Reads comments: lines beginning with '#' */
     }      while((c=getc(ficpar))=='#' && c!= EOF){
   }        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        numlinepar++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        puts(line);
       k=k+1;         fputs(line,ficparo);
       fprintf(ficrest,"\n#****** ");        fputs(line,ficlog);
       for(j=1;j<=cptcoveff;j++)       }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      ungetc(c,ficpar);
       fprintf(ficrest,"******\n");   
       matcov=matrix(1,npar,1,npar);
       fprintf(ficreseij,"\n#****** ");      for(i=1; i <=npar; i++){
       for(j=1;j<=cptcoveff;j++)         fscanf(ficpar,"%s",&str);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if(mle==1)
       fprintf(ficreseij,"******\n");          printf("%s",str);
         fprintf(ficlog,"%s",str);
       fprintf(ficresvij,"\n#****** ");        fprintf(ficparo,"%s",str);
       for(j=1;j<=cptcoveff;j++)         for(j=1; j <=i; j++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fscanf(ficpar," %le",&matcov[i][j]);
       fprintf(ficresvij,"******\n");          if(mle==1){
             printf(" %.5le",matcov[i][j]);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;          fprintf(ficlog," %.5le",matcov[i][j]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficparo," %.5le",matcov[i][j]);
          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fscanf(ficpar,"\n");
       oldm=oldms;savm=savms;        numlinepar++;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);        if(mle==1)
       if(popbased==1){          printf("\n");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);        fprintf(ficlog,"\n");
       }        fprintf(ficparo,"\n");
       }
        for(i=1; i <=npar; i++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for(j=i+1;j<=npar;j++)
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          matcov[i][j]=matcov[j][i];
       fprintf(ficrest,"\n");     
       if(mle==1)
       epj=vector(1,nlstate+1);        printf("\n");
       for(age=bage; age <=fage ;age++){      fprintf(ficlog,"\n");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     
         if (popbased==1) {      fflush(ficlog);
           if(mobilav ==0){     
             for(i=1; i<=nlstate;i++)      /*-------- Rewriting parameter file ----------*/
               prlim[i][i]=probs[(int)age][i][k];      strcpy(rfileres,"r");    /* "Rparameterfile */
           }else{ /* mobilav */       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
             for(i=1; i<=nlstate;i++)      strcat(rfileres,".");    /* */
               prlim[i][i]=mobaverage[(int)age][i][k];      strcat(rfileres,optionfilext);    /* Other files have txt extension */
           }      if((ficres =fopen(rfileres,"w"))==NULL) {
         }        printf("Problem writing new parameter file: %s\n", fileres);goto end;
                 fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficrest," %4.0f",age);      }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      fprintf(ficres,"#%s\n",version);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    }    /* End of mle != -3 */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    /*-------- data file ----------*/
           }    if((fic=fopen(datafile,"r"))==NULL)    {
           epj[nlstate+1] +=epj[j];      printf("Problem while opening datafile: %s\n", datafile);goto end;
         }      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    n= lastobs;
             vepp += vareij[i][j][(int)age];    severity = vector(1,maxwav);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    outcome=imatrix(1,maxwav+1,1,n);
         for(j=1;j <=nlstate;j++){    num=lvector(1,n);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    moisnais=vector(1,n);
         }    annais=vector(1,n);
         fprintf(ficrest,"\n");    moisdc=vector(1,n);
       }    andc=vector(1,n);
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    agedc=vector(1,n);
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    cod=ivector(1,n);
       free_vector(epj,1,nlstate+1);    weight=vector(1,n);
     }    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   }    mint=matrix(1,maxwav,1,n);
   free_vector(weight,1,n);    anint=matrix(1,maxwav,1,n);
   free_imatrix(Tvard,1,15,1,2);    s=imatrix(1,maxwav+1,1,n);
   free_imatrix(s,1,maxwav+1,1,n);    tab=ivector(1,NCOVMAX);
   free_matrix(anint,1,maxwav,1,n);     ncodemax=ivector(1,8);
   free_matrix(mint,1,maxwav,1,n);  
   free_ivector(cod,1,n);    i=1;
   free_ivector(tab,1,NCOVMAX);    linei=0;
   fclose(ficreseij);    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   fclose(ficresvij);      linei=linei+1;
   fclose(ficrest);      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   fclose(ficpar);        if(line[j] == '\t')
             line[j] = ' ';
   /*------- Variance of stable prevalence------*/         }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   strcpy(fileresvpl,"vpl");        ;
   strcat(fileresvpl,fileres);      };
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      line[j+1]=0;  /* Trims blanks at end of line */
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      if(line[0]=='#'){
     exit(0);        fprintf(ficlog,"Comment line\n%s\n",line);
   }        printf("Comment line\n%s\n",line);
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);        continue;
       }
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (j=maxwav;j>=1;j--){
       k=k+1;        cutv(stra, strb,line,' ');
       fprintf(ficresvpl,"\n#****** ");        errno=0;
       for(j=1;j<=cptcoveff;j++)         lval=strtol(strb,&endptr,10);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
       fprintf(ficresvpl,"******\n");        if( strb[0]=='\0' || (*endptr != '\0')){
                 printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          exit(1);
       oldm=oldms;savm=savms;        }
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        s[j][i]=lval;
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       
     }        strcpy(line,stra);
   }        cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   fclose(ficresvpl);        }
         else  if(iout=sscanf(strb,"%s.") != 0){
   /*---------- End : free ----------------*/          month=99;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          year=9999;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }else{
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          exit(1);
           }
   free_matrix(covar,0,NCOVMAX,1,n);        anint[j][i]= (double) year;
   free_matrix(matcov,1,npar,1,npar);        mint[j][i]= (double)month;
   /*free_vector(delti,1,npar);*/        strcpy(line,stra);
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       } /* ENd Waves */
   free_matrix(agev,1,maxwav,1,imx);     
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      cutv(stra, strb,line,' ');
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   free_ivector(ncodemax,1,8);        month=99;
   free_ivector(Tvar,1,15);        year=9999;
   free_ivector(Tprod,1,15);      }else{
   free_ivector(Tvaraff,1,15);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   free_ivector(Tage,1,15);        exit(1);
   free_ivector(Tcode,1,100);      }
       andc[i]=(double) year;
   /*  fclose(fichtm);*/      moisdc[i]=(double) month;
   /*  fclose(ficgp);*/ /* ALready done */      strcpy(line,stra);
        
       cutv(stra, strb,line,' ');
   if(erreur >0){      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     printf("End of Imach with error or warning %d\n",erreur);      }
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      else  if(iout=sscanf(strb,"%s.") != 0){
   }else{        month=99;
    printf("End of Imach\n");        year=9999;
    fprintf(ficlog,"End of Imach\n");      }else{
   }        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   printf("See log file on %s\n",filelog);        exit(1);
   fclose(ficlog);      }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      annais[i]=(double)(year);
   (void) gettimeofday(&end_time,&tzp);      moisnais[i]=(double)(month);
   tm = *localtime(&end_time.tv_sec);      strcpy(line,stra);
   tmg = *gmtime(&end_time.tv_sec);     
   strtend=asctime(&tm);      cutv(stra, strb,line,' ');
   printf("Localtime at start %s and at end=%s",strt, strtend);       errno=0;
   fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend);       dval=strtod(strb,&endptr);
   /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/      if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);        exit(1);
   fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);      }
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      weight[i]=dval;
 /*   if(fileappend(fichtm,optionfilehtm)){ */      strcpy(line,stra);
   fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);     
   fclose(fichtm);      for (j=ncovcol;j>=1;j--){
   /*------ End -----------*/        cutv(stra, strb,line,' ');
         errno=0;
   end:        lval=strtol(strb,&endptr,10);
 #ifdef windows        if( strb[0]=='\0' || (*endptr != '\0')){
   /* chdir(pathcd);*/          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
 #endif           exit(1);
  /*system("wgnuplot graph.plt");*/        }
  /*system("../gp37mgw/wgnuplot graph.plt");*/        if(lval <-1 || lval >1){
  /*system("cd ../gp37mgw");*/          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   strcpy(plotcmd,GNUPLOTPROGRAM);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
   strcat(plotcmd," ");   For example, for multinomial values like 1, 2 and 3,\n \
   strcat(plotcmd,optionfilegnuplot);   build V1=0 V2=0 for the reference value (1),\n \
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);          V1=1 V2=0 for (2) \n \
   system(plotcmd);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   printf(" Wait...");   output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
  /*#ifdef windows*/          exit(1);
   while (z[0] != 'q') {        }
     /* chdir(path); */        covar[j][i]=(double)(lval);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        strcpy(line,stra);
     scanf("%s",z);      }
     if (z[0] == 'c') system("./imach");      lstra=strlen(stra);
     else if (z[0] == 'e') system(optionfilehtm);     
     else if (z[0] == 'g') system(plotcmd);      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     else if (z[0] == 'q') exit(0);        stratrunc = &(stra[lstra-9]);
   }        num[i]=atol(stratrunc);
   /*#endif */      }
 }      else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.87  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>