Diff for /imach/src/imach.c between versions 1.125 and 1.131

version 1.125, 2006/04/04 15:20:31 version 1.131, 2009/06/20 16:22:47
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence
    for age prevalim()     for age prevalim()
   h Pij x    h Pij x
   variance of p varprob    variance of p varprob
   forecasting if prevfcast==1 prevforecast call prevalence()    forecasting if prevfcast==1 prevforecast call prevalence()
   health expectancies    health expectancies
   Variance-covariance of DFLE    Variance-covariance of DFLE
   prevalence()    prevalence()
    movingaverage()     movingaverage()
   varevsij()    varevsij() 
   if popbased==1 varevsij(,popbased)    if popbased==1 varevsij(,popbased)
   total life expectancies    total life expectancies
   Variance of period (stable) prevalence    Variance of period (stable) prevalence
  end   end
 */  */
   
   
   
     
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
 #include <stdlib.h>  #include <stdlib.h>
 #include <string.h>  #include <string.h>
 #include <unistd.h>  #include <unistd.h>
   
 #include <limits.h>  #include <limits.h>
 #include <sys/types.h>  #include <sys/types.h>
 #include <sys/stat.h>  #include <sys/stat.h>
 #include <errno.h>  #include <errno.h>
 extern int errno;  extern int errno;
   
 /* #include <sys/time.h> */  /* #include <sys/time.h> */
 #include <time.h>  #include <time.h>
 #include "timeval.h"  #include "timeval.h"
   
 /* #include <libintl.h> */  /* #include <libintl.h> */
 /* #define _(String) gettext (String) */  /* #define _(String) gettext (String) */
   
 #define MAXLINE 256  #define MAXLINE 256
   
 #define GNUPLOTPROGRAM "gnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 132  #define FILENAMELENGTH 132
   
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NINTERVMAX 8  #define NINTERVMAX 8
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define NCOVMAX 8 /* Maximum number of covariates */  #define NCOVMAX 20 /* Maximum number of covariates */
 #define MAXN 20000  #define MAXN 20000
 #define YEARM 12. /* Number of months per year */  #define YEARM 12. /* Number of months per year */
 #define AGESUP 130  #define AGESUP 130
 #define AGEBASE 40  #define AGEBASE 40
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 #ifdef UNIX  #ifdef UNIX
 #define DIRSEPARATOR '/'  #define DIRSEPARATOR '/'
 #define CHARSEPARATOR "/"  #define CHARSEPARATOR "/"
 #define ODIRSEPARATOR '\\'  #define ODIRSEPARATOR '\\'
 #else  #else
 #define DIRSEPARATOR '\\'  #define DIRSEPARATOR '\\'
 #define CHARSEPARATOR "\\"  #define CHARSEPARATOR "\\"
 #define ODIRSEPARATOR '/'  #define ODIRSEPARATOR '/'
 #endif  #endif
   
 /* $Id$ */  /* $Id$ */
 /* $State$ */  /* $State$ */
   
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
 char fullversion[]="$Revision$ $Date$";  char fullversion[]="$Revision$ $Date$"; 
 char strstart[80];  char strstart[80];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int nvar;  int nvar=0;
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 int npar=NPARMAX;  int npar=NPARMAX;
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int popbased=0;  int popbased=0;
   
 int *wav; /* Number of waves for this individuual 0 is possible */  int *wav; /* Number of waves for this individuual 0 is possible */
 int maxwav; /* Maxim number of waves */  int maxwav=0; /* Maxim number of waves */
 int jmin, jmax; /* min, max spacing between 2 waves */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 int ijmin, ijmax; /* Individuals having jmin and jmax */  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 int gipmx, gsw; /* Global variables on the number of contributions  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
                    to the likelihood and the sum of weights (done by funcone)*/                     to the likelihood and the sum of weights (done by funcone)*/
 int mle, weightopt;  int mle=1, weightopt=0;
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
            * wave mi and wave mi+1 is not an exact multiple of stepm. */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double jmean; /* Mean space between 2 waves */  double jmean=1; /* Mean space between 2 waves */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 FILE *ficlog, *ficrespow;  FILE *ficlog, *ficrespow;
 int globpr; /* Global variable for printing or not */  int globpr=0; /* Global variable for printing or not */
 double fretone; /* Only one call to likelihood */  double fretone; /* Only one call to likelihood */
 long ipmx; /* Number of contributions */  long ipmx=0; /* Number of contributions */
 double sw; /* Sum of weights */  double sw; /* Sum of weights */
 char filerespow[FILENAMELENGTH];  char filerespow[FILENAMELENGTH];
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 FILE *ficresilk;  FILE *ficresilk;
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 FILE *ficresprobmorprev;  FILE *ficresprobmorprev;
 FILE *fichtm, *fichtmcov; /* Html File */  FILE *fichtm, *fichtmcov; /* Html File */
 FILE *ficreseij;  FILE *ficreseij;
 char filerese[FILENAMELENGTH];  char filerese[FILENAMELENGTH];
 FILE *ficresstdeij;  FILE *ficresstdeij;
 char fileresstde[FILENAMELENGTH];  char fileresstde[FILENAMELENGTH];
 FILE *ficrescveij;  FILE *ficrescveij;
 char filerescve[FILENAMELENGTH];  char filerescve[FILENAMELENGTH];
 FILE  *ficresvij;  FILE  *ficresvij;
 char fileresv[FILENAMELENGTH];  char fileresv[FILENAMELENGTH];
 FILE  *ficresvpl;  FILE  *ficresvpl;
 char fileresvpl[FILENAMELENGTH];  char fileresvpl[FILENAMELENGTH];
 char title[MAXLINE];  char title[MAXLINE];
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 char command[FILENAMELENGTH];  char command[FILENAMELENGTH];
 int  outcmd=0;  int  outcmd=0;
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 char filelog[FILENAMELENGTH]; /* Log file */  char filelog[FILENAMELENGTH]; /* Log file */
 char filerest[FILENAMELENGTH];  char filerest[FILENAMELENGTH];
 char fileregp[FILENAMELENGTH];  char fileregp[FILENAMELENGTH];
 char popfile[FILENAMELENGTH];  char popfile[FILENAMELENGTH];
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 struct timezone tzp;  struct timezone tzp;
 extern int gettimeofday();  extern int gettimeofday();
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 long time_value;  long time_value;
 extern long time();  extern long time();
 char strcurr[80], strfor[80];  char strcurr[80], strfor[80];
   
 char *endptr;  char *endptr;
 long lval;  long lval;
 double dval;  double dval;
   
 #define NR_END 1  #define NR_END 1
 #define FREE_ARG char*  #define FREE_ARG char*
 #define FTOL 1.0e-10  #define FTOL 1.0e-10
   
 #define NRANSI  #define NRANSI 
 #define ITMAX 200  #define ITMAX 200 
   
 #define TOL 2.0e-4  #define TOL 2.0e-4 
   
 #define CGOLD 0.3819660  #define CGOLD 0.3819660 
 #define ZEPS 1.0e-10  #define ZEPS 1.0e-10 
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 #define GOLD 1.618034  #define GOLD 1.618034 
 #define GLIMIT 100.0  #define GLIMIT 100.0 
 #define TINY 1.0e-20  #define TINY 1.0e-20 
   
 static double maxarg1,maxarg2;  static double maxarg1,maxarg2;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #define rint(a) floor(a+0.5)  #define rint(a) floor(a+0.5)
   
 static double sqrarg;  static double sqrarg;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 int agegomp= AGEGOMP;  int agegomp= AGEGOMP;
   
 int imx;  int imx; 
 int stepm=1;  int stepm=1;
 /* Stepm, step in month: minimum step interpolation*/  /* Stepm, step in month: minimum step interpolation*/
   
 int estepm;  int estepm;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 int m,nb;  int m,nb;
 long *num;  long *num;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij, ***probs;  double **pmmij, ***probs;
 double *ageexmed,*agecens;  double *ageexmed,*agecens;
 double dateintmean=0;  double dateintmean=0;
   
 double *weight;  double *weight;
 int **s; /* Status */  int **s; /* Status */
 double *agedc, **covar, idx;  double *agedc, **covar, idx;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double *lsurv, *lpop, *tpop;  double *lsurv, *lpop, *tpop;
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double ftolhess; /* Tolerance for computing hessian */  double ftolhess; /* Tolerance for computing hessian */
   
 /**************** split *************************/  /**************** split *************************/
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
      the name of the file (name), its extension only (ext) and its first part of the name (finame)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   */    */ 
   char  *ss;                            /* pointer */    char  *ss;                            /* pointer */
   int   l1, l2;                         /* length counters */    int   l1, l2;                         /* length counters */
   
   l1 = strlen(path );                   /* length of path */    l1 = strlen(path );                   /* length of path */
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if ( ss == NULL ) {                   /* no directory, so determine current directory */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     strcpy( name, path );               /* we got the fullname name because no directory */      strcpy( name, path );               /* we got the fullname name because no directory */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     /* get current working directory */      /* get current working directory */
     /*    extern  char* getcwd ( char *buf , int len);*/      /*    extern  char* getcwd ( char *buf , int len);*/
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       return( GLOCK_ERROR_GETCWD );        return( GLOCK_ERROR_GETCWD );
     }      }
     /* got dirc from getcwd*/      /* got dirc from getcwd*/
     printf(" DIRC = %s \n",dirc);      printf(" DIRC = %s \n",dirc);
   } else {                              /* strip direcotry from path */    } else {                              /* strip direcotry from path */
     ss++;                               /* after this, the filename */      ss++;                               /* after this, the filename */
     l2 = strlen( ss );                  /* length of filename */      l2 = strlen( ss );                  /* length of filename */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     strcpy( name, ss );         /* save file name */      strcpy( name, ss );         /* save file name */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     dirc[l1-l2] = 0;                    /* add zero */      dirc[l1-l2] = 0;                    /* add zero */
     printf(" DIRC2 = %s \n",dirc);      printf(" DIRC2 = %s \n",dirc);
   }    }
   /* We add a separator at the end of dirc if not exists */    /* We add a separator at the end of dirc if not exists */
   l1 = strlen( dirc );                  /* length of directory */    l1 = strlen( dirc );                  /* length of directory */
   if( dirc[l1-1] != DIRSEPARATOR ){    if( dirc[l1-1] != DIRSEPARATOR ){
     dirc[l1] =  DIRSEPARATOR;      dirc[l1] =  DIRSEPARATOR;
     dirc[l1+1] = 0;      dirc[l1+1] = 0; 
     printf(" DIRC3 = %s \n",dirc);      printf(" DIRC3 = %s \n",dirc);
   }    }
   ss = strrchr( name, '.' );            /* find last / */    ss = strrchr( name, '.' );            /* find last / */
   if (ss >0){    if (ss >0){
     ss++;      ss++;
     strcpy(ext,ss);                     /* save extension */      strcpy(ext,ss);                     /* save extension */
     l1= strlen( name);      l1= strlen( name);
     l2= strlen(ss)+1;      l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);      strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;      finame[l1-l2]= 0;
   }    }
   
   return( 0 );                          /* we're done */    return( 0 );                          /* we're done */
 }  }
   
   
 /******************************************/  /******************************************/
   
 void replace_back_to_slash(char *s, char*t)  void replace_back_to_slash(char *s, char*t)
 {  {
   int i;    int i;
   int lg=0;    int lg=0;
   i=0;    i=0;
   lg=strlen(t);    lg=strlen(t);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
     (s[i] = t[i]);      (s[i] = t[i]);
     if (t[i]== '\\') s[i]='/';      if (t[i]== '\\') s[i]='/';
   }    }
 }  }
   
 int nbocc(char *s, char occ)  int nbocc(char *s, char occ)
 {  {
   int i,j=0;    int i,j=0;
   int lg=20;    int lg=20;
   i=0;    i=0;
   lg=strlen(s);    lg=strlen(s);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
   if  (s[i] == occ ) j++;    if  (s[i] == occ ) j++;
   }    }
   return j;    return j;
 }  }
   
 void cutv(char *u,char *v, char*t, char occ)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   /* cuts string t into u and v where u ends before first occurence of char 'occ'    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
      gives u="abcedf" and v="ghi2j" */       gives u="abcedf" and v="ghi2j" */
   int i,lg,j,p=0;    int i,lg,j,p=0;
   i=0;    i=0;
   for(j=0; j<=strlen(t)-1; j++) {    for(j=0; j<=strlen(t)-1; j++) {
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   }    }
   
   lg=strlen(t);    lg=strlen(t);
   for(j=0; j<p; j++) {    for(j=0; j<p; j++) {
     (u[j] = t[j]);      (u[j] = t[j]);
   }    }
      u[p]='\0';       u[p]='\0';
   
    for(j=0; j<= lg; j++) {     for(j=0; j<= lg; j++) {
     if (j>=(p+1))(v[j-p-1] = t[j]);      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
 }  }
   
 /********************** nrerror ********************/  /********************** nrerror ********************/
   
 void nrerror(char error_text[])  void nrerror(char error_text[])
 {  {
   fprintf(stderr,"ERREUR ...\n");    fprintf(stderr,"ERREUR ...\n");
   fprintf(stderr,"%s\n",error_text);    fprintf(stderr,"%s\n",error_text);
   exit(EXIT_FAILURE);    exit(EXIT_FAILURE);
 }  }
 /*********************** vector *******************/  /*********************** vector *******************/
 double *vector(int nl, int nh)  double *vector(int nl, int nh)
 {  {
   double *v;    double *v;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!v) nrerror("allocation failure in vector");    if (!v) nrerror("allocation failure in vector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /************************ free vector ******************/  /************************ free vector ******************/
 void free_vector(double*v, int nl, int nh)  void free_vector(double*v, int nl, int nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /************************ivector *******************************/  /************************ivector *******************************/
 int *ivector(long nl,long nh)  int *ivector(long nl,long nh)
 {  {
   int *v;    int *v;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   if (!v) nrerror("allocation failure in ivector");    if (!v) nrerror("allocation failure in ivector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /******************free ivector **************************/  /******************free ivector **************************/
 void free_ivector(int *v, long nl, long nh)  void free_ivector(int *v, long nl, long nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /************************lvector *******************************/  /************************lvector *******************************/
 long *lvector(long nl,long nh)  long *lvector(long nl,long nh)
 {  {
   long *v;    long *v;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   if (!v) nrerror("allocation failure in ivector");    if (!v) nrerror("allocation failure in ivector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /******************free lvector **************************/  /******************free lvector **************************/
 void free_lvector(long *v, long nl, long nh)  void free_lvector(long *v, long nl, long nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /******************* imatrix *******************************/  /******************* imatrix *******************************/
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int **m;    int **m; 
      
   /* allocate pointers to rows */    /* allocate pointers to rows */ 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()"); 
   m += NR_END;    m += NR_END; 
   m -= nrl;    m -= nrl; 
      
      
   /* allocate rows and set pointers to them */    /* allocate rows and set pointers to them */ 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   m[nrl] += NR_END;    m[nrl] += NR_END; 
   m[nrl] -= ncl;    m[nrl] -= ncl; 
      
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   /* return pointer to array of pointers to rows */    /* return pointer to array of pointers to rows */ 
   return m;    return m; 
 }  } 
   
 /****************** free_imatrix *************************/  /****************** free_imatrix *************************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  void free_imatrix(m,nrl,nrh,ncl,nch)
       int **m;        int **m;
       long nch,ncl,nrh,nrl;        long nch,ncl,nrh,nrl; 
      /* free an int matrix allocated by imatrix() */       /* free an int matrix allocated by imatrix() */ 
 {  { 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   free((FREE_ARG) (m+nrl-NR_END));    free((FREE_ARG) (m+nrl-NR_END)); 
 }  } 
   
 /******************* matrix *******************************/  /******************* matrix *******************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **m;    double **m;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m += NR_END;    m += NR_END;
   m -= nrl;    m -= nrl;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl] += NR_END;    m[nrl] += NR_END;
   m[nrl] -= ncl;    m[nrl] -= ncl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   return m;    return m;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
    */     */
 }  }
   
 /*************************free matrix ************************/  /*************************free matrix ************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /******************* ma3x *******************************/  /******************* ma3x *******************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double ***m;    double ***m;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m += NR_END;    m += NR_END;
   m -= nrl;    m -= nrl;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl] += NR_END;    m[nrl] += NR_END;
   m[nrl] -= ncl;    m[nrl] -= ncl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   m[nrl][ncl] += NR_END;    m[nrl][ncl] += NR_END;
   m[nrl][ncl] -= nll;    m[nrl][ncl] -= nll;
   for (j=ncl+1; j<=nch; j++)    for (j=ncl+1; j<=nch; j++) 
     m[nrl][j]=m[nrl][j-1]+nlay;      m[nrl][j]=m[nrl][j-1]+nlay;
      
   for (i=nrl+1; i<=nrh; i++) {    for (i=nrl+1; i<=nrh; i++) {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=ncl+1; j<=nch; j++)      for (j=ncl+1; j<=nch; j++) 
       m[i][j]=m[i][j-1]+nlay;        m[i][j]=m[i][j-1]+nlay;
   }    }
   return m;    return m; 
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   */    */
 }  }
   
 /*************************free ma3x ************************/  /*************************free ma3x ************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /*************** function subdirf ***********/  /*************** function subdirf ***********/
 char *subdirf(char fileres[])  char *subdirf(char fileres[])
 {  {
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/"); /* Add to the right */    strcat(tmpout,"/"); /* Add to the right */
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /*************** function subdirf2 ***********/  /*************** function subdirf2 ***********/
 char *subdirf2(char fileres[], char *preop)  char *subdirf2(char fileres[], char *preop)
 {  {
      
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/");    strcat(tmpout,"/");
   strcat(tmpout,preop);    strcat(tmpout,preop);
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /*************** function subdirf3 ***********/  /*************** function subdirf3 ***********/
 char *subdirf3(char fileres[], char *preop, char *preop2)  char *subdirf3(char fileres[], char *preop, char *preop2)
 {  {
      
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/");    strcat(tmpout,"/");
   strcat(tmpout,preop);    strcat(tmpout,preop);
   strcat(tmpout,preop2);    strcat(tmpout,preop2);
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /***************** f1dim *************************/  /***************** f1dim *************************/
 extern int ncom;  extern int ncom; 
 extern double *pcom,*xicom;  extern double *pcom,*xicom;
 extern double (*nrfunc)(double []);  extern double (*nrfunc)(double []); 
     
 double f1dim(double x)  double f1dim(double x) 
 {  { 
   int j;    int j; 
   double f;    double f;
   double *xt;    double *xt; 
     
   xt=vector(1,ncom);    xt=vector(1,ncom); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   f=(*nrfunc)(xt);    f=(*nrfunc)(xt); 
   free_vector(xt,1,ncom);    free_vector(xt,1,ncom); 
   return f;    return f; 
 }  } 
   
 /*****************brent *************************/  /*****************brent *************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 {  { 
   int iter;    int iter; 
   double a,b,d,etemp;    double a,b,d,etemp;
   double fu,fv,fw,fx;    double fu,fv,fw,fx;
   double ftemp;    double ftemp;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double e=0.0;    double e=0.0; 
     
   a=(ax < cx ? ax : cx);    a=(ax < cx ? ax : cx); 
   b=(ax > cx ? ax : cx);    b=(ax > cx ? ax : cx); 
   x=w=v=bx;    x=w=v=bx; 
   fw=fv=fx=(*f)(x);    fw=fv=fx=(*f)(x); 
   for (iter=1;iter<=ITMAX;iter++) {    for (iter=1;iter<=ITMAX;iter++) { 
     xm=0.5*(a+b);      xm=0.5*(a+b); 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf(".");fflush(stdout);      printf(".");fflush(stdout);
     fprintf(ficlog,".");fflush(ficlog);      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #endif  #endif
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       *xmin=x;        *xmin=x; 
       return fx;        return fx; 
     }      } 
     ftemp=fu;      ftemp=fu;
     if (fabs(e) > tol1) {      if (fabs(e) > tol1) { 
       r=(x-w)*(fx-fv);        r=(x-w)*(fx-fv); 
       q=(x-v)*(fx-fw);        q=(x-v)*(fx-fw); 
       p=(x-v)*q-(x-w)*r;        p=(x-v)*q-(x-w)*r; 
       q=2.0*(q-r);        q=2.0*(q-r); 
       if (q > 0.0) p = -p;        if (q > 0.0) p = -p; 
       q=fabs(q);        q=fabs(q); 
       etemp=e;        etemp=e; 
       e=d;        e=d; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       else {        else { 
         d=p/q;          d=p/q; 
         u=x+d;          u=x+d; 
         if (u-a < tol2 || b-u < tol2)          if (u-a < tol2 || b-u < tol2) 
           d=SIGN(tol1,xm-x);            d=SIGN(tol1,xm-x); 
       }        } 
     } else {      } else { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     fu=(*f)(u);      fu=(*f)(u); 
     if (fu <= fx) {      if (fu <= fx) { 
       if (u >= x) a=x; else b=x;        if (u >= x) a=x; else b=x; 
       SHFT(v,w,x,u)        SHFT(v,w,x,u) 
         SHFT(fv,fw,fx,fu)          SHFT(fv,fw,fx,fu) 
         } else {          } else { 
           if (u < x) a=u; else b=u;            if (u < x) a=u; else b=u; 
           if (fu <= fw || w == x) {            if (fu <= fw || w == x) { 
             v=w;              v=w; 
             w=u;              w=u; 
             fv=fw;              fv=fw; 
             fw=fu;              fw=fu; 
           } else if (fu <= fv || v == x || v == w) {            } else if (fu <= fv || v == x || v == w) { 
             v=u;              v=u; 
             fv=fu;              fv=fu; 
           }            } 
         }          } 
   }    } 
   nrerror("Too many iterations in brent");    nrerror("Too many iterations in brent"); 
   *xmin=x;    *xmin=x; 
   return fx;    return fx; 
 }  } 
   
 /****************** mnbrak ***********************/  /****************** mnbrak ***********************/
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             double (*func)(double))              double (*func)(double)) 
 {  { 
   double ulim,u,r,q, dum;    double ulim,u,r,q, dum;
   double fu;    double fu; 
     
   *fa=(*func)(*ax);    *fa=(*func)(*ax); 
   *fb=(*func)(*bx);    *fb=(*func)(*bx); 
   if (*fb > *fa) {    if (*fb > *fa) { 
     SHFT(dum,*ax,*bx,dum)      SHFT(dum,*ax,*bx,dum) 
       SHFT(dum,*fb,*fa,dum)        SHFT(dum,*fb,*fa,dum) 
       }        } 
   *cx=(*bx)+GOLD*(*bx-*ax);    *cx=(*bx)+GOLD*(*bx-*ax); 
   *fc=(*func)(*cx);    *fc=(*func)(*cx); 
   while (*fb > *fc) {    while (*fb > *fc) { 
     r=(*bx-*ax)*(*fb-*fc);      r=(*bx-*ax)*(*fb-*fc); 
     q=(*bx-*cx)*(*fb-*fa);      q=(*bx-*cx)*(*fb-*fa); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     if ((*bx-u)*(u-*cx) > 0.0) {      if ((*bx-u)*(u-*cx) > 0.0) { 
       fu=(*func)(u);        fu=(*func)(u); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       fu=(*func)(u);        fu=(*func)(u); 
       if (fu < *fc) {        if (fu < *fc) { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           SHFT(*fb,*fc,fu,(*func)(u))            SHFT(*fb,*fc,fu,(*func)(u)) 
           }            } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       u=ulim;        u=ulim; 
       fu=(*func)(u);        fu=(*func)(u); 
     } else {      } else { 
       u=(*cx)+GOLD*(*cx-*bx);        u=(*cx)+GOLD*(*cx-*bx); 
       fu=(*func)(u);        fu=(*func)(u); 
     }      } 
     SHFT(*ax,*bx,*cx,u)      SHFT(*ax,*bx,*cx,u) 
       SHFT(*fa,*fb,*fc,fu)        SHFT(*fa,*fb,*fc,fu) 
       }        } 
 }  } 
   
 /*************** linmin ************************/  /*************** linmin ************************/
   
 int ncom;  int ncom; 
 double *pcom,*xicom;  double *pcom,*xicom;
 double (*nrfunc)(double []);  double (*nrfunc)(double []); 
     
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   double brent(double ax, double bx, double cx,    double brent(double ax, double bx, double cx, 
                double (*f)(double), double tol, double *xmin);                 double (*f)(double), double tol, double *xmin); 
   double f1dim(double x);    double f1dim(double x); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
               double *fc, double (*func)(double));                double *fc, double (*func)(double)); 
   int j;    int j; 
   double xx,xmin,bx,ax;    double xx,xmin,bx,ax; 
   double fx,fb,fa;    double fx,fb,fa;
     
   ncom=n;    ncom=n; 
   pcom=vector(1,n);    pcom=vector(1,n); 
   xicom=vector(1,n);    xicom=vector(1,n); 
   nrfunc=func;    nrfunc=func; 
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     pcom[j]=p[j];      pcom[j]=p[j]; 
     xicom[j]=xi[j];      xicom[j]=xi[j]; 
   }    } 
   ax=0.0;    ax=0.0; 
   xx=1.0;    xx=1.0; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 #endif  #endif
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     xi[j] *= xmin;      xi[j] *= xmin; 
     p[j] += xi[j];      p[j] += xi[j]; 
   }    } 
   free_vector(xicom,1,n);    free_vector(xicom,1,n); 
   free_vector(pcom,1,n);    free_vector(pcom,1,n); 
 }  } 
   
 char *asc_diff_time(long time_sec, char ascdiff[])  char *asc_diff_time(long time_sec, char ascdiff[])
 {  {
   long sec_left, days, hours, minutes;    long sec_left, days, hours, minutes;
   days = (time_sec) / (60*60*24);    days = (time_sec) / (60*60*24);
   sec_left = (time_sec) % (60*60*24);    sec_left = (time_sec) % (60*60*24);
   hours = (sec_left) / (60*60) ;    hours = (sec_left) / (60*60) ;
   sec_left = (sec_left) %(60*60);    sec_left = (sec_left) %(60*60);
   minutes = (sec_left) /60;    minutes = (sec_left) /60;
   sec_left = (sec_left) % (60);    sec_left = (sec_left) % (60);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   return ascdiff;    return ascdiff;
 }  }
   
 /*************** powell ************************/  /*************** powell ************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             double (*func)(double []))              double (*func)(double [])) 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    void linmin(double p[], double xi[], int n, double *fret, 
               double (*func)(double []));                double (*func)(double [])); 
   int i,ibig,j;    int i,ibig,j; 
   double del,t,*pt,*ptt,*xit;    double del,t,*pt,*ptt,*xit;
   double fp,fptt;    double fp,fptt;
   double *xits;    double *xits;
   int niterf, itmp;    int niterf, itmp;
   
   pt=vector(1,n);    pt=vector(1,n); 
   ptt=vector(1,n);    ptt=vector(1,n); 
   xit=vector(1,n);    xit=vector(1,n); 
   xits=vector(1,n);    xits=vector(1,n); 
   *fret=(*func)(p);    *fret=(*func)(p); 
   for (j=1;j<=n;j++) pt[j]=p[j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (*iter=1;;++(*iter)) {    for (*iter=1;;++(*iter)) { 
     fp=(*fret);      fp=(*fret); 
     ibig=0;      ibig=0; 
     del=0.0;      del=0.0; 
     last_time=curr_time;      last_time=curr_time;
     (void) gettimeofday(&curr_time,&tzp);      (void) gettimeofday(&curr_time,&tzp);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
    for (i=1;i<=n;i++) {     for (i=1;i<=n;i++) {
       printf(" %d %.12f",i, p[i]);        printf(" %d %.12f",i, p[i]);
       fprintf(ficlog," %d %.12lf",i, p[i]);        fprintf(ficlog," %d %.12lf",i, p[i]);
       fprintf(ficrespow," %.12lf", p[i]);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
     fprintf(ficrespow,"\n");fflush(ficrespow);      fprintf(ficrespow,"\n");fflush(ficrespow);
     if(*iter <=3){      if(*iter <=3){
       tm = *localtime(&curr_time.tv_sec);        tm = *localtime(&curr_time.tv_sec);
       strcpy(strcurr,asctime(&tm));        strcpy(strcurr,asctime(&tm));
 /*       asctime_r(&tm,strcurr); */  /*       asctime_r(&tm,strcurr); */
       forecast_time=curr_time;        forecast_time=curr_time; 
       itmp = strlen(strcurr);        itmp = strlen(strcurr);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         strcurr[itmp-1]='\0';          strcurr[itmp-1]='\0';
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for(niterf=10;niterf<=30;niterf+=10){        for(niterf=10;niterf<=30;niterf+=10){
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         tmf = *localtime(&forecast_time.tv_sec);          tmf = *localtime(&forecast_time.tv_sec);
 /*      asctime_r(&tmf,strfor); */  /*      asctime_r(&tmf,strfor); */
         strcpy(strfor,asctime(&tmf));          strcpy(strfor,asctime(&tmf));
         itmp = strlen(strfor);          itmp = strlen(strfor);
         if(strfor[itmp-1]=='\n')          if(strfor[itmp-1]=='\n')
         strfor[itmp-1]='\0';          strfor[itmp-1]='\0';
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
     }      }
     for (i=1;i<=n;i++) {      for (i=1;i<=n;i++) { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       fptt=(*fret);        fptt=(*fret); 
 #ifdef DEBUG  #ifdef DEBUG
       printf("fret=%lf \n",*fret);        printf("fret=%lf \n",*fret);
       fprintf(ficlog,"fret=%lf \n",*fret);        fprintf(ficlog,"fret=%lf \n",*fret);
 #endif  #endif
       printf("%d",i);fflush(stdout);        printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"%d",i);fflush(ficlog);
       linmin(p,xit,n,fret,func);        linmin(p,xit,n,fret,func); 
       if (fabs(fptt-(*fret)) > del) {        if (fabs(fptt-(*fret)) > del) { 
         del=fabs(fptt-(*fret));          del=fabs(fptt-(*fret)); 
         ibig=i;          ibig=i; 
       }        } 
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));        printf("%d %.12e",i,(*fret));
       fprintf(ficlog,"%d %.12e",i,(*fret));        fprintf(ficlog,"%d %.12e",i,(*fret));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf(" x(%d)=%.12e",j,xit[j]);          printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(j=1;j<=n;j++) {        for(j=1;j<=n;j++) {
         printf(" p=%.12e",p[j]);          printf(" p=%.12e",p[j]);
         fprintf(ficlog," p=%.12e",p[j]);          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
 #endif  #endif
     }      } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 #ifdef DEBUG  #ifdef DEBUG
       int k[2],l;        int k[2],l;
       k[0]=1;        k[0]=1;
       k[1]=-1;        k[1]=-1;
       printf("Max: %.12e",(*func)(p));        printf("Max: %.12e",(*func)(p));
       fprintf(ficlog,"Max: %.12e",(*func)(p));        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         printf(" %.12e",p[j]);          printf(" %.12e",p[j]);
         fprintf(ficlog," %.12e",p[j]);          fprintf(ficlog," %.12e",p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
       for(l=0;l<=1;l++) {        for(l=0;l<=1;l++) {
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }          }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
 #endif  #endif
   
   
       free_vector(xit,1,n);        free_vector(xit,1,n); 
       free_vector(xits,1,n);        free_vector(xits,1,n); 
       free_vector(ptt,1,n);        free_vector(ptt,1,n); 
       free_vector(pt,1,n);        free_vector(pt,1,n); 
       return;        return; 
     }      } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=n;j++) {      for (j=1;j<=n;j++) { 
       ptt[j]=2.0*p[j]-pt[j];        ptt[j]=2.0*p[j]-pt[j]; 
       xit[j]=p[j]-pt[j];        xit[j]=p[j]-pt[j]; 
       pt[j]=p[j];        pt[j]=p[j]; 
     }      } 
     fptt=(*func)(ptt);      fptt=(*func)(ptt); 
     if (fptt < fp) {      if (fptt < fp) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if (t < 0.0) {        if (t < 0.0) { 
         linmin(p,xit,n,fret,func);          linmin(p,xit,n,fret,func); 
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) { 
           xi[j][ibig]=xi[j][n];            xi[j][ibig]=xi[j][n]; 
           xi[j][n]=xit[j];            xi[j][n]=xit[j]; 
         }          }
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(j=1;j<=n;j++){          for(j=1;j<=n;j++){
           printf(" %.12e",xit[j]);            printf(" %.12e",xit[j]);
           fprintf(ficlog," %.12e",xit[j]);            fprintf(ficlog," %.12e",xit[j]);
         }          }
         printf("\n");          printf("\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
 #endif  #endif
       }        }
     }      } 
   }    } 
 }  } 
   
 /**** Prevalence limit (stable or period prevalence)  ****************/  /**** Prevalence limit (stable or period prevalence)  ****************/
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      matrix by transitions matrix until convergence is reached */       matrix by transitions matrix until convergence is reached */
   
   int i, ii,j,k;    int i, ii,j,k;
   double min, max, maxmin, maxmax,sumnew=0.;    double min, max, maxmin, maxmax,sumnew=0.;
   double **matprod2();    double **matprod2();
   double **out, cov[NCOVMAX], **pmij();    double **out, cov[NCOVMAX+1], **pmij();
   double **newm;    double **newm;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
   
    cov[1]=1.;     cov[1]=1.;
     
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     newm=savm;      newm=savm;
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
      cov[2]=agefin;       cov[2]=agefin;
      
       for (k=1; k<=cptcovn;k++) {        for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
     savm=oldm;      savm=oldm;
     oldm=newm;      oldm=newm;
     maxmax=0.;      maxmax=0.;
     for(j=1;j<=nlstate;j++){      for(j=1;j<=nlstate;j++){
       min=1.;        min=1.;
       max=0.;        max=0.;
       for(i=1; i<=nlstate; i++) {        for(i=1; i<=nlstate; i++) {
         sumnew=0;          sumnew=0;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         prlim[i][j]= newm[i][j]/(1-sumnew);          prlim[i][j]= newm[i][j]/(1-sumnew);
         max=FMAX(max,prlim[i][j]);          max=FMAX(max,prlim[i][j]);
         min=FMIN(min,prlim[i][j]);          min=FMIN(min,prlim[i][j]);
       }        }
       maxmin=max-min;        maxmin=max-min;
       maxmax=FMAX(maxmax,maxmin);        maxmax=FMAX(maxmax,maxmin);
     }      }
     if(maxmax < ftolpl){      if(maxmax < ftolpl){
       return prlim;        return prlim;
     }      }
   }    }
 }  }
   
 /*************** transition probabilities ***************/  /*************** transition probabilities ***************/ 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   double s1, s2;    double s1, s2;
   /*double t34;*/    /*double t34;*/
   int i,j,j1, nc, ii, jj;    int i,j,j1, nc, ii, jj;
   
     for(i=1; i<= nlstate; i++){      for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){        for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/            /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         }          }
         ps[i][j]=s2;          ps[i][j]=s2;
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       }        }
       for(j=i+1; j<=nlstate+ndeath;j++){        for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         }          }
         ps[i][j]=s2;          ps[i][j]=s2;
       }        }
     }      }
     /*ps[3][2]=1;*/      /*ps[3][2]=1;*/
          
     for(i=1; i<= nlstate; i++){      for(i=1; i<= nlstate; i++){
       s1=0;        s1=0;
       for(j=1; j<i; j++)        for(j=1; j<i; j++){
         s1+=exp(ps[i][j]);          s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         s1+=exp(ps[i][j]);        }
       ps[i][i]=1./(s1+1.);        for(j=i+1; j<=nlstate+ndeath; j++){
       for(j=1; j<i; j++)          s1+=exp(ps[i][j]);
         ps[i][j]= exp(ps[i][j])*ps[i][i];          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(j=i+1; j<=nlstate+ndeath; j++)        }
         ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][i]=1./(s1+1.);
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        for(j=1; j<i; j++)
     } /* end i */          ps[i][j]= exp(ps[i][j])*ps[i][i];
            for(j=i+1; j<=nlstate+ndeath; j++)
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(jj=1; jj<= nlstate+ndeath; jj++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         ps[ii][jj]=0;      } /* end i */
         ps[ii][ii]=1;      
       }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
              ps[ii][jj]=0;
           ps[ii][ii]=1;
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        }
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      }
 /*         printf("ddd %lf ",ps[ii][jj]); */      
 /*       } */  
 /*       printf("\n "); */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 /*        } */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 /*        printf("\n ");printf("%lf ",cov[2]); */  /*         printf("ddd %lf ",ps[ii][jj]); */
        /*  /*       } */
       for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*       printf("\n "); */
       goto end;*/  /*        } */
     return ps;  /*        printf("\n ");printf("%lf ",cov[2]); */
 }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /**************** Product of 2 matrices ******************/        goto end;*/
       return ps;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  }
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /**************** Product of 2 matrices ******************/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   long i, j, k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for(i=nrl; i<= nrh; i++)    /* in, b, out are matrice of pointers which should have been initialized 
     for(k=ncolol; k<=ncoloh; k++)       before: only the contents of out is modified. The function returns
       for(j=ncl,out[i][k]=0.; j<=nch; j++)       a pointer to pointers identical to out */
         out[i][k] +=in[i][j]*b[j][k];    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   return out;      for(k=ncolol; k<=ncoloh; k++)
 }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   
 /************* Higher Matrix Product ***************/    return out;
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  
   /* Computes the transition matrix starting at age 'age' over  /************* Higher Matrix Product ***************/
      'nhstepm*hstepm*stepm' months (i.e. until  
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
      nhstepm*hstepm matrices.  {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    /* Computes the transition matrix starting at age 'age' over 
      (typically every 2 years instead of every month which is too big       'nhstepm*hstepm*stepm' months (i.e. until
      for the memory).       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      Model is determined by parameters x and covariates have to be       nhstepm*hstepm matrices. 
      included manually here.       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
      */       for the memory).
        Model is determined by parameters x and covariates have to be 
   int i, j, d, h, k;       included manually here. 
   double **out, cov[NCOVMAX];  
   double **newm;       */
   
   /* Hstepm could be zero and should return the unit matrix */    int i, j, d, h, k;
   for (i=1;i<=nlstate+ndeath;i++)    double **out, cov[NCOVMAX+1];
     for (j=1;j<=nlstate+ndeath;j++){    double **newm;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    /* Hstepm could be zero and should return the unit matrix */
     }    for (i=1;i<=nlstate+ndeath;i++)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for (j=1;j<=nlstate+ndeath;j++){
   for(h=1; h <=nhstepm; h++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for(d=1; d <=hstepm; d++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
       newm=savm;      }
       /* Covariates have to be included here again */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       cov[1]=1.;    for(h=1; h <=nhstepm; h++){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      for(d=1; d <=hstepm; d++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        newm=savm;
       for (k=1; k<=cptcovage;k++)        /* Covariates have to be included here again */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        cov[1]=1.;
       for (k=1; k<=cptcovprod;k++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for (k=1; k<=cptcovprod;k++)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  
       oldm=newm;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for(i=1; i<=nlstate+ndeath; i++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for(j=1;j<=nlstate+ndeath;j++) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         po[i][j][h]=newm[i][j];        savm=oldm;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        oldm=newm;
          */      }
       }      for(i=1; i<=nlstate+ndeath; i++)
   } /* end h */        for(j=1;j<=nlstate+ndeath;j++) {
   return po;          po[i][j][h]=newm[i][j];
 }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
       /*printf("h=%d ",h);*/
 /*************** log-likelihood *************/    } /* end h */
 double func( double *x)  /*     printf("\n H=%d \n",h); */
 {    return po;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  
   double sw; /* Sum of weights */  /*************** log-likelihood *************/
   double lli; /* Individual log likelihood */  double func( double *x)
   int s1, s2;  {
   double bbh, survp;    int i, ii, j, k, mi, d, kk;
   long ipmx;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   /*extern weight */    double **out;
   /* We are differentiating ll according to initial status */    double sw; /* Sum of weights */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double lli; /* Individual log likelihood */
   /*for(i=1;i<imx;i++)    int s1, s2;
     printf(" %d\n",s[4][i]);    double bbh, survp;
   */    long ipmx;
   cov[1]=1.;    /*extern weight */
     /* We are differentiating ll according to initial status */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   if(mle==1){      printf(" %d\n",s[4][i]);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    cov[1]=1.;
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if(mle==1){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(d=0; d<dh[mi][i]; d++){        for(mi=1; mi<= wav[i]-1; mi++){
           newm=savm;          for (ii=1;ii<=nlstate+ndeath;ii++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (j=1;j<=nlstate+ndeath;j++){
           for (kk=1; kk<=cptcovage;kk++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(d=0; d<dh[mi][i]; d++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            newm=savm;
           savm=oldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           oldm=newm;            for (kk=1; kk<=cptcovage;kk++) {
         } /* end mult */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         /* But now since version 0.9 we anticipate for bias at large stepm.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          * If stepm is larger than one month (smallest stepm) and if the exact delay            savm=oldm;
          * (in months) between two waves is not a multiple of stepm, we rounded to            oldm=newm;
          * the nearest (and in case of equal distance, to the lowest) interval but now          } /* end mult */
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
          * probability in order to take into account the bias as a fraction of the way          /* But now since version 0.9 we anticipate for bias at large stepm.
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies           * If stepm is larger than one month (smallest stepm) and if the exact delay 
          * -stepm/2 to stepm/2 .           * (in months) between two waves is not a multiple of stepm, we rounded to 
          * For stepm=1 the results are the same as for previous versions of Imach.           * the nearest (and in case of equal distance, to the lowest) interval but now
          * For stepm > 1 the results are less biased than in previous versions.           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         s1=s[mw[mi][i]][i];           * probability in order to take into account the bias as a fraction of the way
         s2=s[mw[mi+1][i]][i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         bbh=(double)bh[mi][i]/(double)stepm;           * -stepm/2 to stepm/2 .
         /* bias bh is positive if real duration           * For stepm=1 the results are the same as for previous versions of Imach.
          * is higher than the multiple of stepm and negative otherwise.           * For stepm > 1 the results are less biased than in previous versions. 
          */           */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          s1=s[mw[mi][i]][i];
         if( s2 > nlstate){          s2=s[mw[mi+1][i]][i];
           /* i.e. if s2 is a death state and if the date of death is known          bbh=(double)bh[mi][i]/(double)stepm; 
              then the contribution to the likelihood is the probability to          /* bias bh is positive if real duration
              die between last step unit time and current  step unit time,           * is higher than the multiple of stepm and negative otherwise.
              which is also equal to probability to die before dh           */
              minus probability to die before dh-stepm .          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
              In version up to 0.92 likelihood was computed          if( s2 > nlstate){ 
         as if date of death was unknown. Death was treated as any other            /* i.e. if s2 is a death state and if the date of death is known 
         health state: the date of the interview describes the actual state               then the contribution to the likelihood is the probability to 
         and not the date of a change in health state. The former idea was               die between last step unit time and current  step unit time, 
         to consider that at each interview the state was recorded               which is also equal to probability to die before dh 
         (healthy, disable or death) and IMaCh was corrected; but when we               minus probability to die before dh-stepm . 
         introduced the exact date of death then we should have modified               In version up to 0.92 likelihood was computed
         the contribution of an exact death to the likelihood. This new          as if date of death was unknown. Death was treated as any other
         contribution is smaller and very dependent of the step unit          health state: the date of the interview describes the actual state
         stepm. It is no more the probability to die between last interview          and not the date of a change in health state. The former idea was
         and month of death but the probability to survive from last          to consider that at each interview the state was recorded
         interview up to one month before death multiplied by the          (healthy, disable or death) and IMaCh was corrected; but when we
         probability to die within a month. Thanks to Chris          introduced the exact date of death then we should have modified
         Jackson for correcting this bug.  Former versions increased          the contribution of an exact death to the likelihood. This new
         mortality artificially. The bad side is that we add another loop          contribution is smaller and very dependent of the step unit
         which slows down the processing. The difference can be up to 10%          stepm. It is no more the probability to die between last interview
         lower mortality.          and month of death but the probability to survive from last
           */          interview up to one month before death multiplied by the
           lli=log(out[s1][s2] - savm[s1][s2]);          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
         } else if  (s2==-2) {          which slows down the processing. The difference can be up to 10%
           for (j=1,survp=0. ; j<=nlstate; j++)          lower mortality.
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            */
           /*survp += out[s1][j]; */            lli=log(out[s1][s2] - savm[s1][s2]);
           lli= log(survp);  
         }  
                  } else if  (s2==-2) {
         else if  (s2==-4) {            for (j=1,survp=0. ; j<=nlstate; j++) 
           for (j=3,survp=0. ; j<=nlstate; j++)                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            /*survp += out[s1][j]; */
           lli= log(survp);            lli= log(survp);
         }          }
           
         else if  (s2==-5) {          else if  (s2==-4) { 
           for (j=1,survp=0. ; j<=2; j++)              for (j=3,survp=0. ; j<=nlstate; j++)  
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);            lli= log(survp); 
         }          } 
          
         else{          else if  (s2==-5) { 
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            for (j=1,survp=0. ; j<=2; j++)  
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          } 
         /*if(lli ==000.0)*/          
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          else{
         ipmx +=1;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         sw += weight[i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          } 
       } /* end of wave */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     } /* end of individual */          /*if(lli ==000.0)*/
   }  else if(mle==2){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ipmx +=1;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          sw += weight[i];
       for(mi=1; mi<= wav[i]-1; mi++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (ii=1;ii<=nlstate+ndeath;ii++)        } /* end of wave */
           for (j=1;j<=nlstate+ndeath;j++){      } /* end of individual */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }  else if(mle==2){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(d=0; d<=dh[mi][i]; d++){        for(mi=1; mi<= wav[i]-1; mi++){
           newm=savm;          for (ii=1;ii<=nlstate+ndeath;ii++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (j=1;j<=nlstate+ndeath;j++){
           for (kk=1; kk<=cptcovage;kk++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(d=0; d<=dh[mi][i]; d++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            newm=savm;
           savm=oldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           oldm=newm;            for (kk=1; kk<=cptcovage;kk++) {
         } /* end mult */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
         s1=s[mw[mi][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         s2=s[mw[mi+1][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         bbh=(double)bh[mi][i]/(double)stepm;            savm=oldm;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            oldm=newm;
         ipmx +=1;          } /* end mult */
         sw += weight[i];        
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s1=s[mw[mi][i]][i];
       } /* end of wave */          s2=s[mw[mi+1][i]][i];
     } /* end of individual */          bbh=(double)bh[mi][i]/(double)stepm; 
   }  else if(mle==3){  /* exponential inter-extrapolation */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ipmx +=1;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          sw += weight[i];
       for(mi=1; mi<= wav[i]-1; mi++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (ii=1;ii<=nlstate+ndeath;ii++)        } /* end of wave */
           for (j=1;j<=nlstate+ndeath;j++){      } /* end of individual */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }  else if(mle==3){  /* exponential inter-extrapolation */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(d=0; d<dh[mi][i]; d++){        for(mi=1; mi<= wav[i]-1; mi++){
           newm=savm;          for (ii=1;ii<=nlstate+ndeath;ii++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (j=1;j<=nlstate+ndeath;j++){
           for (kk=1; kk<=cptcovage;kk++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(d=0; d<dh[mi][i]; d++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            newm=savm;
           savm=oldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           oldm=newm;            for (kk=1; kk<=cptcovage;kk++) {
         } /* end mult */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
         s1=s[mw[mi][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         s2=s[mw[mi+1][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         bbh=(double)bh[mi][i]/(double)stepm;            savm=oldm;
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            oldm=newm;
         ipmx +=1;          } /* end mult */
         sw += weight[i];        
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s1=s[mw[mi][i]][i];
       } /* end of wave */          s2=s[mw[mi+1][i]][i];
     } /* end of individual */          bbh=(double)bh[mi][i]/(double)stepm; 
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ipmx +=1;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          sw += weight[i];
       for(mi=1; mi<= wav[i]-1; mi++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (ii=1;ii<=nlstate+ndeath;ii++)        } /* end of wave */
           for (j=1;j<=nlstate+ndeath;j++){      } /* end of individual */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(d=0; d<dh[mi][i]; d++){        for(mi=1; mi<= wav[i]-1; mi++){
           newm=savm;          for (ii=1;ii<=nlstate+ndeath;ii++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (j=1;j<=nlstate+ndeath;j++){
           for (kk=1; kk<=cptcovage;kk++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
                  for(d=0; d<dh[mi][i]; d++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            newm=savm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           savm=oldm;            for (kk=1; kk<=cptcovage;kk++) {
           oldm=newm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         } /* end mult */            }
                
         s1=s[mw[mi][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         s2=s[mw[mi+1][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if( s2 > nlstate){            savm=oldm;
           lli=log(out[s1][s2] - savm[s1][s2]);            oldm=newm;
         }else{          } /* end mult */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        
         }          s1=s[mw[mi][i]][i];
         ipmx +=1;          s2=s[mw[mi+1][i]][i];
         sw += weight[i];          if( s2 > nlstate){ 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            lli=log(out[s1][s2] - savm[s1][s2]);
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          }else{
       } /* end of wave */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     } /* end of individual */          }
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          ipmx +=1;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          sw += weight[i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(mi=1; mi<= wav[i]-1; mi++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for (ii=1;ii<=nlstate+ndeath;ii++)        } /* end of wave */
           for (j=1;j<=nlstate+ndeath;j++){      } /* end of individual */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(d=0; d<dh[mi][i]; d++){        for(mi=1; mi<= wav[i]-1; mi++){
           newm=savm;          for (ii=1;ii<=nlstate+ndeath;ii++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (j=1;j<=nlstate+ndeath;j++){
           for (kk=1; kk<=cptcovage;kk++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
                  for(d=0; d<dh[mi][i]; d++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            newm=savm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           savm=oldm;            for (kk=1; kk<=cptcovage;kk++) {
           oldm=newm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         } /* end mult */            }
                
         s1=s[mw[mi][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         s2=s[mw[mi+1][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            savm=oldm;
         ipmx +=1;            oldm=newm;
         sw += weight[i];          } /* end mult */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          s1=s[mw[mi][i]][i];
       } /* end of wave */          s2=s[mw[mi+1][i]][i];
     } /* end of individual */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   } /* End of if */          ipmx +=1;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          sw += weight[i];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   return -l;        } /* end of wave */
 }      } /* end of individual */
     } /* End of if */
 /*************** log-likelihood *************/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 double funcone( double *x)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* Same as likeli but slower because of a lot of printf and if */    return -l;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /*************** log-likelihood *************/
   double lli; /* Individual log likelihood */  double funcone( double *x)
   double llt;  {
   int s1, s2;    /* Same as likeli but slower because of a lot of printf and if */
   double bbh, survp;    int i, ii, j, k, mi, d, kk;
   /*extern weight */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   /* We are differentiating ll according to initial status */    double **out;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double lli; /* Individual log likelihood */
   /*for(i=1;i<imx;i++)    double llt;
     printf(" %d\n",s[4][i]);    int s1, s2;
   */    double bbh, survp;
   cov[1]=1.;    /*extern weight */
     /* We are differentiating ll according to initial status */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      printf(" %d\n",s[4][i]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    */
     for(mi=1; mi<= wav[i]-1; mi++){    cov[1]=1.;
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(d=0; d<dh[mi][i]; d++){      for(mi=1; mi<= wav[i]-1; mi++){
         newm=savm;        for (ii=1;ii<=nlstate+ndeath;ii++)
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for (j=1;j<=nlstate+ndeath;j++){
         for (kk=1; kk<=cptcovage;kk++) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(d=0; d<dh[mi][i]; d++){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          newm=savm;
         savm=oldm;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         oldm=newm;          for (kk=1; kk<=cptcovage;kk++) {
       } /* end mult */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
       s1=s[mw[mi][i]][i];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       s2=s[mw[mi+1][i]][i];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       bbh=(double)bh[mi][i]/(double)stepm;          savm=oldm;
       /* bias is positive if real duration          oldm=newm;
        * is higher than the multiple of stepm and negative otherwise.        } /* end mult */
        */        
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        s1=s[mw[mi][i]][i];
         lli=log(out[s1][s2] - savm[s1][s2]);        s2=s[mw[mi+1][i]][i];
       } else if  (s2==-2) {        bbh=(double)bh[mi][i]/(double)stepm; 
         for (j=1,survp=0. ; j<=nlstate; j++)        /* bias is positive if real duration
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];         * is higher than the multiple of stepm and negative otherwise.
         lli= log(survp);         */
       }else if (mle==1){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          lli=log(out[s1][s2] - savm[s1][s2]);
       } else if(mle==2){        } else if  (s2==-2) {
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          for (j=1,survp=0. ; j<=nlstate; j++) 
       } else if(mle==3){  /* exponential inter-extrapolation */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          lli= log(survp);
       } else if (mle==4){  /* mle=4 no inter-extrapolation */        }else if (mle==1){
         lli=log(out[s1][s2]); /* Original formula */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */        } else if(mle==2){
         lli=log(out[s1][s2]); /* Original formula */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       } /* End of if */        } else if(mle==3){  /* exponential inter-extrapolation */
       ipmx +=1;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       sw += weight[i];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          lli=log(out[s1][s2]); /* Original formula */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       if(globpr){          lli=log(out[s1][s2]); /* Original formula */
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\        } /* End of if */
  %11.6f %11.6f %11.6f ", \        ipmx +=1;
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],        sw += weight[i];
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){        printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); 
           llt +=ll[k]*gipmx/gsw;        if(globpr){
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         }   %11.6f %11.6f %11.6f ", \
         fprintf(ficresilk," %10.6f\n", -llt);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     } /* end of wave */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   } /* end of individual */            llt +=ll[k]*gipmx/gsw;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          fprintf(ficresilk," %10.6f\n", -llt);
   if(globpr==0){ /* First time we count the contributions and weights */        }
     gipmx=ipmx;      } /* end of wave */
     gsw=sw;    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   return -l;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
 /*************** function likelione ***********/      gsw=sw;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))    }
 {    return -l;
   /* This routine should help understanding what is done with  }
      the selection of individuals/waves and  
      to check the exact contribution to the likelihood.  
      Plotting could be done.  /*************** function likelione ***********/
    */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int k;  {
     /* This routine should help understanding what is done with 
   if(*globpri !=0){ /* Just counts and sums, no printings */       the selection of individuals/waves and
     strcpy(fileresilk,"ilk");       to check the exact contribution to the likelihood.
     strcat(fileresilk,fileres);       Plotting could be done.
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {     */
       printf("Problem with resultfile: %s\n", fileresilk);    int k;
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);  
     }    if(*globpri !=0){ /* Just counts and sums, no printings */
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      strcpy(fileresilk,"ilk"); 
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");      strcat(fileresilk,fileres);
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for(k=1; k<=nlstate; k++)        printf("Problem with resultfile: %s\n", fileresilk);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");      }
   }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   *fretone=(*funcone)(p);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   if(*globpri !=0){      for(k=1; k<=nlstate; k++) 
     fclose(ficresilk);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fflush(fichtm);    }
   }  
   return;    *fretone=(*funcone)(p);
 }    if(*globpri !=0){
       fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 /*********** Maximum Likelihood Estimation ***************/      fflush(fichtm); 
     } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    return;
 {  }
   int i,j, iter;  
   double **xi;  
   double fret;  /*********** Maximum Likelihood Estimation ***************/
   double fretone; /* Only one call to likelihood */  
   /*  char filerespow[FILENAMELENGTH];*/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   xi=matrix(1,npar,1,npar);  {
   for (i=1;i<=npar;i++)    int i,j, iter;
     for (j=1;j<=npar;j++)    double **xi;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double fret;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    double fretone; /* Only one call to likelihood */
   strcpy(filerespow,"pow");    /*  char filerespow[FILENAMELENGTH];*/
   strcat(filerespow,fileres);    xi=matrix(1,npar,1,npar);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {    for (i=1;i<=npar;i++)
     printf("Problem with resultfile: %s\n", filerespow);      for (j=1;j<=npar;j++)
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        xi[i][j]=(i==j ? 1.0 : 0.0);
   }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   fprintf(ficrespow,"# Powell\n# iter -2*LL");    strcpy(filerespow,"pow"); 
   for (i=1;i<=nlstate;i++)    strcat(filerespow,fileres);
     for(j=1;j<=nlstate+ndeath;j++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      printf("Problem with resultfile: %s\n", filerespow);
   fprintf(ficrespow,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
   powell(p,xi,npar,ftol,&iter,&fret,func);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   free_matrix(xi,1,npar,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
   fclose(ficrespow);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    fprintf(ficrespow,"\n");
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    powell(p,xi,npar,ftol,&iter,&fret,func);
   
 }    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
 /**** Computes Hessian and covariance matrix ***/    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double  **a,**y,*x,pd;  
   double **hess;  }
   int i, j,jk;  
   int *indx;  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);  {
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    double  **a,**y,*x,pd;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double **hess;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int i, j,jk;
   double gompertz(double p[]);    int *indx;
   hess=matrix(1,npar,1,npar);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   printf("\nCalculation of the hessian matrix. Wait...\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
   for (i=1;i<=npar;i++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     printf("%d",i);fflush(stdout);    double gompertz(double p[]);
     fprintf(ficlog,"%d",i);fflush(ficlog);    hess=matrix(1,npar,1,npar);
      
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
        fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     /*  printf(" %f ",p[i]);    for (i=1;i<=npar;i++){
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/      printf("%d",i);fflush(stdout);
   }      fprintf(ficlog,"%d",i);fflush(ficlog);
       
   for (i=1;i<=npar;i++) {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     for (j=1;j<=npar;j++)  {      
       if (j>i) {      /*  printf(" %f ",p[i]);
         printf(".%d%d",i,j);fflush(stdout);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    }
         hess[i][j]=hessij(p,delti,i,j,func,npar);    
            for (i=1;i<=npar;i++) {
         hess[j][i]=hess[i][j];          for (j=1;j<=npar;j++)  {
         /*printf(" %lf ",hess[i][j]);*/        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
     }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,delti,i,j,func,npar);
   printf("\n");          
   fprintf(ficlog,"\n");          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        }
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      }
      }
   a=matrix(1,npar,1,npar);    printf("\n");
   y=matrix(1,npar,1,npar);    fprintf(ficlog,"\n");
   x=vector(1,npar);  
   indx=ivector(1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (i=1;i<=npar;i++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    
   ludcmp(a,npar,indx,&pd);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   for (j=1;j<=npar;j++) {    x=vector(1,npar);
     for (i=1;i<=npar;i++) x[i]=0;    indx=ivector(1,npar);
     x[j]=1;    for (i=1;i<=npar;i++)
     lubksb(a,npar,indx,x);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for (i=1;i<=npar;i++){    ludcmp(a,npar,indx,&pd);
       matcov[i][j]=x[i];  
     }    for (j=1;j<=npar;j++) {
   }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   printf("\n#Hessian matrix#\n");      lubksb(a,npar,indx,x);
   fprintf(ficlog,"\n#Hessian matrix#\n");      for (i=1;i<=npar;i++){ 
   for (i=1;i<=npar;i++) {        matcov[i][j]=x[i];
     for (j=1;j<=npar;j++) {      }
       printf("%.3e ",hess[i][j]);    }
       fprintf(ficlog,"%.3e ",hess[i][j]);  
     }    printf("\n#Hessian matrix#\n");
     printf("\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficlog,"\n");    for (i=1;i<=npar;i++) { 
   }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   /* Recompute Inverse */        fprintf(ficlog,"%.3e ",hess[i][j]);
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      printf("\n");
   ludcmp(a,npar,indx,&pd);      fprintf(ficlog,"\n");
     }
   /*  printf("\n#Hessian matrix recomputed#\n");  
     /* Recompute Inverse */
   for (j=1;j<=npar;j++) {    for (i=1;i<=npar;i++)
     for (i=1;i<=npar;i++) x[i]=0;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     x[j]=1;    ludcmp(a,npar,indx,&pd);
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    /*  printf("\n#Hessian matrix recomputed#\n");
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);    for (j=1;j<=npar;j++) {
       fprintf(ficlog,"%.3e ",y[i][j]);      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
     printf("\n");      lubksb(a,npar,indx,x);
     fprintf(ficlog,"\n");      for (i=1;i<=npar;i++){ 
   }        y[i][j]=x[i];
   */        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);      printf("\n");
   free_vector(x,1,npar);      fprintf(ficlog,"\n");
   free_ivector(indx,1,npar);    }
   free_matrix(hess,1,npar,1,npar);    */
   
     free_matrix(a,1,npar,1,npar);
 }    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 /*************** hessian matrix ****************/    free_ivector(indx,1,npar);
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    free_matrix(hess,1,npar,1,npar);
 {  
   int i;  
   int l=1, lmax=20;  }
   double k1,k2;  
   double p2[NPARMAX+1];  /*************** hessian matrix ****************/
   double res;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;  {
   double fx;    int i;
   int k=0,kmax=10;    int l=1, lmax=20;
   double l1;    double k1,k2;
     double p2[NPARMAX+1];
   fx=func(x);    double res;
   for (i=1;i<=npar;i++) p2[i]=x[i];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   for(l=0 ; l <=lmax; l++){    double fx;
     l1=pow(10,l);    int k=0,kmax=10;
     delts=delt;    double l1;
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);    fx=func(x);
       p2[theta]=x[theta] +delt;    for (i=1;i<=npar;i++) p2[i]=x[i];
       k1=func(p2)-fx;    for(l=0 ; l <=lmax; l++){
       p2[theta]=x[theta]-delt;      l1=pow(10,l);
       k2=func(p2)-fx;      delts=delt;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for(k=1 ; k <kmax; k=k+1){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        delt = delta*(l1*k);
              p2[theta]=x[theta] +delt;
 #ifdef DEBUG        k1=func(p2)-fx;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        p2[theta]=x[theta]-delt;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        k2=func(p2)-fx;
 #endif        /*res= (k1-2.0*fx+k2)/delt/delt; */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        
         k=kmax;  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         k=kmax; l=lmax*10.;  #endif
       }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         delts=delt;          k=kmax;
       }        }
     }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   }          k=kmax; l=lmax*10.;
   delti[theta]=delts;        }
   return res;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
 }        }
       }
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    }
 {    delti[theta]=delts;
   int i;    return res; 
   int l=1, l1, lmax=20;    
   double k1,k2,k3,k4,res,fx;  }
   double p2[NPARMAX+1];  
   int k;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   fx=func(x);    int i;
   for (k=1; k<=2; k++) {    int l=1, l1, lmax=20;
     for (i=1;i<=npar;i++) p2[i]=x[i];    double k1,k2,k3,k4,res,fx;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double p2[NPARMAX+1];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int k;
     k1=func(p2)-fx;  
      fx=func(x);
     p2[thetai]=x[thetai]+delti[thetai]/k;    for (k=1; k<=2; k++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for (i=1;i<=npar;i++) p2[i]=x[i];
     k2=func(p2)-fx;      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     p2[thetai]=x[thetai]-delti[thetai]/k;      k1=func(p2)-fx;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    
     k3=func(p2)-fx;      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     p2[thetai]=x[thetai]-delti[thetai]/k;      k2=func(p2)-fx;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    
     k4=func(p2)-fx;      p2[thetai]=x[thetai]-delti[thetai]/k;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 #ifdef DEBUG      k3=func(p2)-fx;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      p2[thetai]=x[thetai]-delti[thetai]/k;
 #endif      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   return res;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /************** Inverse of matrix **************/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void ludcmp(double **a, int n, int *indx, double *d)  #endif
 {    }
   int i,imax,j,k;    return res;
   double big,dum,sum,temp;  }
   double *vv;  
    /************** Inverse of matrix **************/
   vv=vector(1,n);  void ludcmp(double **a, int n, int *indx, double *d) 
   *d=1.0;  { 
   for (i=1;i<=n;i++) {    int i,imax,j,k; 
     big=0.0;    double big,dum,sum,temp; 
     for (j=1;j<=n;j++)    double *vv; 
       if ((temp=fabs(a[i][j])) > big) big=temp;   
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    vv=vector(1,n); 
     vv[i]=1.0/big;    *d=1.0; 
   }    for (i=1;i<=n;i++) { 
   for (j=1;j<=n;j++) {      big=0.0; 
     for (i=1;i<j;i++) {      for (j=1;j<=n;j++) 
       sum=a[i][j];        if ((temp=fabs(a[i][j])) > big) big=temp; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       a[i][j]=sum;      vv[i]=1.0/big; 
     }    } 
     big=0.0;    for (j=1;j<=n;j++) { 
     for (i=j;i<=n;i++) {      for (i=1;i<j;i++) { 
       sum=a[i][j];        sum=a[i][j]; 
       for (k=1;k<j;k++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         sum -= a[i][k]*a[k][j];        a[i][j]=sum; 
       a[i][j]=sum;      } 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      big=0.0; 
         big=dum;      for (i=j;i<=n;i++) { 
         imax=i;        sum=a[i][j]; 
       }        for (k=1;k<j;k++) 
     }          sum -= a[i][k]*a[k][j]; 
     if (j != imax) {        a[i][j]=sum; 
       for (k=1;k<=n;k++) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         dum=a[imax][k];          big=dum; 
         a[imax][k]=a[j][k];          imax=i; 
         a[j][k]=dum;        } 
       }      } 
       *d = -(*d);      if (j != imax) { 
       vv[imax]=vv[j];        for (k=1;k<=n;k++) { 
     }          dum=a[imax][k]; 
     indx[j]=imax;          a[imax][k]=a[j][k]; 
     if (a[j][j] == 0.0) a[j][j]=TINY;          a[j][k]=dum; 
     if (j != n) {        } 
       dum=1.0/(a[j][j]);        *d = -(*d); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        vv[imax]=vv[j]; 
     }      } 
   }      indx[j]=imax; 
   free_vector(vv,1,n);  /* Doesn't work */      if (a[j][j] == 0.0) a[j][j]=TINY; 
 ;      if (j != n) { 
 }        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 void lubksb(double **a, int n, int *indx, double b[])      } 
 {    } 
   int i,ii=0,ip,j;    free_vector(vv,1,n);  /* Doesn't work */
   double sum;  ;
    } 
   for (i=1;i<=n;i++) {  
     ip=indx[i];  void lubksb(double **a, int n, int *indx, double b[]) 
     sum=b[ip];  { 
     b[ip]=b[i];    int i,ii=0,ip,j; 
     if (ii)    double sum; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];   
     else if (sum) ii=i;    for (i=1;i<=n;i++) { 
     b[i]=sum;      ip=indx[i]; 
   }      sum=b[ip]; 
   for (i=n;i>=1;i--) {      b[ip]=b[i]; 
     sum=b[i];      if (ii) 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     b[i]=sum/a[i][i];      else if (sum) ii=i; 
   }      b[i]=sum; 
 }    } 
     for (i=n;i>=1;i--) { 
 void pstamp(FILE *fichier)      sum=b[i]; 
 {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);      b[i]=sum/a[i][i]; 
 }    } 
   } 
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])  void pstamp(FILE *fichier)
 {  /* Some frequencies */  {
      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   int first;  
   double ***freq; /* Frequencies */  /************ Frequencies ********************/
   double *pp, **prop;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  {  /* Some frequencies */
   char fileresp[FILENAMELENGTH];    
      int i, m, jk, k1,i1, j1, bool, z1,j;
   pp=vector(1,nlstate);    int first;
   prop=matrix(1,nlstate,iagemin,iagemax+3);    double ***freq; /* Frequencies */
   strcpy(fileresp,"p");    double *pp, **prop;
   strcat(fileresp,fileres);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    char fileresp[FILENAMELENGTH];
     printf("Problem with prevalence resultfile: %s\n", fileresp);    
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    pp=vector(1,nlstate);
     exit(0);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    strcat(fileresp,fileres);
   j1=0;    if((ficresp=fopen(fileresp,"w"))==NULL) {
        printf("Problem with prevalence resultfile: %s\n", fileresp);
   j=cptcoveff;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      exit(0);
     }
   first=1;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   for(k1=1; k1<=j;k1++){    
     for(i1=1; i1<=ncodemax[k1];i1++){    j=cptcoveff;
       j1++;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    first=1;
       for (i=-5; i<=nlstate+ndeath; i++)    
         for (jk=-5; jk<=nlstate+ndeath; jk++)      for(k1=1; k1<=j;k1++){
           for(m=iagemin; m <= iagemax+3; m++)      for(i1=1; i1<=ncodemax[k1];i1++){
             freq[i][jk][m]=0;        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for (i=1; i<=nlstate; i++)            scanf("%d", i);*/
       for(m=iagemin; m <= iagemax+3; m++)        for (i=-5; i<=nlstate+ndeath; i++)  
         prop[i][m]=0;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                  for(m=iagemin; m <= iagemax+3; m++)
       dateintsum=0;              freq[i][jk][m]=0;
       k2cpt=0;  
       for (i=1; i<=imx; i++) {      for (i=1; i<=nlstate; i++)  
         bool=1;        for(m=iagemin; m <= iagemax+3; m++)
         if  (cptcovn>0) {          prop[i][m]=0;
           for (z1=1; z1<=cptcoveff; z1++)        
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        dateintsum=0;
               bool=0;        k2cpt=0;
         }        for (i=1; i<=imx; i++) {
         if (bool==1){          bool=1;
           for(m=firstpass; m<=lastpass; m++){          if  (cptcovn>0) {
             k2=anint[m][i]+(mint[m][i]/12.);            for (z1=1; z1<=cptcoveff; z1++) 
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                bool=0;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          }
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];          if (bool==1){
               if (m<lastpass) {            for(m=firstpass; m<=lastpass; m++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              k2=anint[m][i]+(mint[m][i]/12.);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                              if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 dateintsum=dateintsum+k2;                if (m<lastpass) {
                 k2cpt++;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
               }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
               /*}*/                }
           }                
         }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }                  dateintsum=dateintsum+k2;
                          k2cpt++;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/                }
       pstamp(ficresp);                /*}*/
       if  (cptcovn>0) {            }
         fprintf(ficresp, "\n#********** Variable ");          }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresp, "**********\n#");         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for(i=1; i<=nlstate;i++)        pstamp(ficresp);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        if  (cptcovn>0) {
       fprintf(ficresp, "\n");          fprintf(ficresp, "\n#********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(i=iagemin; i <= iagemax+3; i++){          fprintf(ficresp, "**********\n#");
         if(i==iagemax+3){        }
           fprintf(ficlog,"Total");        for(i=1; i<=nlstate;i++) 
         }else{          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           if(first==1){        fprintf(ficresp, "\n");
             first=0;        
             printf("See log file for details...\n");        for(i=iagemin; i <= iagemax+3; i++){
           }          if(i==iagemax+3){
           fprintf(ficlog,"Age %d", i);            fprintf(ficlog,"Total");
         }          }else{
         for(jk=1; jk <=nlstate ; jk++){            if(first==1){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              first=0;
             pp[jk] += freq[jk][m][i];              printf("See log file for details...\n");
         }            }
         for(jk=1; jk <=nlstate ; jk++){            fprintf(ficlog,"Age %d", i);
           for(m=-1, pos=0; m <=0 ; m++)          }
             pos += freq[jk][m][i];          for(jk=1; jk <=nlstate ; jk++){
           if(pp[jk]>=1.e-10){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             if(first==1){              pp[jk] += freq[jk][m][i]; 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }
             }          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for(m=-1, pos=0; m <=0 ; m++)
           }else{              pos += freq[jk][m][i];
             if(first==1)            if(pp[jk]>=1.e-10){
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              if(first==1){
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }              }
         }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
         for(jk=1; jk <=nlstate ; jk++){              if(first==1)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             pp[jk] += freq[jk][m][i];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }                  }
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          }
           pos += pp[jk];  
           posprop += prop[jk][i];          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         for(jk=1; jk <=nlstate ; jk++){              pp[jk] += freq[jk][m][i];
           if(pos>=1.e-5){          }       
             if(first==1)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            pos += pp[jk];
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            posprop += prop[jk][i];
           }else{          }
             if(first==1)          for(jk=1; jk <=nlstate ; jk++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            if(pos>=1.e-5){
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           if( i <= iagemax){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             if(pos>=1.e-5){            }else{
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);              if(first==1)
               /*probs[i][jk][j1]= pp[jk]/pos;*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }            }
             else            if( i <= iagemax){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);              if(pos>=1.e-5){
           }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                        /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)              }
           for(m=-1; m <=nlstate+ndeath; m++)              else
             if(freq[jk][m][i] !=0 ) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             if(first==1)            }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          
             }          for(jk=-1; jk <=nlstate+ndeath; jk++)
         if(i <= iagemax)            for(m=-1; m <=nlstate+ndeath; m++)
           fprintf(ficresp,"\n");              if(freq[jk][m][i] !=0 ) {
         if(first==1)              if(first==1)
           printf("Others in log...\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         fprintf(ficlog,"\n");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       }              }
     }          if(i <= iagemax)
   }            fprintf(ficresp,"\n");
   dateintmean=dateintsum/k2cpt;          if(first==1)
              printf("Others in log...\n");
   fclose(ficresp);          fprintf(ficlog,"\n");
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);        }
   free_vector(pp,1,nlstate);      }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    }
   /* End of Freq */    dateintmean=dateintsum/k2cpt; 
 }   
     fclose(ficresp);
 /************ Prevalence ********************/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    free_vector(pp,1,nlstate);
 {      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    /* End of Freq */
      in each health status at the date of interview (if between dateprev1 and dateprev2).  }
      We still use firstpass and lastpass as another selection.  
   */  /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  {  
   double ***freq; /* Frequencies */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double *pp, **prop;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   double pos,posprop;       We still use firstpass and lastpass as another selection.
   double  y2; /* in fractional years */    */
   int iagemin, iagemax;   
     int i, m, jk, k1, i1, j1, bool, z1,j;
   iagemin= (int) agemin;    double ***freq; /* Frequencies */
   iagemax= (int) agemax;    double *pp, **prop;
   /*pp=vector(1,nlstate);*/    double pos,posprop; 
   prop=matrix(1,nlstate,iagemin,iagemax+3);    double  y2; /* in fractional years */
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    int iagemin, iagemax;
   j1=0;  
      iagemin= (int) agemin;
   j=cptcoveff;    iagemax= (int) agemax;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   for(k1=1; k1<=j;k1++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for(i1=1; i1<=ncodemax[k1];i1++){    j1=0;
       j1++;    
          j=cptcoveff;
       for (i=1; i<=nlstate; i++)      if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(m=iagemin; m <= iagemax+3; m++)    
           prop[i][m]=0.0;    for(k1=1; k1<=j;k1++){
            for(i1=1; i1<=ncodemax[k1];i1++){
       for (i=1; i<=imx; i++) { /* Each individual */        j1++;
         bool=1;        
         if  (cptcovn>0) {        for (i=1; i<=nlstate; i++)  
           for (z1=1; z1<=cptcoveff; z1++)          for(m=iagemin; m <= iagemax+3; m++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            prop[i][m]=0.0;
               bool=0;       
         }        for (i=1; i<=imx; i++) { /* Each individual */
         if (bool==1) {          bool=1;
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/          if  (cptcovn>0) {
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */            for (z1=1; z1<=cptcoveff; z1++) 
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                bool=0;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          } 
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);          if (bool==1) { 
               if (s[m][i]>0 && s[m][i]<=nlstate) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 prop[s[m][i]][iagemax+3] += weight[i];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           } /* end selection of waves */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=iagemin; i <= iagemax+3; i++){                    prop[s[m][i]][iagemax+3] += weight[i]; 
                        } 
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {              }
           posprop += prop[jk][i];            } /* end selection of waves */
         }          }
         }
         for(jk=1; jk <=nlstate ; jk++){            for(i=iagemin; i <= iagemax+3; i++){  
           if( i <=  iagemax){          
             if(posprop>=1.e-5){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
               probs[i][jk][j1]= prop[jk][i]/posprop;            posprop += prop[jk][i]; 
             }          } 
           }  
         }/* end jk */          for(jk=1; jk <=nlstate ; jk++){     
       }/* end i */            if( i <=  iagemax){ 
     } /* end i1 */              if(posprop>=1.e-5){ 
   } /* end k1 */                probs[i][jk][j1]= prop[jk][i]/posprop;
                } else
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   /*free_vector(pp,1,nlstate);*/            } 
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);          }/* end jk */ 
 }  /* End of prevalence */        }/* end i */ 
       } /* end i1 */
 /************* Waves Concatenation ***************/    } /* end k1 */
     
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 {    /*free_vector(pp,1,nlstate);*/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      Death is a valid wave (if date is known).  }  /* End of prevalence */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]  /************* Waves Concatenation ***************/
      and mw[mi+1][i]. dh depends on stepm.  
      */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
   int i, mi, m;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       Death is a valid wave (if date is known).
      double sum=0., jmean=0.;*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   int first;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   int j, k=0,jk, ju, jl;       and mw[mi+1][i]. dh depends on stepm.
   double sum=0.;       */
   first=0;  
   jmin=1e+5;    int i, mi, m;
   jmax=-1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   jmean=0.;       double sum=0., jmean=0.;*/
   for(i=1; i<=imx; i++){    int first;
     mi=0;    int j, k=0,jk, ju, jl;
     m=firstpass;    double sum=0.;
     while(s[m][i] <= nlstate){    first=0;
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)    jmin=1e+5;
         mw[++mi][i]=m;    jmax=-1;
       if(m >=lastpass)    jmean=0.;
         break;    for(i=1; i<=imx; i++){
       else      mi=0;
         m++;      m=firstpass;
     }/* end while */      while(s[m][i] <= nlstate){
     if (s[m][i] > nlstate){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       mi++;     /* Death is another wave */          mw[++mi][i]=m;
       /* if(mi==0)  never been interviewed correctly before death */        if(m >=lastpass)
          /* Only death is a correct wave */          break;
       mw[mi][i]=m;        else
     }          m++;
       }/* end while */
     wav[i]=mi;      if (s[m][i] > nlstate){
     if(mi==0){        mi++;     /* Death is another wave */
       nbwarn++;        /* if(mi==0)  never been interviewed correctly before death */
       if(first==0){           /* Only death is a correct wave */
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);        mw[mi][i]=m;
         first=1;      }
       }  
       if(first==1){      wav[i]=mi;
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);      if(mi==0){
       }        nbwarn++;
     } /* end mi==0 */        if(first==0){
   } /* End individuals */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   for(i=1; i<=imx; i++){        }
     for(mi=1; mi<wav[i];mi++){        if(first==1){
       if (stepm <=0)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         dh[mi][i]=1;        }
       else{      } /* end mi==0 */
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    } /* End individuals */
           if (agedc[i] < 2*AGESUP) {  
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    for(i=1; i<=imx; i++){
             if(j==0) j=1;  /* Survives at least one month after exam */      for(mi=1; mi<wav[i];mi++){
             else if(j<0){        if (stepm <=0)
               nberr++;          dh[mi][i]=1;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        else{
               j=1; /* Temporary Dangerous patch */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);            if (agedc[i] < 2*AGESUP) {
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);              if(j==0) j=1;  /* Survives at least one month after exam */
             }              else if(j<0){
             k=k+1;                nberr++;
             if (j >= jmax){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               jmax=j;                j=1; /* Temporary Dangerous patch */
               ijmax=i;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             if (j <= jmin){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               jmin=j;              }
               ijmin=i;              k=k+1;
             }              if (j >= jmax){
             sum=sum+j;                jmax=j;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/                ijmax=i;
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              }
           }              if (j <= jmin){
         }                jmin=j;
         else{                ijmin=i;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              }
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           k=k+1;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           if (j >= jmax) {            }
             jmax=j;          }
             ijmax=i;          else{
           }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           else if (j <= jmin){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             jmin=j;  
             ijmin=i;            k=k+1;
           }            if (j >= jmax) {
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              jmax=j;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/              ijmax=i;
           if(j<0){            }
             nberr++;            else if (j <= jmin){
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              jmin=j;
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              ijmin=i;
           }            }
           sum=sum+j;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         jk= j/stepm;            if(j<0){
         jl= j -jk*stepm;              nberr++;
         ju= j -(jk+1)*stepm;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           if(jl==0){            }
             dh[mi][i]=jk;            sum=sum+j;
             bh[mi][i]=0;          }
           }else{ /* We want a negative bias in order to only have interpolation ie          jk= j/stepm;
                   * at the price of an extra matrix product in likelihood */          jl= j -jk*stepm;
             dh[mi][i]=jk+1;          ju= j -(jk+1)*stepm;
             bh[mi][i]=ju;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           }            if(jl==0){
         }else{              dh[mi][i]=jk;
           if(jl <= -ju){              bh[mi][i]=0;
             dh[mi][i]=jk;            }else{ /* We want a negative bias in order to only have interpolation ie
             bh[mi][i]=jl;       /* bias is positive if real duration                    * at the price of an extra matrix product in likelihood */
                                  * is higher than the multiple of stepm and negative otherwise.              dh[mi][i]=jk+1;
                                  */              bh[mi][i]=ju;
           }            }
           else{          }else{
             dh[mi][i]=jk+1;            if(jl <= -ju){
             bh[mi][i]=ju;              dh[mi][i]=jk;
           }              bh[mi][i]=jl;       /* bias is positive if real duration
           if(dh[mi][i]==0){                                   * is higher than the multiple of stepm and negative otherwise.
             dh[mi][i]=1; /* At least one step */                                   */
             bh[mi][i]=ju; /* At least one step */            }
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/            else{
           }              dh[mi][i]=jk+1;
         } /* end if mle */              bh[mi][i]=ju;
       }            }
     } /* end wave */            if(dh[mi][i]==0){
   }              dh[mi][i]=1; /* At least one step */
   jmean=sum/k;              bh[mi][i]=ju; /* At least one step */
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);            }
  }          } /* end if mle */
         }
 /*********** Tricode ****************************/      } /* end wave */
 void tricode(int *Tvar, int **nbcode, int imx)    }
 {    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   int Ndum[20],ij=1, k, j, i, maxncov=19;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   int cptcode=0;   }
   cptcoveff=0;  
    /*********** Tricode ****************************/
   for (k=0; k<maxncov; k++) Ndum[k]=0;  void tricode(int *Tvar, int **nbcode, int imx)
   for (k=1; k<=7; k++) ncodemax[k]=0;  {
     
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum  
                                modality*/    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    int cptcode=0;
       Ndum[ij]++; /*store the modality */    cptcoveff=0; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/   
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable    for (k=0; k<maxncov; k++) Ndum[k]=0;
                                        Tvar[j]. If V=sex and male is 0 and    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
                                        female is 1, then  cptcode=1.*/  
     }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     for (i=0; i<=cptcode; i++) {                                 modality*/ 
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
     }        Ndum[ij]++; /*counts the occurence of this modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     ij=1;        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
     for (i=1; i<=ncodemax[j]; i++) {                                         Tvar[j]. If V=sex and male is 0 and 
       for (k=0; k<= maxncov; k++) {                                         female is 1, then  cptcode=1.*/
         if (Ndum[k] != 0) {      }
           nbcode[Tvar[j]][ij]=k;  
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
                  if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariate. In fact ncodemax[j]=2 (dichotom. variables only) but it can be more */
           ij++;      } /* Ndum[-1] number of undefined modalities */
         }  
         if (ij > ncodemax[j]) break;      ij=1; 
       }        for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
     }        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
   }            if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
  for (k=0; k< maxncov; k++) Ndum[k]=0;                                       k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
  for (i=1; i<=ncovmodel-2; i++) {            ij++;
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/          }
    ij=Tvar[i];          if (ij > ncodemax[j]) break; 
    Ndum[ij]++;        }  
  }      } 
     }  
  ij=1;  
  for (i=1; i<= maxncov; i++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i; /*For printing */   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      ij++;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
  }     Ndum[ij]++;
     }
  cptcoveff=ij-1; /*Number of simple covariates*/  
 }   ij=1;
    for (i=1; i<= maxncov; i++) {
 /*********** Health Expectancies ****************/     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )       ij++;
      }
 {   }
   /* Health expectancies, no variances */   ij--;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;   cptcoveff=ij; /*Number of simple covariates*/
   double age, agelim, hf;  }
   double ***p3mat;  
   double eip;  /*********** Health Expectancies ****************/
   
   pstamp(ficreseij);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");  
   fprintf(ficreseij,"# Age");  {
   for(i=1; i<=nlstate;i++){    /* Health expectancies, no variances */
     for(j=1; j<=nlstate;j++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       fprintf(ficreseij," e%1d%1d ",i,j);    int nhstepma, nstepma; /* Decreasing with age */
     }    double age, agelim, hf;
     fprintf(ficreseij," e%1d. ",i);    double ***p3mat;
   }    double eip;
   fprintf(ficreseij,"\n");  
     pstamp(ficreseij);
      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   if(estepm < stepm){    fprintf(ficreseij,"# Age");
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(i=1; i<=nlstate;i++){
   }      for(j=1; j<=nlstate;j++){
   else  hstepm=estepm;          fprintf(ficreseij," e%1d%1d ",i,j);
   /* We compute the life expectancy from trapezoids spaced every estepm months      }
    * This is mainly to measure the difference between two models: for example      fprintf(ficreseij," e%1d. ",i);
    * if stepm=24 months pijx are given only every 2 years and by summing them    }
    * we are calculating an estimate of the Life Expectancy assuming a linear    fprintf(ficreseij,"\n");
    * progression in between and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we    
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    if(estepm < stepm){
    * to compare the new estimate of Life expectancy with the same linear      printf ("Problem %d lower than %d\n",estepm, stepm);
    * hypothesis. A more precise result, taking into account a more precise    }
    * curvature will be obtained if estepm is as small as stepm. */    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   /* For example we decided to compute the life expectancy with the smallest unit */     * This is mainly to measure the difference between two models: for example
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     * if stepm=24 months pijx are given only every 2 years and by summing them
      nhstepm is the number of hstepm from age to agelim     * we are calculating an estimate of the Life Expectancy assuming a linear 
      nstepm is the number of stepm from age to agelin.     * progression in between and thus overestimating or underestimating according
      Look at hpijx to understand the reason of that which relies in memory size     * to the curvature of the survival function. If, for the same date, we 
      and note for a fixed period like estepm months */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the     * to compare the new estimate of Life expectancy with the same linear 
      survival function given by stepm (the optimization length). Unfortunately it     * hypothesis. A more precise result, taking into account a more precise
      means that if the survival funtion is printed only each two years of age and if     * curvature will be obtained if estepm is as small as stepm. */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    /* For example we decided to compute the life expectancy with the smallest unit */
   */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   agelim=AGESUP;       Look at hpijx to understand the reason of that which relies in memory size
   /* If stepm=6 months */       and note for a fixed period like estepm months */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       survival function given by stepm (the optimization length). Unfortunately it
           means that if the survival funtion is printed only each two years of age and if
 /* nhstepm age range expressed in number of stepm */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);       results. So we changed our mind and took the option of the best precision.
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */    */
   /* if (stepm >= YEARM) hstepm=1;*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim=AGESUP;
     /* If stepm=6 months */
   for (age=bage; age<=fage; age ++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);    /* nhstepm age range expressed in number of stepm */
        nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
     printf("%d|",(int)age);fflush(stdout);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      
     for (age=bage; age<=fage; age ++){ 
     /* Computing expectancies */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(i=1; i<=nlstate;i++)      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(j=1; j<=nlstate;j++)      /* if (stepm >= YEARM) hstepm=1;*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
                /* If stepm=6 months */
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         }      
          hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fprintf(ficreseij,"%3.0f",age );      
     for(i=1; i<=nlstate;i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       eip=0;      
       for(j=1; j<=nlstate;j++){      printf("%d|",(int)age);fflush(stdout);
         eip +=eij[i][j][(int)age];      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );      
       }      /* Computing expectancies */
       fprintf(ficreseij,"%9.4f", eip );      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
     fprintf(ficreseij,"\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   printf("\n");  
   fprintf(ficlog,"\n");          }
    
 }      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )        eip=0;
         for(j=1; j<=nlstate;j++){
 {          eip +=eij[i][j][(int)age];
   /* Covariances of health expectancies eij and of total life expectancies according          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
    to initial status i, ei. .        }
   */        fprintf(ficreseij,"%9.4f", eip );
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;      }
   double age, agelim, hf;      fprintf(ficreseij,"\n");
   double ***p3matp, ***p3matm, ***varhe;      
   double **dnewm,**doldm;    }
   double *xp, *xm;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **gp, **gm;    printf("\n");
   double ***gradg, ***trgradg;    fprintf(ficlog,"\n");
   int theta;    
   }
   double eip, vip;  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  
   xp=vector(1,npar);  {
   xm=vector(1,npar);    /* Covariances of health expectancies eij and of total life expectancies according
   dnewm=matrix(1,nlstate*nlstate,1,npar);     to initial status i, ei. .
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   pstamp(ficresstdeij);    int nhstepma, nstepma; /* Decreasing with age */
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");    double age, agelim, hf;
   fprintf(ficresstdeij,"# Age");    double ***p3matp, ***p3matm, ***varhe;
   for(i=1; i<=nlstate;i++){    double **dnewm,**doldm;
     for(j=1; j<=nlstate;j++)    double *xp, *xm;
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);    double **gp, **gm;
     fprintf(ficresstdeij," e%1d. ",i);    double ***gradg, ***trgradg;
   }    int theta;
   fprintf(ficresstdeij,"\n");  
     double eip, vip;
   pstamp(ficrescveij);  
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fprintf(ficrescveij,"# Age");    xp=vector(1,npar);
   for(i=1; i<=nlstate;i++)    xm=vector(1,npar);
     for(j=1; j<=nlstate;j++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
       cptj= (j-1)*nlstate+i;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for(i2=1; i2<=nlstate;i2++)    
         for(j2=1; j2<=nlstate;j2++){    pstamp(ficresstdeij);
           cptj2= (j2-1)*nlstate+i2;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
           if(cptj2 <= cptj)    fprintf(ficresstdeij,"# Age");
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    for(i=1; i<=nlstate;i++){
         }      for(j=1; j<=nlstate;j++)
     }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   fprintf(ficrescveij,"\n");      fprintf(ficresstdeij," e%1d. ",i);
      }
   if(estepm < stepm){    fprintf(ficresstdeij,"\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    pstamp(ficrescveij);
   else  hstepm=estepm;      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months    fprintf(ficrescveij,"# Age");
    * This is mainly to measure the difference between two models: for example    for(i=1; i<=nlstate;i++)
    * if stepm=24 months pijx are given only every 2 years and by summing them      for(j=1; j<=nlstate;j++){
    * we are calculating an estimate of the Life Expectancy assuming a linear        cptj= (j-1)*nlstate+i;
    * progression in between and thus overestimating or underestimating according        for(i2=1; i2<=nlstate;i2++)
    * to the curvature of the survival function. If, for the same date, we          for(j2=1; j2<=nlstate;j2++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            cptj2= (j2-1)*nlstate+i2;
    * to compare the new estimate of Life expectancy with the same linear            if(cptj2 <= cptj)
    * hypothesis. A more precise result, taking into account a more precise              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
    * curvature will be obtained if estepm is as small as stepm. */          }
       }
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficrescveij,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim    if(estepm < stepm){
      nstepm is the number of stepm from age to agelin.      printf ("Problem %d lower than %d\n",estepm, stepm);
      Look at hpijx to understand the reason of that which relies in memory size    }
      and note for a fixed period like estepm months */    else  hstepm=estepm;   
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* We compute the life expectancy from trapezoids spaced every estepm months
      survival function given by stepm (the optimization length). Unfortunately it     * This is mainly to measure the difference between two models: for example
      means that if the survival funtion is printed only each two years of age and if     * if stepm=24 months pijx are given only every 2 years and by summing them
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     * we are calculating an estimate of the Life Expectancy assuming a linear 
      results. So we changed our mind and took the option of the best precision.     * progression in between and thus overestimating or underestimating according
   */     * to the curvature of the survival function. If, for the same date, we 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   /* If stepm=6 months */     * hypothesis. A more precise result, taking into account a more precise
   /* nhstepm age range expressed in number of stepm */     * curvature will be obtained if estepm is as small as stepm. */
   agelim=AGESUP;  
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);    /* For example we decided to compute the life expectancy with the smallest unit */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /* if (stepm >= YEARM) hstepm=1;*/       nhstepm is the number of hstepm from age to agelim 
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like estepm months */
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);       survival function given by stepm (the optimization length). Unfortunately it
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);       means that if the survival funtion is printed only each two years of age and if
   gp=matrix(0,nhstepm,1,nlstate*nlstate);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   gm=matrix(0,nhstepm,1,nlstate*nlstate);       results. So we changed our mind and took the option of the best precision.
     */
   for (age=bage; age<=fage; age ++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* If stepm=6 months */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /* nhstepm age range expressed in number of stepm */
      agelim=AGESUP;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* Computing  Variances of health expectancies */    /* if (stepm >= YEARM) hstepm=1;*/
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        decrease memory allocation */    
     for(theta=1; theta <=npar; theta++){    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1; i<=npar; i++){    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         xm[i] = x[i] - (i==theta ?delti[theta]:0);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);    
      for (age=bage; age<=fage; age ++){ 
       for(j=1; j<= nlstate; j++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         for(i=1; i<=nlstate; i++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           for(h=0; h<=nhstepm-1; h++){      /* if (stepm >= YEARM) hstepm=1;*/
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;  
           }      /* If stepm=6 months */
         }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
            
       for(ij=1; ij<= nlstate*nlstate; ij++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];      /* Computing  Variances of health expectancies */
         }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     }/* End theta */         decrease memory allocation */
          for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ 
     for(h=0; h<=nhstepm-1; h++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(j=1; j<=nlstate*nlstate;j++)          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
            hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
      for(ij=1;ij<=nlstate*nlstate;ij++)        for(j=1; j<= nlstate; j++){
       for(ji=1;ji<=nlstate*nlstate;ji++)          for(i=1; i<=nlstate; i++){
         varhe[ij][ji][(int)age] =0.;            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
      printf("%d|",(int)age);fflush(stdout);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            }
      for(h=0;h<=nhstepm-1;h++){          }
       for(k=0;k<=nhstepm-1;k++){        }
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);       
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);        for(ij=1; ij<= nlstate*nlstate; ij++)
         for(ij=1;ij<=nlstate*nlstate;ij++)          for(h=0; h<=nhstepm-1; h++){
           for(ji=1;ji<=nlstate*nlstate;ji++)            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;          }
       }      }/* End theta */
     }      
       
     /* Computing expectancies */      for(h=0; h<=nhstepm-1; h++)
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);          for(j=1; j<=nlstate*nlstate;j++)
     for(i=1; i<=nlstate;i++)          for(theta=1; theta <=npar; theta++)
       for(j=1; j<=nlstate;j++)            trgradg[h][j][theta]=gradg[h][theta][j];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;  
                 for(ij=1;ij<=nlstate*nlstate;ij++)
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
         }  
        printf("%d|",(int)age);fflush(stdout);
     fprintf(ficresstdeij,"%3.0f",age );       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(i=1; i<=nlstate;i++){       for(h=0;h<=nhstepm-1;h++){
       eip=0.;        for(k=0;k<=nhstepm-1;k++){
       vip=0.;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for(j=1; j<=nlstate;j++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         eip += eij[i][j][(int)age];          for(ij=1;ij<=nlstate*nlstate;ij++)
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */            for(ji=1;ji<=nlstate*nlstate;ji++)
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );        }
       }      }
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));  
     }      /* Computing expectancies */
     fprintf(ficresstdeij,"\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
     fprintf(ficrescveij,"%3.0f",age );        for(j=1; j<=nlstate;j++)
     for(i=1; i<=nlstate;i++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(j=1; j<=nlstate;j++){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         cptj= (j-1)*nlstate+i;            
         for(i2=1; i2<=nlstate;i2++)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for(j2=1; j2<=nlstate;j2++){  
             cptj2= (j2-1)*nlstate+i2;          }
             if(cptj2 <= cptj)  
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);      fprintf(ficresstdeij,"%3.0f",age );
           }      for(i=1; i<=nlstate;i++){
       }        eip=0.;
     fprintf(ficrescveij,"\n");        vip=0.;
            for(j=1; j<=nlstate;j++){
   }          eip += eij[i][j][(int)age];
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);        }
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   printf("\n");      fprintf(ficresstdeij,"\n");
   fprintf(ficlog,"\n");  
       fprintf(ficrescveij,"%3.0f",age );
   free_vector(xm,1,npar);      for(i=1; i<=nlstate;i++)
   free_vector(xp,1,npar);        for(j=1; j<=nlstate;j++){
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);          cptj= (j-1)*nlstate+i;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);          for(i2=1; i2<=nlstate;i2++)
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);            for(j2=1; j2<=nlstate;j2++){
 }              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
 /************ Variance ******************/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])            }
 {        }
   /* Variance of health expectancies */      fprintf(ficrescveij,"\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/     
   /* double **newm;*/    }
   double **dnewm,**doldm;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double **dnewmp,**doldmp;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   int i, j, nhstepm, hstepm, h, nstepm ;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   int k, cptcode;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   double *xp;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **gp, **gm;  /* for var eij */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***gradg, ***trgradg; /*for var eij */    printf("\n");
   double **gradgp, **trgradgp; /* for var p point j */    fprintf(ficlog,"\n");
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    free_vector(xm,1,npar);
   double ***p3mat;    free_vector(xp,1,npar);
   double age,agelim, hf;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double ***mobaverage;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   int theta;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   char digit[4];  }
   char digitp[25];  
   /************ Variance ******************/
   char fileresprobmorprev[FILENAMELENGTH];  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   if(popbased==1){    /* Variance of health expectancies */
     if(mobilav!=0)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       strcpy(digitp,"-populbased-mobilav-");    /* double **newm;*/
     else strcpy(digitp,"-populbased-nomobil-");    double **dnewm,**doldm;
   }    double **dnewmp,**doldmp;
   else    int i, j, nhstepm, hstepm, h, nstepm ;
     strcpy(digitp,"-stablbased-");    int k, cptcode;
     double *xp;
   if (mobilav!=0) {    double **gp, **gm;  /* for var eij */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***gradg, ***trgradg; /*for var eij */
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    double *gpp, *gmp; /* for var p point j */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     }    double ***p3mat;
   }    double age,agelim, hf;
     double ***mobaverage;
   strcpy(fileresprobmorprev,"prmorprev");    int theta;
   sprintf(digit,"%-d",ij);    char digit[4];
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    char digitp[25];
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    char fileresprobmorprev[FILENAMELENGTH];
   strcat(fileresprobmorprev,fileres);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    if(popbased==1){
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      if(mobilav!=0)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        strcpy(digitp,"-populbased-mobilav-");
   }      else strcpy(digitp,"-populbased-nomobil-");
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    }
      else 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      strcpy(digitp,"-stablbased-");
   pstamp(ficresprobmorprev);  
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    if (mobilav!=0) {
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fprintf(ficresprobmorprev," p.%-d SE",j);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     for(i=1; i<=nlstate;i++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      }
   }      }
   fprintf(ficresprobmorprev,"\n");  
   fprintf(ficgp,"\n# Routine varevsij");    strcpy(fileresprobmorprev,"prmorprev"); 
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    sprintf(digit,"%-d",ij);
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 /*   } */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    strcat(fileresprobmorprev,fileres);
   pstamp(ficresvij);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   if(popbased==1)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    }
   else    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");   
   fprintf(ficresvij,"# Age");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   for(i=1; i<=nlstate;i++)    pstamp(ficresprobmorprev);
     for(j=1; j<=nlstate;j++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficresvij,"\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   xp=vector(1,npar);      for(i=1; i<=nlstate;i++)
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   doldm=matrix(1,nlstate,1,nlstate);    }  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    fprintf(ficresprobmorprev,"\n");
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   gpp=vector(nlstate+1,nlstate+ndeath);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   gmp=vector(nlstate+1,nlstate+ndeath);  /*   } */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
   if(estepm < stepm){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     printf ("Problem %d lower than %d\n",estepm, stepm);    if(popbased==1)
   }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   else  hstepm=estepm;      else
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficresvij,"# Age");
      nhstepm is the number of hstepm from age to agelim    for(i=1; i<=nlstate;i++)
      nstepm is the number of stepm from age to agelin.      for(j=1; j<=nlstate;j++)
      Look at hpijx to understand the reason of that which relies in memory size        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      and note for a fixed period like k years */    fprintf(ficresvij,"\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    xp=vector(1,npar);
      means that if the survival funtion is printed every two years of age and if    dnewm=matrix(1,nlstate,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    doldm=matrix(1,nlstate,1,nlstate);
      results. So we changed our mind and took the option of the best precision.    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   agelim = AGESUP;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    gpp=vector(nlstate+1,nlstate+ndeath);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    gmp=vector(nlstate+1,nlstate+ndeath);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    if(estepm < stepm){
     gp=matrix(0,nhstepm,1,nlstate);      printf ("Problem %d lower than %d\n",estepm, stepm);
     gm=matrix(0,nhstepm,1,nlstate);    }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     for(theta=1; theta <=npar; theta++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/       nhstepm is the number of hstepm from age to agelim 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       nstepm is the number of stepm from age to agelin. 
       }       Look at function hpijx to understand why (it is linked to memory size questions) */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
       if (popbased==1) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         if(mobilav ==0){       results. So we changed our mind and took the option of the best precision.
           for(i=1; i<=nlstate;i++)    */
             prlim[i][i]=probs[(int)age][i][ij];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         }else{ /* mobilav */    agelim = AGESUP;
           for(i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             prlim[i][i]=mobaverage[(int)age][i][ij];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       for(j=1; j<= nlstate; j++){      gp=matrix(0,nhstepm,1,nlstate);
         for(h=0; h<=nhstepm; h++){      gm=matrix(0,nhstepm,1,nlstate);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       /* This for computing probability of death (h=1 means          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          computed over hstepm matrices product = hstepm*stepm months)        }
          as a weighted average of prlim.        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gpp[j]=0.; i<= nlstate; i++)        if (popbased==1) {
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          if(mobilav ==0){
       }                for(i=1; i<=nlstate;i++)
       /* end probability of death */              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */            for(i=1; i<=nlstate;i++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              prlim[i][i]=mobaverage[(int)age][i][ij];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
      
       if (popbased==1) {        for(j=1; j<= nlstate; j++){
         if(mobilav ==0){          for(h=0; h<=nhstepm; h++){
           for(i=1; i<=nlstate;i++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }else{ /* mobilav */          }
           for(i=1; i<=nlstate;i++)        }
             prlim[i][i]=mobaverage[(int)age][i][ij];        /* This for computing probability of death (h=1 means
         }           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
         */
       for(j=1; j<= nlstate; j++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm; h++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        }    
         }        /* end probability of death */
       }  
       /* This for computing probability of death (h=1 means        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
          computed over hstepm matrices product = hstepm*stepm months)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          as a weighted average of prlim.        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){   
         for(i=1,gmp[j]=0.; i<= nlstate; i++)        if (popbased==1) {
          gmp[j] += prlim[i][i]*p3mat[i][j][1];          if(mobilav ==0){
       }                for(i=1; i<=nlstate;i++)
       /* end probability of death */              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
       for(j=1; j<= nlstate; j++) /* vareij */            for(i=1; i<=nlstate;i++)
         for(h=0; h<=nhstepm; h++){              prlim[i][i]=mobaverage[(int)age][i][ij];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }        }
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     } /* End theta */          }
         }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
     for(h=0; h<=nhstepm; h++) /* veij */           as a weighted average of prlim.
       for(j=1; j<=nlstate;j++)        */
         for(theta=1; theta <=npar; theta++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           trgradg[h][j][theta]=gradg[h][theta][j];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        }    
       for(theta=1; theta <=npar; theta++)        /* end probability of death */
         trgradgp[j][theta]=gradgp[theta][j];  
          for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for(i=1;i<=nlstate;i++)          }
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     for(h=0;h<=nhstepm;h++){        }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      } /* End theta */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for(h=0; h<=nhstepm; h++) /* veij */
       }        for(j=1; j<=nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        for(theta=1; theta <=npar; theta++)
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          trgradgp[j][theta]=gradgp[theta][j];
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    
         varppt[j][i]=doldmp[j][i];  
     /* end ppptj */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /*  x centered again */      for(i=1;i<=nlstate;i++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          for(j=1;j<=nlstate;j++)
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          vareij[i][j][(int)age] =0.;
    
     if (popbased==1) {      for(h=0;h<=nhstepm;h++){
       if(mobilav ==0){        for(k=0;k<=nhstepm;k++){
         for(i=1; i<=nlstate;i++)          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           prlim[i][i]=probs[(int)age][i][ij];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }else{ /* mobilav */          for(i=1;i<=nlstate;i++)
         for(i=1; i<=nlstate;i++)            for(j=1;j<=nlstate;j++)
           prlim[i][i]=mobaverage[(int)age][i][ij];              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
     }      }
                  
     /* This for computing probability of death (h=1 means      /* pptj */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        as a weighted average of prlim.      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     for(j=nlstate+1;j<=nlstate+ndeath;j++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       for(i=1,gmp[j]=0.;i<= nlstate; i++)          varppt[j][i]=doldmp[j][i];
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      /* end ppptj */
     }          /*  x centered again */
     /* end probability of death */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);   
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      if (popbased==1) {
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        if(mobilav ==0){
       for(i=1; i<=nlstate;i++){          for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            prlim[i][i]=probs[(int)age][i][ij];
       }        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
     fprintf(ficresprobmorprev,"\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
     fprintf(ficresvij,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)               
       for(j=1; j<=nlstate;j++){      /* This for computing probability of death (h=1 means
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
     fprintf(ficresvij,"\n");      */
     free_matrix(gp,0,nhstepm,1,nlstate);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_matrix(gm,0,nhstepm,1,nlstate);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      }    
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* end probability of death */
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   free_vector(gmp,nlstate+1,nlstate+ndeath);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        for(i=1; i<=nlstate;i++){
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      } 
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */      fprintf(ficresprobmorprev,"\n");
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      fprintf(ficresvij,"%.0f ",age );
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));        for(j=1; j<=nlstate;j++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      fprintf(ficresvij,"\n");
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      free_matrix(gp,0,nhstepm,1,nlstate);
 */      free_matrix(gm,0,nhstepm,1,nlstate);
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(xp,1,npar);    } /* End age */
   free_matrix(doldm,1,nlstate,1,nlstate);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   free_matrix(dnewm,1,nlstate,1,npar);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fclose(ficresprobmorprev);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fflush(ficgp);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fflush(fichtm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 }  /* end varevsij */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 /************ Variance of prevlim ******************/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /* Variance of prevalence limit */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   double **newm;  */
   double **dnewm,**doldm;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   int i, j, nhstepm, hstepm;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   int k, cptcode;  
   double *xp;    free_vector(xp,1,npar);
   double *gp, *gm;    free_matrix(doldm,1,nlstate,1,nlstate);
   double **gradg, **trgradg;    free_matrix(dnewm,1,nlstate,1,npar);
   double age,agelim;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int theta;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   pstamp(ficresvpl);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");    fclose(ficresprobmorprev);
   fprintf(ficresvpl,"# Age");    fflush(ficgp);
   for(i=1; i<=nlstate;i++)    fflush(fichtm); 
       fprintf(ficresvpl," %1d-%1d",i,i);  }  /* end varevsij */
   fprintf(ficresvpl,"\n");  
   /************ Variance of prevlim ******************/
   xp=vector(1,npar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   dnewm=matrix(1,nlstate,1,npar);  {
   doldm=matrix(1,nlstate,1,nlstate);    /* Variance of prevalence limit */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   hstepm=1*YEARM; /* Every year of age */    double **newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double **dnewm,**doldm;
   agelim = AGESUP;    int i, j, nhstepm, hstepm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int k, cptcode;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double *xp;
     if (stepm >= YEARM) hstepm=1;    double *gp, *gm;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double **gradg, **trgradg;
     gradg=matrix(1,npar,1,nlstate);    double age,agelim;
     gp=vector(1,nlstate);    int theta;
     gm=vector(1,nlstate);    
     pstamp(ficresvpl);
     for(theta=1; theta <=npar; theta++){    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficresvpl,"# Age");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %1d-%1d",i,i);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficresvpl,"\n");
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    xp=vector(1,npar);
        dnewm=matrix(1,nlstate,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    doldm=matrix(1,nlstate,1,nlstate);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    hstepm=1*YEARM; /* Every year of age */
       for(i=1;i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         gm[i] = prlim[i][i];    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(i=1;i<=nlstate;i++)      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      if (stepm >= YEARM) hstepm=1;
     } /* End theta */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
     trgradg =matrix(1,nlstate,1,npar);      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)      for(theta=1; theta <=npar; theta++){
         trgradg[j][theta]=gradg[theta][j];        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(i=1;i<=nlstate;i++)        }
       varpl[i][(int)age] =0.;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for(i=1;i<=nlstate;i++)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          gp[i] = prlim[i][i];
     for(i=1;i<=nlstate;i++)      
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fprintf(ficresvpl,"%.0f ",age );        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(i=1; i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          gm[i] = prlim[i][i];
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);        for(i=1;i<=nlstate;i++)
     free_vector(gm,1,nlstate);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     free_matrix(gradg,1,npar,1,nlstate);      } /* End theta */
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */      trgradg =matrix(1,nlstate,1,npar);
   
   free_vector(xp,1,npar);      for(j=1; j<=nlstate;j++)
   free_matrix(doldm,1,nlstate,1,npar);        for(theta=1; theta <=npar; theta++)
   free_matrix(dnewm,1,nlstate,1,nlstate);          trgradg[j][theta]=gradg[theta][j];
   
 }      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
 /************ Variance of one-step probabilities  ******************/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 {      for(i=1;i<=nlstate;i++)
   int i, j=0,  i1, k1, l1, t, tj;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   int k2, l2, j1,  z1;  
   int k=0,l, cptcode;      fprintf(ficresvpl,"%.0f ",age );
   int first=1, first1;      for(i=1; i<=nlstate;i++)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   double **dnewm,**doldm;      fprintf(ficresvpl,"\n");
   double *xp;      free_vector(gp,1,nlstate);
   double *gp, *gm;      free_vector(gm,1,nlstate);
   double **gradg, **trgradg;      free_matrix(gradg,1,npar,1,nlstate);
   double **mu;      free_matrix(trgradg,1,nlstate,1,npar);
   double age,agelim, cov[NCOVMAX];    } /* End age */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;    free_vector(xp,1,npar);
   char fileresprob[FILENAMELENGTH];    free_matrix(doldm,1,nlstate,1,npar);
   char fileresprobcov[FILENAMELENGTH];    free_matrix(dnewm,1,nlstate,1,nlstate);
   char fileresprobcor[FILENAMELENGTH];  
   }
   double ***varpij;  
   /************ Variance of one-step probabilities  ******************/
   strcpy(fileresprob,"prob");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   strcat(fileresprob,fileres);  {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    int i, j=0,  i1, k1, l1, t, tj;
     printf("Problem with resultfile: %s\n", fileresprob);    int k2, l2, j1,  z1;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    int k=0,l, cptcode;
   }    int first=1, first1;
   strcpy(fileresprobcov,"probcov");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   strcat(fileresprobcov,fileres);    double **dnewm,**doldm;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    double *xp;
     printf("Problem with resultfile: %s\n", fileresprobcov);    double *gp, *gm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    double **gradg, **trgradg;
   }    double **mu;
   strcpy(fileresprobcor,"probcor");    double age,agelim, cov[NCOVMAX];
   strcat(fileresprobcor,fileres);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    int theta;
     printf("Problem with resultfile: %s\n", fileresprobcor);    char fileresprob[FILENAMELENGTH];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    char fileresprobcov[FILENAMELENGTH];
   }    char fileresprobcor[FILENAMELENGTH];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double ***varpij;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    strcpy(fileresprob,"prob"); 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    strcat(fileresprob,fileres);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   pstamp(ficresprob);      printf("Problem with resultfile: %s\n", fileresprob);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   fprintf(ficresprob,"# Age");    }
   pstamp(ficresprobcov);    strcpy(fileresprobcov,"probcov"); 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    strcat(fileresprobcov,fileres);
   fprintf(ficresprobcov,"# Age");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   pstamp(ficresprobcor);      printf("Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficresprobcor,"# Age");    }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
   for(i=1; i<=nlstate;i++)    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     for(j=1; j<=(nlstate+ndeath);j++){      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  /* fprintf(ficresprob,"\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(ficresprobcov,"\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(ficresprobcor,"\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  xp=vector(1,npar);    pstamp(ficresprob);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    fprintf(ficresprob,"# Age");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    pstamp(ficresprobcov);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   first=1;    fprintf(ficresprobcov,"# Age");
   fprintf(ficgp,"\n# Routine varprob");    pstamp(ficresprobcor);
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   fprintf(fichtm,"\n");    fprintf(ficresprobcor,"# Age");
   
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);  
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    for(i=1; i<=nlstate;i++)
   file %s<br>\n",optionfilehtmcov);      for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 and drawn. It helps understanding how is the covariance between two incidences.\        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \      }  
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \   /* fprintf(ficresprob,"\n");
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    fprintf(ficresprobcov,"\n");
 standard deviations wide on each axis. <br>\    fprintf(ficresprobcor,"\n");
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\   */
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    xp=vector(1,npar);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   cov[1]=1;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   tj=cptcoveff;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    first=1;
   j1=0;    fprintf(ficgp,"\n# Routine varprob");
   for(t=1; t<=tj;t++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     for(i1=1; i1<=ncodemax[t];i1++){    fprintf(fichtm,"\n");
       j1++;  
       if  (cptcovn>0) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         fprintf(ficresprob, "\n#********** Variable ");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    file %s<br>\n",optionfilehtmcov);
         fprintf(ficresprob, "**********\n#\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         fprintf(ficresprobcov, "\n#********** Variable ");  and drawn. It helps understanding how is the covariance between two incidences.\
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
          It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         fprintf(ficgp, "\n#********** Variable ");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  standard deviations wide on each axis. <br>\
         fprintf(ficgp, "**********\n#\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
          To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    cov[1]=1;
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    tj=cptcoveff;
            if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficresprobcor, "\n#********** Variable ");        j1=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(t=1; t<=tj;t++){
         fprintf(ficresprobcor, "**********\n#");          for(i1=1; i1<=ncodemax[t];i1++){ 
       }        j1++;
              if  (cptcovn>0) {
       for (age=bage; age<=fage; age ++){          fprintf(ficresprob, "\n#********** Variable "); 
         cov[2]=age;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (k=1; k<=cptcovn;k++) {          fprintf(ficresprob, "**********\n#\n");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          fprintf(ficresprobcov, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          fprintf(ficresprobcov, "**********\n#\n");
         for (k=1; k<=cptcovprod;k++)          
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          fprintf(ficgp, "\n#********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          fprintf(ficgp, "**********\n#\n");
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          
         gp=vector(1,(nlstate)*(nlstate+ndeath));          
         gm=vector(1,(nlstate)*(nlstate+ndeath));          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(theta=1; theta <=npar; theta++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           for(i=1; i<=npar; i++)          
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);          fprintf(ficresprobcor, "\n#********** Variable ");    
                    for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficresprobcor, "**********\n#");    
                  }
           k=0;        
           for(i=1; i<= (nlstate); i++){        for (age=bage; age<=fage; age ++){ 
             for(j=1; j<=(nlstate+ndeath);j++){          cov[2]=age;
               k=k+1;          for (k=1; k<=cptcovn;k++) {
               gp[k]=pmmij[i][j];            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             }          }
           }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                    for (k=1; k<=cptcovprod;k++)
           for(i=1; i<=npar; i++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);          
              gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           k=0;          gp=vector(1,(nlstate)*(nlstate+ndeath));
           for(i=1; i<=(nlstate); i++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
             for(j=1; j<=(nlstate+ndeath);j++){      
               k=k+1;          for(theta=1; theta <=npar; theta++){
               gm[k]=pmmij[i][j];            for(i=1; i<=npar; i++)
             }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           }            
                  pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];              k=0;
         }            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)                k=k+1;
           for(theta=1; theta <=npar; theta++)                gp[k]=pmmij[i][j];
             trgradg[j][theta]=gradg[theta][j];              }
                    }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            for(i=1; i<=npar; i++)
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            k=0;
             for(i=1; i<=(nlstate); i++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);              for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
         k=0;                gm[k]=pmmij[i][j];
         for(i=1; i<=(nlstate); i++){              }
           for(j=1; j<=(nlstate+ndeath);j++){            }
             k=k+1;       
             mu[k][(int) age]=pmmij[i][j];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         }          }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             varpij[i][j][(int)age] = doldm[i][j];            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
         /*printf("\n%d ",(int)age);          
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           }*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficresprob,"\n%d ",(int)age);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          k=0;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          for(i=1; i<=(nlstate); i++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            for(j=1; j<=(nlstate+ndeath);j++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              k=k+1;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              mu[k][(int) age]=pmmij[i][j];
         }            }
         i=0;          }
         for (k=1; k<=(nlstate);k++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           for (l=1; l<=(nlstate+ndeath);l++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             i=i++;              varpij[i][j][(int)age] = doldm[i][j];
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          /*printf("\n%d ",(int)age);
             for (j=1; j<=i;j++){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }            }*/
           }  
         }/* end of loop for state */          fprintf(ficresprob,"\n%d ",(int)age);
       } /* end of loop for age */          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
       /* Confidence intervalle of pij  */  
       /*          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         fprintf(ficgp,"\nset noparametric;unset label");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          }
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          i=0;
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          for (k=1; k<=(nlstate);k++){
       */            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       first1=1;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       for (k2=1; k2<=(nlstate);k2++){              for (j=1; j<=i;j++){
         for (l2=1; l2<=(nlstate+ndeath);l2++){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           if(l2==k2) continue;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           j=(k2-1)*(nlstate+ndeath)+l2;              }
           for (k1=1; k1<=(nlstate);k1++){            }
             for (l1=1; l1<=(nlstate+ndeath);l1++){          }/* end of loop for state */
               if(l1==k1) continue;        } /* end of loop for age */
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;        /* Confidence intervalle of pij  */
               for (age=bage; age<=fage; age ++){        /*
                 if ((int)age %5==0){          fprintf(ficgp,"\nunset parametric;unset label");
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   mu1=mu[i][(int) age]/stepm*YEARM ;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   mu2=mu[j][(int) age]/stepm*YEARM;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   c12=cv12/sqrt(v1*v2);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   /* Computing eigen value of matrix of covariance */        */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   /* Eigen vectors */        first1=1;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        for (k2=1; k2<=(nlstate);k2++){
                   /*v21=sqrt(1.-v11*v11); *//* error */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   v21=(lc1-v1)/cv12*v11;            if(l2==k2) continue;
                   v12=-v21;            j=(k2-1)*(nlstate+ndeath)+l2;
                   v22=v11;            for (k1=1; k1<=(nlstate);k1++){
                   tnalp=v21/v11;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   if(first1==1){                if(l1==k1) continue;
                     first1=0;                i=(k1-1)*(nlstate+ndeath)+l1;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                if(i<=j) continue;
                   }                for (age=bage; age<=fage; age ++){ 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                  if ((int)age %5==0){
                   /*printf(fignu*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   if(first==1){                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     first=0;                    mu2=mu[j][(int) age]/stepm*YEARM;
                     fprintf(ficgp,"\nset parametric;unset label");                    c12=cv12/sqrt(v1*v2);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                    /* Computing eigen value of matrix of covariance */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\                    /* Eigen vectors */
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\                    /*v21=sqrt(1.-v11*v11); *//* error */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    v21=(lc1-v1)/cv12*v11;
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    v12=-v21;
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);                    v22=v11;
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    tnalp=v21/v11;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                    if(first1==1){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                      first1=0;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                    }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   }else{                    /*printf(fignu*/
                     first=0;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                    if(first==1){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                      first=0;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                      fprintf(ficgp,"\nset parametric;unset label");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   }/* if first */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                 } /* age mod 5 */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
               } /* end loop age */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
               first=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             } /*l12 */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           } /* k12 */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         } /*l1 */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }/* k1 */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     } /* loop covariates */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                    }else{
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);                      first=0;
   free_vector(xp,1,npar);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   fclose(ficresprob);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fclose(ficresprobcov);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fclose(ficresprobcor);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fflush(ficgp);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fflush(fichtmcov);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 }                    }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
 /******************* Printing html file ***********/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                first=1;
                   int lastpass, int stepm, int weightopt, char model[],\              } /*l12 */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            } /* k12 */
                   int popforecast, int estepm ,\          } /*l1 */
                   double jprev1, double mprev1,double anprev1, \        }/* k1 */
                   double jprev2, double mprev2,double anprev2){      } /* loop covariates */
   int jj1, k1, i1, cpt;    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 </ul>");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \    free_vector(xp,1,npar);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    fclose(ficresprob);
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    fclose(ficresprobcov);
    fprintf(fichtm,"\    fclose(ficresprobcor);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    fflush(ficgp);
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    fflush(fichtmcov);
    fprintf(fichtm,"\  }
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",  
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));  
    fprintf(fichtm,"\  /******************* Printing html file ***********/
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    <a href=\"%s\">%s</a> <br>\n",                    int lastpass, int stepm, int weightopt, char model[],\
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
    fprintf(fichtm,"\                    int popforecast, int estepm ,\
  - Population projections by age and states: \                    double jprev1, double mprev1,double anprev1, \
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
  m=cptcoveff;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
  jj1=0;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
  for(k1=1; k1<=m;k1++){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
    for(i1=1; i1<=ncodemax[k1];i1++){     fprintf(fichtm,"\
      jj1++;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
      if (cptcovn > 0) {             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");     fprintf(fichtm,"\
        for (cpt=1; cpt<=cptcoveff;cpt++)   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");     fprintf(fichtm,"\
      }   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      /* Pij */     <a href=\"%s\">%s</a> <br>\n",
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         fprintf(fichtm,"\
      /* Quasi-incidences */   - Population projections by age and states: \
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \  
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
        /* Period (stable) prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){   m=cptcoveff;
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);  
        }   jj1=0;
      for(cpt=1; cpt<=nlstate;cpt++) {   for(k1=1; k1<=m;k1++){
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \     for(i1=1; i1<=ncodemax[k1];i1++){
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);       jj1++;
      }       if (cptcovn > 0) {
    } /* end i1 */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  }/* End k1 */         for (cpt=1; cpt<=cptcoveff;cpt++) 
  fprintf(fichtm,"</ul>");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
  fprintf(fichtm,"\       /* Pij */
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
  fprintf(fichtm,"\  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",         /* Period (stable) prevalence in each health state */
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
  fprintf(fichtm,"\  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",         }
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));       for(cpt=1; cpt<=nlstate;cpt++) {
  fprintf(fichtm,"\          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
    <a href=\"%s\">%s</a> <br>\n</li>",       }
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));     } /* end i1 */
  fprintf(fichtm,"\   }/* End k1 */
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \   fprintf(fichtm,"</ul>");
    <a href=\"%s\">%s</a> <br>\n</li>",  
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));  
  fprintf(fichtm,"\   fprintf(fichtm,"\
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  fprintf(fichtm,"\  
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
  fprintf(fichtm,"\   fprintf(fichtm,"\
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
 /*  if(popforecast==1) fprintf(fichtm,"\n */   fprintf(fichtm,"\
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 /*      <br>",fileres,fileres,fileres,fileres); */   fprintf(fichtm,"\
 /*  else  */   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */     <a href=\"%s\">%s</a> <br>\n</li>",
  fflush(fichtm);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");   fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
  m=cptcoveff;     <a href=\"%s\">%s</a> <br>\n</li>",
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
  jj1=0;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
  for(k1=1; k1<=m;k1++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    for(i1=1; i1<=ncodemax[k1];i1++){   fprintf(fichtm,"\
      jj1++;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
      if (cptcovn > 0) {           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   fprintf(fichtm,"\
        for (cpt=1; cpt<=cptcoveff;cpt++)   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  /*  if(popforecast==1) fprintf(fichtm,"\n */
      for(cpt=1; cpt<=nlstate;cpt++) {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\  /*      <br>",fileres,fileres,fileres,fileres); */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);    /*  else  */
      }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \   fflush(fichtm);
 health expectancies in states (1) and (2): %s%d.png<br>\   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);  
    } /* end i1 */   m=cptcoveff;
  }/* End k1 */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  fprintf(fichtm,"</ul>");  
  fflush(fichtm);   jj1=0;
 }   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
 /******************* Gnuplot file **************/       jj1++;
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   char dirfileres[132],optfileres[132];         for (cpt=1; cpt<=cptcoveff;cpt++) 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   int ng;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */       }
 /*     printf("Problem with file %s",optionfilegnuplot); */       for(cpt=1; cpt<=nlstate;cpt++) {
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 /*   } */  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   /*#ifdef windows */       }
   fprintf(ficgp,"cd \"%s\" \n",pathc);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     /*#endif */  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   m=pow(2,cptcoveff);  true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
   strcpy(dirfileres,optionfilefiname);   observed and cahotic prevalences: %s%d.png<br>\
   strcpy(optfileres,"vpl");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  /* 1eme*/     } /* end i1 */
   for (cpt=1; cpt<= nlstate ; cpt ++) {   }/* End k1 */
    for (k1=1; k1<= m ; k1 ++) {   fprintf(fichtm,"</ul>");
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);   fflush(fichtm);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);  }
      fprintf(ficgp,"set xlabel \"Age\" \n\  
 set ylabel \"Probability\" \n\  /******************* Gnuplot file **************/
 set ter png small\n\  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
      for (i=1; i<= nlstate ; i ++) {    int ng=0;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
        else fprintf(ficgp," \%%*lf (\%%*lf)");  /*     printf("Problem with file %s",optionfilegnuplot); */
      }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);  /*   } */
      for (i=1; i<= nlstate ; i ++) {  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*#ifdef windows */
        else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficgp,"cd \"%s\" \n",pathc);
      }      /*#endif */
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    m=pow(2,cptcoveff);
      for (i=1; i<= nlstate ; i ++) {  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(dirfileres,optionfilefiname);
        else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(optfileres,"vpl");
      }     /* 1eme*/
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));    for (cpt=1; cpt<= nlstate ; cpt ++) {
    }     for (k1=1; k1<= m ; k1 ++) {
   }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   /*2 eme*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \n\
   for (k1=1; k1<= m ; k1 ++) {  set ylabel \"Probability\" \n\
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);  set ter png small\n\
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  set size 0.65,0.65\n\
      plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for (j=1; j<= nlstate+1 ; j ++) {         else        fprintf(ficgp," \%%*lf (\%%*lf)");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       }
         else fprintf(ficgp," \%%*lf (\%%*lf)");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       }         for (i=1; i<= nlstate ; i ++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);       } 
       for (j=1; j<= nlstate+1 ; j ++) {       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       for (i=1; i<= nlstate ; i ++) {
         else fprintf(ficgp," \%%*lf (\%%*lf)");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }           else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficgp,"\" t\"\" w l 0,");       }  
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       for (j=1; j<= nlstate+1 ; j ++) {     }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
         else fprintf(ficgp," \%%*lf (\%%*lf)");    /*2 eme*/
       }      
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for (k1=1; k1<= m ; k1 ++) { 
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }      
        for (i=1; i<= nlstate+1 ; i ++) {
   /*3eme*/        k=2*i;
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   for (k1=1; k1<= m ; k1 ++) {        for (j=1; j<= nlstate+1 ; j ++) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       /*       k=2+nlstate*(2*cpt-2); */          else fprintf(ficgp," \%%*lf (\%%*lf)");
       k=2+(nlstate+1)*(cpt-1);        }   
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficgp,"set ter png small\n\        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 set size 0.65,0.65\n\        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);        for (j=1; j<= nlstate+1 ; j ++) {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }   
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        fprintf(ficgp,"\" t\"\" w l 0,");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for (j=1; j<= nlstate+1 ; j ++) {
                  if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       */          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for (i=1; i< nlstate ; i ++) {        }   
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/        else fprintf(ficgp,"\" t\"\" w l 0,");
              }
       }    }
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);    
     }    /*3eme*/
   }    
      for (k1=1; k1<= m ; k1 ++) { 
   /* CV preval stable (period) */      for (cpt=1; cpt<= nlstate ; cpt ++) {
   for (k1=1; k1<= m ; k1 ++) {        /*       k=2+nlstate*(2*cpt-2); */
     for (cpt=1; cpt<=nlstate ; cpt ++) {        k=2+(nlstate+1)*(cpt-1);
       k=3;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);        fprintf(ficgp,"set ter png small\n\
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\  set size 0.65,0.65\n\
 set ter png small\nset size 0.65,0.65\n\  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 unset log y\n\        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       for (i=1; i< nlstate ; i ++)          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficgp,"+$%d",k+i+1);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                
       l=3+(nlstate+ndeath)*cpt;        */
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);        for (i=1; i< nlstate ; i ++) {
       for (i=1; i< nlstate ; i ++) {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
         l=3+(nlstate+ndeath)*cpt;          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
         fprintf(ficgp,"+$%d",l+i+1);          
       }        } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
     }      }
   }      }
      
   /* proba elementaires */    /* CV preval stable (period) */
   for(i=1,jk=1; i <=nlstate; i++){    for (k1=1; k1<= m ; k1 ++) { 
     for(k=1; k <=(nlstate+ndeath); k++){      for (cpt=1; cpt<=nlstate ; cpt ++) {
       if (k != i) {        k=3;
         for(j=1; j <=ncovmodel; j++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           jk++;  set ter png small\nset size 0.65,0.65\n\
           fprintf(ficgp,"\n");  unset log y\n\
         }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       }        
     }        for (i=1; i< nlstate ; i ++)
    }          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        
      for(jk=1; jk <=m; jk++) {        l=3+(nlstate+ndeath)*cpt;
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
        if (ng==2)        for (i=1; i< nlstate ; i ++) {
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          l=3+(nlstate+ndeath)*cpt;
        else          fprintf(ficgp,"+$%d",l+i+1);
          fprintf(ficgp,"\nset title \"Probability\"\n");        }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
        i=1;      } 
        for(k2=1; k2<=nlstate; k2++) {    }  
          k3=i;    
          for(k=1; k<=(nlstate+ndeath); k++) {    /* proba elementaires */
            if (k != k2){    for(i=1,jk=1; i <=nlstate; i++){
              if(ng==2)      for(k=1; k <=(nlstate+ndeath); k++){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        if (k != i) {
              else          for(j=1; j <=ncovmodel; j++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              ij=1;            jk++; 
              for(j=3; j <=ncovmodel; j++) {            fprintf(ficgp,"\n");
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                  ij++;      }
                }     }
                else  
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
              }       for(jk=1; jk <=m; jk++) {
              fprintf(ficgp,")/(1");         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
                       if (ng==2)
              for(k1=1; k1 <=nlstate; k1++){             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);         else
                ij=1;           fprintf(ficgp,"\nset title \"Probability\"\n");
                for(j=3; j <=ncovmodel; j++){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {         i=1;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);         for(k2=1; k2<=nlstate; k2++) {
                    ij++;           k3=i;
                  }           for(k=1; k<=(nlstate+ndeath); k++) {
                  else             if (k != k2){
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);               if(ng==2)
                }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                fprintf(ficgp,")");               else
              }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);               ij=1;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");               for(j=3; j <=ncovmodel; j++) {
              i=i+ncovmodel;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
            }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
          } /* end k */                   ij++;
        } /* end k2 */                 }
      } /* end jk */                 else
    } /* end ng */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
    fflush(ficgp);               }
 }  /* end gnuplot */               fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
 /*************** Moving average **************/                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){                 ij=1;
                  for(j=3; j <=ncovmodel; j++){
   int i, cpt, cptcod;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   int modcovmax =1;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   int mobilavrange, mob;                     ij++;
   double age;                   }
                    else
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                            a covariate has 2 modalities */                 }
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                 fprintf(ficgp,")");
                }
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     if(mobilav==1) mobilavrange=5; /* default */               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     else mobilavrange=mobilav;               i=i+ncovmodel;
     for (age=bage; age<=fage; age++)             }
       for (i=1; i<=nlstate;i++)           } /* end k */
         for (cptcod=1;cptcod<=modcovmax;cptcod++)         } /* end k2 */
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];       } /* end jk */
     /* We keep the original values on the extreme ages bage, fage and for     } /* end ng */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2     fflush(ficgp); 
        we use a 5 terms etc. until the borders are no more concerned.  }  /* end gnuplot */
     */  
     for (mob=3;mob <=mobilavrange;mob=mob+2){  
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  /*************** Moving average **************/
         for (i=1; i<=nlstate;i++){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           for (cptcod=1;cptcod<=modcovmax;cptcod++){  
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];    int i, cpt, cptcod;
               for (cpt=1;cpt<=(mob-1)/2;cpt++){    int modcovmax =1;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    int mobilavrange, mob;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    double age;
               }  
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           }                             a covariate has 2 modalities */
         }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       }/* end age */  
     }/* end mob */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   }else return -1;      if(mobilav==1) mobilavrange=5; /* default */
   return 0;      else mobilavrange=mobilav;
 }/* End movingaverage */      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
 /************** Forecasting ******************/            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){      /* We keep the original values on the extreme ages bage, fage and for 
   /* proj1, year, month, day of starting projection         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
      agemin, agemax range of age         we use a 5 terms etc. until the borders are no more concerned. 
      dateprev1 dateprev2 range of dates during which prevalence is computed      */ 
      anproj2 year of en of projection (same day and month as proj1).      for (mob=3;mob <=mobilavrange;mob=mob+2){
   */        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;          for (i=1; i<=nlstate;i++){
   int *popage;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   double agec; /* generic age */              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   double *popeffectif,*popcount;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   double ***p3mat;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   double ***mobaverage;                }
   char fileresf[FILENAMELENGTH];              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
   agelim=AGESUP;          }
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        }/* end age */
        }/* end mob */
   strcpy(fileresf,"f");    }else return -1;
   strcat(fileresf,fileres);    return 0;
   if((ficresf=fopen(fileresf,"w"))==NULL) {  }/* End movingaverage */
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }  /************** Forecasting ******************/
   printf("Computing forecasting: result on file '%s' \n", fileresf);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
   if (mobilav!=0) {    */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    int *popage;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    double agec; /* generic age */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     }    double *popeffectif,*popcount;
   }    double ***p3mat;
     double ***mobaverage;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    char fileresf[FILENAMELENGTH];
   if (stepm<=12) stepsize=1;  
   if(estepm < stepm){    agelim=AGESUP;
     printf ("Problem %d lower than %d\n",estepm, stepm);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }   
   else  hstepm=estepm;      strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
   hstepm=hstepm/stepm;    if((ficresf=fopen(fileresf,"w"))==NULL) {
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and      printf("Problem with forecast resultfile: %s\n", fileresf);
                                fractional in yp1 */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   anprojmean=yp;    }
   yp2=modf((yp1*12),&yp);    printf("Computing forecasting: result on file '%s' \n", fileresf);
   mprojmean=yp;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   i1=cptcoveff;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   if (cptcovn < 1){i1=1;}        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);      }
      }
   fprintf(ficresf,"#****** Routine prevforecast **\n");  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
 /*            if (h==(int)(YEARM*yearp)){ */    if (stepm<=12) stepsize=1;
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    if(estepm < stepm){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       k=k+1;    }
       fprintf(ficresf,"\n#******");    else  hstepm=estepm;   
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=hstepm/stepm; 
       }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       fprintf(ficresf,"******\n");                                 fractional in yp1 */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    anprojmean=yp;
       for(j=1; j<=nlstate+ndeath;j++){    yp2=modf((yp1*12),&yp);
         for(i=1; i<=nlstate;i++)                  mprojmean=yp;
           fprintf(ficresf," p%d%d",i,j);    yp1=modf((yp2*30.5),&yp);
         fprintf(ficresf," p.%d",j);    jprojmean=yp;
       }    if(jprojmean==0) jprojmean=1;
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {    if(mprojmean==0) jprojmean=1;
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
         for (agec=fage; agec>=(ageminpar-1); agec--){    
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
           nhstepm = nhstepm/hstepm;    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresf,"#****** Routine prevforecast **\n");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    /*            if (h==(int)(YEARM*yearp)){ */
            for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           for (h=0; h<=nhstepm; h++){      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
             if (h*hstepm/YEARM*stepm ==yearp) {        k=k+1;
               fprintf(ficresf,"\n");        fprintf(ficresf,"\n#******");
               for(j=1;j<=cptcoveff;j++)        for(j=1;j<=cptcoveff;j++) {
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);        }
             }        fprintf(ficresf,"******\n");
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
               ppij=0.;        for(j=1; j<=nlstate+ndeath;j++){ 
               for(i=1; i<=nlstate;i++) {          for(i=1; i<=nlstate;i++)              
                 if (mobilav==1)            fprintf(ficresf," p%d%d",i,j);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];          fprintf(ficresf," p.%d",j);
                 else {        }
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
                 }          fprintf(ficresf,"\n");
                 if (h*hstepm/YEARM*stepm== yearp) {          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);  
                 }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
               } /* end i */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
               if (h*hstepm/YEARM*stepm==yearp) {            nhstepm = nhstepm/hstepm; 
                 fprintf(ficresf," %.3f", ppij);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }            oldm=oldms;savm=savms;
             }/* end j */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           } /* end h */          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (h=0; h<=nhstepm; h++){
         } /* end agec */              if (h*hstepm/YEARM*stepm ==yearp) {
       } /* end yearp */                fprintf(ficresf,"\n");
     } /* end cptcod */                for(j=1;j<=cptcoveff;j++) 
   } /* end  cptcov */                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                        fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   fclose(ficresf);                ppij=0.;
 }                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
 /************** Forecasting *****not tested NB*************/                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                  else {
                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                  }
   int *popage;                  if (h*hstepm/YEARM*stepm== yearp) {
   double calagedatem, agelim, kk1, kk2;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   double *popeffectif,*popcount;                  }
   double ***p3mat,***tabpop,***tabpopprev;                } /* end i */
   double ***mobaverage;                if (h*hstepm/YEARM*stepm==yearp) {
   char filerespop[FILENAMELENGTH];                  fprintf(ficresf," %.3f", ppij);
                 }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }/* end j */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            } /* end h */
   agelim=AGESUP;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          } /* end agec */
          } /* end yearp */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      } /* end cptcod */
      } /* end  cptcov */
           
   strcpy(filerespop,"pop");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fclose(ficresf);
     printf("Problem with forecast resultfile: %s\n", filerespop);  }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }  /************** Forecasting *****not tested NB*************/
   printf("Computing forecasting: result on file '%s' \n", filerespop);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    int *popage;
     double calagedatem, agelim, kk1, kk2;
   if (mobilav!=0) {    double *popeffectif,*popcount;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***p3mat,***tabpop,***tabpopprev;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    double ***mobaverage;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    char filerespop[FILENAMELENGTH];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   if (stepm<=12) stepsize=1;    
      prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   agelim=AGESUP;    
      
   hstepm=1;    strcpy(filerespop,"pop"); 
   hstepm=hstepm/stepm;    strcat(filerespop,fileres);
      if((ficrespop=fopen(filerespop,"w"))==NULL) {
   if (popforecast==1) {      printf("Problem with forecast resultfile: %s\n", filerespop);
     if((ficpop=fopen(popfile,"r"))==NULL) {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       printf("Problem with population file : %s\n",popfile);exit(0);    }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    printf("Computing forecasting: result on file '%s' \n", filerespop);
     }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     popcount=vector(0,AGESUP);  
        if (mobilav!=0) {
     i=1;        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
            fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     imx=i;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      }
   }    }
   
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    stepsize=(int) (stepm+YEARM-1)/YEARM;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if (stepm<=12) stepsize=1;
       k=k+1;    
       fprintf(ficrespop,"\n#******");    agelim=AGESUP;
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=1;
       }    hstepm=hstepm/stepm; 
       fprintf(ficrespop,"******\n");    
       fprintf(ficrespop,"# Age");    if (popforecast==1) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      if((ficpop=fopen(popfile,"r"))==NULL) {
       if (popforecast==1)  fprintf(ficrespop," [Population]");        printf("Problem with population file : %s\n",popfile);exit(0);
              fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       for (cpt=0; cpt<=0;cpt++) {      } 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        popage=ivector(0,AGESUP);
              popeffectif=vector(0,AGESUP);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){      popcount=vector(0,AGESUP);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      
           nhstepm = nhstepm/hstepm;      i=1;   
                while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
           oldm=oldms;savm=savms;      imx=i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
            }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedatem+YEARM*cpt)) {    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
             }        k=k+1;
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficrespop,"\n#******");
               kk1=0.;kk2=0;        for(j=1;j<=cptcoveff;j++) {
               for(i=1; i<=nlstate;i++) {                        fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficrespop,"******\n");
                 else {        fprintf(ficrespop,"# Age");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
                 }        if (popforecast==1)  fprintf(ficrespop," [Population]");
               }        
               if (h==(int)(calagedatem+12*cpt)){        for (cpt=0; cpt<=0;cpt++) { 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   /*fprintf(ficrespop," %.3f", kk1);          
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
               }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             }            nhstepm = nhstepm/hstepm; 
             for(i=1; i<=nlstate;i++){            
               kk1=0.;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 for(j=1; j<=nlstate;j++){            oldm=oldms;savm=savms;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                 }          
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];            for (h=0; h<=nhstepm; h++){
             }              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)              } 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              for(j=1; j<=nlstate+ndeath;j++) {
           }                kk1=0.;kk2=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                for(i=1; i<=nlstate;i++) {              
         }                  if (mobilav==1) 
       }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                    else {
   /******/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  if (h==(int)(calagedatem+12*cpt)){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    /*fprintf(ficrespop," %.3f", kk1);
           nhstepm = nhstepm/hstepm;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                          }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
           oldm=oldms;savm=savms;              for(i=1; i<=nlstate;i++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  kk1=0.;
           for (h=0; h<=nhstepm; h++){                  for(j=1; j<=nlstate;j++){
             if (h==(int) (calagedatem+YEARM*cpt)) {                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                  }
             }                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
             for(j=1; j<=nlstate+ndeath;j++) {              }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                            if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                    fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
               }            }
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }          }
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
         }    /******/
       }  
    }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   if (popforecast==1) {            
     free_ivector(popage,0,AGESUP);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(popeffectif,0,AGESUP);            oldm=oldms;savm=savms;
     free_vector(popcount,0,AGESUP);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }            for (h=0; h<=nhstepm; h++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if (h==(int) (calagedatem+YEARM*cpt)) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fclose(ficrespop);              } 
 } /* End of popforecast */              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
 int fileappend(FILE *fichier, char *optionfich)                for(i=1; i<=nlstate;i++) {              
 {                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   if((fichier=fopen(optionfich,"a"))==NULL) {                }
     printf("Problem with file: %s\n", optionfich);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     fprintf(ficlog,"Problem with file: %s\n", optionfich);              }
     return (0);            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fflush(fichier);          }
   return (1);        }
 }     } 
     }
    
 /**************** function prwizard **********************/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)  
 {    if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
   /* Wizard to print covariance matrix template */      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
   char ca[32], cb[32], cc[32];    }
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int numlinepar;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  } /* End of popforecast */
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   for(i=1; i <=nlstate; i++){  int fileappend(FILE *fichier, char *optionfich)
     jj=0;  {
     for(j=1; j <=nlstate+ndeath; j++){    if((fichier=fopen(optionfich,"a"))==NULL) {
       if(j==i) continue;      printf("Problem with file: %s\n", optionfich);
       jj++;      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       /*ca[0]= k+'a'-1;ca[1]='\0';*/      return (0);
       printf("%1d%1d",i,j);    }
       fprintf(ficparo,"%1d%1d",i,j);    fflush(fichier);
       for(k=1; k<=ncovmodel;k++){    return (1);
         /*        printf(" %lf",param[i][j][k]); */  }
         /*        fprintf(ficparo," %lf",param[i][j][k]); */  
         printf(" 0.");  
         fprintf(ficparo," 0.");  /**************** function prwizard **********************/
       }  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
       printf("\n");  {
       fprintf(ficparo,"\n");  
     }    /* Wizard to print covariance matrix template */
   }  
   printf("# Scales (for hessian or gradient estimation)\n");    char ca[32], cb[32], cc[32];
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    int numlinepar;
   for(i=1; i <=nlstate; i++){  
     jj=0;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       if(j==i) continue;    for(i=1; i <=nlstate; i++){
       jj++;      jj=0;
       fprintf(ficparo,"%1d%1d",i,j);      for(j=1; j <=nlstate+ndeath; j++){
       printf("%1d%1d",i,j);        if(j==i) continue;
       fflush(stdout);        jj++;
       for(k=1; k<=ncovmodel;k++){        /*ca[0]= k+'a'-1;ca[1]='\0';*/
         /*      printf(" %le",delti3[i][j][k]); */        printf("%1d%1d",i,j);
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */        fprintf(ficparo,"%1d%1d",i,j);
         printf(" 0.");        for(k=1; k<=ncovmodel;k++){
         fprintf(ficparo," 0.");          /*        printf(" %lf",param[i][j][k]); */
       }          /*        fprintf(ficparo," %lf",param[i][j][k]); */
       numlinepar++;          printf(" 0.");
       printf("\n");          fprintf(ficparo," 0.");
       fprintf(ficparo,"\n");        }
     }        printf("\n");
   }        fprintf(ficparo,"\n");
   printf("# Covariance matrix\n");      }
 /* # 121 Var(a12)\n\ */    }
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    printf("# Scales (for hessian or gradient estimation)\n");
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    for(i=1; i <=nlstate; i++){
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      jj=0;
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      for(j=1; j <=nlstate+ndeath; j++){
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        if(j==i) continue;
   fflush(stdout);        jj++;
   fprintf(ficparo,"# Covariance matrix\n");        fprintf(ficparo,"%1d%1d",i,j);
   /* # 121 Var(a12)\n\ */        printf("%1d%1d",i,j);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */        fflush(stdout);
   /* #   ...\n\ */        for(k=1; k<=ncovmodel;k++){
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */          /*      printf(" %le",delti3[i][j][k]); */
            /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   for(itimes=1;itimes<=2;itimes++){          printf(" 0.");
     jj=0;          fprintf(ficparo," 0.");
     for(i=1; i <=nlstate; i++){        }
       for(j=1; j <=nlstate+ndeath; j++){        numlinepar++;
         if(j==i) continue;        printf("\n");
         for(k=1; k<=ncovmodel;k++){        fprintf(ficparo,"\n");
           jj++;      }
           ca[0]= k+'a'-1;ca[1]='\0';    }
           if(itimes==1){    printf("# Covariance matrix\n");
             printf("#%1d%1d%d",i,j,k);  /* # 121 Var(a12)\n\ */
             fprintf(ficparo,"#%1d%1d%d",i,j,k);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
           }else{  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
             printf("%1d%1d%d",i,j,k);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
             fprintf(ficparo,"%1d%1d%d",i,j,k);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
             /*  printf(" %.5le",matcov[i][j]); */  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
           }  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           ll=0;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
           for(li=1;li <=nlstate; li++){    fflush(stdout);
             for(lj=1;lj <=nlstate+ndeath; lj++){    fprintf(ficparo,"# Covariance matrix\n");
               if(lj==li) continue;    /* # 121 Var(a12)\n\ */
               for(lk=1;lk<=ncovmodel;lk++){    /* # 122 Cov(b12,a12) Var(b12)\n\ */
                 ll++;    /* #   ...\n\ */
                 if(ll<=jj){    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   cb[0]= lk +'a'-1;cb[1]='\0';    
                   if(ll<jj){    for(itimes=1;itimes<=2;itimes++){
                     if(itimes==1){      jj=0;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      for(i=1; i <=nlstate; i++){
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        for(j=1; j <=nlstate+ndeath; j++){
                     }else{          if(j==i) continue;
                       printf(" 0.");          for(k=1; k<=ncovmodel;k++){
                       fprintf(ficparo," 0.");            jj++;
                     }            ca[0]= k+'a'-1;ca[1]='\0';
                   }else{            if(itimes==1){
                     if(itimes==1){              printf("#%1d%1d%d",i,j,k);
                       printf(" Var(%s%1d%1d)",ca,i,j);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);            }else{
                     }else{              printf("%1d%1d%d",i,j,k);
                       printf(" 0.");              fprintf(ficparo,"%1d%1d%d",i,j,k);
                       fprintf(ficparo," 0.");              /*  printf(" %.5le",matcov[i][j]); */
                     }            }
                   }            ll=0;
                 }            for(li=1;li <=nlstate; li++){
               } /* end lk */              for(lj=1;lj <=nlstate+ndeath; lj++){
             } /* end lj */                if(lj==li) continue;
           } /* end li */                for(lk=1;lk<=ncovmodel;lk++){
           printf("\n");                  ll++;
           fprintf(ficparo,"\n");                  if(ll<=jj){
           numlinepar++;                    cb[0]= lk +'a'-1;cb[1]='\0';
         } /* end k*/                    if(ll<jj){
       } /*end j */                      if(itimes==1){
     } /* end i */                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   } /* end itimes */                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
 } /* end of prwizard */                        printf(" 0.");
 /******************* Gompertz Likelihood ******************************/                        fprintf(ficparo," 0.");
 double gompertz(double x[])                      }
 {                    }else{
   double A,B,L=0.0,sump=0.,num=0.;                      if(itimes==1){
   int i,n=0; /* n is the size of the sample */                        printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   for (i=0;i<=imx-1 ; i++) {                      }else{
     sump=sump+weight[i];                        printf(" 0.");
     /*    sump=sump+1;*/                        fprintf(ficparo," 0.");
     num=num+1;                      }
   }                    }
                    }
                  } /* end lk */
   /* for (i=0; i<=imx; i++)              } /* end lj */
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/            } /* end li */
             printf("\n");
   for (i=1;i<=imx ; i++)            fprintf(ficparo,"\n");
     {            numlinepar++;
       if (cens[i] == 1 && wav[i]>1)          } /* end k*/
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));        } /*end j */
            } /* end i */
       if (cens[i] == 0 && wav[i]>1)    } /* end itimes */
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))  
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);    } /* end of prwizard */
        /******************* Gompertz Likelihood ******************************/
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */  double gompertz(double x[])
       if (wav[i] > 1 ) { /* ??? */  { 
         L=L+A*weight[i];    double A,B,L=0.0,sump=0.,num=0.;
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/    int i,n=0; /* n is the size of the sample */
       }  
     }    for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/      /*    sump=sump+1;*/
        num=num+1;
   return -2*L*num/sump;    }
 }   
    
 /******************* Printing html file ***********/    /* for (i=0; i<=imx; i++) 
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,  double p[],double **matcov,double agemortsup){    for (i=1;i<=imx ; i++)
   int i,k;      {
         if (cens[i] == 1 && wav[i]>1)
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);        
   for (i=1;i<=2;i++)        if (cens[i] == 0 && wav[i]>1)
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   fprintf(fichtm,"</ul>");        
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");        if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
  for (k=agegomp;k<(agemortsup-2);k++)      }
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);  
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     
   fflush(fichtm);    return -2*L*num/sump;
 }  }
   
 /******************* Gnuplot file **************/  /******************* Printing html file ***********/
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   char dirfileres[132],optfileres[132];                    int imx,  double p[],double **matcov,double agemortsup){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int i,k;
   int ng;  
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   /*#ifdef windows */    for (i=1;i<=2;i++) 
   fprintf(ficgp,"cd \"%s\" \n",pathc);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     /*#endif */    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   strcpy(dirfileres,optionfilefiname);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   strcpy(optfileres,"vpl");  
   fprintf(ficgp,"set out \"graphmort.png\"\n ");   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");  
   fprintf(ficgp, "set ter png small\n set log y\n");   for (k=agegomp;k<(agemortsup-2);k++) 
   fprintf(ficgp, "set size 0.65,0.65\n");     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);  
    
 }    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
 /***********************************************/    char dirfileres[132],optfileres[132];
 /**************** Main Program *****************/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 /***********************************************/    int ng;
   
 int main(int argc, char *argv[])  
 {    /*#ifdef windows */
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;      /*#endif */
   int linei, month, year,iout;  
   int jj, ll, li, lj, lk, imk;  
   int numlinepar=0; /* Current linenumber of parameter file */    strcpy(dirfileres,optionfilefiname);
   int itimes;    strcpy(optfileres,"vpl");
   int NDIM=2;    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
   char ca[32], cb[32], cc[32];    fprintf(ficgp, "set ter png small\n set log y\n"); 
   char dummy[]="                         ";    fprintf(ficgp, "set size 0.65,0.65\n");
   /*  FILE *fichtm; *//* Html File */    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   /* FILE *ficgp;*/ /*Gnuplot File */  
   struct stat info;  } 
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
   
   double fret;  
   double **xi,tmp,delta;  
   /***********************************************/
   double dum; /* Dummy variable */  /**************** Main Program *****************/
   double ***p3mat;  /***********************************************/
   double ***mobaverage;  
   int *indx;  int main(int argc, char *argv[])
   char line[MAXLINE], linepar[MAXLINE];  {
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   char pathr[MAXLINE], pathimach[MAXLINE];    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   char **bp, *tok, *val; /* pathtot */    int linei, month, year,iout;
   int firstobs=1, lastobs=10;    int jj, ll, li, lj, lk, imk;
   int sdeb, sfin; /* Status at beginning and end */    int numlinepar=0; /* Current linenumber of parameter file */
   int c,  h , cpt,l;    int itimes;
   int ju,jl, mi;    int NDIM=2;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    int vpopbased=0;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;  
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    char ca[32], cb[32], cc[32];
   int mobilav=0,popforecast=0;    char dummy[]="                         ";
   int hstepm, nhstepm;    /*  FILE *fichtm; *//* Html File */
   int agemortsup;    /* FILE *ficgp;*/ /*Gnuplot File */
   float  sumlpop=0.;    struct stat info;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    double agedeb, agefin,hf;
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
   double bage, fage, age, agelim, agebase;    double fret;
   double ftolpl=FTOL;    double **xi,tmp,delta;
   double **prlim;  
   double *severity;    double dum; /* Dummy variable */
   double ***param; /* Matrix of parameters */    double ***p3mat;
   double  *p;    double ***mobaverage;
   double **matcov; /* Matrix of covariance */    int *indx;
   double ***delti3; /* Scale */    char line[MAXLINE], linepar[MAXLINE];
   double *delti; /* Scale */    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   double ***eij, ***vareij;    char pathr[MAXLINE], pathimach[MAXLINE]; 
   double **varpl; /* Variances of prevalence limits by age */    char **bp, *tok, *val; /* pathtot */
   double *epj, vepp;    int firstobs=1, lastobs=10;
   double kk1, kk2;    int sdeb, sfin; /* Status at beginning and end */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    int c,  h , cpt,l;
   double **ximort;    int ju,jl, mi;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   int *dcwave;    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   char z[1]="c", occ;    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int agemortsup;
   char  *strt, strtend[80];    float  sumlpop=0.;
   char *stratrunc;    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   int lstra;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
   long total_usecs;    double bage, fage, age, agelim, agebase;
      double ftolpl=FTOL;
 /*   setlocale (LC_ALL, ""); */    double **prlim;
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    double *severity;
 /*   textdomain (PACKAGE); */    double ***param; /* Matrix of parameters */
 /*   setlocale (LC_CTYPE, ""); */    double  *p;
 /*   setlocale (LC_MESSAGES, ""); */    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double *delti; /* Scale */
   (void) gettimeofday(&start_time,&tzp);    double ***eij, ***vareij;
   curr_time=start_time;    double **varpl; /* Variances of prevalence limits by age */
   tm = *localtime(&start_time.tv_sec);    double *epj, vepp;
   tmg = *gmtime(&start_time.tv_sec);    double kk1, kk2;
   strcpy(strstart,asctime(&tm));    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
 /*  printf("Localtime (at start)=%s",strstart); */    char *alph[]={"a","a","b","c","d","e"}, str[4];
 /*  tp.tv_sec = tp.tv_sec +86400; */    int *dcwave;
 /*  tm = *localtime(&start_time.tv_sec); */  
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    char z[1]="c", occ;
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */  
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 /*   tp.tv_sec = mktime(&tmg); */    char  *strt, strtend[80];
 /*   strt=asctime(&tmg); */    char *stratrunc;
 /*   printf("Time(after) =%s",strstart);  */    int lstra;
 /*  (void) time (&time_value);  
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    long total_usecs;
 *  tm = *localtime(&time_value);   
 *  strstart=asctime(&tm);  /*   setlocale (LC_ALL, ""); */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 */  /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   nberr=0; /* Number of errors and warnings */  /*   setlocale (LC_MESSAGES, ""); */
   nbwarn=0;  
   getcwd(pathcd, size);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
   printf("\n%s\n%s",version,fullversion);    curr_time=start_time;
   if(argc <=1){    tm = *localtime(&start_time.tv_sec);
     printf("\nEnter the parameter file name: ");    tmg = *gmtime(&start_time.tv_sec);
     fgets(pathr,FILENAMELENGTH,stdin);    strcpy(strstart,asctime(&tm));
     i=strlen(pathr);  
     if(pathr[i-1]=='\n')  /*  printf("Localtime (at start)=%s",strstart); */
       pathr[i-1]='\0';  /*  tp.tv_sec = tp.tv_sec +86400; */
    for (tok = pathr; tok != NULL; ){  /*  tm = *localtime(&start_time.tv_sec); */
       printf("Pathr |%s|\n",pathr);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       printf("val= |%s| pathr=%s\n",val,pathr);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
       strcpy (pathtot, val);  /*   tp.tv_sec = mktime(&tmg); */
       if(pathr[0] == '\0') break; /* Dirty */  /*   strt=asctime(&tmg); */
     }  /*   printf("Time(after) =%s",strstart);  */
   }  /*  (void) time (&time_value);
   else{  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
     strcpy(pathtot,argv[1]);  *  tm = *localtime(&time_value);
   }  *  strstart=asctime(&tm);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   /*cygwin_split_path(pathtot,path,optionfile);  */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   /* Split argv[0], imach program to get pathimach */    getcwd(pathcd, size);
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);  
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    printf("\n%s\n%s",version,fullversion);
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    if(argc <=1){
  /*   strcpy(pathimach,argv[0]); */      printf("\nEnter the parameter file name: ");
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */      fgets(pathr,FILENAMELENGTH,stdin);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      i=strlen(pathr);
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      if(pathr[i-1]=='\n')
   chdir(path); /* Can be a relative path */        pathr[i-1]='\0';
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */     for (tok = pathr; tok != NULL; ){
     printf("Current directory %s!\n",pathcd);        printf("Pathr |%s|\n",pathr);
   strcpy(command,"mkdir ");        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   strcat(command,optionfilefiname);        printf("val= |%s| pathr=%s\n",val,pathr);
   if((outcmd=system(command)) != 0){        strcpy (pathtot, val);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);        if(pathr[0] == '\0') break; /* Dirty */
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */      }
     /* fclose(ficlog); */    }
 /*     exit(1); */    else{
   }      strcpy(pathtot,argv[1]);
 /*   if((imk=mkdir(optionfilefiname))<0){ */    }
 /*     perror("mkdir"); */    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 /*   } */    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   /*-------- arguments in the command line --------*/    /* cutv(path,optionfile,pathtot,'\\');*/
   
   /* Log file */    /* Split argv[0], imach program to get pathimach */
   strcat(filelog, optionfilefiname);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   strcat(filelog,".log");    /* */    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   if((ficlog=fopen(filelog,"w"))==NULL)    {    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("Problem with logfile %s\n",filelog);   /*   strcpy(pathimach,argv[0]); */
     goto end;    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   }    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   fprintf(ficlog,"Log filename:%s\n",filelog);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    chdir(path); /* Can be a relative path */
   fprintf(ficlog,"\nEnter the parameter file name: \n");    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\      printf("Current directory %s!\n",pathcd);
  path=%s \n\    strcpy(command,"mkdir ");
  optionfile=%s\n\    strcat(command,optionfilefiname);
  optionfilext=%s\n\    if((outcmd=system(command)) != 0){
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   printf("Local time (at start):%s",strstart);      /* fclose(ficlog); */
   fprintf(ficlog,"Local time (at start): %s",strstart);  /*     exit(1); */
   fflush(ficlog);    }
 /*   (void) gettimeofday(&curr_time,&tzp); */  /*   if((imk=mkdir(optionfilefiname))<0){ */
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */  /*     perror("mkdir"); */
   /*   } */
   /* */  
   strcpy(fileres,"r");    /*-------- arguments in the command line --------*/
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    /* Log file */
     strcat(filelog, optionfilefiname);
   /*---------arguments file --------*/    strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      printf("Problem with logfile %s\n",filelog);
     printf("Problem with optionfile %s\n",optionfile);      goto end;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    }
     fflush(ficlog);    fprintf(ficlog,"Log filename:%s\n",filelog);
     goto end;    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   }    fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
   strcpy(filereso,"o");   optionfilext=%s\n\
   strcat(filereso,fileres);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  
     printf("Problem with Output resultfile: %s\n", filereso);    printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);    fflush(ficlog);
     goto end;  /*   (void) gettimeofday(&curr_time,&tzp); */
   }  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
   /* Reads comments: lines beginning with '#' */    /* */
   numlinepar=0;    strcpy(fileres,"r");
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileres, optionfilefiname);
     ungetc(c,ficpar);    strcat(fileres,".txt");    /* Other files have txt extension */
     fgets(line, MAXLINE, ficpar);  
     numlinepar++;    /*---------arguments file --------*/
     puts(line);  
     fputs(line,ficparo);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     fputs(line,ficlog);      printf("Problem with optionfile %s\n",optionfile);
   }      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   ungetc(c,ficpar);      fflush(ficlog);
       goto end;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    }
   numlinepar++;  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    strcpy(filereso,"o");
   fflush(ficlog);    strcat(filereso,fileres);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     ungetc(c,ficpar);      printf("Problem with Output resultfile: %s\n", filereso);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     numlinepar++;      fflush(ficlog);
     puts(line);      goto end;
     fputs(line,ficparo);    }
     fputs(line,ficlog);  
   }    /* Reads comments: lines beginning with '#' */
   ungetc(c,ficpar);    numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
          ungetc(c,ficpar);
   covar=matrix(0,NCOVMAX,1,n);      fgets(line, MAXLINE, ficpar);
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/      numlinepar++;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      puts(line);
       fputs(line,ficparo);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */      fputs(line,ficlog);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    ungetc(c,ficpar);
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   delti=delti3[1][1];    numlinepar++;
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    fflush(ficlog);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    while((c=getc(ficpar))=='#' && c!= EOF){
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      ungetc(c,ficpar);
     fclose (ficparo);      fgets(line, MAXLINE, ficpar);
     fclose (ficlog);      numlinepar++;
     goto end;      puts(line);
     exit(0);      fputs(line,ficparo);
   }      fputs(line,ficlog);
   else if(mle==-3) {    }
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    ungetc(c,ficpar);
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    covar=matrix(0,NCOVMAX,1,n); 
     matcov=matrix(1,npar,1,npar);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   }    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   else{  
     /* Read guess parameters */    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     /* Reads comments: lines beginning with '#' */    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     while((c=getc(ficpar))=='#' && c!= EOF){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       ungetc(c,ficpar);    if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       fgets(line, MAXLINE, ficpar);      printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       numlinepar++;      fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       puts(line);      fflush(stdout);
       fputs(line,ficparo);      fclose (ficlog);
       fputs(line,ficlog);      goto end;
     }    }
     ungetc(c,ficpar);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
        delti=delti3[1][1];
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     for(i=1; i <=nlstate; i++){    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       j=0;      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       for(jj=1; jj <=nlstate+ndeath; jj++){      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         if(jj==i) continue;      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         j++;      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
         fscanf(ficpar,"%1d%1d",&i1,&j1);      fclose (ficparo);
         if ((i1 != i) && (j1 != j)){      fclose (ficlog);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \      goto end;
 It might be a problem of design; if ncovcol and the model are correct\n \      exit(0);
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);    }
           exit(1);    else if(mle==-3) {
         }      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
         fprintf(ficparo,"%1d%1d",i1,j1);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         if(mle==1)      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           printf("%1d%1d",i,j);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         fprintf(ficlog,"%1d%1d",i,j);      matcov=matrix(1,npar,1,npar);
         for(k=1; k<=ncovmodel;k++){    }
           fscanf(ficpar," %lf",&param[i][j][k]);    else{
           if(mle==1){      /* Read guess parameters */
             printf(" %lf",param[i][j][k]);      /* Reads comments: lines beginning with '#' */
             fprintf(ficlog," %lf",param[i][j][k]);      while((c=getc(ficpar))=='#' && c!= EOF){
           }        ungetc(c,ficpar);
           else        fgets(line, MAXLINE, ficpar);
             fprintf(ficlog," %lf",param[i][j][k]);        numlinepar++;
           fprintf(ficparo," %lf",param[i][j][k]);        puts(line);
         }        fputs(line,ficparo);
         fscanf(ficpar,"\n");        fputs(line,ficlog);
         numlinepar++;      }
         if(mle==1)      ungetc(c,ficpar);
           printf("\n");      
         fprintf(ficlog,"\n");      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         fprintf(ficparo,"\n");      for(i=1; i <=nlstate; i++){
       }        j=0;
     }          for(jj=1; jj <=nlstate+ndeath; jj++){
     fflush(ficlog);          if(jj==i) continue;
           j++;
     p=param[1][1];          fscanf(ficpar,"%1d%1d",&i1,&j1);
              if ((i1 != i) && (j1 != j)){
     /* Reads comments: lines beginning with '#' */            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     while((c=getc(ficpar))=='#' && c!= EOF){  It might be a problem of design; if ncovcol and the model are correct\n \
       ungetc(c,ficpar);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
       fgets(line, MAXLINE, ficpar);            exit(1);
       numlinepar++;          }
       puts(line);          fprintf(ficparo,"%1d%1d",i1,j1);
       fputs(line,ficparo);          if(mle==1)
       fputs(line,ficlog);            printf("%1d%1d",i,j);
     }          fprintf(ficlog,"%1d%1d",i,j);
     ungetc(c,ficpar);          for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
     for(i=1; i <=nlstate; i++){            if(mle==1){
       for(j=1; j <=nlstate+ndeath-1; j++){              printf(" %lf",param[i][j][k]);
         fscanf(ficpar,"%1d%1d",&i1,&j1);              fprintf(ficlog," %lf",param[i][j][k]);
         if ((i1-i)*(j1-j)!=0){            }
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);            else
           exit(1);              fprintf(ficlog," %lf",param[i][j][k]);
         }            fprintf(ficparo," %lf",param[i][j][k]);
         printf("%1d%1d",i,j);          }
         fprintf(ficparo,"%1d%1d",i1,j1);          fscanf(ficpar,"\n");
         fprintf(ficlog,"%1d%1d",i1,j1);          numlinepar++;
         for(k=1; k<=ncovmodel;k++){          if(mle==1)
           fscanf(ficpar,"%le",&delti3[i][j][k]);            printf("\n");
           printf(" %le",delti3[i][j][k]);          fprintf(ficlog,"\n");
           fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficparo,"\n");
           fprintf(ficlog," %le",delti3[i][j][k]);        }
         }      }  
         fscanf(ficpar,"\n");      fflush(ficlog);
         numlinepar++;  
         printf("\n");      p=param[1][1];
         fprintf(ficparo,"\n");      
         fprintf(ficlog,"\n");      /* Reads comments: lines beginning with '#' */
       }      while((c=getc(ficpar))=='#' && c!= EOF){
     }        ungetc(c,ficpar);
     fflush(ficlog);        fgets(line, MAXLINE, ficpar);
         numlinepar++;
     delti=delti3[1][1];        puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      }
        ungetc(c,ficpar);
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i <=nlstate; i++){
       ungetc(c,ficpar);        for(j=1; j <=nlstate+ndeath-1; j++){
       fgets(line, MAXLINE, ficpar);          fscanf(ficpar,"%1d%1d",&i1,&j1);
       numlinepar++;          if ((i1-i)*(j1-j)!=0){
       puts(line);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
       fputs(line,ficparo);            exit(1);
       fputs(line,ficlog);          }
     }          printf("%1d%1d",i,j);
     ungetc(c,ficpar);          fprintf(ficparo,"%1d%1d",i1,j1);
            fprintf(ficlog,"%1d%1d",i1,j1);
     matcov=matrix(1,npar,1,npar);          for(k=1; k<=ncovmodel;k++){
     for(i=1; i <=npar; i++){            fscanf(ficpar,"%le",&delti3[i][j][k]);
       fscanf(ficpar,"%s",&str);            printf(" %le",delti3[i][j][k]);
       if(mle==1)            fprintf(ficparo," %le",delti3[i][j][k]);
         printf("%s",str);            fprintf(ficlog," %le",delti3[i][j][k]);
       fprintf(ficlog,"%s",str);          }
       fprintf(ficparo,"%s",str);          fscanf(ficpar,"\n");
       for(j=1; j <=i; j++){          numlinepar++;
         fscanf(ficpar," %le",&matcov[i][j]);          printf("\n");
         if(mle==1){          fprintf(ficparo,"\n");
           printf(" %.5le",matcov[i][j]);          fprintf(ficlog,"\n");
         }        }
         fprintf(ficlog," %.5le",matcov[i][j]);      }
         fprintf(ficparo," %.5le",matcov[i][j]);      fflush(ficlog);
       }  
       fscanf(ficpar,"\n");      delti=delti3[1][1];
       numlinepar++;  
       if(mle==1)  
         printf("\n");      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
       fprintf(ficlog,"\n");    
       fprintf(ficparo,"\n");      /* Reads comments: lines beginning with '#' */
     }      while((c=getc(ficpar))=='#' && c!= EOF){
     for(i=1; i <=npar; i++)        ungetc(c,ficpar);
       for(j=i+1;j<=npar;j++)        fgets(line, MAXLINE, ficpar);
         matcov[i][j]=matcov[j][i];        numlinepar++;
            puts(line);
     if(mle==1)        fputs(line,ficparo);
       printf("\n");        fputs(line,ficlog);
     fprintf(ficlog,"\n");      }
          ungetc(c,ficpar);
     fflush(ficlog);    
          matcov=matrix(1,npar,1,npar);
     /*-------- Rewriting parameter file ----------*/      for(i=1; i <=npar; i++)
     strcpy(rfileres,"r");    /* "Rparameterfile */        for(j=1; j <=npar; j++) matcov[i][j]=0.;
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        
     strcat(rfileres,".");    /* */      for(i=1; i <=npar; i++){
     strcat(rfileres,optionfilext);    /* Other files have txt extension */        fscanf(ficpar,"%s",&str);
     if((ficres =fopen(rfileres,"w"))==NULL) {        if(mle==1)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          printf("%s",str);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        fprintf(ficlog,"%s",str);
     }        fprintf(ficparo,"%s",str);
     fprintf(ficres,"#%s\n",version);        for(j=1; j <=i; j++){
   }    /* End of mle != -3 */          fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
   /*-------- data file ----------*/            printf(" %.5le",matcov[i][j]);
   if((fic=fopen(datafile,"r"))==NULL)    {          }
     printf("Problem while opening datafile: %s\n", datafile);goto end;          fprintf(ficlog," %.5le",matcov[i][j]);
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;          fprintf(ficparo," %.5le",matcov[i][j]);
   }        }
         fscanf(ficpar,"\n");
   n= lastobs;        numlinepar++;
   severity = vector(1,maxwav);        if(mle==1)
   outcome=imatrix(1,maxwav+1,1,n);          printf("\n");
   num=lvector(1,n);        fprintf(ficlog,"\n");
   moisnais=vector(1,n);        fprintf(ficparo,"\n");
   annais=vector(1,n);      }
   moisdc=vector(1,n);      for(i=1; i <=npar; i++)
   andc=vector(1,n);        for(j=i+1;j<=npar;j++)
   agedc=vector(1,n);          matcov[i][j]=matcov[j][i];
   cod=ivector(1,n);      
   weight=vector(1,n);      if(mle==1)
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        printf("\n");
   mint=matrix(1,maxwav,1,n);      fprintf(ficlog,"\n");
   anint=matrix(1,maxwav,1,n);      
   s=imatrix(1,maxwav+1,1,n);      fflush(ficlog);
   tab=ivector(1,NCOVMAX);      
   ncodemax=ivector(1,8);      /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
   i=1;      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   linei=0;      strcat(rfileres,".");    /* */
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     linei=linei+1;      if((ficres =fopen(rfileres,"w"))==NULL) {
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       if(line[j] == '\t')        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
         line[j] = ' ';      }
     }      fprintf(ficres,"#%s\n",version);
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    }    /* End of mle != -3 */
       ;  
     };    /*-------- data file ----------*/
     line[j+1]=0;  /* Trims blanks at end of line */    if((fic=fopen(datafile,"r"))==NULL)    {
     if(line[0]=='#'){      printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Comment line\n%s\n",line);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
       printf("Comment line\n%s\n",line);    }
       continue;  
     }    n= lastobs;
     severity = vector(1,maxwav);
     for (j=maxwav;j>=1;j--){    outcome=imatrix(1,maxwav+1,1,n);
       cutv(stra, strb,line,' ');    num=lvector(1,n);
       errno=0;    moisnais=vector(1,n);
       lval=strtol(strb,&endptr,10);    annais=vector(1,n);
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/    moisdc=vector(1,n);
       if( strb[0]=='\0' || (*endptr != '\0')){    andc=vector(1,n);
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);    agedc=vector(1,n);
         exit(1);    cod=ivector(1,n);
       }    weight=vector(1,n);
       s[j][i]=lval;    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
          mint=matrix(1,maxwav,1,n);
       strcpy(line,stra);    anint=matrix(1,maxwav,1,n);
       cutv(stra, strb,line,' ');    s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    tab=ivector(1,NCOVMAX);
       }    ncodemax=ivector(1,8);
       else  if(iout=sscanf(strb,"%s.") != 0){  
         month=99;    i=1;
         year=9999;    linei=0;
       }else{    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);      linei=linei+1;
         exit(1);      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
       }        if(line[j] == '\t')
       anint[j][i]= (double) year;          line[j] = ' ';
       mint[j][i]= (double)month;      }
       strcpy(line,stra);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     } /* ENd Waves */        ;
          };
     cutv(stra, strb,line,' ');      line[j+1]=0;  /* Trims blanks at end of line */
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      if(line[0]=='#'){
     }        fprintf(ficlog,"Comment line\n%s\n",line);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){        printf("Comment line\n%s\n",line);
       month=99;        continue;
       year=9999;      }
     }else{  
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);      for (j=maxwav;j>=1;j--){
       exit(1);        cutv(stra, strb,line,' '); 
     }        if(strb[0]=='.') { /* Missing status */
     andc[i]=(double) year;          lval=-1;
     moisdc[i]=(double) month;        }else{
     strcpy(line,stra);          errno=0;
              lval=strtol(strb,&endptr,10); 
     cutv(stra, strb,line,' ');        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){          if( strb[0]=='\0' || (*endptr != '\0')){
     }            printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     else  if(iout=sscanf(strb,"%s.") != 0){            fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
       month=99;            goto end;
       year=9999;          }
     }else{        }
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);        s[j][i]=lval;
       exit(1);        
     }        strcpy(line,stra);
     annais[i]=(double)(year);        cutv(stra, strb,line,' ');
     moisnais[i]=(double)(month);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     strcpy(line,stra);        }
            else  if(iout=sscanf(strb,"%s.") != 0){
     cutv(stra, strb,line,' ');          month=99;
     errno=0;          year=9999;
     dval=strtod(strb,&endptr);        }else{
     if( strb[0]=='\0' || (*endptr != '\0')){          printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);          fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
       exit(1);          goto end;
     }        }
     weight[i]=dval;        anint[j][i]= (double) year; 
     strcpy(line,stra);        mint[j][i]= (double)month; 
            strcpy(line,stra);
     for (j=ncovcol;j>=1;j--){      } /* ENd Waves */
       cutv(stra, strb,line,' ');      
       errno=0;      cutv(stra, strb,line,' '); 
       lval=strtol(strb,&endptr,10);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       if( strb[0]=='\0' || (*endptr != '\0')){      }
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         exit(1);        month=99;
       }        year=9999;
       if(lval <-1 || lval >1){      }else{
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \        printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \          fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \          goto end;
  For example, for multinomial values like 1, 2 and 3,\n \      }
  build V1=0 V2=0 for the reference value (1),\n \      andc[i]=(double) year; 
         V1=1 V2=0 for (2) \n \      moisdc[i]=(double) month; 
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \      strcpy(line,stra);
  output of IMaCh is often meaningless.\n \      
  Exiting.\n",lval,linei, i,line,j);      cutv(stra, strb,line,' '); 
         exit(1);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }      }
       covar[j][i]=(double)(lval);      else  if(iout=sscanf(strb,"%s.") != 0){
       strcpy(line,stra);        month=99;
     }        year=9999;
     lstra=strlen(stra);      }else{
            printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */        fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
       stratrunc = &(stra[lstra-9]);          goto end;
       num[i]=atol(stratrunc);      }
     }      annais[i]=(double)(year);
     else      moisnais[i]=(double)(month); 
       num[i]=atol(stra);      strcpy(line,stra);
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      cutv(stra, strb,line,' '); 
          errno=0;
     i=i+1;      dval=strtod(strb,&endptr); 
   } /* End loop reading  data */      if( strb[0]=='\0' || (*endptr != '\0')){
   fclose(fic);        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   /* printf("ii=%d", ij);        fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
      scanf("%d",i);*/        fflush(ficlog);
   imx=i-1; /* Number of individuals */        goto end;
       }
   /* for (i=1; i<=imx; i++){      weight[i]=dval; 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      strcpy(line,stra);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      for (j=ncovcol;j>=1;j--){
     }*/        cutv(stra, strb,line,' '); 
    /*  for (i=1; i<=imx; i++){        if(strb[0]=='.') { /* Missing status */
      if (s[4][i]==9)  s[4][i]=-1;          lval=-1;
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        }else{
            errno=0;
   /* for (i=1; i<=imx; i++) */          lval=strtol(strb,&endptr,10); 
            if( strb[0]=='\0' || (*endptr != '\0')){
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;            printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
      else weight[i]=1;*/            fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
   /* Calculation of the number of parameters from char model */          }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        }
   Tprod=ivector(1,15);        if(lval <-1 || lval >1){
   Tvaraff=ivector(1,15);          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   Tvard=imatrix(1,15,1,2);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   Tage=ivector(1,15);         for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
       For example, for multinomial values like 1, 2 and 3,\n \
   if (strlen(model) >1){ /* If there is at least 1 covariate */   build V1=0 V2=0 for the reference value (1),\n \
     j=0, j1=0, k1=1, k2=1;          V1=1 V2=0 for (2) \n \
     j=nbocc(model,'+'); /* j=Number of '+' */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     j1=nbocc(model,'*'); /* j1=Number of '*' */   output of IMaCh is often meaningless.\n \
     cptcovn=j+1;   Exiting.\n",lval,linei, i,line,j);
     cptcovprod=j1; /*Number of products */          fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
       Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     strcpy(modelsav,model);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){   For example, for multinomial values like 1, 2 and 3,\n \
       printf("Error. Non available option model=%s ",model);   build V1=0 V2=0 for the reference value (1),\n \
       fprintf(ficlog,"Error. Non available option model=%s ",model);          V1=1 V2=0 for (2) \n \
       goto end;   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     }   output of IMaCh is often meaningless.\n \
       Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
     /* This loop fills the array Tvar from the string 'model'.*/          goto end;
         }
     for(i=(j+1); i>=1;i--){        covar[j][i]=(double)(lval);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        strcpy(line,stra);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      }  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      lstra=strlen(stra);
       /*scanf("%d",i);*/       
       if (strchr(strb,'*')) {  /* Model includes a product */      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        stratrunc = &(stra[lstra-9]);
         if (strcmp(strc,"age")==0) { /* Vn*age */        num[i]=atol(stratrunc);
           cptcovprod--;      }
           cutv(strb,stre,strd,'V');      else
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/        num[i]=atol(stra);
           cptcovage++;      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
             Tage[cptcovage]=i;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
             /*printf("stre=%s ", stre);*/      
         }      i=i+1;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    } /* End loop reading  data */
           cptcovprod--;    fclose(fic);
           cutv(strb,stre,strc,'V');    /* printf("ii=%d", ij);
           Tvar[i]=atoi(stre);       scanf("%d",i);*/
           cptcovage++;    imx=i-1; /* Number of individuals */
           Tage[cptcovage]=i;  
         }    /* for (i=1; i<=imx; i++){
         else {  /* Age is not in the model */      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
           Tvar[i]=ncovcol+k1;      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      }*/
           Tprod[k1]=i;     /*  for (i=1; i<=imx; i++){
           Tvard[k1][1]=atoi(strc); /* m*/       if (s[4][i]==9)  s[4][i]=-1; 
           Tvard[k1][2]=atoi(stre); /* n */       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
           Tvar[cptcovn+k2]=Tvard[k1][1];    
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    /* for (i=1; i<=imx; i++) */
           for (k=1; k<=lastobs;k++)   
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
           k1++;       else weight[i]=1;*/
           k2=k2+2;  
         }    /* Calculation of the number of parameters from char model */
       }    Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
       else { /* no more sum */    Tprod=ivector(1,15); 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    Tvaraff=ivector(1,15); 
        /*  scanf("%d",i);*/    Tvard=imatrix(1,15,1,2);
       cutv(strd,strc,strb,'V');    Tage=ivector(1,15);      
       Tvar[i]=atoi(strc);     
       }    if (strlen(model) >1){ /* If there is at least 1 covariate */
       strcpy(modelsav,stra);        j=0, j1=0, k1=1, k2=1;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      j=nbocc(model,'+'); /* j=Number of '+' */
         scanf("%d",i);*/      j1=nbocc(model,'*'); /* j1=Number of '*' */
     } /* end of loop + */      cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
   } /* end model */      cptcovprod=j1; /*Number of products  V1*V2 =1 */
        
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.      strcpy(modelsav,model); 
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
   printf("cptcovprod=%d ", cptcovprod);        goto end;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      }
       
   scanf("%d ",i);*/      /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
     /*  if(mle==1){*/      for(i=(j+1); i>=1;i--){
   if (weightopt != 1) { /* Maximisation without weights*/        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
     for(i=1;i<=n;i++) weight[i]=1.0;                                       modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
   }                                       stra=V2
     /*-calculation of age at interview from date of interview and age at death -*/                                      */ 
   agev=matrix(1,maxwav,1,imx);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   for (i=1; i<=imx; i++) {        /*scanf("%d",i);*/
     for(m=2; (m<= maxwav); m++) {        if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
         anint[m][i]=9999;          if (strcmp(strc,"age")==0) { /* Vn*age */
         s[m][i]=-1;            cptcovprod--;
       }            cutv(strb,stre,strd,'V');
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){            Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
         nberr++;            cptcovage++; /* Sum the number of covariates including ages as a product */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);            Tage[cptcovage]=i;  /* Tage[1] =2 */
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);            /*printf("stre=%s ", stre);*/
         s[m][i]=-1;          }
       }          else if (strcmp(strd,"age")==0) { /* or age*Vn */
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){            cptcovprod--;
         nberr++;            cutv(strb,stre,strc,'V');
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);            Tvar[i]=atoi(stre);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);            cptcovage++;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */            Tage[cptcovage]=i;
       }          }
     }          else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
   }            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
   for (i=1; i<=imx; i++)  {                                    If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
     for(m=firstpass; (m<= lastpass); m++){            Tprod[k1]=i;  /* Tprod[1]  */
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){            Tvard[k1][1]=atoi(strc); /* m*/
         if (s[m][i] >= nlstate+1) {            Tvard[k1][2]=atoi(stre); /* n */
           if(agedc[i]>0)            Tvar[cptcovn+k2]=Tvard[k1][1];
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
               agev[m][i]=agedc[i];            for (k=1; k<=lastobs;k++) 
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             else {            k1++;
               if ((int)andc[i]!=9999){            k2=k2+2;
                 nbwarn++;          }
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);        }
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);        else { /* no more sum */
                 agev[m][i]=-1;          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
               }         /*  scanf("%d",i);*/
             }        cutv(strd,strc,strb,'V');
         }        Tvar[i]=atoi(strc);
         else if(s[m][i] !=9){ /* Standard case, age in fractional        }
                                  years but with the precision of a month */        strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)          scanf("%d",i);*/
             agev[m][i]=1;      } /* end of loop + */
           else if(agev[m][i] <agemin){    } /* end model */
             agemin=agev[m][i];    
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
           }      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
           else if(agev[m][i] >agemax){  
             agemax=agev[m][i];    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    printf("cptcovprod=%d ", cptcovprod);
           }    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
           /*agev[m][i]=anint[m][i]-annais[i];*/  
           /*     agev[m][i] = age[i]+2*m;*/    scanf("%d ",i);*/
         }  
         else { /* =9 */      /*  if(mle==1){*/
           agev[m][i]=1;    if (weightopt != 1) { /* Maximisation without weights*/
           s[m][i]=-1;      for(i=1;i<=n;i++) weight[i]=1.0;
         }    }
       }      /*-calculation of age at interview from date of interview and age at death -*/
       else /*= 0 Unknown */    agev=matrix(1,maxwav,1,imx);
         agev[m][i]=1;  
     }    for (i=1; i<=imx; i++) {
          for(m=2; (m<= maxwav); m++) {
   }        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
   for (i=1; i<=imx; i++)  {          anint[m][i]=9999;
     for(m=firstpass; (m<=lastpass); m++){          s[m][i]=-1;
       if (s[m][i] > (nlstate+ndeath)) {        }
         nberr++;        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              nberr++;
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         goto end;          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       }          s[m][i]=-1;
     }        }
   }        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
   /*for (i=1; i<=imx; i++){          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
   for (m=firstpass; (m<lastpass); m++){          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 }        }
       }
 }*/    }
   
     for (i=1; i<=imx; i++)  {
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
   agegomp=(int)agemin;          if (s[m][i] >= nlstate+1) {
   free_vector(severity,1,maxwav);            if(agedc[i]>0)
   free_imatrix(outcome,1,maxwav+1,1,n);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
   free_vector(moisnais,1,n);                agev[m][i]=agedc[i];
   free_vector(annais,1,n);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
   /* free_matrix(mint,1,maxwav,1,n);              else {
      free_matrix(anint,1,maxwav,1,n);*/                if ((int)andc[i]!=9999){
   free_vector(moisdc,1,n);                  nbwarn++;
   free_vector(andc,1,n);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                      agev[m][i]=-1;
   wav=ivector(1,imx);                }
   dh=imatrix(1,lastpass-firstpass+1,1,imx);              }
   bh=imatrix(1,lastpass-firstpass+1,1,imx);          }
   mw=imatrix(1,lastpass-firstpass+1,1,imx);          else if(s[m][i] !=9){ /* Standard case, age in fractional
                                       years but with the precision of a month */
   /* Concatenates waves */            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */            else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
   Tcode=ivector(1,100);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            }
   ncodemax[1]=1;            else if(agev[m][i] >agemax){
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);              agemax=agev[m][i];
                    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of            }
                                  the estimations*/            /*agev[m][i]=anint[m][i]-annais[i];*/
   h=0;            /*     agev[m][i] = age[i]+2*m;*/
   m=pow(2,cptcoveff);          }
            else { /* =9 */
   for(k=1;k<=cptcoveff; k++){            agev[m][i]=1;
     for(i=1; i <=(m/pow(2,k));i++){            s[m][i]=-1;
       for(j=1; j <= ncodemax[k]; j++){          }
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        }
           h++;        else /*= 0 Unknown */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          agev[m][i]=1;
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      }
         }      
       }    }
     }    for (i=1; i<=imx; i++)  {
   }      for(m=firstpass; (m<=lastpass); m++){
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        if (s[m][i] > (nlstate+ndeath)) {
      codtab[1][2]=1;codtab[2][2]=2; */          nberr++;
   /* for(i=1; i <=m ;i++){          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
      for(k=1; k <=cptcovn; k++){          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          goto end;
      }        }
      printf("\n");      }
      }    }
      scanf("%d",i);*/  
        /*for (i=1; i<=imx; i++){
   /*------------ gnuplot -------------*/    for (m=firstpass; (m<lastpass); m++){
   strcpy(optionfilegnuplot,optionfilefiname);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   if(mle==-3)  }
     strcat(optionfilegnuplot,"-mort");  
   strcat(optionfilegnuplot,".gp");  }*/
   
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   }    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   else{  
     fprintf(ficgp,"\n# %s\n", version);    agegomp=(int)agemin;
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    free_vector(severity,1,maxwav);
     fprintf(ficgp,"set missing 'NaNq'\n");    free_imatrix(outcome,1,maxwav+1,1,n);
   }    free_vector(moisnais,1,n);
   /*  fclose(ficgp);*/    free_vector(annais,1,n);
   /*--------- index.htm --------*/    /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    free_vector(moisdc,1,n);
   if(mle==-3)    free_vector(andc,1,n);
     strcat(optionfilehtm,"-mort");  
   strcat(optionfilehtm,".htm");     
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    wav=ivector(1,imx);
     printf("Problem with %s \n",optionfilehtm), exit(0);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
   }    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */     
   strcat(optionfilehtmcov,"-cov.htm");    /* Concatenates waves */
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);  
   }    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   else{  
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    ncodemax[1]=1;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);        
   }    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    h=0;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    m=pow(2,cptcoveff);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\   
 \n\    for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
 <hr  size=\"2\" color=\"#EC5E5E\">\      for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
  <ul><li><h4>Parameter files</h4>\n\        for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\            h++;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\            if (h>m) 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\              h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
  - Date and time at start: %s</ul>\n",\            printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\          } 
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\        }
           fileres,fileres,\      }
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    } 
   fflush(fichtm);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
   strcpy(pathr,path);    /* for(i=1; i <=m ;i++){ 
   strcat(pathr,optionfilefiname);       for(k=1; k <=cptcovn; k++){
   chdir(optionfilefiname); /* Move to directory named optionfile */         printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
         }
   /* Calculates basic frequencies. Computes observed prevalence at single age       printf("\n");
      and prints on file fileres'p'. */       }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);       scanf("%d",i);*/
       
   fprintf(fichtm,"\n");    /*------------ gnuplot -------------*/
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    strcpy(optionfilegnuplot,optionfilefiname);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\    if(mle==-3)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      strcat(optionfilegnuplot,"-mort");
           imx,agemin,agemax,jmin,jmax,jmean);    strcat(optionfilegnuplot,".gp");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with file %s",optionfilegnuplot);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    else{
          fprintf(ficgp,"\n# %s\n", version); 
          fprintf(ficgp,"# %s\n", optionfilegnuplot); 
   /* For Powell, parameters are in a vector p[] starting at p[1]      fprintf(ficgp,"set missing 'NaNq'\n");
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    }
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/  
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
   if (mle==-3){    if(mle==-3)
     ximort=matrix(1,NDIM,1,NDIM);      strcat(optionfilehtm,"-mort");
     cens=ivector(1,n);    strcat(optionfilehtm,".htm");
     ageexmed=vector(1,n);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     agecens=vector(1,n);      printf("Problem with %s \n",optionfilehtm);
     dcwave=ivector(1,n);      exit(0);
      }
     for (i=1; i<=imx; i++){  
       dcwave[i]=-1;    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
       for (m=firstpass; m<=lastpass; m++)    strcat(optionfilehtmcov,"-cov.htm");
         if (s[m][i]>nlstate) {    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
           dcwave[i]=m;      printf("Problem with %s \n",optionfilehtmcov), exit(0);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/    }
           break;    else{
         }    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     }  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
     for (i=1; i<=imx; i++) {            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
       if (wav[i]>0){    }
         ageexmed[i]=agev[mw[1][i]][i];  
         j=wav[i];    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
         agecens[i]=1.;  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
         if (ageexmed[i]> 1 && wav[i] > 0){  \n\
           agecens[i]=agev[mw[j][i]][i];  <hr  size=\"2\" color=\"#EC5E5E\">\
           cens[i]= 1;   <ul><li><h4>Parameter files</h4>\n\
         }else if (ageexmed[i]< 1)   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
           cens[i]= -1;   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
           cens[i]=0 ;   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
       }   - Date and time at start: %s</ul>\n",\
       else cens[i]=-1;            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
     }            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                fileres,fileres,\
     for (i=1;i<=NDIM;i++) {            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
       for (j=1;j<=NDIM;j++)    fflush(fichtm);
         ximort[i][j]=(i == j ? 1.0 : 0.0);  
     }    strcpy(pathr,path);
        strcat(pathr,optionfilefiname);
     p[1]=0.0268; p[NDIM]=0.083;    chdir(optionfilefiname); /* Move to directory named optionfile */
     /*printf("%lf %lf", p[1], p[2]);*/    
        /* Calculates basic frequencies. Computes observed prevalence at single age
           and prints on file fileres'p'. */
     printf("Powell\n");  fprintf(ficlog,"Powell\n");    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     strcpy(filerespow,"pow-mort");  
     strcat(filerespow,fileres);    fprintf(fichtm,"\n");
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
       printf("Problem with resultfile: %s\n", filerespow);  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     }            imx,agemin,agemax,jmin,jmax,jmean);
     fprintf(ficrespow,"# Powell\n# iter -2*LL");    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     /*  for (i=1;i<=nlstate;i++)      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         for(j=1;j<=nlstate+ndeath;j++)      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     */      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     fprintf(ficrespow,"\n");      
         
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);    /* For Powell, parameters are in a vector p[] starting at p[1]
     fclose(ficrespow);       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
        p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);  
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     for(i=1; i <=NDIM; i++)  
       for(j=i+1;j<=NDIM;j++)    if (mle==-3){
         matcov[i][j]=matcov[j][i];      ximort=matrix(1,NDIM,1,NDIM);
          cens=ivector(1,n);
     printf("\nCovariance matrix\n ");      ageexmed=vector(1,n);
     for(i=1; i <=NDIM; i++) {      agecens=vector(1,n);
       for(j=1;j<=NDIM;j++){      dcwave=ivector(1,n);
         printf("%f ",matcov[i][j]);   
       }      for (i=1; i<=imx; i++){
       printf("\n ");        dcwave[i]=-1;
     }        for (m=firstpass; m<=lastpass; m++)
              if (s[m][i]>nlstate) {
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);            dcwave[i]=m;
     for (i=1;i<=NDIM;i++)            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));            break;
           }
     lsurv=vector(1,AGESUP);      }
     lpop=vector(1,AGESUP);  
     tpop=vector(1,AGESUP);      for (i=1; i<=imx; i++) {
     lsurv[agegomp]=100000;        if (wav[i]>0){
              ageexmed[i]=agev[mw[1][i]][i];
     for (k=agegomp;k<=AGESUP;k++) {          j=wav[i];
       agemortsup=k;          agecens[i]=1.; 
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;  
     }          if (ageexmed[i]> 1 && wav[i] > 0){
                agecens[i]=agev[mw[j][i]][i];
     for (k=agegomp;k<agemortsup;k++)            cens[i]= 1;
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));          }else if (ageexmed[i]< 1) 
                cens[i]= -1;
     for (k=agegomp;k<agemortsup;k++){          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;            cens[i]=0 ;
       sumlpop=sumlpop+lpop[k];        }
     }        else cens[i]=-1;
          }
     tpop[agegomp]=sumlpop;      
     for (k=agegomp;k<(agemortsup-3);k++){      for (i=1;i<=NDIM;i++) {
       /*  tpop[k+1]=2;*/        for (j=1;j<=NDIM;j++)
       tpop[k+1]=tpop[k]-lpop[k];          ximort[i][j]=(i == j ? 1.0 : 0.0);
     }      }
          
          p[1]=0.0268; p[NDIM]=0.083;
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");      /*printf("%lf %lf", p[1], p[2]);*/
     for (k=agegomp;k<(agemortsup-2);k++)      
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);      
          printf("Powell\n");  fprintf(ficlog,"Powell\n");
          strcpy(filerespow,"pow-mort"); 
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      strcat(filerespow,fileres);
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      if((ficrespow=fopen(filerespow,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", filerespow);
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                      stepm, weightopt,\      }
                      model,imx,p,matcov,agemortsup);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
          /*  for (i=1;i<=nlstate;i++)
     free_vector(lsurv,1,AGESUP);          for(j=1;j<=nlstate+ndeath;j++)
     free_vector(lpop,1,AGESUP);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     free_vector(tpop,1,AGESUP);      */
   } /* Endof if mle==-3 */      fprintf(ficrespow,"\n");
        
   else{ /* For mle >=1 */      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
        fclose(ficrespow);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
     for (k=1; k<=npar;k++)  
       printf(" %d %8.5f",k,p[k]);      for(i=1; i <=NDIM; i++)
     printf("\n");        for(j=i+1;j<=NDIM;j++)
     globpr=1; /* to print the contributions */          matcov[i][j]=matcov[j][i];
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      printf("\nCovariance matrix\n ");
     for (k=1; k<=npar;k++)      for(i=1; i <=NDIM; i++) {
       printf(" %d %8.5f",k,p[k]);        for(j=1;j<=NDIM;j++){ 
     printf("\n");          printf("%f ",matcov[i][j]);
     if(mle>=1){ /* Could be 1 or 2 */        }
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        printf("\n ");
     }      }
          
     /*--------- results files --------------*/      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for (i=1;i<=NDIM;i++) 
            printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
      
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      lsurv=vector(1,AGESUP);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      lpop=vector(1,AGESUP);
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      tpop=vector(1,AGESUP);
     for(i=1,jk=1; i <=nlstate; i++){      lsurv[agegomp]=100000;
       for(k=1; k <=(nlstate+ndeath); k++){      
         if (k != i) {      for (k=agegomp;k<=AGESUP;k++) {
           printf("%d%d ",i,k);        agemortsup=k;
           fprintf(ficlog,"%d%d ",i,k);        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
           fprintf(ficres,"%1d%1d ",i,k);      }
           for(j=1; j <=ncovmodel; j++){      
             printf("%lf ",p[jk]);      for (k=agegomp;k<agemortsup;k++)
             fprintf(ficlog,"%lf ",p[jk]);        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
             fprintf(ficres,"%lf ",p[jk]);      
             jk++;      for (k=agegomp;k<agemortsup;k++){
           }        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
           printf("\n");        sumlpop=sumlpop+lpop[k];
           fprintf(ficlog,"\n");      }
           fprintf(ficres,"\n");      
         }      tpop[agegomp]=sumlpop;
       }      for (k=agegomp;k<(agemortsup-3);k++){
     }        /*  tpop[k+1]=2;*/
     if(mle!=0){        tpop[k+1]=tpop[k]-lpop[k];
       /* Computing hessian and covariance matrix */      }
       ftolhess=ftol; /* Usually correct */      
       hesscov(matcov, p, npar, delti, ftolhess, func);      
     }      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      for (k=agegomp;k<(agemortsup-2);k++) 
     printf("# Scales (for hessian or gradient estimation)\n");        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      
     for(i=1,jk=1; i <=nlstate; i++){      
       for(j=1; j <=nlstate+ndeath; j++){      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
         if (j!=i) {      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
           fprintf(ficres,"%1d%1d",i,j);      
           printf("%1d%1d",i,j);      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
           fprintf(ficlog,"%1d%1d",i,j);                       stepm, weightopt,\
           for(k=1; k<=ncovmodel;k++){                       model,imx,p,matcov,agemortsup);
             printf(" %.5e",delti[jk]);      
             fprintf(ficlog," %.5e",delti[jk]);      free_vector(lsurv,1,AGESUP);
             fprintf(ficres," %.5e",delti[jk]);      free_vector(lpop,1,AGESUP);
             jk++;      free_vector(tpop,1,AGESUP);
           }    } /* Endof if mle==-3 */
           printf("\n");    
           fprintf(ficlog,"\n");    else{ /* For mle >=1 */
           fprintf(ficres,"\n");      globpr=1;/* debug */
         }      /*    likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone);*/ /* Prints the contributions to the likelihood */
       }      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     }      for (k=1; k<=npar;k++)
            printf(" %d %8.5f",k,p[k]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf("\n");
     if(mle>=1)      globpr=1; /* to print the contributions */
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     /* # 121 Var(a12)\n\ */      for (k=1; k<=npar;k++)
     /* # 122 Cov(b12,a12) Var(b12)\n\ */        printf(" %d %8.5f",k,p[k]);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      printf("\n");
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      if(mle>=1){ /* Could be 1 or 2 */
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      }
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      /*--------- results files --------------*/
          fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
          
     /* Just to have a covariance matrix which will be more understandable      
        even is we still don't want to manage dictionary of variables      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     */      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(itimes=1;itimes<=2;itimes++){      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       jj=0;      for(i=1,jk=1; i <=nlstate; i++){
       for(i=1; i <=nlstate; i++){        for(k=1; k <=(nlstate+ndeath); k++){
         for(j=1; j <=nlstate+ndeath; j++){          if (k != i) {
           if(j==i) continue;            printf("%d%d ",i,k);
           for(k=1; k<=ncovmodel;k++){            fprintf(ficlog,"%d%d ",i,k);
             jj++;            fprintf(ficres,"%1d%1d ",i,k);
             ca[0]= k+'a'-1;ca[1]='\0';            for(j=1; j <=ncovmodel; j++){
             if(itimes==1){              printf("%lf ",p[jk]);
               if(mle>=1)              fprintf(ficlog,"%lf ",p[jk]);
                 printf("#%1d%1d%d",i,j,k);              fprintf(ficres,"%lf ",p[jk]);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);              jk++; 
               fprintf(ficres,"#%1d%1d%d",i,j,k);            }
             }else{            printf("\n");
               if(mle>=1)            fprintf(ficlog,"\n");
                 printf("%1d%1d%d",i,j,k);            fprintf(ficres,"\n");
               fprintf(ficlog,"%1d%1d%d",i,j,k);          }
               fprintf(ficres,"%1d%1d%d",i,j,k);        }
             }      }
             ll=0;      if(mle!=0){
             for(li=1;li <=nlstate; li++){        /* Computing hessian and covariance matrix */
               for(lj=1;lj <=nlstate+ndeath; lj++){        ftolhess=ftol; /* Usually correct */
                 if(lj==li) continue;        hesscov(matcov, p, npar, delti, ftolhess, func);
                 for(lk=1;lk<=ncovmodel;lk++){      }
                   ll++;      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   if(ll<=jj){      printf("# Scales (for hessian or gradient estimation)\n");
                     cb[0]= lk +'a'-1;cb[1]='\0';      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                     if(ll<jj){      for(i=1,jk=1; i <=nlstate; i++){
                       if(itimes==1){        for(j=1; j <=nlstate+ndeath; j++){
                         if(mle>=1)          if (j!=i) {
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            fprintf(ficres,"%1d%1d",i,j);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            printf("%1d%1d",i,j);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            fprintf(ficlog,"%1d%1d",i,j);
                       }else{            for(k=1; k<=ncovmodel;k++){
                         if(mle>=1)              printf(" %.5e",delti[jk]);
                           printf(" %.5e",matcov[jj][ll]);              fprintf(ficlog," %.5e",delti[jk]);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);              fprintf(ficres," %.5e",delti[jk]);
                         fprintf(ficres," %.5e",matcov[jj][ll]);              jk++;
                       }            }
                     }else{            printf("\n");
                       if(itimes==1){            fprintf(ficlog,"\n");
                         if(mle>=1)            fprintf(ficres,"\n");
                           printf(" Var(%s%1d%1d)",ca,i,j);          }
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);        }
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);      }
                       }else{      
                         if(mle>=1)      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                           printf(" %.5e",matcov[jj][ll]);      if(mle>=1)
                         fprintf(ficlog," %.5e",matcov[jj][ll]);        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                         fprintf(ficres," %.5e",matcov[jj][ll]);      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                       }      /* # 121 Var(a12)\n\ */
                     }      /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   }      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                 } /* end lk */      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
               } /* end lj */      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
             } /* end li */      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             if(mle>=1)      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
               printf("\n");      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
             fprintf(ficlog,"\n");      
             fprintf(ficres,"\n");      
             numlinepar++;      /* Just to have a covariance matrix which will be more understandable
           } /* end k*/         even is we still don't want to manage dictionary of variables
         } /*end j */      */
       } /* end i */      for(itimes=1;itimes<=2;itimes++){
     } /* end itimes */        jj=0;
            for(i=1; i <=nlstate; i++){
     fflush(ficlog);          for(j=1; j <=nlstate+ndeath; j++){
     fflush(ficres);            if(j==i) continue;
                for(k=1; k<=ncovmodel;k++){
     while((c=getc(ficpar))=='#' && c!= EOF){              jj++;
       ungetc(c,ficpar);              ca[0]= k+'a'-1;ca[1]='\0';
       fgets(line, MAXLINE, ficpar);              if(itimes==1){
       puts(line);                if(mle>=1)
       fputs(line,ficparo);                  printf("#%1d%1d%d",i,j,k);
     }                fprintf(ficlog,"#%1d%1d%d",i,j,k);
     ungetc(c,ficpar);                fprintf(ficres,"#%1d%1d%d",i,j,k);
                  }else{
     estepm=0;                if(mle>=1)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                  printf("%1d%1d%d",i,j,k);
     if (estepm==0 || estepm < stepm) estepm=stepm;                fprintf(ficlog,"%1d%1d%d",i,j,k);
     if (fage <= 2) {                fprintf(ficres,"%1d%1d%d",i,j,k);
       bage = ageminpar;              }
       fage = agemaxpar;              ll=0;
     }              for(li=1;li <=nlstate; li++){
                    for(lj=1;lj <=nlstate+ndeath; lj++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                  if(lj==li) continue;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  for(lk=1;lk<=ncovmodel;lk++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    ll++;
                        if(ll<=jj){
     while((c=getc(ficpar))=='#' && c!= EOF){                      cb[0]= lk +'a'-1;cb[1]='\0';
       ungetc(c,ficpar);                      if(ll<jj){
       fgets(line, MAXLINE, ficpar);                        if(itimes==1){
       puts(line);                          if(mle>=1)
       fputs(line,ficparo);                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     }                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     ungetc(c,ficpar);                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                            }else{
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);                          if(mle>=1)
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                            printf(" %.5e",matcov[jj][ll]); 
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                          fprintf(ficlog," %.5e",matcov[jj][ll]); 
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                          fprintf(ficres," %.5e",matcov[jj][ll]); 
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                        }
                          }else{
     while((c=getc(ficpar))=='#' && c!= EOF){                        if(itimes==1){
       ungetc(c,ficpar);                          if(mle>=1)
       fgets(line, MAXLINE, ficpar);                            printf(" Var(%s%1d%1d)",ca,i,j);
       puts(line);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
       fputs(line,ficparo);                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     }                        }else{
     ungetc(c,ficpar);                          if(mle>=1)
                                printf(" %.5e",matcov[jj][ll]); 
                              fprintf(ficlog," %.5e",matcov[jj][ll]); 
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;                          fprintf(ficres," %.5e",matcov[jj][ll]); 
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                        }
                          }
     fscanf(ficpar,"pop_based=%d\n",&popbased);                    }
     fprintf(ficparo,"pop_based=%d\n",popbased);                    } /* end lk */
     fprintf(ficres,"pop_based=%d\n",popbased);                  } /* end lj */
                  } /* end li */
     while((c=getc(ficpar))=='#' && c!= EOF){              if(mle>=1)
       ungetc(c,ficpar);                printf("\n");
       fgets(line, MAXLINE, ficpar);              fprintf(ficlog,"\n");
       puts(line);              fprintf(ficres,"\n");
       fputs(line,ficparo);              numlinepar++;
     }            } /* end k*/
     ungetc(c,ficpar);          } /*end j */
            } /* end i */
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      } /* end itimes */
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fflush(ficlog);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fflush(ficres);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      
     /* day and month of proj2 are not used but only year anproj2.*/      while((c=getc(ficpar))=='#' && c!= EOF){
            ungetc(c,ficpar);
            fgets(line, MAXLINE, ficpar);
            puts(line);
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/        fputs(line,ficparo);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      }
          ungetc(c,ficpar);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      estepm=0;
          fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      if (estepm==0 || estepm < stepm) estepm=stepm;
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      if (fage <= 2) {
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        bage = ageminpar;
              fage = agemaxpar;
    /*------------ free_vector  -------------*/      }
    /*  chdir(path); */      
        fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     free_ivector(wav,1,imx);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        while((c=getc(ficpar))=='#' && c!= EOF){
     free_lvector(num,1,n);        ungetc(c,ficpar);
     free_vector(agedc,1,n);        fgets(line, MAXLINE, ficpar);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/        puts(line);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        fputs(line,ficparo);
     fclose(ficparo);      }
     fclose(ficres);      ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
        fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     strcpy(filerespl,"pl");      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     strcat(filerespl,fileres);      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      while((c=getc(ficpar))=='#' && c!= EOF){
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;        ungetc(c,ficpar);
     }        fgets(line, MAXLINE, ficpar);
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);        puts(line);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);        fputs(line,ficparo);
     pstamp(ficrespl);      }
     fprintf(ficrespl,"# Period (stable) prevalence \n");      ungetc(c,ficpar);
     fprintf(ficrespl,"#Age ");      
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      
     fprintf(ficrespl,"\n");      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
        dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
     prlim=matrix(1,nlstate,1,nlstate);      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
     agebase=ageminpar;      fprintf(ficparo,"pop_based=%d\n",popbased);   
     agelim=agemaxpar;      fprintf(ficres,"pop_based=%d\n",popbased);   
     ftolpl=1.e-10;      
     i1=cptcoveff;      while((c=getc(ficpar))=='#' && c!= EOF){
     if (cptcovn < 1){i1=1;}        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        puts(line);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fputs(line,ficparo);
         k=k+1;      }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      ungetc(c,ficpar);
         fprintf(ficrespl,"\n#******");      
         printf("\n#******");      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
         fprintf(ficlog,"\n#******");      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         for(j=1;j<=cptcoveff;j++) {      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* day and month of proj2 are not used but only year anproj2.*/
         }      
         fprintf(ficrespl,"******\n");      
         printf("******\n");      
         fprintf(ficlog,"******\n");      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
              /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (age=agebase; age<=agelim; age++){      
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
           fprintf(ficrespl,"%.0f ",age );      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
           for(j=1;j<=cptcoveff;j++)      
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
           for(i=1; i<=nlstate;i++)                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
             fprintf(ficrespl," %.5f", prlim[i][i]);                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
           fprintf(ficrespl,"\n");        
         }     /*------------ free_vector  -------------*/
       }     /*  chdir(path); */
     }   
     fclose(ficrespl);      free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     /*------------- h Pij x at various ages ------------*/      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
        free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      free_lvector(num,1,n);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {      free_vector(agedc,1,n);
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      /*free_matrix(covar,0,NCOVMAX,1,n);*/
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     }      fclose(ficparo);
     printf("Computing pij: result on file '%s' \n", filerespij);      fclose(ficres);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  
    
     stepsize=(int) (stepm+YEARM-1)/YEARM;      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     /*if (stepm<=24) stepsize=2;*/    
       strcpy(filerespl,"pl");
     agelim=AGESUP;      strcat(filerespl,fileres);
     hstepm=stepsize*YEARM; /* Every year of age */      if((ficrespl=fopen(filerespl,"w"))==NULL) {
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     /* hstepm=1;   aff par mois*/      }
     pstamp(ficrespij);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      pstamp(ficrespl);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficrespl,"# Period (stable) prevalence \n");
         k=k+1;      fprintf(ficrespl,"#Age ");
         fprintf(ficrespij,"\n#****** ");      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
         for(j=1;j<=cptcoveff;j++)      fprintf(ficrespl,"\n");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
         fprintf(ficrespij,"******\n");      prlim=matrix(1,nlstate,1,nlstate);
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      agebase=ageminpar;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      agelim=agemaxpar;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      ftolpl=1.e-10;
       i1=cptcoveff;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      if (cptcovn < 1){i1=1;}
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
           oldm=oldms;savm=savms;        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            k=k+1;
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");          /* to clean */
           for(i=1; i<=nlstate;i++)          printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficrespl,"\n#******");
               fprintf(ficrespij," %1d-%1d",i,j);          printf("\n#******");
           fprintf(ficrespij,"\n");          fprintf(ficlog,"\n#******");
           for (h=0; h<=nhstepm; h++){          for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               for(j=1; j<=nlstate+ndeath;j++)            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          }
             fprintf(ficrespij,"\n");          fprintf(ficrespl,"******\n");
           }          printf("******\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,"******\n");
           fprintf(ficrespij,"\n");          
         }          for (age=agebase; age<=agelim; age++){
       }            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     }            fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
     fclose(ficrespij);              fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     for(i=1;i<=AGESUP;i++)        }
       for(j=1;j<=NCOVMAX;j++)      }
         for(k=1;k<=NCOVMAX;k++)      fclose(ficrespl);
           probs[i][j][k]=0.;  
       /*------------- h Pij x at various ages ------------*/
     /*---------- Forecasting ------------------*/    
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if(prevfcast==1){      if((ficrespij=fopen(filerespij,"w"))==NULL) {
       /*    if(stepm ==1){*/        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      }
       /*      }  */      printf("Computing pij: result on file '%s' \n", filerespij);
       /*      else{ */      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
       /*        erreur=108; */    
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      /*if (stepm<=24) stepsize=2;*/
       /*      } */  
     }      agelim=AGESUP;
        hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
     /*---------- Health expectancies and variances ------------*/  
       /* hstepm=1;   aff par mois*/
     strcpy(filerest,"t");      pstamp(ficrespij);
     strcat(filerest,fileres);      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     if((ficrest=fopen(filerest,"w"))==NULL) {      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          k=k+1;
     }          fprintf(ficrespij,"\n#****** ");
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);          for(j=1;j<=cptcoveff;j++) 
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
     strcpy(filerese,"e");          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
     strcat(filerese,fileres);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     if((ficreseij=fopen(filerese,"w"))==NULL) {            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            /*      nhstepm=nhstepm*YEARM; aff par mois*/
     }  
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     strcpy(fileresstde,"stde");            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
     strcat(fileresstde,fileres);            for(i=1; i<=nlstate;i++)
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {              for(j=1; j<=nlstate+ndeath;j++)
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);                fprintf(ficrespij," %1d-%1d",i,j);
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);            fprintf(ficrespij,"\n");
     }            for (h=0; h<=nhstepm; h++){
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);              for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
     strcpy(filerescve,"cve");                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     strcat(filerescve,fileres);              fprintf(ficrespij,"\n");
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {            }
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);            fprintf(ficrespij,"\n");
     }          }
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);        }
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      }
   
     strcpy(fileresv,"v");      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
     strcat(fileresv,fileres);  
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      fclose(ficrespij);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      for(i=1;i<=AGESUP;i++)
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(j=1;j<=NCOVMAX;j++)
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */  
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      /*---------- Forecasting ------------------*/
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      if(prevfcast==1){
     */        /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
     if (mobilav!=0) {        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*      }  */
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        /*      else{ */
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        /*        erreur=108; */
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
       }        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     }        /*      } */
       }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;      /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
         fprintf(ficrest,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)      prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
         fprintf(ficrest,"******\n");          ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
         fprintf(ficreseij,"\n#****** ");  
         fprintf(ficresstdeij,"\n#****** ");      if (mobilav!=0) {
         fprintf(ficrescveij,"\n#****** ");        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(j=1;j<=cptcoveff;j++) {        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf(" Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         }      }
         fprintf(ficreseij,"******\n");  
         fprintf(ficresstdeij,"******\n");  
         fprintf(ficrescveij,"******\n");      /*---------- Health expectancies, no variances ------------*/
   
         fprintf(ficresvij,"\n#****** ");      strcpy(filerese,"e");
         for(j=1;j<=cptcoveff;j++)      strcat(filerese,fileres);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if((ficreseij=fopen(filerese,"w"))==NULL) {
         fprintf(ficresvij,"******\n");        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
         oldm=oldms;savm=savms;      printf("Computing Health Expectancies: result on file '%s' \n", filerese);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);        fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        for(cptcov=1,k=0;cptcov<=i1;cptcov++){
          for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          k=k+1; 
         oldm=oldms;savm=savms;          fprintf(ficreseij,"\n#****** ");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);          for(j=1;j<=cptcoveff;j++) {
         if(popbased==1){            fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);          }
         }          fprintf(ficreseij,"******\n");
   
         pstamp(ficrest);          eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");          oldm=oldms;savm=savms;
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         fprintf(ficrest,"\n");        
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         epj=vector(1,nlstate+1);        }
         for(age=bage; age <=fage ;age++){      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fclose(ficreseij);
           if (popbased==1) {  
             if(mobilav ==0){  
               for(i=1; i<=nlstate;i++)      /*---------- Health expectancies and variances ------------*/
                 prlim[i][i]=probs[(int)age][i][k];  
             }else{ /* mobilav */  
               for(i=1; i<=nlstate;i++)      strcpy(filerest,"t");
                 prlim[i][i]=mobaverage[(int)age][i][k];      strcat(filerest,fileres);
             }      if((ficrest=fopen(filerest,"w"))==NULL) {
           }        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
           fprintf(ficrest," %4.0f",age);      }
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
               epj[j] += prlim[i][i]*eij[i][j][(int)age];  
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
             }      strcpy(fileresstde,"stde");
             epj[nlstate+1] +=epj[j];      strcat(fileresstde,fileres);
           }      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
           for(i=1, vepp=0.;i <=nlstate;i++)        fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
             for(j=1;j <=nlstate;j++)      }
               vepp += vareij[i][j][(int)age];      printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
           for(j=1;j <=nlstate;j++){  
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      strcpy(filerescve,"cve");
           }      strcat(filerescve,fileres);
           fprintf(ficrest,"\n");      if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         }        printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      }
         free_vector(epj,1,nlstate+1);      printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       }      fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
     }  
     free_vector(weight,1,n);      strcpy(fileresv,"v");
     free_imatrix(Tvard,1,15,1,2);      strcat(fileresv,fileres);
     free_imatrix(s,1,maxwav+1,1,n);      if((ficresvij=fopen(fileresv,"w"))==NULL) {
     free_matrix(anint,1,maxwav,1,n);        printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
     free_matrix(mint,1,maxwav,1,n);        fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     free_ivector(cod,1,n);      }
     free_ivector(tab,1,NCOVMAX);      printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fclose(ficreseij);      fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fclose(ficresstdeij);  
     fclose(ficrescveij);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     fclose(ficresvij);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     fclose(ficrest);          k=k+1; 
     fclose(ficpar);          fprintf(ficrest,"\n#****** ");
            for(j=1;j<=cptcoveff;j++) 
     /*------- Variance of period (stable) prevalence------*/              fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
     strcpy(fileresvpl,"vpl");  
     strcat(fileresvpl,fileres);          fprintf(ficresstdeij,"\n#****** ");
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(ficrescveij,"\n#****** ");
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);          for(j=1;j<=cptcoveff;j++) {
       exit(0);            fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     }            fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);          }
           fprintf(ficresstdeij,"******\n");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          fprintf(ficrescveij,"******\n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;          fprintf(ficresvij,"\n#****** ");
         fprintf(ficresvpl,"\n#****** ");          for(j=1;j<=cptcoveff;j++) 
         for(j=1;j<=cptcoveff;j++)            fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresvij,"******\n");
         fprintf(ficresvpl,"******\n");  
                eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);          oldm=oldms;savm=savms;
         oldm=oldms;savm=savms;          cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);   
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       }          pstamp(ficrest);
     }          for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
     fclose(ficresvpl);            varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
     /*---------- End : free ----------------*/              fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            else
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
   }  /* mle==-3 arrives here for freeing */            for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
   free_matrix(prlim,1,nlstate,1,nlstate);            fprintf(ficrest,"\n");
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            epj=vector(1,nlstate+1);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(age=bage; age <=fage ;age++){
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     free_matrix(covar,0,NCOVMAX,1,n);              if (vpopbased==1) {
     free_matrix(matcov,1,npar,1,npar);                if(mobilav ==0){
     /*free_vector(delti,1,npar);*/                  for(i=1; i<=nlstate;i++)
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                    prlim[i][i]=probs[(int)age][i][k];
     free_matrix(agev,1,maxwav,1,imx);                }else{ /* mobilav */ 
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                  for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
     free_ivector(ncodemax,1,8);                }
     free_ivector(Tvar,1,15);              }
     free_ivector(Tprod,1,15);          
     free_ivector(Tvaraff,1,15);              fprintf(ficrest," %4.0f",age);
     free_ivector(Tage,1,15);              for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
     free_ivector(Tcode,1,100);                for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);                  /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
     free_imatrix(codtab,1,100,1,10);                }
   fflush(fichtm);                epj[nlstate+1] +=epj[j];
   fflush(ficgp);              }
    
               for(i=1, vepp=0.;i <=nlstate;i++)
   if((nberr >0) || (nbwarn>0)){                for(j=1;j <=nlstate;j++)
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);                  vepp += vareij[i][j][(int)age];
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);              fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
   }else{              for(j=1;j <=nlstate;j++){
     printf("End of Imach\n");                fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
     fprintf(ficlog,"End of Imach\n");              }
   }              fprintf(ficrest,"\n");
   printf("See log file on %s\n",filelog);            }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          }
   (void) gettimeofday(&end_time,&tzp);          free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
   tm = *localtime(&end_time.tv_sec);          free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
   tmg = *gmtime(&end_time.tv_sec);          free_vector(epj,1,nlstate+1);
   strcpy(strtend,asctime(&tm));        }
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);      }
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);      free_vector(weight,1,n);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      free_matrix(anint,1,maxwav,1,n); 
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      free_matrix(mint,1,maxwav,1,n);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      free_ivector(cod,1,n);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      free_ivector(tab,1,NCOVMAX);
 /*   if(fileappend(fichtm,optionfilehtm)){ */      fclose(ficresstdeij);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);      fclose(ficrescveij);
   fclose(fichtm);      fclose(ficresvij);
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);      fclose(ficrest);
   fclose(fichtmcov);      fclose(ficpar);
   fclose(ficgp);    
   fclose(ficlog);      /*------- Variance of period (stable) prevalence------*/   
   /*------ End -----------*/  
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
    printf("Before Current directory %s!\n",pathcd);      if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
    if(chdir(pathcd) != 0)        printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
     printf("Can't move to directory %s!\n",path);        exit(0);
   if(getcwd(pathcd,MAXLINE) > 0)      }
     printf("Current directory %s!\n",pathcd);      printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   /*strcat(plotcmd,CHARSEPARATOR);*/  
   sprintf(plotcmd,"gnuplot");      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 #ifndef UNIX        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);          k=k+1;
 #endif          fprintf(ficresvpl,"\n#****** ");
   if(!stat(plotcmd,&info)){          for(j=1;j<=cptcoveff;j++) 
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);            fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     if(!stat(getenv("GNUPLOTBIN"),&info)){          fprintf(ficresvpl,"******\n");
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);        
     }else          varpl=matrix(1,nlstate,(int) bage, (int) fage);
       strcpy(pplotcmd,plotcmd);          oldm=oldms;savm=savms;
 #ifdef UNIX          varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
     strcpy(plotcmd,GNUPLOTPROGRAM);          free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
     if(!stat(plotcmd,&info)){        }
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      }
     }else  
       strcpy(pplotcmd,plotcmd);      fclose(ficresvpl);
 #endif  
   }else      /*---------- End : free ----------------*/
     strcpy(pplotcmd,plotcmd);      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);  
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);    }  /* mle==-3 arrives here for freeing */
    endfree:
   if((outcmd=system(plotcmd)) != 0){    free_matrix(prlim,1,nlstate,1,nlstate);
     printf("\n Problem with gnuplot\n");      free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
   }      free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
   printf(" Wait...");      free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
   while (z[0] != 'q') {      free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     /* chdir(path); */      free_matrix(covar,0,NCOVMAX,1,n);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      free_matrix(matcov,1,npar,1,npar);
     scanf("%s",z);      /*free_vector(delti,1,npar);*/
 /*     if (z[0] == 'c') system("./imach"); */      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     if (z[0] == 'e') {      free_matrix(agev,1,maxwav,1,imx);
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);      free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       system(optionfilehtm);  
     }      free_ivector(ncodemax,1,8);
     else if (z[0] == 'g') system(plotcmd);      free_ivector(Tvar,1,15);
     else if (z[0] == 'q') exit(0);      free_ivector(Tprod,1,15);
   }      free_ivector(Tvaraff,1,15);
   end:      free_ivector(Tage,1,15);
   while (z[0] != 'q') {  
     printf("\nType  q for exiting: ");      free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     scanf("%s",z);      free_imatrix(codtab,1,100,1,10);
   }    fflush(fichtm);
 }    fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.125  
changed lines
  Added in v.1.131


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>