Diff for /imach/src/imach.c between versions 1.7 and 1.108

version 1.7, 2001/05/02 17:50:24 version 1.108, 2006/01/19 18:05:42
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.108  2006/01/19 18:05:42  lievre
   individuals from different ages are interviewed on their health status    Gnuplot problem appeared...
   or degree of  disability. At least a second wave of interviews    To be fixed
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.107  2006/01/19 16:20:37  brouard
   waves and are computed for each degree of severity of disability (number    Test existence of gnuplot in imach path
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.106  2006/01/19 13:24:36  brouard
   The simplest model is the multinomial logistic model where pij is    Some cleaning and links added in html output
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.105  2006/01/05 20:23:19  lievre
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    *** empty log message ***
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.104  2005/09/30 16:11:43  lievre
     *Covariates have to be included here again* invites you to do it.    (Module): sump fixed, loop imx fixed, and simplifications.
   More covariates you add, less is the speed of the convergence.    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   The advantage that this computer programme claims, comes from that if the    (instead of missing=-1 in earlier versions) and his/her
   delay between waves is not identical for each individual, or if some    contributions to the likelihood is 1 - Prob of dying from last
   individual missed an interview, the information is not rounded or lost, but    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   taken into account using an interpolation or extrapolation.    the healthy state at last known wave). Version is 0.98
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    Revision 1.103  2005/09/30 15:54:49  lievre
   x. The delay 'h' can be split into an exact number (nh*stepm) of    (Module): sump fixed, loop imx fixed, and simplifications.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.102  2004/09/15 17:31:30  brouard
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Add the possibility to read data file including tab characters.
   and the contribution of each individual to the likelihood is simply hPijx.  
     Revision 1.101  2004/09/15 10:38:38  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Fix on curr_time
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.100  2004/07/12 18:29:06  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Add version for Mac OS X. Just define UNIX in Makefile
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.99  2004/06/05 08:57:40  brouard
   from the European Union.    *** empty log message ***
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.98  2004/05/16 15:05:56  brouard
   can be accessed at http://euroreves.ined.fr/imach .    New version 0.97 . First attempt to estimate force of mortality
   **********************************************************************/    directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
 #include <math.h>    This is the basic analysis of mortality and should be done before any
 #include <stdio.h>    other analysis, in order to test if the mortality estimated from the
 #include <stdlib.h>    cross-longitudinal survey is different from the mortality estimated
 #include <unistd.h>    from other sources like vital statistic data.
   
 #define MAXLINE 256    The same imach parameter file can be used but the option for mle should be -3.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Agnès, who wrote this part of the code, tried to keep most of the
 #define windows    former routines in order to include the new code within the former code.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define NINTERVMAX 8    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    B) There is no computation of Life Expectancy nor Life Table.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.97  2004/02/20 13:25:42  lievre
 #define MAXN 20000    Version 0.96d. Population forecasting command line is (temporarily)
 #define YEARM 12. /* Number of months per year */    suppressed.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 int nvar;  
 static int cptcov;    Revision 1.95  2003/07/08 07:54:34  brouard
 int cptcovn, cptcovage=0, cptcoveff=0;    * imach.c (Repository):
 int npar=NPARMAX;    (Repository): Using imachwizard code to output a more meaningful covariance
 int nlstate=2; /* Number of live states */    matrix (cov(a12,c31) instead of numbers.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.93  2003/06/25 16:33:55  brouard
 int mle, weightopt;    (Module): On windows (cygwin) function asctime_r doesn't
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    exist so I changed back to asctime which exists.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Version 0.96b
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.92  2003/06/25 16:30:45  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *ficgp, *fichtm;    exist so I changed back to asctime which exists.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.91  2003/06/25 15:30:29  brouard
  FILE  *ficresvij;    * imach.c (Repository): Duplicated warning errors corrected.
   char fileresv[FILENAMELENGTH];    (Repository): Elapsed time after each iteration is now output. It
  FILE  *ficresvpl;    helps to forecast when convergence will be reached. Elapsed time
   char fileresvpl[FILENAMELENGTH];    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.90  2003/06/24 12:34:15  brouard
 #define FTOL 1.0e-10    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define NRANSI    of the covariance matrix to be input.
 #define ITMAX 200  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define TOL 2.0e-4    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define CGOLD 0.3819660    of the covariance matrix to be input.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.87  2003/06/18 12:26:01  brouard
 #define TINY 1.0e-20    Version 0.96
   
 static double maxarg1,maxarg2;    Revision 1.86  2003/06/17 20:04:08  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Change position of html and gnuplot routines and added
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    routine fileappend.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.85  2003/06/17 13:12:43  brouard
 #define rint(a) floor(a+0.5)    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 static double sqrarg;    prior to the death. In this case, dh was negative and likelihood
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    was wrong (infinity). We still send an "Error" but patch by
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    assuming that the date of death was just one stepm after the
     interview.
 int imx;    (Repository): Because some people have very long ID (first column)
 int stepm;    we changed int to long in num[] and we added a new lvector for
 /* Stepm, step in month: minimum step interpolation*/    memory allocation. But we also truncated to 8 characters (left
     truncation)
 int m,nb;    (Repository): No more line truncation errors.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.84  2003/06/13 21:44:43  brouard
 double **pmmij;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 double *weight;    many times. Probs is memory consuming and must be used with
 int **s; /* Status */    parcimony.
 double *agedc, **covar, idx;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.83  2003/06/10 13:39:11  lievre
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    *** empty log message ***
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.82  2003/06/05 15:57:20  brouard
 /**************** split *************************/    Add log in  imach.c and  fullversion number is now printed.
 static  int split( char *path, char *dirc, char *name )  
 {  */
    char *s;                             /* pointer */  /*
    int  l1, l2;                         /* length counters */     Interpolated Markov Chain
   
    l1 = strlen( path );                 /* length of path */    Short summary of the programme:
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    
    s = strrchr( path, '\\' );           /* find last / */    This program computes Healthy Life Expectancies from
    if ( s == NULL ) {                   /* no directory, so use current */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #if     defined(__bsd__)                /* get current working directory */    first survey ("cross") where individuals from different ages are
       extern char       *getwd( );    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
       if ( getwd( dirc ) == NULL ) {    second wave of interviews ("longitudinal") which measure each change
 #else    (if any) in individual health status.  Health expectancies are
       extern char       *getcwd( );    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Maximum Likelihood of the parameters involved in the model.  The
 #endif    simplest model is the multinomial logistic model where pij is the
          return( GLOCK_ERROR_GETCWD );    probability to be observed in state j at the second wave
       }    conditional to be observed in state i at the first wave. Therefore
       strcpy( name, path );             /* we've got it */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    } else {                             /* strip direcotry from path */    'age' is age and 'sex' is a covariate. If you want to have a more
       s++;                              /* after this, the filename */    complex model than "constant and age", you should modify the program
       l2 = strlen( s );                 /* length of filename */    where the markup *Covariates have to be included here again* invites
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    you to do it.  More covariates you add, slower the
       strcpy( name, s );                /* save file name */    convergence.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    The advantage of this computer programme, compared to a simple
    }    multinomial logistic model, is clear when the delay between waves is not
    l1 = strlen( dirc );                 /* length of directory */    identical for each individual. Also, if a individual missed an
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    intermediate interview, the information is lost, but taken into
    return( 0 );                         /* we're done */    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /******************************************/    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 void replace(char *s, char*t)    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   int i;    and the contribution of each individual to the likelihood is simply
   int lg=20;    hPijx.
   i=0;  
   lg=strlen(t);    Also this programme outputs the covariance matrix of the parameters but also
   for(i=0; i<= lg; i++) {    of the life expectancies. It also computes the stable prevalence. 
     (s[i] = t[i]);    
     if (t[i]== '\\') s[i]='/';    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   }             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 int nbocc(char *s, char occ)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   int i,j=0;    can be accessed at http://euroreves.ined.fr/imach .
   int lg=20;  
   i=0;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   lg=strlen(s);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for(i=0; i<= lg; i++) {    
   if  (s[i] == occ ) j++;    **********************************************************************/
   }  /*
   return j;    main
 }    read parameterfile
     read datafile
 void cutv(char *u,char *v, char*t, char occ)    concatwav
 {    freqsummary
   int i,lg,j,p=0;    if (mle >= 1)
   i=0;      mlikeli
   for(j=0; j<=strlen(t)-1; j++) {    print results files
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    if mle==1 
   }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
   lg=strlen(t);        begin-prev-date,...
   for(j=0; j<p; j++) {    open gnuplot file
     (u[j] = t[j]);    open html file
   }    stable prevalence
      u[p]='\0';     for age prevalim()
     h Pij x
    for(j=0; j<= lg; j++) {    variance of p varprob
     if (j>=(p+1))(v[j-p-1] = t[j]);    forecasting if prevfcast==1 prevforecast call prevalence()
   }    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /********************** nrerror ********************/     movingaverage()
     varevsij() 
 void nrerror(char error_text[])    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   fprintf(stderr,"ERREUR ...\n");    Variance of stable prevalence
   fprintf(stderr,"%s\n",error_text);   end
   exit(1);  */
 }  
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  
 {   
   double *v;  #include <math.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <stdio.h>
   if (!v) nrerror("allocation failure in vector");  #include <stdlib.h>
   return v-nl+NR_END;  #include <string.h>
 }  #include <unistd.h>
   
 /************************ free vector ******************/  #include <sys/types.h>
 void free_vector(double*v, int nl, int nh)  #include <sys/stat.h>
 {  #include <errno.h>
   free((FREE_ARG)(v+nl-NR_END));  extern int errno;
 }  
   /* #include <sys/time.h> */
 /************************ivector *******************************/  #include <time.h>
 int *ivector(long nl,long nh)  #include "timeval.h"
 {  
   int *v;  /* #include <libintl.h> */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /* #define _(String) gettext (String) */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /******************free ivector **************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 void free_ivector(int *v, long nl, long nh)  #define FILENAMELENGTH 132
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /******************* imatrix *******************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #define NINTERVMAX 8
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   int **m;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
   /* allocate pointers to rows */  #define MAXN 20000
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define YEARM 12. /* Number of months per year */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGESUP 130
   m += NR_END;  #define AGEBASE 40
   m -= nrl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
    #define DIRSEPARATOR '/'
   /* allocate rows and set pointers to them */  #define CHARSEPARATOR "/"
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define ODIRSEPARATOR '\\'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #else
   m[nrl] += NR_END;  #define DIRSEPARATOR '\\'
   m[nrl] -= ncl;  #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #endif
    
   /* return pointer to array of pointers to rows */  /* $Id$ */
   return m;  /* $State$ */
 }  
   char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
 /****************** free_imatrix *************************/  char fullversion[]="$Revision$ $Date$"; 
 void free_imatrix(m,nrl,nrh,ncl,nch)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       int **m;  int nvar;
       long nch,ncl,nrh,nrl;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
      /* free an int matrix allocated by imatrix() */  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int ndeath=1; /* Number of dead states */
   free((FREE_ARG) (m+nrl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /******************* matrix *******************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int gipmx, gsw; /* Global variables on the number of contributions 
   double **m;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!m) nrerror("allocation failure 1 in matrix()");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m += NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m -= nrl;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m[nrl] += NR_END;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl] -= ncl;  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double fretone; /* Only one call to likelihood */
   return m;  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 /*************************free matrix ************************/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficresprobmorprev;
   free((FREE_ARG)(m+nrl-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /******************* ma3x *******************************/  FILE  *ficresvij;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char fileresvpl[FILENAMELENGTH];
   double ***m;  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m += NR_END;  char command[FILENAMELENGTH];
   m -= nrl;  int  outcmd=0;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl] -= ncl;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char popfile[FILENAMELENGTH];
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl][ncl] -= nll;  struct timezone tzp;
   for (j=ncl+1; j<=nch; j++)  extern int gettimeofday();
     m[nrl][j]=m[nrl][j-1]+nlay;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
    long time_value;
   for (i=nrl+1; i<=nrh; i++) {  extern long time();
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char strcurr[80], strfor[80];
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  #define NR_END 1
   }  #define FREE_ARG char*
   return m;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /*************************free ma3x ************************/  #define ITMAX 200 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  #define TOL 2.0e-4 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define CGOLD 0.3819660 
   free((FREE_ARG)(m+nrl-NR_END));  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /***************** f1dim *************************/  #define GOLD 1.618034 
 extern int ncom;  #define GLIMIT 100.0 
 extern double *pcom,*xicom;  #define TINY 1.0e-20 
 extern double (*nrfunc)(double []);  
    static double maxarg1,maxarg2;
 double f1dim(double x)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   int j;    
   double f;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double *xt;  #define rint(a) floor(a+0.5)
    
   xt=vector(1,ncom);  static double sqrarg;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   f=(*nrfunc)(xt);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free_vector(xt,1,ncom);  int agegomp= AGEGOMP;
   return f;  
 }  int imx; 
   int stepm=1;
 /*****************brent *************************/  /* Stepm, step in month: minimum step interpolation*/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  int estepm;
   int iter;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  int m,nb;
   double ftemp;  long *num;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double e=0.0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
   a=(ax < cx ? ax : cx);  double *ageexmed,*agecens;
   b=(ax > cx ? ax : cx);  double dateintmean=0;
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  double *weight;
   for (iter=1;iter<=ITMAX;iter++) {  int **s; /* Status */
     xm=0.5*(a+b);  double *agedc, **covar, idx;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double *lsurv, *lpop, *tpop;
     printf(".");fflush(stdout);  
 #ifdef DEBUG  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double ftolhess; /* Tolerance for computing hessian */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /**************** split *************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       *xmin=x;  {
       return fx;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     ftemp=fu;    */ 
     if (fabs(e) > tol1) {    char  *ss;                            /* pointer */
       r=(x-w)*(fx-fv);    int   l1, l2;                         /* length counters */
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    l1 = strlen(path );                   /* length of path */
       q=2.0*(q-r);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       if (q > 0.0) p = -p;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       q=fabs(q);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       etemp=e;      strcpy( name, path );               /* we got the fullname name because no directory */
       e=d;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      /* get current working directory */
       else {      /*    extern  char* getcwd ( char *buf , int len);*/
         d=p/q;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         u=x+d;        return( GLOCK_ERROR_GETCWD );
         if (u-a < tol2 || b-u < tol2)      }
           d=SIGN(tol1,xm-x);      /* got dirc from getcwd*/
       }      printf(" DIRC = %s \n",dirc);
     } else {    } else {                              /* strip direcotry from path */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     fu=(*f)(u);      strcpy( name, ss );         /* save file name */
     if (fu <= fx) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       if (u >= x) a=x; else b=x;      dirc[l1-l2] = 0;                    /* add zero */
       SHFT(v,w,x,u)      printf(" DIRC2 = %s \n",dirc);
         SHFT(fv,fw,fx,fu)    }
         } else {    /* We add a separator at the end of dirc if not exists */
           if (u < x) a=u; else b=u;    l1 = strlen( dirc );                  /* length of directory */
           if (fu <= fw || w == x) {    if( dirc[l1-1] != DIRSEPARATOR ){
             v=w;      dirc[l1] =  DIRSEPARATOR;
             w=u;      dirc[l1+1] = 0; 
             fv=fw;      printf(" DIRC3 = %s \n",dirc);
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {    ss = strrchr( name, '.' );            /* find last / */
             v=u;    if (ss >0){
             fv=fu;      ss++;
           }      strcpy(ext,ss);                     /* save extension */
         }      l1= strlen( name);
   }      l2= strlen(ss)+1;
   nrerror("Too many iterations in brent");      strncpy( finame, name, l1-l2);
   *xmin=x;      finame[l1-l2]= 0;
   return fx;    }
 }  
     return( 0 );                          /* we're done */
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /******************************************/
 {  
   double ulim,u,r,q, dum;  void replace_back_to_slash(char *s, char*t)
   double fu;  {
      int i;
   *fa=(*func)(*ax);    int lg=0;
   *fb=(*func)(*bx);    i=0;
   if (*fb > *fa) {    lg=strlen(t);
     SHFT(dum,*ax,*bx,dum)    for(i=0; i<= lg; i++) {
       SHFT(dum,*fb,*fa,dum)      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
   *cx=(*bx)+GOLD*(*bx-*ax);    }
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  int nbocc(char *s, char occ)
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    int i,j=0;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    int lg=20;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    i=0;
     if ((*bx-u)*(u-*cx) > 0.0) {    lg=strlen(s);
       fu=(*func)(u);    for(i=0; i<= lg; i++) {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if  (s[i] == occ ) j++;
       fu=(*func)(u);    }
       if (fu < *fc) {    return j;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  void cutv(char *u,char *v, char*t, char occ)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       fu=(*func)(u);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     } else {       gives u="abcedf" and v="ghi2j" */
       u=(*cx)+GOLD*(*cx-*bx);    int i,lg,j,p=0;
       fu=(*func)(u);    i=0;
     }    for(j=0; j<=strlen(t)-1; j++) {
     SHFT(*ax,*bx,*cx,u)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       SHFT(*fa,*fb,*fc,fu)    }
       }  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /*************** linmin ************************/      (u[j] = t[j]);
     }
 int ncom;       u[p]='\0';
 double *pcom,*xicom;  
 double (*nrfunc)(double []);     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /********************** nrerror ********************/
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  void nrerror(char error_text[])
               double *fc, double (*func)(double));  {
   int j;    fprintf(stderr,"ERREUR ...\n");
   double xx,xmin,bx,ax;    fprintf(stderr,"%s\n",error_text);
   double fx,fb,fa;    exit(EXIT_FAILURE);
    }
   ncom=n;  /*********************** vector *******************/
   pcom=vector(1,n);  double *vector(int nl, int nh)
   xicom=vector(1,n);  {
   nrfunc=func;    double *v;
   for (j=1;j<=n;j++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     pcom[j]=p[j];    if (!v) nrerror("allocation failure in vector");
     xicom[j]=xi[j];    return v-nl+NR_END;
   }  }
   ax=0.0;  
   xx=1.0;  /************************ free vector ******************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  void free_vector(double*v, int nl, int nh)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  /************************ivector *******************************/
     xi[j] *= xmin;  int *ivector(long nl,long nh)
     p[j] += xi[j];  {
   }    int *v;
   free_vector(xicom,1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   free_vector(pcom,1,n);    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /******************free ivector **************************/
             double (*func)(double []))  void free_ivector(int *v, long nl, long nh)
 {  {
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG)(v+nl-NR_END));
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /************************lvector *******************************/
   double fp,fptt;  long *lvector(long nl,long nh)
   double *xits;  {
   pt=vector(1,n);    long *v;
   ptt=vector(1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   xit=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   xits=vector(1,n);    return v-nl+NR_END;
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /******************free lvector **************************/
     fp=(*fret);  void free_lvector(long *v, long nl, long nh)
     ibig=0;  {
     del=0.0;    free((FREE_ARG)(v+nl-NR_END));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /******************* imatrix *******************************/
     printf("\n");  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for (i=1;i<=n;i++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  { 
       fptt=(*fret);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
       printf("fret=%lf \n",*fret);    
 #endif    /* allocate pointers to rows */ 
       printf("%d",i);fflush(stdout);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       linmin(p,xit,n,fret,func);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       if (fabs(fptt-(*fret)) > del) {    m += NR_END; 
         del=fabs(fptt-(*fret));    m -= nrl; 
         ibig=i;    
       }    
 #ifdef DEBUG    /* allocate rows and set pointers to them */ 
       printf("%d %.12e",i,(*fret));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl] += NR_END; 
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl] -= ncl; 
       }    
       for(j=1;j<=n;j++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         printf(" p=%.12e",p[j]);    
       printf("\n");    /* return pointer to array of pointers to rows */ 
 #endif    return m; 
     }  } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /****************** free_imatrix *************************/
       int k[2],l;  void free_imatrix(m,nrl,nrh,ncl,nch)
       k[0]=1;        int **m;
       k[1]=-1;        long nch,ncl,nrh,nrl; 
       printf("Max: %.12e",(*func)(p));       /* free an int matrix allocated by imatrix() */ 
       for (j=1;j<=n;j++)  { 
         printf(" %.12e",p[j]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       printf("\n");    free((FREE_ARG) (m+nrl-NR_END)); 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /******************* matrix *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
 #endif  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(xit,1,n);    m += NR_END;
       free_vector(xits,1,n);    m -= nrl;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl] -= ncl;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       xit[j]=p[j]-pt[j];    return m;
       pt[j]=p[j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     }     */
     fptt=(*func)(ptt);  }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /*************************free matrix ************************/
       if (t < 0.0) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           xi[j][ibig]=xi[j][n];    free((FREE_ARG)(m+nrl-NR_END));
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /******************* ma3x *******************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         printf("\n");    double ***m;
 #endif  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
 }    m -= nrl;
   
 /**** Prevalence limit ****************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   int i, ii,j,k;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double min, max, maxmin, maxmax,sumnew=0.;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double **matprod2();    m[nrl][ncl] += NR_END;
   double **out, cov[NCOVMAX], **pmij();    m[nrl][ncl] -= nll;
   double **newm;    for (j=ncl+1; j<=nch; j++) 
   double agefin, delaymax=50 ; /* Max number of years to converge */      m[nrl][j]=m[nrl][j-1]+nlay;
     
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (i=nrl+1; i<=nrh; i++) {
     for (j=1;j<=nlstate+ndeath;j++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     }
    cov[1]=1.;    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    */
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************************free ma3x ************************/
    void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************** function subdirf ***********/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char *subdirf(char fileres[])
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return tmpout;
   }
     savm=oldm;  
     oldm=newm;  /*************** function subdirf2 ***********/
     maxmax=0.;  char *subdirf2(char fileres[], char *preop)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    
       max=0.;    /* Caution optionfilefiname is hidden */
       for(i=1; i<=nlstate; i++) {    strcpy(tmpout,optionfilefiname);
         sumnew=0;    strcat(tmpout,"/");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,preop);
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,fileres);
         max=FMAX(max,prlim[i][j]);    return tmpout;
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  /*************** function subdirf3 ***********/
       maxmax=FMAX(maxmax,maxmin);  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
     if(maxmax < ftolpl){    
       return prlim;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 /*************** transition probabilities **********/    strcat(tmpout,fileres);
     return tmpout;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /***************** f1dim *************************/
   /*double t34;*/  extern int ncom; 
   int i,j,j1, nc, ii, jj;  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
     for(i=1; i<= nlstate; i++){   
     for(j=1; j<i;j++){  double f1dim(double x) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         /*s2 += param[i][j][nc]*cov[nc];*/    int j; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double f;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double *xt; 
       }   
       ps[i][j]=s2;    xt=vector(1,ncom); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
     for(j=i+1; j<=nlstate+ndeath;j++){    free_vector(xt,1,ncom); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return f; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /*****************brent *************************/
       ps[i][j]=s2;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
   }    int iter; 
   for(i=1; i<= nlstate; i++){    double a,b,d,etemp;
      s1=0;    double fu,fv,fw,fx;
     for(j=1; j<i; j++)    double ftemp;
       s1+=exp(ps[i][j]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(j=i+1; j<=nlstate+ndeath; j++)    double e=0.0; 
       s1+=exp(ps[i][j]);   
     ps[i][i]=1./(s1+1.);    a=(ax < cx ? ax : cx); 
     for(j=1; j<i; j++)    b=(ax > cx ? ax : cx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    x=w=v=bx; 
     for(j=i+1; j<=nlstate+ndeath; j++)    fw=fv=fx=(*f)(x); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (iter=1;iter<=ITMAX;iter++) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      xm=0.5*(a+b); 
   } /* end i */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      printf(".");fflush(stdout);
     for(jj=1; jj<= nlstate+ndeath; jj++){      fprintf(ficlog,".");fflush(ficlog);
       ps[ii][jj]=0;  #ifdef DEBUG
       ps[ii][ii]=1;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for(jj=1; jj<= nlstate+ndeath; jj++){        *xmin=x; 
      printf("%lf ",ps[ii][jj]);        return fx; 
    }      } 
     printf("\n ");      ftemp=fu;
     }      if (fabs(e) > tol1) { 
     printf("\n ");printf("%lf ",cov[2]);*/        r=(x-w)*(fx-fv); 
 /*        q=(x-v)*(fx-fw); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        p=(x-v)*q-(x-w)*r; 
   goto end;*/        q=2.0*(q-r); 
     return ps;        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
 /**************** Product of 2 matrices ******************/        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          d=p/q; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          u=x+d; 
   /* in, b, out are matrice of pointers which should have been initialized          if (u-a < tol2 || b-u < tol2) 
      before: only the contents of out is modified. The function returns            d=SIGN(tol1,xm-x); 
      a pointer to pointers identical to out */        } 
   long i, j, k;      } else { 
   for(i=nrl; i<= nrh; i++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(k=ncolol; k<=ncoloh; k++)      } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         out[i][k] +=in[i][j]*b[j][k];      fu=(*f)(u); 
       if (fu <= fx) { 
   return out;        if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
           } else { 
 /************* Higher Matrix Product ***************/            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )              v=w; 
 {              w=u; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month              fv=fw; 
      duration (i.e. until              fw=fu; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            } else if (fu <= fv || v == x || v == w) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step              v=u; 
      (typically every 2 years instead of every month which is too big).              fv=fu; 
      Model is determined by parameters x and covariates have to be            } 
      included manually here.          } 
     } 
      */    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   int i, j, d, h, k;    return fx; 
   double **out, cov[NCOVMAX];  } 
   double **newm;  
   /****************** mnbrak ***********************/
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for (j=1;j<=nlstate+ndeath;j++){              double (*func)(double)) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double ulim,u,r,q, dum;
     }    double fu; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */   
   for(h=1; h <=nhstepm; h++){    *fa=(*func)(*ax); 
     for(d=1; d <=hstepm; d++){    *fb=(*func)(*bx); 
       newm=savm;    if (*fb > *fa) { 
       /* Covariates have to be included here again */      SHFT(dum,*ax,*bx,dum) 
       cov[1]=1.;        SHFT(dum,*fb,*fa,dum) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *cx=(*bx)+GOLD*(*bx-*ax); 
 for (k=1; k<=cptcovage;k++)    *fc=(*func)(*cx); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    while (*fb > *fc) { 
    for (k=1; k<=cptcovprod;k++)      r=(*bx-*ax)*(*fb-*fc); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      if ((*bx-u)*(u-*cx) > 0.0) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        fu=(*func)(u); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       savm=oldm;        fu=(*func)(u); 
       oldm=newm;        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for(i=1; i<=nlstate+ndeath; i++)            SHFT(*fb,*fc,fu,(*func)(u)) 
       for(j=1;j<=nlstate+ndeath;j++) {            } 
         po[i][j][h]=newm[i][j];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        u=ulim; 
          */        fu=(*func)(u); 
       }      } else { 
   } /* end h */        u=(*cx)+GOLD*(*cx-*bx); 
   return po;        fu=(*func)(u); 
 }      } 
       SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
 /*************** log-likelihood *************/        } 
 double func( double *x)  } 
 {  
   int i, ii, j, k, mi, d, kk;  /*************** linmin ************************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  int ncom; 
   double sw; /* Sum of weights */  double *pcom,*xicom;
   double lli; /* Individual log likelihood */  double (*nrfunc)(double []); 
   long ipmx;   
   /*extern weight */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double brent(double ax, double bx, double cx, 
   /*for(i=1;i<imx;i++)                 double (*f)(double), double tol, double *xmin); 
 printf(" %d\n",s[4][i]);    double f1dim(double x); 
   */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   cov[1]=1.;                double *fc, double (*func)(double)); 
     int j; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double xx,xmin,bx,ax; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double fx,fb,fa;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];   
        for(mi=1; mi<= wav[i]-1; mi++){    ncom=n; 
       for (ii=1;ii<=nlstate+ndeath;ii++)    pcom=vector(1,n); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    xicom=vector(1,n); 
             for(d=0; d<dh[mi][i]; d++){    nrfunc=func; 
               newm=savm;    for (j=1;j<=n;j++) { 
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      pcom[j]=p[j]; 
               for (kk=1; kk<=cptcovage;kk++) {      xicom[j]=xi[j]; 
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    } 
                  /*printf("%d %d",kk,Tage[kk]);*/    ax=0.0; 
               }    xx=1.0; 
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
               /*cov[3]=pow(cov[2],2)/1000.;*/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           savm=oldm;  #endif
           oldm=newm;    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
       p[j] += xi[j]; 
       } /* end mult */    } 
        free_vector(xicom,1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    free_vector(pcom,1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  } 
       ipmx +=1;  
       sw += weight[i];  char *asc_diff_time(long time_sec, char ascdiff[])
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  {
     } /* end of wave */    long sec_left, days, hours, minutes;
   } /* end of individual */    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    hours = (sec_left) / (60*60) ;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    sec_left = (sec_left) %(60*60);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    minutes = (sec_left) /60;
   return -l;    sec_left = (sec_left) % (60);
 }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   }
 /*********** Maximum Likelihood Estimation ***************/  
   /*************** powell ************************/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 {              double (*func)(double [])) 
   int i,j, iter;  { 
   double **xi,*delti;    void linmin(double p[], double xi[], int n, double *fret, 
   double fret;                double (*func)(double [])); 
   xi=matrix(1,npar,1,npar);    int i,ibig,j; 
   for (i=1;i<=npar;i++)    double del,t,*pt,*ptt,*xit;
     for (j=1;j<=npar;j++)    double fp,fptt;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double *xits;
   printf("Powell\n");    int niterf, itmp;
   powell(p,xi,npar,ftol,&iter,&fret,func);  
     pt=vector(1,n); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    ptt=vector(1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    xit=vector(1,n); 
     xits=vector(1,n); 
 }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 /**** Computes Hessian and covariance matrix ***/    for (*iter=1;;++(*iter)) { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      fp=(*fret); 
 {      ibig=0; 
   double  **a,**y,*x,pd;      del=0.0; 
   double **hess;      last_time=curr_time;
   int i, j,jk;      (void) gettimeofday(&curr_time,&tzp);
   int *indx;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double hessii(double p[], double delta, int theta, double delti[]);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double hessij(double p[], double delti[], int i, int j);      */
   void lubksb(double **a, int npar, int *indx, double b[]) ;     for (i=1;i<=n;i++) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   hess=matrix(1,npar,1,npar);      }
       printf("\n");
   printf("\nCalculation of the hessian matrix. Wait...\n");      fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++){      fprintf(ficrespow,"\n");fflush(ficrespow);
     printf("%d",i);fflush(stdout);      if(*iter <=3){
     hess[i][i]=hessii(p,ftolhess,i,delti);        tm = *localtime(&curr_time.tv_sec);
     /*printf(" %f ",p[i]);*/        strcpy(strcurr,asctime(&tm));
   }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   for (i=1;i<=npar;i++) {        itmp = strlen(strcurr);
     for (j=1;j<=npar;j++)  {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       if (j>i) {          strcurr[itmp-1]='\0';
         printf(".%d%d",i,j);fflush(stdout);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         hess[i][j]=hessij(p,delti,i,j);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         hess[j][i]=hess[i][j];        for(niterf=10;niterf<=30;niterf+=10){
       }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
   printf("\n");          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          if(strfor[itmp-1]=='\n')
            strfor[itmp-1]='\0';
   a=matrix(1,npar,1,npar);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   y=matrix(1,npar,1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   x=vector(1,npar);        }
   indx=ivector(1,npar);      }
   for (i=1;i<=npar;i++)      for (i=1;i<=n;i++) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   ludcmp(a,npar,indx,&pd);        fptt=(*fret); 
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        printf("fret=%lf \n",*fret);
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog,"fret=%lf \n",*fret);
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);        printf("%d",i);fflush(stdout);
     for (i=1;i<=npar;i++){        fprintf(ficlog,"%d",i);fflush(ficlog);
       matcov[i][j]=x[i];        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
   }          del=fabs(fptt-(*fret)); 
           ibig=i; 
   printf("\n#Hessian matrix#\n");        } 
   for (i=1;i<=npar;i++) {  #ifdef DEBUG
     for (j=1;j<=npar;j++) {        printf("%d %.12e",i,(*fret));
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
     printf("\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /* Recompute Inverse */        }
   for (i=1;i<=npar;i++)        for(j=1;j<=n;j++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          printf(" p=%.12e",p[j]);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog," p=%.12e",p[j]);
         }
   /*  printf("\n#Hessian matrix recomputed#\n");        printf("\n");
         fprintf(ficlog,"\n");
   for (j=1;j<=npar;j++) {  #endif
     for (i=1;i<=npar;i++) x[i]=0;      } 
     x[j]=1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     lubksb(a,npar,indx,x);  #ifdef DEBUG
     for (i=1;i<=npar;i++){        int k[2],l;
       y[i][j]=x[i];        k[0]=1;
       printf("%.3e ",y[i][j]);        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     printf("\n");        fprintf(ficlog,"Max: %.12e",(*func)(p));
   }        for (j=1;j<=n;j++) {
   */          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   free_matrix(a,1,npar,1,npar);        }
   free_matrix(y,1,npar,1,npar);        printf("\n");
   free_vector(x,1,npar);        fprintf(ficlog,"\n");
   free_ivector(indx,1,npar);        for(l=0;l<=1;l++) {
   free_matrix(hess,1,npar,1,npar);          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 /*************** hessian matrix ****************/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   int i;  #endif
   int l=1, lmax=20;  
   double k1,k2;  
   double p2[NPARMAX+1];        free_vector(xit,1,n); 
   double res;        free_vector(xits,1,n); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        free_vector(ptt,1,n); 
   double fx;        free_vector(pt,1,n); 
   int k=0,kmax=10;        return; 
   double l1;      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   fx=func(x);      for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];        ptt[j]=2.0*p[j]-pt[j]; 
   for(l=0 ; l <=lmax; l++){        xit[j]=p[j]-pt[j]; 
     l1=pow(10,l);        pt[j]=p[j]; 
     delts=delt;      } 
     for(k=1 ; k <kmax; k=k+1){      fptt=(*func)(ptt); 
       delt = delta*(l1*k);      if (fptt < fp) { 
       p2[theta]=x[theta] +delt;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       k1=func(p2)-fx;        if (t < 0.0) { 
       p2[theta]=x[theta]-delt;          linmin(p,xit,n,fret,func); 
       k2=func(p2)-fx;          for (j=1;j<=n;j++) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */            xi[j][ibig]=xi[j][n]; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            xi[j][n]=xit[j]; 
                }
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 #endif          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          for(j=1;j<=n;j++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            printf(" %.12e",xit[j]);
         k=kmax;            fprintf(ficlog," %.12e",xit[j]);
       }          }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf("\n");
         k=kmax; l=lmax*10.;          fprintf(ficlog,"\n");
       }  #endif
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;      } 
       }    } 
     }  } 
   }  
   delti[theta]=delts;  /**** Prevalence limit (stable prevalence)  ****************/
   return res;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 double hessij( double x[], double delti[], int thetai,int thetaj)       matrix by transitions matrix until convergence is reached */
 {  
   int i;    int i, ii,j,k;
   int l=1, l1, lmax=20;    double min, max, maxmin, maxmax,sumnew=0.;
   double k1,k2,k3,k4,res,fx;    double **matprod2();
   double p2[NPARMAX+1];    double **out, cov[NCOVMAX], **pmij();
   int k;    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   fx=func(x);  
   for (k=1; k<=2; k++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<=npar;i++) p2[i]=x[i];      for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k1=func(p2)-fx;  
       cov[1]=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;   
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     k2=func(p2)-fx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        newm=savm;
     p2[thetai]=x[thetai]-delti[thetai]/k;      /* Covariates have to be included here again */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       cov[2]=agefin;
     k3=func(p2)-fx;    
          for (k=1; k<=cptcovn;k++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     k4=func(p2)-fx;        }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 #ifdef DEBUG        for (k=1; k<=cptcovprod;k++)
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 #endif  
   }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   return res;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)      savm=oldm;
 {      oldm=newm;
   int i,imax,j,k;      maxmax=0.;
   double big,dum,sum,temp;      for(j=1;j<=nlstate;j++){
   double *vv;        min=1.;
          max=0.;
   vv=vector(1,n);        for(i=1; i<=nlstate; i++) {
   *d=1.0;          sumnew=0;
   for (i=1;i<=n;i++) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     big=0.0;          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (j=1;j<=n;j++)          max=FMAX(max,prlim[i][j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;          min=FMIN(min,prlim[i][j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {      if(maxmax < ftolpl){
       sum=a[i][j];        return prlim;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;    }
     }  }
     big=0.0;  
     for (i=j;i<=n;i++) {  /*************** transition probabilities ***************/ 
       sum=a[i][j];  
       for (k=1;k<j;k++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    double s1, s2;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /*double t34;*/
         big=dum;    int i,j,j1, nc, ii, jj;
         imax=i;  
       }      for(i=1; i<= nlstate; i++){
     }        for(j=1; j<i;j++){
     if (j != imax) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (k=1;k<=n;k++) {            /*s2 += param[i][j][nc]*cov[nc];*/
         dum=a[imax][k];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         a[imax][k]=a[j][k];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         a[j][k]=dum;          }
       }          ps[i][j]=s2;
       *d = -(*d);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       vv[imax]=vv[j];        }
     }        for(j=i+1; j<=nlstate+ndeath;j++){
     indx[j]=imax;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if (a[j][j] == 0.0) a[j][j]=TINY;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     if (j != n) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       dum=1.0/(a[j][j]);          }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          ps[i][j]=s2;
     }        }
   }      }
   free_vector(vv,1,n);  /* Doesn't work */      /*ps[3][2]=1;*/
 ;      
 }      for(i=1; i<= nlstate; i++){
         s1=0;
 void lubksb(double **a, int n, int *indx, double b[])        for(j=1; j<i; j++)
 {          s1+=exp(ps[i][j]);
   int i,ii=0,ip,j;        for(j=i+1; j<=nlstate+ndeath; j++)
   double sum;          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
   for (i=1;i<=n;i++) {        for(j=1; j<i; j++)
     ip=indx[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     sum=b[ip];        for(j=i+1; j<=nlstate+ndeath; j++)
     b[ip]=b[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (ii)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      } /* end i */
     else if (sum) ii=i;      
     b[i]=sum;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=n;i>=1;i--) {          ps[ii][jj]=0;
     sum=b[i];          ps[ii][ii]=1;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];      }
   }      
 }  
   /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 /************ Frequencies ********************/  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)  /*         printf("ddd %lf ",ps[ii][jj]); */
 {  /* Some frequencies */  /*       } */
    /*       printf("\n "); */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*        } */
   double ***freq; /* Frequencies */  /*        printf("\n ");printf("%lf ",cov[2]); */
   double *pp;         /*
   double pos;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   FILE *ficresp;        goto end;*/
   char fileresp[FILENAMELENGTH];      return ps;
   }
   pp=vector(1,nlstate);  
   /**************** Product of 2 matrices ******************/
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     exit(0);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       before: only the contents of out is modified. The function returns
   j1=0;       a pointer to pointers identical to out */
     long i, j, k;
   j=cptcoveff;    for(i=nrl; i<= nrh; i++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for(k1=1; k1<=j;k1++){          out[i][k] +=in[i][j]*b[j][k];
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;    return out;
   }
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)    
            for(m=agemin; m <= agemax+3; m++)  /************* Higher Matrix Product ***************/
              freq[i][jk][m]=0;  
          double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
        for (i=1; i<=imx; i++) {  {
          bool=1;    /* Computes the transition matrix starting at age 'age' over 
          if  (cptcovn>0) {       'nhstepm*hstepm*stepm' months (i.e. until
            for (z1=1; z1<=cptcoveff; z1++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) bool=0;       nhstepm*hstepm matrices. 
          }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           if (bool==1) {       (typically every 2 years instead of every month which is too big 
            for(m=firstpass; m<=lastpass-1; m++){       for the memory).
              if(agev[m][i]==0) agev[m][i]=agemax+1;       Model is determined by parameters x and covariates have to be 
              if(agev[m][i]==1) agev[m][i]=agemax+2;       included manually here. 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];       */
            }  
          }    int i, j, d, h, k;
        }    double **out, cov[NCOVMAX];
         if  (cptcovn>0) {    double **newm;
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Hstepm could be zero and should return the unit matrix */
        }    for (i=1;i<=nlstate+ndeath;i++)
        fprintf(ficresp, "**********\n#");      for (j=1;j<=nlstate+ndeath;j++){
        for(i=1; i<=nlstate;i++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        po[i][j][0]=(i==j ? 1.0 : 0.0);
        fprintf(ficresp, "\n");      }
            /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(i=(int)agemin; i <= (int)agemax+3; i++){    for(h=1; h <=nhstepm; h++){
     if(i==(int)agemax+3)      for(d=1; d <=hstepm; d++){
       printf("Total");        newm=savm;
     else        /* Covariates have to be included here again */
       printf("Age %d", i);        cov[1]=1.;
     for(jk=1; jk <=nlstate ; jk++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovprod;k++)
       for(m=-1, pos=0; m <=0 ; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       else        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(jk=1; jk <=nlstate ; jk++){        savm=oldm;
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        oldm=newm;
         pp[jk] += freq[jk][m][i];      }
     }      for(i=1; i<=nlstate+ndeath; i++)
     for(jk=1,pos=0; jk <=nlstate ; jk++)        for(j=1;j<=nlstate+ndeath;j++) {
       pos += pp[jk];          po[i][j][h]=newm[i][j];
     for(jk=1; jk <=nlstate ; jk++){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       if(pos>=1.e-5)           */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
       else    } /* end h */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    return po;
       if( i <= (int) agemax){  }
         if(pos>=1.e-5)  
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
       else  /*************** log-likelihood *************/
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  double func( double *x)
       }  {
     }    int i, ii, j, k, mi, d, kk;
     for(jk=-1; jk <=nlstate+ndeath; jk++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for(m=-1; m <=nlstate+ndeath; m++)    double **out;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double sw; /* Sum of weights */
     if(i <= (int) agemax)    double lli; /* Individual log likelihood */
       fprintf(ficresp,"\n");    int s1, s2;
     printf("\n");    double bbh, survp;
     }    long ipmx;
     }    /*extern weight */
  }    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   fclose(ficresp);    /*for(i=1;i<imx;i++) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      printf(" %d\n",s[4][i]);
   free_vector(pp,1,nlstate);    */
     cov[1]=1.;
 }  /* End of Freq */  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 /************* Waves Concatenation ***************/  
     if(mle==1){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for(mi=1; mi<= wav[i]-1; mi++){
      Death is a valid wave (if date is known).          for (ii=1;ii<=nlstate+ndeath;ii++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (j=1;j<=nlstate+ndeath;j++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      */            }
           for(d=0; d<dh[mi][i]; d++){
   int i, mi, m;            newm=savm;
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 float sum=0.;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){            }
     mi=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     m=firstpass;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     while(s[m][i] <= nlstate){            savm=oldm;
       if(s[m][i]>=1)            oldm=newm;
         mw[++mi][i]=m;          } /* end mult */
       if(m >=lastpass)        
         break;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       else          /* But now since version 0.9 we anticipate for bias at large stepm.
         m++;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }/* end while */           * (in months) between two waves is not a multiple of stepm, we rounded to 
     if (s[m][i] > nlstate){           * the nearest (and in case of equal distance, to the lowest) interval but now
       mi++;     /* Death is another wave */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       /* if(mi==0)  never been interviewed correctly before death */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
          /* Only death is a correct wave */           * probability in order to take into account the bias as a fraction of the way
       mw[mi][i]=m;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
     wav[i]=mi;           * For stepm > 1 the results are less biased than in previous versions. 
     if(mi==0)           */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=imx; i++){          /* bias bh is positive if real duration
     for(mi=1; mi<wav[i];mi++){           * is higher than the multiple of stepm and negative otherwise.
       if (stepm <=0)           */
         dh[mi][i]=1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       else{          if( s2 > nlstate){ 
         if (s[mw[mi+1][i]][i] > nlstate) {            /* i.e. if s2 is a death state and if the date of death is known 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               then the contribution to the likelihood is the probability to 
           if(j=0) j=1;  /* Survives at least one month after exam */               die between last step unit time and current  step unit time, 
         }               which is also equal to probability to die before dh 
         else{               minus probability to die before dh-stepm . 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));               In version up to 0.92 likelihood was computed
           k=k+1;          as if date of death was unknown. Death was treated as any other
           if (j >= jmax) jmax=j;          health state: the date of the interview describes the actual state
           else if (j <= jmin)jmin=j;          and not the date of a change in health state. The former idea was
           sum=sum+j;          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
         jk= j/stepm;          introduced the exact date of death then we should have modified
         jl= j -jk*stepm;          the contribution of an exact death to the likelihood. This new
         ju= j -(jk+1)*stepm;          contribution is smaller and very dependent of the step unit
         if(jl <= -ju)          stepm. It is no more the probability to die between last interview
           dh[mi][i]=jk;          and month of death but the probability to survive from last
         else          interview up to one month before death multiplied by the
           dh[mi][i]=jk+1;          probability to die within a month. Thanks to Chris
         if(dh[mi][i]==0)          Jackson for correcting this bug.  Former versions increased
           dh[mi][i]=1; /* At least one step */          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
   }            */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);            lli=log(out[s1][s2] - savm[s1][s2]);
 }  
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)          } else if  (s2==-2) {
 {            for (j=1,survp=0. ; j<=nlstate; j++) 
   int Ndum[20],ij=1, k, j, i;              survp += out[s1][j];
   int cptcode=0;            lli= survp;
   cptcoveff=0;          }
            
   for (k=0; k<19; k++) Ndum[k]=0;          else if  (s2==-4) {
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (j=3,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            lli= survp;
     for (i=1; i<=imx; i++) {          }
       ij=(int)(covar[Tvar[j]][i]);          
       Ndum[ij]++;          else if  (s2==-5) {
       if (ij > cptcode) cptcode=ij;            for (j=1,survp=0. ; j<=2; j++) 
     }              survp += out[s1][j];
             lli= survp;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          }
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  
     }          else{
     ij=1;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (i=1; i<=ncodemax[j]; i++) {          } 
       for (k=0; k<=19; k++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if (Ndum[k] != 0) {          /*if(lli ==000.0)*/
           nbcode[Tvar[j]][ij]=k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           /*   printf("ij=%d ",nbcode[Tvar[2]][1]);*/          ipmx +=1;
           ij++;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (ij > ncodemax[j]) break;        } /* end of wave */
       }        } /* end of individual */
     }    }  else if(mle==2){
   }        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for (i=1; i<=10; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       ij=Tvar[i];        for(mi=1; mi<= wav[i]-1; mi++){
       Ndum[ij]++;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
  ij=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=cptcovn; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncov)){            }
      Tvaraff[i]=ij;          for(d=0; d<=dh[mi][i]; d++){
    ij++;            newm=savm;
    }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }
    if ((Tvar[j]>= cptcoveff) && (Tvar[j] <=ncov)) cptcoveff=Tvar[j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    /*printf("j=%d %d\n",j,Tvar[j]);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  }            savm=oldm;
              oldm=newm;
  /* printf("cptcoveff=%d Tvaraff=%d %d\n",cptcoveff, Tvaraff[1],Tvaraff[2]);          } /* end mult */
     scanf("%d",i);*/        
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /*********** Health Expectancies ****************/          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          ipmx +=1;
 {          sw += weight[i];
   /* Health expectancies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, j, nhstepm, hstepm, h;        } /* end of wave */
   double age, agelim,hf;      } /* end of individual */
   double ***p3mat;    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficreseij,"# Health expectancies\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficreseij,"# Age");        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficreseij," %1d-%1d",i,j);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   hstepm=1*YEARM; /*  Every j years of age (in month) */          for(d=0; d<dh[mi][i]; d++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   agelim=AGESUP;            for (kk=1; kk<=cptcovage;kk++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* nhstepm age range expressed in number of stepm */            }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /* Typically if 20 years = 20*12/6=40 stepm */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (stepm >= YEARM) hstepm=1;            savm=oldm;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            oldm=newm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end mult */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          s1=s[mw[mi][i]][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(i=1; i<=nlstate;i++)          ipmx +=1;
       for(j=1; j<=nlstate;j++)          sw += weight[i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           eij[i][j][(int)age] +=p3mat[i][j][h];        } /* end of wave */
         }      } /* end of individual */
        }else if (mle==4){  /* ml=4 no inter-extrapolation */
     hf=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (stepm >= YEARM) hf=stepm/YEARM;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficreseij,"%.0f",age );        for(mi=1; mi<= wav[i]-1; mi++){
     for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<=nlstate;j++){            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"\n");            }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************ Variance ******************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            }
 {          
   /* Variance of health expectancies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **newm;            savm=oldm;
   double **dnewm,**doldm;            oldm=newm;
   int i, j, nhstepm, hstepm, h;          } /* end mult */
   int k, cptcode;        
    double *xp;          s1=s[mw[mi][i]][i];
   double **gp, **gm;          s2=s[mw[mi+1][i]][i];
   double ***gradg, ***trgradg;          if( s2 > nlstate){ 
   double ***p3mat;            lli=log(out[s1][s2] - savm[s1][s2]);
   double age,agelim;          }else{
   int theta;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
    fprintf(ficresvij,"# Covariances of life expectancies\n");          ipmx +=1;
   fprintf(ficresvij,"# Age");          sw += weight[i];
   for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        } /* end of wave */
   fprintf(ficresvij,"\n");      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   xp=vector(1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   dnewm=matrix(1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   doldm=matrix(1,nlstate,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=1*YEARM; /* Every year of age */            for (j=1;j<=nlstate+ndeath;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim = AGESUP;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(d=0; d<dh[mi][i]; d++){
     if (stepm >= YEARM) hstepm=1;            newm=savm;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gp=matrix(0,nhstepm,1,nlstate);            }
     gm=matrix(0,nhstepm,1,nlstate);          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(theta=1; theta <=npar; theta++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++){ /* Computes gradient */            savm=oldm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            oldm=newm;
       }          } /* end mult */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s1=s[mw[mi][i]][i];
       for(j=1; j<= nlstate; j++){          s2=s[mw[mi+1][i]][i];
         for(h=0; h<=nhstepm; h++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          ipmx +=1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
            } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } /* End of if */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1; j<= nlstate; j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(h=0; h<=nhstepm; h++){    return -l;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /*************** log-likelihood *************/
       }  double funcone( double *x)
       for(j=1; j<= nlstate; j++)  {
         for(h=0; h<=nhstepm; h++){    /* Same as likeli but slower because of a lot of printf and if */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     } /* End theta */    double **out;
     double lli; /* Individual log likelihood */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double llt;
     int s1, s2;
     for(h=0; h<=nhstepm; h++)    double bbh, survp;
       for(j=1; j<=nlstate;j++)    /*extern weight */
         for(theta=1; theta <=npar; theta++)    /* We are differentiating ll according to initial status */
           trgradg[h][j][theta]=gradg[h][theta][j];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     for(i=1;i<=nlstate;i++)      printf(" %d\n",s[4][i]);
       for(j=1;j<=nlstate;j++)    */
         vareij[i][j][(int)age] =0.;    cov[1]=1.;
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(i=1;i<=nlstate;i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(j=1;j<=nlstate;j++)      for(mi=1; mi<= wav[i]-1; mi++){
             vareij[i][j][(int)age] += doldm[i][j];        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
     }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     h=1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) h=stepm/YEARM;          }
     fprintf(ficresvij,"%.0f ",age );        for(d=0; d<dh[mi][i]; d++){
     for(i=1; i<=nlstate;i++)          newm=savm;
       for(j=1; j<=nlstate;j++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficresvij,"\n");          }
     free_matrix(gp,0,nhstepm,1,nlstate);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_matrix(gm,0,nhstepm,1,nlstate);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          savm=oldm;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          oldm=newm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end mult */
   } /* End age */        
          s1=s[mw[mi][i]][i];
   free_vector(xp,1,npar);        s2=s[mw[mi+1][i]][i];
   free_matrix(doldm,1,nlstate,1,npar);        bbh=(double)bh[mi][i]/(double)stepm; 
   free_matrix(dnewm,1,nlstate,1,nlstate);        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 }         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
 /************ Variance of prevlim ******************/          lli=log(out[s1][s2] - savm[s1][s2]);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        } else if (mle==1){
 {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* Variance of prevalence limit */        } else if(mle==2){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double **newm;        } else if(mle==3){  /* exponential inter-extrapolation */
   double **dnewm,**doldm;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, j, nhstepm, hstepm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int k, cptcode;          lli=log(out[s1][s2]); /* Original formula */
   double *xp;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double *gp, *gm;          lli=log(out[s1][s2]); /* Original formula */
   double **gradg, **trgradg;        } /* End of if */
   double age,agelim;        ipmx +=1;
   int theta;        sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficresvpl,"# Age");        if(globpr){
   for(i=1; i<=nlstate;i++)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       fprintf(ficresvpl," %1d-%1d",i,i);   %10.6f %10.6f %10.6f ", \
   fprintf(ficresvpl,"\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   xp=vector(1,npar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   dnewm=matrix(1,nlstate,1,npar);            llt +=ll[k]*gipmx/gsw;
   doldm=matrix(1,nlstate,1,nlstate);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
            }
   hstepm=1*YEARM; /* Every year of age */          fprintf(ficresilk," %10.6f\n", -llt);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        }
   agelim = AGESUP;      } /* end of wave */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    } /* end of individual */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     if (stepm >= YEARM) hstepm=1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     gradg=matrix(1,npar,1,nlstate);    if(globpr==0){ /* First time we count the contributions and weights */
     gp=vector(1,nlstate);      gipmx=ipmx;
     gm=vector(1,nlstate);      gsw=sw;
     }
     for(theta=1; theta <=npar; theta++){    return -l;
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*************** function likelione ***********/
       for(i=1;i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         gp[i] = prlim[i][i];  {
        /* This routine should help understanding what is done with 
       for(i=1; i<=npar; i++) /* Computes gradient */       the selection of individuals/waves and
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       to check the exact contribution to the likelihood.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       Plotting could be done.
       for(i=1;i<=nlstate;i++)     */
         gm[i] = prlim[i][i];    int k;
   
       for(i=1;i<=nlstate;i++)    if(*globpri !=0){ /* Just counts and sums, no printings */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      strcpy(fileresilk,"ilk"); 
     } /* End theta */      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     trgradg =matrix(1,nlstate,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(j=1; j<=nlstate;j++)      }
       for(theta=1; theta <=npar; theta++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         trgradg[j][theta]=gradg[theta][j];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(i=1;i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
       varpl[i][(int)age] =0.;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    *fretone=(*funcone)(p);
     if(*globpri !=0){
     fprintf(ficresvpl,"%.0f ",age );      fclose(ficresilk);
     for(i=1; i<=nlstate;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      fflush(fichtm); 
     fprintf(ficresvpl,"\n");    } 
     free_vector(gp,1,nlstate);    return;
     free_vector(gm,1,nlstate);  }
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  /*********** Maximum Likelihood Estimation ***************/
   
   free_vector(xp,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   free_matrix(doldm,1,nlstate,1,npar);  {
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i,j, iter;
     double **xi;
 }    double fret;
     double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
 /***********************************************/    for (i=1;i<=npar;i++)
 /**************** Main Program *****************/      for (j=1;j<=npar;j++)
 /***********************************************/        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 /*int main(int argc, char *argv[])*/    strcpy(filerespow,"pow"); 
 int main()    strcat(filerespow,fileres);
 {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double agedeb, agefin,hf;    }
   double agemin=1.e20, agemax=-1.e20;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   double fret;      for(j=1;j<=nlstate+ndeath;j++)
   double **xi,tmp,delta;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   double dum; /* Dummy variable */  
   double ***p3mat;    powell(p,xi,npar,ftol,&iter,&fret,func);
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    fclose(ficrespow);
   char title[MAXLINE];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];  }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;  /**** Computes Hessian and covariance matrix ***/
   int sdeb, sfin; /* Status at beginning and end */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int c,  h , cpt,l;  {
   int ju,jl, mi;    double  **a,**y,*x,pd;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double **hess;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    int i, j,jk;
      int *indx;
   int hstepm, nhstepm;  
   double bage, fage, age, agelim, agebase;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double ftolpl=FTOL;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double **prlim;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double *severity;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double ***param; /* Matrix of parameters */    double gompertz(double p[]);
   double  *p;    hess=matrix(1,npar,1,npar);
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    printf("\nCalculation of the hessian matrix. Wait...\n");
   double *delti; /* Scale */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double ***eij, ***vareij;    for (i=1;i<=npar;i++){
   double **varpl; /* Variances of prevalence limits by age */      printf("%d",i);fflush(stdout);
   double *epj, vepp;      fprintf(ficlog,"%d",i);fflush(ficlog);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";     
   char *alph[]={"a","a","b","c","d","e"}, str[4];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
   char z[1]="c", occ;      /*  printf(" %f ",p[i]);
 #include <sys/time.h>          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 #include <time.h>    }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    
   /* long total_usecs;    for (i=1;i<=npar;i++) {
   struct timeval start_time, end_time;      for (j=1;j<=npar;j++)  {
          if (j>i) { 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   printf("\nIMACH, Version 0.64a");          
   printf("\nEnter the parameter file name: ");          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
 #ifdef windows        }
   scanf("%s",pathtot);      }
   getcwd(pathcd, size);    }
   /*cygwin_split_path(pathtot,path,optionfile);    printf("\n");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fprintf(ficlog,"\n");
   /* cutv(path,optionfile,pathtot,'\\');*/  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 split(pathtot, path,optionfile);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   chdir(path);    
   replace(pathc,path);    a=matrix(1,npar,1,npar);
 #endif    y=matrix(1,npar,1,npar);
 #ifdef unix    x=vector(1,npar);
   scanf("%s",optionfile);    indx=ivector(1,npar);
 #endif    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 /*-------- arguments in the command line --------*/    ludcmp(a,npar,indx,&pd);
   
   strcpy(fileres,"r");    for (j=1;j<=npar;j++) {
   strcat(fileres, optionfile);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   /*---------arguments file --------*/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        matcov[i][j]=x[i];
     printf("Problem with optionfile %s\n",optionfile);      }
     goto end;    }
   }  
     printf("\n#Hessian matrix#\n");
   strcpy(filereso,"o");    fprintf(ficlog,"\n#Hessian matrix#\n");
   strcat(filereso,fileres);    for (i=1;i<=npar;i++) { 
   if((ficparo=fopen(filereso,"w"))==NULL) {      for (j=1;j<=npar;j++) { 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        printf("%.3e ",hess[i][j]);
   }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   /* Reads comments: lines beginning with '#' */      printf("\n");
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"\n");
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);  
     puts(line);    /* Recompute Inverse */
     fputs(line,ficparo);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   ungetc(c,ficpar);    ludcmp(a,npar,indx,&pd);
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*  printf("\n#Hessian matrix recomputed#\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   covar=matrix(0,NCOVMAX,1,n);          x[j]=1;
   if (strlen(model)<=1) cptcovn=0;      lubksb(a,npar,indx,x);
   else {      for (i=1;i<=npar;i++){ 
     j=0;        y[i][j]=x[i];
     j=nbocc(model,'+');        printf("%.3e ",y[i][j]);
     cptcovn=j+1;        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
       printf("\n");
   ncovmodel=2+cptcovn;      fprintf(ficlog,"\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
      */
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */    free_matrix(a,1,npar,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(y,1,npar,1,npar);
     ungetc(c,ficpar);    free_vector(x,1,npar);
     fgets(line, MAXLINE, ficpar);    free_ivector(indx,1,npar);
     puts(line);    free_matrix(hess,1,npar,1,npar);
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);  }
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /*************** hessian matrix ****************/
     for(i=1; i <=nlstate; i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(j=1; j <=nlstate+ndeath-1; j++){  {
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i;
       fprintf(ficparo,"%1d%1d",i1,j1);    int l=1, lmax=20;
       printf("%1d%1d",i,j);    double k1,k2;
       for(k=1; k<=ncovmodel;k++){    double p2[NPARMAX+1];
         fscanf(ficpar," %lf",&param[i][j][k]);    double res;
         printf(" %lf",param[i][j][k]);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         fprintf(ficparo," %lf",param[i][j][k]);    double fx;
       }    int k=0,kmax=10;
       fscanf(ficpar,"\n");    double l1;
       printf("\n");  
       fprintf(ficparo,"\n");    fx=func(x);
     }    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      l1=pow(10,l);
   p=param[1][1];      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   /* Reads comments: lines beginning with '#' */        delt = delta*(l1*k);
   while((c=getc(ficpar))=='#' && c!= EOF){        p2[theta]=x[theta] +delt;
     ungetc(c,ficpar);        k1=func(p2)-fx;
     fgets(line, MAXLINE, ficpar);        p2[theta]=x[theta]-delt;
     puts(line);        k2=func(p2)-fx;
     fputs(line,ficparo);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   ungetc(c,ficpar);        
   #ifdef DEBUG
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   for(i=1; i <=nlstate; i++){  #endif
     for(j=1; j <=nlstate+ndeath-1; j++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       printf("%1d%1d",i,j);          k=kmax;
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       for(k=1; k<=ncovmodel;k++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         fscanf(ficpar,"%le",&delti3[i][j][k]);          k=kmax; l=lmax*10.;
         printf(" %le",delti3[i][j][k]);        }
         fprintf(ficparo," %le",delti3[i][j][k]);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       }          delts=delt;
       fscanf(ficpar,"\n");        }
       printf("\n");      }
       fprintf(ficparo,"\n");    }
     }    delti[theta]=delts;
   }    return res; 
   delti=delti3[1][1];    
    }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    int i;
     puts(line);    int l=1, l1, lmax=20;
     fputs(line,ficparo);    double k1,k2,k3,k4,res,fx;
   }    double p2[NPARMAX+1];
   ungetc(c,ficpar);    int k;
    
   matcov=matrix(1,npar,1,npar);    fx=func(x);
   for(i=1; i <=npar; i++){    for (k=1; k<=2; k++) {
     fscanf(ficpar,"%s",&str);      for (i=1;i<=npar;i++) p2[i]=x[i];
     printf("%s",str);      p2[thetai]=x[thetai]+delti[thetai]/k;
     fprintf(ficparo,"%s",str);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(j=1; j <=i; j++){      k1=func(p2)-fx;
       fscanf(ficpar," %le",&matcov[i][j]);    
       printf(" %.5le",matcov[i][j]);      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficparo," %.5le",matcov[i][j]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k2=func(p2)-fx;
     fscanf(ficpar,"\n");    
     printf("\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficparo,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k3=func(p2)-fx;
   for(i=1; i <=npar; i++)    
     for(j=i+1;j<=npar;j++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       matcov[i][j]=matcov[j][i];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          k4=func(p2)-fx;
   printf("\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     /*-------- data file ----------*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     if((ficres =fopen(fileres,"w"))==NULL) {  #endif
       printf("Problem with resultfile: %s\n", fileres);goto end;    }
     }    return res;
     fprintf(ficres,"#%s\n",version);  }
      
     if((fic=fopen(datafile,"r"))==NULL)    {  /************** Inverse of matrix **************/
       printf("Problem with datafile: %s\n", datafile);goto end;  void ludcmp(double **a, int n, int *indx, double *d) 
     }  { 
     int i,imax,j,k; 
     n= lastobs;    double big,dum,sum,temp; 
     severity = vector(1,maxwav);    double *vv; 
     outcome=imatrix(1,maxwav+1,1,n);   
     num=ivector(1,n);    vv=vector(1,n); 
     moisnais=vector(1,n);    *d=1.0; 
     annais=vector(1,n);    for (i=1;i<=n;i++) { 
     moisdc=vector(1,n);      big=0.0; 
     andc=vector(1,n);      for (j=1;j<=n;j++) 
     agedc=vector(1,n);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     cod=ivector(1,n);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     weight=vector(1,n);      vv[i]=1.0/big; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    } 
     mint=matrix(1,maxwav,1,n);    for (j=1;j<=n;j++) { 
     anint=matrix(1,maxwav,1,n);      for (i=1;i<j;i++) { 
     s=imatrix(1,maxwav+1,1,n);        sum=a[i][j]; 
     adl=imatrix(1,maxwav+1,1,n);            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     tab=ivector(1,NCOVMAX);        a[i][j]=sum; 
     ncodemax=ivector(1,8);      } 
       big=0.0; 
     i=1;      for (i=j;i<=n;i++) { 
     while (fgets(line, MAXLINE, fic) != NULL)    {        sum=a[i][j]; 
       if ((i >= firstobs) && (i <=lastobs)) {        for (k=1;k<j;k++) 
                  sum -= a[i][k]*a[k][j]; 
         for (j=maxwav;j>=1;j--){        a[i][j]=sum; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           strcpy(line,stra);          big=dum; 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          imax=i; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        } 
         }      } 
              if (j != imax) { 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for (k=1;k<=n;k++) { 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          a[j][k]=dum; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        } 
         *d = -(*d); 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        vv[imax]=vv[j]; 
         for (j=ncov;j>=1;j--){      } 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      indx[j]=imax; 
         }      if (a[j][j] == 0.0) a[j][j]=TINY; 
         num[i]=atol(stra);      if (j != n) { 
         dum=1.0/(a[j][j]); 
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
         i=i+1;    } 
       }    free_vector(vv,1,n);  /* Doesn't work */
     }  ;
   } 
     /*scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   /* Calculation of the number of parameter from char model*/    int i,ii=0,ip,j; 
   Tvar=ivector(1,15);    double sum; 
   Tprod=ivector(1,15);   
   Tvaraff=ivector(1,15);    for (i=1;i<=n;i++) { 
   Tvard=imatrix(1,15,1,2);      ip=indx[i]; 
   Tage=ivector(1,15);            sum=b[ip]; 
          b[ip]=b[i]; 
   if (strlen(model) >1){      if (ii) 
     j=0, j1=0, k1=1, k2=1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     j=nbocc(model,'+');      else if (sum) ii=i; 
     j1=nbocc(model,'*');      b[i]=sum; 
     cptcovn=j+1;    } 
     cptcovprod=j1;    for (i=n;i>=1;i--) { 
          sum=b[i]; 
     strcpy(modelsav,model);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
    if (j==0) {      b[i]=sum/a[i][i]; 
       if (j1==0){    } 
         cutv(stra,strb,modelsav,'V');  } 
         Tvar[1]=atoi(strb);  
       }  /************ Frequencies ********************/
       else if (j1==1) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         cutv(stra,strb,modelsav,'*');  {  /* Some frequencies */
         Tage[1]=1; cptcovage++;    
         if (strcmp(stra,"age")==0) {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           cptcovprod--;    int first;
           cutv(strd,strc,strb,'V');    double ***freq; /* Frequencies */
           Tvar[1]=atoi(strc);    double *pp, **prop;
         }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         else if (strcmp(strb,"age")==0) {    FILE *ficresp;
           cptcovprod--;    char fileresp[FILENAMELENGTH];
           cutv(strd,strc,stra,'V');    
           Tvar[1]=atoi(strc);    pp=vector(1,nlstate);
         }    prop=matrix(1,nlstate,iagemin,iagemax+3);
         else {    strcpy(fileresp,"p");
           cutv(strd,strc,strb,'V');    strcat(fileresp,fileres);
           cutv(stre,strd,stra,'V');    if((ficresp=fopen(fileresp,"w"))==NULL) {
           Tvar[1]=ncov+1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
           for (k=1; k<=lastobs;k++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
               covar[ncov+1][k]=covar[atoi(strc)][k]*covar[atoi(strd)][k];      exit(0);
         }    }
         /*printf("%s %s %s\n", stra,strb,modelsav);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 printf("%d ",Tvar[1]);    j1=0;
 scanf("%d",i);*/    
       }    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    else {  
       for(i=j; i>=1;i--){    first=1;
         cutv(stra,strb,modelsav,'+');  
         /*printf("%s %s %s\n", stra,strb,modelsav);    for(k1=1; k1<=j;k1++){
           scanf("%d",i);*/      for(i1=1; i1<=ncodemax[k1];i1++){
         if (strchr(strb,'*')) {        j1++;
           cutv(strd,strc,strb,'*');        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           if (strcmp(strc,"age")==0) {          scanf("%d", i);*/
             cptcovprod--;        for (i=-5; i<=nlstate+ndeath; i++)  
             cutv(strb,stre,strd,'V');          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             Tvar[i+1]=atoi(stre);            for(m=iagemin; m <= iagemax+3; m++)
             cptcovage++;              freq[i][jk][m]=0;
             Tage[cptcovage]=i+1;  
             printf("stre=%s ", stre);      for (i=1; i<=nlstate; i++)  
           }        for(m=iagemin; m <= iagemax+3; m++)
           else if (strcmp(strd,"age")==0) {          prop[i][m]=0;
             cptcovprod--;        
             cutv(strb,stre,strc,'V');        dateintsum=0;
             Tvar[i+1]=atoi(stre);        k2cpt=0;
             cptcovage++;        for (i=1; i<=imx; i++) {
             Tage[cptcovage]=i+1;          bool=1;
           }          if  (cptcovn>0) {
           else {            for (z1=1; z1<=cptcoveff; z1++) 
             cutv(strb,stre,strc,'V');              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             Tvar[i+1]=ncov+k1;                bool=0;
             cutv(strb,strc,strd,'V');          }
             Tprod[k1]=i+1;          if (bool==1){
             Tvard[k1][1]=atoi(strc);            for(m=firstpass; m<=lastpass; m++){
             Tvard[k1][2]=atoi(stre);              k2=anint[m][i]+(mint[m][i]/12.);
             Tvar[cptcovn+k2]=Tvard[k1][1];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             Tvar[cptcovn+k2+1]=Tvard[k1][2];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             for (k=1; k<=lastobs;k++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             k1++;                if (m<lastpass) {
             k2=k2+2;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         }                }
         else {                
           cutv(strd,strc,strb,'V');                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           /* printf("%s %s %s", strd,strc,strb);*/                  dateintsum=dateintsum+k2;
           Tvar[i+1]=atoi(strc);                  k2cpt++;
         }                }
         strcpy(modelsav,stra);                  /*}*/
       }            }
       cutv(strd,strc,stra,'V');          }
       Tvar[1]=atoi(strc);        }
     }         
   }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   /* for (i=1; i<=5; i++)  fprintf(ficresp, "#Local time at start: %s", strstart);
      printf("i=%d %d ",i,Tvar[i]);*/        if  (cptcovn>0) {
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);*/          fprintf(ficresp, "\n#********** Variable "); 
  /*printf("cptcovprod=%d ", cptcovprod);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*  scanf("%d ",i);*/          fprintf(ficresp, "**********\n#");
     fclose(fic);        }
         for(i=1; i<=nlstate;i++) 
     /*  if(mle==1){*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficresp, "\n");
       for(i=1;i<=n;i++) weight[i]=1.0;        
     }        for(i=iagemin; i <= iagemax+3; i++){
     /*-calculation of age at interview from date of interview and age at death -*/          if(i==iagemax+3){
     agev=matrix(1,maxwav,1,imx);            fprintf(ficlog,"Total");
              }else{
     for (i=1; i<=imx; i++)  {            if(first==1){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              first=0;
       for(m=1; (m<= maxwav); m++){              printf("See log file for details...\n");
         if(s[m][i] >0){            }
           if (s[m][i] == nlstate+1) {            fprintf(ficlog,"Age %d", i);
             if(agedc[i]>0)          }
               if(moisdc[i]!=99 && andc[i]!=9999)          for(jk=1; jk <=nlstate ; jk++){
               agev[m][i]=agedc[i];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             else{              pp[jk] += freq[jk][m][i]; 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          }
               agev[m][i]=-1;          for(jk=1; jk <=nlstate ; jk++){
             }            for(m=-1, pos=0; m <=0 ; m++)
           }              pos += freq[jk][m][i];
           else if(s[m][i] !=9){ /* Should no more exist */            if(pp[jk]>=1.e-10){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              if(first==1){
             if(mint[m][i]==99 || anint[m][i]==9999)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               agev[m][i]=1;              }
             else if(agev[m][i] <agemin){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               agemin=agev[m][i];            }else{
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              if(first==1)
             }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             else if(agev[m][i] >agemax){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               agemax=agev[m][i];            }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          }
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/          for(jk=1; jk <=nlstate ; jk++){
             /*   agev[m][i] = age[i]+2*m;*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           }              pp[jk] += freq[jk][m][i];
           else { /* =9 */          }       
             agev[m][i]=1;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             s[m][i]=-1;            pos += pp[jk];
           }            posprop += prop[jk][i];
         }          }
         else /*= 0 Unknown */          for(jk=1; jk <=nlstate ; jk++){
           agev[m][i]=1;            if(pos>=1.e-5){
       }              if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for (i=1; i<=imx; i++)  {            }else{
       for(m=1; (m<= maxwav); m++){              if(first==1)
         if (s[m][i] > (nlstate+ndeath)) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           printf("Error: Wrong value in nlstate or ndeath\n");                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           goto end;            }
         }            if( i <= iagemax){
       }              if(pos>=1.e-5){
     }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     free_vector(severity,1,maxwav);              else
     free_imatrix(outcome,1,maxwav+1,1,n);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     free_vector(moisnais,1,n);            }
     free_vector(annais,1,n);          }
     free_matrix(mint,1,maxwav,1,n);          
     free_matrix(anint,1,maxwav,1,n);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_vector(moisdc,1,n);            for(m=-1; m <=nlstate+ndeath; m++)
     free_vector(andc,1,n);              if(freq[jk][m][i] !=0 ) {
               if(first==1)
                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     wav=ivector(1,imx);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          if(i <= iagemax)
                fprintf(ficresp,"\n");
     /* Concatenates waves */          if(first==1)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            printf("Others in log...\n");
           fprintf(ficlog,"\n");
         }
       Tcode=ivector(1,100);      }
       nbcode=imatrix(1,nvar,1,8);    }
       ncodemax[1]=1;    dateintmean=dateintsum/k2cpt; 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   
          fclose(ficresp);
    codtab=imatrix(1,100,1,10);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    h=0;    free_vector(pp,1,nlstate);
    m=pow(2,cptcoveff);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
    for(k=1;k<=cptcoveff; k++){  }
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){  /************ Prevalence ********************/
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
            h++;  {  
            if (h>m) h=1;codtab[h][k]=j;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
          }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        }       We still use firstpass and lastpass as another selection.
      }    */
    }   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
    /*for(i=1; i <=m ;i++){    double *pp, **prop;
      for(k=1; k <=cptcovn; k++){    double pos,posprop; 
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    double  y2; /* in fractional years */
      }    int iagemin, iagemax;
      printf("\n");  
    }    iagemin= (int) agemin;
    scanf("%d",i);*/    iagemax= (int) agemax;
        /*pp=vector(1,nlstate);*/
    /* Calculates basic frequencies. Computes observed prevalence at single age    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        and prints on file fileres'p'. */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    j1=0;
     
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    j=cptcoveff;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(k1=1; k1<=j;k1++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
     /* For Powell, parameters are in a vector p[] starting at p[1]        
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for (i=1; i<=nlstate; i++)  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
     if(mle==1){       
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for (i=1; i<=imx; i++) { /* Each individual */
     }          bool=1;
              if  (cptcovn>0) {
     /*--------- results files --------------*/            for (z1=1; z1<=cptcoveff; z1++) 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                    bool=0;
    jk=1;          } 
    fprintf(ficres,"# Parameters\n");          if (bool==1) { 
    printf("# Parameters\n");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    for(i=1,jk=1; i <=nlstate; i++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      for(k=1; k <=(nlstate+ndeath); k++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        if (k != i)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
          {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
            printf("%d%d ",i,k);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
            fprintf(ficres,"%1d%1d ",i,k);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
            for(j=1; j <=ncovmodel; j++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
              printf("%f ",p[jk]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
              fprintf(ficres,"%f ",p[jk]);                  prop[s[m][i]][iagemax+3] += weight[i]; 
              jk++;                } 
            }              }
            printf("\n");            } /* end selection of waves */
            fprintf(ficres,"\n");          }
          }        }
      }        for(i=iagemin; i <= iagemax+3; i++){  
    }          
  if(mle==1){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     /* Computing hessian and covariance matrix */            posprop += prop[jk][i]; 
     ftolhess=ftol; /* Usually correct */          } 
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }          for(jk=1; jk <=nlstate ; jk++){     
     fprintf(ficres,"# Scales\n");            if( i <=  iagemax){ 
     printf("# Scales\n");              if(posprop>=1.e-5){ 
      for(i=1,jk=1; i <=nlstate; i++){                probs[i][jk][j1]= prop[jk][i]/posprop;
       for(j=1; j <=nlstate+ndeath; j++){              } 
         if (j!=i) {            } 
           fprintf(ficres,"%1d%1d",i,j);          }/* end jk */ 
           printf("%1d%1d",i,j);        }/* end i */ 
           for(k=1; k<=ncovmodel;k++){      } /* end i1 */
             printf(" %.5e",delti[jk]);    } /* end k1 */
             fprintf(ficres," %.5e",delti[jk]);    
             jk++;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           }    /*free_vector(pp,1,nlstate);*/
           printf("\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           fprintf(ficres,"\n");  }  /* End of prevalence */
         }  
       }  /************* Waves Concatenation ***************/
       }  
      void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     k=1;  {
     fprintf(ficres,"# Covariance\n");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     printf("# Covariance\n");       Death is a valid wave (if date is known).
     for(i=1;i<=npar;i++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       /*  if (k>nlstate) k=1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       i1=(i-1)/(ncovmodel*nlstate)+1;       and mw[mi+1][i]. dh depends on stepm.
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       */
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);    int i, mi, m;
       printf("%3d",i);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(j=1; j<=i;j++){       double sum=0., jmean=0.;*/
         fprintf(ficres," %.5e",matcov[i][j]);    int first;
         printf(" %.5e",matcov[i][j]);    int j, k=0,jk, ju, jl;
       }    double sum=0.;
       fprintf(ficres,"\n");    first=0;
       printf("\n");    jmin=1e+5;
       k++;    jmax=-1;
     }    jmean=0.;
        for(i=1; i<=imx; i++){
     while((c=getc(ficpar))=='#' && c!= EOF){      mi=0;
       ungetc(c,ficpar);      m=firstpass;
       fgets(line, MAXLINE, ficpar);      while(s[m][i] <= nlstate){
       puts(line);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fputs(line,ficparo);          mw[++mi][i]=m;
     }        if(m >=lastpass)
     ungetc(c,ficpar);          break;
          else
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          m++;
          }/* end while */
     if (fage <= 2) {      if (s[m][i] > nlstate){
       bage = agemin;        mi++;     /* Death is another wave */
       fage = agemax;        /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
         mw[mi][i]=m;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
       wav[i]=mi;
          if(mi==0){
 /*------------ gnuplot -------------*/        nbwarn++;
 chdir(pathcd);        if(first==0){
   if((ficgp=fopen("graph.plt","w"))==NULL) {          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     printf("Problem with file graph.gp");goto end;          first=1;
   }        }
 #ifdef windows        if(first==1){
   fprintf(ficgp,"cd \"%s\" \n",pathc);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 #endif        }
 m=pow(2,cptcoveff);      } /* end mi==0 */
      } /* End individuals */
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    for(i=1; i<=imx; i++){
    for (k1=1; k1<= m ; k1 ++) {      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
 #ifdef windows          dh[mi][i]=1;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        else{
 #endif          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 #ifdef unix            if (agedc[i] < 2*AGESUP) {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 #endif              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
 for (i=1; i<= nlstate ; i ++) {                nberr++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                j=1; /* Temporary Dangerous patch */
 }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (i=1; i<= nlstate ; i ++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              k=k+1;
 }              if (j >= jmax) jmax=j;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              if (j <= jmin) jmin=j;
      for (i=1; i<= nlstate ; i ++) {              sum=sum+j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }
 #ifdef unix          else{
 fprintf(ficgp,"\nset ter gif small size 400,300");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 #endif  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }            k=k+1;
   }            if (j >= jmax) jmax=j;
   /*2 eme*/            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for (k1=1; k1<= m ; k1 ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            if(j<0){
                  nberr++;
     for (i=1; i<= nlstate+1 ; i ++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=2*i;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            sum=sum+j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          jk= j/stepm;
 }            jl= j -jk*stepm;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          ju= j -(jk+1)*stepm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(jl==0){
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }else{ /* We want a negative bias in order to only have interpolation ie
 }                      * at the price of an extra matrix product in likelihood */
       fprintf(ficgp,"\" t\"\" w l 0,");              dh[mi][i]=jk+1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=ju;
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(jl <= -ju){
 }                dh[mi][i]=jk;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              bh[mi][i]=jl;       /* bias is positive if real duration
       else fprintf(ficgp,"\" t\"\" w l 0,");                                   * is higher than the multiple of stepm and negative otherwise.
     }                                   */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            }
   }            else{
                dh[mi][i]=jk+1;
   /*3eme*/              bh[mi][i]=ju;
             }
   for (k1=1; k1<= m ; k1 ++) {            if(dh[mi][i]==0){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              dh[mi][i]=1; /* At least one step */
       k=2+nlstate*(cpt-1);              bh[mi][i]=ju; /* At least one step */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          } /* end if mle */
       }        }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      } /* end wave */
     }    }
   }    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   /* CV preval stat */    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   for (k1=1; k1<= m ; k1 ++) {   }
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;  /*********** Tricode ****************************/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  void tricode(int *Tvar, int **nbcode, int imx)
       for (i=1; i< nlstate ; i ++)  {
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
          int cptcode=0;
       l=3+(nlstate+ndeath)*cpt;    cptcoveff=0; 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   
       for (i=1; i< nlstate ; i ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
         l=3+(nlstate+ndeath)*cpt;    for (k=1; k<=7; k++) ncodemax[k]=0;
         fprintf(ficgp,"+$%d",l+i+1);  
       }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                                 modality*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   }        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* proba elementaires */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    for(i=1,jk=1; i <=nlstate; i++){                                         Tvar[j]. If V=sex and male is 0 and 
     for(k=1; k <=(nlstate+ndeath); k++){                                         female is 1, then  cptcode=1.*/
       if (k != i) {      }
         for(j=1; j <=ncovmodel; j++){  
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      for (i=0; i<=cptcode; i++) {
           /*fprintf(ficgp,"%s",alph[1]);*/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      }
           jk++;  
           fprintf(ficgp,"\n");      ij=1; 
         }      for (i=1; i<=ncodemax[j]; i++) {
       }        for (k=0; k<= maxncov; k++) {
     }          if (Ndum[k] != 0) {
     }            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   for(jk=1; jk <=m; jk++) {            
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            ij++;
    i=1;          }
    for(k2=1; k2<=nlstate; k2++) {          if (ij > ncodemax[j]) break; 
      k3=i;        }  
      for(k=1; k<=(nlstate+ndeath); k++) {      } 
        if (k != k2){    }  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;   for (k=0; k< maxncov; k++) Ndum[k]=0;
         for(j=3; j <=ncovmodel; j++) {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   for (i=1; i<=ncovmodel-2; i++) { 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             ij++;     ij=Tvar[i];
           }     Ndum[ij]++;
           else   }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }   ij=1;
           fprintf(ficgp,")/(1");   for (i=1; i<= maxncov; i++) {
             if((Ndum[i]!=0) && (i<=ncovcol)){
         for(k1=1; k1 <=nlstate; k1++){         Tvaraff[ij]=i; /*For printing */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       ij++;
 ij=1;     }
           for(j=3; j <=ncovmodel; j++){   }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   cptcoveff=ij-1; /*Number of simple covariates*/
             ij++;  }
           }  
           else  /*********** Health Expectancies ****************/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
           fprintf(ficgp,")");  
         }  {
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    /* Health expectancies */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         i=i+ncovmodel;    double age, agelim, hf;
        }    double ***p3mat,***varhe;
      }    double **dnewm,**doldm;
    }    double *xp;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    double **gp, **gm;
   }    double ***gradg, ***trgradg;
        int theta;
   fclose(ficgp);  
        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 chdir(path);    xp=vector(1,npar);
     free_matrix(agev,1,maxwav,1,imx);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     free_ivector(wav,1,imx);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    fprintf(ficreseij,"# Local time at start: %s", strstart);
        fprintf(ficreseij,"# Health expectancies\n");
     free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficreseij,"# Age");
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
     free_ivector(num,1,n);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     free_vector(agedc,1,n);    fprintf(ficreseij,"\n");
     free_vector(weight,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    if(estepm < stepm){
     fclose(ficparo);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fclose(ficres);    }
     /*  }*/    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
    /*________fin mle=1_________*/     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
     /* No more information from the sample is required now */     * to the curvature of the survival function. If, for the same date, we 
   /* Reads comments: lines beginning with '#' */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   while((c=getc(ficpar))=='#' && c!= EOF){     * to compare the new estimate of Life expectancy with the same linear 
     ungetc(c,ficpar);     * hypothesis. A more precise result, taking into account a more precise
     fgets(line, MAXLINE, ficpar);     * curvature will be obtained if estepm is as small as stepm. */
     puts(line);  
     fputs(line,ficparo);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       Look at hpijx to understand the reason of that which relies in memory size
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);       and note for a fixed period like estepm months */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 /*--------- index.htm --------*/       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   if((fichtm=fopen("index.htm","w"))==NULL)    {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("Problem with index.htm \n");goto end;       results. So we changed our mind and took the option of the best precision.
   }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n  
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    agelim=AGESUP;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      /* nhstepm age range expressed in number of stepm */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      /* if (stepm >= YEARM) hstepm=1;*/
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
  fprintf(fichtm," <li>Graphs</li>\n<p>");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
  m=cptcoveff;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
  j1=0;   
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        j1++;  
        if (cptcovn > 0) {      /* Computing  Variances of health expectancies */
          fprintf(fichtm,"<hr>************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)       for(theta=1; theta <=npar; theta++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        for(i=1; i<=npar; i++){ 
          fprintf(fichtm," ************\n<hr>");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        }        }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        
        for(cpt=1; cpt<nlstate;cpt++){        cptj=0;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for(j=1; j<= nlstate; j++){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(i=1; i<=nlstate; i++){
        }            cptj=cptj+1;
     for(cpt=1; cpt<=nlstate;cpt++) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 interval) in state (%d): v%s%d%d.gif <br>            }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            }
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {       
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>       
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(i=1; i<=npar; i++) 
      }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 health expectancies in states (1) and (2): e%s%d.gif<br>        
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        cptj=0;
 fprintf(fichtm,"\n</body>");        for(j=1; j<= nlstate; j++){
    }          for(i=1;i<=nlstate;i++){
  }            cptj=cptj+1;
 fclose(fichtm);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
   /*--------------- Prevalence limit --------------*/              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   strcpy(filerespl,"pl");          }
   strcat(filerespl,fileres);        }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(j=1; j<= nlstate*nlstate; j++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          }
   fprintf(ficrespl,"#Prevalence limit\n");       } 
   fprintf(ficrespl,"#Age ");     
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /* End theta */
   fprintf(ficrespl,"\n");  
         trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(h=0; h<=nhstepm-1; h++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate*nlstate;j++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(theta=1; theta <=npar; theta++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            trgradg[h][j][theta]=gradg[h][theta][j];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       
   k=0;  
   agebase=agemin;       for(i=1;i<=nlstate*nlstate;i++)
   agelim=agemax;        for(j=1;j<=nlstate*nlstate;j++)
   ftolpl=1.e-10;          varhe[i][j][(int)age] =0.;
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   for(cptcov=1;cptcov<=i1;cptcov++){       for(h=0;h<=nhstepm-1;h++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(k=0;k<=nhstepm-1;k++){
         k=k+1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficrespl,"\n#******");          for(i=1;i<=nlstate*nlstate;i++)
         for(j=1;j<=cptcoveff;j++)            for(j=1;j<=nlstate*nlstate;j++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         fprintf(ficrespl,"******\n");        }
              }
         for (age=agebase; age<=agelim; age++){      /* Computing expectancies */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(i=1; i<=nlstate;i++)
           fprintf(ficrespl,"%.0f",age );        for(j=1; j<=nlstate;j++)
           for(i=1; i<=nlstate;i++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           fprintf(ficrespl," %.5f", prlim[i][i]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           fprintf(ficrespl,"\n");            
         }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }  
     }          }
   fclose(ficrespl);  
   /*------------- h Pij x at various ages ------------*/      fprintf(ficreseij,"%3.0f",age );
        cptj=0;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      for(i=1; i<=nlstate;i++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        for(j=1; j<=nlstate;j++){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          cptj++;
   }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   printf("Computing pij: result on file '%s' \n", filerespij);        }
        fprintf(ficreseij,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;     
   if (stepm<=24) stepsize=2;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   agelim=AGESUP;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   hstepm=stepsize*YEARM; /* Every year of age */      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   k=0;    printf("\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficlog,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    free_vector(xp,1,npar);
         fprintf(ficrespij,"\n#****** ");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         for(j=1;j<=cptcoveff;j++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         fprintf(ficrespij,"******\n");  }
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  /************ Variance ******************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Variance of health expectancies */
           oldm=oldms;savm=savms;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* double **newm;*/
           fprintf(ficrespij,"# Age");    double **dnewm,**doldm;
           for(i=1; i<=nlstate;i++)    double **dnewmp,**doldmp;
             for(j=1; j<=nlstate+ndeath;j++)    int i, j, nhstepm, hstepm, h, nstepm ;
               fprintf(ficrespij," %1d-%1d",i,j);    int k, cptcode;
           fprintf(ficrespij,"\n");    double *xp;
           for (h=0; h<=nhstepm; h++){    double **gp, **gm;  /* for var eij */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double ***gradg, ***trgradg; /*for var eij */
             for(i=1; i<=nlstate;i++)    double **gradgp, **trgradgp; /* for var p point j */
               for(j=1; j<=nlstate+ndeath;j++)    double *gpp, *gmp; /* for var p point j */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             fprintf(ficrespij,"\n");    double ***p3mat;
           }    double age,agelim, hf;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***mobaverage;
           fprintf(ficrespij,"\n");    int theta;
         }    char digit[4];
     }    char digitp[25];
   }  
     char fileresprobmorprev[FILENAMELENGTH];
   fclose(ficrespij);  
     if(popbased==1){
   /*---------- Health expectancies and variances ------------*/      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   strcpy(filerest,"t");      else strcpy(digitp,"-populbased-nomobil-");
   strcat(filerest,fileres);    }
   if((ficrest=fopen(filerest,"w"))==NULL) {    else 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      strcpy(digitp,"-stablbased-");
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcpy(filerese,"e");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcat(filerese,fileres);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
  strcpy(fileresv,"v");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcat(fileresv,fileres);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    strcat(fileresprobmorprev,fileres);
   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
       k=k+1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficrest,"\n#****** ");    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficrest,"******\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficreseij,"\n#****** ");      for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    }  
       fprintf(ficreseij,"******\n");    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficresvij,"\n#****** ");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficresvij,"******\n");  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fprintf(ficresvij, "#Local time at start: %s", strstart);
       oldm=oldms;savm=savms;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      fprintf(ficresvij,"# Age");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    for(i=1; i<=nlstate;i++)
       oldm=oldms;savm=savms;      for(j=1; j<=nlstate;j++)
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
          fprintf(ficresvij,"\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    xp=vector(1,npar);
       fprintf(ficrest,"\n");    dnewm=matrix(1,nlstate,1,npar);
            doldm=matrix(1,nlstate,1,nlstate);
       hf=1;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       if (stepm >= YEARM) hf=stepm/YEARM;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    gpp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.0f",age);    gmp=vector(nlstate+1,nlstate+ndeath);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    if(estepm < stepm){
           }      printf ("Problem %d lower than %d\n",estepm, stepm);
           epj[nlstate+1] +=epj[j];    }
         }    else  hstepm=estepm;   
         for(i=1, vepp=0.;i <=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
           for(j=1;j <=nlstate;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             vepp += vareij[i][j][(int)age];       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));       nstepm is the number of stepm from age to agelin. 
         for(j=1;j <=nlstate;j++){       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));       and note for a fixed period like k years */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficrest,"\n");       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed every two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
            */
  fclose(ficreseij);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  fclose(ficresvij);    agelim = AGESUP;
   fclose(ficrest);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_vector(epj,1,nlstate+1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /*  scanf("%d ",i); */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /*------- Variance limit prevalence------*/        gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     exit(0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  k=0;  
  for(cptcov=1;cptcov<=i1;cptcov++){        if (popbased==1) {
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if(mobilav ==0){
      k=k+1;            for(i=1; i<=nlstate;i++)
      fprintf(ficresvpl,"\n#****** ");              prlim[i][i]=probs[(int)age][i][ij];
      for(j=1;j<=cptcoveff;j++)          }else{ /* mobilav */ 
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
      fprintf(ficresvpl,"******\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
                }
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
      oldm=oldms;savm=savms;    
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(j=1; j<= nlstate; j++){
    }          for(h=0; h<=nhstepm; h++){
  }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fclose(ficresvpl);          }
         }
   /*---------- End : free ----------------*/        /* This for computing probability of death (h=1 means
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        }    
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        /* end probability of death */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(matcov,1,npar,1,npar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_vector(delti,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        if (popbased==1) {
           if(mobilav ==0){
   printf("End of Imach\n");            for(i=1; i<=nlstate;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            for(i=1; i<=nlstate;i++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/              prlim[i][i]=mobaverage[(int)age][i][ij];
   /*------ End -----------*/          }
         }
  end:  
 #ifdef windows        for(j=1; j<= nlstate; j++){
  chdir(pathcd);          for(h=0; h<=nhstepm; h++){
 #endif            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  system("wgnuplot graph.plt");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 #ifdef windows        }
   while (z[0] != 'q') {        /* This for computing probability of death (h=1 means
     chdir(pathcd);           computed over hstepm matrices product = hstepm*stepm months) 
     printf("\nType e to edit output files, c to start again, and q for exiting: ");           as a weighted average of prlim.
     scanf("%s",z);        */
     if (z[0] == 'c') system("./imach");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     else if (z[0] == 'e') {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       chdir(path);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       system("index.htm");        }    
     }        /* end probability of death */
     else if (z[0] == 'q') exit(0);  
   }        for(j=1; j<= nlstate; j++) /* vareij */
 #endif          for(h=0; h<=nhstepm; h++){
 }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.7  
changed lines
  Added in v.1.108


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>