Diff for /imach/src/imach.c between versions 1.21 and 1.132

version 1.21, 2002/02/21 18:42:24 version 1.132, 2009/07/06 08:22:05
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.132  2009/07/06 08:22:05  brouard
   individuals from different ages are interviewed on their health status    Many tings
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.131  2009/06/20 16:22:47  brouard
   Health expectancies are computed from the transistions observed between    Some dimensions resccaled
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.130  2009/05/26 06:44:34  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): Max Covariate is now set to 20 instead of 8. A
   The simplest model is the multinomial logistic model where pij is    lot of cleaning with variables initialized to 0. Trying to make
   the probabibility to be observed in state j at the second wave conditional    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.129  2007/08/31 13:49:27  lievre
   is a covariate. If you want to have a more complex model than "constant and    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Revision 1.128  2006/06/30 13:02:05  brouard
   More covariates you add, less is the speed of the convergence.    (Module): Clarifications on computing e.j
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.127  2006/04/28 18:11:50  brouard
   delay between waves is not identical for each individual, or if some    (Module): Yes the sum of survivors was wrong since
   individual missed an interview, the information is not rounded or lost, but    imach-114 because nhstepm was no more computed in the age
   taken into account using an interpolation or extrapolation.    loop. Now we define nhstepma in the age loop.
   hPijx is the probability to be    (Module): In order to speed up (in case of numerous covariates) we
   observed in state i at age x+h conditional to the observed state i at age    compute health expectancies (without variances) in a first step
   x. The delay 'h' can be split into an exact number (nh*stepm) of    and then all the health expectancies with variances or standard
   unobserved intermediate  states. This elementary transition (by month or    deviation (needs data from the Hessian matrices) which slows the
   quarter trimester, semester or year) is model as a multinomial logistic.    computation.
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    In the future we should be able to stop the program is only health
   and the contribution of each individual to the likelihood is simply hPijx.    expectancies and graph are needed without standard deviations.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.126  2006/04/28 17:23:28  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Yes the sum of survivors was wrong since
      imach-114 because nhstepm was no more computed in the age
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    loop. Now we define nhstepma in the age loop.
            Institut national d'études démographiques, Paris.    Version 0.98h
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.125  2006/04/04 15:20:31  lievre
   It is copyrighted identically to a GNU software product, ie programme and    Errors in calculation of health expectancies. Age was not initialized.
   software can be distributed freely for non commercial use. Latest version    Forecasting file added.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.124  2006/03/22 17:13:53  lievre
      Parameters are printed with %lf instead of %f (more numbers after the comma).
 #include <math.h>    The log-likelihood is printed in the log file
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.123  2006/03/20 10:52:43  brouard
 #include <unistd.h>    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    * imach.c (Module): Weights can have a decimal point as for
 /*#define DEBUG*/    English (a comma might work with a correct LC_NUMERIC environment,
 #define windows    otherwise the weight is truncated).
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Modification of warning when the covariates values are not 0 or
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    1.
     Version 0.98g
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 #define NINTERVMAX 8    English (a comma might work with a correct LC_NUMERIC environment,
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    otherwise the weight is truncated).
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Modification of warning when the covariates values are not 0 or
 #define NCOVMAX 8 /* Maximum number of covariates */    1.
 #define MAXN 20000    Version 0.98g
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.121  2006/03/16 17:45:01  lievre
 #define AGEBASE 40    * imach.c (Module): Comments concerning covariates added
   
     * imach.c (Module): refinements in the computation of lli if
 int erreur; /* Error number */    status=-2 in order to have more reliable computation if stepm is
 int nvar;    not 1 month. Version 0.98f
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.120  2006/03/16 15:10:38  lievre
 int nlstate=2; /* Number of live states */    (Module): refinements in the computation of lli if
 int ndeath=1; /* Number of dead states */    status=-2 in order to have more reliable computation if stepm is
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    not 1 month. Version 0.98f
 int popbased=0;  
     Revision 1.119  2006/03/15 17:42:26  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Bug if status = -2, the loglikelihood was
 int maxwav; /* Maxim number of waves */    computed as likelihood omitting the logarithm. Version O.98e
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.118  2006/03/14 18:20:07  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): varevsij Comments added explaining the second
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    table of variances if popbased=1 .
 double jmean; /* Mean space between 2 waves */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Function pstamp added
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Version 0.98d
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    Revision 1.117  2006/03/14 17:16:22  brouard
 FILE *ficreseij;    (Module): varevsij Comments added explaining the second
   char filerese[FILENAMELENGTH];    table of variances if popbased=1 .
  FILE  *ficresvij;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   char fileresv[FILENAMELENGTH];    (Module): Function pstamp added
  FILE  *ficresvpl;    (Module): Version 0.98d
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.116  2006/03/06 10:29:27  brouard
 #define NR_END 1    (Module): Variance-covariance wrong links and
 #define FREE_ARG char*    varian-covariance of ej. is needed (Saito).
 #define FTOL 1.0e-10  
     Revision 1.115  2006/02/27 12:17:45  brouard
 #define NRANSI    (Module): One freematrix added in mlikeli! 0.98c
 #define ITMAX 200  
     Revision 1.114  2006/02/26 12:57:58  brouard
 #define TOL 2.0e-4    (Module): Some improvements in processing parameter
     filename with strsep.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.113  2006/02/24 14:20:24  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 #define GOLD 1.618034    allocation too.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.111  2006/01/25 20:38:18  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Lots of cleaning and bugs added (Gompertz)
      (Module): Comments can be added in data file. Missing date values
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    can be a simple dot '.'.
 #define rint(a) floor(a+0.5)  
     Revision 1.110  2006/01/25 00:51:50  brouard
 static double sqrarg;    (Module): Lots of cleaning and bugs added (Gompertz)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 int imx;  
 int stepm;    Revision 1.108  2006/01/19 18:05:42  lievre
 /* Stepm, step in month: minimum step interpolation*/    Gnuplot problem appeared...
     To be fixed
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.107  2006/01/19 16:20:37  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Test existence of gnuplot in imach path
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 double *weight;  
 int **s; /* Status */    Revision 1.105  2006/01/05 20:23:19  lievre
 double *agedc, **covar, idx;    *** empty log message ***
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.104  2005/09/30 16:11:43  lievre
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): sump fixed, loop imx fixed, and simplifications.
 double ftolhess; /* Tolerance for computing hessian */    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 /**************** split *************************/    (instead of missing=-1 in earlier versions) and his/her
 static  int split( char *path, char *dirc, char *name )    contributions to the likelihood is 1 - Prob of dying from last
 {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    char *s;                             /* pointer */    the healthy state at last known wave). Version is 0.98
    int  l1, l2;                         /* length counters */  
     Revision 1.103  2005/09/30 15:54:49  lievre
    l1 = strlen( path );                 /* length of path */    (Module): sump fixed, loop imx fixed, and simplifications.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.102  2004/09/15 17:31:30  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Add the possibility to read data file including tab characters.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.100  2004/07/12 18:29:06  brouard
       extern char       *getcwd( );    Add version for Mac OS X. Just define UNIX in Makefile
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.99  2004/06/05 08:57:40  brouard
 #endif    *** empty log message ***
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.98  2004/05/16 15:05:56  brouard
       strcpy( name, path );             /* we've got it */    New version 0.97 . First attempt to estimate force of mortality
    } else {                             /* strip direcotry from path */    directly from the data i.e. without the need of knowing the health
       s++;                              /* after this, the filename */    state at each age, but using a Gompertz model: log u =a + b*age .
       l2 = strlen( s );                 /* length of filename */    This is the basic analysis of mortality and should be done before any
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    other analysis, in order to test if the mortality estimated from the
       strcpy( name, s );                /* save file name */    cross-longitudinal survey is different from the mortality estimated
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    from other sources like vital statistic data.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    The same imach parameter file can be used but the option for mle should be -3.
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Agnès, who wrote this part of the code, tried to keep most of the
    return( 0 );                         /* we're done */    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 /******************************************/  
     Current limitations:
 void replace(char *s, char*t)    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   int i;    B) There is no computation of Life Expectancy nor Life Table.
   int lg=20;  
   i=0;    Revision 1.97  2004/02/20 13:25:42  lievre
   lg=strlen(t);    Version 0.96d. Population forecasting command line is (temporarily)
   for(i=0; i<= lg; i++) {    suppressed.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.96  2003/07/15 15:38:55  brouard
   }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 }    rewritten within the same printf. Workaround: many printfs.
   
 int nbocc(char *s, char occ)    Revision 1.95  2003/07/08 07:54:34  brouard
 {    * imach.c (Repository):
   int i,j=0;    (Repository): Using imachwizard code to output a more meaningful covariance
   int lg=20;    matrix (cov(a12,c31) instead of numbers.
   i=0;  
   lg=strlen(s);    Revision 1.94  2003/06/27 13:00:02  brouard
   for(i=0; i<= lg; i++) {    Just cleaning
   if  (s[i] == occ ) j++;  
   }    Revision 1.93  2003/06/25 16:33:55  brouard
   return j;    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.92  2003/06/25 16:30:45  brouard
   int i,lg,j,p=0;    (Module): On windows (cygwin) function asctime_r doesn't
   i=0;    exist so I changed back to asctime which exists.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.91  2003/06/25 15:30:29  brouard
   }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
   lg=strlen(t);    helps to forecast when convergence will be reached. Elapsed time
   for(j=0; j<p; j++) {    is stamped in powell.  We created a new html file for the graphs
     (u[j] = t[j]);    concerning matrix of covariance. It has extension -cov.htm.
   }  
      u[p]='\0';    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
    for(j=0; j<= lg; j++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     if (j>=(p+1))(v[j-p-1] = t[j]);    of the covariance matrix to be input.
   }  
 }    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 /********************** nrerror ********************/    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 void nrerror(char error_text[])  
 {    Revision 1.88  2003/06/23 17:54:56  brouard
   fprintf(stderr,"ERREUR ...\n");    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   double *v;    routine fileappend.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.85  2003/06/17 13:12:43  brouard
   return v-nl+NR_END;    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 /************************ free vector ******************/    was wrong (infinity). We still send an "Error" but patch by
 void free_vector(double*v, int nl, int nh)    assuming that the date of death was just one stepm after the
 {    interview.
   free((FREE_ARG)(v+nl-NR_END));    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /************************ivector *******************************/    truncation)
 int *ivector(long nl,long nh)    (Repository): No more line truncation errors.
 {  
   int *v;    Revision 1.84  2003/06/13 21:44:43  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    * imach.c (Repository): Replace "freqsummary" at a correct
   if (!v) nrerror("allocation failure in ivector");    place. It differs from routine "prevalence" which may be called
   return v-nl+NR_END;    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /*
 {     Interpolated Markov Chain
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Short summary of the programme:
      
   /* allocate pointers to rows */    This program computes Healthy Life Expectancies from
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   if (!m) nrerror("allocation failure 1 in matrix()");    first survey ("cross") where individuals from different ages are
   m += NR_END;    interviewed on their health status or degree of disability (in the
   m -= nrl;    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
   /* allocate rows and set pointers to them */    computed from the time spent in each health state according to a
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    model. More health states you consider, more time is necessary to reach the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Maximum Likelihood of the parameters involved in the model.  The
   m[nrl] += NR_END;    simplest model is the multinomial logistic model where pij is the
   m[nrl] -= ncl;    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
      'age' is age and 'sex' is a covariate. If you want to have a more
   /* return pointer to array of pointers to rows */    complex model than "constant and age", you should modify the program
   return m;    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    The advantage of this computer programme, compared to a simple
       int **m;    multinomial logistic model, is clear when the delay between waves is not
       long nch,ncl,nrh,nrl;    identical for each individual. Also, if a individual missed an
      /* free an int matrix allocated by imatrix() */    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /******************* matrix *******************************/    states. This elementary transition (by month, quarter,
 double **matrix(long nrl, long nrh, long ncl, long nch)    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    and the contribution of each individual to the likelihood is simply
   double **m;    hPijx.
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Also this programme outputs the covariance matrix of the parameters but also
   if (!m) nrerror("allocation failure 1 in matrix()");    of the life expectancies. It also computes the period (stable) prevalence. 
   m += NR_END;    
   m -= nrl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    This software have been partly granted by Euro-REVES, a concerted action
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    from the European Union.
   m[nrl] += NR_END;    It is copyrighted identically to a GNU software product, ie programme and
   m[nrl] -= ncl;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /*************************free matrix ************************/    **********************************************************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /*
 {    main
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    read parameterfile
   free((FREE_ARG)(m+nrl-NR_END));    read datafile
 }    concatwav
     freqsummary
 /******************* ma3x *******************************/    if (mle >= 1)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      mlikeli
 {    print results files
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    if mle==1 
   double ***m;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));        begin-prev-date,...
   if (!m) nrerror("allocation failure 1 in matrix()");    open gnuplot file
   m += NR_END;    open html file
   m -= nrl;    period (stable) prevalence
      for age prevalim()
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    h Pij x
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    variance of p varprob
   m[nrl] += NR_END;    forecasting if prevfcast==1 prevforecast call prevalence()
   m[nrl] -= ncl;    health expectancies
     Variance-covariance of DFLE
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    prevalence()
      movingaverage()
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    varevsij() 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if popbased==1 varevsij(,popbased)
   m[nrl][ncl] += NR_END;    total life expectancies
   m[nrl][ncl] -= nll;    Variance of period (stable) prevalence
   for (j=ncl+1; j<=nch; j++)   end
     m[nrl][j]=m[nrl][j-1]+nlay;  */
    
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)   
       m[i][j]=m[i][j-1]+nlay;  #include <math.h>
   }  #include <stdio.h>
   return m;  #include <stdlib.h>
 }  #include <string.h>
   #include <unistd.h>
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #include <limits.h>
 {  #include <sys/types.h>
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #include <sys/stat.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <errno.h>
   free((FREE_ARG)(m+nrl-NR_END));  extern int errno;
 }  
   /* #include <sys/time.h> */
 /***************** f1dim *************************/  #include <time.h>
 extern int ncom;  #include "timeval.h"
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  /* #include <libintl.h> */
    /* #define _(String) gettext (String) */
 double f1dim(double x)  
 {  #define MAXLINE 256
   int j;  
   double f;  #define GNUPLOTPROGRAM "gnuplot"
   double *xt;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    #define FILENAMELENGTH 132
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   f=(*nrfunc)(xt);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free_vector(xt,1,ncom);  
   return f;  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /*****************brent *************************/  #define NINTERVMAX 8
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int iter;  #define NCOVMAX 20 /* Maximum number of covariates */
   double a,b,d,etemp;  #define MAXN 20000
   double fu,fv,fw,fx;  #define YEARM 12. /* Number of months per year */
   double ftemp;  #define AGESUP 130
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define AGEBASE 40
   double e=0.0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
   a=(ax < cx ? ax : cx);  #define DIRSEPARATOR '/'
   b=(ax > cx ? ax : cx);  #define CHARSEPARATOR "/"
   x=w=v=bx;  #define ODIRSEPARATOR '\\'
   fw=fv=fx=(*f)(x);  #else
   for (iter=1;iter<=ITMAX;iter++) {  #define DIRSEPARATOR '\\'
     xm=0.5*(a+b);  #define CHARSEPARATOR "\\"
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define ODIRSEPARATOR '/'
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #endif
     printf(".");fflush(stdout);  
 #ifdef DEBUG  /* $Id$ */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /* $State$ */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char fullversion[]="$Revision$ $Date$"; 
       *xmin=x;  char strstart[80];
       return fx;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     ftemp=fu;  int nvar=0;
     if (fabs(e) > tol1) {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
       r=(x-w)*(fx-fv);  int npar=NPARMAX;
       q=(x-v)*(fx-fw);  int nlstate=2; /* Number of live states */
       p=(x-v)*q-(x-w)*r;  int ndeath=1; /* Number of dead states */
       q=2.0*(q-r);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       if (q > 0.0) p = -p;  int popbased=0;
       q=fabs(q);  
       etemp=e;  int *wav; /* Number of waves for this individuual 0 is possible */
       e=d;  int maxwav=0; /* Maxim number of waves */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       else {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         d=p/q;                     to the likelihood and the sum of weights (done by funcone)*/
         u=x+d;  int mle=1, weightopt=0;
         if (u-a < tol2 || b-u < tol2)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
           d=SIGN(tol1,xm-x);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     } else {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double jmean=1; /* Mean space between 2 waves */
     }  double **oldm, **newm, **savm; /* Working pointers to matrices */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     fu=(*f)(u);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     if (fu <= fx) {  FILE *ficlog, *ficrespow;
       if (u >= x) a=x; else b=x;  int globpr=0; /* Global variable for printing or not */
       SHFT(v,w,x,u)  double fretone; /* Only one call to likelihood */
         SHFT(fv,fw,fx,fu)  long ipmx=0; /* Number of contributions */
         } else {  double sw; /* Sum of weights */
           if (u < x) a=u; else b=u;  char filerespow[FILENAMELENGTH];
           if (fu <= fw || w == x) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
             v=w;  FILE *ficresilk;
             w=u;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
             fv=fw;  FILE *ficresprobmorprev;
             fw=fu;  FILE *fichtm, *fichtmcov; /* Html File */
           } else if (fu <= fv || v == x || v == w) {  FILE *ficreseij;
             v=u;  char filerese[FILENAMELENGTH];
             fv=fu;  FILE *ficresstdeij;
           }  char fileresstde[FILENAMELENGTH];
         }  FILE *ficrescveij;
   }  char filerescve[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  FILE  *ficresvij;
   *xmin=x;  char fileresv[FILENAMELENGTH];
   return fx;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /****************** mnbrak ***********************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
             double (*func)(double))  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   double ulim,u,r,q, dum;  
   double fu;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    
   *fa=(*func)(*ax);  char filelog[FILENAMELENGTH]; /* Log file */
   *fb=(*func)(*bx);  char filerest[FILENAMELENGTH];
   if (*fb > *fa) {  char fileregp[FILENAMELENGTH];
     SHFT(dum,*ax,*bx,dum)  char popfile[FILENAMELENGTH];
       SHFT(dum,*fb,*fa,dum)  
       }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   while (*fb > *fc) {  struct timezone tzp;
     r=(*bx-*ax)*(*fb-*fc);  extern int gettimeofday();
     q=(*bx-*cx)*(*fb-*fa);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  long time_value;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  extern long time();
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char strcurr[80], strfor[80];
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  char *endptr;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  long lval;
       fu=(*func)(u);  double dval;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define NR_END 1
           SHFT(*fb,*fc,fu,(*func)(u))  #define FREE_ARG char*
           }  #define FTOL 1.0e-10
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  #define NRANSI 
       fu=(*func)(u);  #define ITMAX 200 
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  #define TOL 2.0e-4 
       fu=(*func)(u);  
     }  #define CGOLD 0.3819660 
     SHFT(*ax,*bx,*cx,u)  #define ZEPS 1.0e-10 
       SHFT(*fa,*fb,*fc,fu)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       }  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /*************** linmin ************************/  #define TINY 1.0e-20 
   
 int ncom;  static double maxarg1,maxarg2;
 double *pcom,*xicom;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double (*nrfunc)(double []);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  static double sqrarg;
   double f1dim(double x);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
               double *fc, double (*func)(double));  int agegomp= AGEGOMP;
   int j;  
   double xx,xmin,bx,ax;  int imx; 
   double fx,fb,fa;  int stepm=1;
    /* Stepm, step in month: minimum step interpolation*/
   ncom=n;  
   pcom=vector(1,n);  int estepm;
   xicom=vector(1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   nrfunc=func;  
   for (j=1;j<=n;j++) {  int m,nb;
     pcom[j]=p[j];  long *num;
     xicom[j]=xi[j];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   ax=0.0;  double **pmmij, ***probs;
   xx=1.0;  double *ageexmed,*agecens;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double dateintmean=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  double *weight;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int **s; /* Status */
 #endif  double *agedc, **covar, idx;
   for (j=1;j<=n;j++) {  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     xi[j] *= xmin;  double *lsurv, *lpop, *tpop;
     p[j] += xi[j];  
   }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   free_vector(xicom,1,n);  double ftolhess; /* Tolerance for computing hessian */
   free_vector(pcom,1,n);  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
             double (*func)(double []))       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   void linmin(double p[], double xi[], int n, double *fret,    char  *ss;                            /* pointer */
               double (*func)(double []));    int   l1, l2;                         /* length counters */
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;    l1 = strlen(path );                   /* length of path */
   double fp,fptt;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double *xits;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   pt=vector(1,n);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   ptt=vector(1,n);      strcpy( name, path );               /* we got the fullname name because no directory */
   xit=vector(1,n);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   xits=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   *fret=(*func)(p);      /* get current working directory */
   for (j=1;j<=n;j++) pt[j]=p[j];      /*    extern  char* getcwd ( char *buf , int len);*/
   for (*iter=1;;++(*iter)) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     fp=(*fret);        return( GLOCK_ERROR_GETCWD );
     ibig=0;      }
     del=0.0;      /* got dirc from getcwd*/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      printf(" DIRC = %s \n",dirc);
     for (i=1;i<=n;i++)    } else {                              /* strip direcotry from path */
       printf(" %d %.12f",i, p[i]);      ss++;                               /* after this, the filename */
     printf("\n");      l2 = strlen( ss );                  /* length of filename */
     for (i=1;i<=n;i++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      strcpy( name, ss );         /* save file name */
       fptt=(*fret);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #ifdef DEBUG      dirc[l1-l2] = 0;                    /* add zero */
       printf("fret=%lf \n",*fret);      printf(" DIRC2 = %s \n",dirc);
 #endif    }
       printf("%d",i);fflush(stdout);    /* We add a separator at the end of dirc if not exists */
       linmin(p,xit,n,fret,func);    l1 = strlen( dirc );                  /* length of directory */
       if (fabs(fptt-(*fret)) > del) {    if( dirc[l1-1] != DIRSEPARATOR ){
         del=fabs(fptt-(*fret));      dirc[l1] =  DIRSEPARATOR;
         ibig=i;      dirc[l1+1] = 0; 
       }      printf(" DIRC3 = %s \n",dirc);
 #ifdef DEBUG    }
       printf("%d %.12e",i,(*fret));    ss = strrchr( name, '.' );            /* find last / */
       for (j=1;j<=n;j++) {    if (ss >0){
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      ss++;
         printf(" x(%d)=%.12e",j,xit[j]);      strcpy(ext,ss);                     /* save extension */
       }      l1= strlen( name);
       for(j=1;j<=n;j++)      l2= strlen(ss)+1;
         printf(" p=%.12e",p[j]);      strncpy( finame, name, l1-l2);
       printf("\n");      finame[l1-l2]= 0;
 #endif    }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return( 0 );                          /* we're done */
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  
       k[1]=-1;  /******************************************/
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  void replace_back_to_slash(char *s, char*t)
         printf(" %.12e",p[j]);  {
       printf("\n");    int i;
       for(l=0;l<=1;l++) {    int lg=0;
         for (j=1;j<=n;j++) {    i=0;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    lg=strlen(t);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for(i=0; i<= lg; i++) {
         }      (s[i] = t[i]);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      if (t[i]== '\\') s[i]='/';
       }    }
 #endif  }
   
   char *trimbb(char *out, char *in)
       free_vector(xit,1,n);  { /* Trim multiple blanks in line */
       free_vector(xits,1,n);    char *s;
       free_vector(ptt,1,n);    s=out;
       free_vector(pt,1,n);    while (*in != '\0'){
       return;      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
     }        in++;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      }
     for (j=1;j<=n;j++) {      *out++ = *in++;
       ptt[j]=2.0*p[j]-pt[j];    }
       xit[j]=p[j]-pt[j];    *out='\0';
       pt[j]=p[j];    return s;
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  int nbocc(char *s, char occ)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    int i,j=0;
         linmin(p,xit,n,fret,func);    int lg=20;
         for (j=1;j<=n;j++) {    i=0;
           xi[j][ibig]=xi[j][n];    lg=strlen(s);
           xi[j][n]=xit[j];    for(i=0; i<= lg; i++) {
         }    if  (s[i] == occ ) j++;
 #ifdef DEBUG    }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return j;
         for(j=1;j<=n;j++)  }
           printf(" %.12e",xit[j]);  
         printf("\n");  void cutv(char *u,char *v, char*t, char occ)
 #endif  {
       }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   }       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /**** Prevalence limit ****************/    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    lg=strlen(t);
      matrix by transitions matrix until convergence is reached */    for(j=0; j<p; j++) {
       (u[j] = t[j]);
   int i, ii,j,k;    }
   double min, max, maxmin, maxmax,sumnew=0.;       u[p]='\0';
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();     for(j=0; j<= lg; j++) {
   double **newm;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double agefin, delaymax=50 ; /* Max number of years to converge */    }
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /********************** nrerror ********************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  void nrerror(char error_text[])
   {
    cov[1]=1.;    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    exit(EXIT_FAILURE);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  /*********************** vector *******************/
     /* Covariates have to be included here again */  double *vector(int nl, int nh)
      cov[2]=agefin;  {
      double *v;
       for (k=1; k<=cptcovn;k++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if (!v) nrerror("allocation failure in vector");
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    return v-nl+NR_END;
       }  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /************************ free vector ******************/
       for (k=1; k<=cptcovprod;k++)  void free_vector(double*v, int nl, int nh)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     free((FREE_ARG)(v+nl-NR_END));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
   /************************ivector *******************************/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int *ivector(long nl,long nh)
   {
     savm=oldm;    int *v;
     oldm=newm;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     maxmax=0.;    if (!v) nrerror("allocation failure in ivector");
     for(j=1;j<=nlstate;j++){    return v-nl+NR_END;
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /******************free ivector **************************/
         sumnew=0;  void free_ivector(int *v, long nl, long nh)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    free((FREE_ARG)(v+nl-NR_END));
         max=FMAX(max,prlim[i][j]);  }
         min=FMIN(min,prlim[i][j]);  
       }  /************************lvector *******************************/
       maxmin=max-min;  long *lvector(long nl,long nh)
       maxmax=FMAX(maxmax,maxmin);  {
     }    long *v;
     if(maxmax < ftolpl){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       return prlim;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
   }  }
 }  
   /******************free lvector **************************/
 /*************** transition probabilities ***************/  void free_lvector(long *v, long nl, long nh)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double s1, s2;  
   /*double t34;*/  /******************* imatrix *******************************/
   int i,j,j1, nc, ii, jj;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for(i=1; i<= nlstate; i++){  { 
     for(j=1; j<i;j++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int **m; 
         /*s2 += param[i][j][nc]*cov[nc];*/    
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* allocate pointers to rows */ 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
       ps[i][j]=s2;    m += NR_END; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m -= nrl; 
     }    
     for(j=i+1; j<=nlstate+ndeath;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* allocate rows and set pointers to them */ 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       }    m[nrl] += NR_END; 
       ps[i][j]=(s2);    m[nrl] -= ncl; 
     }    
   }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     /*ps[3][2]=1;*/    
     /* return pointer to array of pointers to rows */ 
   for(i=1; i<= nlstate; i++){    return m; 
      s1=0;  } 
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /****************** free_imatrix *************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  void free_imatrix(m,nrl,nrh,ncl,nch)
       s1+=exp(ps[i][j]);        int **m;
     ps[i][i]=1./(s1+1.);        long nch,ncl,nrh,nrl; 
     for(j=1; j<i; j++)       /* free an int matrix allocated by imatrix() */ 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  { 
     for(j=i+1; j<=nlstate+ndeath; j++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free((FREE_ARG) (m+nrl-NR_END)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  } 
   } /* end i */  
   /******************* matrix *******************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double **matrix(long nrl, long nrh, long ncl, long nch)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       ps[ii][ii]=1;    double **m;
     }  
   }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m -= nrl;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
    }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n ");    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    return m;
   goto end;*/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     return ps;     */
 }  }
   
 /**************** Product of 2 matrices ******************/  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  {
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free((FREE_ARG)(m+nrl-NR_END));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /******************* ma3x *******************************/
      a pointer to pointers identical to out */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(k=ncolol; k<=ncoloh; k++)    double ***m;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   return out;    m += NR_END;
 }    m -= nrl;
   
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /************* Higher Matrix Product ***************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    m[nrl] -= ncl;
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      (typically every 2 years instead of every month which is too big).    m[nrl][ncl] += NR_END;
      Model is determined by parameters x and covariates have to be    m[nrl][ncl] -= nll;
      included manually here.    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
      */    
     for (i=nrl+1; i<=nrh; i++) {
   int i, j, d, h, k;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double **out, cov[NCOVMAX];      for (j=ncl+1; j<=nch; j++) 
   double **newm;        m[i][j]=m[i][j-1]+nlay;
     }
   /* Hstepm could be zero and should return the unit matrix */    return m; 
   for (i=1;i<=nlstate+ndeath;i++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for (j=1;j<=nlstate+ndeath;j++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       oldm[i][j]=(i==j ? 1.0 : 0.0);    */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************************free ma3x ************************/
   for(h=1; h <=nhstepm; h++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(d=1; d <=hstepm; d++){  {
       newm=savm;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       /* Covariates have to be included here again */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       cov[1]=1.;    free((FREE_ARG)(m+nrl-NR_END));
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** function subdirf ***********/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char *subdirf(char fileres[])
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    strcat(tmpout,fileres);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return tmpout;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /*************** function subdirf2 ***********/
       oldm=newm;  char *subdirf2(char fileres[], char *preop)
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    
       for(j=1;j<=nlstate+ndeath;j++) {    /* Caution optionfilefiname is hidden */
         po[i][j][h]=newm[i][j];    strcpy(tmpout,optionfilefiname);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    strcat(tmpout,"/");
          */    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
   } /* end h */    return tmpout;
   return po;  }
 }  
   /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
 /*************** log-likelihood *************/  {
 double func( double *x)    
 {    /* Caution optionfilefiname is hidden */
   int i, ii, j, k, mi, d, kk;    strcpy(tmpout,optionfilefiname);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    strcat(tmpout,"/");
   double **out;    strcat(tmpout,preop);
   double sw; /* Sum of weights */    strcat(tmpout,preop2);
   double lli; /* Individual log likelihood */    strcat(tmpout,fileres);
   long ipmx;    return tmpout;
   /*extern weight */  }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /***************** f1dim *************************/
   /*for(i=1;i<imx;i++)  extern int ncom; 
     printf(" %d\n",s[4][i]);  extern double *pcom,*xicom;
   */  extern double (*nrfunc)(double []); 
   cov[1]=1.;   
   double f1dim(double x) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    int j; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double f;
     for(mi=1; mi<= wav[i]-1; mi++){    double *xt; 
       for (ii=1;ii<=nlstate+ndeath;ii++)   
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    xt=vector(1,ncom); 
       for(d=0; d<dh[mi][i]; d++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         newm=savm;    f=(*nrfunc)(xt); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    free_vector(xt,1,ncom); 
         for (kk=1; kk<=cptcovage;kk++) {    return f; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  } 
         }  
          /*****************brent *************************/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  { 
         savm=oldm;    int iter; 
         oldm=newm;    double a,b,d,etemp;
            double fu,fv,fw,fx;
            double ftemp;
       } /* end mult */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
          double e=0.0; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);   
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    a=(ax < cx ? ax : cx); 
       ipmx +=1;    b=(ax > cx ? ax : cx); 
       sw += weight[i];    x=w=v=bx; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    fw=fv=fx=(*f)(x); 
     } /* end of wave */    for (iter=1;iter<=ITMAX;iter++) { 
   } /* end of individual */      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      printf(".");fflush(stdout);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      fprintf(ficlog,".");fflush(ficlog);
   return -l;  #ifdef DEBUG
 }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /*********** Maximum Likelihood Estimation ***************/  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        *xmin=x; 
 {        return fx; 
   int i,j, iter;      } 
   double **xi,*delti;      ftemp=fu;
   double fret;      if (fabs(e) > tol1) { 
   xi=matrix(1,npar,1,npar);        r=(x-w)*(fx-fv); 
   for (i=1;i<=npar;i++)        q=(x-v)*(fx-fw); 
     for (j=1;j<=npar;j++)        p=(x-v)*q-(x-w)*r; 
       xi[i][j]=(i==j ? 1.0 : 0.0);        q=2.0*(q-r); 
   printf("Powell\n");        if (q > 0.0) p = -p; 
   powell(p,xi,npar,ftol,&iter,&fret,func);        q=fabs(q); 
         etemp=e; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        e=d; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }        else { 
           d=p/q; 
 /**** Computes Hessian and covariance matrix ***/          u=x+d; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   double  **a,**y,*x,pd;        } 
   double **hess;      } else { 
   int i, j,jk;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int *indx;      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double hessii(double p[], double delta, int theta, double delti[]);      fu=(*f)(u); 
   double hessij(double p[], double delti[], int i, int j);      if (fu <= fx) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        if (u >= x) a=x; else b=x; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   hess=matrix(1,npar,1,npar);          } else { 
             if (u < x) a=u; else b=u; 
   printf("\nCalculation of the hessian matrix. Wait...\n");            if (fu <= fw || w == x) { 
   for (i=1;i<=npar;i++){              v=w; 
     printf("%d",i);fflush(stdout);              w=u; 
     hess[i][i]=hessii(p,ftolhess,i,delti);              fv=fw; 
     /*printf(" %f ",p[i]);*/              fw=fu; 
     /*printf(" %lf ",hess[i][i]);*/            } else if (fu <= fv || v == x || v == w) { 
   }              v=u; 
                fv=fu; 
   for (i=1;i<=npar;i++) {            } 
     for (j=1;j<=npar;j++)  {          } 
       if (j>i) {    } 
         printf(".%d%d",i,j);fflush(stdout);    nrerror("Too many iterations in brent"); 
         hess[i][j]=hessij(p,delti,i,j);    *xmin=x; 
         hess[j][i]=hess[i][j];        return fx; 
         /*printf(" %lf ",hess[i][j]);*/  } 
       }  
     }  /****************** mnbrak ***********************/
   }  
   printf("\n");  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  { 
      double ulim,u,r,q, dum;
   a=matrix(1,npar,1,npar);    double fu; 
   y=matrix(1,npar,1,npar);   
   x=vector(1,npar);    *fa=(*func)(*ax); 
   indx=ivector(1,npar);    *fb=(*func)(*bx); 
   for (i=1;i<=npar;i++)    if (*fb > *fa) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      SHFT(dum,*ax,*bx,dum) 
   ludcmp(a,npar,indx,&pd);        SHFT(dum,*fb,*fa,dum) 
         } 
   for (j=1;j<=npar;j++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
     for (i=1;i<=npar;i++) x[i]=0;    *fc=(*func)(*cx); 
     x[j]=1;    while (*fb > *fc) { 
     lubksb(a,npar,indx,x);      r=(*bx-*ax)*(*fb-*fc); 
     for (i=1;i<=npar;i++){      q=(*bx-*cx)*(*fb-*fa); 
       matcov[i][j]=x[i];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   printf("\n#Hessian matrix#\n");        fu=(*func)(u); 
   for (i=1;i<=npar;i++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for (j=1;j<=npar;j++) {        fu=(*func)(u); 
       printf("%.3e ",hess[i][j]);        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     printf("\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* Recompute Inverse */        u=ulim; 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      } else { 
   ludcmp(a,npar,indx,&pd);        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   /*  printf("\n#Hessian matrix recomputed#\n");      } 
       SHFT(*ax,*bx,*cx,u) 
   for (j=1;j<=npar;j++) {        SHFT(*fa,*fb,*fc,fu) 
     for (i=1;i<=npar;i++) x[i]=0;        } 
     x[j]=1;  } 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /*************** linmin ************************/
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  int ncom; 
     }  double *pcom,*xicom;
     printf("\n");  double (*nrfunc)(double []); 
   }   
   */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   free_matrix(a,1,npar,1,npar);    double brent(double ax, double bx, double cx, 
   free_matrix(y,1,npar,1,npar);                 double (*f)(double), double tol, double *xmin); 
   free_vector(x,1,npar);    double f1dim(double x); 
   free_ivector(indx,1,npar);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   free_matrix(hess,1,npar,1,npar);                double *fc, double (*func)(double)); 
     int j; 
     double xx,xmin,bx,ax; 
 }    double fx,fb,fa;
    
 /*************** hessian matrix ****************/    ncom=n; 
 double hessii( double x[], double delta, int theta, double delti[])    pcom=vector(1,n); 
 {    xicom=vector(1,n); 
   int i;    nrfunc=func; 
   int l=1, lmax=20;    for (j=1;j<=n;j++) { 
   double k1,k2;      pcom[j]=p[j]; 
   double p2[NPARMAX+1];      xicom[j]=xi[j]; 
   double res;    } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    ax=0.0; 
   double fx;    xx=1.0; 
   int k=0,kmax=10;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double l1;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   fx=func(x);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=npar;i++) p2[i]=x[i];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(l=0 ; l <=lmax; l++){  #endif
     l1=pow(10,l);    for (j=1;j<=n;j++) { 
     delts=delt;      xi[j] *= xmin; 
     for(k=1 ; k <kmax; k=k+1){      p[j] += xi[j]; 
       delt = delta*(l1*k);    } 
       p2[theta]=x[theta] +delt;    free_vector(xicom,1,n); 
       k1=func(p2)-fx;    free_vector(pcom,1,n); 
       p2[theta]=x[theta]-delt;  } 
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  char *asc_diff_time(long time_sec, char ascdiff[])
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  {
          long sec_left, days, hours, minutes;
 #ifdef DEBUG    days = (time_sec) / (60*60*24);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    sec_left = (time_sec) % (60*60*24);
 #endif    hours = (sec_left) / (60*60) ;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    sec_left = (sec_left) %(60*60);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    minutes = (sec_left) /60;
         k=kmax;    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    return ascdiff;
         k=kmax; l=lmax*10.;  }
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*************** powell ************************/
         delts=delt;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
     }  { 
   }    void linmin(double p[], double xi[], int n, double *fret, 
   delti[theta]=delts;                double (*func)(double [])); 
   return res;    int i,ibig,j; 
      double del,t,*pt,*ptt,*xit;
 }    double fp,fptt;
     double *xits;
 double hessij( double x[], double delti[], int thetai,int thetaj)    int niterf, itmp;
 {  
   int i;    pt=vector(1,n); 
   int l=1, l1, lmax=20;    ptt=vector(1,n); 
   double k1,k2,k3,k4,res,fx;    xit=vector(1,n); 
   double p2[NPARMAX+1];    xits=vector(1,n); 
   int k;    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   fx=func(x);    for (*iter=1;;++(*iter)) { 
   for (k=1; k<=2; k++) {      fp=(*fret); 
     for (i=1;i<=npar;i++) p2[i]=x[i];      ibig=0; 
     p2[thetai]=x[thetai]+delti[thetai]/k;      del=0.0; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      last_time=curr_time;
     k1=func(p2)-fx;      (void) gettimeofday(&curr_time,&tzp);
        printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     p2[thetai]=x[thetai]+delti[thetai]/k;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     k2=func(p2)-fx;     for (i=1;i<=n;i++) {
          printf(" %d %.12f",i, p[i]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog," %d %.12lf",i, p[i]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficrespow," %.12lf", p[i]);
     k3=func(p2)-fx;      }
        printf("\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;      fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      fprintf(ficrespow,"\n");fflush(ficrespow);
     k4=func(p2)-fx;      if(*iter <=3){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        tm = *localtime(&curr_time.tv_sec);
 #ifdef DEBUG        strcpy(strcurr,asctime(&tm));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*       asctime_r(&tm,strcurr); */
 #endif        forecast_time=curr_time; 
   }        itmp = strlen(strcurr);
   return res;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /************** Inverse of matrix **************/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 void ludcmp(double **a, int n, int *indx, double *d)        for(niterf=10;niterf<=30;niterf+=10){
 {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int i,imax,j,k;          tmf = *localtime(&forecast_time.tv_sec);
   double big,dum,sum,temp;  /*      asctime_r(&tmf,strfor); */
   double *vv;          strcpy(strfor,asctime(&tmf));
            itmp = strlen(strfor);
   vv=vector(1,n);          if(strfor[itmp-1]=='\n')
   *d=1.0;          strfor[itmp-1]='\0';
   for (i=1;i<=n;i++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     big=0.0;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;      }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for (i=1;i<=n;i++) { 
     vv[i]=1.0/big;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   }        fptt=(*fret); 
   for (j=1;j<=n;j++) {  #ifdef DEBUG
     for (i=1;i<j;i++) {        printf("fret=%lf \n",*fret);
       sum=a[i][j];        fprintf(ficlog,"fret=%lf \n",*fret);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  #endif
       a[i][j]=sum;        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
     big=0.0;        linmin(p,xit,n,fret,func); 
     for (i=j;i<=n;i++) {        if (fabs(fptt-(*fret)) > del) { 
       sum=a[i][j];          del=fabs(fptt-(*fret)); 
       for (k=1;k<j;k++)          ibig=i; 
         sum -= a[i][k]*a[k][j];        } 
       a[i][j]=sum;  #ifdef DEBUG
       if ( (dum=vv[i]*fabs(sum)) >= big) {        printf("%d %.12e",i,(*fret));
         big=dum;        fprintf(ficlog,"%d %.12e",i,(*fret));
         imax=i;        for (j=1;j<=n;j++) {
       }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
     if (j != imax) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for (k=1;k<=n;k++) {        }
         dum=a[imax][k];        for(j=1;j<=n;j++) {
         a[imax][k]=a[j][k];          printf(" p=%.12e",p[j]);
         a[j][k]=dum;          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       *d = -(*d);        printf("\n");
       vv[imax]=vv[j];        fprintf(ficlog,"\n");
     }  #endif
     indx[j]=imax;      } 
     if (a[j][j] == 0.0) a[j][j]=TINY;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     if (j != n) {  #ifdef DEBUG
       dum=1.0/(a[j][j]);        int k[2],l;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        k[0]=1;
     }        k[1]=-1;
   }        printf("Max: %.12e",(*func)(p));
   free_vector(vv,1,n);  /* Doesn't work */        fprintf(ficlog,"Max: %.12e",(*func)(p));
 ;        for (j=1;j<=n;j++) {
 }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 void lubksb(double **a, int n, int *indx, double b[])        }
 {        printf("\n");
   int i,ii=0,ip,j;        fprintf(ficlog,"\n");
   double sum;        for(l=0;l<=1;l++) {
            for (j=1;j<=n;j++) {
   for (i=1;i<=n;i++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     ip=indx[i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     sum=b[ip];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     b[ip]=b[i];          }
     if (ii)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     else if (sum) ii=i;        }
     b[i]=sum;  #endif
   }  
   for (i=n;i>=1;i--) {  
     sum=b[i];        free_vector(xit,1,n); 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        free_vector(xits,1,n); 
     b[i]=sum/a[i][i];        free_vector(ptt,1,n); 
   }        free_vector(pt,1,n); 
 }        return; 
       } 
 /************ Frequencies ********************/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)      for (j=1;j<=n;j++) { 
 {  /* Some frequencies */        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        pt[j]=p[j]; 
   double ***freq; /* Frequencies */      } 
   double *pp;      fptt=(*func)(ptt); 
   double pos, k2, dateintsum=0,k2cpt=0;      if (fptt < fp) { 
   FILE *ficresp;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   char fileresp[FILENAMELENGTH];        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   pp=vector(1,nlstate);          for (j=1;j<=n;j++) { 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            xi[j][ibig]=xi[j][n]; 
   strcpy(fileresp,"p");            xi[j][n]=xit[j]; 
   strcat(fileresp,fileres);          }
   if((ficresp=fopen(fileresp,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with prevalence resultfile: %s\n", fileresp);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     exit(0);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            printf(" %.12e",xit[j]);
   j1=0;            fprintf(ficlog," %.12e",xit[j]);
           }
   j=cptcoveff;          printf("\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          fprintf(ficlog,"\n");
   #endif
   for(k1=1; k1<=j;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){      } 
        j1++;    } 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  } 
          scanf("%d", i);*/  
         for (i=-1; i<=nlstate+ndeath; i++)    /**** Prevalence limit (stable or period prevalence)  ****************/
          for (jk=-1; jk<=nlstate+ndeath; jk++)    
            for(m=agemin; m <= agemax+3; m++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
              freq[i][jk][m]=0;  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         dateintsum=0;       matrix by transitions matrix until convergence is reached */
         k2cpt=0;  
        for (i=1; i<=imx; i++) {    int i, ii,j,k;
          bool=1;    double min, max, maxmin, maxmax,sumnew=0.;
          if  (cptcovn>0) {    double **matprod2();
            for (z1=1; z1<=cptcoveff; z1++)    double **out, cov[NCOVMAX+1], **pmij();
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **newm;
                bool=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
          }  
          if (bool==1) {    for (ii=1;ii<=nlstate+ndeath;ii++)
            for(m=firstpass; m<=lastpass; m++){      for (j=1;j<=nlstate+ndeath;j++){
              k2=anint[m][i]+(mint[m][i]/12.);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              if ((k2>=dateprev1) && (k2<=dateprev2)) {      }
                if(agev[m][i]==0) agev[m][i]=agemax+1;  
                if(agev[m][i]==1) agev[m][i]=agemax+2;     cov[1]=1.;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];   
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                  dateintsum=dateintsum+k2;      newm=savm;
                  k2cpt++;      /* Covariates have to be included here again */
                }       cov[2]=agefin;
     
              }        for (k=1; k<=cptcovn;k++) {
            }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
        }        }
         if  (cptcovn>0) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          fprintf(ficresp, "\n#********** Variable ");        for (k=1; k<=cptcovprod;k++)
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        fprintf(ficresp, "**********\n#");  
         }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
        for(i=1; i<=nlstate;i++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        fprintf(ficresp, "\n");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){      savm=oldm;
     if(i==(int)agemax+3)      oldm=newm;
       printf("Total");      maxmax=0.;
     else      for(j=1;j<=nlstate;j++){
       printf("Age %d", i);        min=1.;
     for(jk=1; jk <=nlstate ; jk++){        max=0.;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(i=1; i<=nlstate; i++) {
         pp[jk] += freq[jk][m][i];          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for(jk=1; jk <=nlstate ; jk++){          prlim[i][j]= newm[i][j]/(1-sumnew);
       for(m=-1, pos=0; m <=0 ; m++)          max=FMAX(max,prlim[i][j]);
         pos += freq[jk][m][i];          min=FMIN(min,prlim[i][j]);
       if(pp[jk]>=1.e-10)        }
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        maxmin=max-min;
       else        maxmax=FMAX(maxmax,maxmin);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
     }      if(maxmax < ftolpl){
         return prlim;
      for(jk=1; jk <=nlstate ; jk++){      }
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }
         pp[jk] += freq[jk][m][i];  }
      }  
   /*************** transition probabilities ***************/ 
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for(jk=1; jk <=nlstate ; jk++){  {
       if(pos>=1.e-5)    double s1, s2;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /*double t34;*/
       else    int i,j,j1, nc, ii, jj;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){      for(i=1; i<= nlstate; i++){
         if(pos>=1.e-5){        for(j=1; j<i;j++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           probs[i][jk][j1]= pp[jk]/pos;            /*s2 += param[i][j][nc]*cov[nc];*/
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       else          }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ps[i][j]=s2;
       }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     }        }
     for(jk=-1; jk <=nlstate+ndeath; jk++)        for(j=i+1; j<=nlstate+ndeath;j++){
       for(m=-1; m <=nlstate+ndeath; m++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     if(i <= (int) agemax)  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       fprintf(ficresp,"\n");          }
     printf("\n");          ps[i][j]=s2;
     }        }
     }      }
  }      /*ps[3][2]=1;*/
   dateintmean=dateintsum/k2cpt;      
        for(i=1; i<= nlstate; i++){
   fclose(ficresp);        s1=0;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for(j=1; j<i; j++){
   free_vector(pp,1,nlstate);          s1+=exp(ps[i][j]);
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   /* End of Freq */        }
 }        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]);
 /************ Prevalence ********************/          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        }
 {  /* Some frequencies */        ps[i][i]=1./(s1+1.);
          for(j=1; j<i; j++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double ***freq; /* Frequencies */        for(j=i+1; j<=nlstate+ndeath; j++)
   double *pp;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double pos, k2;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
   pp=vector(1,nlstate);      
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ps[ii][jj]=0;
   j1=0;          ps[ii][ii]=1;
          }
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      
    
  for(k1=1; k1<=j;k1++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     for(i1=1; i1<=ncodemax[k1];i1++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       j1++;  /*         printf("ddd %lf ",ps[ii][jj]); */
    /*       } */
       for (i=-1; i<=nlstate+ndeath; i++)    /*       printf("\n "); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /*        } */
           for(m=agemin; m <= agemax+3; m++)  /*        printf("\n ");printf("%lf ",cov[2]); */
             freq[i][jk][m]=0;         /*
              for(i=1; i<= npar; i++) printf("%f ",x[i]);
       for (i=1; i<=imx; i++) {        goto end;*/
         bool=1;      return ps;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /**************** Product of 2 matrices ******************/
               bool=0;  
         }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         if (bool==1) {  {
           for(m=firstpass; m<=lastpass; m++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             k2=anint[m][i]+(mint[m][i]/12.);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* in, b, out are matrice of pointers which should have been initialized 
               if(agev[m][i]==0) agev[m][i]=agemax+1;       before: only the contents of out is modified. The function returns
               if(agev[m][i]==1) agev[m][i]=agemax+2;       a pointer to pointers identical to out */
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    long i, j, k;
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];      for(i=nrl; i<= nrh; i++)
             }      for(k=ncolol; k<=ncoloh; k++)
           }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         }          out[i][k] +=in[i][j]*b[j][k];
       }  
          return out;
         for(i=(int)agemin; i <= (int)agemax+3; i++){  }
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
               pp[jk] += freq[jk][m][i];  /************* Higher Matrix Product ***************/
           }  
           for(jk=1; jk <=nlstate ; jk++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    /* Computes the transition matrix starting at age 'age' over 
         }       'nhstepm*hstepm*stepm' months (i.e. until
               age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
          for(jk=1; jk <=nlstate ; jk++){       nhstepm*hstepm matrices. 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
              pp[jk] += freq[jk][m][i];       (typically every 2 years instead of every month which is too big 
          }       for the memory).
                 Model is determined by parameters x and covariates have to be 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];       included manually here. 
   
          for(jk=1; jk <=nlstate ; jk++){                 */
            if( i <= (int) agemax){  
              if(pos>=1.e-5){    int i, j, d, h, k;
                probs[i][jk][j1]= pp[jk]/pos;    double **out, cov[NCOVMAX+1];
              }    double **newm;
            }  
          }    /* Hstepm could be zero and should return the unit matrix */
              for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for(h=1; h <=nhstepm; h++){
   free_vector(pp,1,nlstate);      for(d=1; d <=hstepm; d++){
          newm=savm;
 }  /* End of Freq */        /* Covariates have to be included here again */
         cov[1]=1.;
 /************* Waves Concatenation ***************/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {        for (k=1; k<=cptcovage;k++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      Death is a valid wave (if date is known).        for (k=1; k<=cptcovprod;k++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  
      */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int i, mi, m;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
      double sum=0., jmean=0.;*/        savm=oldm;
         oldm=newm;
   int j, k=0,jk, ju, jl;      }
   double sum=0.;      for(i=1; i<=nlstate+ndeath; i++)
   jmin=1e+5;        for(j=1;j<=nlstate+ndeath;j++) {
   jmax=-1;          po[i][j][h]=newm[i][j];
   jmean=0.;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   for(i=1; i<=imx; i++){        }
     mi=0;      /*printf("h=%d ",h);*/
     m=firstpass;    } /* end h */
     while(s[m][i] <= nlstate){  /*     printf("\n H=%d \n",h); */
       if(s[m][i]>=1)    return po;
         mw[++mi][i]=m;  }
       if(m >=lastpass)  
         break;  
       else  /*************** log-likelihood *************/
         m++;  double func( double *x)
     }/* end while */  {
     if (s[m][i] > nlstate){    int i, ii, j, k, mi, d, kk;
       mi++;     /* Death is another wave */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       /* if(mi==0)  never been interviewed correctly before death */    double **out;
          /* Only death is a correct wave */    double sw; /* Sum of weights */
       mw[mi][i]=m;    double lli; /* Individual log likelihood */
     }    int s1, s2;
     double bbh, survp;
     wav[i]=mi;    long ipmx;
     if(mi==0)    /*extern weight */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   for(i=1; i<=imx; i++){      printf(" %d\n",s[4][i]);
     for(mi=1; mi<wav[i];mi++){    */
       if (stepm <=0)    cov[1]=1.;
         dh[mi][i]=1;  
       else{    for(k=1; k<=nlstate; k++) ll[k]=0.;
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {    if(mle==1){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(j==0) j=1;  /* Survives at least one month after exam */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           k=k+1;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j >= jmax) jmax=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j <= jmin) jmin=j;            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           /* if (j<10) printf("j=%d num=%d ",j,i); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
         else{            newm=savm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           k=k+1;            for (kk=1; kk<=cptcovage;kk++) {
           if (j >= jmax) jmax=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else if (j <= jmin)jmin=j;            }
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           sum=sum+j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         jk= j/stepm;            oldm=newm;
         jl= j -jk*stepm;          } /* end mult */
         ju= j -(jk+1)*stepm;        
         if(jl <= -ju)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           dh[mi][i]=jk;          /* But now since version 0.9 we anticipate for bias at large stepm.
         else           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           dh[mi][i]=jk+1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
         if(dh[mi][i]==0)           * the nearest (and in case of equal distance, to the lowest) interval but now
           dh[mi][i]=1; /* At least one step */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   jmean=sum/k;           * -stepm/2 to stepm/2 .
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);           * For stepm=1 the results are the same as for previous versions of Imach.
  }           * For stepm > 1 the results are less biased than in previous versions. 
 /*********** Tricode ****************************/           */
 void tricode(int *Tvar, int **nbcode, int imx)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   int Ndum[20],ij=1, k, j, i;          bbh=(double)bh[mi][i]/(double)stepm; 
   int cptcode=0;          /* bias bh is positive if real duration
   cptcoveff=0;           * is higher than the multiple of stepm and negative otherwise.
             */
   for (k=0; k<19; k++) Ndum[k]=0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (k=1; k<=7; k++) ncodemax[k]=0;          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {               then the contribution to the likelihood is the probability to 
     for (i=1; i<=imx; i++) {               die between last step unit time and current  step unit time, 
       ij=(int)(covar[Tvar[j]][i]);               which is also equal to probability to die before dh 
       Ndum[ij]++;               minus probability to die before dh-stepm . 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/               In version up to 0.92 likelihood was computed
       if (ij > cptcode) cptcode=ij;          as if date of death was unknown. Death was treated as any other
     }          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
     for (i=0; i<=cptcode; i++) {          to consider that at each interview the state was recorded
       if(Ndum[i]!=0) ncodemax[j]++;          (healthy, disable or death) and IMaCh was corrected; but when we
     }          introduced the exact date of death then we should have modified
     ij=1;          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
     for (i=1; i<=ncodemax[j]; i++) {          and month of death but the probability to survive from last
       for (k=0; k<=19; k++) {          interview up to one month before death multiplied by the
         if (Ndum[k] != 0) {          probability to die within a month. Thanks to Chris
           nbcode[Tvar[j]][ij]=k;          Jackson for correcting this bug.  Former versions increased
           ij++;          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
         if (ij > ncodemax[j]) break;          lower mortality.
       }              */
     }            lli=log(out[s1][s2] - savm[s1][s2]);
   }    
   
  for (k=0; k<19; k++) Ndum[k]=0;          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
  for (i=1; i<=ncovmodel-2; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       ij=Tvar[i];            /*survp += out[s1][j]; */
       Ndum[ij]++;            lli= log(survp);
     }          }
           
  ij=1;          else if  (s2==-4) { 
  for (i=1; i<=10; i++) {            for (j=3,survp=0. ; j<=nlstate; j++)  
    if((Ndum[i]!=0) && (i<=ncov)){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      Tvaraff[ij]=i;            lli= log(survp); 
      ij++;          } 
    }  
  }          else if  (s2==-5) { 
              for (j=1,survp=0. ; j<=2; j++)  
     cptcoveff=ij-1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 }            lli= log(survp); 
           } 
 /*********** Health Expectancies ****************/          
           else{
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   /* Health expectancies */          } 
   int i, j, nhstepm, hstepm, h;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double age, agelim,hf;          /*if(lli ==000.0)*/
   double ***p3mat;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   fprintf(ficreseij,"# Health expectancies\n");          sw += weight[i];
   fprintf(ficreseij,"# Age");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=nlstate;i++)        } /* end of wave */
     for(j=1; j<=nlstate;j++)      } /* end of individual */
       fprintf(ficreseij," %1d-%1d",i,j);    }  else if(mle==2){
   fprintf(ficreseij,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=1*YEARM; /*  Every j years of age (in month) */        for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   agelim=AGESUP;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* nhstepm age range expressed in number of stepm */            }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          for(d=0; d<=dh[mi][i]; d++){
     /* Typically if 20 years = 20*12/6=40 stepm */            newm=savm;
     if (stepm >= YEARM) hstepm=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            for (kk=1; kk<=cptcovage;kk++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
     for(i=1; i<=nlstate;i++)          } /* end mult */
       for(j=1; j<=nlstate;j++)        
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
           eij[i][j][(int)age] +=p3mat[i][j][h];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
              lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     hf=1;          ipmx +=1;
     if (stepm >= YEARM) hf=stepm/YEARM;          sw += weight[i];
     fprintf(ficreseij,"%.0f",age );          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1; i<=nlstate;i++)        } /* end of wave */
       for(j=1; j<=nlstate;j++){      } /* end of individual */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    }  else if(mle==3){  /* exponential inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance ******************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Variance of health expectancies */            newm=savm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **newm;            for (kk=1; kk<=cptcovage;kk++) {
   double **dnewm,**doldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j, nhstepm, hstepm, h;            }
   int k, cptcode;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *xp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **gp, **gm;            savm=oldm;
   double ***gradg, ***trgradg;            oldm=newm;
   double ***p3mat;          } /* end mult */
   double age,agelim;        
   int theta;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
    fprintf(ficresvij,"# Covariances of life expectancies\n");          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficresvij,"# Age");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for(i=1; i<=nlstate;i++)          ipmx +=1;
     for(j=1; j<=nlstate;j++)          sw += weight[i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvij,"\n");        } /* end of wave */
       } /* end of individual */
   xp=vector(1,npar);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   dnewm=matrix(1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   doldm=matrix(1,nlstate,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=1*YEARM; /* Every year of age */          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (j=1;j<=nlstate+ndeath;j++){
   agelim = AGESUP;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }
     if (stepm >= YEARM) hstepm=1;          for(d=0; d<dh[mi][i]; d++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            newm=savm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     gp=matrix(0,nhstepm,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gm=matrix(0,nhstepm,1,nlstate);            }
           
     for(theta=1; theta <=npar; theta++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++){ /* Computes gradient */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            savm=oldm;
       }            oldm=newm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            } /* end mult */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
           s1=s[mw[mi][i]][i];
       if (popbased==1) {          s2=s[mw[mi+1][i]][i];
         for(i=1; i<=nlstate;i++)          if( s2 > nlstate){ 
           prlim[i][i]=probs[(int)age][i][ij];            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
                  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          ipmx +=1;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          sw += weight[i];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        } /* end of wave */
          } /* end of individual */
       for(i=1; i<=npar; i++) /* Computes gradient */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       if (popbased==1) {            for (j=1;j<=nlstate+ndeath;j++){
         for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           prlim[i][i]=probs[(int)age][i][ij];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
           for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<= nlstate; j++){            newm=savm;
         for(h=0; h<=nhstepm; h++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
       }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<= nlstate; j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(h=0; h<=nhstepm; h++){            savm=oldm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            oldm=newm;
         }          } /* end mult */
     } /* End theta */        
           s1=s[mw[mi][i]][i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(h=0; h<=nhstepm; h++)          ipmx +=1;
       for(j=1; j<=nlstate;j++)          sw += weight[i];
         for(theta=1; theta <=npar; theta++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           trgradg[h][j][theta]=gradg[h][theta][j];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
     for(i=1;i<=nlstate;i++)      } /* end of individual */
       for(j=1;j<=nlstate;j++)    } /* End of if */
         vareij[i][j][(int)age] =0.;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(h=0;h<=nhstepm;h++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(k=0;k<=nhstepm;k++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    return -l;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  }
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  /*************** log-likelihood *************/
             vareij[i][j][(int)age] += doldm[i][j];  double funcone( double *x)
       }  {
     }    /* Same as likeli but slower because of a lot of printf and if */
     h=1;    int i, ii, j, k, mi, d, kk;
     if (stepm >= YEARM) h=stepm/YEARM;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     fprintf(ficresvij,"%.0f ",age );    double **out;
     for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
       for(j=1; j<=nlstate;j++){    double llt;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    int s1, s2;
       }    double bbh, survp;
     fprintf(ficresvij,"\n");    /*extern weight */
     free_matrix(gp,0,nhstepm,1,nlstate);    /* We are differentiating ll according to initial status */
     free_matrix(gm,0,nhstepm,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    /*for(i=1;i<imx;i++) 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      printf(" %d\n",s[4][i]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
   } /* End age */    cov[1]=1.;
    
   free_vector(xp,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
 /************ Variance of prevlim ******************/          for (j=1;j<=nlstate+ndeath;j++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Variance of prevalence limit */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for(d=0; d<dh[mi][i]; d++){
   double **newm;          newm=savm;
   double **dnewm,**doldm;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, j, nhstepm, hstepm;          for (kk=1; kk<=cptcovage;kk++) {
   int k, cptcode;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *xp;          }
   double *gp, *gm;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **gradg, **trgradg;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double age,agelim;          savm=oldm;
   int theta;          oldm=newm;
            } /* end mult */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        
   fprintf(ficresvpl,"# Age");        s1=s[mw[mi][i]][i];
   for(i=1; i<=nlstate;i++)        s2=s[mw[mi+1][i]][i];
       fprintf(ficresvpl," %1d-%1d",i,i);        bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficresvpl,"\n");        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
   xp=vector(1,npar);         */
   dnewm=matrix(1,nlstate,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   doldm=matrix(1,nlstate,1,nlstate);          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if  (s2==-2) {
   hstepm=1*YEARM; /* Every year of age */          for (j=1,survp=0. ; j<=nlstate; j++) 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   agelim = AGESUP;          lli= log(survp);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }else if (mle==1){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     if (stepm >= YEARM) hstepm=1;        } else if(mle==2){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     gradg=matrix(1,npar,1,nlstate);        } else if(mle==3){  /* exponential inter-extrapolation */
     gp=vector(1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gm=vector(1,nlstate);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
     for(theta=1; theta <=npar; theta++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(i=1; i<=npar; i++){ /* Computes gradient */          lli=log(out[s1][s2]); /* Original formula */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } /* End of if */
       }        ipmx +=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        sw += weight[i];
       for(i=1;i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gp[i] = prlim[i][i];        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if(globpr){
       for(i=1; i<=npar; i++) /* Computes gradient */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   %11.6f %11.6f %11.6f ", \
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(i=1;i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         gm[i] = prlim[i][i];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
       for(i=1;i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          }
     } /* End theta */          fprintf(ficresilk," %10.6f\n", -llt);
         }
     trgradg =matrix(1,nlstate,1,npar);      } /* end of wave */
     } /* end of individual */
     for(j=1; j<=nlstate;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(theta=1; theta <=npar; theta++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         trgradg[j][theta]=gradg[theta][j];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
     for(i=1;i<=nlstate;i++)      gipmx=ipmx;
       varpl[i][(int)age] =0.;      gsw=sw;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    return -l;
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   
     fprintf(ficresvpl,"%.0f ",age );  /*************** function likelione ***********/
     for(i=1; i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  {
     fprintf(ficresvpl,"\n");    /* This routine should help understanding what is done with 
     free_vector(gp,1,nlstate);       the selection of individuals/waves and
     free_vector(gm,1,nlstate);       to check the exact contribution to the likelihood.
     free_matrix(gradg,1,npar,1,nlstate);       Plotting could be done.
     free_matrix(trgradg,1,nlstate,1,npar);     */
   } /* End age */    int k;
   
   free_vector(xp,1,npar);    if(*globpri !=0){ /* Just counts and sums, no printings */
   free_matrix(doldm,1,nlstate,1,npar);      strcpy(fileresilk,"ilk"); 
   free_matrix(dnewm,1,nlstate,1,nlstate);      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 /************ Variance of one-step probabilities  ******************/      }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int i, j;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int k=0, cptcode;      for(k=1; k<=nlstate; k++) 
   double **dnewm,**doldm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double *xp;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double *gp, *gm;    }
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    *fretone=(*funcone)(p);
   int theta;    if(*globpri !=0){
   char fileresprob[FILENAMELENGTH];      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   strcpy(fileresprob,"prob");      fflush(fichtm); 
   strcat(fileresprob,fileres);    } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    return;
     printf("Problem with resultfile: %s\n", fileresprob);  }
   }  
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  
    /*********** Maximum Likelihood Estimation ***************/
   
   xp=vector(1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  {
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    int i,j, iter;
      double **xi;
   cov[1]=1;    double fret;
   for (age=bage; age<=fage; age ++){    double fretone; /* Only one call to likelihood */
     cov[2]=age;    /*  char filerespow[FILENAMELENGTH];*/
     gradg=matrix(1,npar,1,9);    xi=matrix(1,npar,1,npar);
     trgradg=matrix(1,9,1,npar);    for (i=1;i<=npar;i++)
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=npar;j++)
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        xi[i][j]=(i==j ? 1.0 : 0.0);
        printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(theta=1; theta <=npar; theta++){    strcpy(filerespow,"pow"); 
       for(i=1; i<=npar; i++)    strcat(filerespow,fileres);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", filerespow);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        }
       k=0;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(i=1; i<= (nlstate+ndeath); i++){    for (i=1;i<=nlstate;i++)
         for(j=1; j<=(nlstate+ndeath);j++){      for(j=1;j<=nlstate+ndeath;j++)
            k=k+1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           gp[k]=pmmij[i][j];    fprintf(ficrespow,"\n");
         }  
       }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
       for(i=1; i<=npar; i++)    free_matrix(xi,1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fclose(ficrespow);
        printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       k=0;  
       for(i=1; i<=(nlstate+ndeath); i++){  }
         for(j=1; j<=(nlstate+ndeath);j++){  
           k=k+1;  /**** Computes Hessian and covariance matrix ***/
           gm[k]=pmmij[i][j];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         }  {
       }    double  **a,**y,*x,pd;
          double **hess;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    int i, j,jk;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      int *indx;
     }  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(theta=1; theta <=npar; theta++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       trgradg[j][theta]=gradg[theta][j];    void ludcmp(double **a, int npar, int *indx, double *d) ;
      double gompertz(double p[]);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    hess=matrix(1,npar,1,npar);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
      pmij(pmmij,cov,ncovmodel,x,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
      k=0;      printf("%d",i);fflush(stdout);
      for(i=1; i<=(nlstate+ndeath); i++){      fprintf(ficlog,"%d",i);fflush(ficlog);
        for(j=1; j<=(nlstate+ndeath);j++){     
          k=k+1;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
          gm[k]=pmmij[i][j];      
         }      /*  printf(" %f ",p[i]);
      }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
          }
      /*printf("\n%d ",(int)age);    
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for (i=1;i<=npar;i++) {
              for (j=1;j<=npar;j++)  {
         if (j>i) { 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          printf(".%d%d",i,j);fflush(stdout);
      }*/          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   fprintf(ficresprob,"\n%d ",(int)age);          
           hess[j][i]=hess[i][j];    
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          /*printf(" %lf ",hess[i][j]);*/
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        }
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      }
   }    }
     printf("\n");
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficlog,"\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 }    
  free_vector(xp,1,npar);    a=matrix(1,npar,1,npar);
 fclose(ficresprob);    y=matrix(1,npar,1,npar);
  exit(0);    x=vector(1,npar);
 }    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
 /***********************************************/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 /**************** Main Program *****************/    ludcmp(a,npar,indx,&pd);
 /***********************************************/  
     for (j=1;j<=npar;j++) {
 /*int main(int argc, char *argv[])*/      for (i=1;i<=npar;i++) x[i]=0;
 int main()      x[j]=1;
 {      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        matcov[i][j]=x[i];
   double agedeb, agefin,hf;      }
   double agemin=1.e20, agemax=-1.e20;    }
   
   double fret;    printf("\n#Hessian matrix#\n");
   double **xi,tmp,delta;    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   double dum; /* Dummy variable */      for (j=1;j<=npar;j++) { 
   double ***p3mat;        printf("%.3e ",hess[i][j]);
   int *indx;        fprintf(ficlog,"%.3e ",hess[i][j]);
   char line[MAXLINE], linepar[MAXLINE];      }
   char title[MAXLINE];      printf("\n");
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];      fprintf(ficlog,"\n");
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];    }
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];    /* Recompute Inverse */
   char popfile[FILENAMELENGTH];    for (i=1;i<=npar;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   int firstobs=1, lastobs=10;    ludcmp(a,npar,indx,&pd);
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    /*  printf("\n#Hessian matrix recomputed#\n");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for (j=1;j<=npar;j++) {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for (i=1;i<=npar;i++) x[i]=0;
   int mobilav=0,popforecast=0;      x[j]=1;
   int hstepm, nhstepm;      lubksb(a,npar,indx,x);
   int *popage;/*boolprev=0 if date and zero if wave*/      for (i=1;i<=npar;i++){ 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   double bage, fage, age, agelim, agebase;        fprintf(ficlog,"%.3e ",y[i][j]);
   double ftolpl=FTOL;      }
   double **prlim;      printf("\n");
   double *severity;      fprintf(ficlog,"\n");
   double ***param; /* Matrix of parameters */    }
   double  *p;    */
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    free_matrix(a,1,npar,1,npar);
   double *delti; /* Scale */    free_matrix(y,1,npar,1,npar);
   double ***eij, ***vareij;    free_vector(x,1,npar);
   double **varpl; /* Variances of prevalence limits by age */    free_ivector(indx,1,npar);
   double *epj, vepp;    free_matrix(hess,1,npar,1,npar);
   double kk1, kk2;  
   double *popeffectif,*popcount;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;  }
   double yp,yp1,yp2;  
   /*************** hessian matrix ****************/
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   char *alph[]={"a","a","b","c","d","e"}, str[4];  {
     int i;
     int l=1, lmax=20;
   char z[1]="c", occ;    double k1,k2;
 #include <sys/time.h>    double p2[MAXPARM+1]; /* identical to x */
 #include <time.h>    double res;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double fx;
   /* long total_usecs;    int k=0,kmax=10;
   struct timeval start_time, end_time;    double l1;
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   printf("\nIMACH, Version 0.7");      l1=pow(10,l);
   printf("\nEnter the parameter file name: ");      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
 #ifdef windows        delt = delta*(l1*k);
   scanf("%s",pathtot);        p2[theta]=x[theta] +delt;
   getcwd(pathcd, size);        k1=func(p2)-fx;
   /*cygwin_split_path(pathtot,path,optionfile);        p2[theta]=x[theta]-delt;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        k2=func(p2)-fx;
   /* cutv(path,optionfile,pathtot,'\\');*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 split(pathtot, path,optionfile);        
   chdir(path);  #ifdef DEBUGHESS
   replace(pathc,path);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #endif        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #ifdef unix  #endif
   scanf("%s",optionfile);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 #endif        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
 /*-------- arguments in the command line --------*/        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   strcpy(fileres,"r");          k=kmax; l=lmax*10.;
   strcat(fileres, optionfile);        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   /*---------arguments file --------*/          delts=delt;
         }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);    }
     goto end;    delti[theta]=delts;
   }    return res; 
     
   strcpy(filereso,"o");  }
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  {
   }    int i;
     int l=1, l1, lmax=20;
   /* Reads comments: lines beginning with '#' */    double k1,k2,k3,k4,res,fx;
   while((c=getc(ficpar))=='#' && c!= EOF){    double p2[MAXPARM+1];
     ungetc(c,ficpar);    int k;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    fx=func(x);
     fputs(line,ficparo);    for (k=1; k<=2; k++) {
   }      for (i=1;i<=npar;i++) p2[i]=x[i];
   ungetc(c,ficpar);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      k1=func(p2)-fx;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      p2[thetai]=x[thetai]+delti[thetai]/k;
 while((c=getc(ficpar))=='#' && c!= EOF){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     ungetc(c,ficpar);      k2=func(p2)-fx;
     fgets(line, MAXLINE, ficpar);    
     puts(line);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fputs(line,ficparo);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k3=func(p2)-fx;
   ungetc(c,ficpar);    
        p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   covar=matrix(0,NCOVMAX,1,n);      k4=func(p2)-fx;
   cptcovn=0;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   ncovmodel=2+cptcovn;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  #endif
      }
   /* Read guess parameters */    return res;
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************** Inverse of matrix **************/
     fgets(line, MAXLINE, ficpar);  void ludcmp(double **a, int n, int *indx, double *d) 
     puts(line);  { 
     fputs(line,ficparo);    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
   ungetc(c,ficpar);    double *vv; 
     
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    vv=vector(1,n); 
     for(i=1; i <=nlstate; i++)    *d=1.0; 
     for(j=1; j <=nlstate+ndeath-1; j++){    for (i=1;i<=n;i++) { 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      big=0.0; 
       fprintf(ficparo,"%1d%1d",i1,j1);      for (j=1;j<=n;j++) 
       printf("%1d%1d",i,j);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       for(k=1; k<=ncovmodel;k++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         fscanf(ficpar," %lf",&param[i][j][k]);      vv[i]=1.0/big; 
         printf(" %lf",param[i][j][k]);    } 
         fprintf(ficparo," %lf",param[i][j][k]);    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
       fscanf(ficpar,"\n");        sum=a[i][j]; 
       printf("\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       fprintf(ficparo,"\n");        a[i][j]=sum; 
     }      } 
        big=0.0; 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   p=param[1][1];        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   /* Reads comments: lines beginning with '#' */        a[i][j]=sum; 
   while((c=getc(ficpar))=='#' && c!= EOF){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     ungetc(c,ficpar);          big=dum; 
     fgets(line, MAXLINE, ficpar);          imax=i; 
     puts(line);        } 
     fputs(line,ficparo);      } 
   }      if (j != imax) { 
   ungetc(c,ficpar);        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          a[imax][k]=a[j][k]; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          a[j][k]=dum; 
   for(i=1; i <=nlstate; i++){        } 
     for(j=1; j <=nlstate+ndeath-1; j++){        *d = -(*d); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);        vv[imax]=vv[j]; 
       printf("%1d%1d",i,j);      } 
       fprintf(ficparo,"%1d%1d",i1,j1);      indx[j]=imax; 
       for(k=1; k<=ncovmodel;k++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
         fscanf(ficpar,"%le",&delti3[i][j][k]);      if (j != n) { 
         printf(" %le",delti3[i][j][k]);        dum=1.0/(a[j][j]); 
         fprintf(ficparo," %le",delti3[i][j][k]);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }      } 
       fscanf(ficpar,"\n");    } 
       printf("\n");    free_vector(vv,1,n);  /* Doesn't work */
       fprintf(ficparo,"\n");  ;
     }  } 
   }  
   delti=delti3[1][1];  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
   /* Reads comments: lines beginning with '#' */    int i,ii=0,ip,j; 
   while((c=getc(ficpar))=='#' && c!= EOF){    double sum; 
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);    for (i=1;i<=n;i++) { 
     puts(line);      ip=indx[i]; 
     fputs(line,ficparo);      sum=b[ip]; 
   }      b[ip]=b[i]; 
   ungetc(c,ficpar);      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   matcov=matrix(1,npar,1,npar);      else if (sum) ii=i; 
   for(i=1; i <=npar; i++){      b[i]=sum; 
     fscanf(ficpar,"%s",&str);    } 
     printf("%s",str);    for (i=n;i>=1;i--) { 
     fprintf(ficparo,"%s",str);      sum=b[i]; 
     for(j=1; j <=i; j++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fscanf(ficpar," %le",&matcov[i][j]);      b[i]=sum/a[i][i]; 
       printf(" %.5le",matcov[i][j]);    } 
       fprintf(ficparo," %.5le",matcov[i][j]);  } 
     }  
     fscanf(ficpar,"\n");  void pstamp(FILE *fichier)
     printf("\n");  {
     fprintf(ficparo,"\n");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }  }
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)  /************ Frequencies ********************/
       matcov[i][j]=matcov[j][i];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      {  /* Some frequencies */
   printf("\n");    
     int i, m, jk, k1,i1, j1, bool, z1,j;
     int first;
     /*-------- data file ----------*/    double ***freq; /* Frequencies */
     if((ficres =fopen(fileres,"w"))==NULL) {    double *pp, **prop;
       printf("Problem with resultfile: %s\n", fileres);goto end;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }    char fileresp[FILENAMELENGTH];
     fprintf(ficres,"#%s\n",version);    
        pp=vector(1,nlstate);
     if((fic=fopen(datafile,"r"))==NULL)    {    prop=matrix(1,nlstate,iagemin,iagemax+3);
       printf("Problem with datafile: %s\n", datafile);goto end;    strcpy(fileresp,"p");
     }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
     n= lastobs;      printf("Problem with prevalence resultfile: %s\n", fileresp);
     severity = vector(1,maxwav);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     outcome=imatrix(1,maxwav+1,1,n);      exit(0);
     num=ivector(1,n);    }
     moisnais=vector(1,n);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     annais=vector(1,n);    j1=0;
     moisdc=vector(1,n);    
     andc=vector(1,n);    j=cptcoveff;
     agedc=vector(1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     cod=ivector(1,n);  
     weight=vector(1,n);    first=1;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    for(k1=1; k1<=j;k1++){
     anint=matrix(1,maxwav,1,n);      for(i1=1; i1<=ncodemax[k1];i1++){
     s=imatrix(1,maxwav+1,1,n);        j1++;
     adl=imatrix(1,maxwav+1,1,n);            /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     tab=ivector(1,NCOVMAX);          scanf("%d", i);*/
     ncodemax=ivector(1,8);        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
     i=1;            for(m=iagemin; m <= iagemax+3; m++)
     while (fgets(line, MAXLINE, fic) != NULL)    {              freq[i][jk][m]=0;
       if ((i >= firstobs) && (i <=lastobs)) {  
              for (i=1; i<=nlstate; i++)  
         for (j=maxwav;j>=1;j--){        for(m=iagemin; m <= iagemax+3; m++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          prop[i][m]=0;
           strcpy(line,stra);        
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        dateintsum=0;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        k2cpt=0;
         }        for (i=1; i<=imx; i++) {
                  bool=1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          if  (cptcovn>0) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                bool=0;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
           if (bool==1){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=firstpass; m<=lastpass; m++){
         for (j=ncov;j>=1;j--){              k2=anint[m][i]+(mint[m][i]/12.);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         num[i]=atol(stra);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                        if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                if (m<lastpass) {
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         i=i+1;                }
       }                
     }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     /* printf("ii=%d", ij);                  dateintsum=dateintsum+k2;
        scanf("%d",i);*/                  k2cpt++;
   imx=i-1; /* Number of individuals */                }
                 /*}*/
   /* for (i=1; i<=imx; i++){            }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;         
     }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
     for (i=1; i<=imx; i++)        if  (cptcovn>0) {
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Calculation of the number of parameter from char model*/          fprintf(ficresp, "**********\n#");
   Tvar=ivector(1,15);        }
   Tprod=ivector(1,15);        for(i=1; i<=nlstate;i++) 
   Tvaraff=ivector(1,15);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   Tvard=imatrix(1,15,1,2);        fprintf(ficresp, "\n");
   Tage=ivector(1,15);              
            for(i=iagemin; i <= iagemax+3; i++){
   if (strlen(model) >1){          if(i==iagemax+3){
     j=0, j1=0, k1=1, k2=1;            fprintf(ficlog,"Total");
     j=nbocc(model,'+');          }else{
     j1=nbocc(model,'*');            if(first==1){
     cptcovn=j+1;              first=0;
     cptcovprod=j1;              printf("See log file for details...\n");
                }
                fprintf(ficlog,"Age %d", i);
     strcpy(modelsav,model);          }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for(jk=1; jk <=nlstate ; jk++){
       printf("Error. Non available option model=%s ",model);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       goto end;              pp[jk] += freq[jk][m][i]; 
     }          }
              for(jk=1; jk <=nlstate ; jk++){
     for(i=(j+1); i>=1;i--){            for(m=-1, pos=0; m <=0 ; m++)
       cutv(stra,strb,modelsav,'+');              pos += freq[jk][m][i];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            if(pp[jk]>=1.e-10){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              if(first==1){
       /*scanf("%d",i);*/                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       if (strchr(strb,'*')) {              }
         cutv(strd,strc,strb,'*');              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         if (strcmp(strc,"age")==0) {            }else{
           cptcovprod--;              if(first==1)
           cutv(strb,stre,strd,'V');                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           Tvar[i]=atoi(stre);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           cptcovage++;            }
             Tage[cptcovage]=i;          }
             /*printf("stre=%s ", stre);*/  
         }          for(jk=1; jk <=nlstate ; jk++){
         else if (strcmp(strd,"age")==0) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           cptcovprod--;              pp[jk] += freq[jk][m][i];
           cutv(strb,stre,strc,'V');          }       
           Tvar[i]=atoi(stre);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           cptcovage++;            pos += pp[jk];
           Tage[cptcovage]=i;            posprop += prop[jk][i];
         }          }
         else {          for(jk=1; jk <=nlstate ; jk++){
           cutv(strb,stre,strc,'V');            if(pos>=1.e-5){
           Tvar[i]=ncov+k1;              if(first==1)
           cutv(strb,strc,strd,'V');                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           Tprod[k1]=i;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           Tvard[k1][1]=atoi(strc);            }else{
           Tvard[k1][2]=atoi(stre);              if(first==1)
           Tvar[cptcovn+k2]=Tvard[k1][1];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for (k=1; k<=lastobs;k++)            }
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            if( i <= iagemax){
           k1++;              if(pos>=1.e-5){
           k2=k2+2;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }                /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       else {              }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              else
        /*  scanf("%d",i);*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       cutv(strd,strc,strb,'V');            }
       Tvar[i]=atoi(strc);          }
       }          
       strcpy(modelsav,stra);            for(jk=-1; jk <=nlstate+ndeath; jk++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            for(m=-1; m <=nlstate+ndeath; m++)
         scanf("%d",i);*/              if(freq[jk][m][i] !=0 ) {
     }              if(first==1)
 }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              }
   printf("cptcovprod=%d ", cptcovprod);          if(i <= iagemax)
   scanf("%d ",i);*/            fprintf(ficresp,"\n");
     fclose(fic);          if(first==1)
             printf("Others in log...\n");
     /*  if(mle==1){*/          fprintf(ficlog,"\n");
     if (weightopt != 1) { /* Maximisation without weights*/        }
       for(i=1;i<=n;i++) weight[i]=1.0;      }
     }    }
     /*-calculation of age at interview from date of interview and age at death -*/    dateintmean=dateintsum/k2cpt; 
     agev=matrix(1,maxwav,1,imx);   
     fclose(ficresp);
    for (i=1; i<=imx; i++)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      for(m=2; (m<= maxwav); m++)    free_vector(pp,1,nlstate);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
          anint[m][i]=9999;    /* End of Freq */
          s[m][i]=-1;  }
        }  
      /************ Prevalence ********************/
     for (i=1; i<=imx; i++)  {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  {  
       for(m=1; (m<= maxwav); m++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         if(s[m][i] >0){       in each health status at the date of interview (if between dateprev1 and dateprev2).
           if (s[m][i] == nlstate+1) {       We still use firstpass and lastpass as another selection.
             if(agedc[i]>0)    */
               if(moisdc[i]!=99 && andc[i]!=9999)   
               agev[m][i]=agedc[i];    int i, m, jk, k1, i1, j1, bool, z1,j;
             else {    double ***freq; /* Frequencies */
               if (andc[i]!=9999){    double *pp, **prop;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double pos,posprop; 
               agev[m][i]=-1;    double  y2; /* in fractional years */
               }    int iagemin, iagemax;
             }  
           }    iagemin= (int) agemin;
           else if(s[m][i] !=9){ /* Should no more exist */    iagemax= (int) agemax;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /*pp=vector(1,nlstate);*/
             if(mint[m][i]==99 || anint[m][i]==9999)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
               agev[m][i]=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             else if(agev[m][i] <agemin){    j1=0;
               agemin=agev[m][i];    
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    j=cptcoveff;
             }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             else if(agev[m][i] >agemax){    
               agemax=agev[m][i];    for(k1=1; k1<=j;k1++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(i1=1; i1<=ncodemax[k1];i1++){
             }        j1++;
             /*agev[m][i]=anint[m][i]-annais[i];*/        
             /*   agev[m][i] = age[i]+2*m;*/        for (i=1; i<=nlstate; i++)  
           }          for(m=iagemin; m <= iagemax+3; m++)
           else { /* =9 */            prop[i][m]=0.0;
             agev[m][i]=1;       
             s[m][i]=-1;        for (i=1; i<=imx; i++) { /* Each individual */
           }          bool=1;
         }          if  (cptcovn>0) {
         else /*= 0 Unknown */            for (z1=1; z1<=cptcoveff; z1++) 
           agev[m][i]=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
              } 
     }          if (bool==1) { 
     for (i=1; i<=imx; i++)  {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(m=1; (m<= maxwav); m++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         if (s[m][i] > (nlstate+ndeath)) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           printf("Error: Wrong value in nlstate or ndeath\n");                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
           goto end;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
     free_vector(severity,1,maxwav);              }
     free_imatrix(outcome,1,maxwav+1,1,n);            } /* end selection of waves */
     free_vector(moisnais,1,n);          }
     free_vector(annais,1,n);        }
     /* free_matrix(mint,1,maxwav,1,n);        for(i=iagemin; i <= iagemax+3; i++){  
        free_matrix(anint,1,maxwav,1,n);*/          
     free_vector(moisdc,1,n);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     free_vector(andc,1,n);            posprop += prop[jk][i]; 
           } 
      
     wav=ivector(1,imx);          for(jk=1; jk <=nlstate ; jk++){     
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            if( i <=  iagemax){ 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              if(posprop>=1.e-5){ 
                    probs[i][jk][j1]= prop[jk][i]/posprop;
     /* Concatenates waves */              } else
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
             } 
           }/* end jk */ 
       Tcode=ivector(1,100);        }/* end i */ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      } /* end i1 */
       ncodemax[1]=1;    } /* end k1 */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    
          /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    codtab=imatrix(1,100,1,10);    /*free_vector(pp,1,nlstate);*/
    h=0;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    m=pow(2,cptcoveff);  }  /* End of prevalence */
    
    for(k=1;k<=cptcoveff; k++){  /************* Waves Concatenation ***************/
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  {
            h++;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
            if (h>m) h=1;codtab[h][k]=j;       Death is a valid wave (if date is known).
          }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      }       and mw[mi+1][i]. dh depends on stepm.
    }       */
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    int i, mi, m;
        and prints on file fileres'p'. */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
        int first;
        int j, k=0,jk, ju, jl;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double sum=0.;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    first=0;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    jmin=1e+5;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    jmax=-1;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    jmean=0.;
          for(i=1; i<=imx; i++){
     /* For Powell, parameters are in a vector p[] starting at p[1]      mi=0;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      m=firstpass;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     if(mle==1){          mw[++mi][i]=m;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        if(m >=lastpass)
     }          break;
            else
     /*--------- results files --------------*/          m++;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      }/* end while */
        if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
    jk=1;        /* if(mi==0)  never been interviewed correctly before death */
    fprintf(ficres,"# Parameters\n");           /* Only death is a correct wave */
    printf("# Parameters\n");        mw[mi][i]=m;
    for(i=1,jk=1; i <=nlstate; i++){      }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)      wav[i]=mi;
          {      if(mi==0){
            printf("%d%d ",i,k);        nbwarn++;
            fprintf(ficres,"%1d%1d ",i,k);        if(first==0){
            for(j=1; j <=ncovmodel; j++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
              printf("%f ",p[jk]);          first=1;
              fprintf(ficres,"%f ",p[jk]);        }
              jk++;        if(first==1){
            }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
            printf("\n");        }
            fprintf(ficres,"\n");      } /* end mi==0 */
          }    } /* End individuals */
      }  
    }    for(i=1; i<=imx; i++){
  if(mle==1){      for(mi=1; mi<wav[i];mi++){
     /* Computing hessian and covariance matrix */        if (stepm <=0)
     ftolhess=ftol; /* Usually correct */          dh[mi][i]=1;
     hesscov(matcov, p, npar, delti, ftolhess, func);        else{
  }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     fprintf(ficres,"# Scales\n");            if (agedc[i] < 2*AGESUP) {
     printf("# Scales\n");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
      for(i=1,jk=1; i <=nlstate; i++){              if(j==0) j=1;  /* Survives at least one month after exam */
       for(j=1; j <=nlstate+ndeath; j++){              else if(j<0){
         if (j!=i) {                nberr++;
           fprintf(ficres,"%1d%1d",i,j);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           printf("%1d%1d",i,j);                j=1; /* Temporary Dangerous patch */
           for(k=1; k<=ncovmodel;k++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             printf(" %.5e",delti[jk]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficres," %.5e",delti[jk]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             jk++;              }
           }              k=k+1;
           printf("\n");              if (j >= jmax){
           fprintf(ficres,"\n");                jmax=j;
         }                ijmax=i;
       }              }
      }              if (j <= jmin){
                    jmin=j;
     k=1;                ijmin=i;
     fprintf(ficres,"# Covariance\n");              }
     printf("# Covariance\n");              sum=sum+j;
     for(i=1;i<=npar;i++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       /*  if (k>nlstate) k=1;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       i1=(i-1)/(ncovmodel*nlstate)+1;            }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          }
       printf("%s%d%d",alph[k],i1,tab[i]);*/          else{
       fprintf(ficres,"%3d",i);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       printf("%3d",i);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);            k=k+1;
         printf(" %.5e",matcov[i][j]);            if (j >= jmax) {
       }              jmax=j;
       fprintf(ficres,"\n");              ijmax=i;
       printf("\n");            }
       k++;            else if (j <= jmin){
     }              jmin=j;
                  ijmin=i;
     while((c=getc(ficpar))=='#' && c!= EOF){            }
       ungetc(c,ficpar);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fgets(line, MAXLINE, ficpar);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       puts(line);            if(j<0){
       fputs(line,ficparo);              nberr++;
     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ungetc(c,ficpar);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            sum=sum+j;
              }
     if (fage <= 2) {          jk= j/stepm;
       bage = agemin;          jl= j -jk*stepm;
       fage = agemax;          ju= j -(jk+1)*stepm;
     }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
     fprintf(ficres,"# agemin agemax for life expectancy.\n");              dh[mi][i]=jk;
               bh[mi][i]=0;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);                    * at the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
     while((c=getc(ficpar))=='#' && c!= EOF){              bh[mi][i]=ju;
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }else{
     puts(line);            if(jl <= -ju){
     fputs(line,ficparo);              dh[mi][i]=jk;
   }              bh[mi][i]=jl;       /* bias is positive if real duration
   ungetc(c,ficpar);                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);            }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            else{
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              dh[mi][i]=jk+1;
                    bh[mi][i]=ju;
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            if(dh[mi][i]==0){
     fgets(line, MAXLINE, ficpar);              dh[mi][i]=1; /* At least one step */
     puts(line);              bh[mi][i]=ju; /* At least one step */
     fputs(line,ficparo);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }            }
   ungetc(c,ficpar);          } /* end if mle */
          }
       } /* end wave */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    fprintf(ficparo,"pop_based=%d\n",popbased);     }
    fprintf(ficres,"pop_based=%d\n",popbased);    
   /*********** Tricode ****************************/
   while((c=getc(ficpar))=='#' && c!= EOF){  void tricode(int *Tvar, int **nbcode, int imx)
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    
     puts(line);    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
     fputs(line,ficparo);  
   }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   ungetc(c,ficpar);    int cptcode=0;
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    cptcoveff=0; 
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);   
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
  /*------------ gnuplot -------------*/      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 chdir(pathcd);                                 modality*/ 
   if((ficgp=fopen("graph.plt","w"))==NULL) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
     printf("Problem with file graph.gp");goto end;        Ndum[ij]++; /*counts the occurence of this modality */
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 #ifdef windows        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
   fprintf(ficgp,"cd \"%s\" \n",pathc);                                         Tvar[j]. If V=sex and male is 0 and 
 #endif                                         female is 1, then  cptcode=1.*/
 m=pow(2,cptcoveff);      }
    
  /* 1eme*/      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
    for (k1=1; k1<= m ; k1 ++) {                                         th covariate. In fact
                                          ncodemax[j]=2
 #ifdef windows                                         (dichotom. variables only) but
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                                         it can be more */
 #endif      } /* Ndum[-1] number of undefined modalities */
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      ij=1; 
 #endif      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
         for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
 for (i=1; i<= nlstate ; i ++) {          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                       k is a modality. If we have model=V1+V1*sex 
 }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            ij++;
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if (ij > ncodemax[j]) break; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }  
 }      } 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    }  
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 #ifdef unix     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
 fprintf(ficgp,"\nset ter gif small size 400,300");     Ndum[ij]++;
 #endif   }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }   ij=1;
   }   for (i=1; i<= maxncov; i++) {
   /*2 eme*/     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   for (k1=1; k1<= m ; k1 ++) {       ij++;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);     }
       }
     for (i=1; i<= nlstate+1 ; i ++) {   ij--;
       k=2*i;   cptcoveff=ij; /*Number of simple covariates*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*********** Health Expectancies ****************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* Health expectancies, no variances */
       for (j=1; j<= nlstate+1 ; j ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int nhstepma, nstepma; /* Decreasing with age */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double age, agelim, hf;
 }      double ***p3mat;
       fprintf(ficgp,"\" t\"\" w l 0,");    double eip;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    pstamp(ficreseij);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficreseij,"# Age");
 }      for(i=1; i<=nlstate;i++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      for(j=1; j<=nlstate;j++){
       else fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficreseij," e%1d%1d ",i,j);
     }      }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      fprintf(ficreseij," e%1d. ",i);
   }    }
      fprintf(ficreseij,"\n");
   /*3eme*/  
     
   for (k1=1; k1<= m ; k1 ++) {    if(estepm < stepm){
     for (cpt=1; cpt<= nlstate ; cpt ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
       k=2+nlstate*(cpt-1);    }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    else  hstepm=estepm;   
       for (i=1; i< nlstate ; i ++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     }     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /* CV preval stat */     * to compare the new estimate of Life expectancy with the same linear 
   for (k1=1; k1<= m ; k1 ++) {     * hypothesis. A more precise result, taking into account a more precise
     for (cpt=1; cpt<nlstate ; cpt ++) {     * curvature will be obtained if estepm is as small as stepm. */
       k=3;  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    /* For example we decided to compute the life expectancy with the smallest unit */
       for (i=1; i< nlstate ; i ++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficgp,"+$%d",k+i+1);       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       nstepm is the number of stepm from age to agelin. 
             Look at hpijx to understand the reason of that which relies in memory size
       l=3+(nlstate+ndeath)*cpt;       and note for a fixed period like estepm months */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (i=1; i< nlstate ; i ++) {       survival function given by stepm (the optimization length). Unfortunately it
         l=3+(nlstate+ndeath)*cpt;       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficgp,"+$%d",l+i+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }  
   }      agelim=AGESUP;
     /* If stepm=6 months */
   /* proba elementaires */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    for(i=1,jk=1; i <=nlstate; i++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for(k=1; k <=(nlstate+ndeath); k++){      
       if (k != i) {  /* nhstepm age range expressed in number of stepm */
         for(j=1; j <=ncovmodel; j++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           /*fprintf(ficgp,"%s",alph[1]);*/    /* if (stepm >= YEARM) hstepm=1;*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           jk++;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,"\n");  
         }    for (age=bage; age<=fage; age ++){ 
       }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      /* If stepm=6 months */
    i=1;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
    for(k2=1; k2<=nlstate; k2++) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
      k3=i;      
      for(k=1; k<=(nlstate+ndeath); k++) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        if (k != k2){      
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 ij=1;      
         for(j=3; j <=ncovmodel; j++) {      printf("%d|",(int)age);fflush(stdout);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      
             ij++;      /* Computing expectancies */
           }      for(i=1; i<=nlstate;i++)
           else        for(j=1; j<=nlstate;j++)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           fprintf(ficgp,")/(1");            
                    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          }
 ij=1;  
           for(j=3; j <=ncovmodel; j++){      fprintf(ficreseij,"%3.0f",age );
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(i=1; i<=nlstate;i++){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        eip=0;
             ij++;        for(j=1; j<=nlstate;j++){
           }          eip +=eij[i][j][(int)age];
           else          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
           }        fprintf(ficreseij,"%9.4f", eip );
           fprintf(ficgp,")");      }
         }      fprintf(ficreseij,"\n");
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    }
         i=i+ncovmodel;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    printf("\n");
      }    fprintf(ficlog,"\n");
    }    
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  }
   }  
      void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   fclose(ficgp);  
   /* end gnuplot */  {
        /* Covariances of health expectancies eij and of total life expectancies according
 chdir(path);     to initial status i, ei. .
        */
     free_ivector(wav,1,imx);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    int nhstepma, nstepma; /* Decreasing with age */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double age, agelim, hf;
     free_ivector(num,1,n);    double ***p3matp, ***p3matm, ***varhe;
     free_vector(agedc,1,n);    double **dnewm,**doldm;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    double *xp, *xm;
     fclose(ficparo);    double **gp, **gm;
     fclose(ficres);    double ***gradg, ***trgradg;
     /*  }*/    int theta;
      
    /*________fin mle=1_________*/    double eip, vip;
      
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
     /* No more information from the sample is required now */    xm=vector(1,npar);
   /* Reads comments: lines beginning with '#' */    dnewm=matrix(1,nlstate*nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    pstamp(ficresstdeij);
     puts(line);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fputs(line,ficparo);    fprintf(ficresstdeij,"# Age");
   }    for(i=1; i<=nlstate;i++){
   ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      fprintf(ficresstdeij," e%1d. ",i);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    fprintf(ficresstdeij,"\n");
 /*--------- index.htm --------*/  
     pstamp(ficrescveij);
   strcpy(optionfilehtm,optionfile);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   strcat(optionfilehtm,".htm");    fprintf(ficrescveij,"# Age");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    for(i=1; i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtm);goto end;      for(j=1; j<=nlstate;j++){
   }        cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">          for(j2=1; j2<=nlstate;j2++){
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>            cptj2= (j2-1)*nlstate+i2;
 Total number of observations=%d <br>            if(cptj2 <= cptj)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 <hr  size=\"2\" color=\"#EC5E5E\">          }
 <li>Outputs files<br><br>\n      }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    fprintf(ficrescveij,"\n");
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    if(estepm < stepm){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      printf ("Problem %d lower than %d\n",estepm, stepm);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    else  hstepm=estepm;   
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    /* We compute the life expectancy from trapezoids spaced every estepm months
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>     * This is mainly to measure the difference between two models: for example
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>     * if stepm=24 months pijx are given only every 2 years and by summing them
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>     * we are calculating an estimate of the Life Expectancy assuming a linear 
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
  fprintf(fichtm," <li>Graphs</li><p>");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
  m=cptcoveff;     * hypothesis. A more precise result, taking into account a more precise
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     * curvature will be obtained if estepm is as small as stepm. */
   
  j1=0;    /* For example we decided to compute the life expectancy with the smallest unit */
  for(k1=1; k1<=m;k1++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    for(i1=1; i1<=ncodemax[k1];i1++){       nhstepm is the number of hstepm from age to agelim 
        j1++;       nstepm is the number of stepm from age to agelin. 
        if (cptcovn > 0) {       Look at hpijx to understand the reason of that which relies in memory size
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       and note for a fixed period like estepm months */
          for (cpt=1; cpt<=cptcoveff;cpt++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);       survival function given by stepm (the optimization length). Unfortunately it
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       means that if the survival funtion is printed only each two years of age and if
        }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>       results. So we changed our mind and took the option of the best precision.
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        */
        for(cpt=1; cpt<nlstate;cpt++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    /* If stepm=6 months */
        }    /* nhstepm age range expressed in number of stepm */
     for(cpt=1; cpt<=nlstate;cpt++) {    agelim=AGESUP;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 interval) in state (%d): v%s%d%d.gif <br>    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* if (stepm >= YEARM) hstepm=1;*/
      }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      for(cpt=1; cpt<=nlstate;cpt++) {    
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 health expectancies in states (1) and (2): e%s%d.gif<br>    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
 fprintf(fichtm,"\n</body>");  
    }    for (age=bage; age<=fage; age ++){ 
  }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 fclose(fichtm);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   /*--------------- Prevalence limit --------------*/      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    
   strcpy(filerespl,"pl");      /* If stepm=6 months */
   strcat(filerespl,fileres);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");      /* Computing  Variances of health expectancies */
   fprintf(ficrespl,"#Age ");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);         decrease memory allocation */
   fprintf(ficrespl,"\n");      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
   prlim=matrix(1,nlstate,1,nlstate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
   k=0;        for(j=1; j<= nlstate; j++){
   agebase=agemin;          for(i=1; i<=nlstate; i++){
   agelim=agemax;            for(h=0; h<=nhstepm-1; h++){
   ftolpl=1.e-10;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   i1=cptcoveff;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   if (cptcovn < 1){i1=1;}            }
           }
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       
         k=k+1;        for(ij=1; ij<= nlstate*nlstate; ij++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          for(h=0; h<=nhstepm-1; h++){
         fprintf(ficrespl,"\n#******");            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         for(j=1;j<=cptcoveff;j++)          }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }/* End theta */
         fprintf(ficrespl,"******\n");      
              
         for (age=agebase; age<=agelim; age++){      for(h=0; h<=nhstepm-1; h++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(j=1; j<=nlstate*nlstate;j++)
           fprintf(ficrespl,"%.0f",age );          for(theta=1; theta <=npar; theta++)
           for(i=1; i<=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
           fprintf(ficrespl," %.5f", prlim[i][i]);      
           fprintf(ficrespl,"\n");  
         }       for(ij=1;ij<=nlstate*nlstate;ij++)
       }        for(ji=1;ji<=nlstate*nlstate;ji++)
     }          varhe[ij][ji][(int)age] =0.;
   fclose(ficrespl);  
        printf("%d|",(int)age);fflush(stdout);
   /*------------- h Pij x at various ages ------------*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(h=0;h<=nhstepm-1;h++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        for(k=0;k<=nhstepm-1;k++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   }          for(ij=1;ij<=nlstate*nlstate;ij++)
   printf("Computing pij: result on file '%s' \n", filerespij);            for(ji=1;ji<=nlstate*nlstate;ji++)
                varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   /*if (stepm<=24) stepsize=2;*/      }
   
   agelim=AGESUP;      /* Computing expectancies */
   hstepm=stepsize*YEARM; /* Every year of age */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   k=0;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   for(cptcov=1;cptcov<=i1;cptcov++){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            
       k=k+1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)          }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");      fprintf(ficresstdeij,"%3.0f",age );
              for(i=1; i<=nlstate;i++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        eip=0.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        vip=0.;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(j=1; j<=nlstate;j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          eip += eij[i][j][(int)age];
           oldm=oldms;savm=savms;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficrespij,"# Age");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
               fprintf(ficrespij," %1d-%1d",i,j);      }
           fprintf(ficrespij,"\n");      fprintf(ficresstdeij,"\n");
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      fprintf(ficrescveij,"%3.0f",age );
             for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)        for(j=1; j<=nlstate;j++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          cptj= (j-1)*nlstate+i;
             fprintf(ficrespij,"\n");          for(i2=1; i2<=nlstate;i2++)
           }            for(j2=1; j2<=nlstate;j2++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cptj2= (j2-1)*nlstate+i2;
           fprintf(ficrespij,"\n");              if(cptj2 <= cptj)
         }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     }            }
   }        }
       fprintf(ficrescveij,"\n");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/     
     }
   fclose(ficrespij);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   if(stepm == 1) {    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /*---------- Forecasting ------------------*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*printf("calage= %f", calagedate);*/    printf("\n");
      fprintf(ficlog,"\n");
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
   strcpy(fileresf,"f");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   strcat(fileresf,fileres);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;  }
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   free_matrix(mint,1,maxwav,1,n);  {
   free_matrix(anint,1,maxwav,1,n);    /* Variance of health expectancies */
   free_matrix(agev,1,maxwav,1,imx);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* Mobile average */    /* double **newm;*/
     double **dnewm,**doldm;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   if (mobilav==1) {    int k, cptcode;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp;
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    double **gp, **gm;  /* for var eij */
       for (i=1; i<=nlstate;i++)    double ***gradg, ***trgradg; /*for var eij */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double **gradgp, **trgradgp; /* for var p point j */
           mobaverage[(int)agedeb][i][cptcod]=0.;    double *gpp, *gmp; /* for var p point j */
        double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    double ***p3mat;
       for (i=1; i<=nlstate;i++){    double age,agelim, hf;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double ***mobaverage;
           for (cpt=0;cpt<=4;cpt++){    int theta;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    char digit[4];
           }    char digitp[25];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }    char fileresprobmorprev[FILENAMELENGTH];
       }  
     }      if(popbased==1){
   }      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   stepsize=(int) (stepm+YEARM-1)/YEARM;      else strcpy(digitp,"-populbased-nomobil-");
   if (stepm<=12) stepsize=1;    }
     else 
   agelim=AGESUP;      strcpy(digitp,"-stablbased-");
   /*hstepm=stepsize*YEARM; *//* Every year of age */  
   hstepm=1;    if (mobilav!=0) {
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   yp1=modf(dateintmean,&yp);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   anprojmean=yp;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   yp2=modf((yp1*12),&yp);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   mprojmean=yp;      }
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    strcpy(fileresprobmorprev,"prmorprev"); 
   if(mprojmean==0) jprojmean=1;    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if (popforecast==1) {    strcat(fileresprobmorprev,fileres);
     if((ficpop=fopen(popfile,"r"))==NULL)    {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with population file : %s\n",popfile);goto end;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     popcount=vector(0,AGESUP);   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     i=1;      pstamp(ficresprobmorprev);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         i=i+1;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       }      fprintf(ficresprobmorprev," p.%-d SE",j);
     imx=i;      for(i=1; i<=nlstate;i++)
            fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    }  
   }    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   for(cptcov=1;cptcov<=i1;cptcov++){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       k=k+1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficresf,"\n#******");  /*   } */
       for(j=1;j<=cptcoveff;j++) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    pstamp(ficresvij);
       }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       fprintf(ficresf,"******\n");    if(popbased==1)
       fprintf(ficresf,"# StartingAge FinalAge");      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    else
       if (popforecast==1)  fprintf(ficresf," [Population]");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
        fprintf(ficresvij,"# Age");
       for (cpt=0; cpt<4;cpt++) {    for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n");      for(j=1; j<=nlstate;j++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */  
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    xp=vector(1,npar);
         nhstepm = nhstepm/hstepm;    dnewm=matrix(1,nlstate,1,npar);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         oldm=oldms;savm=savms;  
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
            gpp=vector(nlstate+1,nlstate+ndeath);
         for (h=0; h<=nhstepm; h++){    gmp=vector(nlstate+1,nlstate+ndeath);
           if (h==(int) (calagedate+YEARM*cpt)) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);    
           }    if(estepm < stepm){
           for(j=1; j<=nlstate+ndeath;j++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
             kk1=0.;kk2=0;    }
             for(i=1; i<=nlstate;i++) {            else  hstepm=estepm;   
               if (mobilav==1)    /* For example we decided to compute the life expectancy with the smallest unit */
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               else {       nhstepm is the number of hstepm from age to agelim 
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       nstepm is the number of stepm from age to agelin. 
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/       Look at function hpijx to understand why (it is linked to memory size questions) */
               }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];       means that if the survival funtion is printed every two years of age and if
             }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 results. So we changed our mind and took the option of the best precision.
             if (h==(int)(calagedate+12*cpt)){    */
               fprintf(ficresf," %.3f", kk1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                  agelim = AGESUP;
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       }      gp=matrix(0,nhstepm,1,nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate);
     }  
   }  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(theta=1; theta <=npar; theta++){
   if (popforecast==1) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     free_ivector(popage,0,AGESUP);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(popeffectif,0,AGESUP);        }
     free_vector(popcount,0,AGESUP);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_imatrix(s,1,maxwav+1,1,n);  
   free_vector(weight,1,n);        if (popbased==1) {
   fclose(ficresf);          if(mobilav ==0){
   }/* End forecasting */            for(i=1; i<=nlstate;i++)
   else{              prlim[i][i]=probs[(int)age][i][ij];
     erreur=108;          }else{ /* mobilav */ 
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   /*---------- Health expectancies and variances ------------*/        }
     
   strcpy(filerest,"t");        for(j=1; j<= nlstate; j++){
   strcat(filerest,fileres);          for(h=0; h<=nhstepm; h++){
   if((ficrest=fopen(filerest,"w"))==NULL) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   strcpy(filerese,"e");           as a weighted average of prlim.
   strcat(filerese,fileres);        */
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        }    
         /* end probability of death */
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   
         if (popbased==1) {
   k=0;          if(mobilav ==0){
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              prlim[i][i]=probs[(int)age][i][ij];
       k=k+1;          }else{ /* mobilav */ 
       fprintf(ficrest,"\n#****** ");            for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       fprintf(ficrest,"******\n");        }
   
       fprintf(ficreseij,"\n#****** ");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       for(j=1;j<=cptcoveff;j++)          for(h=0; h<=nhstepm; h++){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficreseij,"******\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
       fprintf(ficresvij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)        /* This for computing probability of death (h=1 means
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficresvij,"******\n");           as a weighted average of prlim.
         */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       oldm=oldms;savm=savms;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);             gmp[j] += prlim[i][i]*p3mat[i][j][1];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }    
       oldm=oldms;savm=savms;        /* end probability of death */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
              for(j=1; j<= nlstate; j++) /* vareij */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          for(h=0; h<=nhstepm; h++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficrest,"\n");          }
          
       hf=1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       if (stepm >= YEARM) hf=stepm/YEARM;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       epj=vector(1,nlstate+1);        }
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      } /* End theta */
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             prlim[i][i]=probs[(int)age][i][k];  
         }      for(h=0; h<=nhstepm; h++) /* veij */
                for(j=1; j<=nlstate;j++)
         fprintf(ficrest," %.0f",age);          for(theta=1; theta <=npar; theta++)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            trgradg[h][j][theta]=gradg[h][theta][j];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           }        for(theta=1; theta <=npar; theta++)
           epj[nlstate+1] +=epj[j];          trgradgp[j][theta]=gradgp[theta][j];
         }    
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             vepp += vareij[i][j][(int)age];      for(i=1;i<=nlstate;i++)
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        for(j=1;j<=nlstate;j++)
         for(j=1;j <=nlstate;j++){          vareij[i][j][(int)age] =0.;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }      for(h=0;h<=nhstepm;h++){
         fprintf(ficrest,"\n");        for(k=0;k<=nhstepm;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
                    for(j=1;j<=nlstate;j++)
                      vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
  fclose(ficreseij);    
  fclose(ficresvij);      /* pptj */
   fclose(ficrest);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fclose(ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   free_vector(epj,1,nlstate+1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   /*  scanf("%d ",i); */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   /*------- Variance limit prevalence------*/        /* end ppptj */
       /*  x centered again */
 strcpy(fileresvpl,"vpl");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   strcat(fileresvpl,fileres);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      if (popbased==1) {
     exit(0);        if(mobilav ==0){
   }          for(i=1; i<=nlstate;i++)
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
  k=0;          for(i=1; i<=nlstate;i++)
  for(cptcov=1;cptcov<=i1;cptcov++){            prlim[i][i]=mobaverage[(int)age][i][ij];
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
      k=k+1;      }
      fprintf(ficresvpl,"\n#****** ");               
      for(j=1;j<=cptcoveff;j++)      /* This for computing probability of death (h=1 means
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      fprintf(ficresvpl,"******\n");         as a weighted average of prlim.
            */
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
      oldm=oldms;savm=savms;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
    }      }    
  }      /* end probability of death */
   
   fclose(ficresvpl);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /*---------- End : free ----------------*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      } 
        fprintf(ficresprobmorprev,"\n");
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresvij,"%.0f ",age );
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(i=1; i<=nlstate;i++)
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=1; j<=nlstate;j++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
   free_matrix(matcov,1,npar,1,npar);      fprintf(ficresvij,"\n");
   free_vector(delti,1,npar);      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   if(erreur >0)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("End of Imach with error %d\n",erreur);    } /* End age */
   else   printf("End of Imach\n");    free_vector(gpp,nlstate+1,nlstate+ndeath);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   /*------ End -----------*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
  end:  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 #ifdef windows  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
  chdir(pathcd);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 #endif    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
  system("..\\gp37mgw\\wgnuplot graph.plt");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 #ifdef windows    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   while (z[0] != 'q') {  */
     chdir(pathcd);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    free_vector(xp,1,npar);
     else if (z[0] == 'e') {    free_matrix(doldm,1,nlstate,1,nlstate);
       chdir(path);    free_matrix(dnewm,1,nlstate,1,npar);
       system(optionfilehtm);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     else if (z[0] == 'q') exit(0);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #endif    fclose(ficresprobmorprev);
 }    fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforces= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.21  
changed lines
  Added in v.1.132


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>