Diff for /imach/src/imach.c between versions 1.6 and 1.99

version 1.6, 2001/05/02 17:47:10 version 1.99, 2004/06/05 08:57:40
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.99  2004/06/05 08:57:40  brouard
   individuals from different ages are interviewed on their health status    *** empty log message ***
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.98  2004/05/16 15:05:56  brouard
   Health expectancies are computed from the transistions observed between    New version 0.97 . First attempt to estimate force of mortality
   waves and are computed for each degree of severity of disability (number    directly from the data i.e. without the need of knowing the health
   of life states). More degrees you consider, more time is necessary to    state at each age, but using a Gompertz model: log u =a + b*age .
   reach the Maximum Likelihood of the parameters involved in the model.    This is the basic analysis of mortality and should be done before any
   The simplest model is the multinomial logistic model where pij is    other analysis, in order to test if the mortality estimated from the
   the probabibility to be observed in state j at the second wave conditional    cross-longitudinal survey is different from the mortality estimated
   to be observed in state i at the first wave. Therefore the model is:    from other sources like vital statistic data.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    The same imach parameter file can be used but the option for mle should be -3.
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Agnès, who wrote this part of the code, tried to keep most of the
   More covariates you add, less is the speed of the convergence.    former routines in order to include the new code within the former code.
   
   The advantage that this computer programme claims, comes from that if the    The output is very simple: only an estimate of the intercept and of
   delay between waves is not identical for each individual, or if some    the slope with 95% confident intervals.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Current limitations:
   hPijx is the probability to be    A) Even if you enter covariates, i.e. with the
   observed in state i at age x+h conditional to the observed state i at age    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   x. The delay 'h' can be split into an exact number (nh*stepm) of    B) There is no computation of Life Expectancy nor Life Table.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.97  2004/02/20 13:25:42  lievre
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.96d. Population forecasting command line is (temporarily)
   and the contribution of each individual to the likelihood is simply hPijx.    suppressed.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.96  2003/07/15 15:38:55  brouard
   of the life expectancies. It also computes the prevalence limits.    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
      rewritten within the same printf. Workaround: many printfs.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.95  2003/07/08 07:54:34  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository):
   from the European Union.    (Repository): Using imachwizard code to output a more meaningful covariance
   It is copyrighted identically to a GNU software product, ie programme and    matrix (cov(a12,c31) instead of numbers.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.94  2003/06/27 13:00:02  brouard
   **********************************************************************/    Just cleaning
    
 #include <math.h>    Revision 1.93  2003/06/25 16:33:55  brouard
 #include <stdio.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <stdlib.h>    exist so I changed back to asctime which exists.
 #include <unistd.h>    (Module): Version 0.96b
   
 #define MAXLINE 256    Revision 1.92  2003/06/25 16:30:45  brouard
 #define FILENAMELENGTH 80    (Module): On windows (cygwin) function asctime_r doesn't
 /*#define DEBUG*/    exist so I changed back to asctime which exists.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.91  2003/06/25 15:30:29  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    helps to forecast when convergence will be reached. Elapsed time
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Some bugs corrected for windows. Also, when
 #define NCOVMAX 8 /* Maximum number of covariates */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define MAXN 20000    of the covariance matrix to be input.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.89  2003/06/24 12:30:52  brouard
 #define AGEBASE 40    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int nvar;  
 static int cptcov;    Revision 1.88  2003/06/23 17:54:56  brouard
 int cptcovn, cptcovage=0;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.87  2003/06/18 12:26:01  brouard
 int ndeath=1; /* Number of dead states */    Version 0.96
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Change position of html and gnuplot routines and added
 int maxwav; /* Maxim number of waves */    routine fileappend.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.85  2003/06/17 13:12:43  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Repository): Check when date of death was earlier that
 double **oldm, **newm, **savm; /* Working pointers to matrices */    current date of interview. It may happen when the death was just
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    prior to the death. In this case, dh was negative and likelihood
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    was wrong (infinity). We still send an "Error" but patch by
 FILE *ficgp, *fichtm;    assuming that the date of death was just one stepm after the
 FILE *ficreseij;    interview.
   char filerese[FILENAMELENGTH];    (Repository): Because some people have very long ID (first column)
  FILE  *ficresvij;    we changed int to long in num[] and we added a new lvector for
   char fileresv[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
  FILE  *ficresvpl;    truncation)
   char fileresvpl[FILENAMELENGTH];    (Repository): No more line truncation errors.
   
 #define NR_END 1    Revision 1.84  2003/06/13 21:44:43  brouard
 #define FREE_ARG char*    * imach.c (Repository): Replace "freqsummary" at a correct
 #define FTOL 1.0e-10    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define NRANSI    parcimony.
 #define ITMAX 200    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define TOL 2.0e-4    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.82  2003/06/05 15:57:20  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Add log in  imach.c and  fullversion number is now printed.
   
 #define GOLD 1.618034  */
 #define GLIMIT 100.0  /*
 #define TINY 1.0e-20     Interpolated Markov Chain
   
 static double maxarg1,maxarg2;    Short summary of the programme:
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    first survey ("cross") where individuals from different ages are
 #define rint(a) floor(a+0.5)    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 static double sqrarg;    second wave of interviews ("longitudinal") which measure each change
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (if any) in individual health status.  Health expectancies are
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int imx;    Maximum Likelihood of the parameters involved in the model.  The
 int stepm;    simplest model is the multinomial logistic model where pij is the
 /* Stepm, step in month: minimum step interpolation*/    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 int m,nb;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    'age' is age and 'sex' is a covariate. If you want to have a more
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    complex model than "constant and age", you should modify the program
 double **pmmij;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 double *weight;    convergence.
 int **s; /* Status */  
 double *agedc, **covar, idx;    The advantage of this computer programme, compared to a simple
 int **nbcode, *Tcode, *Tvar, **codtab;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    intermediate interview, the information is lost, but taken into
 double ftolhess; /* Tolerance for computing hessian */    account using an interpolation or extrapolation.  
   
     hPijx is the probability to be observed in state i at age x+h
 static  int split( char *path, char *dirc, char *name )    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
    char *s;                             /* pointer */    states. This elementary transition (by month, quarter,
    int  l1, l2;                         /* length counters */    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
    l1 = strlen( path );                 /* length of path */    and the contribution of each individual to the likelihood is simply
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    hPijx.
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Also this programme outputs the covariance matrix of the parameters but also
 #if     defined(__bsd__)                /* get current working directory */    of the life expectancies. It also computes the stable prevalence. 
       extern char       *getwd( );    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       if ( getwd( dirc ) == NULL ) {             Institut national d'études démographiques, Paris.
 #else    This software have been partly granted by Euro-REVES, a concerted action
       extern char       *getcwd( );    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    software can be distributed freely for non commercial use. Latest version
 #endif    can be accessed at http://euroreves.ined.fr/imach .
          return( GLOCK_ERROR_GETCWD );  
       }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strcpy( name, path );             /* we've got it */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    } else {                             /* strip direcotry from path */    
       s++;                              /* after this, the filename */    **********************************************************************/
       l2 = strlen( s );                 /* length of filename */  /*
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    main
       strcpy( name, s );                /* save file name */    read parameterfile
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    read datafile
       dirc[l1-l2] = 0;                  /* add zero */    concatwav
    }    freqsummary
    l1 = strlen( dirc );                 /* length of directory */    if (mle >= 1)
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }      mlikeli
    return( 0 );                         /* we're done */    print results files
 }    if mle==1 
        computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /******************************************/        begin-prev-date,...
     open gnuplot file
 void replace(char *s, char*t)    open html file
 {    stable prevalence
   int i;     for age prevalim()
   int lg=20;    h Pij x
   i=0;    variance of p varprob
   lg=strlen(t);    forecasting if prevfcast==1 prevforecast call prevalence()
   for(i=0; i<= lg; i++) {    health expectancies
     (s[i] = t[i]);    Variance-covariance of DFLE
     if (t[i]== '\\') s[i]='/';    prevalence()
   }     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 int nbocc(char *s, char occ)    total life expectancies
 {    Variance of stable prevalence
   int i,j=0;   end
   int lg=20;  */
   i=0;  
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;   
   }  #include <math.h>
   return j;  #include <stdio.h>
 }  #include <stdlib.h>
   #include <unistd.h>
 void cutv(char *u,char *v, char*t, char occ)  
 {  /* #include <sys/time.h> */
   int i,lg,j,p=0;  #include <time.h>
   i=0;  #include "timeval.h"
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* #include <libintl.h> */
   }  /* #define _(String) gettext (String) */
   
   lg=strlen(t);  #define MAXLINE 256
   for(j=0; j<p; j++) {  #define GNUPLOTPROGRAM "gnuplot"
     (u[j] = t[j]);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   }  #define FILENAMELENGTH 132
      u[p]='\0';  /*#define DEBUG*/
   /*#define windows*/
    for(j=0; j<= lg; j++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /********************** nrerror ********************/  
   #define NINTERVMAX 8
 void nrerror(char error_text[])  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   fprintf(stderr,"ERREUR ...\n");  #define NCOVMAX 8 /* Maximum number of covariates */
   fprintf(stderr,"%s\n",error_text);  #define MAXN 20000
   exit(1);  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
 /*********************** vector *******************/  #define AGEBASE 40
 double *vector(int nl, int nh)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef unix
   double *v;  #define DIRSEPARATOR '/'
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '\\'
   if (!v) nrerror("allocation failure in vector");  #else
   return v-nl+NR_END;  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  /* $Id$ */
 {  /* $State$ */
   free((FREE_ARG)(v+nl-NR_END));  
 }  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /************************ivector *******************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int *ivector(long nl,long nh)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int *v;  int npar=NPARMAX;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int nlstate=2; /* Number of live states */
   if (!v) nrerror("allocation failure in ivector");  int ndeath=1; /* Number of dead states */
   return v-nl+NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /******************free ivector **************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 void free_ivector(int *v, long nl, long nh)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   free((FREE_ARG)(v+nl-NR_END));  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /******************* imatrix *******************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double jmean; /* Mean space between 2 waves */
   int **m;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /* allocate pointers to rows */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  FILE *ficlog, *ficrespow;
   if (!m) nrerror("allocation failure 1 in matrix()");  int globpr; /* Global variable for printing or not */
   m += NR_END;  double fretone; /* Only one call to likelihood */
   m -= nrl;  long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   /* allocate rows and set pointers to them */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  FILE *ficresilk;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m[nrl] += NR_END;  FILE *ficresprobmorprev;
   m[nrl] -= ncl;  FILE *fichtm, *fichtmcov; /* Html File */
    FILE *ficreseij;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char filerese[FILENAMELENGTH];
    FILE  *ficresvij;
   /* return pointer to array of pointers to rows */  char fileresv[FILENAMELENGTH];
   return m;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /****************** free_imatrix *************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
       int **m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       long nch,ncl,nrh,nrl;  char command[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  int  outcmd=0;
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /******************* matrix *******************************/  char fileregp[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char popfile[FILENAMELENGTH];
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double **m;  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  struct timezone tzp;
   if (!m) nrerror("allocation failure 1 in matrix()");  extern int gettimeofday();
   m += NR_END;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m -= nrl;  long time_value;
   extern long time();
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char strcurr[80], strfor[80];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NR_END 1
   m[nrl] -= ncl;  #define FREE_ARG char*
   #define FTOL 1.0e-10
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define NRANSI 
 }  #define ITMAX 200 
   
 /*************************free matrix ************************/  #define TOL 2.0e-4 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define CGOLD 0.3819660 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define ZEPS 1.0e-10 
   free((FREE_ARG)(m+nrl-NR_END));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 /******************* ma3x *******************************/  #define GLIMIT 100.0 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define TINY 1.0e-20 
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  static double maxarg1,maxarg2;
   double ***m;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m += NR_END;  #define rint(a) floor(a+0.5)
   m -= nrl;  
   static double sqrarg;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m[nrl] += NR_END;  int agegomp= AGEGOMP;
   m[nrl] -= ncl;  
   int imx; 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int estepm;
   m[nrl][ncl] += NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  int m,nb;
     m[nrl][j]=m[nrl][j-1]+nlay;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (i=nrl+1; i<=nrh; i++) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  double **pmmij, ***probs;
     for (j=ncl+1; j<=nch; j++)  double *ageexmed,*agecens;
       m[i][j]=m[i][j-1]+nlay;  double dateintmean=0;
   }  
   return m;  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /*************************free ma3x ************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double ftolhess; /* Tolerance for computing hessian */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /***************** f1dim *************************/    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 extern int ncom;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 extern double *pcom,*xicom;    */ 
 extern double (*nrfunc)(double []);    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
 double f1dim(double x)  
 {    l1 = strlen(path );                   /* length of path */
   int j;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double f;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double *xt;    if ( ss == NULL ) {                   /* no directory, so use current */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   xt=vector(1,ncom);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      /* get current working directory */
   f=(*nrfunc)(xt);      /*    extern  char* getcwd ( char *buf , int len);*/
   free_vector(xt,1,ncom);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   return f;        return( GLOCK_ERROR_GETCWD );
 }      }
       strcpy( name, path );               /* we've got it */
 /*****************brent *************************/    } else {                              /* strip direcotry from path */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   int iter;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double a,b,d,etemp;      strcpy( name, ss );         /* save file name */
   double fu,fv,fw,fx;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double ftemp;      dirc[l1-l2] = 0;                    /* add zero */
   double p,q,r,tol1,tol2,u,v,w,x,xm;    }
   double e=0.0;    l1 = strlen( dirc );                  /* length of directory */
      /*#ifdef windows
   a=(ax < cx ? ax : cx);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   b=(ax > cx ? ax : cx);  #else
   x=w=v=bx;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   fw=fv=fx=(*f)(x);  #endif
   for (iter=1;iter<=ITMAX;iter++) {    */
     xm=0.5*(a+b);    ss = strrchr( name, '.' );            /* find last / */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (ss >0){
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      ss++;
     printf(".");fflush(stdout);      strcpy(ext,ss);                     /* save extension */
 #ifdef DEBUG      l1= strlen( name);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      l2= strlen(ss)+1;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      strncpy( finame, name, l1-l2);
 #endif      finame[l1-l2]= 0;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    }
       *xmin=x;    return( 0 );                          /* we're done */
       return fx;  }
     }  
     ftemp=fu;  
     if (fabs(e) > tol1) {  /******************************************/
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  void replace_back_to_slash(char *s, char*t)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    int i;
       if (q > 0.0) p = -p;    int lg=0;
       q=fabs(q);    i=0;
       etemp=e;    lg=strlen(t);
       e=d;    for(i=0; i<= lg; i++) {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      (s[i] = t[i]);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      if (t[i]== '\\') s[i]='/';
       else {    }
         d=p/q;  }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  int nbocc(char *s, char occ)
           d=SIGN(tol1,xm-x);  {
       }    int i,j=0;
     } else {    int lg=20;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    i=0;
     }    lg=strlen(s);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    for(i=0; i<= lg; i++) {
     fu=(*f)(u);    if  (s[i] == occ ) j++;
     if (fu <= fx) {    }
       if (u >= x) a=x; else b=x;    return j;
       SHFT(v,w,x,u)  }
         SHFT(fv,fw,fx,fu)  
         } else {  void cutv(char *u,char *v, char*t, char occ)
           if (u < x) a=u; else b=u;  {
           if (fu <= fw || w == x) {    /* cuts string t into u and v where u is ended by char occ excluding it
             v=w;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
             w=u;       gives u="abcedf" and v="ghi2j" */
             fv=fw;    int i,lg,j,p=0;
             fw=fu;    i=0;
           } else if (fu <= fv || v == x || v == w) {    for(j=0; j<=strlen(t)-1; j++) {
             v=u;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
             fv=fu;    }
           }  
         }    lg=strlen(t);
   }    for(j=0; j<p; j++) {
   nrerror("Too many iterations in brent");      (u[j] = t[j]);
   *xmin=x;    }
   return fx;       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /****************** mnbrak ***********************/      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /********************** nrerror ********************/
   double ulim,u,r,q, dum;  
   double fu;  void nrerror(char error_text[])
    {
   *fa=(*func)(*ax);    fprintf(stderr,"ERREUR ...\n");
   *fb=(*func)(*bx);    fprintf(stderr,"%s\n",error_text);
   if (*fb > *fa) {    exit(EXIT_FAILURE);
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    double *v;
   while (*fb > *fc) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     r=(*bx-*ax)*(*fb-*fc);    if (!v) nrerror("allocation failure in vector");
     q=(*bx-*cx)*(*fb-*fa);    return v-nl+NR_END;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /************************ free vector ******************/
     if ((*bx-u)*(u-*cx) > 0.0) {  void free_vector(double*v, int nl, int nh)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /************************ivector *******************************/
           SHFT(*fb,*fc,fu,(*func)(u))  int *ivector(long nl,long nh)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    int *v;
       u=ulim;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       fu=(*func)(u);    if (!v) nrerror("allocation failure in ivector");
     } else {    return v-nl+NR_END;
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  /******************free ivector **************************/
     SHFT(*ax,*bx,*cx,u)  void free_ivector(int *v, long nl, long nh)
       SHFT(*fa,*fb,*fc,fu)  {
       }    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************** linmin ************************/  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 int ncom;  {
 double *pcom,*xicom;    long *v;
 double (*nrfunc)(double []);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    return v-nl+NR_END;
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /******************free lvector **************************/
   double f1dim(double x);  void free_lvector(long *v, long nl, long nh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    free((FREE_ARG)(v+nl-NR_END));
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /******************* imatrix *******************************/
    int **imatrix(long nrl, long nrh, long ncl, long nch) 
   ncom=n;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   pcom=vector(1,n);  { 
   xicom=vector(1,n);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   nrfunc=func;    int **m; 
   for (j=1;j<=n;j++) {    
     pcom[j]=p[j];    /* allocate pointers to rows */ 
     xicom[j]=xi[j];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   ax=0.0;    m += NR_END; 
   xx=1.0;    m -= nrl; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    
 #ifdef DEBUG    /* allocate rows and set pointers to them */ 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   for (j=1;j<=n;j++) {    m[nrl] += NR_END; 
     xi[j] *= xmin;    m[nrl] -= ncl; 
     p[j] += xi[j];    
   }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   free_vector(xicom,1,n);    
   free_vector(pcom,1,n);    /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /****************** free_imatrix *************************/
             double (*func)(double []))  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   void linmin(double p[], double xi[], int n, double *fret,        long nch,ncl,nrh,nrl; 
               double (*func)(double []));       /* free an int matrix allocated by imatrix() */ 
   int i,ibig,j;  { 
   double del,t,*pt,*ptt,*xit;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double fp,fptt;    free((FREE_ARG) (m+nrl-NR_END)); 
   double *xits;  } 
   pt=vector(1,n);  
   ptt=vector(1,n);  /******************* matrix *******************************/
   xit=vector(1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
   xits=vector(1,n);  {
   *fret=(*func)(p);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (j=1;j<=n;j++) pt[j]=p[j];    double **m;
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     ibig=0;    if (!m) nrerror("allocation failure 1 in matrix()");
     del=0.0;    m += NR_END;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m -= nrl;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (i=1;i<=n;i++) {    m[nrl] += NR_END;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl] -= ncl;
       fptt=(*fret);  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("fret=%lf \n",*fret);    return m;
 #endif    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       printf("%d",i);fflush(stdout);     */
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /*************************free matrix ************************/
         ibig=i;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       }  {
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("%d %.12e",i,(*fret));    free((FREE_ARG)(m+nrl-NR_END));
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       printf("\n");    double ***m;
 #endif  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
       int k[2],l;    m -= nrl;
       k[0]=1;  
       k[1]=-1;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("Max: %.12e",(*func)(p));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (j=1;j<=n;j++)    m[nrl] += NR_END;
         printf(" %.12e",p[j]);    m[nrl] -= ncl;
       printf("\n");  
       for(l=0;l<=1;l++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         }    m[nrl][ncl] += NR_END;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
 #endif      m[nrl][j]=m[nrl][j-1]+nlay;
     
     for (i=nrl+1; i<=nrh; i++) {
       free_vector(xit,1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       free_vector(xits,1,n);      for (j=ncl+1; j<=nch; j++) 
       free_vector(ptt,1,n);        m[i][j]=m[i][j-1]+nlay;
       free_vector(pt,1,n);    }
       return;    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for (j=1;j<=n;j++) {    */
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /*************************free ma3x ************************/
     }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       if (t < 0.0) {    free((FREE_ARG)(m+nrl-NR_END));
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /*************** function subdirf ***********/
           xi[j][n]=xit[j];  char *subdirf(char fileres[])
         }  {
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcpy(tmpout,optionfilefiname);
         for(j=1;j<=n;j++)    strcat(tmpout,"/"); /* Add to the right */
           printf(" %.12e",xit[j]);    strcat(tmpout,fileres);
         printf("\n");    return tmpout;
 #endif  }
       }  
     }  /*************** function subdirf2 ***********/
   }  char *subdirf2(char fileres[], char *preop)
 }  {
     
 /**** Prevalence limit ****************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcat(tmpout,fileres);
      matrix by transitions matrix until convergence is reached */    return tmpout;
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /*************** function subdirf3 ***********/
   double **matprod2();  char *subdirf3(char fileres[], char *preop, char *preop2)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    
   double agefin, delaymax=50 ; /* Max number of years to converge */    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,"/");
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,preop);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     return tmpout;
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /***************** f1dim *************************/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  extern int ncom; 
     newm=savm;  extern double *pcom,*xicom;
     /* Covariates have to be included here again */  extern double (*nrfunc)(double []); 
      cov[2]=agefin;   
    double f1dim(double x) 
       for (k=1; k<=cptcovn;k++) {  { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    int j; 
     double f;
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/    double *xt; 
       }   
       for (k=1; k<=cptcovage;k++)    xt=vector(1,ncom); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
        f=(*nrfunc)(xt); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    free_vector(xt,1,ncom); 
     return f; 
     savm=oldm;  } 
     oldm=newm;  
     maxmax=0.;  /*****************brent *************************/
     for(j=1;j<=nlstate;j++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       min=1.;  { 
       max=0.;    int iter; 
       for(i=1; i<=nlstate; i++) {    double a,b,d,etemp;
         sumnew=0;    double fu,fv,fw,fx;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double ftemp;
         prlim[i][j]= newm[i][j]/(1-sumnew);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         max=FMAX(max,prlim[i][j]);    double e=0.0; 
         min=FMIN(min,prlim[i][j]);   
       }    a=(ax < cx ? ax : cx); 
       maxmin=max-min;    b=(ax > cx ? ax : cx); 
       maxmax=FMAX(maxmax,maxmin);    x=w=v=bx; 
     }    fw=fv=fx=(*f)(x); 
     if(maxmax < ftolpl){    for (iter=1;iter<=ITMAX;iter++) { 
       return prlim;      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 }      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 /*************** transition probabilities **********/  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double s1, s2;  #endif
   /*double t34;*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   int i,j,j1, nc, ii, jj;        *xmin=x; 
         return fx; 
     for(i=1; i<= nlstate; i++){      } 
     for(j=1; j<i;j++){      ftemp=fu;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (fabs(e) > tol1) { 
         /*s2 += param[i][j][nc]*cov[nc];*/        r=(x-w)*(fx-fv); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        q=(x-v)*(fx-fw); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        p=(x-v)*q-(x-w)*r; 
       }        q=2.0*(q-r); 
       ps[i][j]=s2;        if (q > 0.0) p = -p; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        q=fabs(q); 
     }        etemp=e; 
     for(j=i+1; j<=nlstate+ndeath;j++){        e=d; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        else { 
       }          d=p/q; 
       ps[i][j]=s2;          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
   for(i=1; i<= nlstate; i++){        } 
      s1=0;      } else { 
     for(j=1; j<i; j++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       s1+=exp(ps[i][j]);      } 
     for(j=i+1; j<=nlstate+ndeath; j++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       s1+=exp(ps[i][j]);      fu=(*f)(u); 
     ps[i][i]=1./(s1+1.);      if (fu <= fx) { 
     for(j=1; j<i; j++)        if (u >= x) a=x; else b=x; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        SHFT(v,w,x,u) 
     for(j=i+1; j<=nlstate+ndeath; j++)          SHFT(fv,fw,fx,fu) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          } else { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            if (u < x) a=u; else b=u; 
   } /* end i */            if (fu <= fw || w == x) { 
               v=w; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){              w=u; 
     for(jj=1; jj<= nlstate+ndeath; jj++){              fv=fw; 
       ps[ii][jj]=0;              fw=fu; 
       ps[ii][ii]=1;            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
   }              fv=fu; 
             } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    } 
      printf("%lf ",ps[ii][jj]);    nrerror("Too many iterations in brent"); 
    }    *xmin=x; 
     printf("\n ");    return fx; 
     }  } 
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /****************** mnbrak ***********************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     return ps;              double (*func)(double)) 
 }  { 
     double ulim,u,r,q, dum;
 /**************** Product of 2 matrices ******************/    double fu; 
    
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    *fa=(*func)(*ax); 
 {    *fb=(*func)(*bx); 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if (*fb > *fa) { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      SHFT(dum,*ax,*bx,dum) 
   /* in, b, out are matrice of pointers which should have been initialized        SHFT(dum,*fb,*fa,dum) 
      before: only the contents of out is modified. The function returns        } 
      a pointer to pointers identical to out */    *cx=(*bx)+GOLD*(*bx-*ax); 
   long i, j, k;    *fc=(*func)(*cx); 
   for(i=nrl; i<= nrh; i++)    while (*fb > *fc) { 
     for(k=ncolol; k<=ncoloh; k++)      r=(*bx-*ax)*(*fb-*fc); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      q=(*bx-*cx)*(*fb-*fa); 
         out[i][k] +=in[i][j]*b[j][k];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   return out;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 }      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 /************* Higher Matrix Product ***************/        fu=(*func)(u); 
         if (fu < *fc) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month            } 
      duration (i.e. until      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        u=ulim; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        fu=(*func)(u); 
      (typically every 2 years instead of every month which is too big).      } else { 
      Model is determined by parameters x and covariates have to be        u=(*cx)+GOLD*(*cx-*bx); 
      included manually here.        fu=(*func)(u); 
       } 
      */      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   int i, j, d, h, k;        } 
   double **out, cov[NCOVMAX];  } 
   double **newm;  
   /*************** linmin ************************/
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  int ncom; 
     for (j=1;j<=nlstate+ndeath;j++){  double *pcom,*xicom;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  double (*nrfunc)(double []); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  { 
   for(h=1; h <=nhstepm; h++){    double brent(double ax, double bx, double cx, 
     for(d=1; d <=hstepm; d++){                 double (*f)(double), double tol, double *xmin); 
       newm=savm;    double f1dim(double x); 
       /* Covariates have to be included here again */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       cov[1]=1.;                double *fc, double (*func)(double)); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    int j; 
       if (cptcovn>0){    double xx,xmin,bx,ax; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    double fx,fb,fa;
     }   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    ncom=n; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    pcom=vector(1,n); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    xicom=vector(1,n); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    nrfunc=func; 
       savm=oldm;    for (j=1;j<=n;j++) { 
       oldm=newm;      pcom[j]=p[j]; 
     }      xicom[j]=xi[j]; 
     for(i=1; i<=nlstate+ndeath; i++)    } 
       for(j=1;j<=nlstate+ndeath;j++) {    ax=0.0; 
         po[i][j][h]=newm[i][j];    xx=1.0; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
          */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       }  #ifdef DEBUG
   } /* end h */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   return po;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }  #endif
     for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 /*************** log-likelihood *************/      p[j] += xi[j]; 
 double func( double *x)    } 
 {    free_vector(xicom,1,n); 
   int i, ii, j, k, mi, d, kk;    free_vector(pcom,1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  } 
   double **out;  
   double sw; /* Sum of weights */  char *asc_diff_time(long time_sec, char ascdiff[])
   double lli; /* Individual log likelihood */  {
   long ipmx;    long sec_left, days, hours, minutes;
   /*extern weight */    days = (time_sec) / (60*60*24);
   /* We are differentiating ll according to initial status */    sec_left = (time_sec) % (60*60*24);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    hours = (sec_left) / (60*60) ;
   /*for(i=1;i<imx;i++)    sec_left = (sec_left) %(60*60);
 printf(" %d\n",s[4][i]);    minutes = (sec_left) /60;
   */    sec_left = (sec_left) % (60);
   cov[1]=1.;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*************** powell ************************/
        for(mi=1; mi<= wav[i]-1; mi++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (ii=1;ii<=nlstate+ndeath;ii++)              double (*func)(double [])) 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  { 
             for(d=0; d<dh[mi][i]; d++){    void linmin(double p[], double xi[], int n, double *fret, 
               newm=savm;                double (*func)(double [])); 
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    int i,ibig,j; 
               for (kk=1; kk<=cptcovage;kk++) {    double del,t,*pt,*ptt,*xit;
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double fp,fptt;
                  /*printf("%d %d",kk,Tage[kk]);*/    double *xits;
               }    int niterf, itmp;
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/  
               /*cov[3]=pow(cov[2],2)/1000.;*/    pt=vector(1,n); 
     ptt=vector(1,n); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    xit=vector(1,n); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    xits=vector(1,n); 
           savm=oldm;    *fret=(*func)(p); 
           oldm=newm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
       } /* end mult */      ibig=0; 
          del=0.0; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      last_time=curr_time;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      (void) gettimeofday(&curr_time,&tzp);
       ipmx +=1;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       sw += weight[i];      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     } /* end of wave */      */
   } /* end of individual */     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fprintf(ficlog," %d %.12lf",i, p[i]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        fprintf(ficrespow," %.12lf", p[i]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      }
   return -l;      printf("\n");
 }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 /*********** Maximum Likelihood Estimation ***************/        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tmf));
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*       asctime_r(&tm,strcurr); */
 {        forecast_time=curr_time;
   int i,j, iter;        itmp = strlen(strcurr);
   double **xi,*delti;        if(strcurr[itmp-1]=='\n')
   double fret;          strcurr[itmp-1]='\0';
   xi=matrix(1,npar,1,npar);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=npar;j++)        for(niterf=10;niterf<=30;niterf+=10){
       xi[i][j]=(i==j ? 1.0 : 0.0);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   printf("Powell\n");          tmf = *localtime(&forecast_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          itmp = strlen(strfor);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /**** Computes Hessian and covariance matrix ***/        }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      }
 {      for (i=1;i<=n;i++) { 
   double  **a,**y,*x,pd;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double **hess;        fptt=(*fret); 
   int i, j,jk;  #ifdef DEBUG
   int *indx;        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   double hessii(double p[], double delta, int theta, double delti[]);  #endif
   double hessij(double p[], double delti[], int i, int j);        printf("%d",i);fflush(stdout);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fprintf(ficlog,"%d",i);fflush(ficlog);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   hess=matrix(1,npar,1,npar);          ibig=i; 
         } 
   printf("\nCalculation of the hessian matrix. Wait...\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++){        printf("%d %.12e",i,(*fret));
     printf("%d",i);fflush(stdout);        fprintf(ficlog,"%d %.12e",i,(*fret));
     hess[i][i]=hessii(p,ftolhess,i,delti);        for (j=1;j<=n;j++) {
     /*printf(" %f ",p[i]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++)  {        for(j=1;j<=n;j++) {
       if (j>i) {          printf(" p=%.12e",p[j]);
         printf(".%d%d",i,j);fflush(stdout);          fprintf(ficlog," p=%.12e",p[j]);
         hess[i][j]=hessij(p,delti,i,j);        }
         hess[j][i]=hess[i][j];        printf("\n");
       }        fprintf(ficlog,"\n");
     }  #endif
   }      } 
   printf("\n");      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        int k[2],l;
          k[0]=1;
   a=matrix(1,npar,1,npar);        k[1]=-1;
   y=matrix(1,npar,1,npar);        printf("Max: %.12e",(*func)(p));
   x=vector(1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   indx=ivector(1,npar);        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++)          printf(" %.12e",p[j]);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          fprintf(ficlog," %.12e",p[j]);
   ludcmp(a,npar,indx,&pd);        }
         printf("\n");
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) x[i]=0;        for(l=0;l<=1;l++) {
     x[j]=1;          for (j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for (i=1;i<=npar;i++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       matcov[i][j]=x[i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   printf("\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {  #endif
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  
     }        free_vector(xit,1,n); 
     printf("\n");        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   /* Recompute Inverse */        return; 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   ludcmp(a,npar,indx,&pd);      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   /*  printf("\n#Hessian matrix recomputed#\n");        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;      fptt=(*func)(ptt); 
     x[j]=1;      if (fptt < fp) { 
     lubksb(a,npar,indx,x);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (i=1;i<=npar;i++){        if (t < 0.0) { 
       y[i][j]=x[i];          linmin(p,xit,n,fret,func); 
       printf("%.3e ",y[i][j]);          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
     printf("\n");            xi[j][n]=xit[j]; 
   }          }
   */  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(a,1,npar,1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(y,1,npar,1,npar);          for(j=1;j<=n;j++){
   free_vector(x,1,npar);            printf(" %.12e",xit[j]);
   free_ivector(indx,1,npar);            fprintf(ficlog," %.12e",xit[j]);
   free_matrix(hess,1,npar,1,npar);          }
           printf("\n");
           fprintf(ficlog,"\n");
 }  #endif
         }
 /*************** hessian matrix ****************/      } 
 double hessii( double x[], double delta, int theta, double delti[])    } 
 {  } 
   int i;  
   int l=1, lmax=20;  /**** Prevalence limit (stable prevalence)  ****************/
   double k1,k2;  
   double p2[NPARMAX+1];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double res;  {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double fx;       matrix by transitions matrix until convergence is reached */
   int k=0,kmax=10;  
   double l1;    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   fx=func(x);    double **matprod2();
   for (i=1;i<=npar;i++) p2[i]=x[i];    double **out, cov[NCOVMAX], **pmij();
   for(l=0 ; l <=lmax; l++){    double **newm;
     l1=pow(10,l);    double agefin, delaymax=50 ; /* Max number of years to converge */
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    for (ii=1;ii<=nlstate+ndeath;ii++)
       delt = delta*(l1*k);      for (j=1;j<=nlstate+ndeath;j++){
       p2[theta]=x[theta] +delt;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;     cov[1]=1.;
       /*res= (k1-2.0*fx+k2)/delt/delt; */   
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 #ifdef DEBUG      newm=savm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      /* Covariates have to be included here again */
 #endif       cov[2]=agefin;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for (k=1; k<=cptcovn;k++) {
         k=kmax;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        }
         k=kmax; l=lmax*10.;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         delts=delt;  
       }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   delti[theta]=delts;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   return res;  
        savm=oldm;
 }      oldm=newm;
       maxmax=0.;
 double hessij( double x[], double delti[], int thetai,int thetaj)      for(j=1;j<=nlstate;j++){
 {        min=1.;
   int i;        max=0.;
   int l=1, l1, lmax=20;        for(i=1; i<=nlstate; i++) {
   double k1,k2,k3,k4,res,fx;          sumnew=0;
   double p2[NPARMAX+1];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int k;          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   fx=func(x);          min=FMIN(min,prlim[i][j]);
   for (k=1; k<=2; k++) {        }
     for (i=1;i<=npar;i++) p2[i]=x[i];        maxmin=max-min;
     p2[thetai]=x[thetai]+delti[thetai]/k;        maxmax=FMAX(maxmax,maxmin);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k1=func(p2)-fx;      if(maxmax < ftolpl){
          return prlim;
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k2=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** transition probabilities ***************/ 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    double s1, s2;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /*double t34;*/
     k4=func(p2)-fx;    int i,j,j1, nc, ii, jj;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG      for(i=1; i<= nlstate; i++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(j=1; j<i;j++){
 #endif          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }            /*s2 += param[i][j][nc]*cov[nc];*/
   return res;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
 /************** Inverse of matrix **************/          ps[i][j]=s2;
 void ludcmp(double **a, int n, int *indx, double *d)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 {        }
   int i,imax,j,k;        for(j=i+1; j<=nlstate+ndeath;j++){
   double big,dum,sum,temp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double *vv;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   vv=vector(1,n);          }
   *d=1.0;          ps[i][j]=s2;
   for (i=1;i<=n;i++) {        }
     big=0.0;      }
     for (j=1;j<=n;j++)      /*ps[3][2]=1;*/
       if ((temp=fabs(a[i][j])) > big) big=temp;      
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for(i=1; i<= nlstate; i++){
     vv[i]=1.0/big;        s1=0;
   }        for(j=1; j<i; j++)
   for (j=1;j<=n;j++) {          s1+=exp(ps[i][j]);
     for (i=1;i<j;i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
       sum=a[i][j];          s1+=exp(ps[i][j]);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        ps[i][i]=1./(s1+1.);
       a[i][j]=sum;        for(j=1; j<i; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     big=0.0;        for(j=i+1; j<=nlstate+ndeath; j++)
     for (i=j;i<=n;i++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       sum=a[i][j];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (k=1;k<j;k++)      } /* end i */
         sum -= a[i][k]*a[k][j];      
       a[i][j]=sum;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(jj=1; jj<= nlstate+ndeath; jj++){
         big=dum;          ps[ii][jj]=0;
         imax=i;          ps[ii][ii]=1;
       }        }
     }      }
     if (j != imax) {      
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         a[imax][k]=a[j][k];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         a[j][k]=dum;  /*         printf("ddd %lf ",ps[ii][jj]); */
       }  /*       } */
       *d = -(*d);  /*       printf("\n "); */
       vv[imax]=vv[j];  /*        } */
     }  /*        printf("\n ");printf("%lf ",cov[2]); */
     indx[j]=imax;         /*
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     if (j != n) {        goto end;*/
       dum=1.0/(a[j][j]);      return ps;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  }
     }  
   }  /**************** Product of 2 matrices ******************/
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 void lubksb(double **a, int n, int *indx, double b[])       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 {    /* in, b, out are matrice of pointers which should have been initialized 
   int i,ii=0,ip,j;       before: only the contents of out is modified. The function returns
   double sum;       a pointer to pointers identical to out */
      long i, j, k;
   for (i=1;i<=n;i++) {    for(i=nrl; i<= nrh; i++)
     ip=indx[i];      for(k=ncolol; k<=ncoloh; k++)
     sum=b[ip];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     b[ip]=b[i];          out[i][k] +=in[i][j]*b[j][k];
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    return out;
     else if (sum) ii=i;  }
     b[i]=sum;  
   }  
   for (i=n;i>=1;i--) {  /************* Higher Matrix Product ***************/
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     b[i]=sum/a[i][i];  {
   }    /* Computes the transition matrix starting at age 'age' over 
 }       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 /************ Frequencies ********************/       nhstepm*hstepm matrices. 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 {  /* Some frequencies */       (typically every 2 years instead of every month which is too big 
         for the memory).
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;       Model is determined by parameters x and covariates have to be 
   double ***freq; /* Frequencies */       included manually here. 
   double *pp;  
   double pos;       */
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   pp=vector(1,nlstate);    double **newm;
   
   strcpy(fileresp,"p");    /* Hstepm could be zero and should return the unit matrix */
   strcat(fileresp,fileres);    for (i=1;i<=nlstate+ndeath;i++)
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);        oldm[i][j]=(i==j ? 1.0 : 0.0);
     exit(0);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   j1=0;    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   j=cptcovn;        newm=savm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        /* Covariates have to be included here again */
         cov[1]=1.;
   for(k1=1; k1<=j;k1++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
    for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
        j1++;        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovprod;k++)
          for (jk=-1; jk<=nlstate+ndeath; jk++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            for(m=agemin; m <= agemax+3; m++)  
              freq[i][jk][m]=0;  
                /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
        for (i=1; i<=imx; i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          bool=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
          if  (cptcovn>0) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
            for (z1=1; z1<=cptcovn; z1++)        savm=oldm;
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;        oldm=newm;
          }      }
           if (bool==1) {      for(i=1; i<=nlstate+ndeath; i++)
            for(m=firstpass; m<=lastpass-1; m++){        for(j=1;j<=nlstate+ndeath;j++) {
              if(agev[m][i]==0) agev[m][i]=agemax+1;          po[i][j][h]=newm[i][j];
              if(agev[m][i]==1) agev[m][i]=agemax+2;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        }
            }    } /* end h */
          }    return po;
        }  }
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#Variable");  
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);  /*************** log-likelihood *************/
        }  double func( double *x)
        fprintf(ficresp, "\n#");  {
        for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
        fprintf(ficresp, "\n");    double **out;
            double sw; /* Sum of weights */
   for(i=(int)agemin; i <= (int)agemax+3; i++){    double lli; /* Individual log likelihood */
     if(i==(int)agemax+3)    int s1, s2;
       printf("Total");    double bbh, survp;
     else    long ipmx;
       printf("Age %d", i);    /*extern weight */
     for(jk=1; jk <=nlstate ; jk++){    /* We are differentiating ll according to initial status */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         pp[jk] += freq[jk][m][i];    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     for(jk=1; jk <=nlstate ; jk++){    */
       for(m=-1, pos=0; m <=0 ; m++)    cov[1]=1.;
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else    if(mle==1){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1,pos=0; jk <=nlstate ; jk++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       pos += pp[jk];            }
     for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
       if(pos>=1.e-5)            newm=savm;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else            for (kk=1; kk<=cptcovage;kk++) {
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if( i <= (int) agemax){            }
         if(pos>=1.e-5)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       else            savm=oldm;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            oldm=newm;
       }          } /* end mult */
     }        
     for(jk=-1; jk <=nlstate+ndeath; jk++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(m=-1; m <=nlstate+ndeath; m++)          /* But now since version 0.9 we anticipate for bias and large stepm.
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if(i <= (int) agemax)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       fprintf(ficresp,"\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
     printf("\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
  }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   fclose(ficresp);           * For stepm=1 the results are the same as for previous versions of Imach.
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * For stepm > 1 the results are less biased than in previous versions. 
   free_vector(pp,1,nlstate);           */
           s1=s[mw[mi][i]][i];
 }  /* End of Freq */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************* Waves Concatenation ***************/          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           */
 {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          if( s2 > nlstate){ 
      Death is a valid wave (if date is known).            /* i.e. if s2 is a death state and if the date of death is known then the contribution
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i               to the likelihood is the probability to die between last step unit time and current 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]               step unit time, which is also the differences between probability to die before dh 
      and mw[mi+1][i]. dh depends on stepm.               and probability to die before dh-stepm . 
      */               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   int i, mi, m;          health state: the date of the interview describes the actual state
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          and not the date of a change in health state. The former idea was
 float sum=0.;          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   for(i=1; i<=imx; i++){          introduced the exact date of death then we should have modified
     mi=0;          the contribution of an exact death to the likelihood. This new
     m=firstpass;          contribution is smaller and very dependent of the step unit
     while(s[m][i] <= nlstate){          stepm. It is no more the probability to die between last interview
       if(s[m][i]>=1)          and month of death but the probability to survive from last
         mw[++mi][i]=m;          interview up to one month before death multiplied by the
       if(m >=lastpass)          probability to die within a month. Thanks to Chris
         break;          Jackson for correcting this bug.  Former versions increased
       else          mortality artificially. The bad side is that we add another loop
         m++;          which slows down the processing. The difference can be up to 10%
     }/* end while */          lower mortality.
     if (s[m][i] > nlstate){            */
       mi++;     /* Death is another wave */            lli=log(out[s1][s2] - savm[s1][s2]);
       /* if(mi==0)  never been interviewed correctly before death */          }else{
          /* Only death is a correct wave */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       mw[mi][i]=m;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     wav[i]=mi;          /*if(lli ==000.0)*/
     if(mi==0)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=imx; i++){        } /* end of wave */
     for(mi=1; mi<wav[i];mi++){      } /* end of individual */
       if (stepm <=0)    }  else if(mle==2){
         dh[mi][i]=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       else{        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (s[mw[mi+1][i]][i] > nlstate) {        for(mi=1; mi<= wav[i]-1; mi++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          for (ii=1;ii<=nlstate+ndeath;ii++)
           if(j=0) j=1;  /* Survives at least one month after exam */            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         else{              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            }
           k=k+1;          for(d=0; d<=dh[mi][i]; d++){
           if (j >= jmax) jmax=j;            newm=savm;
           else if (j <= jmin)jmin=j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           sum=sum+j;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         jk= j/stepm;            }
         jl= j -jk*stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         ju= j -(jk+1)*stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(jl <= -ju)            savm=oldm;
           dh[mi][i]=jk;            oldm=newm;
         else          } /* end mult */
           dh[mi][i]=jk+1;        
         if(dh[mi][i]==0)          s1=s[mw[mi][i]][i];
           dh[mi][i]=1; /* At least one step */          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }          ipmx +=1;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Tricode ****************************/        } /* end of wave */
 void tricode(int *Tvar, int **nbcode, int imx)      } /* end of individual */
 {    }  else if(mle==3){  /* exponential inter-extrapolation */
   int Ndum[80],ij=1, k, j, i, Ntvar[20];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int cptcode=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k=0; k<79; k++) Ndum[k]=0;        for(mi=1; mi<= wav[i]-1; mi++){
   for (k=1; k<=7; k++) ncodemax[k]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   for (j=1; j<=cptcovn; j++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=imx; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=(int)(covar[Tvar[j]][i]);            }
       Ndum[ij]++;          for(d=0; d<dh[mi][i]; d++){
       if (ij > cptcode) cptcode=ij;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/            for (kk=1; kk<=cptcovage;kk++) {
     for (i=0; i<=cptcode; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(Ndum[i]!=0) ncodemax[j]++;            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     ij=1;            savm=oldm;
     for (i=1; i<=ncodemax[j]; i++) {            oldm=newm;
       for (k=0; k<=79; k++) {          } /* end mult */
         if (Ndum[k] != 0) {        
           nbcode[Tvar[j]][ij]=k;          s1=s[mw[mi][i]][i];
           ij++;          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         if (ij > ncodemax[j]) break;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }            ipmx +=1;
     }          sw += weight[i];
   }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
 }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 /*********** Health Expectancies ****************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Health expectancies */            for (j=1;j<=nlstate+ndeath;j++){
   int i, j, nhstepm, hstepm, h;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim,hf;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;            }
            for(d=0; d<dh[mi][i]; d++){
   fprintf(ficreseij,"# Health expectancies\n");            newm=savm;
   fprintf(ficreseij,"# Age");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
     for(j=1; j<=nlstate;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficreseij," %1d-%1d",i,j);            }
   fprintf(ficreseij,"\n");          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=1*YEARM; /*  Every j years of age (in month) */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            savm=oldm;
             oldm=newm;
   agelim=AGESUP;          } /* end mult */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        
     /* nhstepm age range expressed in number of stepm */          s1=s[mw[mi][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          s2=s[mw[mi+1][i]][i];
     /* Typically if 20 years = 20*12/6=40 stepm */          if( s2 > nlstate){ 
     if (stepm >= YEARM) hstepm=1;            lli=log(out[s1][s2] - savm[s1][s2]);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          }else{
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          ipmx +=1;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1; i<=nlstate;i++)        } /* end of wave */
       for(j=1; j<=nlstate;j++)      } /* end of individual */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           eij[i][j][(int)age] +=p3mat[i][j][h];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
     hf=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (stepm >= YEARM) hf=stepm/YEARM;            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficreseij,"%.0f",age );              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     fprintf(ficreseij,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
           
 /************ Variance ******************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Variance of health expectancies */            oldm=newm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          } /* end mult */
   double **newm;        
   double **dnewm,**doldm;          s1=s[mw[mi][i]][i];
   int i, j, nhstepm, hstepm, h;          s2=s[mw[mi+1][i]][i];
   int k, cptcode;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    double *xp;          ipmx +=1;
   double **gp, **gm;          sw += weight[i];
   double ***gradg, ***trgradg;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***p3mat;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double age,agelim;        } /* end of wave */
   int theta;      } /* end of individual */
     } /* End of if */
    fprintf(ficresvij,"# Covariances of life expectancies\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficresvij,"# Age");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for(i=1; i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(j=1; j<=nlstate;j++)    return -l;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  }
   fprintf(ficresvij,"\n");  
   /*************** log-likelihood *************/
   xp=vector(1,npar);  double funcone( double *x)
   dnewm=matrix(1,nlstate,1,npar);  {
   doldm=matrix(1,nlstate,1,nlstate);    /* Same as likeli but slower because of a lot of printf and if */
      int i, ii, j, k, mi, d, kk;
   hstepm=1*YEARM; /* Every year of age */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double **out;
   agelim = AGESUP;    double lli; /* Individual log likelihood */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double llt;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int s1, s2;
     if (stepm >= YEARM) hstepm=1;    double bbh, survp;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /*extern weight */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* We are differentiating ll according to initial status */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gp=matrix(0,nhstepm,1,nlstate);    /*for(i=1;i<imx;i++) 
     gm=matrix(0,nhstepm,1,nlstate);      printf(" %d\n",s[4][i]);
     */
     for(theta=1; theta <=npar; theta++){    cov[1]=1.;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<= nlstate; j++){      for(mi=1; mi<= wav[i]-1; mi++){
         for(h=0; h<=nhstepm; h++){        for (ii=1;ii<=nlstate+ndeath;ii++)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for (j=1;j<=nlstate+ndeath;j++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
            for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<=npar; i++) /* Computes gradient */          newm=savm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (kk=1; kk<=cptcovage;kk++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          savm=oldm;
         }          oldm=newm;
       }        } /* end mult */
       for(j=1; j<= nlstate; j++)        
         for(h=0; h<=nhstepm; h++){        s1=s[mw[mi][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
     } /* End theta */        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for(h=0; h<=nhstepm; h++)          lli=log(out[s1][s2] - savm[s1][s2]);
       for(j=1; j<=nlstate;j++)        } else if (mle==1){
         for(theta=1; theta <=npar; theta++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           trgradg[h][j][theta]=gradg[h][theta][j];        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(i=1;i<=nlstate;i++)        } else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1;j<=nlstate;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         vareij[i][j][(int)age] =0.;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(h=0;h<=nhstepm;h++){          lli=log(out[s1][s2]); /* Original formula */
       for(k=0;k<=nhstepm;k++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          lli=log(out[s1][s2]); /* Original formula */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        } /* End of if */
         for(i=1;i<=nlstate;i++)        ipmx +=1;
           for(j=1;j<=nlstate;j++)        sw += weight[i];
             vareij[i][j][(int)age] += doldm[i][j];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        if(globpr){
     h=1;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     if (stepm >= YEARM) h=stepm/YEARM;   %10.6f %10.6f %10.6f ", \
     fprintf(ficresvij,"%.0f ",age );                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for(i=1; i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(j=1; j<=nlstate;j++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     fprintf(ficresvij,"\n");          }
     free_matrix(gp,0,nhstepm,1,nlstate);          fprintf(ficresilk," %10.6f\n", -llt);
     free_matrix(gm,0,nhstepm,1,nlstate);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      } /* end of wave */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    } /* end of individual */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   } /* End age */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   free_vector(xp,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
   free_matrix(doldm,1,nlstate,1,npar);      gipmx=ipmx;
   free_matrix(dnewm,1,nlstate,1,nlstate);      gsw=sw;
     }
 }    return -l;
   }
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  /*************** function likelione ***********/
   /* Variance of prevalence limit */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  {
   double **newm;    /* This routine should help understanding what is done with 
   double **dnewm,**doldm;       the selection of individuals/waves and
   int i, j, nhstepm, hstepm;       to check the exact contribution to the likelihood.
   int k, cptcode;       Plotting could be done.
   double *xp;     */
   double *gp, *gm;    int k;
   double **gradg, **trgradg;  
   double age,agelim;    if(*globpri !=0){ /* Just counts and sums, no printings */
   int theta;      strcpy(fileresilk,"ilk"); 
          strcat(fileresilk,fileres);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   fprintf(ficresvpl,"# Age");        printf("Problem with resultfile: %s\n", fileresilk);
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       fprintf(ficresvpl," %1d-%1d",i,i);      }
   fprintf(ficresvpl,"\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   xp=vector(1,npar);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   dnewm=matrix(1,nlstate,1,npar);      for(k=1; k<=nlstate; k++) 
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
        fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   hstepm=1*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    *fretone=(*funcone)(p);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if(*globpri !=0){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fclose(ficresilk);
     if (stepm >= YEARM) hstepm=1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fflush(fichtm); 
     gradg=matrix(1,npar,1,nlstate);    } 
     gp=vector(1,nlstate);    return;
     gm=vector(1,nlstate);  }
   
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  /*********** Maximum Likelihood Estimation ***************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    int i,j, iter;
         gp[i] = prlim[i][i];    double **xi;
        double fret;
       for(i=1; i<=npar; i++) /* Computes gradient */    double fretone; /* Only one call to likelihood */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*  char filerespow[FILENAMELENGTH];*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    xi=matrix(1,npar,1,npar);
       for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++)
         gm[i] = prlim[i][i];      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    strcpy(filerespow,"pow"); 
     } /* End theta */    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     trgradg =matrix(1,nlstate,1,npar);      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for(j=1; j<=nlstate;j++)    }
       for(theta=1; theta <=npar; theta++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     for(i=1;i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       varpl[i][(int)age] =0.;    fprintf(ficrespow,"\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    powell(p,xi,npar,ftol,&iter,&fret,func);
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficresvpl,"%.0f ",age );    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(i=1; i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  }
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  /**** Computes Hessian and covariance matrix ***/
     free_matrix(gradg,1,npar,1,nlstate);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     free_matrix(trgradg,1,nlstate,1,npar);  {
   } /* End age */    double  **a,**y,*x,pd;
     double **hess;
   free_vector(xp,1,npar);    int i, j,jk;
   free_matrix(doldm,1,nlstate,1,npar);    int *indx;
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
 /***********************************************/    hess=matrix(1,npar,1,npar);
 /**************** Main Program *****************/  
 /***********************************************/    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /*int main(int argc, char *argv[])*/    for (i=1;i<=npar;i++){
 int main()      printf("%d",i);fflush(stdout);
 {      fprintf(ficlog,"%d",i);fflush(ficlog);
      
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double agedeb, agefin,hf;      
   double agemin=1.e20, agemax=-1.e20;      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double fret;    }
   double **xi,tmp,delta;    
     for (i=1;i<=npar;i++) {
   double dum; /* Dummy variable */      for (j=1;j<=npar;j++)  {
   double ***p3mat;        if (j>i) { 
   int *indx;          printf(".%d%d",i,j);fflush(stdout);
   char line[MAXLINE], linepar[MAXLINE];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   char title[MAXLINE];          hess[i][j]=hessij(p,delti,i,j,func,npar);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];          hess[j][i]=hess[i][j];    
   char filerest[FILENAMELENGTH];          /*printf(" %lf ",hess[i][j]);*/
   char fileregp[FILENAMELENGTH];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      }
   int firstobs=1, lastobs=10;    }
   int sdeb, sfin; /* Status at beginning and end */    printf("\n");
   int c,  h , cpt,l;    fprintf(ficlog,"\n");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
   int hstepm, nhstepm;    a=matrix(1,npar,1,npar);
   double bage, fage, age, agelim, agebase;    y=matrix(1,npar,1,npar);
   double ftolpl=FTOL;    x=vector(1,npar);
   double **prlim;    indx=ivector(1,npar);
   double *severity;    for (i=1;i<=npar;i++)
   double ***param; /* Matrix of parameters */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double  *p;    ludcmp(a,npar,indx,&pd);
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    for (j=1;j<=npar;j++) {
   double *delti; /* Scale */      for (i=1;i<=npar;i++) x[i]=0;
   double ***eij, ***vareij;      x[j]=1;
   double **varpl; /* Variances of prevalence limits by age */      lubksb(a,npar,indx,x);
   double *epj, vepp;      for (i=1;i<=npar;i++){ 
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";        matcov[i][j]=x[i];
   char *alph[]={"a","a","b","c","d","e"}, str[4];      }
     }
   char z[1]="c", occ;  
 #include <sys/time.h>    printf("\n#Hessian matrix#\n");
 #include <time.h>    fprintf(ficlog,"\n#Hessian matrix#\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for (i=1;i<=npar;i++) { 
   /* long total_usecs;      for (j=1;j<=npar;j++) { 
   struct timeval start_time, end_time;        printf("%.3e ",hess[i][j]);
          fprintf(ficlog,"%.3e ",hess[i][j]);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      }
       printf("\n");
       fprintf(ficlog,"\n");
   printf("\nIMACH, Version 0.64a");    }
   printf("\nEnter the parameter file name: ");  
     /* Recompute Inverse */
 #ifdef windows    for (i=1;i<=npar;i++)
   scanf("%s",pathtot);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   getcwd(pathcd, size);    ludcmp(a,npar,indx,&pd);
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /*  printf("\n#Hessian matrix recomputed#\n");
   /* cutv(path,optionfile,pathtot,'\\');*/  
     for (j=1;j<=npar;j++) {
 split(pathtot, path,optionfile);      for (i=1;i<=npar;i++) x[i]=0;
   chdir(path);      x[j]=1;
   replace(pathc,path);      lubksb(a,npar,indx,x);
 #endif      for (i=1;i<=npar;i++){ 
 #ifdef unix        y[i][j]=x[i];
   scanf("%s",optionfile);        printf("%.3e ",y[i][j]);
 #endif        fprintf(ficlog,"%.3e ",y[i][j]);
       }
 /*-------- arguments in the command line --------*/      printf("\n");
       fprintf(ficlog,"\n");
   strcpy(fileres,"r");    }
   strcat(fileres, optionfile);    */
   
   /*---------arguments file --------*/    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_vector(x,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    free_ivector(indx,1,npar);
     goto end;    free_matrix(hess,1,npar,1,npar);
   }  
   
   strcpy(filereso,"o");  }
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  /*************** hessian matrix ****************/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   }  {
     int i;
   /* Reads comments: lines beginning with '#' */    int l=1, lmax=20;
   while((c=getc(ficpar))=='#' && c!= EOF){    double k1,k2;
     ungetc(c,ficpar);    double p2[NPARMAX+1];
     fgets(line, MAXLINE, ficpar);    double res;
     puts(line);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fputs(line,ficparo);    double fx;
   }    int k=0,kmax=10;
   ungetc(c,ficpar);    double l1;
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fx=func(x);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   covar=matrix(0,NCOVMAX,1,n);          delts=delt;
   if (strlen(model)<=1) cptcovn=0;      for(k=1 ; k <kmax; k=k+1){
   else {        delt = delta*(l1*k);
     j=0;        p2[theta]=x[theta] +delt;
     j=nbocc(model,'+');        k1=func(p2)-fx;
     cptcovn=j+1;        p2[theta]=x[theta]-delt;
   }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   ncovmodel=2+cptcovn;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        
    #ifdef DEBUG
   /* Read guess parameters */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* Reads comments: lines beginning with '#' */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   while((c=getc(ficpar))=='#' && c!= EOF){  #endif
     ungetc(c,ficpar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     fgets(line, MAXLINE, ficpar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     puts(line);          k=kmax;
     fputs(line,ficparo);        }
   }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   ungetc(c,ficpar);          k=kmax; l=lmax*10.;
          }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(i=1; i <=nlstate; i++)          delts=delt;
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);      }
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       printf("%1d%1d",i,j);    delti[theta]=delts;
       for(k=1; k<=ncovmodel;k++){    return res; 
         fscanf(ficpar," %lf",&param[i][j][k]);    
         printf(" %lf",param[i][j][k]);  }
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       fscanf(ficpar,"\n");  {
       printf("\n");    int i;
       fprintf(ficparo,"\n");    int l=1, l1, lmax=20;
     }    double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int k;
   p=param[1][1];  
      fx=func(x);
   /* Reads comments: lines beginning with '#' */    for (k=1; k<=2; k++) {
   while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1;i<=npar;i++) p2[i]=x[i];
     ungetc(c,ficpar);      p2[thetai]=x[thetai]+delti[thetai]/k;
     fgets(line, MAXLINE, ficpar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     puts(line);      k1=func(p2)-fx;
     fputs(line,ficparo);    
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
   ungetc(c,ficpar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      p2[thetai]=x[thetai]-delti[thetai]/k;
   for(i=1; i <=nlstate; i++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(j=1; j <=nlstate+ndeath-1; j++){      k3=func(p2)-fx;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       printf("%1d%1d",i,j);      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficparo,"%1d%1d",i1,j1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(k=1; k<=ncovmodel;k++){      k4=func(p2)-fx;
         fscanf(ficpar,"%le",&delti3[i][j][k]);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         printf(" %le",delti3[i][j][k]);  #ifdef DEBUG
         fprintf(ficparo," %le",delti3[i][j][k]);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fscanf(ficpar,"\n");  #endif
       printf("\n");    }
       fprintf(ficparo,"\n");    return res;
     }  }
   }  
   delti=delti3[1][1];  /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
   /* Reads comments: lines beginning with '#' */  { 
   while((c=getc(ficpar))=='#' && c!= EOF){    int i,imax,j,k; 
     ungetc(c,ficpar);    double big,dum,sum,temp; 
     fgets(line, MAXLINE, ficpar);    double *vv; 
     puts(line);   
     fputs(line,ficparo);    vv=vector(1,n); 
   }    *d=1.0; 
   ungetc(c,ficpar);    for (i=1;i<=n;i++) { 
        big=0.0; 
   matcov=matrix(1,npar,1,npar);      for (j=1;j<=n;j++) 
   for(i=1; i <=npar; i++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
     fscanf(ficpar,"%s",&str);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     printf("%s",str);      vv[i]=1.0/big; 
     fprintf(ficparo,"%s",str);    } 
     for(j=1; j <=i; j++){    for (j=1;j<=n;j++) { 
       fscanf(ficpar," %le",&matcov[i][j]);      for (i=1;i<j;i++) { 
       printf(" %.5le",matcov[i][j]);        sum=a[i][j]; 
       fprintf(ficparo," %.5le",matcov[i][j]);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
     fscanf(ficpar,"\n");      } 
     printf("\n");      big=0.0; 
     fprintf(ficparo,"\n");      for (i=j;i<=n;i++) { 
   }        sum=a[i][j]; 
   for(i=1; i <=npar; i++)        for (k=1;k<j;k++) 
     for(j=i+1;j<=npar;j++)          sum -= a[i][k]*a[k][j]; 
       matcov[i][j]=matcov[j][i];        a[i][j]=sum; 
            if ( (dum=vv[i]*fabs(sum)) >= big) { 
   printf("\n");          big=dum; 
           imax=i; 
         } 
     /*-------- data file ----------*/      } 
     if((ficres =fopen(fileres,"w"))==NULL) {      if (j != imax) { 
       printf("Problem with resultfile: %s\n", fileres);goto end;        for (k=1;k<=n;k++) { 
     }          dum=a[imax][k]; 
     fprintf(ficres,"#%s\n",version);          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
     if((fic=fopen(datafile,"r"))==NULL)    {        } 
       printf("Problem with datafile: %s\n", datafile);goto end;        *d = -(*d); 
     }        vv[imax]=vv[j]; 
       } 
     n= lastobs;      indx[j]=imax; 
     severity = vector(1,maxwav);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     outcome=imatrix(1,maxwav+1,1,n);      if (j != n) { 
     num=ivector(1,n);        dum=1.0/(a[j][j]); 
     moisnais=vector(1,n);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     annais=vector(1,n);      } 
     moisdc=vector(1,n);    } 
     andc=vector(1,n);    free_vector(vv,1,n);  /* Doesn't work */
     agedc=vector(1,n);  ;
     cod=ivector(1,n);  } 
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  void lubksb(double **a, int n, int *indx, double b[]) 
     mint=matrix(1,maxwav,1,n);  { 
     anint=matrix(1,maxwav,1,n);    int i,ii=0,ip,j; 
     s=imatrix(1,maxwav+1,1,n);    double sum; 
     adl=imatrix(1,maxwav+1,1,n);       
     tab=ivector(1,NCOVMAX);    for (i=1;i<=n;i++) { 
     ncodemax=ivector(1,8);      ip=indx[i]; 
       sum=b[ip]; 
     i=1;      b[ip]=b[i]; 
     while (fgets(line, MAXLINE, fic) != NULL)    {      if (ii) 
       if ((i >= firstobs) && (i <=lastobs)) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
              else if (sum) ii=i; 
         for (j=maxwav;j>=1;j--){      b[i]=sum; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    } 
           strcpy(line,stra);    for (i=n;i>=1;i--) { 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      sum=b[i]; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         }      b[i]=sum/a[i][i]; 
            } 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  } 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /************ Frequencies ********************/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  {  /* Some frequencies */
     
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for (j=ncov;j>=1;j--){    int first;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double ***freq; /* Frequencies */
         }    double *pp, **prop;
         num[i]=atol(stra);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    char fileresp[FILENAMELENGTH];
     
         i=i+1;    pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
     /*scanf("%d",i);*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
   imx=i-1; /* Number of individuals */      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   /* Calculation of the number of parameter from char model*/      exit(0);
   Tvar=ivector(1,15);        }
   Tage=ivector(1,15);          freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
        j1=0;
   if (strlen(model) >1){    
     j=0, j1=0;    j=cptcoveff;
     j=nbocc(model,'+');    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     j1=nbocc(model,'*');  
     cptcovn=j+1;    first=1;
      
     strcpy(modelsav,model);    for(k1=1; k1<=j;k1++){
     if (j==0) {      for(i1=1; i1<=ncodemax[k1];i1++){
       if (j1==0){        j1++;
        cutv(stra,strb,modelsav,'V');        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
        Tvar[1]=atoi(strb);          scanf("%d", i);*/
       }        for (i=-1; i<=nlstate+ndeath; i++)  
       else if (j1==1) {          for (jk=-1; jk<=nlstate+ndeath; jk++)  
        cutv(stra,strb,modelsav,'*');            for(m=iagemin; m <= iagemax+3; m++)
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/              freq[i][jk][m]=0;
        Tage[1]=1; cptcovage++;  
        if (strcmp(stra,"age")==0) {      for (i=1; i<=nlstate; i++)  
          cutv(strd,strc,strb,'V');        for(m=iagemin; m <= iagemax+3; m++)
          Tvar[1]=atoi(strc);          prop[i][m]=0;
        }        
        else if (strcmp(strb,"age")==0) {        dateintsum=0;
          cutv(strd,strc,stra,'V');        k2cpt=0;
          Tvar[1]=atoi(strc);        for (i=1; i<=imx; i++) {
        }          bool=1;
        else {printf("Error"); exit(0);}          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
     }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     else {                bool=0;
       for(i=j; i>=1;i--){          }
         cutv(stra,strb,modelsav,'+');          if (bool==1){
         /*printf("%s %s %s\n", stra,strb,modelsav);*/            for(m=firstpass; m<=lastpass; m++){
         if (strchr(strb,'*')) {              k2=anint[m][i]+(mint[m][i]/12.);
           cutv(strd,strc,strb,'*');              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           if (strcmp(strc,"age")==0) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             cutv(strb,stre,strd,'V');                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             Tvar[i+1]=atoi(stre);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             cptcovage++;                if (m<lastpass) {
             Tage[cptcovage]=i+1;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             printf("stre=%s ", stre);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           }                }
           else if (strcmp(strd,"age")==0) {                
             cutv(strb,stre,strc,'V');                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             Tvar[i+1]=atoi(stre);                  dateintsum=dateintsum+k2;
             cptcovage++;                  k2cpt++;
             Tage[cptcovage]=i+1;                }
           }                /*}*/
           else {            }
             cutv(strb,stre,strc,'V');          }
             Tvar[i+1]=ncov+1;        }
             cutv(strb,strc,strd,'V');         
             for (k=1; k<=lastobs;k++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           }        if  (cptcovn>0) {
         }          fprintf(ficresp, "\n#********** Variable "); 
         else {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(strd,strc,strb,'V');          fprintf(ficresp, "**********\n#");
           /* printf("%s %s %s", strd,strc,strb);*/        }
         for(i=1; i<=nlstate;i++) 
         Tvar[i+1]=atoi(strc);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         }        fprintf(ficresp, "\n");
         strcpy(modelsav,stra);          
       }        for(i=iagemin; i <= iagemax+3; i++){
       cutv(strd,strc,stra,'V');          if(i==iagemax+3){
       Tvar[1]=atoi(strc);            fprintf(ficlog,"Total");
     }          }else{
   }            if(first==1){
               first=0;
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);              printf("See log file for details...\n");
      scanf("%d ",i);*/            }
     fclose(fic);            fprintf(ficlog,"Age %d", i);
           }
    if(mle==1){          for(jk=1; jk <=nlstate ; jk++){
     if (weightopt != 1) { /* Maximisation without weights*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for(i=1;i<=n;i++) weight[i]=1.0;              pp[jk] += freq[jk][m][i]; 
     }          }
     /*-calculation of age at interview from date of interview and age at death -*/          for(jk=1; jk <=nlstate ; jk++){
     agev=matrix(1,maxwav,1,imx);            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
     for (i=1; i<=imx; i++)  {            if(pp[jk]>=1.e-10){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              if(first==1){
       for(m=1; (m<= maxwav); m++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         if(s[m][i] >0){              }
           if (s[m][i] == nlstate+1) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             if(agedc[i]>0)            }else{
               if(moisdc[i]!=99 && andc[i]!=9999)              if(first==1)
               agev[m][i]=agedc[i];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             else{              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            }
               agev[m][i]=-1;          }
             }  
           }          for(jk=1; jk <=nlstate ; jk++){
           else if(s[m][i] !=9){ /* Should no more exist */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              pp[jk] += freq[jk][m][i];
             if(mint[m][i]==99 || anint[m][i]==9999)          }       
               agev[m][i]=1;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             else if(agev[m][i] <agemin){            pos += pp[jk];
               agemin=agev[m][i];            posprop += prop[jk][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          }
             }          for(jk=1; jk <=nlstate ; jk++){
             else if(agev[m][i] >agemax){            if(pos>=1.e-5){
               agemax=agev[m][i];              if(first==1)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             /*agev[m][i]=anint[m][i]-annais[i];*/            }else{
             /*   agev[m][i] = age[i]+2*m;*/              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           else { /* =9 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             agev[m][i]=1;            }
             s[m][i]=-1;            if( i <= iagemax){
           }              if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         else /*= 0 Unknown */                /*probs[i][jk][j1]= pp[jk]/pos;*/
           agev[m][i]=1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
                  else
     }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for (i=1; i<=imx; i++)  {            }
       for(m=1; (m<= maxwav); m++){          }
         if (s[m][i] > (nlstate+ndeath)) {          
           printf("Error: Wrong value in nlstate or ndeath\n");            for(jk=-1; jk <=nlstate+ndeath; jk++)
           goto end;            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              }
           if(i <= iagemax)
     free_vector(severity,1,maxwav);            fprintf(ficresp,"\n");
     free_imatrix(outcome,1,maxwav+1,1,n);          if(first==1)
     free_vector(moisnais,1,n);            printf("Others in log...\n");
     free_vector(annais,1,n);          fprintf(ficlog,"\n");
     free_matrix(mint,1,maxwav,1,n);        }
     free_matrix(anint,1,maxwav,1,n);      }
     free_vector(moisdc,1,n);    }
     free_vector(andc,1,n);    dateintmean=dateintsum/k2cpt; 
    
        fclose(ficresp);
     wav=ivector(1,imx);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    free_vector(pp,1,nlstate);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        /* End of Freq */
     /* Concatenates waves */  }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
   /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       Tcode=ivector(1,100);  {  
    nbcode=imatrix(1,nvar,1,8);      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
    ncodemax[1]=1;       in each health status at the date of interview (if between dateprev1 and dateprev2).
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);       We still use firstpass and lastpass as another selection.
      */
    codtab=imatrix(1,100,1,10);   
    h=0;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
    m=pow(2,cptcovn);    double ***freq; /* Frequencies */
      double *pp, **prop;
    for(k=1;k<=cptcovn; k++){    double pos,posprop; 
      for(i=1; i <=(m/pow(2,k));i++){    double  y2; /* in fractional years */
        for(j=1; j <= ncodemax[k]; j++){    int iagemin, iagemax;
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){  
            h++;    iagemin= (int) agemin;
            if (h>m) h=1;codtab[h][k]=j;    iagemax= (int) agemax;
          }    /*pp=vector(1,nlstate);*/
        }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
    }    j1=0;
     
    /* for(i=1; i <=m ;i++){    j=cptcoveff;
      for(k=1; k <=cptcovn; k++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    
      }    for(k1=1; k1<=j;k1++){
      printf("\n");      for(i1=1; i1<=ncodemax[k1];i1++){
    }        j1++;
    scanf("%d",i);*/        
            for (i=1; i<=nlstate; i++)  
    /* Calculates basic frequencies. Computes observed prevalence at single age          for(m=iagemin; m <= iagemax+3; m++)
        and prints on file fileres'p'. */            prop[i][m]=0.0;
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);       
         for (i=1; i<=imx; i++) { /* Each individual */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          bool=1;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if  (cptcovn>0) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (z1=1; z1<=cptcoveff; z1++) 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                bool=0;
              } 
     /* For Powell, parameters are in a vector p[] starting at p[1]          if (bool==1) { 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     /*--------- results files --------------*/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                      prop[s[m][i]][(int)agev[m][i]] += weight[i];
    jk=1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
    fprintf(ficres,"# Parameters\n");                } 
    printf("# Parameters\n");              }
    for(i=1,jk=1; i <=nlstate; i++){            } /* end selection of waves */
      for(k=1; k <=(nlstate+ndeath); k++){          }
        if (k != i)        }
          {        for(i=iagemin; i <= iagemax+3; i++){  
            printf("%d%d ",i,k);          
            fprintf(ficres,"%1d%1d ",i,k);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
            for(j=1; j <=ncovmodel; j++){            posprop += prop[jk][i]; 
              printf("%f ",p[jk]);          } 
              fprintf(ficres,"%f ",p[jk]);  
              jk++;          for(jk=1; jk <=nlstate ; jk++){     
            }            if( i <=  iagemax){ 
            printf("\n");              if(posprop>=1.e-5){ 
            fprintf(ficres,"\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
          }              } 
      }            } 
    }          }/* end jk */ 
         }/* end i */ 
     /* Computing hessian and covariance matrix */      } /* end i1 */
     ftolhess=ftol; /* Usually correct */    } /* end k1 */
     hesscov(matcov, p, npar, delti, ftolhess, func);    
     fprintf(ficres,"# Scales\n");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     printf("# Scales\n");    /*free_vector(pp,1,nlstate);*/
      for(i=1,jk=1; i <=nlstate; i++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for(j=1; j <=nlstate+ndeath; j++){  }  /* End of prevalence */
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);  /************* Waves Concatenation ***************/
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             printf(" %.5e",delti[jk]);  {
             fprintf(ficres," %.5e",delti[jk]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             jk++;       Death is a valid wave (if date is known).
           }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           printf("\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           fprintf(ficres,"\n");       and mw[mi+1][i]. dh depends on stepm.
         }       */
       }  
       }    int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     k=1;       double sum=0., jmean=0.;*/
     fprintf(ficres,"# Covariance\n");    int first;
     printf("# Covariance\n");    int j, k=0,jk, ju, jl;
     for(i=1;i<=npar;i++){    double sum=0.;
       /*  if (k>nlstate) k=1;    first=0;
       i1=(i-1)/(ncovmodel*nlstate)+1;    jmin=1e+5;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    jmax=-1;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    jmean=0.;
       fprintf(ficres,"%3d",i);    for(i=1; i<=imx; i++){
       printf("%3d",i);      mi=0;
       for(j=1; j<=i;j++){      m=firstpass;
         fprintf(ficres," %.5e",matcov[i][j]);      while(s[m][i] <= nlstate){
         printf(" %.5e",matcov[i][j]);        if(s[m][i]>=1)
       }          mw[++mi][i]=m;
       fprintf(ficres,"\n");        if(m >=lastpass)
       printf("\n");          break;
       k++;        else
     }          m++;
          }/* end while */
     while((c=getc(ficpar))=='#' && c!= EOF){      if (s[m][i] > nlstate){
       ungetc(c,ficpar);        mi++;     /* Death is another wave */
       fgets(line, MAXLINE, ficpar);        /* if(mi==0)  never been interviewed correctly before death */
       puts(line);           /* Only death is a correct wave */
       fputs(line,ficparo);        mw[mi][i]=m;
     }      }
     ungetc(c,ficpar);  
        wav[i]=mi;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      if(mi==0){
            nbwarn++;
     if (fage <= 2) {        if(first==0){
       bage = agemin;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fage = agemax;          first=1;
     }        }
         if(first==1){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
 /*------------ gnuplot -------------*/      } /* end mi==0 */
 chdir(pathcd);    } /* End individuals */
   if((ficgp=fopen("graph.plt","w"))==NULL) {  
     printf("Problem with file graph.gp");goto end;    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
 #ifdef windows        if (stepm <=0)
   fprintf(ficgp,"cd \"%s\" \n",pathc);          dh[mi][i]=1;
 #endif        else{
 m=pow(2,cptcovn);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
  /* 1eme*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
    for (k1=1; k1<= m ; k1 ++) {              else if(j<0){
                 nberr++;
 #ifdef windows                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                j=1; /* Temporary Dangerous patch */
 #endif                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 #ifdef unix                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 #endif              }
               k=k+1;
 for (i=1; i<= nlstate ; i ++) {              if (j >= jmax) jmax=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if (j <= jmin) jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              sum=sum+j;
 }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          else{
 }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for (i=1; i<= nlstate ; i ++) {            k=k+1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if (j >= jmax) jmax=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            else if (j <= jmin)jmin=j;
 }              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 #ifdef unix            if(j<0){
 fprintf(ficgp,"\nset ter gif small size 400,300");              nberr++;
 #endif              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }            }
   }            sum=sum+j;
   /*2 eme*/          }
           jk= j/stepm;
   for (k1=1; k1<= m ; k1 ++) {          jl= j -jk*stepm;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          ju= j -(jk+1)*stepm;
              if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for (i=1; i<= nlstate+1 ; i ++) {            if(jl==0){
       k=2*i;              dh[mi][i]=jk;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=0;
       for (j=1; j<= nlstate+1 ; j ++) {            }else{ /* We want a negative bias in order to only have interpolation ie
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    * at the price of an extra matrix product in likelihood */
   else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=jk+1;
 }                bh[mi][i]=ju;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          }else{
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(jl <= -ju){
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=jl;       /* bias is positive if real duration
         else fprintf(ficgp," \%%*lf (\%%*lf)");                                   * is higher than the multiple of stepm and negative otherwise.
 }                                     */
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            else{
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk+1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=ju;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              if(dh[mi][i]==0){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              dh[mi][i]=1; /* At least one step */
       else fprintf(ficgp,"\" t\"\" w l 0,");              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            }
   }          } /* end if mle */
          }
   /*3eme*/      } /* end wave */
     }
   for (k1=1; k1<= m ; k1 ++) {    jmean=sum/k;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       k=2+nlstate*(cpt-1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);   }
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  /*********** Tricode ****************************/
       }  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  {
     }    
   }    int Ndum[20],ij=1, k, j, i, maxncov=19;
      int cptcode=0;
   /* CV preval stat */    cptcoveff=0; 
   for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<nlstate ; cpt ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
       k=3;    for (k=1; k<=7; k++) ncodemax[k]=0;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  
       for (i=1; i< nlstate ; i ++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         fprintf(ficgp,"+$%d",k+i+1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                                 modality*/ 
              ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       l=3+(nlstate+ndeath)*cpt;        Ndum[ij]++; /*store the modality */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       for (i=1; i< nlstate ; i ++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         l=3+(nlstate+ndeath)*cpt;                                         Tvar[j]. If V=sex and male is 0 and 
         fprintf(ficgp,"+$%d",l+i+1);                                         female is 1, then  cptcode=1.*/
       }      }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for (i=0; i<=cptcode; i++) {
     }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
   
   /* proba elementaires */      ij=1; 
    for(i=1,jk=1; i <=nlstate; i++){      for (i=1; i<=ncodemax[j]; i++) {
     for(k=1; k <=(nlstate+ndeath); k++){        for (k=0; k<= maxncov; k++) {
       if (k != i) {          if (Ndum[k] != 0) {
         for(j=1; j <=ncovmodel; j++){            nbcode[Tvar[j]][ij]=k; 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           /*fprintf(ficgp,"%s",alph[1]);*/            
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            ij++;
           jk++;          }
           fprintf(ficgp,"\n");          if (ij > ncodemax[j]) break; 
         }        }  
       }      } 
     }    }  
     }  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);   for (i=1; i<=ncovmodel-2; i++) { 
    i=1;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    for(k2=1; k2<=nlstate; k2++) {     ij=Tvar[i];
      k3=i;     Ndum[ij]++;
      for(k=1; k<=(nlstate+ndeath); k++) {   }
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   ij=1;
    for (i=1; i<= maxncov; i++) {
         for(j=3; j <=ncovmodel; j++)     if((Ndum[i]!=0) && (i<=ncovcol)){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       Tvaraff[ij]=i; /*For printing */
         fprintf(ficgp,")/(1");       ij++;
             }
         for(k1=1; k1 <=nlstate; k1++){     }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   
           for(j=3; j <=ncovmodel; j++)   cptcoveff=ij-1; /*Number of simple covariates*/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  }
           fprintf(ficgp,")");  
         }  /*********** Health Expectancies ****************/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         i=i+ncovmodel;  
        }  {
      }    /* Health expectancies */
    }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    double age, agelim, hf;
   }    double ***p3mat,***varhe;
        double **dnewm,**doldm;
   fclose(ficgp);    double *xp;
        double **gp, **gm;
 chdir(path);    double ***gradg, ***trgradg;
     free_matrix(agev,1,maxwav,1,imx);    int theta;
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    xp=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
     free_imatrix(s,1,maxwav+1,1,n);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
        fprintf(ficreseij,"# Health expectancies\n");
     free_ivector(num,1,n);    fprintf(ficreseij,"# Age");
     free_vector(agedc,1,n);    for(i=1; i<=nlstate;i++)
     free_vector(weight,1,n);      for(j=1; j<=nlstate;j++)
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fclose(ficparo);    fprintf(ficreseij,"\n");
     fclose(ficres);  
    }    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
    /*________fin mle=1_________*/    }
        else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
     /* No more information from the sample is required now */     * if stepm=24 months pijx are given only every 2 years and by summing them
   /* Reads comments: lines beginning with '#' */     * we are calculating an estimate of the Life Expectancy assuming a linear 
   while((c=getc(ficpar))=='#' && c!= EOF){     * progression in between and thus overestimating or underestimating according
     ungetc(c,ficpar);     * to the curvature of the survival function. If, for the same date, we 
     fgets(line, MAXLINE, ficpar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     puts(line);     * to compare the new estimate of Life expectancy with the same linear 
     fputs(line,ficparo);     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   ungetc(c,ficpar);  
      /* For example we decided to compute the life expectancy with the smallest unit */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);       nstepm is the number of stepm from age to agelin. 
 /*--------- index.htm --------*/       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   if((fichtm=fopen("index.htm","w"))==NULL)    {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("Problem with index.htm \n");goto end;       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n       results. So we changed our mind and took the option of the best precision.
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    agelim=AGESUP;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      /* nhstepm age range expressed in number of stepm */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  fprintf(fichtm," <li>Graphs</li>\n<p>");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
  m=cptcovn;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
  j1=0;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  for(k1=1; k1<=m;k1++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    for(i1=1; i1<=ncodemax[k1];i1++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
        j1++;   
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr>************ Results for covariates");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          for (cpt=1; cpt<=cptcovn;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);      /* Computing  Variances of health expectancies */
          fprintf(fichtm," ************\n<hr>");  
        }       for(theta=1; theta <=npar; theta++){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        for(i=1; i<=npar; i++){ 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              xp[i] = x[i] + (i==theta ?delti[theta]:0);
        for(cpt=1; cpt<nlstate;cpt++){        }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
        }        cptj=0;
     for(cpt=1; cpt<=nlstate;cpt++) {        for(j=1; j<= nlstate; j++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          for(i=1; i<=nlstate; i++){
 interval) in state (%d): v%s%d%d.gif <br>            cptj=cptj+1;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
      }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        }
      }       
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       
 health expectancies in states (1) and (2): e%s%d.gif<br>        for(i=1; i<=npar; i++) 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 fprintf(fichtm,"\n</body>");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    }        
  }        cptj=0;
 fclose(fichtm);        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
   /*--------------- Prevalence limit --------------*/            cptj=cptj+1;
              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          }
   }        }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        for(j=1; j<= nlstate*nlstate; j++)
   fprintf(ficrespl,"#Prevalence limit\n");          for(h=0; h<=nhstepm-1; h++){
   fprintf(ficrespl,"#Age ");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          }
   fprintf(ficrespl,"\n");       } 
       
   prlim=matrix(1,nlstate,1,nlstate);  /* End theta */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(h=0; h<=nhstepm-1; h++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<=nlstate*nlstate;j++)
   k=0;          for(theta=1; theta <=npar; theta++)
   agebase=agemin;            trgradg[h][j][theta]=gradg[h][theta][j];
   agelim=agemax;       
   ftolpl=1.e-10;  
   i1=cptcovn;       for(i=1;i<=nlstate*nlstate;i++)
   if (cptcovn < 1){i1=1;}        for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       printf("%d|",(int)age);fflush(stdout);
         k=k+1;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       for(h=0;h<=nhstepm-1;h++){
         fprintf(ficrespl,"\n#******");        for(k=0;k<=nhstepm-1;k++){
         for(j=1;j<=cptcovn;j++)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficrespl,"******\n");          for(i=1;i<=nlstate*nlstate;i++)
                    for(j=1;j<=nlstate*nlstate;j++)
         for (age=agebase; age<=agelim; age++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
           fprintf(ficrespl,"%.0f",age );      }
           for(i=1; i<=nlstate;i++)      /* Computing expectancies */
           fprintf(ficrespl," %.5f", prlim[i][i]);      for(i=1; i<=nlstate;i++)
           fprintf(ficrespl,"\n");        for(j=1; j<=nlstate;j++)
         }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     }            
   fclose(ficrespl);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /*------------- h Pij x at various ages ------------*/  
            }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      fprintf(ficreseij,"%3.0f",age );
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      cptj=0;
   }      for(i=1; i<=nlstate;i++)
   printf("Computing pij: result on file '%s' \n", filerespij);        for(j=1; j<=nlstate;j++){
            cptj++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   if (stepm<=24) stepsize=2;        }
       fprintf(ficreseij,"\n");
   agelim=AGESUP;     
   hstepm=stepsize*YEARM; /* Every year of age */      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   k=0;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    printf("\n");
         fprintf(ficrespij,"\n#****** ");    fprintf(ficlog,"\n");
         for(j=1;j<=cptcovn;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    free_vector(xp,1,npar);
         fprintf(ficrespij,"******\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
            free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /************ Variance ******************/
           oldm=oldms;savm=savms;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    {
           fprintf(ficrespij,"# Age");    /* Variance of health expectancies */
           for(i=1; i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
             for(j=1; j<=nlstate+ndeath;j++)    /* double **newm;*/
               fprintf(ficrespij," %1d-%1d",i,j);    double **dnewm,**doldm;
           fprintf(ficrespij,"\n");    double **dnewmp,**doldmp;
           for (h=0; h<=nhstepm; h++){    int i, j, nhstepm, hstepm, h, nstepm ;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int k, cptcode;
             for(i=1; i<=nlstate;i++)    double *xp;
               for(j=1; j<=nlstate+ndeath;j++)    double **gp, **gm;  /* for var eij */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double ***gradg, ***trgradg; /*for var eij */
             fprintf(ficrespij,"\n");    double **gradgp, **trgradgp; /* for var p point j */
           }    double *gpp, *gmp; /* for var p point j */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           fprintf(ficrespij,"\n");    double ***p3mat;
         }    double age,agelim, hf;
     }    double ***mobaverage;
   }    int theta;
     char digit[4];
   fclose(ficrespij);    char digitp[25];
   
   /*---------- Health expectancies and variances ------------*/    char fileresprobmorprev[FILENAMELENGTH];
   
   strcpy(filerest,"t");    if(popbased==1){
   strcat(filerest,fileres);      if(mobilav!=0)
   if((ficrest=fopen(filerest,"w"))==NULL) {        strcpy(digitp,"-populbased-mobilav-");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      else strcpy(digitp,"-populbased-nomobil-");
   }    }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    else 
       strcpy(digitp,"-stablbased-");
   
   strcpy(filerese,"e");    if (mobilav!=0) {
   strcat(filerese,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      }
     }
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    strcpy(fileresprobmorprev,"prmorprev"); 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    sprintf(digit,"%-d",ij);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   k=0;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   for(cptcov=1;cptcov<=i1;cptcov++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       k=k+1;    }
       fprintf(ficrest,"\n#****** ");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(j=1;j<=cptcovn;j++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficrest,"******\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficreseij,"\n#****** ");      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(j=1;j<=cptcovn;j++)      for(i=1; i<=nlstate;i++)
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       fprintf(ficreseij,"******\n");    }  
     fprintf(ficresprobmorprev,"\n");
       fprintf(ficresvij,"\n#****** ");    fprintf(ficgp,"\n# Routine varevsij");
       for(j=1;j<=cptcovn;j++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficresvij,"******\n");  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      fprintf(ficresvij,"# Age");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    for(i=1; i<=nlstate;i++)
       oldm=oldms;savm=savms;      for(j=1; j<=nlstate;j++)
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
          fprintf(ficresvij,"\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    xp=vector(1,npar);
       fprintf(ficrest,"\n");    dnewm=matrix(1,nlstate,1,npar);
            doldm=matrix(1,nlstate,1,nlstate);
       hf=1;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       if (stepm >= YEARM) hf=stepm/YEARM;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    gpp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.0f",age);    gmp=vector(nlstate+1,nlstate+ndeath);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    if(estepm < stepm){
           }      printf ("Problem %d lower than %d\n",estepm, stepm);
           epj[nlstate+1] +=epj[j];    }
         }    else  hstepm=estepm;   
         for(i=1, vepp=0.;i <=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
           for(j=1;j <=nlstate;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             vepp += vareij[i][j][(int)age];       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));       nstepm is the number of stepm from age to agelin. 
         for(j=1;j <=nlstate;j++){       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));       and note for a fixed period like k years */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficrest,"\n");       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed every two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
            */
  fclose(ficreseij);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  fclose(ficresvij);    agelim = AGESUP;
   fclose(ficrest);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_vector(epj,1,nlstate+1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /*  scanf("%d ",i); */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /*------- Variance limit prevalence------*/        gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     exit(0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  k=0;  
  for(cptcov=1;cptcov<=i1;cptcov++){        if (popbased==1) {
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if(mobilav ==0){
      k=k+1;            for(i=1; i<=nlstate;i++)
      fprintf(ficresvpl,"\n#****** ");              prlim[i][i]=probs[(int)age][i][ij];
      for(j=1;j<=cptcovn;j++)          }else{ /* mobilav */ 
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
      fprintf(ficresvpl,"******\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
                }
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
      oldm=oldms;savm=savms;    
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(j=1; j<= nlstate; j++){
    }          for(h=0; h<=nhstepm; h++){
  }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fclose(ficresvpl);          }
         }
   /*---------- End : free ----------------*/        /* This for computing probability of death (h=1 means
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        }    
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        /* end probability of death */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(matcov,1,npar,1,npar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_vector(delti,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        if (popbased==1) {
           if(mobilav ==0){
   printf("End of Imach\n");            for(i=1; i<=nlstate;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            for(i=1; i<=nlstate;i++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/              prlim[i][i]=mobaverage[(int)age][i][ij];
   /*------ End -----------*/          }
         }
  end:  
 #ifdef windows        for(j=1; j<= nlstate; j++){
  chdir(pathcd);          for(h=0; h<=nhstepm; h++){
 #endif            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  system("wgnuplot graph.plt");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 #ifdef windows        }
   while (z[0] != 'q') {        /* This for computing probability of death (h=1 means
     chdir(pathcd);           computed over hstepm matrices product = hstepm*stepm months) 
     printf("\nType e to edit output files, c to start again, and q for exiting: ");           as a weighted average of prlim.
     scanf("%s",z);        */
     if (z[0] == 'c') system("./imach");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     else if (z[0] == 'e') {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       chdir(path);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       system("index.htm");        }    
     }        /* end probability of death */
     else if (z[0] == 'q') exit(0);  
   }        for(j=1; j<= nlstate; j++) /* vareij */
 #endif          for(h=0; h<=nhstepm; h++){
 }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.99


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>