Diff for /imach/src/imach.c between versions 1.21 and 1.145

version 1.21, 2002/02/21 18:42:24 version 1.145, 2014/06/10 21:23:15
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.145  2014/06/10 21:23:15  brouard
   individuals from different ages are interviewed on their health status    Summary: Debugging with valgrind
   or degree of  disability. At least a second wave of interviews    Author: Nicolas Brouard
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Lot of changes in order to output the results with some covariates
   waves and are computed for each degree of severity of disability (number    After the Edimburgh REVES conference 2014, it seems mandatory to
   of life states). More degrees you consider, more time is necessary to    improve the code.
   reach the Maximum Likelihood of the parameters involved in the model.    No more memory valgrind error but a lot has to be done in order to
   The simplest model is the multinomial logistic model where pij is    continue the work of splitting the code into subroutines.
   the probabibility to be observed in state j at the second wave conditional    Also, decodemodel has been improved. Tricode is still not
   to be observed in state i at the first wave. Therefore the model is:    optimal. nbcode should be improved. Documentation has been added in
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    the source code.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.143  2014/01/26 09:45:38  brouard
     *Covariates have to be included here again* invites you to do it.    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   More covariates you add, less is the speed of the convergence.  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   The advantage that this computer programme claims, comes from that if the    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   delay between waves is not identical for each individual, or if some  
   individual missed an interview, the information is not rounded or lost, but    Revision 1.142  2014/01/26 03:57:36  brouard
   taken into account using an interpolation or extrapolation.    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.141  2014/01/26 02:42:01  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.139  2010/06/14 07:50:17  brouard
      After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.138  2010/04/30 18:19:40  brouard
   from the European Union.    *** empty log message ***
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.137  2010/04/29 18:11:38  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Checking covariates for more complex models
   **********************************************************************/    than V1+V2. A lot of change to be done. Unstable.
    
 #include <math.h>    Revision 1.136  2010/04/26 20:30:53  brouard
 #include <stdio.h>    (Module): merging some libgsl code. Fixing computation
 #include <stdlib.h>    of likelione (using inter/intrapolation if mle = 0) in order to
 #include <unistd.h>    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.135  2009/10/29 15:33:14  brouard
 /*#define DEBUG*/    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.134  2009/10/29 13:18:53  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.133  2009/07/06 10:21:25  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    just nforces
   
 #define NINTERVMAX 8    Revision 1.132  2009/07/06 08:22:05  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Many tings
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.131  2009/06/20 16:22:47  brouard
 #define MAXN 20000    Some dimensions resccaled
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.130  2009/05/26 06:44:34  brouard
 #define AGEBASE 40    (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 int erreur; /* Error number */  
 int nvar;    Revision 1.129  2007/08/31 13:49:27  lievre
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.128  2006/06/30 13:02:05  brouard
 int ndeath=1; /* Number of dead states */    (Module): Clarifications on computing e.j
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 int *wav; /* Number of waves for this individuual 0 is possible */    imach-114 because nhstepm was no more computed in the age
 int maxwav; /* Maxim number of waves */    loop. Now we define nhstepma in the age loop.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): In order to speed up (in case of numerous covariates) we
 int mle, weightopt;    compute health expectancies (without variances) in a first step
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    and then all the health expectancies with variances or standard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    deviation (needs data from the Hessian matrices) which slows the
 double jmean; /* Mean space between 2 waves */    computation.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    In the future we should be able to stop the program is only health
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    expectancies and graph are needed without standard deviations.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    Revision 1.126  2006/04/28 17:23:28  brouard
 FILE *ficreseij;    (Module): Yes the sum of survivors was wrong since
   char filerese[FILENAMELENGTH];    imach-114 because nhstepm was no more computed in the age
  FILE  *ficresvij;    loop. Now we define nhstepma in the age loop.
   char fileresv[FILENAMELENGTH];    Version 0.98h
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 #define NR_END 1    Forecasting file added.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define NRANSI    The log-likelihood is printed in the log file
 #define ITMAX 200  
     Revision 1.123  2006/03/20 10:52:43  brouard
 #define TOL 2.0e-4    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    * imach.c (Module): Weights can have a decimal point as for
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 #define GOLD 1.618034    Modification of warning when the covariates values are not 0 or
 #define GLIMIT 100.0    1.
 #define TINY 1.0e-20    Version 0.98g
   
 static double maxarg1,maxarg2;    Revision 1.122  2006/03/20 09:45:41  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Weights can have a decimal point as for
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    English (a comma might work with a correct LC_NUMERIC environment,
      otherwise the weight is truncated).
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Modification of warning when the covariates values are not 0 or
 #define rint(a) floor(a+0.5)    1.
     Version 0.98g
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.121  2006/03/16 17:45:01  lievre
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Module): Comments concerning covariates added
   
 int imx;    * imach.c (Module): refinements in the computation of lli if
 int stepm;    status=-2 in order to have more reliable computation if stepm is
 /* Stepm, step in month: minimum step interpolation*/    not 1 month. Version 0.98f
   
 int m,nb;    Revision 1.120  2006/03/16 15:10:38  lievre
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): refinements in the computation of lli if
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    status=-2 in order to have more reliable computation if stepm is
 double **pmmij, ***probs, ***mobaverage;    not 1 month. Version 0.98f
 double dateintmean=0;  
     Revision 1.119  2006/03/15 17:42:26  brouard
 double *weight;    (Module): Bug if status = -2, the loglikelihood was
 int **s; /* Status */    computed as likelihood omitting the logarithm. Version O.98e
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    table of variances if popbased=1 .
 double ftolhess; /* Tolerance for computing hessian */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 /**************** split *************************/    (Module): Version 0.98d
 static  int split( char *path, char *dirc, char *name )  
 {    Revision 1.117  2006/03/14 17:16:22  brouard
    char *s;                             /* pointer */    (Module): varevsij Comments added explaining the second
    int  l1, l2;                         /* length counters */    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    l1 = strlen( path );                 /* length of path */    (Module): Function pstamp added
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Version 0.98d
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.116  2006/03/06 10:29:27  brouard
 #if     defined(__bsd__)                /* get current working directory */    (Module): Variance-covariance wrong links and
       extern char       *getwd( );    varian-covariance of ej. is needed (Saito).
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.115  2006/02/27 12:17:45  brouard
 #else    (Module): One freematrix added in mlikeli! 0.98c
       extern char       *getcwd( );  
     Revision 1.114  2006/02/26 12:57:58  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Some improvements in processing parameter
 #endif    filename with strsep.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.113  2006/02/24 14:20:24  brouard
       strcpy( name, path );             /* we've got it */    (Module): Memory leaks checks with valgrind and:
    } else {                             /* strip direcotry from path */    datafile was not closed, some imatrix were not freed and on matrix
       s++;                              /* after this, the filename */    allocation too.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.112  2006/01/30 09:55:26  brouard
       strcpy( name, s );                /* save file name */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.111  2006/01/25 20:38:18  brouard
    }    (Module): Lots of cleaning and bugs added (Gompertz)
    l1 = strlen( dirc );                 /* length of directory */    (Module): Comments can be added in data file. Missing date values
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    can be a simple dot '.'.
    return( 0 );                         /* we're done */  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   
 /******************************************/    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 void replace(char *s, char*t)  
 {    Revision 1.108  2006/01/19 18:05:42  lievre
   int i;    Gnuplot problem appeared...
   int lg=20;    To be fixed
   i=0;  
   lg=strlen(t);    Revision 1.107  2006/01/19 16:20:37  brouard
   for(i=0; i<= lg; i++) {    Test existence of gnuplot in imach path
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.106  2006/01/19 13:24:36  brouard
   }    Some cleaning and links added in html output
 }  
     Revision 1.105  2006/01/05 20:23:19  lievre
 int nbocc(char *s, char occ)    *** empty log message ***
 {  
   int i,j=0;    Revision 1.104  2005/09/30 16:11:43  lievre
   int lg=20;    (Module): sump fixed, loop imx fixed, and simplifications.
   i=0;    (Module): If the status is missing at the last wave but we know
   lg=strlen(s);    that the person is alive, then we can code his/her status as -2
   for(i=0; i<= lg; i++) {    (instead of missing=-1 in earlier versions) and his/her
   if  (s[i] == occ ) j++;    contributions to the likelihood is 1 - Prob of dying from last
   }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   return j;    the healthy state at last known wave). Version is 0.98
 }  
     Revision 1.103  2005/09/30 15:54:49  lievre
 void cutv(char *u,char *v, char*t, char occ)    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
   int i,lg,j,p=0;    Revision 1.102  2004/09/15 17:31:30  brouard
   i=0;    Add the possibility to read data file including tab characters.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.101  2004/09/15 10:38:38  brouard
   }    Fix on curr_time
   
   lg=strlen(t);    Revision 1.100  2004/07/12 18:29:06  brouard
   for(j=0; j<p; j++) {    Add version for Mac OS X. Just define UNIX in Makefile
     (u[j] = t[j]);  
   }    Revision 1.99  2004/06/05 08:57:40  brouard
      u[p]='\0';    *** empty log message ***
   
    for(j=0; j<= lg; j++) {    Revision 1.98  2004/05/16 15:05:56  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    New version 0.97 . First attempt to estimate force of mortality
   }    directly from the data i.e. without the need of knowing the health
 }    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 /********************** nrerror ********************/    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 void nrerror(char error_text[])    from other sources like vital statistic data.
 {  
   fprintf(stderr,"ERREUR ...\n");    The same imach parameter file can be used but the option for mle should be -3.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Agnès, who wrote this part of the code, tried to keep most of the
 }    former routines in order to include the new code within the former code.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    The output is very simple: only an estimate of the intercept and of
 {    the slope with 95% confident intervals.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Current limitations:
   if (!v) nrerror("allocation failure in vector");    A) Even if you enter covariates, i.e. with the
   return v-nl+NR_END;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
 /************************ free vector ******************/    Revision 1.97  2004/02/20 13:25:42  lievre
 void free_vector(double*v, int nl, int nh)    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /************************ivector *******************************/    rewritten within the same printf. Workaround: many printfs.
 int *ivector(long nl,long nh)  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   int *v;    * imach.c (Repository):
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Repository): Using imachwizard code to output a more meaningful covariance
   if (!v) nrerror("allocation failure in ivector");    matrix (cov(a12,c31) instead of numbers.
   return v-nl+NR_END;  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   free((FREE_ARG)(v+nl-NR_END));    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
 /******************* imatrix *******************************/    Revision 1.92  2003/06/25 16:30:45  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): On windows (cygwin) function asctime_r doesn't
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    exist so I changed back to asctime which exists.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.91  2003/06/25 15:30:29  brouard
   int **m;    * imach.c (Repository): Duplicated warning errors corrected.
      (Repository): Elapsed time after each iteration is now output. It
   /* allocate pointers to rows */    helps to forecast when convergence will be reached. Elapsed time
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    is stamped in powell.  We created a new html file for the graphs
   if (!m) nrerror("allocation failure 1 in matrix()");    concerning matrix of covariance. It has extension -cov.htm.
   m += NR_END;  
   m -= nrl;    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   /* allocate rows and set pointers to them */    of the covariance matrix to be input.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.89  2003/06/24 12:30:52  brouard
   m[nrl] += NR_END;    (Module): Some bugs corrected for windows. Also, when
   m[nrl] -= ncl;    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.88  2003/06/23 17:54:56  brouard
   /* return pointer to array of pointers to rows */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   return m;  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.86  2003/06/17 20:04:08  brouard
       int **m;    (Module): Change position of html and gnuplot routines and added
       long nch,ncl,nrh,nrl;    routine fileappend.
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    * imach.c (Repository): Check when date of death was earlier that
   free((FREE_ARG) (m+nrl-NR_END));    current date of interview. It may happen when the death was just
 }    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /******************* matrix *******************************/    assuming that the date of death was just one stepm after the
 double **matrix(long nrl, long nrh, long ncl, long nch)    interview.
 {    (Repository): Because some people have very long ID (first column)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    we changed int to long in num[] and we added a new lvector for
   double **m;    memory allocation. But we also truncated to 8 characters (left
     truncation)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Repository): No more line truncation errors.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.84  2003/06/13 21:44:43  brouard
   m -= nrl;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    many times. Probs is memory consuming and must be used with
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    parcimony.
   m[nrl] += NR_END;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m[nrl] -= ncl;  
     Revision 1.83  2003/06/10 13:39:11  lievre
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    *** empty log message ***
   return m;  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  */
 {  /*
   free((FREE_ARG)(m[nrl]+ncl-NR_END));     Interpolated Markov Chain
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Short summary of the programme:
     
 /******************* ma3x *******************************/    This program computes Healthy Life Expectancies from
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    interviewed on their health status or degree of disability (in the
   double ***m;    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (if any) in individual health status.  Health expectancies are
   if (!m) nrerror("allocation failure 1 in matrix()");    computed from the time spent in each health state according to a
   m += NR_END;    model. More health states you consider, more time is necessary to reach the
   m -= nrl;    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    probability to be observed in state j at the second wave
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    conditional to be observed in state i at the first wave. Therefore
   m[nrl] += NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl] -= ncl;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    convergence.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    The advantage of this computer programme, compared to a simple
   m[nrl][ncl] -= nll;    multinomial logistic model, is clear when the delay between waves is not
   for (j=ncl+1; j<=nch; j++)    identical for each individual. Also, if a individual missed an
     m[nrl][j]=m[nrl][j-1]+nlay;    intermediate interview, the information is lost, but taken into
      account using an interpolation or extrapolation.  
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    hPijx is the probability to be observed in state i at age x+h
     for (j=ncl+1; j<=nch; j++)    conditional to the observed state i at age x. The delay 'h' can be
       m[i][j]=m[i][j-1]+nlay;    split into an exact number (nh*stepm) of unobserved intermediate
   }    states. This elementary transition (by month, quarter,
   return m;    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /*************************free ma3x ************************/    hPijx.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    of the life expectancies. It also computes the period (stable) prevalence. 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /***************** f1dim *************************/    from the European Union.
 extern int ncom;    It is copyrighted identically to a GNU software product, ie programme and
 extern double *pcom,*xicom;    software can be distributed freely for non commercial use. Latest version
 extern double (*nrfunc)(double []);    can be accessed at http://euroreves.ined.fr/imach .
    
 double f1dim(double x)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int j;    
   double f;    **********************************************************************/
   double *xt;  /*
      main
   xt=vector(1,ncom);    read parameterfile
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    read datafile
   f=(*nrfunc)(xt);    concatwav
   free_vector(xt,1,ncom);    freqsummary
   return f;    if (mle >= 1)
 }      mlikeli
     print results files
 /*****************brent *************************/    if mle==1 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   int iter;        begin-prev-date,...
   double a,b,d,etemp;    open gnuplot file
   double fu,fv,fw,fx;    open html file
   double ftemp;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   double p,q,r,tol1,tol2,u,v,w,x,xm;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   double e=0.0;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
        freexexit2 possible for memory heap.
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    h Pij x                         | pij_nom  ficrestpij
   x=w=v=bx;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   fw=fv=fx=(*f)(x);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   for (iter=1;iter<=ITMAX;iter++) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     printf(".");fflush(stdout);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 #ifdef DEBUG     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    health expectancies
       *xmin=x;    Variance-covariance of DFLE
       return fx;    prevalence()
     }     movingaverage()
     ftemp=fu;    varevsij() 
     if (fabs(e) > tol1) {    if popbased==1 varevsij(,popbased)
       r=(x-w)*(fx-fv);    total life expectancies
       q=(x-v)*(fx-fw);    Variance of period (stable) prevalence
       p=(x-v)*q-(x-w)*r;   end
       q=2.0*(q-r);  */
       if (q > 0.0) p = -p;  
       q=fabs(q);  
       etemp=e;  
       e=d;   
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #include <math.h>
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <stdio.h>
       else {  #include <stdlib.h>
         d=p/q;  #include <string.h>
         u=x+d;  #include <unistd.h>
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  #include <limits.h>
       }  #include <sys/types.h>
     } else {  #include <sys/stat.h>
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <errno.h>
     }  extern int errno;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  #ifdef LINUX
     if (fu <= fx) {  #include <time.h>
       if (u >= x) a=x; else b=x;  #include "timeval.h"
       SHFT(v,w,x,u)  #else
         SHFT(fv,fw,fx,fu)  #include <sys/time.h>
         } else {  #endif
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #ifdef GSL
             v=w;  #include <gsl/gsl_errno.h>
             w=u;  #include <gsl/gsl_multimin.h>
             fv=fw;  #endif
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /* #include <libintl.h> */
             v=u;  /* #define _(String) gettext (String) */
             fv=fu;  
           }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
         }  
   }  #define GNUPLOTPROGRAM "gnuplot"
   nrerror("Too many iterations in brent");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   *xmin=x;  #define FILENAMELENGTH 132
   return fx;  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /****************** mnbrak ***********************/  
   #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
             double (*func)(double))  
 {  #define NINTERVMAX 8
   double ulim,u,r,q, dum;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   double fu;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
    #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   *fa=(*func)(*ax);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   *fb=(*func)(*bx);  #define MAXN 20000
   if (*fb > *fa) {  #define YEARM 12. /**< Number of months per year */
     SHFT(dum,*ax,*bx,dum)  #define AGESUP 130
       SHFT(dum,*fb,*fa,dum)  #define AGEBASE 40
       }  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
   *cx=(*bx)+GOLD*(*bx-*ax);  #ifdef UNIX
   *fc=(*func)(*cx);  #define DIRSEPARATOR '/'
   while (*fb > *fc) {  #define CHARSEPARATOR "/"
     r=(*bx-*ax)*(*fb-*fc);  #define ODIRSEPARATOR '\\'
     q=(*bx-*cx)*(*fb-*fa);  #else
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define DIRSEPARATOR '\\'
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define CHARSEPARATOR "\\"
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define ODIRSEPARATOR '/'
     if ((*bx-u)*(u-*cx) > 0.0) {  #endif
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /* $Id$ */
       fu=(*func)(u);  /* $State$ */
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
           SHFT(*fb,*fc,fu,(*func)(u))  char fullversion[]="$Revision$ $Date$"; 
           }  char strstart[80];
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       u=ulim;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       fu=(*func)(u);  int nvar=0, nforce=0; /* Number of variables, number of forces */
     } else {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       u=(*cx)+GOLD*(*cx-*bx);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       fu=(*func)(u);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     SHFT(*ax,*bx,*cx,u)  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       SHFT(*fa,*fb,*fc,fu)  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 }  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
 /*************** linmin ************************/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 int ncom;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double *pcom,*xicom;  int popbased=0;
 double (*nrfunc)(double []);  
    int *wav; /* Number of waves for this individuual 0 is possible */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int maxwav=0; /* Maxim number of waves */
 {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double brent(double ax, double bx, double cx,  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
                double (*f)(double), double tol, double *xmin);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double f1dim(double x);                     to the likelihood and the sum of weights (done by funcone)*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int mle=1, weightopt=0;
               double *fc, double (*func)(double));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int j;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double xx,xmin,bx,ax;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double fx,fb,fa;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    double jmean=1; /* Mean space between 2 waves */
   ncom=n;  double **matprod2(); /* test */
   pcom=vector(1,n);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   xicom=vector(1,n);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   nrfunc=func;  /*FILE *fic ; */ /* Used in readdata only */
   for (j=1;j<=n;j++) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     pcom[j]=p[j];  FILE *ficlog, *ficrespow;
     xicom[j]=xi[j];  int globpr=0; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
   ax=0.0;  long ipmx=0; /* Number of contributions */
   xx=1.0;  double sw; /* Sum of weights */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  char filerespow[FILENAMELENGTH];
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #ifdef DEBUG  FILE *ficresilk;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #endif  FILE *ficresprobmorprev;
   for (j=1;j<=n;j++) {  FILE *fichtm, *fichtmcov; /* Html File */
     xi[j] *= xmin;  FILE *ficreseij;
     p[j] += xi[j];  char filerese[FILENAMELENGTH];
   }  FILE *ficresstdeij;
   free_vector(xicom,1,n);  char fileresstde[FILENAMELENGTH];
   free_vector(pcom,1,n);  FILE *ficrescveij;
 }  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /*************** powell ************************/  char fileresv[FILENAMELENGTH];
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  FILE  *ficresvpl;
             double (*func)(double []))  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   void linmin(double p[], double xi[], int n, double *fret,  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
               double (*func)(double []));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   int i,ibig,j;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double del,t,*pt,*ptt,*xit;  char command[FILENAMELENGTH];
   double fp,fptt;  int  outcmd=0;
   double *xits;  
   pt=vector(1,n);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   ptt=vector(1,n);  
   xit=vector(1,n);  char filelog[FILENAMELENGTH]; /* Log file */
   xits=vector(1,n);  char filerest[FILENAMELENGTH];
   *fret=(*func)(p);  char fileregp[FILENAMELENGTH];
   for (j=1;j<=n;j++) pt[j]=p[j];  char popfile[FILENAMELENGTH];
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     ibig=0;  
     del=0.0;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  struct timezone tzp;
     for (i=1;i<=n;i++)  extern int gettimeofday();
       printf(" %d %.12f",i, p[i]);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     printf("\n");  long time_value;
     for (i=1;i<=n;i++) {  extern long time();
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  char strcurr[80], strfor[80];
       fptt=(*fret);  
 #ifdef DEBUG  char *endptr;
       printf("fret=%lf \n",*fret);  long lval;
 #endif  double dval;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  #define NR_END 1
       if (fabs(fptt-(*fret)) > del) {  #define FREE_ARG char*
         del=fabs(fptt-(*fret));  #define FTOL 1.0e-10
         ibig=i;  
       }  #define NRANSI 
 #ifdef DEBUG  #define ITMAX 200 
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  #define TOL 2.0e-4 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  #define CGOLD 0.3819660 
       }  #define ZEPS 1.0e-10 
       for(j=1;j<=n;j++)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         printf(" p=%.12e",p[j]);  
       printf("\n");  #define GOLD 1.618034 
 #endif  #define GLIMIT 100.0 
     }  #define TINY 1.0e-20 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  static double maxarg1,maxarg2;
       int k[2],l;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       k[0]=1;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       for (j=1;j<=n;j++)  #define rint(a) floor(a+0.5)
         printf(" %.12e",p[j]);  
       printf("\n");  static double sqrarg;
       for(l=0;l<=1;l++) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         for (j=1;j<=n;j++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int agegomp= AGEGOMP;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  int imx; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int stepm=1;
       }  /* Stepm, step in month: minimum step interpolation*/
 #endif  
   int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  int m,nb;
       free_vector(ptt,1,n);  long *num;
       free_vector(pt,1,n);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       return;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     }  double **pmmij, ***probs;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double *ageexmed,*agecens;
     for (j=1;j<=n;j++) {  double dateintmean=0;
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  double *weight;
       pt[j]=p[j];  int **s; /* Status */
     }  double *agedc;
     fptt=(*func)(ptt);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     if (fptt < fp) {                    * covar=matrix(0,NCOVMAX,1,n); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       if (t < 0.0) {  double  idx; 
         linmin(p,xit,n,fret,func);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         for (j=1;j<=n;j++) {  int *Ndum; /** Freq of modality (tricode */
           xi[j][ibig]=xi[j][n];  int **codtab; /**< codtab=imatrix(1,100,1,10); */
           xi[j][n]=xit[j];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         }  double *lsurv, *lpop, *tpop;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         for(j=1;j<=n;j++)  double ftolhess; /**< Tolerance for computing hessian */
           printf(" %.12e",xit[j]);  
         printf("\n");  /**************** split *************************/
 #endif  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       }  {
     }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /**** Prevalence limit ****************/    int   l1, l2;                         /* length counters */
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      matrix by transitions matrix until convergence is reached */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
   int i, ii,j,k;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double min, max, maxmin, maxmax,sumnew=0.;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double **matprod2();      /* get current working directory */
   double **out, cov[NCOVMAX], **pmij();      /*    extern  char* getcwd ( char *buf , int len);*/
   double **newm;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double agefin, delaymax=50 ; /* Max number of years to converge */        return( GLOCK_ERROR_GETCWD );
       }
   for (ii=1;ii<=nlstate+ndeath;ii++)      /* got dirc from getcwd*/
     for (j=1;j<=nlstate+ndeath;j++){      printf(" DIRC = %s \n",dirc);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } else {                              /* strip direcotry from path */
     }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
    cov[1]=1.;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      dirc[l1-l2] = 0;                    /* add zero */
     newm=savm;      printf(" DIRC2 = %s \n",dirc);
     /* Covariates have to be included here again */    }
      cov[2]=agefin;    /* We add a separator at the end of dirc if not exists */
      l1 = strlen( dirc );                  /* length of directory */
       for (k=1; k<=cptcovn;k++) {    if( dirc[l1-1] != DIRSEPARATOR ){
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      dirc[l1] =  DIRSEPARATOR;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/      dirc[l1+1] = 0; 
       }      printf(" DIRC3 = %s \n",dirc);
       for (k=1; k<=cptcovage;k++)    }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    ss = strrchr( name, '.' );            /* find last / */
       for (k=1; k<=cptcovprod;k++)    if (ss >0){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      ss++;
       strcpy(ext,ss);                     /* save extension */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      l1= strlen( name);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      finame[l1-l2]= 0;
     }
     savm=oldm;  
     oldm=newm;    return( 0 );                          /* we're done */
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  
       max=0.;  /******************************************/
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  void replace_back_to_slash(char *s, char*t)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    int i;
         max=FMAX(max,prlim[i][j]);    int lg=0;
         min=FMIN(min,prlim[i][j]);    i=0;
       }    lg=strlen(t);
       maxmin=max-min;    for(i=0; i<= lg; i++) {
       maxmax=FMAX(maxmax,maxmin);      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
     if(maxmax < ftolpl){    }
       return prlim;  }
     }  
   }  char *trimbb(char *out, char *in)
 }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
 /*************** transition probabilities ***************/    s=out;
     while (*in != '\0'){
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 {        in++;
   double s1, s2;      }
   /*double t34;*/      *out++ = *in++;
   int i,j,j1, nc, ii, jj;    }
     *out='\0';
     for(i=1; i<= nlstate; i++){    return s;
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  char *cutl(char *blocc, char *alocc, char *in, char occ)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       ps[i][j]=s2;       gives blocc="abcdef2ghi" and alocc="j".
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     }    */
     for(j=i+1; j<=nlstate+ndeath;j++){    char *s, *t, *bl;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    t=in;s=in;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    while ((*in != occ) && (*in != '\0')){
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      *alocc++ = *in++;
       }    }
       ps[i][j]=(s2);    if( *in == occ){
     }      *(alocc)='\0';
   }      s=++in;
     /*ps[3][2]=1;*/    }
    
   for(i=1; i<= nlstate; i++){    if (s == t) {/* occ not found */
      s1=0;      *(alocc-(in-s))='\0';
     for(j=1; j<i; j++)      in=s;
       s1+=exp(ps[i][j]);    }
     for(j=i+1; j<=nlstate+ndeath; j++)    while ( *in != '\0'){
       s1+=exp(ps[i][j]);      *blocc++ = *in++;
     ps[i][i]=1./(s1+1.);    }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *blocc='\0';
     for(j=i+1; j<=nlstate+ndeath; j++)    return t;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char *cutv(char *blocc, char *alocc, char *in, char occ)
   } /* end i */  {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     for(jj=1; jj<= nlstate+ndeath; jj++){       gives blocc="abcdef2ghi" and alocc="j".
       ps[ii][jj]=0;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       ps[ii][ii]=1;    */
     }    char *s, *t;
   }    t=in;s=in;
     while (*in != '\0'){
       while( *in == occ){
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        *blocc++ = *in++;
     for(jj=1; jj<= nlstate+ndeath; jj++){        s=in;
      printf("%lf ",ps[ii][jj]);      }
    }      *blocc++ = *in++;
     printf("\n ");    }
     }    if (s == t) /* occ not found */
     printf("\n ");printf("%lf ",cov[2]);*/      *(blocc-(in-s))='\0';
 /*    else
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      *(blocc-(in-s)-1)='\0';
   goto end;*/    in=s;
     return ps;    while ( *in != '\0'){
 }      *alocc++ = *in++;
     }
 /**************** Product of 2 matrices ******************/  
     *alocc='\0';
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return s;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  int nbocc(char *s, char occ)
   /* in, b, out are matrice of pointers which should have been initialized  {
      before: only the contents of out is modified. The function returns    int i,j=0;
      a pointer to pointers identical to out */    int lg=20;
   long i, j, k;    i=0;
   for(i=nrl; i<= nrh; i++)    lg=strlen(s);
     for(k=ncolol; k<=ncoloh; k++)    for(i=0; i<= lg; i++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if  (s[i] == occ ) j++;
         out[i][k] +=in[i][j]*b[j][k];    }
     return j;
   return out;  }
 }  
   /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
 /************* Higher Matrix Product ***************/  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*      gives u="abcdef2ghi" and v="j" *\/ */
 {  /*   int i,lg,j,p=0; */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*   i=0; */
      duration (i.e. until  /*   lg=strlen(t); */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*   for(j=0; j<=lg-1; j++) { */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
      (typically every 2 years instead of every month which is too big).  /*   } */
      Model is determined by parameters x and covariates have to be  
      included manually here.  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
      */  /*   } */
   /*      u[p]='\0'; */
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /*    for(j=0; j<= lg; j++) { */
   double **newm;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   } */
   /* Hstepm could be zero and should return the unit matrix */  /* } */
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /********************** nrerror ********************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  void nrerror(char error_text[])
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    fprintf(stderr,"ERREUR ...\n");
   for(h=1; h <=nhstepm; h++){    fprintf(stderr,"%s\n",error_text);
     for(d=1; d <=hstepm; d++){    exit(EXIT_FAILURE);
       newm=savm;  }
       /* Covariates have to be included here again */  /*********************** vector *******************/
       cov[1]=1.;  double *vector(int nl, int nh)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double *v;
       for (k=1; k<=cptcovage;k++)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (!v) nrerror("allocation failure in vector");
       for (k=1; k<=cptcovprod;k++)    return v-nl+NR_END;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
   /************************ free vector ******************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  void free_vector(double*v, int nl, int nh)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    free((FREE_ARG)(v+nl-NR_END));
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  
       oldm=newm;  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    int *v;
         po[i][j][h]=newm[i][j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    if (!v) nrerror("allocation failure in ivector");
          */    return v-nl+NR_END;
       }  }
   } /* end h */  
   return po;  /******************free ivector **************************/
 }  void free_ivector(int *v, long nl, long nh)
   {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /************************lvector *******************************/
   int i, ii, j, k, mi, d, kk;  long *lvector(long nl,long nh)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    long *v;
   double sw; /* Sum of weights */    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double lli; /* Individual log likelihood */    if (!v) nrerror("allocation failure in ivector");
   long ipmx;    return v-nl+NR_END;
   /*extern weight */  }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /******************free lvector **************************/
   /*for(i=1;i<imx;i++)  void free_lvector(long *v, long nl, long nh)
     printf(" %d\n",s[4][i]);  {
   */    free((FREE_ARG)(v+nl-NR_END));
   cov[1]=1.;  }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /******************* imatrix *******************************/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for(mi=1; mi<= wav[i]-1; mi++){  { 
       for (ii=1;ii<=nlstate+ndeath;ii++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int **m; 
       for(d=0; d<dh[mi][i]; d++){    
         newm=savm;    /* allocate pointers to rows */ 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         for (kk=1; kk<=cptcovage;kk++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    m += NR_END; 
         }    m -= nrl; 
            
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /* allocate rows and set pointers to them */ 
         savm=oldm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         oldm=newm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
            m[nrl] += NR_END; 
            m[nrl] -= ncl; 
       } /* end mult */    
          for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* return pointer to array of pointers to rows */ 
       ipmx +=1;    return m; 
       sw += weight[i];  } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /****************** free_imatrix *************************/
   } /* end of individual */  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        long nch,ncl,nrh,nrl; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       /* free an int matrix allocated by imatrix() */ 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  { 
   return -l;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 }    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
   
 /*********** Maximum Likelihood Estimation ***************/  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  {
 {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int i,j, iter;    double **m;
   double **xi,*delti;  
   double fret;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   xi=matrix(1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()");
   for (i=1;i<=npar;i++)    m += NR_END;
     for (j=1;j<=npar;j++)    m -= nrl;
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   powell(p,xi,npar,ftol,&iter,&fret,func);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    m[nrl] -= ncl;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 /**** Computes Hessian and covariance matrix ***/  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 {     */
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  /*************************free matrix ************************/
   int *indx;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   double hessii(double p[], double delta, int theta, double delti[]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double hessij(double p[], double delti[], int i, int j);    free((FREE_ARG)(m+nrl-NR_END));
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /******************* ma3x *******************************/
   hess=matrix(1,npar,1,npar);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   for (i=1;i<=npar;i++){    double ***m;
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     /*printf(" %f ",p[i]);*/    if (!m) nrerror("allocation failure 1 in matrix()");
     /*printf(" %lf ",hess[i][i]);*/    m += NR_END;
   }    m -= nrl;
    
   for (i=1;i<=npar;i++) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=npar;j++)  {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (j>i) {    m[nrl] += NR_END;
         printf(".%d%d",i,j);fflush(stdout);    m[nrl] -= ncl;
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];        for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf(" %lf ",hess[i][j]);*/  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
   printf("\n");    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      m[nrl][j]=m[nrl][j-1]+nlay;
      
   a=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) {
   y=matrix(1,npar,1,npar);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   x=vector(1,npar);      for (j=ncl+1; j<=nch; j++) 
   indx=ivector(1,npar);        m[i][j]=m[i][j-1]+nlay;
   for (i=1;i<=npar;i++)    }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    return m; 
   ludcmp(a,npar,indx,&pd);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (j=1;j<=npar;j++) {    */
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  /*************************free ma3x ************************/
     for (i=1;i<=npar;i++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       matcov[i][j]=x[i];  {
     }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   printf("\n#Hessian matrix#\n");  }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /*************** function subdirf ***********/
       printf("%.3e ",hess[i][j]);  char *subdirf(char fileres[])
     }  {
     printf("\n");    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   /* Recompute Inverse */    strcat(tmpout,fileres);
   for (i=1;i<=npar;i++)    return tmpout;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /*************** function subdirf2 ***********/
   /*  printf("\n#Hessian matrix recomputed#\n");  char *subdirf2(char fileres[], char *preop)
   {
   for (j=1;j<=npar;j++) {    
     for (i=1;i<=npar;i++) x[i]=0;    /* Caution optionfilefiname is hidden */
     x[j]=1;    strcpy(tmpout,optionfilefiname);
     lubksb(a,npar,indx,x);    strcat(tmpout,"/");
     for (i=1;i<=npar;i++){    strcat(tmpout,preop);
       y[i][j]=x[i];    strcat(tmpout,fileres);
       printf("%.3e ",y[i][j]);    return tmpout;
     }  }
     printf("\n");  
   }  /*************** function subdirf3 ***********/
   */  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
   free_matrix(a,1,npar,1,npar);    
   free_matrix(y,1,npar,1,npar);    /* Caution optionfilefiname is hidden */
   free_vector(x,1,npar);    strcpy(tmpout,optionfilefiname);
   free_ivector(indx,1,npar);    strcat(tmpout,"/");
   free_matrix(hess,1,npar,1,npar);    strcat(tmpout,preop);
     strcat(tmpout,preop2);
     strcat(tmpout,fileres);
 }    return tmpout;
   }
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  /***************** f1dim *************************/
 {  extern int ncom; 
   int i;  extern double *pcom,*xicom;
   int l=1, lmax=20;  extern double (*nrfunc)(double []); 
   double k1,k2;   
   double p2[NPARMAX+1];  double f1dim(double x) 
   double res;  { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    int j; 
   double fx;    double f;
   int k=0,kmax=10;    double *xt; 
   double l1;   
     xt=vector(1,ncom); 
   fx=func(x);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for (i=1;i<=npar;i++) p2[i]=x[i];    f=(*nrfunc)(xt); 
   for(l=0 ; l <=lmax; l++){    free_vector(xt,1,ncom); 
     l1=pow(10,l);    return f; 
     delts=delt;  } 
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  /*****************brent *************************/
       p2[theta]=x[theta] +delt;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       k1=func(p2)-fx;  { 
       p2[theta]=x[theta]-delt;    int iter; 
       k2=func(p2)-fx;    double a,b,d,etemp;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double fu,fv,fw,fx;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double ftemp;
          double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #ifdef DEBUG    double e=0.0; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);   
 #endif    a=(ax < cx ? ax : cx); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    b=(ax > cx ? ax : cx); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    x=w=v=bx; 
         k=kmax;    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      xm=0.5*(a+b); 
         k=kmax; l=lmax*10.;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      printf(".");fflush(stdout);
         delts=delt;      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   delti[theta]=delts;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   return res;  #endif
        if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 }        *xmin=x; 
         return fx; 
 double hessij( double x[], double delti[], int thetai,int thetaj)      } 
 {      ftemp=fu;
   int i;      if (fabs(e) > tol1) { 
   int l=1, l1, lmax=20;        r=(x-w)*(fx-fv); 
   double k1,k2,k3,k4,res,fx;        q=(x-v)*(fx-fw); 
   double p2[NPARMAX+1];        p=(x-v)*q-(x-w)*r; 
   int k;        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
   fx=func(x);        q=fabs(q); 
   for (k=1; k<=2; k++) {        etemp=e; 
     for (i=1;i<=npar;i++) p2[i]=x[i];        e=d; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     k1=func(p2)-fx;        else { 
            d=p/q; 
     p2[thetai]=x[thetai]+delti[thetai]/k;          u=x+d; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          if (u-a < tol2 || b-u < tol2) 
     k2=func(p2)-fx;            d=SIGN(tol1,xm-x); 
          } 
     p2[thetai]=x[thetai]-delti[thetai]/k;      } else { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     k3=func(p2)-fx;      } 
        u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     p2[thetai]=x[thetai]-delti[thetai]/k;      fu=(*f)(u); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      if (fu <= fx) { 
     k4=func(p2)-fx;        if (u >= x) a=x; else b=x; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        SHFT(v,w,x,u) 
 #ifdef DEBUG          SHFT(fv,fw,fx,fu) 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          } else { 
 #endif            if (u < x) a=u; else b=u; 
   }            if (fu <= fw || w == x) { 
   return res;              v=w; 
 }              w=u; 
               fv=fw; 
 /************** Inverse of matrix **************/              fw=fu; 
 void ludcmp(double **a, int n, int *indx, double *d)            } else if (fu <= fv || v == x || v == w) { 
 {              v=u; 
   int i,imax,j,k;              fv=fu; 
   double big,dum,sum,temp;            } 
   double *vv;          } 
      } 
   vv=vector(1,n);    nrerror("Too many iterations in brent"); 
   *d=1.0;    *xmin=x; 
   for (i=1;i<=n;i++) {    return fx; 
     big=0.0;  } 
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /****************** mnbrak ***********************/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   }              double (*func)(double)) 
   for (j=1;j<=n;j++) {  { 
     for (i=1;i<j;i++) {    double ulim,u,r,q, dum;
       sum=a[i][j];    double fu; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
     big=0.0;    if (*fb > *fa) { 
     for (i=j;i<=n;i++) {      SHFT(dum,*ax,*bx,dum) 
       sum=a[i][j];        SHFT(dum,*fb,*fa,dum) 
       for (k=1;k<j;k++)        } 
         sum -= a[i][k]*a[k][j];    *cx=(*bx)+GOLD*(*bx-*ax); 
       a[i][j]=sum;    *fc=(*func)(*cx); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    while (*fb > *fc) { 
         big=dum;      r=(*bx-*ax)*(*fb-*fc); 
         imax=i;      q=(*bx-*cx)*(*fb-*fa); 
       }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     if (j != imax) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (k=1;k<=n;k++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
         dum=a[imax][k];        fu=(*func)(u); 
         a[imax][k]=a[j][k];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         a[j][k]=dum;        fu=(*func)(u); 
       }        if (fu < *fc) { 
       *d = -(*d);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       vv[imax]=vv[j];            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
     indx[j]=imax;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (a[j][j] == 0.0) a[j][j]=TINY;        u=ulim; 
     if (j != n) {        fu=(*func)(u); 
       dum=1.0/(a[j][j]);      } else { 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        u=(*cx)+GOLD*(*cx-*bx); 
     }        fu=(*func)(u); 
   }      } 
   free_vector(vv,1,n);  /* Doesn't work */      SHFT(*ax,*bx,*cx,u) 
 ;        SHFT(*fa,*fb,*fc,fu) 
 }        } 
   } 
 void lubksb(double **a, int n, int *indx, double b[])  
 {  /*************** linmin ************************/
   int i,ii=0,ip,j;  
   double sum;  int ncom; 
    double *pcom,*xicom;
   for (i=1;i<=n;i++) {  double (*nrfunc)(double []); 
     ip=indx[i];   
     sum=b[ip];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     b[ip]=b[i];  { 
     if (ii)    double brent(double ax, double bx, double cx, 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];                 double (*f)(double), double tol, double *xmin); 
     else if (sum) ii=i;    double f1dim(double x); 
     b[i]=sum;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                double *fc, double (*func)(double)); 
   for (i=n;i>=1;i--) {    int j; 
     sum=b[i];    double xx,xmin,bx,ax; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double fx,fb,fa;
     b[i]=sum/a[i][i];   
   }    ncom=n; 
 }    pcom=vector(1,n); 
     xicom=vector(1,n); 
 /************ Frequencies ********************/    nrfunc=func; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)    for (j=1;j<=n;j++) { 
 {  /* Some frequencies */      pcom[j]=p[j]; 
        xicom[j]=xi[j]; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    } 
   double ***freq; /* Frequencies */    ax=0.0; 
   double *pp;    xx=1.0; 
   double pos, k2, dateintsum=0,k2cpt=0;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   FILE *ficresp;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   char fileresp[FILENAMELENGTH];  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   pp=vector(1,nlstate);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #endif
   strcpy(fileresp,"p");    for (j=1;j<=n;j++) { 
   strcat(fileresp,fileres);      xi[j] *= xmin; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {      p[j] += xi[j]; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    } 
     exit(0);    free_vector(xicom,1,n); 
   }    free_vector(pcom,1,n); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  } 
   j1=0;  
   char *asc_diff_time(long time_sec, char ascdiff[])
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   for(k1=1; k1<=j;k1++){    sec_left = (time_sec) % (60*60*24);
    for(i1=1; i1<=ncodemax[k1];i1++){    hours = (sec_left) / (60*60) ;
        j1++;    sec_left = (sec_left) %(60*60);
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    minutes = (sec_left) /60;
          scanf("%d", i);*/    sec_left = (sec_left) % (60);
         for (i=-1; i<=nlstate+ndeath; i++)      sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
          for (jk=-1; jk<=nlstate+ndeath; jk++)      return ascdiff;
            for(m=agemin; m <= agemax+3; m++)  }
              freq[i][jk][m]=0;  
   /*************** powell ************************/
         dateintsum=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         k2cpt=0;              double (*func)(double [])) 
        for (i=1; i<=imx; i++) {  { 
          bool=1;    void linmin(double p[], double xi[], int n, double *fret, 
          if  (cptcovn>0) {                double (*func)(double [])); 
            for (z1=1; z1<=cptcoveff; z1++)    int i,ibig,j; 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double del,t,*pt,*ptt,*xit;
                bool=0;    double fp,fptt;
          }    double *xits;
          if (bool==1) {    int niterf, itmp;
            for(m=firstpass; m<=lastpass; m++){  
              k2=anint[m][i]+(mint[m][i]/12.);    pt=vector(1,n); 
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    ptt=vector(1,n); 
                if(agev[m][i]==0) agev[m][i]=agemax+1;    xit=vector(1,n); 
                if(agev[m][i]==1) agev[m][i]=agemax+2;    xits=vector(1,n); 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    *fret=(*func)(p); 
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    for (j=1;j<=n;j++) pt[j]=p[j]; 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for (*iter=1;;++(*iter)) { 
                  dateintsum=dateintsum+k2;      fp=(*fret); 
                  k2cpt++;      ibig=0; 
                }      del=0.0; 
       last_time=curr_time;
              }      (void) gettimeofday(&curr_time,&tzp);
            }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
          }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
        }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         if  (cptcovn>0) {     for (i=1;i<=n;i++) {
          fprintf(ficresp, "\n#********** Variable ");        printf(" %d %.12f",i, p[i]);
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficlog," %d %.12lf",i, p[i]);
        fprintf(ficresp, "**********\n#");        fprintf(ficrespow," %.12lf", p[i]);
         }      }
        for(i=1; i<=nlstate;i++)      printf("\n");
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      fprintf(ficlog,"\n");
        fprintf(ficresp, "\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
              if(*iter <=3){
   for(i=(int)agemin; i <= (int)agemax+3; i++){        tm = *localtime(&curr_time.tv_sec);
     if(i==(int)agemax+3)        strcpy(strcurr,asctime(&tm));
       printf("Total");  /*       asctime_r(&tm,strcurr); */
     else        forecast_time=curr_time; 
       printf("Age %d", i);        itmp = strlen(strcurr);
     for(jk=1; jk <=nlstate ; jk++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          strcurr[itmp-1]='\0';
         pp[jk] += freq[jk][m][i];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for(jk=1; jk <=nlstate ; jk++){        for(niterf=10;niterf<=30;niterf+=10){
       for(m=-1, pos=0; m <=0 ; m++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         pos += freq[jk][m][i];          tmf = *localtime(&forecast_time.tv_sec);
       if(pp[jk]>=1.e-10)  /*      asctime_r(&tmf,strfor); */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          strcpy(strfor,asctime(&tmf));
       else          itmp = strlen(strfor);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
         pp[jk] += freq[jk][m][i];      }
      }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for(jk=1,pos=0; jk <=nlstate ; jk++)        fptt=(*fret); 
       pos += pp[jk];  #ifdef DEBUG
     for(jk=1; jk <=nlstate ; jk++){        printf("fret=%lf \n",*fret);
       if(pos>=1.e-5)        fprintf(ficlog,"fret=%lf \n",*fret);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  #endif
       else        printf("%d",i);fflush(stdout);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        fprintf(ficlog,"%d",i);fflush(ficlog);
       if( i <= (int) agemax){        linmin(p,xit,n,fret,func); 
         if(pos>=1.e-5){        if (fabs(fptt-(*fret)) > del) { 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          del=fabs(fptt-(*fret)); 
           probs[i][jk][j1]= pp[jk]/pos;          ibig=i; 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        } 
         }  #ifdef DEBUG
       else        printf("%d %.12e",i,(*fret));
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(jk=-1; jk <=nlstate+ndeath; jk++)          printf(" x(%d)=%.12e",j,xit[j]);
       for(m=-1; m <=nlstate+ndeath; m++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        }
     if(i <= (int) agemax)        for(j=1;j<=n;j++) {
       fprintf(ficresp,"\n");          printf(" p=%.12e",p[j]);
     printf("\n");          fprintf(ficlog," p=%.12e",p[j]);
     }        }
     }        printf("\n");
  }        fprintf(ficlog,"\n");
   dateintmean=dateintsum/k2cpt;  #endif
        } 
   fclose(ficresp);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  #ifdef DEBUG
   free_vector(pp,1,nlstate);        int k[2],l;
         k[0]=1;
   /* End of Freq */        k[1]=-1;
 }        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
 /************ Prevalence ********************/        for (j=1;j<=n;j++) {
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          printf(" %.12e",p[j]);
 {  /* Some frequencies */          fprintf(ficlog," %.12e",p[j]);
          }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        printf("\n");
   double ***freq; /* Frequencies */        fprintf(ficlog,"\n");
   double *pp;        for(l=0;l<=1;l++) {
   double pos, k2;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   pp=vector(1,nlstate);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   j1=0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
   j=cptcoveff;  #endif
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    
  for(k1=1; k1<=j;k1++){        free_vector(xit,1,n); 
     for(i1=1; i1<=ncodemax[k1];i1++){        free_vector(xits,1,n); 
       j1++;        free_vector(ptt,1,n); 
          free_vector(pt,1,n); 
       for (i=-1; i<=nlstate+ndeath; i++)          return; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } 
           for(m=agemin; m <= agemax+3; m++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
             freq[i][jk][m]=0;      for (j=1;j<=n;j++) { 
              ptt[j]=2.0*p[j]-pt[j]; 
       for (i=1; i<=imx; i++) {        xit[j]=p[j]-pt[j]; 
         bool=1;        pt[j]=p[j]; 
         if  (cptcovn>0) {      } 
           for (z1=1; z1<=cptcoveff; z1++)      fptt=(*func)(ptt); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      if (fptt < fp) { 
               bool=0;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         }        if (t < 0.0) { 
         if (bool==1) {          linmin(p,xit,n,fret,func); 
           for(m=firstpass; m<=lastpass; m++){          for (j=1;j<=n;j++) { 
             k2=anint[m][i]+(mint[m][i]/12.);            xi[j][ibig]=xi[j][n]; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            xi[j][n]=xit[j]; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  #ifdef DEBUG
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             }          for(j=1;j<=n;j++){
           }            printf(" %.12e",xit[j]);
         }            fprintf(ficlog," %.12e",xit[j]);
       }          }
                printf("\n");
         for(i=(int)agemin; i <= (int)agemax+3; i++){          fprintf(ficlog,"\n");
           for(jk=1; jk <=nlstate ; jk++){  #endif
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        }
               pp[jk] += freq[jk][m][i];      } 
           }    } 
           for(jk=1; jk <=nlstate ; jk++){  } 
             for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  /**** Prevalence limit (stable or period prevalence)  ****************/
         }  
          double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          for(jk=1; jk <=nlstate ; jk++){  {
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
              pp[jk] += freq[jk][m][i];       matrix by transitions matrix until convergence is reached */
          }  
              int i, ii,j,k;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    double min, max, maxmin, maxmax,sumnew=0.;
     /* double **matprod2(); */ /* test */
          for(jk=1; jk <=nlstate ; jk++){              double **out, cov[NCOVMAX+1], **pmij();
            if( i <= (int) agemax){    double **newm;
              if(pos>=1.e-5){    double agefin, delaymax=50 ; /* Max number of years to converge */
                probs[i][jk][j1]= pp[jk]/pos;  
              }    for (ii=1;ii<=nlstate+ndeath;ii++)
            }      for (j=1;j<=nlstate+ndeath;j++){
          }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                }
         }  
     }     cov[1]=1.;
   }   
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      newm=savm;
   free_vector(pp,1,nlstate);      /* Covariates have to be included here again */
        cov[2]=agefin;
 }  /* End of Freq */      
       for (k=1; k<=cptcovn;k++) {
 /************* Waves Concatenation ***************/        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      }
 {      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
      Death is a valid wave (if date is known).      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      and mw[mi+1][i]. dh depends on stepm.      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      */      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   int i, mi, m;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
      double sum=0., jmean=0.;*/      
       savm=oldm;
   int j, k=0,jk, ju, jl;      oldm=newm;
   double sum=0.;      maxmax=0.;
   jmin=1e+5;      for(j=1;j<=nlstate;j++){
   jmax=-1;        min=1.;
   jmean=0.;        max=0.;
   for(i=1; i<=imx; i++){        for(i=1; i<=nlstate; i++) {
     mi=0;          sumnew=0;
     m=firstpass;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     while(s[m][i] <= nlstate){          prlim[i][j]= newm[i][j]/(1-sumnew);
       if(s[m][i]>=1)          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         mw[++mi][i]=m;          max=FMAX(max,prlim[i][j]);
       if(m >=lastpass)          min=FMIN(min,prlim[i][j]);
         break;        }
       else        maxmin=max-min;
         m++;        maxmax=FMAX(maxmax,maxmin);
     }/* end while */      }
     if (s[m][i] > nlstate){      if(maxmax < ftolpl){
       mi++;     /* Death is another wave */        return prlim;
       /* if(mi==0)  never been interviewed correctly before death */      }
          /* Only death is a correct wave */    }
       mw[mi][i]=m;  }
     }  
   /*************** transition probabilities ***************/ 
     wav[i]=mi;  
     if(mi==0)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  {
   }    /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
   for(i=1; i<=imx; i++){       model to the ncovmodel covariates (including constant and age).
     for(mi=1; mi<wav[i];mi++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       if (stepm <=0)       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         dh[mi][i]=1;       ncth covariate in the global vector x is given by the formula:
       else{       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         if (s[mw[mi+1][i]][i] > nlstate) {       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           if (agedc[i] < 2*AGESUP) {       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
           if(j==0) j=1;  /* Survives at least one month after exam */       Outputs ps[i][j] the probability to be observed in j being in j according to
           k=k+1;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           if (j >= jmax) jmax=j;    */
           if (j <= jmin) jmin=j;    double s1, lnpijopii;
           sum=sum+j;    /*double t34;*/
           /* if (j<10) printf("j=%d num=%d ",j,i); */    int i,j,j1, nc, ii, jj;
           }  
         }      for(i=1; i<= nlstate; i++){
         else{        for(j=1; j<i;j++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           k=k+1;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           if (j >= jmax) jmax=j;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           else if (j <= jmin)jmin=j;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          }
           sum=sum+j;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         jk= j/stepm;        }
         jl= j -jk*stepm;        for(j=i+1; j<=nlstate+ndeath;j++){
         ju= j -(jk+1)*stepm;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         if(jl <= -ju)            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           dh[mi][i]=jk;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         else  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           dh[mi][i]=jk+1;          }
         if(dh[mi][i]==0)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           dh[mi][i]=1; /* At least one step */        }
       }      }
     }      
   }      for(i=1; i<= nlstate; i++){
   jmean=sum/k;        s1=0;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for(j=1; j<i; j++){
  }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 /*********** Tricode ****************************/          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {        for(j=i+1; j<=nlstate+ndeath; j++){
   int Ndum[20],ij=1, k, j, i;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   int cptcode=0;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   cptcoveff=0;        }
          /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   for (k=0; k<19; k++) Ndum[k]=0;        ps[i][i]=1./(s1+1.);
   for (k=1; k<=7; k++) ncodemax[k]=0;        /* Computing other pijs */
         for(j=1; j<i; j++)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (i=1; i<=imx; i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
       ij=(int)(covar[Tvar[j]][i]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       Ndum[ij]++;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      } /* end i */
       if (ij > cptcode) cptcode=ij;      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=0; i<=cptcode; i++) {          ps[ii][jj]=0;
       if(Ndum[i]!=0) ncodemax[j]++;          ps[ii][ii]=1;
     }        }
     ij=1;      }
       
       
     for (i=1; i<=ncodemax[j]; i++) {      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (k=0; k<=19; k++) {      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         if (Ndum[k] != 0) {      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
           nbcode[Tvar[j]][ij]=k;      /*   } */
           ij++;      /*   printf("\n "); */
         }      /* } */
         if (ij > ncodemax[j]) break;      /* printf("\n ");printf("%lf ",cov[2]);*/
       }        /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }          goto end;*/
       return ps;
  for (k=0; k<19; k++) Ndum[k]=0;  }
   
  for (i=1; i<=ncovmodel-2; i++) {  /**************** Product of 2 matrices ******************/
       ij=Tvar[i];  
       Ndum[ij]++;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
  ij=1;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  for (i=1; i<=10; i++) {    /* in, b, out are matrice of pointers which should have been initialized 
    if((Ndum[i]!=0) && (i<=ncov)){       before: only the contents of out is modified. The function returns
      Tvaraff[ij]=i;       a pointer to pointers identical to out */
      ij++;    int i, j, k;
    }    for(i=nrl; i<= nrh; i++)
  }      for(k=ncolol; k<=ncoloh; k++){
          out[i][k]=0.;
     cptcoveff=ij-1;        for(j=ncl; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
       }
 /*********** Health Expectancies ****************/    return out;
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  
 {  
   /* Health expectancies */  /************* Higher Matrix Product ***************/
   int i, j, nhstepm, hstepm, h;  
   double age, agelim,hf;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double ***p3mat;  {
      /* Computes the transition matrix starting at age 'age' over 
   fprintf(ficreseij,"# Health expectancies\n");       'nhstepm*hstepm*stepm' months (i.e. until
   fprintf(ficreseij,"# Age");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for(i=1; i<=nlstate;i++)       nhstepm*hstepm matrices. 
     for(j=1; j<=nlstate;j++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       fprintf(ficreseij," %1d-%1d",i,j);       (typically every 2 years instead of every month which is too big 
   fprintf(ficreseij,"\n");       for the memory).
        Model is determined by parameters x and covariates have to be 
   hstepm=1*YEARM; /*  Every j years of age (in month) */       included manually here. 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
        */
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, j, d, h, k;
     /* nhstepm age range expressed in number of stepm */    double **out, cov[NCOVMAX+1];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    double **newm;
     /* Typically if 20 years = 20*12/6=40 stepm */  
     if (stepm >= YEARM) hstepm=1;    /* Hstepm could be zero and should return the unit matrix */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    for (i=1;i<=nlstate+ndeath;i++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=nlstate+ndeath;j++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        oldm[i][j]=(i==j ? 1.0 : 0.0);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        po[i][j][0]=(i==j ? 1.0 : 0.0);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
     for(i=1; i<=nlstate;i++)      for(d=1; d <=hstepm; d++){
       for(j=1; j<=nlstate;j++)        newm=savm;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        /* Covariates have to be included here again */
           eij[i][j][(int)age] +=p3mat[i][j][h];        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
            for (k=1; k<=cptcovn;k++) 
     hf=1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     if (stepm >= YEARM) hf=stepm/YEARM;        for (k=1; k<=cptcovage;k++)
     fprintf(ficreseij,"%.0f",age );          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
       for(j=1; j<=nlstate;j++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);  
       }  
     fprintf(ficreseij,"\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
 /************ Variance ******************/        oldm=newm;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {      for(i=1; i<=nlstate+ndeath; i++)
   /* Variance of health expectancies */        for(j=1;j<=nlstate+ndeath;j++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          po[i][j][h]=newm[i][j];
   double **newm;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   double **dnewm,**doldm;        }
   int i, j, nhstepm, hstepm, h;      /*printf("h=%d ",h);*/
   int k, cptcode;    } /* end h */
   double *xp;  /*     printf("\n H=%d \n",h); */
   double **gp, **gm;    return po;
   double ***gradg, ***trgradg;  }
   double ***p3mat;  
   double age,agelim;  
   int theta;  /*************** log-likelihood *************/
   double func( double *x)
    fprintf(ficresvij,"# Covariances of life expectancies\n");  {
   fprintf(ficresvij,"# Age");    int i, ii, j, k, mi, d, kk;
   for(i=1; i<=nlstate;i++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for(j=1; j<=nlstate;j++)    double **out;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double sw; /* Sum of weights */
   fprintf(ficresvij,"\n");    double lli; /* Individual log likelihood */
     int s1, s2;
   xp=vector(1,npar);    double bbh, survp;
   dnewm=matrix(1,nlstate,1,npar);    long ipmx;
   doldm=matrix(1,nlstate,1,nlstate);    /*extern weight */
      /* We are differentiating ll according to initial status */
   hstepm=1*YEARM; /* Every year of age */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    /*for(i=1;i<imx;i++) 
   agelim = AGESUP;      printf(" %d\n",s[4][i]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    cov[1]=1.;
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    if(mle==1){
     gp=matrix(0,nhstepm,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gm=matrix(0,nhstepm,1,nlstate);        /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     for(theta=1; theta <=npar; theta++){           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       for(i=1; i<=npar; i++){ /* Computes gradient */           to be observed in j being in i according to the model.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);         */
       }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       if (popbased==1) {           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         for(i=1; i<=nlstate;i++)           has been calculated etc */
           prlim[i][i]=probs[(int)age][i][ij];        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=npar; i++) /* Computes gradient */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
       if (popbased==1) {            oldm=newm;
         for(i=1; i<=nlstate;i++)          } /* end mult */
           prlim[i][i]=probs[(int)age][i][ij];        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
       for(j=1; j<= nlstate; j++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for(h=0; h<=nhstepm; h++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)           * the nearest (and in case of equal distance, to the lowest) interval but now
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(j=1; j<= nlstate; j++)           * -stepm/2 to stepm/2 .
         for(h=0; h<=nhstepm; h++){           * For stepm=1 the results are the same as for previous versions of Imach.
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
     } /* End theta */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
     for(h=0; h<=nhstepm; h++)           * is higher than the multiple of stepm and negative otherwise.
       for(j=1; j<=nlstate;j++)           */
         for(theta=1; theta <=npar; theta++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           trgradg[h][j][theta]=gradg[h][theta][j];          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
     for(i=1;i<=nlstate;i++)               then the contribution to the likelihood is the probability to 
       for(j=1;j<=nlstate;j++)               die between last step unit time and current  step unit time, 
         vareij[i][j][(int)age] =0.;               which is also equal to probability to die before dh 
     for(h=0;h<=nhstepm;h++){               minus probability to die before dh-stepm . 
       for(k=0;k<=nhstepm;k++){               In version up to 0.92 likelihood was computed
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          as if date of death was unknown. Death was treated as any other
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          health state: the date of the interview describes the actual state
         for(i=1;i<=nlstate;i++)          and not the date of a change in health state. The former idea was
           for(j=1;j<=nlstate;j++)          to consider that at each interview the state was recorded
             vareij[i][j][(int)age] += doldm[i][j];          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
     h=1;          contribution is smaller and very dependent of the step unit
     if (stepm >= YEARM) h=stepm/YEARM;          stepm. It is no more the probability to die between last interview
     fprintf(ficresvij,"%.0f ",age );          and month of death but the probability to survive from last
     for(i=1; i<=nlstate;i++)          interview up to one month before death multiplied by the
       for(j=1; j<=nlstate;j++){          probability to die within a month. Thanks to Chris
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
     fprintf(ficresvij,"\n");          which slows down the processing. The difference can be up to 10%
     free_matrix(gp,0,nhstepm,1,nlstate);          lower mortality.
     free_matrix(gm,0,nhstepm,1,nlstate);            */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */          } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
   free_vector(xp,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_matrix(doldm,1,nlstate,1,npar);            /*survp += out[s1][j]; */
   free_matrix(dnewm,1,nlstate,1,nlstate);            lli= log(survp);
           }
 }          
           else if  (s2==-4) { 
 /************ Variance of prevlim ******************/            for (j=3,survp=0. ; j<=nlstate; j++)  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 {            lli= log(survp); 
   /* Variance of prevalence limit */          } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;          else if  (s2==-5) { 
   double **dnewm,**doldm;            for (j=1,survp=0. ; j<=2; j++)  
   int i, j, nhstepm, hstepm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int k, cptcode;            lli= log(survp); 
   double *xp;          } 
   double *gp, *gm;          
   double **gradg, **trgradg;          else{
   double age,agelim;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int theta;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
              } 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   fprintf(ficresvpl,"# Age");          /*if(lli ==000.0)*/
   for(i=1; i<=nlstate;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       fprintf(ficresvpl," %1d-%1d",i,i);          ipmx +=1;
   fprintf(ficresvpl,"\n");          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   xp=vector(1,npar);        } /* end of wave */
   dnewm=matrix(1,nlstate,1,npar);      } /* end of individual */
   doldm=matrix(1,nlstate,1,nlstate);    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=1*YEARM; /* Every year of age */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(mi=1; mi<= wav[i]-1; mi++){
   agelim = AGESUP;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (j=1;j<=nlstate+ndeath;j++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     gradg=matrix(1,npar,1,nlstate);          for(d=0; d<=dh[mi][i]; d++){
     gp=vector(1,nlstate);            newm=savm;
     gm=vector(1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for(theta=1; theta <=npar; theta++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++){ /* Computes gradient */            }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            savm=oldm;
       for(i=1;i<=nlstate;i++)            oldm=newm;
         gp[i] = prlim[i][i];          } /* end mult */
            
       for(i=1; i<=npar; i++) /* Computes gradient */          s1=s[mw[mi][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1;i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         gm[i] = prlim[i][i];          ipmx +=1;
           sw += weight[i];
       for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        } /* end of wave */
     } /* End theta */      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
     trgradg =matrix(1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(j=1; j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(theta=1; theta <=npar; theta++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         trgradg[j][theta]=gradg[theta][j];            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1;i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       varpl[i][(int)age] =0.;            }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          for(d=0; d<dh[mi][i]; d++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            newm=savm;
     for(i=1;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficresvpl,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficresvpl,"\n");            savm=oldm;
     free_vector(gp,1,nlstate);            oldm=newm;
     free_vector(gm,1,nlstate);          } /* end mult */
     free_matrix(gradg,1,npar,1,nlstate);        
     free_matrix(trgradg,1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
   } /* End age */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   free_vector(xp,1,npar);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_matrix(doldm,1,nlstate,1,npar);          ipmx +=1;
   free_matrix(dnewm,1,nlstate,1,nlstate);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /************ Variance of one-step probabilities  ******************/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, j;        for(mi=1; mi<= wav[i]-1; mi++){
   int k=0, cptcode;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **dnewm,**doldm;            for (j=1;j<=nlstate+ndeath;j++){
   double *xp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *gp, *gm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gradg, **trgradg;            }
   double age,agelim, cov[NCOVMAX];          for(d=0; d<dh[mi][i]; d++){
   int theta;            newm=savm;
   char fileresprob[FILENAMELENGTH];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   strcpy(fileresprob,"prob");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcat(fileresprob,fileres);            }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          
     printf("Problem with resultfile: %s\n", fileresprob);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);            savm=oldm;
              oldm=newm;
           } /* end mult */
   xp=vector(1,npar);        
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          s1=s[mw[mi][i]][i];
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
   cov[1]=1;            lli=log(out[s1][s2] - savm[s1][s2]);
   for (age=bage; age<=fage; age ++){          }else{
     cov[2]=age;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     gradg=matrix(1,npar,1,9);          }
     trgradg=matrix(1,9,1,npar);          ipmx +=1;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          sw += weight[i];
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(theta=1; theta <=npar; theta++){        } /* end of wave */
       for(i=1; i<=npar; i++)      } /* end of individual */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
       k=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<= (nlstate+ndeath); i++){            for (j=1;j<=nlstate+ndeath;j++){
         for(j=1; j<=(nlstate+ndeath);j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            k=k+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           gp[k]=pmmij[i][j];            }
         }          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++)            for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
           
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       k=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=(nlstate+ndeath); i++){            savm=oldm;
         for(j=1; j<=(nlstate+ndeath);j++){            oldm=newm;
           k=k+1;          } /* end mult */
           gm[k]=pmmij[i][j];        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
                lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          ipmx +=1;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        } /* end of wave */
       for(theta=1; theta <=npar; theta++)      } /* end of individual */
       trgradg[j][theta]=gradg[theta][j];    } /* End of if */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
      pmij(pmmij,cov,ncovmodel,x,nlstate);  }
   
      k=0;  /*************** log-likelihood *************/
      for(i=1; i<=(nlstate+ndeath); i++){  double funcone( double *x)
        for(j=1; j<=(nlstate+ndeath);j++){  {
          k=k+1;    /* Same as likeli but slower because of a lot of printf and if */
          gm[k]=pmmij[i][j];    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      }    double **out;
          double lli; /* Individual log likelihood */
      /*printf("\n%d ",(int)age);    double llt;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int s1, s2;
            double bbh, survp;
     /*extern weight */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    /* We are differentiating ll according to initial status */
      }*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   fprintf(ficresprob,"\n%d ",(int)age);      printf(" %d\n",s[4][i]);
     */
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    cov[1]=1.;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for(mi=1; mi<= wav[i]-1; mi++){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (ii=1;ii<=nlstate+ndeath;ii++)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for (j=1;j<=nlstate+ndeath;j++){
 }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  free_vector(xp,1,npar);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 fclose(ficresprob);          }
  exit(0);        for(d=0; d<dh[mi][i]; d++){
 }          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /***********************************************/          for (kk=1; kk<=cptcovage;kk++) {
 /**************** Main Program *****************/            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /***********************************************/          }
           /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 /*int main(int argc, char *argv[])*/          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 int main()                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          savm=oldm;
   double agedeb, agefin,hf;          oldm=newm;
   double agemin=1.e20, agemax=-1.e20;        } /* end mult */
         
   double fret;        s1=s[mw[mi][i]][i];
   double **xi,tmp,delta;        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   double dum; /* Dummy variable */        /* bias is positive if real duration
   double ***p3mat;         * is higher than the multiple of stepm and negative otherwise.
   int *indx;         */
   char line[MAXLINE], linepar[MAXLINE];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   char title[MAXLINE];          lli=log(out[s1][s2] - savm[s1][s2]);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];        } else if  (s2==-2) {
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];          for (j=1,survp=0. ; j<=nlstate; j++) 
   char filerest[FILENAMELENGTH];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   char fileregp[FILENAMELENGTH];          lli= log(survp);
   char popfile[FILENAMELENGTH];        }else if (mle==1){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int firstobs=1, lastobs=10;        } else if(mle==2){
   int sdeb, sfin; /* Status at beginning and end */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int c,  h , cpt,l;        } else if(mle==3){  /* exponential inter-extrapolation */
   int ju,jl, mi;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          lli=log(out[s1][s2]); /* Original formula */
   int mobilav=0,popforecast=0;        } else{  /* mle=0 back to 1 */
   int hstepm, nhstepm;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int *popage;/*boolprev=0 if date and zero if wave*/          /*lli=log(out[s1][s2]); */ /* Original formula */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;        } /* End of if */
         ipmx +=1;
   double bage, fage, age, agelim, agebase;        sw += weight[i];
   double ftolpl=FTOL;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **prlim;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double *severity;        if(globpr){
   double ***param; /* Matrix of parameters */          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   double  *p;   %11.6f %11.6f %11.6f ", \
   double **matcov; /* Matrix of covariance */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double ***delti3; /* Scale */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double *delti; /* Scale */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double ***eij, ***vareij;            llt +=ll[k]*gipmx/gsw;
   double **varpl; /* Variances of prevalence limits by age */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double *epj, vepp;          }
   double kk1, kk2;          fprintf(ficresilk," %10.6f\n", -llt);
   double *popeffectif,*popcount;        }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;      } /* end of wave */
   double yp,yp1,yp2;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   char z[1]="c", occ;      gsw=sw;
 #include <sys/time.h>    }
 #include <time.h>    return -l;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  }
    
   /* long total_usecs;  
   struct timeval start_time, end_time;  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  {
     /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   printf("\nIMACH, Version 0.7");       to check the exact contribution to the likelihood.
   printf("\nEnter the parameter file name: ");       Plotting could be done.
      */
 #ifdef windows    int k;
   scanf("%s",pathtot);  
   getcwd(pathcd, size);    if(*globpri !=0){ /* Just counts and sums, no printings */
   /*cygwin_split_path(pathtot,path,optionfile);      strcpy(fileresilk,"ilk"); 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      strcat(fileresilk,fileres);
   /* cutv(path,optionfile,pathtot,'\\');*/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
 split(pathtot, path,optionfile);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   chdir(path);      }
   replace(pathc,path);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 #endif      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 #ifdef unix      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   scanf("%s",optionfile);      for(k=1; k<=nlstate; k++) 
 #endif        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 /*-------- arguments in the command line --------*/    }
   
   strcpy(fileres,"r");    *fretone=(*funcone)(p);
   strcat(fileres, optionfile);    if(*globpri !=0){
       fclose(ficresilk);
   /*---------arguments file --------*/      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    } 
     printf("Problem with optionfile %s\n",optionfile);    return;
     goto end;  }
   }  
   
   strcpy(filereso,"o");  /*********** Maximum Likelihood Estimation ***************/
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  {
   }    int i,j, iter;
     double **xi;
   /* Reads comments: lines beginning with '#' */    double fret;
   while((c=getc(ficpar))=='#' && c!= EOF){    double fretone; /* Only one call to likelihood */
     ungetc(c,ficpar);    /*  char filerespow[FILENAMELENGTH];*/
     fgets(line, MAXLINE, ficpar);    xi=matrix(1,npar,1,npar);
     puts(line);    for (i=1;i<=npar;i++)
     fputs(line,ficparo);      for (j=1;j<=npar;j++)
   }        xi[i][j]=(i==j ? 1.0 : 0.0);
   ungetc(c,ficpar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    strcat(filerespow,fileres);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      printf("Problem with resultfile: %s\n", filerespow);
 while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     puts(line);    for (i=1;i<=nlstate;i++)
     fputs(line,ficparo);      for(j=1;j<=nlstate+ndeath;j++)
   }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   ungetc(c,ficpar);    fprintf(ficrespow,"\n");
    
        powell(p,xi,npar,ftol,&iter,&fret,func);
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;    free_matrix(xi,1,npar,1,npar);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   ncovmodel=2+cptcovn;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    
   /* Read guess parameters */  }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /**** Computes Hessian and covariance matrix ***/
     ungetc(c,ficpar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     fgets(line, MAXLINE, ficpar);  {
     puts(line);    double  **a,**y,*x,pd;
     fputs(line,ficparo);    double **hess;
   }    int i, j,jk;
   ungetc(c,ficpar);    int *indx;
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for(i=1; i <=nlstate; i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       fprintf(ficparo,"%1d%1d",i1,j1);    double gompertz(double p[]);
       printf("%1d%1d",i,j);    hess=matrix(1,npar,1,npar);
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    printf("\nCalculation of the hessian matrix. Wait...\n");
         printf(" %lf",param[i][j][k]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         fprintf(ficparo," %lf",param[i][j][k]);    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
       fscanf(ficpar,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
       printf("\n");     
       fprintf(ficparo,"\n");       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     }      
        /*  printf(" %f ",p[i]);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
   p=param[1][1];    
      for (i=1;i<=npar;i++) {
   /* Reads comments: lines beginning with '#' */      for (j=1;j<=npar;j++)  {
   while((c=getc(ficpar))=='#' && c!= EOF){        if (j>i) { 
     ungetc(c,ficpar);          printf(".%d%d",i,j);fflush(stdout);
     fgets(line, MAXLINE, ficpar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     puts(line);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     fputs(line,ficparo);          
   }          hess[j][i]=hess[i][j];    
   ungetc(c,ficpar);          /*printf(" %lf ",hess[i][j]);*/
         }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    }
   for(i=1; i <=nlstate; i++){    printf("\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficlog,"\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar,"%le",&delti3[i][j][k]);    a=matrix(1,npar,1,npar);
         printf(" %le",delti3[i][j][k]);    y=matrix(1,npar,1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);    x=vector(1,npar);
       }    indx=ivector(1,npar);
       fscanf(ficpar,"\n");    for (i=1;i<=npar;i++)
       printf("\n");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       fprintf(ficparo,"\n");    ludcmp(a,npar,indx,&pd);
     }  
   }    for (j=1;j<=npar;j++) {
   delti=delti3[1][1];      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   /* Reads comments: lines beginning with '#' */      lubksb(a,npar,indx,x);
   while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1;i<=npar;i++){ 
     ungetc(c,ficpar);        matcov[i][j]=x[i];
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);  
   }    printf("\n#Hessian matrix#\n");
   ungetc(c,ficpar);    fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
   matcov=matrix(1,npar,1,npar);      for (j=1;j<=npar;j++) { 
   for(i=1; i <=npar; i++){        printf("%.3e ",hess[i][j]);
     fscanf(ficpar,"%s",&str);        fprintf(ficlog,"%.3e ",hess[i][j]);
     printf("%s",str);      }
     fprintf(ficparo,"%s",str);      printf("\n");
     for(j=1; j <=i; j++){      fprintf(ficlog,"\n");
       fscanf(ficpar," %le",&matcov[i][j]);    }
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);    /* Recompute Inverse */
     }    for (i=1;i<=npar;i++)
     fscanf(ficpar,"\n");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     printf("\n");    ludcmp(a,npar,indx,&pd);
     fprintf(ficparo,"\n");  
   }    /*  printf("\n#Hessian matrix recomputed#\n");
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    for (j=1;j<=npar;j++) {
       matcov[i][j]=matcov[j][i];      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
   printf("\n");      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
     /*-------- data file ----------*/        printf("%.3e ",y[i][j]);
     if((ficres =fopen(fileres,"w"))==NULL) {        fprintf(ficlog,"%.3e ",y[i][j]);
       printf("Problem with resultfile: %s\n", fileres);goto end;      }
     }      printf("\n");
     fprintf(ficres,"#%s\n",version);      fprintf(ficlog,"\n");
        }
     if((fic=fopen(datafile,"r"))==NULL)    {    */
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     n= lastobs;    free_vector(x,1,npar);
     severity = vector(1,maxwav);    free_ivector(indx,1,npar);
     outcome=imatrix(1,maxwav+1,1,n);    free_matrix(hess,1,npar,1,npar);
     num=ivector(1,n);  
     moisnais=vector(1,n);  
     annais=vector(1,n);  }
     moisdc=vector(1,n);  
     andc=vector(1,n);  /*************** hessian matrix ****************/
     agedc=vector(1,n);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     cod=ivector(1,n);  {
     weight=vector(1,n);    int i;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    int l=1, lmax=20;
     mint=matrix(1,maxwav,1,n);    double k1,k2;
     anint=matrix(1,maxwav,1,n);    double p2[MAXPARM+1]; /* identical to x */
     s=imatrix(1,maxwav+1,1,n);    double res;
     adl=imatrix(1,maxwav+1,1,n);        double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     tab=ivector(1,NCOVMAX);    double fx;
     ncodemax=ivector(1,8);    int k=0,kmax=10;
     double l1;
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {    fx=func(x);
       if ((i >= firstobs) && (i <=lastobs)) {    for (i=1;i<=npar;i++) p2[i]=x[i];
            for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
         for (j=maxwav;j>=1;j--){      l1=pow(10,l);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      delts=delt;
           strcpy(line,stra);      for(k=1 ; k <kmax; k=k+1){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        delt = delta*(l1*k);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        p2[theta]=x[theta] +delt;
         }        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
                p2[theta]=x[theta]-delt;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        k2=func(p2)-fx;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for (j=ncov;j>=1;j--){  #endif
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         num[i]=atol(stra);          k=kmax;
                }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          k=kmax; l=lmax*10.;
         }
         i=i+1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       }          delts=delt;
     }        }
     /* printf("ii=%d", ij);      }
        scanf("%d",i);*/    }
   imx=i-1; /* Number of individuals */    delti[theta]=delts;
     return res; 
   /* for (i=1; i<=imx; i++){    
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     }  {
     int i;
     for (i=1; i<=imx; i++)    int l=1, l1, lmax=20;
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
   /* Calculation of the number of parameter from char model*/    int k;
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    fx=func(x);
   Tvaraff=ivector(1,15);    for (k=1; k<=2; k++) {
   Tvard=imatrix(1,15,1,2);      for (i=1;i<=npar;i++) p2[i]=x[i];
   Tage=ivector(1,15);            p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if (strlen(model) >1){      k1=func(p2)-fx;
     j=0, j1=0, k1=1, k2=1;    
     j=nbocc(model,'+');      p2[thetai]=x[thetai]+delti[thetai]/k;
     j1=nbocc(model,'*');      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     cptcovn=j+1;      k2=func(p2)-fx;
     cptcovprod=j1;    
          p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     strcpy(modelsav,model);      k3=func(p2)-fx;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    
       printf("Error. Non available option model=%s ",model);      p2[thetai]=x[thetai]-delti[thetai]/k;
       goto end;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k4=func(p2)-fx;
          res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(i=(j+1); i>=1;i--){  #ifdef DEBUG
       cutv(stra,strb,modelsav,'+');      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  #endif
       /*scanf("%d",i);*/    }
       if (strchr(strb,'*')) {    return res;
         cutv(strd,strc,strb,'*');  }
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;  /************** Inverse of matrix **************/
           cutv(strb,stre,strd,'V');  void ludcmp(double **a, int n, int *indx, double *d) 
           Tvar[i]=atoi(stre);  { 
           cptcovage++;    int i,imax,j,k; 
             Tage[cptcovage]=i;    double big,dum,sum,temp; 
             /*printf("stre=%s ", stre);*/    double *vv; 
         }   
         else if (strcmp(strd,"age")==0) {    vv=vector(1,n); 
           cptcovprod--;    *d=1.0; 
           cutv(strb,stre,strc,'V');    for (i=1;i<=n;i++) { 
           Tvar[i]=atoi(stre);      big=0.0; 
           cptcovage++;      for (j=1;j<=n;j++) 
           Tage[cptcovage]=i;        if ((temp=fabs(a[i][j])) > big) big=temp; 
         }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         else {      vv[i]=1.0/big; 
           cutv(strb,stre,strc,'V');    } 
           Tvar[i]=ncov+k1;    for (j=1;j<=n;j++) { 
           cutv(strb,strc,strd,'V');      for (i=1;i<j;i++) { 
           Tprod[k1]=i;        sum=a[i][j]; 
           Tvard[k1][1]=atoi(strc);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           Tvard[k1][2]=atoi(stre);        a[i][j]=sum; 
           Tvar[cptcovn+k2]=Tvard[k1][1];      } 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      big=0.0; 
           for (k=1; k<=lastobs;k++)      for (i=j;i<=n;i++) { 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        sum=a[i][j]; 
           k1++;        for (k=1;k<j;k++) 
           k2=k2+2;          sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       else {          big=dum; 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          imax=i; 
        /*  scanf("%d",i);*/        } 
       cutv(strd,strc,strb,'V');      } 
       Tvar[i]=atoi(strc);      if (j != imax) { 
       }        for (k=1;k<=n;k++) { 
       strcpy(modelsav,stra);            dum=a[imax][k]; 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          a[imax][k]=a[j][k]; 
         scanf("%d",i);*/          a[j][k]=dum; 
     }        } 
 }        *d = -(*d); 
          vv[imax]=vv[j]; 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      } 
   printf("cptcovprod=%d ", cptcovprod);      indx[j]=imax; 
   scanf("%d ",i);*/      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fclose(fic);      if (j != n) { 
         dum=1.0/(a[j][j]); 
     /*  if(mle==1){*/        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     if (weightopt != 1) { /* Maximisation without weights*/      } 
       for(i=1;i<=n;i++) weight[i]=1.0;    } 
     }    free_vector(vv,1,n);  /* Doesn't work */
     /*-calculation of age at interview from date of interview and age at death -*/  ;
     agev=matrix(1,maxwav,1,imx);  } 
   
    for (i=1; i<=imx; i++)  void lubksb(double **a, int n, int *indx, double b[]) 
      for(m=2; (m<= maxwav); m++)  { 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    int i,ii=0,ip,j; 
          anint[m][i]=9999;    double sum; 
          s[m][i]=-1;   
        }    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
     for (i=1; i<=imx; i++)  {      sum=b[ip]; 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      b[ip]=b[i]; 
       for(m=1; (m<= maxwav); m++){      if (ii) 
         if(s[m][i] >0){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           if (s[m][i] == nlstate+1) {      else if (sum) ii=i; 
             if(agedc[i]>0)      b[i]=sum; 
               if(moisdc[i]!=99 && andc[i]!=9999)    } 
               agev[m][i]=agedc[i];    for (i=n;i>=1;i--) { 
             else {      sum=b[i]; 
               if (andc[i]!=9999){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      b[i]=sum/a[i][i]; 
               agev[m][i]=-1;    } 
               }  } 
             }  
           }  void pstamp(FILE *fichier)
           else if(s[m][i] !=9){ /* Should no more exist */  {
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             if(mint[m][i]==99 || anint[m][i]==9999)  }
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){  /************ Frequencies ********************/
               agemin=agev[m][i];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  {  /* Some frequencies */
             }    
             else if(agev[m][i] >agemax){    int i, m, jk, k1,i1, j1, bool, z1,j;
               agemax=agev[m][i];    int first;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double ***freq; /* Frequencies */
             }    double *pp, **prop;
             /*agev[m][i]=anint[m][i]-annais[i];*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             /*   agev[m][i] = age[i]+2*m;*/    char fileresp[FILENAMELENGTH];
           }    
           else { /* =9 */    pp=vector(1,nlstate);
             agev[m][i]=1;    prop=matrix(1,nlstate,iagemin,iagemax+3);
             s[m][i]=-1;    strcpy(fileresp,"p");
           }    strcat(fileresp,fileres);
         }    if((ficresp=fopen(fileresp,"w"))==NULL) {
         else /*= 0 Unknown */      printf("Problem with prevalence resultfile: %s\n", fileresp);
           agev[m][i]=1;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       }      exit(0);
        }
     }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for (i=1; i<=imx; i++)  {    j1=0;
       for(m=1; (m<= maxwav); m++){    
         if (s[m][i] > (nlstate+ndeath)) {    j=cptcoveff;
           printf("Error: Wrong value in nlstate or ndeath\n");      if (cptcovn<1) {j=1;ncodemax[1]=1;}
           goto end;  
         }    first=1;
       }  
     }    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
     /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    /*    j1++;
   */
     free_vector(severity,1,maxwav);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     free_imatrix(outcome,1,maxwav+1,1,n);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_vector(moisnais,1,n);          scanf("%d", i);*/
     free_vector(annais,1,n);        for (i=-5; i<=nlstate+ndeath; i++)  
     /* free_matrix(mint,1,maxwav,1,n);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
        free_matrix(anint,1,maxwav,1,n);*/            for(m=iagemin; m <= iagemax+3; m++)
     free_vector(moisdc,1,n);              freq[i][jk][m]=0;
     free_vector(andc,1,n);        
         for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
     wav=ivector(1,imx);            prop[i][m]=0;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        dateintsum=0;
            k2cpt=0;
     /* Concatenates waves */        for (i=1; i<=imx; i++) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          bool=1;
           if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             for (z1=1; z1<=cptcoveff; z1++)       
       Tcode=ivector(1,100);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       ncodemax[1]=1;                bool=0;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                        bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
    codtab=imatrix(1,100,1,10);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
    h=0;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
    m=pow(2,cptcoveff);              } 
            }
    for(k=1;k<=cptcoveff; k++){   
      for(i=1; i <=(m/pow(2,k));i++){          if (bool==1){
        for(j=1; j <= ncodemax[k]; j++){            for(m=firstpass; m<=lastpass; m++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              k2=anint[m][i]+(mint[m][i]/12.);
            h++;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
            if (h>m) h=1;codtab[h][k]=j;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
          }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      }                if (m<lastpass) {
    }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
    /* Calculates basic frequencies. Computes observed prevalence at single age                }
        and prints on file fileres'p'. */                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                      dateintsum=dateintsum+k2;
                      k2cpt++;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                /*}*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        } /* end i */
               
     /* For Powell, parameters are in a vector p[] starting at p[1]        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        pstamp(ficresp);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     if(mle==1){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficresp, "**********\n#");
     }          fprintf(ficlog, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /*--------- results files --------------*/          fprintf(ficlog, "**********\n#");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        }
          for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
    jk=1;        fprintf(ficresp, "\n");
    fprintf(ficres,"# Parameters\n");        
    printf("# Parameters\n");        for(i=iagemin; i <= iagemax+3; i++){
    for(i=1,jk=1; i <=nlstate; i++){          if(i==iagemax+3){
      for(k=1; k <=(nlstate+ndeath); k++){            fprintf(ficlog,"Total");
        if (k != i)          }else{
          {            if(first==1){
            printf("%d%d ",i,k);              first=0;
            fprintf(ficres,"%1d%1d ",i,k);              printf("See log file for details...\n");
            for(j=1; j <=ncovmodel; j++){            }
              printf("%f ",p[jk]);            fprintf(ficlog,"Age %d", i);
              fprintf(ficres,"%f ",p[jk]);          }
              jk++;          for(jk=1; jk <=nlstate ; jk++){
            }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
            printf("\n");              pp[jk] += freq[jk][m][i]; 
            fprintf(ficres,"\n");          }
          }          for(jk=1; jk <=nlstate ; jk++){
      }            for(m=-1, pos=0; m <=0 ; m++)
    }              pos += freq[jk][m][i];
  if(mle==1){            if(pp[jk]>=1.e-10){
     /* Computing hessian and covariance matrix */              if(first==1){
     ftolhess=ftol; /* Usually correct */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     hesscov(matcov, p, npar, delti, ftolhess, func);              }
  }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(ficres,"# Scales\n");            }else{
     printf("# Scales\n");              if(first==1)
      for(i=1,jk=1; i <=nlstate; i++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j <=nlstate+ndeath; j++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if (j!=i) {            }
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){          for(jk=1; jk <=nlstate ; jk++){
             printf(" %.5e",delti[jk]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             fprintf(ficres," %.5e",delti[jk]);              pp[jk] += freq[jk][m][i];
             jk++;          }       
           }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           printf("\n");            pos += pp[jk];
           fprintf(ficres,"\n");            posprop += prop[jk][i];
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
      }            if(pos>=1.e-5){
                  if(first==1)
     k=1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fprintf(ficres,"# Covariance\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("# Covariance\n");            }else{
     for(i=1;i<=npar;i++){              if(first==1)
       /*  if (k>nlstate) k=1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       i1=(i-1)/(ncovmodel*nlstate)+1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            }
       printf("%s%d%d",alph[k],i1,tab[i]);*/            if( i <= iagemax){
       fprintf(ficres,"%3d",i);              if(pos>=1.e-5){
       printf("%3d",i);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(j=1; j<=i;j++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficres," %.5e",matcov[i][j]);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         printf(" %.5e",matcov[i][j]);              }
       }              else
       fprintf(ficres,"\n");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       printf("\n");            }
       k++;          }
     }          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
     while((c=getc(ficpar))=='#' && c!= EOF){            for(m=-1; m <=nlstate+ndeath; m++)
       ungetc(c,ficpar);              if(freq[jk][m][i] !=0 ) {
       fgets(line, MAXLINE, ficpar);              if(first==1)
       puts(line);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fputs(line,ficparo);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     }              }
     ungetc(c,ficpar);          if(i <= iagemax)
              fprintf(ficresp,"\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          if(first==1)
                printf("Others in log...\n");
     if (fage <= 2) {          fprintf(ficlog,"\n");
       bage = agemin;        }
       fage = agemax;        /*}*/
     }    }
     dateintmean=dateintsum/k2cpt; 
     fprintf(ficres,"# agemin agemax for life expectancy.\n");   
     fclose(ficresp);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     while((c=getc(ficpar))=='#' && c!= EOF){    /* End of Freq */
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************ Prevalence ********************/
     fputs(line,ficparo);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
   ungetc(c,ficpar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);       We still use firstpass and lastpass as another selection.
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);   
          int i, m, jk, k1, i1, j1, bool, z1,j;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***freq; /* Frequencies */
     ungetc(c,ficpar);    double *pp, **prop;
     fgets(line, MAXLINE, ficpar);    double pos,posprop; 
     puts(line);    double  y2; /* in fractional years */
     fputs(line,ficparo);    int iagemin, iagemax;
   }    int first; /** to stop verbosity which is redirected to log file */
   ungetc(c,ficpar);  
      iagemin= (int) agemin;
     iagemax= (int) agemax;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    /*pp=vector(1,nlstate);*/
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fscanf(ficpar,"pop_based=%d\n",&popbased);    j1=0;
    fprintf(ficparo,"pop_based=%d\n",popbased);      
    fprintf(ficres,"pop_based=%d\n",popbased);      /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    first=1;
     fgets(line, MAXLINE, ficpar);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     puts(line);      /*for(i1=1; i1<=ncodemax[k1];i1++){
     fputs(line,ficparo);        j1++;*/
   }        
   ungetc(c,ficpar);        for (i=1; i<=nlstate; i++)  
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);          for(m=iagemin; m <= iagemax+3; m++)
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);            prop[i][m]=0.0;
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);       
         for (i=1; i<=imx; i++) { /* Each individual */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);          bool=1;
           if  (cptcovn>0) {
  /*------------ gnuplot -------------*/            for (z1=1; z1<=cptcoveff; z1++) 
 chdir(pathcd);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if((ficgp=fopen("graph.plt","w"))==NULL) {                bool=0;
     printf("Problem with file graph.gp");goto end;          } 
   }          if (bool==1) { 
 #ifdef windows            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fprintf(ficgp,"cd \"%s\" \n",pathc);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 #endif              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 m=pow(2,cptcoveff);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
  /* 1eme*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   for (cpt=1; cpt<= nlstate ; cpt ++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
    for (k1=1; k1<= m ; k1 ++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #ifdef windows                  prop[s[m][i]][iagemax+3] += weight[i]; 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                } 
 #endif              }
 #ifdef unix            } /* end selection of waves */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          }
 #endif        }
         for(i=iagemin; i <= iagemax+3; i++){  
 for (i=1; i<= nlstate ; i ++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            posprop += prop[jk][i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } 
 }          
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){     
     for (i=1; i<= nlstate ; i ++) {            if( i <=  iagemax){ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(posprop>=1.e-5){ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                probs[i][jk][j1]= prop[jk][i]/posprop;
 }              } else{
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                if(first==1){
      for (i=1; i<= nlstate ; i ++) {                  first=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                }
 }                }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            } 
 #ifdef unix          }/* end jk */ 
 fprintf(ficgp,"\nset ter gif small size 400,300");        }/* end i */ 
 #endif      /*} *//* end i1 */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    } /* end j1 */
    }    
   }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /*2 eme*/    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   for (k1=1; k1<= m ; k1 ++) {  }  /* End of prevalence */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
      /************* Waves Concatenation ***************/
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  {
       for (j=1; j<= nlstate+1 ; j ++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       Death is a valid wave (if date is known).
   else fprintf(ficgp," \%%*lf (\%%*lf)");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 }         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       and mw[mi+1][i]. dh depends on stepm.
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    int i, mi, m;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");       double sum=0., jmean=0.;*/
 }      int first;
       fprintf(ficgp,"\" t\"\" w l 0,");    int j, k=0,jk, ju, jl;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double sum=0.;
       for (j=1; j<= nlstate+1 ; j ++) {    first=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    jmin=1e+5;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    jmax=-1;
 }      jmean=0.;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for(i=1; i<=imx; i++){
       else fprintf(ficgp,"\" t\"\" w l 0,");      mi=0;
     }      m=firstpass;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      while(s[m][i] <= nlstate){
   }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            mw[++mi][i]=m;
   /*3eme*/        if(m >=lastpass)
           break;
   for (k1=1; k1<= m ; k1 ++) {        else
     for (cpt=1; cpt<= nlstate ; cpt ++) {          m++;
       k=2+nlstate*(cpt-1);      }/* end while */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      if (s[m][i] > nlstate){
       for (i=1; i< nlstate ; i ++) {        mi++;     /* Death is another wave */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        /* if(mi==0)  never been interviewed correctly before death */
       }           /* Only death is a correct wave */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        mw[mi][i]=m;
     }      }
   }  
        wav[i]=mi;
   /* CV preval stat */      if(mi==0){
   for (k1=1; k1<= m ; k1 ++) {        nbwarn++;
     for (cpt=1; cpt<nlstate ; cpt ++) {        if(first==0){
       k=3;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          first=1;
       for (i=1; i< nlstate ; i ++)        }
         fprintf(ficgp,"+$%d",k+i+1);        if(first==1){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
              }
       l=3+(nlstate+ndeath)*cpt;      } /* end mi==0 */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    } /* End individuals */
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;    for(i=1; i<=imx; i++){
         fprintf(ficgp,"+$%d",l+i+1);      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            dh[mi][i]=1;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        else{
     }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }              if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /* proba elementaires */              if(j==0) j=1;  /* Survives at least one month after exam */
    for(i=1,jk=1; i <=nlstate; i++){              else if(j<0){
     for(k=1; k <=(nlstate+ndeath); k++){                nberr++;
       if (k != i) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(j=1; j <=ncovmodel; j++){                j=1; /* Temporary Dangerous patch */
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           /*fprintf(ficgp,"%s",alph[1]);*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           jk++;              }
           fprintf(ficgp,"\n");              k=k+1;
         }              if (j >= jmax){
       }                jmax=j;
     }                ijmax=i;
     }              }
               if (j <= jmin){
   for(jk=1; jk <=m; jk++) {                jmin=j;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);                ijmin=i;
    i=1;              }
    for(k2=1; k2<=nlstate; k2++) {              sum=sum+j;
      k3=i;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      for(k=1; k<=(nlstate+ndeath); k++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        if (k != k2){            }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
 ij=1;          else{
         for(j=3; j <=ncovmodel; j++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;            k=k+1;
           }            if (j >= jmax) {
           else              jmax=j;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              ijmax=i;
         }            }
           fprintf(ficgp,")/(1");            else if (j <= jmin){
                      jmin=j;
         for(k1=1; k1 <=nlstate; k1++){                ijmin=i;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            }
 ij=1;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           for(j=3; j <=ncovmodel; j++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            if(j<0){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              nberr++;
             ij++;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           else            }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            sum=sum+j;
           }          }
           fprintf(ficgp,")");          jk= j/stepm;
         }          jl= j -jk*stepm;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          ju= j -(jk+1)*stepm;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         i=i+ncovmodel;            if(jl==0){
        }              dh[mi][i]=jk;
      }              bh[mi][i]=0;
    }            }else{ /* We want a negative bias in order to only have interpolation ie
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                    * to avoid the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
   fclose(ficgp);            }
   /* end gnuplot */          }else{
                if(jl <= -ju){
 chdir(path);              dh[mi][i]=jk;
                  bh[mi][i]=jl;       /* bias is positive if real duration
     free_ivector(wav,1,imx);                                   * is higher than the multiple of stepm and negative otherwise.
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                                   */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              }
     free_ivector(num,1,n);            else{
     free_vector(agedc,1,n);              dh[mi][i]=jk+1;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/              bh[mi][i]=ju;
     fclose(ficparo);            }
     fclose(ficres);            if(dh[mi][i]==0){
     /*  }*/              dh[mi][i]=1; /* At least one step */
                  bh[mi][i]=ju; /* At least one step */
    /*________fin mle=1_________*/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
           } /* end if mle */
          }
     /* No more information from the sample is required now */      } /* end wave */
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    jmean=sum/k;
     ungetc(c,ficpar);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     puts(line);   }
     fputs(line,ficparo);  
   }  /*********** Tricode ****************************/
   ungetc(c,ficpar);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
    {
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
 /*--------- index.htm --------*/     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     /* nbcode[Tvar[j]][1]= 
   strcpy(optionfilehtm,optionfile);    */
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     printf("Problem with %s \n",optionfilehtm);goto end;    int modmaxcovj=0; /* Modality max of covariates j */
   }    int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>  
 Total number of observations=%d <br>    cptcoveff=0; 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>   
 <hr  size=\"2\" color=\"#EC5E5E\">    for (k=-1; k < maxncov; k++) Ndum[k]=0;
 <li>Outputs files<br><br>\n    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    /* Loop on covariates without age and products */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>                                 modality of this covariate Vj*/ 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>                                      * If product of Vn*Vm, still boolean *:
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);                                        modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
  fprintf(fichtm," <li>Graphs</li><p>");          modmaxcovj=ij; 
         else if (ij < modmincovj) 
  m=cptcoveff;          modmincovj=ij; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
  j1=0;          exit(1);
  for(k1=1; k1<=m;k1++){        }else
    for(i1=1; i1<=ncodemax[k1];i1++){        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
        j1++;        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
        if (cptcovn > 0) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        /* getting the maximum value of the modality of the covariate
          for (cpt=1; cpt<=cptcoveff;cpt++)           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);           female is 1, then modmaxcovj=1.*/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      }
        }      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      cptcode=modmaxcovj;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
        for(cpt=1; cpt<nlstate;cpt++){     /*for (i=0; i<=cptcode; i++) {*/
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
        }        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     for(cpt=1; cpt<=nlstate;cpt++) {          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        }
 interval) in state (%d): v%s%d%d.gif <br>        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);             historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
      }      } /* Ndum[-1] number of undefined modalities */
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
      }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and         modmincovj=3; modmaxcovj = 7;
 health expectancies in states (1) and (2): e%s%d.gif<br>         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 fprintf(fichtm,"\n</body>");         variables V1_1 and V1_2.
    }         nbcode[Tvar[j]][ij]=k;
  }         nbcode[Tvar[j]][1]=0;
 fclose(fichtm);         nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
   /*--------------- Prevalence limit --------------*/      */
        ij=1; /* ij is similar to i but can jumps over null modalities */
   strcpy(filerespl,"pl");      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   strcat(filerespl,fileres);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          /*recode from 0 */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                                       k is a modality. If we have model=V1+V1*sex 
   fprintf(ficrespl,"#Prevalence limit\n");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(ficrespl,"#Age ");            ij++;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          }
   fprintf(ficrespl,"\n");          if (ij > ncodemax[j]) break; 
          }  /* end of loop on */
   prlim=matrix(1,nlstate,1,nlstate);      } /* end of loop on modality */ 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   k=0;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   agebase=agemin;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   agelim=agemax;     Ndum[ij]++; 
   ftolpl=1.e-10;   } 
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}   ij=1;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   for(cptcov=1;cptcov<=i1;cptcov++){     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     if((Ndum[i]!=0) && (i<=ncovcol)){
         k=k+1;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       Tvaraff[ij]=i; /*For printing (unclear) */
         fprintf(ficrespl,"\n#******");       ij++;
         for(j=1;j<=cptcoveff;j++)     }else
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         Tvaraff[ij]=0;
         fprintf(ficrespl,"******\n");   }
           ij--;
         for (age=agebase; age<=agelim; age++){   cptcoveff=ij; /*Number of total covariates*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );  }
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  /*********** Health Expectancies ****************/
         }  
       }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     }  
   fclose(ficrespl);  {
     /* Health expectancies, no variances */
   /*------------- h Pij x at various ages ------------*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      int nhstepma, nstepma; /* Decreasing with age */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double age, agelim, hf;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double ***p3mat;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double eip;
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    pstamp(ficreseij);
      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficreseij,"# Age");
   /*if (stepm<=24) stepsize=2;*/    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   agelim=AGESUP;        fprintf(ficreseij," e%1d%1d ",i,j);
   hstepm=stepsize*YEARM; /* Every year of age */      }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      fprintf(ficreseij," e%1d. ",i);
      }
   k=0;    fprintf(ficreseij,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    if(estepm < stepm){
         fprintf(ficrespij,"\n#****** ");      printf ("Problem %d lower than %d\n",estepm, stepm);
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    else  hstepm=estepm;   
         fprintf(ficrespij,"******\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
             * This is mainly to measure the difference between two models: for example
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     * if stepm=24 months pijx are given only every 2 years and by summing them
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     * we are calculating an estimate of the Life Expectancy assuming a linear 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     * progression in between and thus overestimating or underestimating according
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * to the curvature of the survival function. If, for the same date, we 
           oldm=oldms;savm=savms;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * to compare the new estimate of Life expectancy with the same linear 
           fprintf(ficrespij,"# Age");     * hypothesis. A more precise result, taking into account a more precise
           for(i=1; i<=nlstate;i++)     * curvature will be obtained if estepm is as small as stepm. */
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    /* For example we decided to compute the life expectancy with the smallest unit */
           fprintf(ficrespij,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           for (h=0; h<=nhstepm; h++){       nhstepm is the number of hstepm from age to agelim 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       nstepm is the number of stepm from age to agelin. 
             for(i=1; i<=nlstate;i++)       Look at hpijx to understand the reason of that which relies in memory size
               for(j=1; j<=nlstate+ndeath;j++)       and note for a fixed period like estepm months */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             fprintf(ficrespij,"\n");       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficrespij,"\n");       results. So we changed our mind and took the option of the best precision.
         }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
     agelim=AGESUP;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fclose(ficrespij);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   if(stepm == 1) {  /* nhstepm age range expressed in number of stepm */
   /*---------- Forecasting ------------------*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   /*printf("calage= %f", calagedate);*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   strcpy(fileresf,"f");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcat(fileresf,fileres);      /* if (stepm >= YEARM) hstepm=1;*/
   if((ficresf=fopen(fileresf,"w"))==NULL) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;  
   }      /* If stepm=6 months */
   printf("Computing forecasting: result on file '%s' \n", fileresf);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   free_matrix(mint,1,maxwav,1,n);      
   free_matrix(anint,1,maxwav,1,n);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   free_matrix(agev,1,maxwav,1,imx);      
   /* Mobile average */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if (mobilav==1) {      
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computing expectancies */
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      for(i=1; i<=nlstate;i++)
       for (i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           mobaverage[(int)agedeb][i][cptcod]=0.;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                
     for (agedeb=bage+4; agedeb<=fage; agedeb++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      fprintf(ficreseij,"%3.0f",age );
           }      for(i=1; i<=nlstate;i++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        eip=0;
         }        for(j=1; j<=nlstate;j++){
       }          eip +=eij[i][j][(int)age];
     }            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   }        }
         fprintf(ficreseij,"%9.4f", eip );
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   if (stepm<=12) stepsize=1;      fprintf(ficreseij,"\n");
       
   agelim=AGESUP;    }
   /*hstepm=stepsize*YEARM; *//* Every year of age */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=1;    printf("\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    fprintf(ficlog,"\n");
   yp1=modf(dateintmean,&yp);    
   anprojmean=yp;  }
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;  {
   if(jprojmean==0) jprojmean=1;    /* Covariances of health expectancies eij and of total life expectancies according
   if(mprojmean==0) jprojmean=1;     to initial status i, ei. .
     */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
   if (popforecast==1) {    double age, agelim, hf;
     if((ficpop=fopen(popfile,"r"))==NULL)    {    double ***p3matp, ***p3matm, ***varhe;
       printf("Problem with population file : %s\n",popfile);goto end;    double **dnewm,**doldm;
     }    double *xp, *xm;
     popage=ivector(0,AGESUP);    double **gp, **gm;
     popeffectif=vector(0,AGESUP);    double ***gradg, ***trgradg;
     popcount=vector(0,AGESUP);    int theta;
   
     i=1;      double eip, vip;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  
       {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         i=i+1;    xp=vector(1,npar);
       }    xm=vector(1,npar);
     imx=i;    dnewm=matrix(1,nlstate*nlstate,1,npar);
        doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    
   }    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresstdeij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(i=1; i<=nlstate;i++){
       k=k+1;      for(j=1; j<=nlstate;j++)
       fprintf(ficresf,"\n#******");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficresstdeij," e%1d. ",i);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    fprintf(ficresstdeij,"\n");
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");    pstamp(ficrescveij);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       if (popforecast==1)  fprintf(ficresf," [Population]");    fprintf(ficrescveij,"# Age");
        for(i=1; i<=nlstate;i++)
       for (cpt=0; cpt<4;cpt++) {      for(j=1; j<=nlstate;j++){
         fprintf(ficresf,"\n");        cptj= (j-1)*nlstate+i;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */            cptj2= (j2-1)*nlstate+i2;
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            if(cptj2 <= cptj)
         nhstepm = nhstepm/hstepm;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/          }
       }
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficrescveij,"\n");
         oldm=oldms;savm=savms;    
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if(estepm < stepm){
              printf ("Problem %d lower than %d\n",estepm, stepm);
         for (h=0; h<=nhstepm; h++){    }
           if (h==(int) (calagedate+YEARM*cpt)) {    else  hstepm=estepm;   
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);    /* We compute the life expectancy from trapezoids spaced every estepm months
           }     * This is mainly to measure the difference between two models: for example
           for(j=1; j<=nlstate+ndeath;j++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
             kk1=0.;kk2=0;     * we are calculating an estimate of the Life Expectancy assuming a linear 
             for(i=1; i<=nlstate;i++) {             * progression in between and thus overestimating or underestimating according
               if (mobilav==1)     * to the curvature of the survival function. If, for the same date, we 
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               else {     * to compare the new estimate of Life expectancy with the same linear 
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * hypothesis. A more precise result, taking into account a more precise
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/     * curvature will be obtained if estepm is as small as stepm. */
               }  
     /* For example we decided to compute the life expectancy with the smallest unit */
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             }       nhstepm is the number of hstepm from age to agelim 
                 nstepm is the number of stepm from age to agelin. 
             if (h==(int)(calagedate+12*cpt)){       Look at hpijx to understand the reason of that which relies in memory size
               fprintf(ficresf," %.3f", kk1);       and note for a fixed period like estepm months */
                  /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed only each two years of age and if
           }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
     }    /* If stepm=6 months */
   }    /* nhstepm age range expressed in number of stepm */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    agelim=AGESUP;
   if (popforecast==1) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     free_ivector(popage,0,AGESUP);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(popeffectif,0,AGESUP);    /* if (stepm >= YEARM) hstepm=1;*/
     free_vector(popcount,0,AGESUP);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }    
   free_imatrix(s,1,maxwav+1,1,n);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(weight,1,n);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresf);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }/* End forecasting */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   else{    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     erreur=108;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);  
   }    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /*---------- Health expectancies and variances ------------*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   strcpy(filerest,"t");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {      /* If stepm=6 months */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
   strcpy(filerese,"e");      /* Computing  Variances of health expectancies */
   strcat(filerese,fileres);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   if((ficreseij=fopen(filerese,"w"))==NULL) {         decrease memory allocation */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
  strcpy(fileresv,"v");        }
   strcat(fileresv,fileres);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    
   }        for(j=1; j<= nlstate; j++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   k=0;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   for(cptcov=1;cptcov<=i1;cptcov++){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }
       k=k+1;          }
       fprintf(ficrest,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)       
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(ij=1; ij<= nlstate*nlstate; ij++)
       fprintf(ficrest,"******\n");          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       fprintf(ficreseij,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)      }/* End theta */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      
       fprintf(ficreseij,"******\n");      
       for(h=0; h<=nhstepm-1; h++)
       fprintf(ficresvij,"\n#****** ");        for(j=1; j<=nlstate*nlstate;j++)
       for(j=1;j<=cptcoveff;j++)          for(theta=1; theta <=npar; theta++)
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficresvij,"******\n");      
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       for(ij=1;ij<=nlstate*nlstate;ij++)
       oldm=oldms;savm=savms;        for(ji=1;ji<=nlstate*nlstate;ji++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            varhe[ij][ji][(int)age] =0.;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;       printf("%d|",(int)age);fflush(stdout);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             for(h=0;h<=nhstepm-1;h++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for(k=0;k<=nhstepm-1;k++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficrest,"\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                  for(ij=1;ij<=nlstate*nlstate;ij++)
       hf=1;            for(ji=1;ji<=nlstate*nlstate;ji++)
       if (stepm >= YEARM) hf=stepm/YEARM;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       epj=vector(1,nlstate+1);        }
       for(age=bage; age <=fage ;age++){      }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {      /* Computing expectancies */
           for(i=1; i<=nlstate;i++)      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
             prlim[i][i]=probs[(int)age][i][k];      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++)
                  for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficrest," %.0f",age);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  
           }          }
           epj[nlstate+1] +=epj[j];  
         }      fprintf(ficresstdeij,"%3.0f",age );
         for(i=1, vepp=0.;i <=nlstate;i++)      for(i=1; i<=nlstate;i++){
           for(j=1;j <=nlstate;j++)        eip=0.;
             vepp += vareij[i][j][(int)age];        vip=0.;
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        for(j=1; j<=nlstate;j++){
         for(j=1;j <=nlstate;j++){          eip += eij[i][j][(int)age];
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         fprintf(ficrest,"\n");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       }        }
     }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   }      }
              fprintf(ficresstdeij,"\n");
          
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
  fclose(ficreseij);        for(j=1; j<=nlstate;j++){
  fclose(ficresvij);          cptj= (j-1)*nlstate+i;
   fclose(ficrest);          for(i2=1; i2<=nlstate;i2++)
   fclose(ficpar);            for(j2=1; j2<=nlstate;j2++){
   free_vector(epj,1,nlstate+1);              cptj2= (j2-1)*nlstate+i2;
   /*  scanf("%d ",i); */              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   /*------- Variance limit prevalence------*/              }
         }
 strcpy(fileresvpl,"vpl");      fprintf(ficrescveij,"\n");
   strcat(fileresvpl,fileres);     
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     exit(0);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  k=0;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  for(cptcov=1;cptcov<=i1;cptcov++){    printf("\n");
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"\n");
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");    free_vector(xm,1,npar);
      for(j=1;j<=cptcoveff;j++)    free_vector(xp,1,npar);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      fprintf(ficresvpl,"******\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
          free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  }
      oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /************ Variance ******************/
    }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
  }  {
     /* Variance of health expectancies */
   fclose(ficresvpl);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   /*---------- End : free ----------------*/    double **dnewm,**doldm;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int k, cptcode;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double *xp;
      double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double **gradgp, **trgradgp; /* for var p point j */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *gpp, *gmp; /* for var p point j */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double ***p3mat;
      double age,agelim, hf;
   free_matrix(matcov,1,npar,1,npar);    double ***mobaverage;
   free_vector(delti,1,npar);    int theta;
      char digit[4];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    char digitp[25];
   
   if(erreur >0)    char fileresprobmorprev[FILENAMELENGTH];
     printf("End of Imach with error %d\n",erreur);  
   else   printf("End of Imach\n");    if(popbased==1){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      if(mobilav!=0)
          strcpy(digitp,"-populbased-mobilav-");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      else strcpy(digitp,"-populbased-nomobil-");
   /*printf("Total time was %d uSec.\n", total_usecs);*/    }
   /*------ End -----------*/    else 
       strcpy(digitp,"-stablbased-");
   
  end:    if (mobilav!=0) {
 #ifdef windows      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  chdir(pathcd);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 #endif        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
  system("..\\gp37mgw\\wgnuplot graph.plt");      }
     }
 #ifdef windows  
   while (z[0] != 'q') {    strcpy(fileresprobmorprev,"prmorprev"); 
     chdir(pathcd);    sprintf(digit,"%-d",ij);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     scanf("%s",z);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     if (z[0] == 'c') system("./imach");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     else if (z[0] == 'e') {    strcat(fileresprobmorprev,fileres);
       chdir(path);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       system(optionfilehtm);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     else if (z[0] == 'q') exit(0);    }
   }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 #endif   
 }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.21  
changed lines
  Added in v.1.145


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>