Diff for /imach/src/imach.c between versions 1.6 and 1.124

version 1.6, 2001/05/02 17:47:10 version 1.124, 2006/03/22 17:13:53
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.124  2006/03/22 17:13:53  lievre
   individuals from different ages are interviewed on their health status    Parameters are printed with %lf instead of %f (more numbers after the comma).
   or degree of  disability. At least a second wave of interviews    The log-likelihood is printed in the log file
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.123  2006/03/20 10:52:43  brouard
   waves and are computed for each degree of severity of disability (number    * imach.c (Module): <title> changed, corresponds to .htm file
   of life states). More degrees you consider, more time is necessary to    name. <head> headers where missing.
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    * imach.c (Module): Weights can have a decimal point as for
   the probabibility to be observed in state j at the second wave conditional    English (a comma might work with a correct LC_NUMERIC environment,
   to be observed in state i at the first wave. Therefore the model is:    otherwise the weight is truncated).
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Modification of warning when the covariates values are not 0 or
   is a covariate. If you want to have a more complex model than "constant and    1.
   age", you should modify the program where the markup    Version 0.98g
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   The advantage that this computer programme claims, comes from that if the    English (a comma might work with a correct LC_NUMERIC environment,
   delay between waves is not identical for each individual, or if some    otherwise the weight is truncated).
   individual missed an interview, the information is not rounded or lost, but    Modification of warning when the covariates values are not 0 or
   taken into account using an interpolation or extrapolation.    1.
   hPijx is the probability to be    Version 0.98g
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.121  2006/03/16 17:45:01  lievre
   unobserved intermediate  states. This elementary transition (by month or    * imach.c (Module): Comments concerning covariates added
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): refinements in the computation of lli if
   and the contribution of each individual to the likelihood is simply hPijx.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.120  2006/03/16 15:10:38  lievre
      (Module): refinements in the computation of lli if
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    status=-2 in order to have more reliable computation if stepm is
            Institut national d'études démographiques, Paris.    not 1 month. Version 0.98f
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.119  2006/03/15 17:42:26  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Bug if status = -2, the loglikelihood was
   software can be distributed freely for non commercial use. Latest version    computed as likelihood omitting the logarithm. Version O.98e
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
 #include <math.h>    table of variances if popbased=1 .
 #include <stdio.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #include <stdlib.h>    (Module): Function pstamp added
 #include <unistd.h>    (Module): Version 0.98d
   
 #define MAXLINE 256    Revision 1.117  2006/03/14 17:16:22  brouard
 #define FILENAMELENGTH 80    (Module): varevsij Comments added explaining the second
 /*#define DEBUG*/    table of variances if popbased=1 .
 #define windows    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Function pstamp added
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Version 0.98d
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.116  2006/03/06 10:29:27  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.115  2006/02/27 12:17:45  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): One freematrix added in mlikeli! 0.98c
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.114  2006/02/26 12:57:58  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Some improvements in processing parameter
 #define AGESUP 130    filename with strsep.
 #define AGEBASE 40  
     Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 int nvar;    datafile was not closed, some imatrix were not freed and on matrix
 static int cptcov;    allocation too.
 int cptcovn, cptcovage=0;  
 int npar=NPARMAX;    Revision 1.112  2006/01/30 09:55:26  brouard
 int nlstate=2; /* Number of live states */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Comments can be added in data file. Missing date values
 int maxwav; /* Maxim number of waves */    can be a simple dot '.'.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.110  2006/01/25 00:51:50  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Lots of cleaning and bugs added (Gompertz)
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.109  2006/01/24 19:37:15  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Module): Comments (lines starting with a #) are allowed in data.
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.108  2006/01/19 18:05:42  lievre
   char filerese[FILENAMELENGTH];    Gnuplot problem appeared...
  FILE  *ficresvij;    To be fixed
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.107  2006/01/19 16:20:37  brouard
   char fileresvpl[FILENAMELENGTH];    Test existence of gnuplot in imach path
   
 #define NR_END 1    Revision 1.106  2006/01/19 13:24:36  brouard
 #define FREE_ARG char*    Some cleaning and links added in html output
 #define FTOL 1.0e-10  
     Revision 1.105  2006/01/05 20:23:19  lievre
 #define NRANSI    *** empty log message ***
 #define ITMAX 200  
     Revision 1.104  2005/09/30 16:11:43  lievre
 #define TOL 2.0e-4    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 #define CGOLD 0.3819660    that the person is alive, then we can code his/her status as -2
 #define ZEPS 1.0e-10    (instead of missing=-1 in earlier versions) and his/her
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define GOLD 1.618034    the healthy state at last known wave). Version is 0.98
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.102  2004/09/15 17:31:30  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Add the possibility to read data file including tab characters.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.101  2004/09/15 10:38:38  brouard
 #define rint(a) floor(a+0.5)    Fix on curr_time
   
 static double sqrarg;    Revision 1.100  2004/07/12 18:29:06  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Add version for Mac OS X. Just define UNIX in Makefile
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.99  2004/06/05 08:57:40  brouard
 int imx;    *** empty log message ***
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 int m,nb;    directly from the data i.e. without the need of knowing the health
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    state at each age, but using a Gompertz model: log u =a + b*age .
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    This is the basic analysis of mortality and should be done before any
 double **pmmij;    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 double *weight;    from other sources like vital statistic data.
 int **s; /* Status */  
 double *agedc, **covar, idx;    The same imach parameter file can be used but the option for mle should be -3.
 int **nbcode, *Tcode, *Tvar, **codtab;  
     Agnès, who wrote this part of the code, tried to keep most of the
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    former routines in order to include the new code within the former code.
 double ftolhess; /* Tolerance for computing hessian */  
     The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 static  int split( char *path, char *dirc, char *name )  
 {    Current limitations:
    char *s;                             /* pointer */    A) Even if you enter covariates, i.e. with the
    int  l1, l2;                         /* length counters */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.97  2004/02/20 13:25:42  lievre
    s = strrchr( path, '\\' );           /* find last / */    Version 0.96d. Population forecasting command line is (temporarily)
    if ( s == NULL ) {                   /* no directory, so use current */    suppressed.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       if ( getwd( dirc ) == NULL ) {    rewritten within the same printf. Workaround: many printfs.
 #else  
       extern char       *getcwd( );    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Repository): Using imachwizard code to output a more meaningful covariance
 #endif    matrix (cov(a12,c31) instead of numbers.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.94  2003/06/27 13:00:02  brouard
       strcpy( name, path );             /* we've got it */    Just cleaning
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.93  2003/06/25 16:33:55  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): On windows (cygwin) function asctime_r doesn't
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    exist so I changed back to asctime which exists.
       strcpy( name, s );                /* save file name */    (Module): Version 0.96b
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.92  2003/06/25 16:30:45  brouard
    }    (Module): On windows (cygwin) function asctime_r doesn't
    l1 = strlen( dirc );                 /* length of directory */    exist so I changed back to asctime which exists.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 /******************************************/    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 void replace(char *s, char*t)  
 {    Revision 1.90  2003/06/24 12:34:15  brouard
   int i;    (Module): Some bugs corrected for windows. Also, when
   int lg=20;    mle=-1 a template is output in file "or"mypar.txt with the design
   i=0;    of the covariance matrix to be input.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.89  2003/06/24 12:30:52  brouard
     (s[i] = t[i]);    (Module): Some bugs corrected for windows. Also, when
     if (t[i]== '\\') s[i]='/';    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   int i,j=0;    Revision 1.87  2003/06/18 12:26:01  brouard
   int lg=20;    Version 0.96
   i=0;  
   lg=strlen(s);    Revision 1.86  2003/06/17 20:04:08  brouard
   for(i=0; i<= lg; i++) {    (Module): Change position of html and gnuplot routines and added
   if  (s[i] == occ ) j++;    routine fileappend.
   }  
   return j;    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 void cutv(char *u,char *v, char*t, char occ)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   int i,lg,j,p=0;    assuming that the date of death was just one stepm after the
   i=0;    interview.
   for(j=0; j<=strlen(t)-1; j++) {    (Repository): Because some people have very long ID (first column)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    we changed int to long in num[] and we added a new lvector for
   }    memory allocation. But we also truncated to 8 characters (left
     truncation)
   lg=strlen(t);    (Repository): No more line truncation errors.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.84  2003/06/13 21:44:43  brouard
   }    * imach.c (Repository): Replace "freqsummary" at a correct
      u[p]='\0';    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
    for(j=0; j<= lg; j++) {    parcimony.
     if (j>=(p+1))(v[j-p-1] = t[j]);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   }  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /********************** nrerror ********************/  
     Revision 1.82  2003/06/05 15:57:20  brouard
 void nrerror(char error_text[])    Add log in  imach.c and  fullversion number is now printed.
 {  
   fprintf(stderr,"ERREUR ...\n");  */
   fprintf(stderr,"%s\n",error_text);  /*
   exit(1);     Interpolated Markov Chain
 }  
 /*********************** vector *******************/    Short summary of the programme:
 double *vector(int nl, int nh)    
 {    This program computes Healthy Life Expectancies from
   double *v;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    first survey ("cross") where individuals from different ages are
   if (!v) nrerror("allocation failure in vector");    interviewed on their health status or degree of disability (in the
   return v-nl+NR_END;    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /************************ free vector ******************/    computed from the time spent in each health state according to a
 void free_vector(double*v, int nl, int nh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   free((FREE_ARG)(v+nl-NR_END));    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /************************ivector *******************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int *ivector(long nl,long nh)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   int *v;    where the markup *Covariates have to be included here again* invites
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    you to do it.  More covariates you add, slower the
   if (!v) nrerror("allocation failure in ivector");    convergence.
   return v-nl+NR_END;  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /******************free ivector **************************/    identical for each individual. Also, if a individual missed an
 void free_ivector(int *v, long nl, long nh)    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   free((FREE_ARG)(v+nl-NR_END));  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /******************* imatrix *******************************/    split into an exact number (nh*stepm) of unobserved intermediate
 int **imatrix(long nrl, long nrh, long ncl, long nch)    states. This elementary transition (by month, quarter,
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    and the contribution of each individual to the likelihood is simply
   int **m;    hPijx.
    
   /* allocate pointers to rows */    Also this programme outputs the covariance matrix of the parameters but also
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    of the life expectancies. It also computes the period (stable) prevalence. 
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m -= nrl;             Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
   /* allocate rows and set pointers to them */    It is copyrighted identically to a GNU software product, ie programme and
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    software can be distributed freely for non commercial use. Latest version
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    can be accessed at http://euroreves.ined.fr/imach .
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    
      **********************************************************************/
   /* return pointer to array of pointers to rows */  /*
   return m;    main
 }    read parameterfile
     read datafile
 /****************** free_imatrix *************************/    concatwav
 void free_imatrix(m,nrl,nrh,ncl,nch)    freqsummary
       int **m;    if (mle >= 1)
       long nch,ncl,nrh,nrl;      mlikeli
      /* free an int matrix allocated by imatrix() */    print results files
 {    if mle==1 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));       computes hessian
   free((FREE_ARG) (m+nrl-NR_END));    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 /******************* matrix *******************************/    open html file
 double **matrix(long nrl, long nrh, long ncl, long nch)    period (stable) prevalence
 {     for age prevalim()
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    h Pij x
   double **m;    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    health expectancies
   if (!m) nrerror("allocation failure 1 in matrix()");    Variance-covariance of DFLE
   m += NR_END;    prevalence()
   m -= nrl;     movingaverage()
     varevsij() 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if popbased==1 varevsij(,popbased)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    total life expectancies
   m[nrl] += NR_END;    Variance of period (stable) prevalence
   m[nrl] -= ncl;   end
   */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  
 }  
    
 /*************************free matrix ************************/  #include <math.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <stdio.h>
 {  #include <stdlib.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <string.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <unistd.h>
 }  
   #include <limits.h>
 /******************* ma3x *******************************/  #include <sys/types.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #include <sys/stat.h>
 {  #include <errno.h>
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  extern int errno;
   double ***m;  
   /* #include <sys/time.h> */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <time.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include "timeval.h"
   m += NR_END;  
   m -= nrl;  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXLINE 256
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define FILENAMELENGTH 132
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for (j=ncl+1; j<=nch; j++)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define NINTERVMAX 8
   for (i=nrl+1; i<=nrh; i++) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     for (j=ncl+1; j<=nch; j++)  #define NCOVMAX 8 /* Maximum number of covariates */
       m[i][j]=m[i][j-1]+nlay;  #define MAXN 20000
   }  #define YEARM 12. /* Number of months per year */
   return m;  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /*************************free ma3x ************************/  #ifdef UNIX
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define ODIRSEPARATOR '\\'
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #else
   free((FREE_ARG)(m+nrl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /***************** f1dim *************************/  #endif
 extern int ncom;  
 extern double *pcom,*xicom;  /* $Id$ */
 extern double (*nrfunc)(double []);  /* $State$ */
    
 double f1dim(double x)  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$"; 
   int j;  char strstart[80];
   double f;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double *xt;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
   xt=vector(1,ncom);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int npar=NPARMAX;
   f=(*nrfunc)(xt);  int nlstate=2; /* Number of live states */
   free_vector(xt,1,ncom);  int ndeath=1; /* Number of dead states */
   return f;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /*****************brent *************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   int iter;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   double a,b,d,etemp;  int gipmx, gsw; /* Global variables on the number of contributions 
   double fu,fv,fw,fx;                     to the likelihood and the sum of weights (done by funcone)*/
   double ftemp;  int mle, weightopt;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double e=0.0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   a=(ax < cx ? ax : cx);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   b=(ax > cx ? ax : cx);  double jmean; /* Mean space between 2 waves */
   x=w=v=bx;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   fw=fv=fx=(*f)(x);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (iter=1;iter<=ITMAX;iter++) {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     xm=0.5*(a+b);  FILE *ficlog, *ficrespow;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int globpr; /* Global variable for printing or not */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double fretone; /* Only one call to likelihood */
     printf(".");fflush(stdout);  long ipmx; /* Number of contributions */
 #ifdef DEBUG  double sw; /* Sum of weights */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char filerespow[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #endif  FILE *ficresilk;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       *xmin=x;  FILE *ficresprobmorprev;
       return fx;  FILE *fichtm, *fichtmcov; /* Html File */
     }  FILE *ficreseij;
     ftemp=fu;  char filerese[FILENAMELENGTH];
     if (fabs(e) > tol1) {  FILE *ficresstdeij;
       r=(x-w)*(fx-fv);  char fileresstde[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  FILE *ficrescveij;
       p=(x-v)*q-(x-w)*r;  char filerescve[FILENAMELENGTH];
       q=2.0*(q-r);  FILE  *ficresvij;
       if (q > 0.0) p = -p;  char fileresv[FILENAMELENGTH];
       q=fabs(q);  FILE  *ficresvpl;
       etemp=e;  char fileresvpl[FILENAMELENGTH];
       e=d;  char title[MAXLINE];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       else {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         d=p/q;  char command[FILENAMELENGTH];
         u=x+d;  int  outcmd=0;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       }  
     } else {  char filelog[FILENAMELENGTH]; /* Log file */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerest[FILENAMELENGTH];
     }  char fileregp[FILENAMELENGTH];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char popfile[FILENAMELENGTH];
     fu=(*f)(u);  
     if (fu <= fx) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         SHFT(fv,fw,fx,fu)  struct timezone tzp;
         } else {  extern int gettimeofday();
           if (u < x) a=u; else b=u;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
           if (fu <= fw || w == x) {  long time_value;
             v=w;  extern long time();
             w=u;  char strcurr[80], strfor[80];
             fv=fw;  
             fw=fu;  char *endptr;
           } else if (fu <= fv || v == x || v == w) {  long lval;
             v=u;  double dval;
             fv=fu;  
           }  #define NR_END 1
         }  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   nrerror("Too many iterations in brent");  
   *xmin=x;  #define NRANSI 
   return fx;  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /****************** mnbrak ***********************/  
   #define CGOLD 0.3819660 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define ZEPS 1.0e-10 
             double (*func)(double))  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   double ulim,u,r,q, dum;  #define GOLD 1.618034 
   double fu;  #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  static double maxarg1,maxarg2;
   if (*fb > *fa) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     SHFT(dum,*ax,*bx,dum)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       SHFT(dum,*fb,*fa,dum)    
       }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   *cx=(*bx)+GOLD*(*bx-*ax);  #define rint(a) floor(a+0.5)
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  static double sqrarg;
     r=(*bx-*ax)*(*fb-*fc);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     q=(*bx-*cx)*(*fb-*fa);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int agegomp= AGEGOMP;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int imx; 
     if ((*bx-u)*(u-*cx) > 0.0) {  int stepm=1;
       fu=(*func)(u);  /* Stepm, step in month: minimum step interpolation*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  int estepm;
       if (fu < *fc) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  int m,nb;
           }  long *num;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       u=ulim;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       fu=(*func)(u);  double **pmmij, ***probs;
     } else {  double *ageexmed,*agecens;
       u=(*cx)+GOLD*(*cx-*bx);  double dateintmean=0;
       fu=(*func)(u);  
     }  double *weight;
     SHFT(*ax,*bx,*cx,u)  int **s; /* Status */
       SHFT(*fa,*fb,*fc,fu)  double *agedc, **covar, idx;
       }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  double *lsurv, *lpop, *tpop;
   
 /*************** linmin ************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 int ncom;  
 double *pcom,*xicom;  /**************** split *************************/
 double (*nrfunc)(double []);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double brent(double ax, double bx, double cx,    */ 
                double (*f)(double), double tol, double *xmin);    char  *ss;                            /* pointer */
   double f1dim(double x);    int   l1, l2;                         /* length counters */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    l1 = strlen(path );                   /* length of path */
   int j;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double xx,xmin,bx,ax;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double fx,fb,fa;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
   ncom=n;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   pcom=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   xicom=vector(1,n);      /* get current working directory */
   nrfunc=func;      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=1;j<=n;j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     pcom[j]=p[j];        return( GLOCK_ERROR_GETCWD );
     xicom[j]=xi[j];      }
   }      /* got dirc from getcwd*/
   ax=0.0;      printf(" DIRC = %s \n",dirc);
   xx=1.0;    } else {                              /* strip direcotry from path */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      ss++;                               /* after this, the filename */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      l2 = strlen( ss );                  /* length of filename */
 #ifdef DEBUG      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      strcpy( name, ss );         /* save file name */
 #endif      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for (j=1;j<=n;j++) {      dirc[l1-l2] = 0;                    /* add zero */
     xi[j] *= xmin;      printf(" DIRC2 = %s \n",dirc);
     p[j] += xi[j];    }
   }    /* We add a separator at the end of dirc if not exists */
   free_vector(xicom,1,n);    l1 = strlen( dirc );                  /* length of directory */
   free_vector(pcom,1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
 }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 /*************** powell ************************/      printf(" DIRC3 = %s \n",dirc);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    }
             double (*func)(double []))    ss = strrchr( name, '.' );            /* find last / */
 {    if (ss >0){
   void linmin(double p[], double xi[], int n, double *fret,      ss++;
               double (*func)(double []));      strcpy(ext,ss);                     /* save extension */
   int i,ibig,j;      l1= strlen( name);
   double del,t,*pt,*ptt,*xit;      l2= strlen(ss)+1;
   double fp,fptt;      strncpy( finame, name, l1-l2);
   double *xits;      finame[l1-l2]= 0;
   pt=vector(1,n);    }
   ptt=vector(1,n);  
   xit=vector(1,n);    return( 0 );                          /* we're done */
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /******************************************/
     fp=(*fret);  
     ibig=0;  void replace_back_to_slash(char *s, char*t)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    int i;
     for (i=1;i<=n;i++)    int lg=0;
       printf(" %d %.12f",i, p[i]);    i=0;
     printf("\n");    lg=strlen(t);
     for (i=1;i<=n;i++) {    for(i=0; i<= lg; i++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      (s[i] = t[i]);
       fptt=(*fret);      if (t[i]== '\\') s[i]='/';
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  int nbocc(char *s, char occ)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    int i,j=0;
         del=fabs(fptt-(*fret));    int lg=20;
         ibig=i;    i=0;
       }    lg=strlen(s);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
       printf("%d %.12e",i,(*fret));    if  (s[i] == occ ) j++;
       for (j=1;j<=n;j++) {    }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    return j;
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  void cutv(char *u,char *v, char*t, char occ)
         printf(" p=%.12e",p[j]);  {
       printf("\n");    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 #endif       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     }       gives u="abcedf" and v="ghi2j" */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    int i,lg,j,p=0;
 #ifdef DEBUG    i=0;
       int k[2],l;    for(j=0; j<=strlen(t)-1; j++) {
       k[0]=1;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       k[1]=-1;    }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    lg=strlen(t);
         printf(" %.12e",p[j]);    for(j=0; j<p; j++) {
       printf("\n");      (u[j] = t[j]);
       for(l=0;l<=1;l++) {    }
         for (j=1;j<=n;j++) {       u[p]='\0';
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);     for(j=0; j<= lg; j++) {
         }      if (j>=(p+1))(v[j-p-1] = t[j]);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
       }  }
 #endif  
   /********************** nrerror ********************/
   
       free_vector(xit,1,n);  void nrerror(char error_text[])
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    fprintf(stderr,"ERREUR ...\n");
       free_vector(pt,1,n);    fprintf(stderr,"%s\n",error_text);
       return;    exit(EXIT_FAILURE);
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /*********************** vector *******************/
     for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    double *v;
       pt[j]=p[j];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
     fptt=(*func)(ptt);    return v-nl+NR_END;
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /************************ free vector ******************/
         linmin(p,xit,n,fret,func);  void free_vector(double*v, int nl, int nh)
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    free((FREE_ARG)(v+nl-NR_END));
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /************************ivector *******************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int *ivector(long nl,long nh)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    int *v;
         printf("\n");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #endif    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
     }  }
   }  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /**** Prevalence limit ****************/  {
     free((FREE_ARG)(v+nl-NR_END));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /************************lvector *******************************/
      matrix by transitions matrix until convergence is reached */  long *lvector(long nl,long nh)
   {
   int i, ii,j,k;    long *v;
   double min, max, maxmin, maxmax,sumnew=0.;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double **matprod2();    if (!v) nrerror("allocation failure in ivector");
   double **out, cov[NCOVMAX], **pmij();    return v-nl+NR_END;
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /******************free lvector **************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_lvector(long *v, long nl, long nh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(v+nl-NR_END));
     }  }
   
    cov[1]=1.;  /******************* imatrix *******************************/
    int **imatrix(long nrl, long nrh, long ncl, long nch) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  { 
     newm=savm;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     /* Covariates have to be included here again */    int **m; 
      cov[2]=agefin;    
      /* allocate pointers to rows */ 
       for (k=1; k<=cptcovn;k++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/    m -= nrl; 
       }    
       for (k=1; k<=cptcovage;k++)    
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* allocate rows and set pointers to them */ 
        m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
     savm=oldm;    m[nrl] -= ncl; 
     oldm=newm;    
     maxmax=0.;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(j=1;j<=nlstate;j++){    
       min=1.;    /* return pointer to array of pointers to rows */ 
       max=0.;    return m; 
       for(i=1; i<=nlstate; i++) {  } 
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /****************** free_imatrix *************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  void free_imatrix(m,nrl,nrh,ncl,nch)
         max=FMAX(max,prlim[i][j]);        int **m;
         min=FMIN(min,prlim[i][j]);        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
       maxmin=max-min;  { 
       maxmax=FMAX(maxmax,maxmin);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     if(maxmax < ftolpl){  } 
       return prlim;  
     }  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*************** transition probabilities **********/    double **m;
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   double s1, s2;    m += NR_END;
   /*double t34;*/    m -= nrl;
   int i,j,j1, nc, ii, jj;  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(i=1; i<= nlstate; i++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(j=1; j<i;j++){    m[nrl] += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl] -= ncl;
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       ps[i][j]=s2;     */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /*************************free matrix ************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       ps[i][j]=s2;  }
     }  
   }  /******************* ma3x *******************************/
   for(i=1; i<= nlstate; i++){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
      s1=0;  {
     for(j=1; j<i; j++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       s1+=exp(ps[i][j]);    double ***m;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     ps[i][i]=1./(s1+1.);    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1; j<i; j++)    m += NR_END;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m -= nrl;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   } /* end i */    m[nrl] += NR_END;
     m[nrl] -= ncl;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ps[ii][jj]=0;  
       ps[ii][ii]=1;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    for (j=ncl+1; j<=nch; j++) 
     for(jj=1; jj<= nlstate+ndeath; jj++){      m[nrl][j]=m[nrl][j-1]+nlay;
      printf("%lf ",ps[ii][jj]);    
    }    for (i=nrl+1; i<=nrh; i++) {
     printf("\n ");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     printf("\n ");printf("%lf ",cov[2]);*/        m[i][j]=m[i][j-1]+nlay;
 /*    }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    return m; 
   goto end;*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     return ps;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 }    */
   }
 /**************** Product of 2 matrices ******************/  
   /*************************free ma3x ************************/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {  {
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* in, b, out are matrice of pointers which should have been initialized    free((FREE_ARG)(m+nrl-NR_END));
      before: only the contents of out is modified. The function returns  }
      a pointer to pointers identical to out */  
   long i, j, k;  /*************** function subdirf ***********/
   for(i=nrl; i<= nrh; i++)  char *subdirf(char fileres[])
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* Caution optionfilefiname is hidden */
         out[i][k] +=in[i][j]*b[j][k];    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   return out;    strcat(tmpout,fileres);
 }    return tmpout;
   }
   
 /************* Higher Matrix Product ***************/  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  {
 {    
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    /* Caution optionfilefiname is hidden */
      duration (i.e. until    strcpy(tmpout,optionfilefiname);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    strcat(tmpout,"/");
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    strcat(tmpout,preop);
      (typically every 2 years instead of every month which is too big).    strcat(tmpout,fileres);
      Model is determined by parameters x and covariates have to be    return tmpout;
      included manually here.  }
   
      */  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    
   double **newm;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /* Hstepm could be zero and should return the unit matrix */    strcat(tmpout,"/");
   for (i=1;i<=nlstate+ndeath;i++)    strcat(tmpout,preop);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,preop2);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,fileres);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return tmpout;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /***************** f1dim *************************/
     for(d=1; d <=hstepm; d++){  extern int ncom; 
       newm=savm;  extern double *pcom,*xicom;
       /* Covariates have to be included here again */  extern double (*nrfunc)(double []); 
       cov[1]=1.;   
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double f1dim(double x) 
       if (cptcovn>0){  { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    int j; 
     }    double f;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double *xt; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/   
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    xt=vector(1,ncom); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       savm=oldm;    f=(*nrfunc)(xt); 
       oldm=newm;    free_vector(xt,1,ncom); 
     }    return f; 
     for(i=1; i<=nlstate+ndeath; i++)  } 
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  /*****************brent *************************/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
          */  { 
       }    int iter; 
   } /* end h */    double a,b,d,etemp;
   return po;    double fu,fv,fw,fx;
 }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 /*************** log-likelihood *************/   
 double func( double *x)    a=(ax < cx ? ax : cx); 
 {    b=(ax > cx ? ax : cx); 
   int i, ii, j, k, mi, d, kk;    x=w=v=bx; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    fw=fv=fx=(*f)(x); 
   double **out;    for (iter=1;iter<=ITMAX;iter++) { 
   double sw; /* Sum of weights */      xm=0.5*(a+b); 
   double lli; /* Individual log likelihood */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   long ipmx;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   /*extern weight */      printf(".");fflush(stdout);
   /* We are differentiating ll according to initial status */      fprintf(ficlog,".");fflush(ficlog);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  #ifdef DEBUG
   /*for(i=1;i<imx;i++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 printf(" %d\n",s[4][i]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   cov[1]=1.;  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        *xmin=x; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        return fx; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      } 
        for(mi=1; mi<= wav[i]-1; mi++){      ftemp=fu;
       for (ii=1;ii<=nlstate+ndeath;ii++)      if (fabs(e) > tol1) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        r=(x-w)*(fx-fv); 
             for(d=0; d<dh[mi][i]; d++){        q=(x-v)*(fx-fw); 
               newm=savm;        p=(x-v)*q-(x-w)*r; 
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        q=2.0*(q-r); 
               for (kk=1; kk<=cptcovage;kk++) {        if (q > 0.0) p = -p; 
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        q=fabs(q); 
                  /*printf("%d %d",kk,Tage[kk]);*/        etemp=e; 
               }        e=d; 
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
               /*cov[3]=pow(cov[2],2)/1000.;*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          d=p/q; 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          u=x+d; 
           savm=oldm;          if (u-a < tol2 || b-u < tol2) 
           oldm=newm;            d=SIGN(tol1,xm-x); 
         } 
       } else { 
       } /* end mult */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      fu=(*f)(u); 
       ipmx +=1;      if (fu <= fx) { 
       sw += weight[i];        if (u >= x) a=x; else b=x; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        SHFT(v,w,x,u) 
     } /* end of wave */          SHFT(fv,fw,fx,fu) 
   } /* end of individual */          } else { 
             if (u < x) a=u; else b=u; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            if (fu <= fw || w == x) { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */              v=w; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              w=u; 
   return -l;              fv=fw; 
 }              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 /*********** Maximum Likelihood Estimation ***************/              fv=fu; 
             } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          } 
 {    } 
   int i,j, iter;    nrerror("Too many iterations in brent"); 
   double **xi,*delti;    *xmin=x; 
   double fret;    return fx; 
   xi=matrix(1,npar,1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /****************** mnbrak ***********************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   powell(p,xi,npar,ftol,&iter,&fret,func);              double (*func)(double)) 
   { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double ulim,u,r,q, dum;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    double fu; 
    
 }    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 /**** Computes Hessian and covariance matrix ***/    if (*fb > *fa) { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      SHFT(dum,*ax,*bx,dum) 
 {        SHFT(dum,*fb,*fa,dum) 
   double  **a,**y,*x,pd;        } 
   double **hess;    *cx=(*bx)+GOLD*(*bx-*ax); 
   int i, j,jk;    *fc=(*func)(*cx); 
   int *indx;    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   double hessii(double p[], double delta, int theta, double delti[]);      q=(*bx-*cx)*(*fb-*fa); 
   double hessij(double p[], double delti[], int i, int j);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   hess=matrix(1,npar,1,npar);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   printf("\nCalculation of the hessian matrix. Wait...\n");        if (fu < *fc) { 
   for (i=1;i<=npar;i++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     printf("%d",i);fflush(stdout);            SHFT(*fb,*fc,fu,(*func)(u)) 
     hess[i][i]=hessii(p,ftolhess,i,delti);            } 
     /*printf(" %f ",p[i]);*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   }        u=ulim; 
         fu=(*func)(u); 
   for (i=1;i<=npar;i++) {      } else { 
     for (j=1;j<=npar;j++)  {        u=(*cx)+GOLD*(*cx-*bx); 
       if (j>i) {        fu=(*func)(u); 
         printf(".%d%d",i,j);fflush(stdout);      } 
         hess[i][j]=hessij(p,delti,i,j);      SHFT(*ax,*bx,*cx,u) 
         hess[j][i]=hess[i][j];        SHFT(*fa,*fb,*fc,fu) 
       }        } 
     }  } 
   }  
   printf("\n");  /*************** linmin ************************/
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  int ncom; 
    double *pcom,*xicom;
   a=matrix(1,npar,1,npar);  double (*nrfunc)(double []); 
   y=matrix(1,npar,1,npar);   
   x=vector(1,npar);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   indx=ivector(1,npar);  { 
   for (i=1;i<=npar;i++)    double brent(double ax, double bx, double cx, 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];                 double (*f)(double), double tol, double *xmin); 
   ludcmp(a,npar,indx,&pd);    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (j=1;j<=npar;j++) {                double *fc, double (*func)(double)); 
     for (i=1;i<=npar;i++) x[i]=0;    int j; 
     x[j]=1;    double xx,xmin,bx,ax; 
     lubksb(a,npar,indx,x);    double fx,fb,fa;
     for (i=1;i<=npar;i++){   
       matcov[i][j]=x[i];    ncom=n; 
     }    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
     nrfunc=func; 
   printf("\n#Hessian matrix#\n");    for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++) {      pcom[j]=p[j]; 
     for (j=1;j<=npar;j++) {      xicom[j]=xi[j]; 
       printf("%.3e ",hess[i][j]);    } 
     }    ax=0.0; 
     printf("\n");    xx=1.0; 
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /* Recompute Inverse */  #ifdef DEBUG
   for (i=1;i<=npar;i++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   ludcmp(a,npar,indx,&pd);  #endif
     for (j=1;j<=n;j++) { 
   /*  printf("\n#Hessian matrix recomputed#\n");      xi[j] *= xmin; 
       p[j] += xi[j]; 
   for (j=1;j<=npar;j++) {    } 
     for (i=1;i<=npar;i++) x[i]=0;    free_vector(xicom,1,n); 
     x[j]=1;    free_vector(pcom,1,n); 
     lubksb(a,npar,indx,x);  } 
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  char *asc_diff_time(long time_sec, char ascdiff[])
       printf("%.3e ",y[i][j]);  {
     }    long sec_left, days, hours, minutes;
     printf("\n");    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
   */    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   free_matrix(a,1,npar,1,npar);    minutes = (sec_left) /60;
   free_matrix(y,1,npar,1,npar);    sec_left = (sec_left) % (60);
   free_vector(x,1,npar);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   free_ivector(indx,1,npar);    return ascdiff;
   free_matrix(hess,1,npar,1,npar);  }
   
   /*************** powell ************************/
 }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 /*************** hessian matrix ****************/  { 
 double hessii( double x[], double delta, int theta, double delti[])    void linmin(double p[], double xi[], int n, double *fret, 
 {                double (*func)(double [])); 
   int i;    int i,ibig,j; 
   int l=1, lmax=20;    double del,t,*pt,*ptt,*xit;
   double k1,k2;    double fp,fptt;
   double p2[NPARMAX+1];    double *xits;
   double res;    int niterf, itmp;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;    pt=vector(1,n); 
   int k=0,kmax=10;    ptt=vector(1,n); 
   double l1;    xit=vector(1,n); 
     xits=vector(1,n); 
   fx=func(x);    *fret=(*func)(p); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for(l=0 ; l <=lmax; l++){    for (*iter=1;;++(*iter)) { 
     l1=pow(10,l);      fp=(*fret); 
     delts=delt;      ibig=0; 
     for(k=1 ; k <kmax; k=k+1){      del=0.0; 
       delt = delta*(l1*k);      last_time=curr_time;
       p2[theta]=x[theta] +delt;      (void) gettimeofday(&curr_time,&tzp);
       k1=func(p2)-fx;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       p2[theta]=x[theta]-delt;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       k2=func(p2)-fx;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       /*res= (k1-2.0*fx+k2)/delt/delt; */     for (i=1;i<=n;i++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        printf(" %d %.12f",i, p[i]);
              fprintf(ficlog," %d %.12lf",i, p[i]);
 #ifdef DEBUG        fprintf(ficrespow," %.12lf", p[i]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif      printf("\n");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      fprintf(ficlog,"\n");
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      fprintf(ficrespow,"\n");fflush(ficrespow);
         k=kmax;      if(*iter <=3){
       }        tm = *localtime(&curr_time.tv_sec);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        strcpy(strcurr,asctime(&tm));
         k=kmax; l=lmax*10.;  /*       asctime_r(&tm,strcurr); */
       }        forecast_time=curr_time; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        itmp = strlen(strcurr);
         delts=delt;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       }          strcurr[itmp-1]='\0';
     }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   delti[theta]=delts;        for(niterf=10;niterf<=30;niterf+=10){
   return res;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
 }  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
 double hessij( double x[], double delti[], int thetai,int thetaj)          itmp = strlen(strfor);
 {          if(strfor[itmp-1]=='\n')
   int i;          strfor[itmp-1]='\0';
   int l=1, l1, lmax=20;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double k1,k2,k3,k4,res,fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double p2[NPARMAX+1];        }
   int k;      }
       for (i=1;i<=n;i++) { 
   fx=func(x);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (k=1; k<=2; k++) {        fptt=(*fret); 
     for (i=1;i<=npar;i++) p2[i]=x[i];  #ifdef DEBUG
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("fret=%lf \n",*fret);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"fret=%lf \n",*fret);
     k1=func(p2)-fx;  #endif
          printf("%d",i);fflush(stdout);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"%d",i);fflush(ficlog);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        linmin(p,xit,n,fret,func); 
     k2=func(p2)-fx;        if (fabs(fptt-(*fret)) > del) { 
            del=fabs(fptt-(*fret)); 
     p2[thetai]=x[thetai]-delti[thetai]/k;          ibig=i; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        } 
     k3=func(p2)-fx;  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"%d %.12e",i,(*fret));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (j=1;j<=n;j++) {
     k4=func(p2)-fx;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          printf(" x(%d)=%.12e",j,xit[j]);
 #ifdef DEBUG          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
 #endif        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
   return res;          fprintf(ficlog," p=%.12e",p[j]);
 }        }
         printf("\n");
 /************** Inverse of matrix **************/        fprintf(ficlog,"\n");
 void ludcmp(double **a, int n, int *indx, double *d)  #endif
 {      } 
   int i,imax,j,k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double big,dum,sum,temp;  #ifdef DEBUG
   double *vv;        int k[2],l;
          k[0]=1;
   vv=vector(1,n);        k[1]=-1;
   *d=1.0;        printf("Max: %.12e",(*func)(p));
   for (i=1;i<=n;i++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
     big=0.0;        for (j=1;j<=n;j++) {
     for (j=1;j<=n;j++)          printf(" %.12e",p[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;          fprintf(ficlog," %.12e",p[j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;        printf("\n");
   }        fprintf(ficlog,"\n");
   for (j=1;j<=n;j++) {        for(l=0;l<=1;l++) {
     for (i=1;i<j;i++) {          for (j=1;j<=n;j++) {
       sum=a[i][j];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       a[i][j]=sum;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
     big=0.0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (i=j;i<=n;i++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       sum=a[i][j];        }
       for (k=1;k<j;k++)  #endif
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {        free_vector(xit,1,n); 
         big=dum;        free_vector(xits,1,n); 
         imax=i;        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
     }        return; 
     if (j != imax) {      } 
       for (k=1;k<=n;k++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         dum=a[imax][k];      for (j=1;j<=n;j++) { 
         a[imax][k]=a[j][k];        ptt[j]=2.0*p[j]-pt[j]; 
         a[j][k]=dum;        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
       *d = -(*d);      } 
       vv[imax]=vv[j];      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
     indx[j]=imax;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     if (a[j][j] == 0.0) a[j][j]=TINY;        if (t < 0.0) { 
     if (j != n) {          linmin(p,xit,n,fret,func); 
       dum=1.0/(a[j][j]);          for (j=1;j<=n;j++) { 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            xi[j][ibig]=xi[j][n]; 
     }            xi[j][n]=xit[j]; 
   }          }
   free_vector(vv,1,n);  /* Doesn't work */  #ifdef DEBUG
 ;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 void lubksb(double **a, int n, int *indx, double b[])            printf(" %.12e",xit[j]);
 {            fprintf(ficlog," %.12e",xit[j]);
   int i,ii=0,ip,j;          }
   double sum;          printf("\n");
            fprintf(ficlog,"\n");
   for (i=1;i<=n;i++) {  #endif
     ip=indx[i];        }
     sum=b[ip];      } 
     b[ip]=b[i];    } 
     if (ii)  } 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  /**** Prevalence limit (stable or period prevalence)  ****************/
     b[i]=sum;  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (i=n;i>=1;i--) {  {
     sum=b[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       matrix by transitions matrix until convergence is reached */
     b[i]=sum/a[i][i];  
   }    int i, ii,j,k;
 }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 /************ Frequencies ********************/    double **out, cov[NCOVMAX], **pmij();
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)    double **newm;
 {  /* Some frequencies */    double agefin, delaymax=50 ; /* Max number of years to converge */
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***freq; /* Frequencies */      for (j=1;j<=nlstate+ndeath;j++){
   double *pp;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos;      }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];     cov[1]=1.;
    
   pp=vector(1,nlstate);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   strcpy(fileresp,"p");      newm=savm;
   strcat(fileresp,fileres);      /* Covariates have to be included here again */
   if((ficresp=fopen(fileresp,"w"))==NULL) {       cov[2]=agefin;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    
     exit(0);        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   j1=0;        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   j=cptcovn;        for (k=1; k<=cptcovprod;k++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   for(k1=1; k1<=j;k1++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
    for(i1=1; i1<=ncodemax[k1];i1++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
        j1++;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)        savm=oldm;
            for(m=agemin; m <= agemax+3; m++)      oldm=newm;
              freq[i][jk][m]=0;      maxmax=0.;
              for(j=1;j<=nlstate;j++){
        for (i=1; i<=imx; i++) {        min=1.;
          bool=1;        max=0.;
          if  (cptcovn>0) {        for(i=1; i<=nlstate; i++) {
            for (z1=1; z1<=cptcovn; z1++)          sumnew=0;
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
          }          prlim[i][j]= newm[i][j]/(1-sumnew);
           if (bool==1) {          max=FMAX(max,prlim[i][j]);
            for(m=firstpass; m<=lastpass-1; m++){          min=FMIN(min,prlim[i][j]);
              if(agev[m][i]==0) agev[m][i]=agemax+1;        }
              if(agev[m][i]==1) agev[m][i]=agemax+2;        maxmin=max-min;
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        maxmax=FMAX(maxmax,maxmin);
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      }
            }      if(maxmax < ftolpl){
          }        return prlim;
        }      }
         if  (cptcovn>0) {    }
          fprintf(ficresp, "\n#Variable");  }
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);  
        }  /*************** transition probabilities ***************/ 
        fprintf(ficresp, "\n#");  
        for(i=1; i<=nlstate;i++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  {
        fprintf(ficresp, "\n");    double s1, s2;
            /*double t34;*/
   for(i=(int)agemin; i <= (int)agemax+3; i++){    int i,j,j1, nc, ii, jj;
     if(i==(int)agemax+3)  
       printf("Total");      for(i=1; i<= nlstate; i++){
     else        for(j=1; j<i;j++){
       printf("Age %d", i);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(jk=1; jk <=nlstate ; jk++){            /*s2 += param[i][j][nc]*cov[nc];*/
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         pp[jk] += freq[jk][m][i];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     }          }
     for(jk=1; jk <=nlstate ; jk++){          ps[i][j]=s2;
       for(m=-1, pos=0; m <=0 ; m++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         pos += freq[jk][m][i];        }
       if(pp[jk]>=1.e-10)        for(j=i+1; j<=nlstate+ndeath;j++){
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       else            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     }          }
     for(jk=1; jk <=nlstate ; jk++){          ps[i][j]=s2;
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        }
         pp[jk] += freq[jk][m][i];      }
     }      /*ps[3][2]=1;*/
     for(jk=1,pos=0; jk <=nlstate ; jk++)      
       pos += pp[jk];      for(i=1; i<= nlstate; i++){
     for(jk=1; jk <=nlstate ; jk++){        s1=0;
       if(pos>=1.e-5)        for(j=1; j<i; j++)
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          s1+=exp(ps[i][j]);
       else        for(j=i+1; j<=nlstate+ndeath; j++)
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          s1+=exp(ps[i][j]);
       if( i <= (int) agemax){        ps[i][i]=1./(s1+1.);
         if(pos>=1.e-5)        for(j=1; j<i; j++)
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       else        for(j=i+1; j<=nlstate+ndeath; j++)
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }      } /* end i */
     for(jk=-1; jk <=nlstate+ndeath; jk++)      
       for(m=-1; m <=nlstate+ndeath; m++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(jj=1; jj<= nlstate+ndeath; jj++){
     if(i <= (int) agemax)          ps[ii][jj]=0;
       fprintf(ficresp,"\n");          ps[ii][ii]=1;
     printf("\n");        }
     }      }
     }      
  }  
    /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   fclose(ficresp);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*         printf("ddd %lf ",ps[ii][jj]); */
   free_vector(pp,1,nlstate);  /*       } */
   /*       printf("\n "); */
 }  /* End of Freq */  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
 /************* Waves Concatenation ***************/         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        goto end;*/
 {      return ps;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  }
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /**************** Product of 2 matrices ******************/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
      */  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   int i, mi, m;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* in, b, out are matrice of pointers which should have been initialized 
 float sum=0.;       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   for(i=1; i<=imx; i++){    long i, j, k;
     mi=0;    for(i=nrl; i<= nrh; i++)
     m=firstpass;      for(k=ncolol; k<=ncoloh; k++)
     while(s[m][i] <= nlstate){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       if(s[m][i]>=1)          out[i][k] +=in[i][j]*b[j][k];
         mw[++mi][i]=m;  
       if(m >=lastpass)    return out;
         break;  }
       else  
         m++;  
     }/* end while */  /************* Higher Matrix Product ***************/
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       /* if(mi==0)  never been interviewed correctly before death */  {
          /* Only death is a correct wave */    /* Computes the transition matrix starting at age 'age' over 
       mw[mi][i]=m;       'nhstepm*hstepm*stepm' months (i.e. until
     }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
     wav[i]=mi;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     if(mi==0)       (typically every 2 years instead of every month which is too big 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);       for the memory).
   }       Model is determined by parameters x and covariates have to be 
        included manually here. 
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){       */
       if (stepm <=0)  
         dh[mi][i]=1;    int i, j, d, h, k;
       else{    double **out, cov[NCOVMAX];
         if (s[mw[mi+1][i]][i] > nlstate) {    double **newm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j=0) j=1;  /* Survives at least one month after exam */    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
         else{      for (j=1;j<=nlstate+ndeath;j++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        oldm[i][j]=(i==j ? 1.0 : 0.0);
           k=k+1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;      }
           else if (j <= jmin)jmin=j;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           sum=sum+j;    for(h=1; h <=nhstepm; h++){
         }      for(d=1; d <=hstepm; d++){
         jk= j/stepm;        newm=savm;
         jl= j -jk*stepm;        /* Covariates have to be included here again */
         ju= j -(jk+1)*stepm;        cov[1]=1.;
         if(jl <= -ju)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           dh[mi][i]=jk;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         else        for (k=1; k<=cptcovage;k++)
           dh[mi][i]=jk+1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if(dh[mi][i]==0)        for (k=1; k<=cptcovprod;k++)
           dh[mi][i]=1; /* At least one step */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
     }  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 /*********** Tricode ****************************/                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 void tricode(int *Tvar, int **nbcode, int imx)        savm=oldm;
 {        oldm=newm;
   int Ndum[80],ij=1, k, j, i, Ntvar[20];      }
   int cptcode=0;      for(i=1; i<=nlstate+ndeath; i++)
   for (k=0; k<79; k++) Ndum[k]=0;        for(j=1;j<=nlstate+ndeath;j++) {
   for (k=1; k<=7; k++) ncodemax[k]=0;          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   for (j=1; j<=cptcovn; j++) {           */
     for (i=1; i<=imx; i++) {        }
       ij=(int)(covar[Tvar[j]][i]);    } /* end h */
       Ndum[ij]++;    return po;
       if (ij > cptcode) cptcode=ij;  }
     }  
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/  
     for (i=0; i<=cptcode; i++) {  /*************** log-likelihood *************/
       if(Ndum[i]!=0) ncodemax[j]++;  double func( double *x)
     }  {
      int i, ii, j, k, mi, d, kk;
     ij=1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for (i=1; i<=ncodemax[j]; i++) {    double **out;
       for (k=0; k<=79; k++) {    double sw; /* Sum of weights */
         if (Ndum[k] != 0) {    double lli; /* Individual log likelihood */
           nbcode[Tvar[j]][ij]=k;    int s1, s2;
           ij++;    double bbh, survp;
         }    long ipmx;
         if (ij > ncodemax[j]) break;    /*extern weight */
       }      /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }      /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
 }    */
     cov[1]=1.;
 /*********** Health Expectancies ****************/  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  
 {    if(mle==1){
   /* Health expectancies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i, j, nhstepm, hstepm, h;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double age, agelim,hf;        for(mi=1; mi<= wav[i]-1; mi++){
   double ***p3mat;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficreseij,"# Health expectancies\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Age");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=nlstate;j++)          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficreseij," %1d-%1d",i,j);            newm=savm;
   fprintf(ficreseij,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   hstepm=1*YEARM; /*  Every j years of age (in month) */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   agelim=AGESUP;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            savm=oldm;
     /* nhstepm age range expressed in number of stepm */            oldm=newm;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          } /* end mult */
     /* Typically if 20 years = 20*12/6=40 stepm */        
     if (stepm >= YEARM) hstepm=1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          /* But now since version 0.9 we anticipate for bias at large stepm.
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           * (in months) between two waves is not a multiple of stepm, we rounded to 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */           * the nearest (and in case of equal distance, to the lowest) interval but now
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);             * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
     for(i=1; i<=nlstate;i++)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(j=1; j<=nlstate;j++)           * -stepm/2 to stepm/2 .
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){           * For stepm=1 the results are the same as for previous versions of Imach.
           eij[i][j][(int)age] +=p3mat[i][j][h];           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
              s1=s[mw[mi][i]][i];
     hf=1;          s2=s[mw[mi+1][i]][i];
     if (stepm >= YEARM) hf=stepm/YEARM;          bbh=(double)bh[mi][i]/(double)stepm; 
     fprintf(ficreseij,"%.0f",age );          /* bias bh is positive if real duration
     for(i=1; i<=nlstate;i++)           * is higher than the multiple of stepm and negative otherwise.
       for(j=1; j<=nlstate;j++){           */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          if( s2 > nlstate){ 
     fprintf(ficreseij,"\n");            /* i.e. if s2 is a death state and if the date of death is known 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               then the contribution to the likelihood is the probability to 
   }               die between last step unit time and current  step unit time, 
 }               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
 /************ Variance ******************/               In version up to 0.92 likelihood was computed
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          as if date of death was unknown. Death was treated as any other
 {          health state: the date of the interview describes the actual state
   /* Variance of health expectancies */          and not the date of a change in health state. The former idea was
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          to consider that at each interview the state was recorded
   double **newm;          (healthy, disable or death) and IMaCh was corrected; but when we
   double **dnewm,**doldm;          introduced the exact date of death then we should have modified
   int i, j, nhstepm, hstepm, h;          the contribution of an exact death to the likelihood. This new
   int k, cptcode;          contribution is smaller and very dependent of the step unit
    double *xp;          stepm. It is no more the probability to die between last interview
   double **gp, **gm;          and month of death but the probability to survive from last
   double ***gradg, ***trgradg;          interview up to one month before death multiplied by the
   double ***p3mat;          probability to die within a month. Thanks to Chris
   double age,agelim;          Jackson for correcting this bug.  Former versions increased
   int theta;          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
    fprintf(ficresvij,"# Covariances of life expectancies\n");          lower mortality.
   fprintf(ficresvij,"# Age");            */
   for(i=1; i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
   xp=vector(1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   dnewm=matrix(1,nlstate,1,npar);            /*survp += out[s1][j]; */
   doldm=matrix(1,nlstate,1,nlstate);            lli= log(survp);
            }
   hstepm=1*YEARM; /* Every year of age */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          else if  (s2==-4) { 
   agelim = AGESUP;            for (j=3,survp=0. ; j<=nlstate; j++)  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            lli= log(survp); 
     if (stepm >= YEARM) hstepm=1;          } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          else if  (s2==-5) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            for (j=1,survp=0. ; j<=2; j++)  
     gp=matrix(0,nhstepm,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gm=matrix(0,nhstepm,1,nlstate);            lli= log(survp); 
           } 
     for(theta=1; theta <=npar; theta++){          
       for(i=1; i<=npar; i++){ /* Computes gradient */          else{
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for(j=1; j<= nlstate; j++){          /*if(lli ==000.0)*/
         for(h=0; h<=nhstepm; h++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          ipmx +=1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
          } /* end of individual */
       for(i=1; i<=npar; i++) /* Computes gradient */    }  else if(mle==2){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<=dh[mi][i]; d++){
       for(j=1; j<= nlstate; j++)            newm=savm;
         for(h=0; h<=nhstepm; h++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* End theta */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     for(h=0; h<=nhstepm; h++)            oldm=newm;
       for(j=1; j<=nlstate;j++)          } /* end mult */
         for(theta=1; theta <=npar; theta++)        
           trgradg[h][j][theta]=gradg[h][theta][j];          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for(i=1;i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1;j<=nlstate;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         vareij[i][j][(int)age] =0.;          ipmx +=1;
     for(h=0;h<=nhstepm;h++){          sw += weight[i];
       for(k=0;k<=nhstepm;k++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        } /* end of wave */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      } /* end of individual */
         for(i=1;i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
           for(j=1;j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             vareij[i][j][(int)age] += doldm[i][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     h=1;            for (j=1;j<=nlstate+ndeath;j++){
     if (stepm >= YEARM) h=stepm/YEARM;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvij,"%.0f ",age );              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficresvij,"\n");            for (kk=1; kk<=cptcovage;kk++) {
     free_matrix(gp,0,nhstepm,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_matrix(gm,0,nhstepm,1,nlstate);            }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
   } /* End age */            oldm=newm;
            } /* end mult */
   free_vector(xp,1,npar);        
   free_matrix(doldm,1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
   free_matrix(dnewm,1,nlstate,1,nlstate);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
 /************ Variance of prevlim ******************/          sw += weight[i];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {        } /* end of wave */
   /* Variance of prevalence limit */      } /* end of individual */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double **newm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **dnewm,**doldm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, j, nhstepm, hstepm;        for(mi=1; mi<= wav[i]-1; mi++){
   int k, cptcode;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *xp;            for (j=1;j<=nlstate+ndeath;j++){
   double *gp, *gm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gradg, **trgradg;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age,agelim;            }
   int theta;          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresvpl,"# Age");            for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresvpl," %1d-%1d",i,i);            }
   fprintf(ficresvpl,"\n");          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   xp=vector(1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewm=matrix(1,nlstate,1,npar);            savm=oldm;
   doldm=matrix(1,nlstate,1,nlstate);            oldm=newm;
            } /* end mult */
   hstepm=1*YEARM; /* Every year of age */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          s1=s[mw[mi][i]][i];
   agelim = AGESUP;          s2=s[mw[mi+1][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if( s2 > nlstate){ 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            lli=log(out[s1][s2] - savm[s1][s2]);
     if (stepm >= YEARM) hstepm=1;          }else{
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     gradg=matrix(1,npar,1,nlstate);          }
     gp=vector(1,nlstate);          ipmx +=1;
     gm=vector(1,nlstate);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(theta=1; theta <=npar; theta++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++){ /* Computes gradient */        } /* end of wave */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end of individual */
       }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         gp[i] = prlim[i][i];        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=npar; i++) /* Computes gradient */            for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)            }
         gm[i] = prlim[i][i];          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
       for(i=1;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            for (kk=1; kk<=cptcovage;kk++) {
     } /* End theta */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     trgradg =matrix(1,nlstate,1,npar);          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(theta=1; theta <=npar; theta++)            savm=oldm;
         trgradg[j][theta]=gradg[theta][j];            oldm=newm;
           } /* end mult */
     for(i=1;i<=nlstate;i++)        
       varpl[i][(int)age] =0.;          s1=s[mw[mi][i]][i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          s2=s[mw[mi+1][i]][i];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(i=1;i<=nlstate;i++)          ipmx +=1;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresvpl,"%.0f ",age );          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for(i=1; i<=nlstate;i++)        } /* end of wave */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      } /* end of individual */
     fprintf(ficresvpl,"\n");    } /* End of if */
     free_vector(gp,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_vector(gm,1,nlstate);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     free_matrix(gradg,1,npar,1,nlstate);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     free_matrix(trgradg,1,nlstate,1,npar);    return -l;
   } /* End age */  }
   
   free_vector(xp,1,npar);  /*************** log-likelihood *************/
   free_matrix(doldm,1,nlstate,1,npar);  double funcone( double *x)
   free_matrix(dnewm,1,nlstate,1,nlstate);  {
     /* Same as likeli but slower because of a lot of printf and if */
 }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     double lli; /* Individual log likelihood */
 /***********************************************/    double llt;
 /**************** Main Program *****************/    int s1, s2;
 /***********************************************/    double bbh, survp;
     /*extern weight */
 /*int main(int argc, char *argv[])*/    /* We are differentiating ll according to initial status */
 int main()    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    */
   double agedeb, agefin,hf;    cov[1]=1.;
   double agemin=1.e20, agemax=-1.e20;  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   double fret;  
   double **xi,tmp,delta;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double dum; /* Dummy variable */      for(mi=1; mi<= wav[i]-1; mi++){
   double ***p3mat;        for (ii=1;ii<=nlstate+ndeath;ii++)
   int *indx;          for (j=1;j<=nlstate+ndeath;j++){
   char line[MAXLINE], linepar[MAXLINE];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char title[MAXLINE];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        for(d=0; d<dh[mi][i]; d++){
   char filerest[FILENAMELENGTH];          newm=savm;
   char fileregp[FILENAMELENGTH];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          for (kk=1; kk<=cptcovage;kk++) {
   int firstobs=1, lastobs=10;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int sdeb, sfin; /* Status at beginning and end */          }
   int c,  h , cpt,l;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int ju,jl, mi;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;          savm=oldm;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          oldm=newm;
          } /* end mult */
   int hstepm, nhstepm;        
   double bage, fage, age, agelim, agebase;        s1=s[mw[mi][i]][i];
   double ftolpl=FTOL;        s2=s[mw[mi+1][i]][i];
   double **prlim;        bbh=(double)bh[mi][i]/(double)stepm; 
   double *severity;        /* bias is positive if real duration
   double ***param; /* Matrix of parameters */         * is higher than the multiple of stepm and negative otherwise.
   double  *p;         */
   double **matcov; /* Matrix of covariance */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double ***delti3; /* Scale */          lli=log(out[s1][s2] - savm[s1][s2]);
   double *delti; /* Scale */        } else if  (s2==-2) {
   double ***eij, ***vareij;          for (j=1,survp=0. ; j<=nlstate; j++) 
   double **varpl; /* Variances of prevalence limits by age */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double *epj, vepp;          lli= log(survp);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";        }else if (mle==1){
   char *alph[]={"a","a","b","c","d","e"}, str[4];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   char z[1]="c", occ;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 #include <sys/time.h>        } else if(mle==3){  /* exponential inter-extrapolation */
 #include <time.h>          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* long total_usecs;          lli=log(out[s1][s2]); /* Original formula */
   struct timeval start_time, end_time;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
            lli=log(out[s1][s2]); /* Original formula */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        } /* End of if */
         ipmx +=1;
         sw += weight[i];
   printf("\nIMACH, Version 0.64a");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   printf("\nEnter the parameter file name: ");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 #ifdef windows          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   scanf("%s",pathtot);   %11.6f %11.6f %11.6f ", \
   getcwd(pathcd, size);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /*cygwin_split_path(pathtot,path,optionfile);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   /* cutv(path,optionfile,pathtot,'\\');*/            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 split(pathtot, path,optionfile);          }
   chdir(path);          fprintf(ficresilk," %10.6f\n", -llt);
   replace(pathc,path);        }
 #endif      } /* end of wave */
 #ifdef unix    } /* end of individual */
   scanf("%s",optionfile);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 #endif    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*-------- arguments in the command line --------*/    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   strcpy(fileres,"r");      gsw=sw;
   strcat(fileres, optionfile);    }
     return -l;
   /*---------arguments file --------*/  }
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);  /*************** function likelione ***********/
     goto end;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }  {
     /* This routine should help understanding what is done with 
   strcpy(filereso,"o");       the selection of individuals/waves and
   strcat(filereso,fileres);       to check the exact contribution to the likelihood.
   if((ficparo=fopen(filereso,"w"))==NULL) {       Plotting could be done.
     printf("Problem with Output resultfile: %s\n", filereso);goto end;     */
   }    int k;
   
   /* Reads comments: lines beginning with '#' */    if(*globpri !=0){ /* Just counts and sums, no printings */
   while((c=getc(ficpar))=='#' && c!= EOF){      strcpy(fileresilk,"ilk"); 
     ungetc(c,ficpar);      strcat(fileresilk,fileres);
     fgets(line, MAXLINE, ficpar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     puts(line);        printf("Problem with resultfile: %s\n", fileresilk);
     fputs(line,ficparo);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   }      }
   ungetc(c,ficpar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      for(k=1; k<=nlstate; k++) 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   covar=matrix(0,NCOVMAX,1,n);        }
   if (strlen(model)<=1) cptcovn=0;  
   else {    *fretone=(*funcone)(p);
     j=0;    if(*globpri !=0){
     j=nbocc(model,'+');      fclose(ficresilk);
     cptcovn=j+1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   }      fflush(fichtm); 
     } 
   ncovmodel=2+cptcovn;    return;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  }
    
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */  /*********** Maximum Likelihood Estimation ***************/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     fgets(line, MAXLINE, ficpar);  {
     puts(line);    int i,j, iter;
     fputs(line,ficparo);    double **xi;
   }    double fret;
   ungetc(c,ficpar);    double fretone; /* Only one call to likelihood */
      /*  char filerespow[FILENAMELENGTH];*/
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    xi=matrix(1,npar,1,npar);
     for(i=1; i <=nlstate; i++)    for (i=1;i<=npar;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){      for (j=1;j<=npar;j++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);        xi[i][j]=(i==j ? 1.0 : 0.0);
       fprintf(ficparo,"%1d%1d",i1,j1);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       printf("%1d%1d",i,j);    strcpy(filerespow,"pow"); 
       for(k=1; k<=ncovmodel;k++){    strcat(filerespow,fileres);
         fscanf(ficpar," %lf",&param[i][j][k]);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf(" %lf",param[i][j][k]);      printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficparo," %lf",param[i][j][k]);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
       fscanf(ficpar,"\n");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       printf("\n");    for (i=1;i<=nlstate;i++)
       fprintf(ficparo,"\n");      for(j=1;j<=nlstate+ndeath;j++)
     }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      fprintf(ficrespow,"\n");
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   p=param[1][1];    powell(p,xi,npar,ftol,&iter,&fret,func);
    
   /* Reads comments: lines beginning with '#' */    free_matrix(xi,1,npar,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficrespow);
     ungetc(c,ficpar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     puts(line);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fputs(line,ficparo);  
   }  }
   ungetc(c,ficpar);  
   /**** Computes Hessian and covariance matrix ***/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  {
   for(i=1; i <=nlstate; i++){    double  **a,**y,*x,pd;
     for(j=1; j <=nlstate+ndeath-1; j++){    double **hess;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i, j,jk;
       printf("%1d%1d",i,j);    int *indx;
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         printf(" %le",delti3[i][j][k]);    void lubksb(double **a, int npar, int *indx, double b[]) ;
         fprintf(ficparo," %le",delti3[i][j][k]);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       }    double gompertz(double p[]);
       fscanf(ficpar,"\n");    hess=matrix(1,npar,1,npar);
       printf("\n");  
       fprintf(ficparo,"\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
     }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   }    for (i=1;i<=npar;i++){
   delti=delti3[1][1];      printf("%d",i);fflush(stdout);
        fprintf(ficlog,"%d",i);fflush(ficlog);
   /* Reads comments: lines beginning with '#' */     
   while((c=getc(ficpar))=='#' && c!= EOF){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      /*  printf(" %f ",p[i]);
     puts(line);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     fputs(line,ficparo);    }
   }    
   ungetc(c,ficpar);    for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
   matcov=matrix(1,npar,1,npar);        if (j>i) { 
   for(i=1; i <=npar; i++){          printf(".%d%d",i,j);fflush(stdout);
     fscanf(ficpar,"%s",&str);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     printf("%s",str);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     fprintf(ficparo,"%s",str);          
     for(j=1; j <=i; j++){          hess[j][i]=hess[i][j];    
       fscanf(ficpar," %le",&matcov[i][j]);          /*printf(" %lf ",hess[i][j]);*/
       printf(" %.5le",matcov[i][j]);        }
       fprintf(ficparo," %.5le",matcov[i][j]);      }
     }    }
     fscanf(ficpar,"\n");    printf("\n");
     printf("\n");    fprintf(ficlog,"\n");
     fprintf(ficparo,"\n");  
   }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   for(i=1; i <=npar; i++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(j=i+1;j<=npar;j++)    
       matcov[i][j]=matcov[j][i];    a=matrix(1,npar,1,npar);
        y=matrix(1,npar,1,npar);
   printf("\n");    x=vector(1,npar);
     indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
     /*-------- data file ----------*/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     if((ficres =fopen(fileres,"w"))==NULL) {    ludcmp(a,npar,indx,&pd);
       printf("Problem with resultfile: %s\n", fileres);goto end;  
     }    for (j=1;j<=npar;j++) {
     fprintf(ficres,"#%s\n",version);      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
     if((fic=fopen(datafile,"r"))==NULL)    {      lubksb(a,npar,indx,x);
       printf("Problem with datafile: %s\n", datafile);goto end;      for (i=1;i<=npar;i++){ 
     }        matcov[i][j]=x[i];
       }
     n= lastobs;    }
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);    printf("\n#Hessian matrix#\n");
     num=ivector(1,n);    fprintf(ficlog,"\n#Hessian matrix#\n");
     moisnais=vector(1,n);    for (i=1;i<=npar;i++) { 
     annais=vector(1,n);      for (j=1;j<=npar;j++) { 
     moisdc=vector(1,n);        printf("%.3e ",hess[i][j]);
     andc=vector(1,n);        fprintf(ficlog,"%.3e ",hess[i][j]);
     agedc=vector(1,n);      }
     cod=ivector(1,n);      printf("\n");
     weight=vector(1,n);      fprintf(ficlog,"\n");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    }
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);    /* Recompute Inverse */
     s=imatrix(1,maxwav+1,1,n);    for (i=1;i<=npar;i++)
     adl=imatrix(1,maxwav+1,1,n);          for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     tab=ivector(1,NCOVMAX);    ludcmp(a,npar,indx,&pd);
     ncodemax=ivector(1,8);  
     /*  printf("\n#Hessian matrix recomputed#\n");
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {    for (j=1;j<=npar;j++) {
       if ((i >= firstobs) && (i <=lastobs)) {      for (i=1;i<=npar;i++) x[i]=0;
              x[j]=1;
         for (j=maxwav;j>=1;j--){      lubksb(a,npar,indx,x);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for (i=1;i<=npar;i++){ 
           strcpy(line,stra);        y[i][j]=x[i];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        printf("%.3e ",y[i][j]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog,"%.3e ",y[i][j]);
         }      }
              printf("\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
     */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(x,1,npar);
         for (j=ncov;j>=1;j--){    free_ivector(indx,1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(hess,1,npar,1,npar);
         }  
         num[i]=atol(stra);  
   }
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
   /*************** hessian matrix ****************/
         i=i+1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       }  {
     }    int i;
     int l=1, lmax=20;
     /*scanf("%d",i);*/    double k1,k2;
   imx=i-1; /* Number of individuals */    double p2[NPARMAX+1];
     double res;
   /* Calculation of the number of parameter from char model*/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   Tvar=ivector(1,15);        double fx;
   Tage=ivector(1,15);          int k=0,kmax=10;
        double l1;
   if (strlen(model) >1){  
     j=0, j1=0;    fx=func(x);
     j=nbocc(model,'+');    for (i=1;i<=npar;i++) p2[i]=x[i];
     j1=nbocc(model,'*');    for(l=0 ; l <=lmax; l++){
     cptcovn=j+1;      l1=pow(10,l);
          delts=delt;
     strcpy(modelsav,model);      for(k=1 ; k <kmax; k=k+1){
     if (j==0) {        delt = delta*(l1*k);
       if (j1==0){        p2[theta]=x[theta] +delt;
        cutv(stra,strb,modelsav,'V');        k1=func(p2)-fx;
        Tvar[1]=atoi(strb);        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
       else if (j1==1) {        /*res= (k1-2.0*fx+k2)/delt/delt; */
        cutv(stra,strb,modelsav,'*');        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/        
        Tage[1]=1; cptcovage++;  #ifdef DEBUG
        if (strcmp(stra,"age")==0) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          cutv(strd,strc,strb,'V');        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          Tvar[1]=atoi(strc);  #endif
        }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
        else if (strcmp(strb,"age")==0) {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
          cutv(strd,strc,stra,'V');          k=kmax;
          Tvar[1]=atoi(strc);        }
        }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
        else {printf("Error"); exit(0);}          k=kmax; l=lmax*10.;
       }        }
     }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     else {          delts=delt;
       for(i=j; i>=1;i--){        }
         cutv(stra,strb,modelsav,'+');      }
         /*printf("%s %s %s\n", stra,strb,modelsav);*/    }
         if (strchr(strb,'*')) {    delti[theta]=delts;
           cutv(strd,strc,strb,'*');    return res; 
           if (strcmp(strc,"age")==0) {    
             cutv(strb,stre,strd,'V');  }
             Tvar[i+1]=atoi(stre);  
             cptcovage++;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
             Tage[cptcovage]=i+1;  {
             printf("stre=%s ", stre);    int i;
           }    int l=1, l1, lmax=20;
           else if (strcmp(strd,"age")==0) {    double k1,k2,k3,k4,res,fx;
             cutv(strb,stre,strc,'V');    double p2[NPARMAX+1];
             Tvar[i+1]=atoi(stre);    int k;
             cptcovage++;  
             Tage[cptcovage]=i+1;    fx=func(x);
           }    for (k=1; k<=2; k++) {
           else {      for (i=1;i<=npar;i++) p2[i]=x[i];
             cutv(strb,stre,strc,'V');      p2[thetai]=x[thetai]+delti[thetai]/k;
             Tvar[i+1]=ncov+1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             cutv(strb,strc,strd,'V');      k1=func(p2)-fx;
             for (k=1; k<=lastobs;k++)    
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      p2[thetai]=x[thetai]+delti[thetai]/k;
           }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
         else {    
           cutv(strd,strc,strb,'V');      p2[thetai]=x[thetai]-delti[thetai]/k;
           /* printf("%s %s %s", strd,strc,strb);*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
         Tvar[i+1]=atoi(strc);    
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
         strcpy(modelsav,stra);        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
       cutv(strd,strc,stra,'V');      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       Tvar[1]=atoi(strc);  #ifdef DEBUG
     }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);    }
      scanf("%d ",i);*/    return res;
     fclose(fic);  }
   
    if(mle==1){  /************** Inverse of matrix **************/
     if (weightopt != 1) { /* Maximisation without weights*/  void ludcmp(double **a, int n, int *indx, double *d) 
       for(i=1;i<=n;i++) weight[i]=1.0;  { 
     }    int i,imax,j,k; 
     /*-calculation of age at interview from date of interview and age at death -*/    double big,dum,sum,temp; 
     agev=matrix(1,maxwav,1,imx);    double *vv; 
       
     for (i=1; i<=imx; i++)  {    vv=vector(1,n); 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    *d=1.0; 
       for(m=1; (m<= maxwav); m++){    for (i=1;i<=n;i++) { 
         if(s[m][i] >0){      big=0.0; 
           if (s[m][i] == nlstate+1) {      for (j=1;j<=n;j++) 
             if(agedc[i]>0)        if ((temp=fabs(a[i][j])) > big) big=temp; 
               if(moisdc[i]!=99 && andc[i]!=9999)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
               agev[m][i]=agedc[i];      vv[i]=1.0/big; 
             else{    } 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    for (j=1;j<=n;j++) { 
               agev[m][i]=-1;      for (i=1;i<j;i++) { 
             }        sum=a[i][j]; 
           }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           else if(s[m][i] !=9){ /* Should no more exist */        a[i][j]=sum; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      } 
             if(mint[m][i]==99 || anint[m][i]==9999)      big=0.0; 
               agev[m][i]=1;      for (i=j;i<=n;i++) { 
             else if(agev[m][i] <agemin){        sum=a[i][j]; 
               agemin=agev[m][i];        for (k=1;k<j;k++) 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          sum -= a[i][k]*a[k][j]; 
             }        a[i][j]=sum; 
             else if(agev[m][i] >agemax){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
               agemax=agev[m][i];          big=dum; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          imax=i; 
             }        } 
             /*agev[m][i]=anint[m][i]-annais[i];*/      } 
             /*   agev[m][i] = age[i]+2*m;*/      if (j != imax) { 
           }        for (k=1;k<=n;k++) { 
           else { /* =9 */          dum=a[imax][k]; 
             agev[m][i]=1;          a[imax][k]=a[j][k]; 
             s[m][i]=-1;          a[j][k]=dum; 
           }        } 
         }        *d = -(*d); 
         else /*= 0 Unknown */        vv[imax]=vv[j]; 
           agev[m][i]=1;      } 
       }      indx[j]=imax; 
          if (a[j][j] == 0.0) a[j][j]=TINY; 
     }      if (j != n) { 
     for (i=1; i<=imx; i++)  {        dum=1.0/(a[j][j]); 
       for(m=1; (m<= maxwav); m++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         if (s[m][i] > (nlstate+ndeath)) {      } 
           printf("Error: Wrong value in nlstate or ndeath\n");      } 
           goto end;    free_vector(vv,1,n);  /* Doesn't work */
         }  ;
       }  } 
     }  
   void lubksb(double **a, int n, int *indx, double b[]) 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  { 
     int i,ii=0,ip,j; 
     free_vector(severity,1,maxwav);    double sum; 
     free_imatrix(outcome,1,maxwav+1,1,n);   
     free_vector(moisnais,1,n);    for (i=1;i<=n;i++) { 
     free_vector(annais,1,n);      ip=indx[i]; 
     free_matrix(mint,1,maxwav,1,n);      sum=b[ip]; 
     free_matrix(anint,1,maxwav,1,n);      b[ip]=b[i]; 
     free_vector(moisdc,1,n);      if (ii) 
     free_vector(andc,1,n);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
          b[i]=sum; 
     wav=ivector(1,imx);    } 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    for (i=n;i>=1;i--) { 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      sum=b[i]; 
          for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     /* Concatenates waves */      b[i]=sum/a[i][i]; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    } 
   } 
   
       Tcode=ivector(1,100);  void pstamp(FILE *fichier)
    nbcode=imatrix(1,nvar,1,8);    {
    ncodemax[1]=1;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);  }
    
    codtab=imatrix(1,100,1,10);  /************ Frequencies ********************/
    h=0;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    m=pow(2,cptcovn);  {  /* Some frequencies */
      
    for(k=1;k<=cptcovn; k++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      for(i=1; i <=(m/pow(2,k));i++){    int first;
        for(j=1; j <= ncodemax[k]; j++){    double ***freq; /* Frequencies */
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    double *pp, **prop;
            h++;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
            if (h>m) h=1;codtab[h][k]=j;    char fileresp[FILENAMELENGTH];
          }    
        }    pp=vector(1,nlstate);
      }    prop=matrix(1,nlstate,iagemin,iagemax+3);
    }    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
    /* for(i=1; i <=m ;i++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
      for(k=1; k <=cptcovn; k++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      }      exit(0);
      printf("\n");    }
    }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
    scanf("%d",i);*/    j1=0;
        
    /* Calculates basic frequencies. Computes observed prevalence at single age    j=cptcoveff;
        and prints on file fileres'p'. */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);  
     first=1;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(k1=1; k1<=j;k1++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i1=1; i1<=ncodemax[k1];i1++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        j1++;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
              scanf("%d", i);*/
     /* For Powell, parameters are in a vector p[] starting at p[1]        for (i=-5; i<=nlstate+ndeath; i++)  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            for(m=iagemin; m <= iagemax+3; m++)
                  freq[i][jk][m]=0;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
       for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
     /*--------- results files --------------*/          prop[i][m]=0;
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        
            dateintsum=0;
    jk=1;        k2cpt=0;
    fprintf(ficres,"# Parameters\n");        for (i=1; i<=imx; i++) {
    printf("# Parameters\n");          bool=1;
    for(i=1,jk=1; i <=nlstate; i++){          if  (cptcovn>0) {
      for(k=1; k <=(nlstate+ndeath); k++){            for (z1=1; z1<=cptcoveff; z1++) 
        if (k != i)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
          {                bool=0;
            printf("%d%d ",i,k);          }
            fprintf(ficres,"%1d%1d ",i,k);          if (bool==1){
            for(j=1; j <=ncovmodel; j++){            for(m=firstpass; m<=lastpass; m++){
              printf("%f ",p[jk]);              k2=anint[m][i]+(mint[m][i]/12.);
              fprintf(ficres,"%f ",p[jk]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
              jk++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
            }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
            printf("\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
            fprintf(ficres,"\n");                if (m<lastpass) {
          }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
    }                }
                 
     /* Computing hessian and covariance matrix */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     ftolhess=ftol; /* Usually correct */                  dateintsum=dateintsum+k2;
     hesscov(matcov, p, npar, delti, ftolhess, func);                  k2cpt++;
     fprintf(ficres,"# Scales\n");                }
     printf("# Scales\n");                /*}*/
      for(i=1,jk=1; i <=nlstate; i++){            }
       for(j=1; j <=nlstate+ndeath; j++){          }
         if (j!=i) {        }
           fprintf(ficres,"%1d%1d",i,j);         
           printf("%1d%1d",i,j);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           for(k=1; k<=ncovmodel;k++){        pstamp(ficresp);
             printf(" %.5e",delti[jk]);        if  (cptcovn>0) {
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficresp, "\n#********** Variable "); 
             jk++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresp, "**********\n#");
           printf("\n");        }
           fprintf(ficres,"\n");        for(i=1; i<=nlstate;i++) 
         }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       }        fprintf(ficresp, "\n");
       }        
            for(i=iagemin; i <= iagemax+3; i++){
     k=1;          if(i==iagemax+3){
     fprintf(ficres,"# Covariance\n");            fprintf(ficlog,"Total");
     printf("# Covariance\n");            fprintf(fichtm,"<br>Total<br>");
     for(i=1;i<=npar;i++){          }else{
       /*  if (k>nlstate) k=1;            if(first==1){
       i1=(i-1)/(ncovmodel*nlstate)+1;              first=0;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              printf("See log file for details...\n");
       printf("%s%d%d",alph[k],i1,tab[i]);*/            }
       fprintf(ficres,"%3d",i);            fprintf(ficlog,"Age %d", i);
       printf("%3d",i);          }
       for(j=1; j<=i;j++){          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficres," %.5e",matcov[i][j]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         printf(" %.5e",matcov[i][j]);              pp[jk] += freq[jk][m][i]; 
       }          }
       fprintf(ficres,"\n");          for(jk=1; jk <=nlstate ; jk++){
       printf("\n");            for(m=-1, pos=0; m <=0 ; m++)
       k++;              pos += freq[jk][m][i];
     }            if(pp[jk]>=1.e-10){
                  if(first==1){
     while((c=getc(ficpar))=='#' && c!= EOF){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       ungetc(c,ficpar);              }
       fgets(line, MAXLINE, ficpar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       puts(line);            }else{
       fputs(line,ficparo);              if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     ungetc(c,ficpar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          }
      
     if (fage <= 2) {          for(jk=1; jk <=nlstate ; jk++){
       bage = agemin;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fage = agemax;              pp[jk] += freq[jk][m][i];
     }          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            pos += pp[jk];
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            posprop += prop[jk][i];
 /*------------ gnuplot -------------*/          }
 chdir(pathcd);          for(jk=1; jk <=nlstate ; jk++){
   if((ficgp=fopen("graph.plt","w"))==NULL) {            if(pos>=1.e-5){
     printf("Problem with file graph.gp");goto end;              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 #ifdef windows              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficgp,"cd \"%s\" \n",pathc);            }else{
 #endif              if(first==1)
 m=pow(2,cptcovn);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  /* 1eme*/            }
   for (cpt=1; cpt<= nlstate ; cpt ++) {            if( i <= iagemax){
    for (k1=1; k1<= m ; k1 ++) {              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 #ifdef windows                /*probs[i][jk][j1]= pp[jk]/pos;*/
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 #endif              }
 #ifdef unix              else
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 #endif            }
           }
 for (i=1; i<= nlstate ; i ++) {          
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=-1; m <=nlstate+ndeath; m++)
 }              if(freq[jk][m][i] !=0 ) {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              if(first==1)
     for (i=1; i<= nlstate ; i ++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }          if(i <= iagemax)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            fprintf(ficresp,"\n");
      for (i=1; i<= nlstate ; i ++) {          if(first==1)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            printf("Others in log...\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog,"\n");
 }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      }
 #ifdef unix    }
 fprintf(ficgp,"\nset ter gif small size 400,300");    dateintmean=dateintsum/k2cpt; 
 #endif   
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fclose(ficresp);
    }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   }    free_vector(pp,1,nlstate);
   /*2 eme*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   for (k1=1; k1<= m ; k1 ++) {  }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
      /************ Prevalence ********************/
     for (i=1; i<= nlstate+1 ; i ++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       k=2*i;  {  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       for (j=1; j<= nlstate+1 ; j ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       We still use firstpass and lastpass as another selection.
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }     
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double ***freq; /* Frequencies */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double *pp, **prop;
       for (j=1; j<= nlstate+1 ; j ++) {    double pos,posprop; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double  y2; /* in fractional years */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int iagemin, iagemax;
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");    iagemin= (int) agemin;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    iagemax= (int) agemax;
       for (j=1; j<= nlstate+1 ; j ++) {    /*pp=vector(1,nlstate);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 }      j1=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    
       else fprintf(ficgp,"\" t\"\" w l 0,");    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    
   }    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   /*3eme*/        j1++;
         
   for (k1=1; k1<= m ; k1 ++) {        for (i=1; i<=nlstate; i++)  
     for (cpt=1; cpt<= nlstate ; cpt ++) {          for(m=iagemin; m <= iagemax+3; m++)
       k=2+nlstate*(cpt-1);            prop[i][m]=0.0;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);       
       for (i=1; i< nlstate ; i ++) {        for (i=1; i<=imx; i++) { /* Each individual */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          bool=1;
       }          if  (cptcovn>0) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for (z1=1; z1<=cptcoveff; z1++) 
     }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   }                bool=0;
            } 
   /* CV preval stat */          if (bool==1) { 
   for (k1=1; k1<= m ; k1 ++) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     for (cpt=1; cpt<nlstate ; cpt ++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       k=3;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for (i=1; i< nlstate ; i ++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficgp,"+$%d",k+i+1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                        /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       l=3+(nlstate+ndeath)*cpt;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                  prop[s[m][i]][iagemax+3] += weight[i]; 
       for (i=1; i< nlstate ; i ++) {                } 
         l=3+(nlstate+ndeath)*cpt;              }
         fprintf(ficgp,"+$%d",l+i+1);            } /* end selection of waves */
       }          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(i=iagemin; i <= iagemax+3; i++){  
     }          
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   /* proba elementaires */          } 
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){          for(jk=1; jk <=nlstate ; jk++){     
       if (k != i) {            if( i <=  iagemax){ 
         for(j=1; j <=ncovmodel; j++){              if(posprop>=1.e-5){ 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/                probs[i][jk][j1]= prop[jk][i]/posprop;
           /*fprintf(ficgp,"%s",alph[1]);*/              } 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            } 
           jk++;          }/* end jk */ 
           fprintf(ficgp,"\n");        }/* end i */ 
         }      } /* end i1 */
       }    } /* end k1 */
     }    
     }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
   for(jk=1; jk <=m; jk++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  }  /* End of prevalence */
    i=1;  
    for(k2=1; k2<=nlstate; k2++) {  /************* Waves Concatenation ***************/
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        if (k != k2){  {
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
         for(j=3; j <=ncovmodel; j++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         fprintf(ficgp,")/(1");       and mw[mi+1][i]. dh depends on stepm.
               */
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int i, mi, m;
           for(j=3; j <=ncovmodel; j++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       double sum=0., jmean=0.;*/
           fprintf(ficgp,")");    int first;
         }    int j, k=0,jk, ju, jl;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double sum=0.;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    first=0;
         i=i+ncovmodel;    jmin=1e+5;
        }    jmax=-1;
      }    jmean=0.;
    }    for(i=1; i<=imx; i++){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      mi=0;
   }      m=firstpass;
          while(s[m][i] <= nlstate){
   fclose(ficgp);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
              mw[++mi][i]=m;
 chdir(path);        if(m >=lastpass)
     free_matrix(agev,1,maxwav,1,imx);          break;
     free_ivector(wav,1,imx);        else
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          m++;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      }/* end while */
          if (s[m][i] > nlstate){
     free_imatrix(s,1,maxwav+1,1,n);        mi++;     /* Death is another wave */
            /* if(mi==0)  never been interviewed correctly before death */
               /* Only death is a correct wave */
     free_ivector(num,1,n);        mw[mi][i]=m;
     free_vector(agedc,1,n);      }
     free_vector(weight,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      wav[i]=mi;
     fclose(ficparo);      if(mi==0){
     fclose(ficres);        nbwarn++;
    }        if(first==0){
              printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    /*________fin mle=1_________*/          first=1;
            }
         if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     /* No more information from the sample is required now */        }
   /* Reads comments: lines beginning with '#' */      } /* end mi==0 */
   while((c=getc(ficpar))=='#' && c!= EOF){    } /* End individuals */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    for(i=1; i<=imx; i++){
     puts(line);      for(mi=1; mi<wav[i];mi++){
     fputs(line,ficparo);        if (stepm <=0)
   }          dh[mi][i]=1;
   ungetc(c,ficpar);        else{
            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            if (agedc[i] < 2*AGESUP) {
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              if(j==0) j=1;  /* Survives at least one month after exam */
 /*--------- index.htm --------*/              else if(j<0){
                 nberr++;
   if((fichtm=fopen("index.htm","w"))==NULL)    {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     printf("Problem with index.htm \n");goto end;                j=1; /* Temporary Dangerous patch */
   }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>              k=k+1;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>              if (j >= jmax){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>                jmax=j;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>                ijmax=i;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>              }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>              if (j <= jmin){
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>                jmin=j;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);                ijmin=i;
               }
  fprintf(fichtm," <li>Graphs</li>\n<p>");              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  m=cptcovn;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
           }
  j1=0;          else{
  for(k1=1; k1<=m;k1++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    for(i1=1; i1<=ncodemax[k1];i1++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        j1++;  
        if (cptcovn > 0) {            k=k+1;
          fprintf(fichtm,"<hr>************ Results for covariates");            if (j >= jmax) {
          for (cpt=1; cpt<=cptcovn;cpt++)              jmax=j;
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);              ijmax=i;
          fprintf(fichtm," ************\n<hr>");            }
        }            else if (j <= jmin){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              jmin=j;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                  ijmin=i;
        for(cpt=1; cpt<nlstate;cpt++){            }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
        }            if(j<0){
     for(cpt=1; cpt<=nlstate;cpt++) {              nberr++;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 interval) in state (%d): v%s%d%d.gif <br>              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              }
      }            sum=sum+j;
      for(cpt=1; cpt<=nlstate;cpt++) {          }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          jk= j/stepm;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          jl= j -jk*stepm;
      }          ju= j -(jk+1)*stepm;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 health expectancies in states (1) and (2): e%s%d.gif<br>            if(jl==0){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              dh[mi][i]=jk;
 fprintf(fichtm,"\n</body>");              bh[mi][i]=0;
    }            }else{ /* We want a negative bias in order to only have interpolation ie
  }                    * at the price of an extra matrix product in likelihood */
 fclose(fichtm);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   /*--------------- Prevalence limit --------------*/            }
            }else{
   strcpy(filerespl,"pl");            if(jl <= -ju){
   strcat(filerespl,fileres);              dh[mi][i]=jk;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              bh[mi][i]=jl;       /* bias is positive if real duration
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            }
   fprintf(ficrespl,"#Prevalence limit\n");            else{
   fprintf(ficrespl,"#Age ");              dh[mi][i]=jk+1;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              bh[mi][i]=ju;
   fprintf(ficrespl,"\n");            }
              if(dh[mi][i]==0){
   prlim=matrix(1,nlstate,1,nlstate);              dh[mi][i]=1; /* At least one step */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=ju; /* At least one step */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          } /* end if mle */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }
   k=0;      } /* end wave */
   agebase=agemin;    }
   agelim=agemax;    jmean=sum/k;
   ftolpl=1.e-10;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   i1=cptcovn;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   if (cptcovn < 1){i1=1;}   }
   
   for(cptcov=1;cptcov<=i1;cptcov++){  /*********** Tricode ****************************/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  void tricode(int *Tvar, int **nbcode, int imx)
         k=k+1;  {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    
         fprintf(ficrespl,"\n#******");    int Ndum[20],ij=1, k, j, i, maxncov=19;
         for(j=1;j<=cptcovn;j++)    int cptcode=0;
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    cptcoveff=0; 
         fprintf(ficrespl,"******\n");   
            for (k=0; k<maxncov; k++) Ndum[k]=0;
         for (age=agebase; age<=agelim; age++){    for (k=1; k<=7; k++) ncodemax[k]=0;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           for(i=1; i<=nlstate;i++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           fprintf(ficrespl," %.5f", prlim[i][i]);                                 modality*/ 
           fprintf(ficrespl,"\n");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         }        Ndum[ij]++; /*store the modality */
       }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   fclose(ficrespl);                                         Tvar[j]. If V=sex and male is 0 and 
   /*------------- h Pij x at various ages ------------*/                                         female is 1, then  cptcode=1.*/
        }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      for (i=0; i<=cptcode; i++) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
   printf("Computing pij: result on file '%s' \n", filerespij);  
        ij=1; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for (i=1; i<=ncodemax[j]; i++) {
   if (stepm<=24) stepsize=2;        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   agelim=AGESUP;            nbcode[Tvar[j]][ij]=k; 
   hstepm=stepsize*YEARM; /* Every year of age */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            
              ij++;
   k=0;          }
   for(cptcov=1;cptcov<=i1;cptcov++){          if (ij > ncodemax[j]) break; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }  
       k=k+1;      } 
         fprintf(ficrespij,"\n#****** ");    }  
         for(j=1;j<=cptcovn;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);   for (k=0; k< maxncov; k++) Ndum[k]=0;
         fprintf(ficrespij,"******\n");  
           for (i=1; i<=ncovmodel-2; i++) { 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     ij=Tvar[i];
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     Ndum[ij]++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     ij=1;
           fprintf(ficrespij,"# Age");   for (i=1; i<= maxncov; i++) {
           for(i=1; i<=nlstate;i++)     if((Ndum[i]!=0) && (i<=ncovcol)){
             for(j=1; j<=nlstate+ndeath;j++)       Tvaraff[ij]=i; /*For printing */
               fprintf(ficrespij," %1d-%1d",i,j);       ij++;
           fprintf(ficrespij,"\n");     }
           for (h=0; h<=nhstepm; h++){   }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   
             for(i=1; i<=nlstate;i++)   cptcoveff=ij-1; /*Number of simple covariates*/
               for(j=1; j<=nlstate+ndeath;j++)  }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");  /*********** Health Expectancies ****************/
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
           fprintf(ficrespij,"\n");  
         }  {
     }    /* Health expectancies, no variances */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     double age, agelim, hf;
   fclose(ficrespij);    double ***p3mat;
     double eip;
   /*---------- Health expectancies and variances ------------*/  
     pstamp(ficreseij);
   strcpy(filerest,"t");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   strcat(filerest,fileres);    fprintf(ficreseij,"# Age");
   if((ficrest=fopen(filerest,"w"))==NULL) {    for(i=1; i<=nlstate;i++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(j=1; j<=nlstate;j++){
   }        fprintf(ficreseij," e%1d%1d ",i,j);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      }
       fprintf(ficreseij," e%1d. ",i);
     }
   strcpy(filerese,"e");    fprintf(ficreseij,"\n");
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    }
     else  hstepm=estepm;   
  strcpy(fileresv,"v");    /* We compute the life expectancy from trapezoids spaced every estepm months
   strcat(fileresv,fileres);     * This is mainly to measure the difference between two models: for example
   if((ficresvij=fopen(fileresv,"w"))==NULL) {     * if stepm=24 months pijx are given only every 2 years and by summing them
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   k=0;     * to compare the new estimate of Life expectancy with the same linear 
   for(cptcov=1;cptcov<=i1;cptcov++){     * hypothesis. A more precise result, taking into account a more precise
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * curvature will be obtained if estepm is as small as stepm. */
       k=k+1;  
       fprintf(ficrest,"\n#****** ");    /* For example we decided to compute the life expectancy with the smallest unit */
       for(j=1;j<=cptcovn;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficrest,"******\n");       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficreseij,"\n#****** ");       and note for a fixed period like estepm months */
       for(j=1;j<=cptcovn;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficreseij,"******\n");       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresvij,"\n#****** ");       results. So we changed our mind and took the option of the best precision.
       for(j=1;j<=cptcovn;j++)    */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresvij,"******\n");  
     agelim=AGESUP;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* nhstepm age range expressed in number of stepm */
       oldm=oldms;savm=savms;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* if (stepm >= YEARM) hstepm=1;*/
       oldm=oldms;savm=savms;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficrest,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
              
       hf=1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       if (stepm >= YEARM) hf=stepm/YEARM;      
       epj=vector(1,nlstate+1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(age=bage; age <=fage ;age++){      
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      printf("%d|",(int)age);fflush(stdout);
         fprintf(ficrest," %.0f",age);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      /* Computing expectancies */
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      for(i=1; i<=nlstate;i++)
           }        for(j=1; j<=nlstate;j++)
           epj[nlstate+1] +=epj[j];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for(i=1, vepp=0.;i <=nlstate;i++)            
           for(j=1;j <=nlstate;j++)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          }
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      fprintf(ficreseij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++){
         fprintf(ficrest,"\n");        eip=0;
       }        for(j=1; j<=nlstate;j++){
     }          eip +=eij[i][j][(int)age];
   }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                }
  fclose(ficreseij);        fprintf(ficreseij,"%9.4f", eip );
  fclose(ficresvij);      }
   fclose(ficrest);      fprintf(ficreseij,"\n");
   fclose(ficpar);      
   free_vector(epj,1,nlstate+1);    }
   /*  scanf("%d ",i); */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   /*------- Variance limit prevalence------*/      fprintf(ficlog,"\n");
     
 strcpy(fileresvpl,"vpl");  }
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  {
   }    /* Covariances of health expectancies eij and of total life expectancies according
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);     to initial status i, ei. .
     */
  k=0;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  for(cptcov=1;cptcov<=i1;cptcov++){    double age, agelim, hf;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***p3matp, ***p3matm, ***varhe;
      k=k+1;    double **dnewm,**doldm;
      fprintf(ficresvpl,"\n#****** ");    double *xp, *xm;
      for(j=1;j<=cptcovn;j++)    double **gp, **gm;
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    double ***gradg, ***trgradg;
      fprintf(ficresvpl,"******\n");    int theta;
        
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    double eip, vip;
      oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    }    xp=vector(1,npar);
  }    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   fclose(ficresvpl);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   /*---------- End : free ----------------*/    pstamp(ficresstdeij);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      fprintf(ficresstdeij,"# Age");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for(i=1; i<=nlstate;i++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
        fprintf(ficresstdeij," e%1d. ",i);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresstdeij,"\n");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    pstamp(ficrescveij);
      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   free_matrix(matcov,1,npar,1,npar);    fprintf(ficrescveij,"# Age");
   free_vector(delti,1,npar);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
   printf("End of Imach\n");          for(j2=1; j2<=nlstate;j2++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            cptj2= (j2-1)*nlstate+i2;
              if(cptj2 <= cptj)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   /*printf("Total time was %d uSec.\n", total_usecs);*/          }
   /*------ End -----------*/      }
     fprintf(ficrescveij,"\n");
  end:    
 #ifdef windows    if(estepm < stepm){
  chdir(pathcd);      printf ("Problem %d lower than %d\n",estepm, stepm);
 #endif    }
  system("wgnuplot graph.plt");    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
 #ifdef windows     * This is mainly to measure the difference between two models: for example
   while (z[0] != 'q') {     * if stepm=24 months pijx are given only every 2 years and by summing them
     chdir(pathcd);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     printf("\nType e to edit output files, c to start again, and q for exiting: ");     * progression in between and thus overestimating or underestimating according
     scanf("%s",z);     * to the curvature of the survival function. If, for the same date, we 
     if (z[0] == 'c') system("./imach");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     else if (z[0] == 'e') {     * to compare the new estimate of Life expectancy with the same linear 
       chdir(path);     * hypothesis. A more precise result, taking into account a more precise
       system("index.htm");     * curvature will be obtained if estepm is as small as stepm. */
     }  
     else if (z[0] == 'q') exit(0);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 #endif       nhstepm is the number of hstepm from age to agelim 
 }       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
   
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.124


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>