Diff for /imach/src/imach.c between versions 1.52 and 1.142

version 1.52, 2002/07/19 18:49:30 version 1.142, 2014/01/26 03:57:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.142  2014/01/26 03:57:36  brouard
      Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.141  2014/01/26 02:42:01  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.140  2011/09/02 10:37:54  brouard
   computed from the time spent in each health state according to a    Summary: times.h is ok with mingw32 now.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.139  2010/06/14 07:50:17  brouard
   simplest model is the multinomial logistic model where pij is the    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   probability to be observed in state j at the second wave    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.138  2010/04/30 18:19:40  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    *** empty log message ***
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.137  2010/04/29 18:11:38  brouard
   you to do it.  More covariates you add, slower the    (Module): Checking covariates for more complex models
   convergence.    than V1+V2. A lot of change to be done. Unstable.
   
   The advantage of this computer programme, compared to a simple    Revision 1.136  2010/04/26 20:30:53  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): merging some libgsl code. Fixing computation
   identical for each individual. Also, if a individual missed an    of likelione (using inter/intrapolation if mle = 0) in order to
   intermediate interview, the information is lost, but taken into    get same likelihood as if mle=1.
   account using an interpolation or extrapolation.      Some cleaning of code and comments added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.135  2009/10/29 15:33:14  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.134  2009/10/29 13:18:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.133  2009/07/06 10:21:25  brouard
   hPijx.    just nforces
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.132  2009/07/06 08:22:05  brouard
   of the life expectancies. It also computes the prevalence limits.    Many tings
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.131  2009/06/20 16:22:47  brouard
            Institut national d'études démographiques, Paris.    Some dimensions resccaled
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.130  2009/05/26 06:44:34  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Max Covariate is now set to 20 instead of 8. A
   software can be distributed freely for non commercial use. Latest version    lot of cleaning with variables initialized to 0. Trying to make
   can be accessed at http://euroreves.ined.fr/imach .    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   **********************************************************************/  
      Revision 1.129  2007/08/31 13:49:27  lievre
 #include <math.h>    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.128  2006/06/30 13:02:05  brouard
 #include <unistd.h>    (Module): Clarifications on computing e.j
   
 #define MAXLINE 256    Revision 1.127  2006/04/28 18:11:50  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Yes the sum of survivors was wrong since
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    imach-114 because nhstepm was no more computed in the age
 #define FILENAMELENGTH 80    loop. Now we define nhstepma in the age loop.
 /*#define DEBUG*/    (Module): In order to speed up (in case of numerous covariates) we
 #define windows    compute health expectancies (without variances) in a first step
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    and then all the health expectancies with variances or standard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    deviation (needs data from the Hessian matrices) which slows the
     computation.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    In the future we should be able to stop the program is only health
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    expectancies and graph are needed without standard deviations.
   
 #define NINTERVMAX 8    Revision 1.126  2006/04/28 17:23:28  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Yes the sum of survivors was wrong since
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    imach-114 because nhstepm was no more computed in the age
 #define NCOVMAX 8 /* Maximum number of covariates */    loop. Now we define nhstepma in the age loop.
 #define MAXN 20000    Version 0.98h
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.125  2006/04/04 15:20:31  lievre
 #define AGEBASE 40    Errors in calculation of health expectancies. Age was not initialized.
 #ifdef windows    Forecasting file added.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.124  2006/03/22 17:13:53  lievre
 #else    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define DIRSEPARATOR '/'    The log-likelihood is printed in the log file
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    name. <head> headers where missing.
 int erreur; /* Error number */  
 int nvar;    * imach.c (Module): Weights can have a decimal point as for
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    English (a comma might work with a correct LC_NUMERIC environment,
 int npar=NPARMAX;    otherwise the weight is truncated).
 int nlstate=2; /* Number of live states */    Modification of warning when the covariates values are not 0 or
 int ndeath=1; /* Number of dead states */    1.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Version 0.98g
 int popbased=0;  
     Revision 1.122  2006/03/20 09:45:41  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Weights can have a decimal point as for
 int maxwav; /* Maxim number of waves */    English (a comma might work with a correct LC_NUMERIC environment,
 int jmin, jmax; /* min, max spacing between 2 waves */    otherwise the weight is truncated).
 int mle, weightopt;    Modification of warning when the covariates values are not 0 or
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    1.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Version 0.98g
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.121  2006/03/16 17:45:01  lievre
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Module): Comments concerning covariates added
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    * imach.c (Module): refinements in the computation of lli if
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    status=-2 in order to have more reliable computation if stepm is
 FILE *ficresprobmorprev;    not 1 month. Version 0.98f
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.120  2006/03/16 15:10:38  lievre
 char filerese[FILENAMELENGTH];    (Module): refinements in the computation of lli if
 FILE  *ficresvij;    status=-2 in order to have more reliable computation if stepm is
 char fileresv[FILENAMELENGTH];    not 1 month. Version 0.98f
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.119  2006/03/15 17:42:26  brouard
 char title[MAXLINE];    (Module): Bug if status = -2, the loglikelihood was
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    computed as likelihood omitting the logarithm. Version O.98e
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.118  2006/03/14 18:20:07  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): varevsij Comments added explaining the second
 char filelog[FILENAMELENGTH]; /* Log file */    table of variances if popbased=1 .
 char filerest[FILENAMELENGTH];    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 char fileregp[FILENAMELENGTH];    (Module): Function pstamp added
 char popfile[FILENAMELENGTH];    (Module): Version 0.98d
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 #define NR_END 1    table of variances if popbased=1 .
 #define FREE_ARG char*    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define FTOL 1.0e-10    (Module): Function pstamp added
     (Module): Version 0.98d
 #define NRANSI  
 #define ITMAX 200    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 #define TOL 2.0e-4    varian-covariance of ej. is needed (Saito).
   
 #define CGOLD 0.3819660    Revision 1.115  2006/02/27 12:17:45  brouard
 #define ZEPS 1.0e-10    (Module): One freematrix added in mlikeli! 0.98c
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.114  2006/02/26 12:57:58  brouard
 #define GOLD 1.618034    (Module): Some improvements in processing parameter
 #define GLIMIT 100.0    filename with strsep.
 #define TINY 1.0e-20  
     Revision 1.113  2006/02/24 14:20:24  brouard
 static double maxarg1,maxarg2;    (Module): Memory leaks checks with valgrind and:
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    datafile was not closed, some imatrix were not freed and on matrix
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    allocation too.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.112  2006/01/30 09:55:26  brouard
 #define rint(a) floor(a+0.5)    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 static double sqrarg;    Revision 1.111  2006/01/25 20:38:18  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Lots of cleaning and bugs added (Gompertz)
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 int imx;  
 int stepm;    Revision 1.110  2006/01/25 00:51:50  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Lots of cleaning and bugs added (Gompertz)
   
 int estepm;    Revision 1.109  2006/01/24 19:37:15  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Comments (lines starting with a #) are allowed in data.
   
 int m,nb;    Revision 1.108  2006/01/19 18:05:42  lievre
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Gnuplot problem appeared...
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    To be fixed
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 double *weight;  
 int **s; /* Status */    Revision 1.106  2006/01/19 13:24:36  brouard
 double *agedc, **covar, idx;    Some cleaning and links added in html output
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.105  2006/01/05 20:23:19  lievre
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    *** empty log message ***
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.104  2005/09/30 16:11:43  lievre
 /**************** split *************************/    (Module): sump fixed, loop imx fixed, and simplifications.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): If the status is missing at the last wave but we know
 {    that the person is alive, then we can code his/her status as -2
    char *s;                             /* pointer */    (instead of missing=-1 in earlier versions) and his/her
    int  l1, l2;                         /* length counters */    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
    l1 = strlen( path );                 /* length of path */    the healthy state at last known wave). Version is 0.98
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.103  2005/09/30 15:54:49  lievre
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): sump fixed, loop imx fixed, and simplifications.
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.102  2004/09/15 17:31:30  brouard
 #if     defined(__bsd__)                /* get current working directory */    Add the possibility to read data file including tab characters.
       extern char       *getwd( );  
     Revision 1.101  2004/09/15 10:38:38  brouard
       if ( getwd( dirc ) == NULL ) {    Fix on curr_time
 #else  
       extern char       *getcwd( );    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.99  2004/06/05 08:57:40  brouard
          return( GLOCK_ERROR_GETCWD );    *** empty log message ***
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.98  2004/05/16 15:05:56  brouard
    } else {                             /* strip direcotry from path */    New version 0.97 . First attempt to estimate force of mortality
       s++;                              /* after this, the filename */    directly from the data i.e. without the need of knowing the health
       l2 = strlen( s );                 /* length of filename */    state at each age, but using a Gompertz model: log u =a + b*age .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    This is the basic analysis of mortality and should be done before any
       strcpy( name, s );                /* save file name */    other analysis, in order to test if the mortality estimated from the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    cross-longitudinal survey is different from the mortality estimated
       dirc[l1-l2] = 0;                  /* add zero */    from other sources like vital statistic data.
    }  
    l1 = strlen( dirc );                 /* length of directory */    The same imach parameter file can be used but the option for mle should be -3.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Agnès, who wrote this part of the code, tried to keep most of the
 #else    former routines in order to include the new code within the former code.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    The output is very simple: only an estimate of the intercept and of
    s = strrchr( name, '.' );            /* find last / */    the slope with 95% confident intervals.
    s++;  
    strcpy(ext,s);                       /* save extension */    Current limitations:
    l1= strlen( name);    A) Even if you enter covariates, i.e. with the
    l2= strlen( s)+1;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    strncpy( finame, name, l1-l2);    B) There is no computation of Life Expectancy nor Life Table.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.97  2004/02/20 13:25:42  lievre
 }    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   
 /******************************************/    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 void replace(char *s, char*t)    rewritten within the same printf. Workaround: many printfs.
 {  
   int i;    Revision 1.95  2003/07/08 07:54:34  brouard
   int lg=20;    * imach.c (Repository):
   i=0;    (Repository): Using imachwizard code to output a more meaningful covariance
   lg=strlen(t);    matrix (cov(a12,c31) instead of numbers.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.94  2003/06/27 13:00:02  brouard
     if (t[i]== '\\') s[i]='/';    Just cleaning
   }  
 }    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 int nbocc(char *s, char occ)    exist so I changed back to asctime which exists.
 {    (Module): Version 0.96b
   int i,j=0;  
   int lg=20;    Revision 1.92  2003/06/25 16:30:45  brouard
   i=0;    (Module): On windows (cygwin) function asctime_r doesn't
   lg=strlen(s);    exist so I changed back to asctime which exists.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.91  2003/06/25 15:30:29  brouard
   }    * imach.c (Repository): Duplicated warning errors corrected.
   return j;    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 void cutv(char *u,char *v, char*t, char occ)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    Revision 1.90  2003/06/24 12:34:15  brouard
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    (Module): Some bugs corrected for windows. Also, when
      gives u="abcedf" and v="ghi2j" */    mle=-1 a template is output in file "or"mypar.txt with the design
   int i,lg,j,p=0;    of the covariance matrix to be input.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.89  2003/06/24 12:30:52  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Some bugs corrected for windows. Also, when
   }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.88  2003/06/23 17:54:56  brouard
     (u[j] = t[j]);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   }  
      u[p]='\0';    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.86  2003/06/17 20:04:08  brouard
   }    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 /********************** nrerror ********************/    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 void nrerror(char error_text[])    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   fprintf(stderr,"ERREUR ...\n");    was wrong (infinity). We still send an "Error" but patch by
   fprintf(stderr,"%s\n",error_text);    assuming that the date of death was just one stepm after the
   exit(1);    interview.
 }    (Repository): Because some people have very long ID (first column)
 /*********************** vector *******************/    we changed int to long in num[] and we added a new lvector for
 double *vector(int nl, int nh)    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   double *v;    (Repository): No more line truncation errors.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.84  2003/06/13 21:44:43  brouard
   return v-nl+NR_END;    * imach.c (Repository): Replace "freqsummary" at a correct
 }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 /************************ free vector ******************/    parcimony.
 void free_vector(double*v, int nl, int nh)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
 /************************ivector *******************************/    Revision 1.82  2003/06/05 15:57:20  brouard
 int *ivector(long nl,long nh)    Add log in  imach.c and  fullversion number is now printed.
 {  
   int *v;  */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /*
   if (!v) nrerror("allocation failure in ivector");     Interpolated Markov Chain
   return v-nl+NR_END;  
 }    Short summary of the programme:
     
 /******************free ivector **************************/    This program computes Healthy Life Expectancies from
 void free_ivector(int *v, long nl, long nh)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   free((FREE_ARG)(v+nl-NR_END));    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 /******************* imatrix *******************************/    (if any) in individual health status.  Health expectancies are
 int **imatrix(long nrl, long nrh, long ncl, long nch)    computed from the time spent in each health state according to a
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    simplest model is the multinomial logistic model where pij is the
   int **m;    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
   /* allocate pointers to rows */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    'age' is age and 'sex' is a covariate. If you want to have a more
   if (!m) nrerror("allocation failure 1 in matrix()");    complex model than "constant and age", you should modify the program
   m += NR_END;    where the markup *Covariates have to be included here again* invites
   m -= nrl;    you to do it.  More covariates you add, slower the
      convergence.
    
   /* allocate rows and set pointers to them */    The advantage of this computer programme, compared to a simple
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    multinomial logistic model, is clear when the delay between waves is not
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    identical for each individual. Also, if a individual missed an
   m[nrl] += NR_END;    intermediate interview, the information is lost, but taken into
   m[nrl] -= ncl;    account using an interpolation or extrapolation.  
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   /* return pointer to array of pointers to rows */    split into an exact number (nh*stepm) of unobserved intermediate
   return m;    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /****************** free_imatrix *************************/    and the contribution of each individual to the likelihood is simply
 void free_imatrix(m,nrl,nrh,ncl,nch)    hPijx.
       int **m;  
       long nch,ncl,nrh,nrl;    Also this programme outputs the covariance matrix of the parameters but also
      /* free an int matrix allocated by imatrix() */    of the life expectancies. It also computes the period (stable) prevalence. 
 {    
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   free((FREE_ARG) (m+nrl-NR_END));             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /******************* matrix *******************************/    It is copyrighted identically to a GNU software product, ie programme and
 double **matrix(long nrl, long nrh, long ncl, long nch)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");    **********************************************************************/
   m += NR_END;  /*
   m -= nrl;    main
     read parameterfile
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    read datafile
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    concatwav
   m[nrl] += NR_END;    freqsummary
   m[nrl] -= ncl;    if (mle >= 1)
       mlikeli
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    print results files
   return m;    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /*************************free matrix ************************/        begin-prev-date,...
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    open gnuplot file
 {    open html file
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    period (stable) prevalence
   free((FREE_ARG)(m+nrl-NR_END));     for age prevalim()
 }    h Pij x
     variance of p varprob
 /******************* ma3x *******************************/    forecasting if prevfcast==1 prevforecast call prevalence()
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    health expectancies
 {    Variance-covariance of DFLE
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    prevalence()
   double ***m;     movingaverage()
     varevsij() 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if popbased==1 varevsij(,popbased)
   if (!m) nrerror("allocation failure 1 in matrix()");    total life expectancies
   m += NR_END;    Variance of period (stable) prevalence
   m -= nrl;   end
   */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  
   m[nrl] -= ncl;   
   #include <math.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <stdio.h>
   #include <stdlib.h>
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #include <string.h>
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <unistd.h>
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #include <limits.h>
   for (j=ncl+1; j<=nch; j++)  #include <sys/types.h>
     m[nrl][j]=m[nrl][j-1]+nlay;  #include <sys/stat.h>
    #include <errno.h>
   for (i=nrl+1; i<=nrh; i++) {  extern int errno;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #ifdef LINUX
       m[i][j]=m[i][j-1]+nlay;  #include <time.h>
   }  #include "timeval.h"
   return m;  #else
 }  #include <sys/time.h>
   #endif
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #ifdef GSL
 {  #include <gsl/gsl_errno.h>
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #include <gsl/gsl_multimin.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #endif
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /***************** f1dim *************************/  
 extern int ncom;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double f1dim(double x)  #define FILENAMELENGTH 132
 {  
   int j;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double f;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double *xt;  
    #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   xt=vector(1,ncom);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define NINTERVMAX 8
   free_vector(xt,1,ncom);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return f;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 20 /* Maximum number of covariates */
   #define MAXN 20000
 /*****************brent *************************/  #define YEARM 12. /* Number of months per year */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define AGESUP 130
 {  #define AGEBASE 40
   int iter;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double a,b,d,etemp;  #ifdef UNIX
   double fu,fv,fw,fx;  #define DIRSEPARATOR '/'
   double ftemp;  #define CHARSEPARATOR "/"
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define ODIRSEPARATOR '\\'
   double e=0.0;  #else
    #define DIRSEPARATOR '\\'
   a=(ax < cx ? ax : cx);  #define CHARSEPARATOR "\\"
   b=(ax > cx ? ax : cx);  #define ODIRSEPARATOR '/'
   x=w=v=bx;  #endif
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /* $Id$ */
     xm=0.5*(a+b);  /* $State$ */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char version[]="Imach version 0.98nR, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     printf(".");fflush(stdout);  char fullversion[]="$Revision$ $Date$"; 
     fprintf(ficlog,".");fflush(ficlog);  char strstart[80];
 #ifdef DEBUG  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int nvar=0, nforce=0; /* Number of variables, number of forces */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 #endif  int npar=NPARMAX;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int nlstate=2; /* Number of live states */
       *xmin=x;  int ndeath=1; /* Number of dead states */
       return fx;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     }  int popbased=0;
     ftemp=fu;  
     if (fabs(e) > tol1) {  int *wav; /* Number of waves for this individuual 0 is possible */
       r=(x-w)*(fx-fv);  int maxwav=0; /* Maxim number of waves */
       q=(x-v)*(fx-fw);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       p=(x-v)*q-(x-w)*r;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       q=2.0*(q-r);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       if (q > 0.0) p = -p;                     to the likelihood and the sum of weights (done by funcone)*/
       q=fabs(q);  int mle=1, weightopt=0;
       etemp=e;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       e=d;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         d=CGOLD*(e=(x >= xm ? a-x : b-x));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       else {  double jmean=1; /* Mean space between 2 waves */
         d=p/q;  double **oldm, **newm, **savm; /* Working pointers to matrices */
         u=x+d;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         if (u-a < tol2 || b-u < tol2)  /*FILE *fic ; */ /* Used in readdata only */
           d=SIGN(tol1,xm-x);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       }  FILE *ficlog, *ficrespow;
     } else {  int globpr=0; /* Global variable for printing or not */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double fretone; /* Only one call to likelihood */
     }  long ipmx=0; /* Number of contributions */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double sw; /* Sum of weights */
     fu=(*f)(u);  char filerespow[FILENAMELENGTH];
     if (fu <= fx) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       if (u >= x) a=x; else b=x;  FILE *ficresilk;
       SHFT(v,w,x,u)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
         SHFT(fv,fw,fx,fu)  FILE *ficresprobmorprev;
         } else {  FILE *fichtm, *fichtmcov; /* Html File */
           if (u < x) a=u; else b=u;  FILE *ficreseij;
           if (fu <= fw || w == x) {  char filerese[FILENAMELENGTH];
             v=w;  FILE *ficresstdeij;
             w=u;  char fileresstde[FILENAMELENGTH];
             fv=fw;  FILE *ficrescveij;
             fw=fu;  char filerescve[FILENAMELENGTH];
           } else if (fu <= fv || v == x || v == w) {  FILE  *ficresvij;
             v=u;  char fileresv[FILENAMELENGTH];
             fv=fu;  FILE  *ficresvpl;
           }  char fileresvpl[FILENAMELENGTH];
         }  char title[MAXLINE];
   }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   *xmin=x;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   return fx;  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /****************** mnbrak ***********************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char filelog[FILENAMELENGTH]; /* Log file */
             double (*func)(double))  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   double ulim,u,r,q, dum;  char popfile[FILENAMELENGTH];
   double fu;  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (*fb > *fa) {  struct timezone tzp;
     SHFT(dum,*ax,*bx,dum)  extern int gettimeofday();
       SHFT(dum,*fb,*fa,dum)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       }  long time_value;
   *cx=(*bx)+GOLD*(*bx-*ax);  extern long time();
   *fc=(*func)(*cx);  char strcurr[80], strfor[80];
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  char *endptr;
     q=(*bx-*cx)*(*fb-*fa);  long lval;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double dval;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define NR_END 1
     if ((*bx-u)*(u-*cx) > 0.0) {  #define FREE_ARG char*
       fu=(*func)(u);  #define FTOL 1.0e-10
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  #define NRANSI 
       if (fu < *fc) {  #define ITMAX 200 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  #define TOL 2.0e-4 
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define CGOLD 0.3819660 
       u=ulim;  #define ZEPS 1.0e-10 
       fu=(*func)(u);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  #define GOLD 1.618034 
       fu=(*func)(u);  #define GLIMIT 100.0 
     }  #define TINY 1.0e-20 
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  static double maxarg1,maxarg2;
       }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /*************** linmin ************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 int ncom;  
 double *pcom,*xicom;  static double sqrarg;
 double (*nrfunc)(double []);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int agegomp= AGEGOMP;
 {  
   double brent(double ax, double bx, double cx,  int imx; 
                double (*f)(double), double tol, double *xmin);  int stepm=1;
   double f1dim(double x);  /* Stepm, step in month: minimum step interpolation*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  int estepm;
   int j;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  int m,nb;
    long *num;
   ncom=n;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   pcom=vector(1,n);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   xicom=vector(1,n);  double **pmmij, ***probs;
   nrfunc=func;  double *ageexmed,*agecens;
   for (j=1;j<=n;j++) {  double dateintmean=0;
     pcom[j]=p[j];  
     xicom[j]=xi[j];  double *weight;
   }  int **s; /* Status */
   ax=0.0;  double *agedc;
   xx=1.0;  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);                    * covar=matrix(0,NCOVMAX,1,n); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
 #ifdef DEBUG  double  idx; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
 #endif  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (j=1;j<=n;j++) {  double *lsurv, *lpop, *tpop;
     xi[j] *= xmin;  
     p[j] += xi[j];  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   }  double ftolhess; /* Tolerance for computing hessian */
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /*************** powell ************************/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       the name of the file (name), its extension only (ext) and its first part of the name (finame)
             double (*func)(double []))    */ 
 {    char  *ss;                            /* pointer */
   void linmin(double p[], double xi[], int n, double *fret,    int   l1, l2;                         /* length counters */
               double (*func)(double []));  
   int i,ibig,j;    l1 = strlen(path );                   /* length of path */
   double del,t,*pt,*ptt,*xit;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double fp,fptt;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double *xits;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   pt=vector(1,n);      strcpy( name, path );               /* we got the fullname name because no directory */
   ptt=vector(1,n);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   xit=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   xits=vector(1,n);      /* get current working directory */
   *fret=(*func)(p);      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=1;j<=n;j++) pt[j]=p[j];      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (*iter=1;;++(*iter)) {        return( GLOCK_ERROR_GETCWD );
     fp=(*fret);      }
     ibig=0;      /* got dirc from getcwd*/
     del=0.0;      printf(" DIRC = %s \n",dirc);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    } else {                              /* strip direcotry from path */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      ss++;                               /* after this, the filename */
     for (i=1;i<=n;i++)      l2 = strlen( ss );                  /* length of filename */
       printf(" %d %.12f",i, p[i]);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     fprintf(ficlog," %d %.12f",i, p[i]);      strcpy( name, ss );         /* save file name */
     printf("\n");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     fprintf(ficlog,"\n");      dirc[l1-l2] = 0;                    /* add zero */
     for (i=1;i<=n;i++) {      printf(" DIRC2 = %s \n",dirc);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    }
       fptt=(*fret);    /* We add a separator at the end of dirc if not exists */
 #ifdef DEBUG    l1 = strlen( dirc );                  /* length of directory */
       printf("fret=%lf \n",*fret);    if( dirc[l1-1] != DIRSEPARATOR ){
       fprintf(ficlog,"fret=%lf \n",*fret);      dirc[l1] =  DIRSEPARATOR;
 #endif      dirc[l1+1] = 0; 
       printf("%d",i);fflush(stdout);      printf(" DIRC3 = %s \n",dirc);
       fprintf(ficlog,"%d",i);fflush(ficlog);    }
       linmin(p,xit,n,fret,func);    ss = strrchr( name, '.' );            /* find last / */
       if (fabs(fptt-(*fret)) > del) {    if (ss >0){
         del=fabs(fptt-(*fret));      ss++;
         ibig=i;      strcpy(ext,ss);                     /* save extension */
       }      l1= strlen( name);
 #ifdef DEBUG      l2= strlen(ss)+1;
       printf("%d %.12e",i,(*fret));      strncpy( finame, name, l1-l2);
       fprintf(ficlog,"%d %.12e",i,(*fret));      finame[l1-l2]= 0;
       for (j=1;j<=n;j++) {    }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    return( 0 );                          /* we're done */
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  /******************************************/
         fprintf(ficlog," p=%.12e",p[j]);  
       }  void replace_back_to_slash(char *s, char*t)
       printf("\n");  {
       fprintf(ficlog,"\n");    int i;
 #endif    int lg=0;
     }    i=0;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
       int k[2],l;      (s[i] = t[i]);
       k[0]=1;      if (t[i]== '\\') s[i]='/';
       k[1]=-1;    }
       printf("Max: %.12e",(*func)(p));  }
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {  char *trimbb(char *out, char *in)
         printf(" %.12e",p[j]);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         fprintf(ficlog," %.12e",p[j]);    char *s;
       }    s=out;
       printf("\n");    while (*in != '\0'){
       fprintf(ficlog,"\n");      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       for(l=0;l<=1;l++) {        in++;
         for (j=1;j<=n;j++) {      }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      *out++ = *in++;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    *out='\0';
         }    return s;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  char *cutv(char *blocc, char *alocc, char *in, char occ)
 #endif  {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
        and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       free_vector(xit,1,n);       gives blocc="abcdef2ghi" and alocc="j".
       free_vector(xits,1,n);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       free_vector(ptt,1,n);    */
       free_vector(pt,1,n);    char *s, *t;
       return;    t=in;s=in;
     }    while (*in != '\0'){
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      while( *in == occ){
     for (j=1;j<=n;j++) {        *blocc++ = *in++;
       ptt[j]=2.0*p[j]-pt[j];        s=in;
       xit[j]=p[j]-pt[j];      }
       pt[j]=p[j];      *blocc++ = *in++;
     }    }
     fptt=(*func)(ptt);    if (s == t) /* occ not found */
     if (fptt < fp) {      *(blocc-(in-s))='\0';
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    else
       if (t < 0.0) {      *(blocc-(in-s)-1)='\0';
         linmin(p,xit,n,fret,func);    in=s;
         for (j=1;j<=n;j++) {    while ( *in != '\0'){
           xi[j][ibig]=xi[j][n];      *alocc++ = *in++;
           xi[j][n]=xit[j];    }
         }  
 #ifdef DEBUG    *alocc='\0';
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return s;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);  int nbocc(char *s, char occ)
           fprintf(ficlog," %.12e",xit[j]);  {
         }    int i,j=0;
         printf("\n");    int lg=20;
         fprintf(ficlog,"\n");    i=0;
 #endif    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
   }    }
 }    return j;
   }
 /**** Prevalence limit ****************/  
   /* void cutv(char *u,char *v, char*t, char occ) */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /* { */
 {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
      matrix by transitions matrix until convergence is reached */  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*   int i,lg,j,p=0; */
   int i, ii,j,k;  /*   i=0; */
   double min, max, maxmin, maxmax,sumnew=0.;  /*   lg=strlen(t); */
   double **matprod2();  /*   for(j=0; j<=lg-1; j++) { */
   double **out, cov[NCOVMAX], **pmij();  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   double **newm;  /*   } */
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*   for(j=0; j<p; j++) { */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*     (u[j] = t[j]); */
     for (j=1;j<=nlstate+ndeath;j++){  /*   } */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*      u[p]='\0'; */
     }  
   /*    for(j=0; j<= lg; j++) { */
    cov[1]=1.;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
    /*   } */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* } */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /********************** nrerror ********************/
     /* Covariates have to be included here again */  
      cov[2]=agefin;  void nrerror(char error_text[])
    {
       for (k=1; k<=cptcovn;k++) {    fprintf(stderr,"ERREUR ...\n");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    fprintf(stderr,"%s\n",error_text);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    exit(EXIT_FAILURE);
       }  }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*********************** vector *******************/
       for (k=1; k<=cptcovprod;k++)  double *vector(int nl, int nh)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     double *v;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if (!v) nrerror("allocation failure in vector");
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    return v-nl+NR_END;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /************************ free vector ******************/
     oldm=newm;  void free_vector(double*v, int nl, int nh)
     maxmax=0.;  {
     for(j=1;j<=nlstate;j++){    free((FREE_ARG)(v+nl-NR_END));
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /************************ivector *******************************/
         sumnew=0;  int *ivector(long nl,long nh)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    int *v;
         max=FMAX(max,prlim[i][j]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         min=FMIN(min,prlim[i][j]);    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /******************free ivector **************************/
     if(maxmax < ftolpl){  void free_ivector(int *v, long nl, long nh)
       return prlim;  {
     }    free((FREE_ARG)(v+nl-NR_END));
   }  }
 }  
   /************************lvector *******************************/
 /*************** transition probabilities ***************/  long *lvector(long nl,long nh)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    long *v;
 {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double s1, s2;    if (!v) nrerror("allocation failure in ivector");
   /*double t34;*/    return v-nl+NR_END;
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /******************free lvector **************************/
     for(j=1; j<i;j++){  void free_lvector(long *v, long nl, long nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    free((FREE_ARG)(v+nl-NR_END));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /******************* imatrix *******************************/
       ps[i][j]=s2;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     }  { 
     for(j=i+1; j<=nlstate+ndeath;j++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int **m; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       ps[i][j]=s2;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
   }    m -= nrl; 
     /*ps[3][2]=1;*/    
     
   for(i=1; i<= nlstate; i++){    /* allocate rows and set pointers to them */ 
      s1=0;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for(j=1; j<i; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       s1+=exp(ps[i][j]);    m[nrl] += NR_END; 
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl] -= ncl; 
       s1+=exp(ps[i][j]);    
     ps[i][i]=1./(s1+1.);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(j=1; j<i; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* return pointer to array of pointers to rows */ 
     for(j=i+1; j<=nlstate+ndeath; j++)    return m; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        int **m;
     for(jj=1; jj<= nlstate+ndeath; jj++){        long nch,ncl,nrh,nrl; 
       ps[ii][jj]=0;       /* free an int matrix allocated by imatrix() */ 
       ps[ii][ii]=1;  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   }    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /******************* matrix *******************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  double **matrix(long nrl, long nrh, long ncl, long nch)
      printf("%lf ",ps[ii][jj]);  {
    }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     printf("\n ");    double **m;
     }  
     printf("\n ");printf("%lf ",cov[2]);*/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*    if (!m) nrerror("allocation failure 1 in matrix()");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    m += NR_END;
   goto end;*/    m -= nrl;
     return ps;  
 }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /**************** Product of 2 matrices ******************/    m[nrl] += NR_END;
     m[nrl] -= ncl;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    return m;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   /* in, b, out are matrice of pointers which should have been initialized     */
      before: only the contents of out is modified. The function returns  }
      a pointer to pointers identical to out */  
   long i, j, k;  /*************************free matrix ************************/
   for(i=nrl; i<= nrh; i++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         out[i][k] +=in[i][j]*b[j][k];    free((FREE_ARG)(m+nrl-NR_END));
   }
   return out;  
 }  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 /************* Higher Matrix Product ***************/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    if (!m) nrerror("allocation failure 1 in matrix()");
      duration (i.e. until    m += NR_END;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    m -= nrl;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      Model is determined by parameters x and covariates have to be    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      included manually here.    m[nrl] += NR_END;
     m[nrl] -= ncl;
      */  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double **newm;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
   /* Hstepm could be zero and should return the unit matrix */    m[nrl][ncl] -= nll;
   for (i=1;i<=nlstate+ndeath;i++)    for (j=ncl+1; j<=nch; j++) 
     for (j=1;j<=nlstate+ndeath;j++){      m[nrl][j]=m[nrl][j-1]+nlay;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    
       po[i][j][0]=(i==j ? 1.0 : 0.0);    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for (j=ncl+1; j<=nch; j++) 
   for(h=1; h <=nhstepm; h++){        m[i][j]=m[i][j-1]+nlay;
     for(d=1; d <=hstepm; d++){    }
       newm=savm;    return m; 
       /* Covariates have to be included here again */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       cov[1]=1.;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************************free ma3x ************************/
       for (k=1; k<=cptcovprod;k++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    free((FREE_ARG)(m+nrl-NR_END));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** function subdirf ***********/
       savm=oldm;  char *subdirf(char fileres[])
       oldm=newm;  {
     }    /* Caution optionfilefiname is hidden */
     for(i=1; i<=nlstate+ndeath; i++)    strcpy(tmpout,optionfilefiname);
       for(j=1;j<=nlstate+ndeath;j++) {    strcat(tmpout,"/"); /* Add to the right */
         po[i][j][h]=newm[i][j];    strcat(tmpout,fileres);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    return tmpout;
          */  }
       }  
   } /* end h */  /*************** function subdirf2 ***********/
   return po;  char *subdirf2(char fileres[], char *preop)
 }  {
     
     /* Caution optionfilefiname is hidden */
 /*************** log-likelihood *************/    strcpy(tmpout,optionfilefiname);
 double func( double *x)    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   int i, ii, j, k, mi, d, kk;    strcat(tmpout,fileres);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    return tmpout;
   double **out;  }
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /*************** function subdirf3 ***********/
   long ipmx;  char *subdirf3(char fileres[], char *preop, char *preop2)
   /*extern weight */  {
   /* We are differentiating ll according to initial status */    
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* Caution optionfilefiname is hidden */
   /*for(i=1;i<imx;i++)    strcpy(tmpout,optionfilefiname);
     printf(" %d\n",s[4][i]);    strcat(tmpout,"/");
   */    strcat(tmpout,preop);
   cov[1]=1.;    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   for(k=1; k<=nlstate; k++) ll[k]=0.;    return tmpout;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /***************** f1dim *************************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  extern int ncom; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  extern double *pcom,*xicom;
       for(d=0; d<dh[mi][i]; d++){  extern double (*nrfunc)(double []); 
         newm=savm;   
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double f1dim(double x) 
         for (kk=1; kk<=cptcovage;kk++) {  { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    int j; 
         }    double f;
            double *xt; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,   
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    xt=vector(1,ncom); 
         savm=oldm;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         oldm=newm;    f=(*nrfunc)(xt); 
            free_vector(xt,1,ncom); 
            return f; 
       } /* end mult */  } 
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*****************brent *************************/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       ipmx +=1;  { 
       sw += weight[i];    int iter; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double a,b,d,etemp;
     } /* end of wave */    double fu,fv,fw,fx;
   } /* end of individual */    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double e=0.0; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */   
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    a=(ax < cx ? ax : cx); 
   return -l;    b=(ax > cx ? ax : cx); 
 }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
 /*********** Maximum Likelihood Estimation ***************/      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   int i,j, iter;      fprintf(ficlog,".");fflush(ficlog);
   double **xi,*delti;  #ifdef DEBUG
   double fret;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   xi=matrix(1,npar,1,npar);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (i=1;i<=npar;i++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for (j=1;j<=npar;j++)  #endif
       xi[i][j]=(i==j ? 1.0 : 0.0);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        *xmin=x; 
   powell(p,xi,npar,ftol,&iter,&fret,func);        return fx; 
       } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      ftemp=fu;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      if (fabs(e) > tol1) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
 /**** Computes Hessian and covariance matrix ***/        if (q > 0.0) p = -p; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        q=fabs(q); 
 {        etemp=e; 
   double  **a,**y,*x,pd;        e=d; 
   double **hess;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int i, j,jk;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int *indx;        else { 
           d=p/q; 
   double hessii(double p[], double delta, int theta, double delti[]);          u=x+d; 
   double hessij(double p[], double delti[], int i, int j);          if (u-a < tol2 || b-u < tol2) 
   void lubksb(double **a, int npar, int *indx, double b[]) ;            d=SIGN(tol1,xm-x); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        } 
       } else { 
   hess=matrix(1,npar,1,npar);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   printf("\nCalculation of the hessian matrix. Wait...\n");      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      fu=(*f)(u); 
   for (i=1;i<=npar;i++){      if (fu <= fx) { 
     printf("%d",i);fflush(stdout);        if (u >= x) a=x; else b=x; 
     fprintf(ficlog,"%d",i);fflush(ficlog);        SHFT(v,w,x,u) 
     hess[i][i]=hessii(p,ftolhess,i,delti);          SHFT(fv,fw,fx,fu) 
     /*printf(" %f ",p[i]);*/          } else { 
     /*printf(" %lf ",hess[i][i]);*/            if (u < x) a=u; else b=u; 
   }            if (fu <= fw || w == x) { 
                v=w; 
   for (i=1;i<=npar;i++) {              w=u; 
     for (j=1;j<=npar;j++)  {              fv=fw; 
       if (j>i) {              fw=fu; 
         printf(".%d%d",i,j);fflush(stdout);            } else if (fu <= fv || v == x || v == w) { 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);              v=u; 
         hess[i][j]=hessij(p,delti,i,j);              fv=fu; 
         hess[j][i]=hess[i][j];                } 
         /*printf(" %lf ",hess[i][j]);*/          } 
       }    } 
     }    nrerror("Too many iterations in brent"); 
   }    *xmin=x; 
   printf("\n");    return fx; 
   fprintf(ficlog,"\n");  } 
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /****************** mnbrak ***********************/
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   a=matrix(1,npar,1,npar);              double (*func)(double)) 
   y=matrix(1,npar,1,npar);  { 
   x=vector(1,npar);    double ulim,u,r,q, dum;
   indx=ivector(1,npar);    double fu; 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    *fa=(*func)(*ax); 
   ludcmp(a,npar,indx,&pd);    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   for (j=1;j<=npar;j++) {      SHFT(dum,*ax,*bx,dum) 
     for (i=1;i<=npar;i++) x[i]=0;        SHFT(dum,*fb,*fa,dum) 
     x[j]=1;        } 
     lubksb(a,npar,indx,x);    *cx=(*bx)+GOLD*(*bx-*ax); 
     for (i=1;i<=npar;i++){    *fc=(*func)(*cx); 
       matcov[i][j]=x[i];    while (*fb > *fc) { 
     }      r=(*bx-*ax)*(*fb-*fc); 
   }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   printf("\n#Hessian matrix#\n");        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   fprintf(ficlog,"\n#Hessian matrix#\n");      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for (i=1;i<=npar;i++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
     for (j=1;j<=npar;j++) {        fu=(*func)(u); 
       printf("%.3e ",hess[i][j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       fprintf(ficlog,"%.3e ",hess[i][j]);        fu=(*func)(u); 
     }        if (fu < *fc) { 
     printf("\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     fprintf(ficlog,"\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* Recompute Inverse */        u=ulim; 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      } else { 
   ludcmp(a,npar,indx,&pd);        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   /*  printf("\n#Hessian matrix recomputed#\n");      } 
       SHFT(*ax,*bx,*cx,u) 
   for (j=1;j<=npar;j++) {        SHFT(*fa,*fb,*fc,fu) 
     for (i=1;i<=npar;i++) x[i]=0;        } 
     x[j]=1;  } 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /*************** linmin ************************/
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  int ncom; 
       fprintf(ficlog,"%.3e ",y[i][j]);  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
     printf("\n");   
     fprintf(ficlog,"\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   }  { 
   */    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   free_matrix(a,1,npar,1,npar);    double f1dim(double x); 
   free_matrix(y,1,npar,1,npar);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   free_vector(x,1,npar);                double *fc, double (*func)(double)); 
   free_ivector(indx,1,npar);    int j; 
   free_matrix(hess,1,npar,1,npar);    double xx,xmin,bx,ax; 
     double fx,fb,fa;
    
 }    ncom=n; 
     pcom=vector(1,n); 
 /*************** hessian matrix ****************/    xicom=vector(1,n); 
 double hessii( double x[], double delta, int theta, double delti[])    nrfunc=func; 
 {    for (j=1;j<=n;j++) { 
   int i;      pcom[j]=p[j]; 
   int l=1, lmax=20;      xicom[j]=xi[j]; 
   double k1,k2;    } 
   double p2[NPARMAX+1];    ax=0.0; 
   double res;    xx=1.0; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double fx;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int k=0,kmax=10;  #ifdef DEBUG
   double l1;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fx=func(x);  #endif
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (j=1;j<=n;j++) { 
   for(l=0 ; l <=lmax; l++){      xi[j] *= xmin; 
     l1=pow(10,l);      p[j] += xi[j]; 
     delts=delt;    } 
     for(k=1 ; k <kmax; k=k+1){    free_vector(xicom,1,n); 
       delt = delta*(l1*k);    free_vector(pcom,1,n); 
       p2[theta]=x[theta] +delt;  } 
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  char *asc_diff_time(long time_sec, char ascdiff[])
       k2=func(p2)-fx;  {
       /*res= (k1-2.0*fx+k2)/delt/delt; */    long sec_left, days, hours, minutes;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    days = (time_sec) / (60*60*24);
          sec_left = (time_sec) % (60*60*24);
 #ifdef DEBUG    hours = (sec_left) / (60*60) ;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    sec_left = (sec_left) %(60*60);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    minutes = (sec_left) /60;
 #endif    sec_left = (sec_left) % (60);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    return ascdiff;
         k=kmax;  }
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*************** powell ************************/
         k=kmax; l=lmax*10.;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  { 
         delts=delt;    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
     }    int i,ibig,j; 
   }    double del,t,*pt,*ptt,*xit;
   delti[theta]=delts;    double fp,fptt;
   return res;    double *xits;
      int niterf, itmp;
 }  
     pt=vector(1,n); 
 double hessij( double x[], double delti[], int thetai,int thetaj)    ptt=vector(1,n); 
 {    xit=vector(1,n); 
   int i;    xits=vector(1,n); 
   int l=1, l1, lmax=20;    *fret=(*func)(p); 
   double k1,k2,k3,k4,res,fx;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double p2[NPARMAX+1];    for (*iter=1;;++(*iter)) { 
   int k;      fp=(*fret); 
       ibig=0; 
   fx=func(x);      del=0.0; 
   for (k=1; k<=2; k++) {      last_time=curr_time;
     for (i=1;i<=npar;i++) p2[i]=x[i];      (void) gettimeofday(&curr_time,&tzp);
     p2[thetai]=x[thetai]+delti[thetai]/k;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     k1=func(p2)-fx;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       for (i=1;i<=n;i++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf(" %d %.12f",i, p[i]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog," %d %.12lf",i, p[i]);
     k2=func(p2)-fx;        fprintf(ficrespow," %.12lf", p[i]);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      printf("\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      fprintf(ficlog,"\n");
     k3=func(p2)-fx;      fprintf(ficrespow,"\n");fflush(ficrespow);
        if(*iter <=3){
     p2[thetai]=x[thetai]-delti[thetai]/k;        tm = *localtime(&curr_time.tv_sec);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        strcpy(strcurr,asctime(&tm));
     k4=func(p2)-fx;  /*       asctime_r(&tm,strcurr); */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        forecast_time=curr_time; 
 #ifdef DEBUG        itmp = strlen(strcurr);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          strcurr[itmp-1]='\0';
 #endif        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   return res;        for(niterf=10;niterf<=30;niterf+=10){
 }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
 /************** Inverse of matrix **************/  /*      asctime_r(&tmf,strfor); */
 void ludcmp(double **a, int n, int *indx, double *d)          strcpy(strfor,asctime(&tmf));
 {          itmp = strlen(strfor);
   int i,imax,j,k;          if(strfor[itmp-1]=='\n')
   double big,dum,sum,temp;          strfor[itmp-1]='\0';
   double *vv;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
            fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   vv=vector(1,n);        }
   *d=1.0;      }
   for (i=1;i<=n;i++) {      for (i=1;i<=n;i++) { 
     big=0.0;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for (j=1;j<=n;j++)        fptt=(*fret); 
       if ((temp=fabs(a[i][j])) > big) big=temp;  #ifdef DEBUG
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        printf("fret=%lf \n",*fret);
     vv[i]=1.0/big;        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
   for (j=1;j<=n;j++) {        printf("%d",i);fflush(stdout);
     for (i=1;i<j;i++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
       sum=a[i][j];        linmin(p,xit,n,fret,func); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        if (fabs(fptt-(*fret)) > del) { 
       a[i][j]=sum;          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
     big=0.0;        } 
     for (i=j;i<=n;i++) {  #ifdef DEBUG
       sum=a[i][j];        printf("%d %.12e",i,(*fret));
       for (k=1;k<j;k++)        fprintf(ficlog,"%d %.12e",i,(*fret));
         sum -= a[i][k]*a[k][j];        for (j=1;j<=n;j++) {
       a[i][j]=sum;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       if ( (dum=vv[i]*fabs(sum)) >= big) {          printf(" x(%d)=%.12e",j,xit[j]);
         big=dum;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         imax=i;        }
       }        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     if (j != imax) {          fprintf(ficlog," p=%.12e",p[j]);
       for (k=1;k<=n;k++) {        }
         dum=a[imax][k];        printf("\n");
         a[imax][k]=a[j][k];        fprintf(ficlog,"\n");
         a[j][k]=dum;  #endif
       }      } 
       *d = -(*d);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       vv[imax]=vv[j];  #ifdef DEBUG
     }        int k[2],l;
     indx[j]=imax;        k[0]=1;
     if (a[j][j] == 0.0) a[j][j]=TINY;        k[1]=-1;
     if (j != n) {        printf("Max: %.12e",(*func)(p));
       dum=1.0/(a[j][j]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   free_vector(vv,1,n);  /* Doesn't work */        }
 ;        printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 void lubksb(double **a, int n, int *indx, double b[])          for (j=1;j<=n;j++) {
 {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int i,ii=0,ip,j;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double sum;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
   for (i=1;i<=n;i++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     ip=indx[i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     sum=b[ip];        }
     b[ip]=b[i];  #endif
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;        free_vector(xit,1,n); 
     b[i]=sum;        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
   for (i=n;i>=1;i--) {        free_vector(pt,1,n); 
     sum=b[i];        return; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      } 
     b[i]=sum/a[i][i];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
 }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 /************ Frequencies ********************/        pt[j]=p[j]; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      } 
 {  /* Some frequencies */      fptt=(*func)(ptt); 
        if (fptt < fp) { 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   int first;        if (t < 0.0) { 
   double ***freq; /* Frequencies */          linmin(p,xit,n,fret,func); 
   double *pp;          for (j=1;j<=n;j++) { 
   double pos, k2, dateintsum=0,k2cpt=0;            xi[j][ibig]=xi[j][n]; 
   FILE *ficresp;            xi[j][n]=xit[j]; 
   char fileresp[FILENAMELENGTH];          }
    #ifdef DEBUG
   pp=vector(1,nlstate);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   strcpy(fileresp,"p");          for(j=1;j<=n;j++){
   strcat(fileresp,fileres);            printf(" %.12e",xit[j]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            fprintf(ficlog," %.12e",xit[j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);          }
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          printf("\n");
     exit(0);          fprintf(ficlog,"\n");
   }  #endif
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        }
   j1=0;      } 
      } 
   j=cptcoveff;  } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   /**** Prevalence limit (stable or period prevalence)  ****************/
   first=1;  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       j1++;       matrix by transitions matrix until convergence is reached */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    int i, ii,j,k;
       for (i=-1; i<=nlstate+ndeath; i++)      double min, max, maxmin, maxmax,sumnew=0.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double **matprod2();
           for(m=agemin; m <= agemax+3; m++)    double **out, cov[NCOVMAX+1], **pmij();
             freq[i][jk][m]=0;    double **newm;
          double agefin, delaymax=50 ; /* Max number of years to converge */
       dateintsum=0;  
       k2cpt=0;    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {      for (j=1;j<=nlstate+ndeath;j++){
         bool=1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     cov[1]=1.;
               bool=0;   
         }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if (bool==1) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           for(m=firstpass; m<=lastpass; m++){      newm=savm;
             k2=anint[m][i]+(mint[m][i]/12.);      /* Covariates have to be included here again */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      cov[2]=agefin;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (k=1; k<=cptcovn;k++) {
               if (m<lastpass) {        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      }
               }      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                    for (k=1; k<=cptcovprod;k++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                 dateintsum=dateintsum+k2;      
                 k2cpt++;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
               }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         }      
       }      savm=oldm;
              oldm=newm;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      maxmax=0.;
       for(j=1;j<=nlstate;j++){
       if  (cptcovn>0) {        min=1.;
         fprintf(ficresp, "\n#********** Variable ");        max=0.;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=1; i<=nlstate; i++) {
         fprintf(ficresp, "**********\n#");          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(i=1; i<=nlstate;i++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          max=FMAX(max,prlim[i][j]);
       fprintf(ficresp, "\n");          min=FMIN(min,prlim[i][j]);
              }
       for(i=(int)agemin; i <= (int)agemax+3; i++){        maxmin=max-min;
         if(i==(int)agemax+3){        maxmax=FMAX(maxmax,maxmin);
           fprintf(ficlog,"Total");      }
         }else{      if(maxmax < ftolpl){
           if(first==1){        return prlim;
             first=0;      }
             printf("See log file for details...\n");    }
           }  }
           fprintf(ficlog,"Age %d", i);  
         }  /*************** transition probabilities ***************/ 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
             pp[jk] += freq[jk][m][i];  {
         }    /* According to parameters values stored in x and the covariate's values stored in cov,
         for(jk=1; jk <=nlstate ; jk++){       computes the probability to be observed in state j being in state i by appying the
           for(m=-1, pos=0; m <=0 ; m++)       model to the ncovmodel covariates (including constant and age).
             pos += freq[jk][m][i];       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           if(pp[jk]>=1.e-10){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             if(first==1){       ncth covariate in the global vector x is given by the formula:
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
             }       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           }else{       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
             if(first==1)       Outputs ps[i][j] the probability to be observed in j being in j according to
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    */
           }    double s1, lnpijopii;
         }    /*double t34;*/
     int i,j,j1, nc, ii, jj;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for(i=1; i<= nlstate; i++){
             pp[jk] += freq[jk][m][i];        for(j=1; j<i;j++){
         }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += param[i][j][nc]*cov[nc];*/
         for(jk=1,pos=0; jk <=nlstate ; jk++)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           pos += pp[jk];  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         for(jk=1; jk <=nlstate ; jk++){          }
           if(pos>=1.e-5){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             if(first==1)  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(j=i+1; j<=nlstate+ndeath;j++){
           }else{          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             if(first==1)            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }          }
           if( i <= (int) agemax){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             if(pos>=1.e-5){        }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      }
               probs[i][jk][j1]= pp[jk]/pos;      
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for(i=1; i<= nlstate; i++){
             }        s1=0;
             else        for(j=1; j<i; j++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }        }
                for(j=i+1; j<=nlstate+ndeath; j++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for(m=-1; m <=nlstate+ndeath; m++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             if(freq[jk][m][i] !=0 ) {        }
             if(first==1)        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        ps[i][i]=1./(s1+1.);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        /* Computing other pijs */
             }        for(j=1; j<i; j++)
         if(i <= (int) agemax)          ps[i][j]= exp(ps[i][j])*ps[i][i];
           fprintf(ficresp,"\n");        for(j=i+1; j<=nlstate+ndeath; j++)
         if(first==1)          ps[i][j]= exp(ps[i][j])*ps[i][i];
           printf("Others in log...\n");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         fprintf(ficlog,"\n");      } /* end i */
       }      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
   dateintmean=dateintsum/k2cpt;          ps[ii][jj]=0;
            ps[ii][ii]=1;
   fclose(ficresp);        }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      }
   free_vector(pp,1,nlstate);      
    
   /* End of Freq */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
 /************ Prevalence ********************/  /*       } */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /*       printf("\n "); */
 {  /* Some frequencies */  /*        } */
    /*        printf("\n ");printf("%lf ",cov[2]); */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;         /*
   double ***freq; /* Frequencies */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double *pp;        goto end;*/
   double pos, k2;      return ps;
   }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /**************** Product of 2 matrices ******************/
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   j1=0;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   j=cptcoveff;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   for(k1=1; k1<=j;k1++){       a pointer to pointers identical to out */
     for(i1=1; i1<=ncodemax[k1];i1++){    long i, j, k;
       j1++;    for(i=nrl; i<= nrh; i++)
            for(k=ncolol; k<=ncoloh; k++)
       for (i=-1; i<=nlstate+ndeath; i++)          for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)            out[i][k] +=in[i][j]*b[j][k];
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;    return out;
        }
       for (i=1; i<=imx; i++) {  
         bool=1;  
         if  (cptcovn>0) {  /************* Higher Matrix Product ***************/
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
               bool=0;  {
         }    /* Computes the transition matrix starting at age 'age' over 
         if (bool==1) {       'nhstepm*hstepm*stepm' months (i.e. until
           for(m=firstpass; m<=lastpass; m++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             k2=anint[m][i]+(mint[m][i]/12.);       nhstepm*hstepm matrices. 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               if(agev[m][i]==0) agev[m][i]=agemax+1;       (typically every 2 years instead of every month which is too big 
               if(agev[m][i]==1) agev[m][i]=agemax+2;       for the memory).
               if (m<lastpass) {       Model is determined by parameters x and covariates have to be 
                 if (calagedate>0)       included manually here. 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
                 else       */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    int i, j, d, h, k;
               }    double **out, cov[NCOVMAX+1];
             }    double **newm;
           }  
         }    /* Hstepm could be zero and should return the unit matrix */
       }    for (i=1;i<=nlstate+ndeath;i++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){      for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];      }
         }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(jk=1; jk <=nlstate ; jk++){    for(h=1; h <=nhstepm; h++){
           for(m=-1, pos=0; m <=0 ; m++)      for(d=1; d <=hstepm; d++){
             pos += freq[jk][m][i];        newm=savm;
         }        /* Covariates have to be included here again */
                cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) 
             pp[jk] += freq[jk][m][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
                  cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for (k=1; k<=cptcovprod;k++)
                  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <= (int) agemax){  
             if(pos>=1.e-5){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               probs[i][jk][j1]= pp[jk]/pos;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         }/* end jk */        savm=oldm;
       }/* end i */        oldm=newm;
     } /* end i1 */      }
   } /* end k1 */      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
            po[i][j][h]=newm[i][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   free_vector(pp,1,nlstate);        }
        /*printf("h=%d ",h);*/
 }  /* End of Freq */    } /* end h */
   /*     printf("\n H=%d \n",h); */
 /************* Waves Concatenation ***************/    return po;
   }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*************** log-likelihood *************/
      Death is a valid wave (if date is known).  double func( double *x)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    int i, ii, j, k, mi, d, kk;
      and mw[mi+1][i]. dh depends on stepm.    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      */    double **out;
     double sw; /* Sum of weights */
   int i, mi, m;    double lli; /* Individual log likelihood */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    int s1, s2;
      double sum=0., jmean=0.;*/    double bbh, survp;
   int first;    long ipmx;
   int j, k=0,jk, ju, jl;    /*extern weight */
   double sum=0.;    /* We are differentiating ll according to initial status */
   first=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   jmin=1e+5;    /*for(i=1;i<imx;i++) 
   jmax=-1;      printf(" %d\n",s[4][i]);
   jmean=0.;    */
   for(i=1; i<=imx; i++){    cov[1]=1.;
     mi=0;  
     m=firstpass;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    if(mle==1){
         mw[++mi][i]=m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(m >=lastpass)        /* Computes the values of the ncovmodel covariates of the model
         break;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       else           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         m++;           to be observed in j being in i according to the model.
     }/* end while */         */
     if (s[m][i] > nlstate){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mi++;     /* Death is another wave */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       /* if(mi==0)  never been interviewed correctly before death */           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
          /* Only death is a correct wave */           has been calculated etc */
       mw[mi][i]=m;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     wav[i]=mi;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(mi==0){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(first==0){            }
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);          for(d=0; d<dh[mi][i]; d++){
         first=1;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(first==1){            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       }            }
     } /* end mi==0 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   for(i=1; i<=imx; i++){            oldm=newm;
     for(mi=1; mi<wav[i];mi++){          } /* end mult */
       if (stepm <=0)        
         dh[mi][i]=1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       else{          /* But now since version 0.9 we anticipate for bias at large stepm.
         if (s[mw[mi+1][i]][i] > nlstate) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           if (agedc[i] < 2*AGESUP) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           * the nearest (and in case of equal distance, to the lowest) interval but now
           if(j==0) j=1;  /* Survives at least one month after exam */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           k=k+1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           if (j >= jmax) jmax=j;           * probability in order to take into account the bias as a fraction of the way
           if (j <= jmin) jmin=j;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           sum=sum+j;           * -stepm/2 to stepm/2 .
           /*if (j<0) printf("j=%d num=%d \n",j,i); */           * For stepm=1 the results are the same as for previous versions of Imach.
           }           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
         else{          s1=s[mw[mi][i]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          s2=s[mw[mi+1][i]][i];
           k=k+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           if (j >= jmax) jmax=j;          /* bias bh is positive if real duration
           else if (j <= jmin)jmin=j;           * is higher than the multiple of stepm and negative otherwise.
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */           */
           sum=sum+j;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          if( s2 > nlstate){ 
         jk= j/stepm;            /* i.e. if s2 is a death state and if the date of death is known 
         jl= j -jk*stepm;               then the contribution to the likelihood is the probability to 
         ju= j -(jk+1)*stepm;               die between last step unit time and current  step unit time, 
         if(jl <= -ju)               which is also equal to probability to die before dh 
           dh[mi][i]=jk;               minus probability to die before dh-stepm . 
         else               In version up to 0.92 likelihood was computed
           dh[mi][i]=jk+1;          as if date of death was unknown. Death was treated as any other
         if(dh[mi][i]==0)          health state: the date of the interview describes the actual state
           dh[mi][i]=1; /* At least one step */          and not the date of a change in health state. The former idea was
       }          to consider that at each interview the state was recorded
     }          (healthy, disable or death) and IMaCh was corrected; but when we
   }          introduced the exact date of death then we should have modified
   jmean=sum/k;          the contribution of an exact death to the likelihood. This new
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          contribution is smaller and very dependent of the step unit
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          stepm. It is no more the probability to die between last interview
  }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 /*********** Tricode ****************************/          probability to die within a month. Thanks to Chris
 void tricode(int *Tvar, int **nbcode, int imx)          Jackson for correcting this bug.  Former versions increased
 {          mortality artificially. The bad side is that we add another loop
   int Ndum[20],ij=1, k, j, i;          which slows down the processing. The difference can be up to 10%
   int cptcode=0;          lower mortality.
   cptcoveff=0;            */
              lli=log(out[s1][s2] - savm[s1][s2]);
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  
           } else if  (s2==-2) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            for (j=1,survp=0. ; j<=nlstate; j++) 
     for (i=1; i<=imx; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       ij=(int)(covar[Tvar[j]][i]);            /*survp += out[s1][j]; */
       Ndum[ij]++;            lli= log(survp);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          }
       if (ij > cptcode) cptcode=ij;          
     }          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
     for (i=0; i<=cptcode; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if(Ndum[i]!=0) ncodemax[j]++;            lli= log(survp); 
     }          } 
     ij=1;  
           else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
     for (i=1; i<=ncodemax[j]; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for (k=0; k<=19; k++) {            lli= log(survp); 
         if (Ndum[k] != 0) {          } 
           nbcode[Tvar[j]][ij]=k;          
                    else{
           ij++;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if (ij > ncodemax[j]) break;          } 
       }            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
  for (k=0; k<19; k++) Ndum[k]=0;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for (i=1; i<=ncovmodel-2; i++) {        } /* end of wave */
    ij=Tvar[i];      } /* end of individual */
    Ndum[ij]++;    }  else if(mle==2){
  }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  ij=1;        for(mi=1; mi<= wav[i]-1; mi++){
  for (i=1; i<=10; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
    if((Ndum[i]!=0) && (i<=ncovcol)){            for (j=1;j<=nlstate+ndeath;j++){
      Tvaraff[ij]=i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      ij++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    }            }
  }          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
  cptcoveff=ij-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*********** Health Expectancies ****************/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 {            oldm=newm;
   /* Health expectancies */          } /* end mult */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        
   double age, agelim, hf;          s1=s[mw[mi][i]][i];
   double ***p3mat,***varhe;          s2=s[mw[mi+1][i]][i];
   double **dnewm,**doldm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double *xp;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double **gp, **gm;          ipmx +=1;
   double ***gradg, ***trgradg;          sw += weight[i];
   int theta;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      } /* end of individual */
   xp=vector(1,npar);    }  else if(mle==3){  /* exponential inter-extrapolation */
   dnewm=matrix(1,nlstate*2,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   doldm=matrix(1,nlstate*2,1,nlstate*2);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"# Health expectancies\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"# Age");            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            }
   fprintf(ficreseij,"\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   if(estepm < stepm){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf ("Problem %d lower than %d\n",estepm, stepm);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   else  hstepm=estepm;              }
   /* We compute the life expectancy from trapezoids spaced every estepm months            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * This is mainly to measure the difference between two models: for example                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * if stepm=24 months pijx are given only every 2 years and by summing them            savm=oldm;
    * we are calculating an estimate of the Life Expectancy assuming a linear            oldm=newm;
    * progression inbetween and thus overestimating or underestimating according          } /* end mult */
    * to the curvature of the survival function. If, for the same date, we        
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          s1=s[mw[mi][i]][i];
    * to compare the new estimate of Life expectancy with the same linear          s2=s[mw[mi+1][i]][i];
    * hypothesis. A more precise result, taking into account a more precise          bbh=(double)bh[mi][i]/(double)stepm; 
    * curvature will be obtained if estepm is as small as stepm. */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   /* For example we decided to compute the life expectancy with the smallest unit */          sw += weight[i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      nhstepm is the number of hstepm from age to agelim        } /* end of wave */
      nstepm is the number of stepm from age to agelin.      } /* end of individual */
      Look at hpijx to understand the reason of that which relies in memory size    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      and note for a fixed period like estepm months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      survival function given by stepm (the optimization length). Unfortunately it        for(mi=1; mi<= wav[i]-1; mi++){
      means that if the survival funtion is printed only each two years of age and if          for (ii=1;ii<=nlstate+ndeath;ii++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            for (j=1;j<=nlstate+ndeath;j++){
      results. So we changed our mind and took the option of the best precision.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            }
           for(d=0; d<dh[mi][i]; d++){
   agelim=AGESUP;            newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* nhstepm age range expressed in number of stepm */            for (kk=1; kk<=cptcovage;kk++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            }
     /* if (stepm >= YEARM) hstepm=1;*/          
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            savm=oldm;
     gp=matrix(0,nhstepm,1,nlstate*2);            oldm=newm;
     gm=matrix(0,nhstepm,1,nlstate*2);          } /* end mult */
         
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          s1=s[mw[mi][i]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          s2=s[mw[mi+1][i]][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
     /* Computing Variances of health expectancies */          ipmx +=1;
           sw += weight[i];
      for(theta=1; theta <=npar; theta++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } /* end of wave */
       }      } /* end of individual */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       cptj=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<= nlstate; j++){        for(mi=1; mi<= wav[i]-1; mi++){
         for(i=1; i<=nlstate; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           cptj=cptj+1;            for (j=1;j<=nlstate+ndeath;j++){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=npar; i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       cptj=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate; j++){            savm=oldm;
         for(i=1;i<=nlstate;i++){            oldm=newm;
           cptj=cptj+1;          } /* end mult */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
       for(j=1; j<= nlstate*2; j++)          sw += weight[i];
         for(h=0; h<=nhstepm-1; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         }        } /* end of wave */
      }      } /* end of individual */
        } /* End of if */
 /* End theta */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
      for(h=0; h<=nhstepm-1; h++)  }
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)  /*************** log-likelihood *************/
           trgradg[h][j][theta]=gradg[h][theta][j];  double funcone( double *x)
        {
     /* Same as likeli but slower because of a lot of printf and if */
      for(i=1;i<=nlstate*2;i++)    int i, ii, j, k, mi, d, kk;
       for(j=1;j<=nlstate*2;j++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         varhe[i][j][(int)age] =0.;    double **out;
     double lli; /* Individual log likelihood */
      printf("%d|",(int)age);fflush(stdout);    double llt;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    int s1, s2;
      for(h=0;h<=nhstepm-1;h++){    double bbh, survp;
       for(k=0;k<=nhstepm-1;k++){    /*extern weight */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    /* We are differentiating ll according to initial status */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(i=1;i<=nlstate*2;i++)    /*for(i=1;i<imx;i++) 
           for(j=1;j<=nlstate*2;j++)      printf(" %d\n",s[4][i]);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    */
       }    cov[1]=1.;
     }  
     /* Computing expectancies */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
     fprintf(ficreseij,"%3.0f",age );        for(d=0; d<dh[mi][i]; d++){
     cptj=0;          newm=savm;
     for(i=1; i<=nlstate;i++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<=nlstate;j++){          for (kk=1; kk<=cptcovage;kk++) {
         cptj++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          }
       }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficreseij,"\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
     free_matrix(gm,0,nhstepm,1,nlstate*2);          oldm=newm;
     free_matrix(gp,0,nhstepm,1,nlstate*2);        } /* end mult */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        s1=s[mw[mi][i]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        s2=s[mw[mi+1][i]][i];
   }        bbh=(double)bh[mi][i]/(double)stepm; 
   printf("\n");        /* bias is positive if real duration
   fprintf(ficlog,"\n");         * is higher than the multiple of stepm and negative otherwise.
          */
   free_vector(xp,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   free_matrix(dnewm,1,nlstate*2,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        } else if  (s2==-2) {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          for (j=1,survp=0. ; j<=nlstate; j++) 
 }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
 /************ Variance ******************/        }else if (mle==1){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {        } else if(mle==2){
   /* Variance of health expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } else if(mle==3){  /* exponential inter-extrapolation */
   /* double **newm;*/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double **dnewm,**doldm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double **dnewmp,**doldmp;          lli=log(out[s1][s2]); /* Original formula */
   int i, j, nhstepm, hstepm, h, nstepm ;        } else{  /* mle=0 back to 1 */
   int k, cptcode;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double *xp;          /*lli=log(out[s1][s2]); */ /* Original formula */
   double **gp, **gm;  /* for var eij */        } /* End of if */
   double ***gradg, ***trgradg; /*for var eij */        ipmx +=1;
   double **gradgp, **trgradgp; /* for var p point j */        sw += weight[i];
   double *gpp, *gmp; /* for var p point j */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double ***p3mat;        if(globpr){
   double age,agelim, hf;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   int theta;   %11.6f %11.6f %11.6f ", \
   char digit[4];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   char digitp[16];                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   char fileresprobmorprev[FILENAMELENGTH];            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   if(popbased==1)          }
     strcpy(digitp,"-populbased-");          fprintf(ficresilk," %10.6f\n", -llt);
   else        }
     strcpy(digitp,"-stablbased-");      } /* end of wave */
     } /* end of individual */
   strcpy(fileresprobmorprev,"prmorprev");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   sprintf(digit,"%-d",ij);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    if(globpr==0){ /* First time we count the contributions and weights */
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      gipmx=ipmx;
   strcat(fileresprobmorprev,fileres);      gsw=sw;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    return -l;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  }
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  /*************** function likelione ***********/
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  {
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    /* This routine should help understanding what is done with 
     fprintf(ficresprobmorprev," p.%-d SE",j);       the selection of individuals/waves and
     for(i=1; i<=nlstate;i++)       to check the exact contribution to the likelihood.
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);       Plotting could be done.
   }       */
   fprintf(ficresprobmorprev,"\n");    int k;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    if(*globpri !=0){ /* Just counts and sums, no printings */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      strcpy(fileresilk,"ilk"); 
     exit(0);      strcat(fileresilk,fileres);
   }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   else{        printf("Problem with resultfile: %s\n", fileresilk);
     fprintf(ficgp,"\n# Routine varevsij");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   }      }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     printf("Problem with html file: %s\n", optionfilehtm);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     exit(0);      for(k=1; k<=nlstate; k++) 
   }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   else{      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    }
   }  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    *fretone=(*funcone)(p);
     if(*globpri !=0){
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      fclose(ficresilk);
   fprintf(ficresvij,"# Age");      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   for(i=1; i<=nlstate;i++)      fflush(fichtm); 
     for(j=1; j<=nlstate;j++)    } 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    return;
   fprintf(ficresvij,"\n");  }
   
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  /*********** Maximum Likelihood Estimation ***************/
   doldm=matrix(1,nlstate,1,nlstate);  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  {
     int i,j, iter;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    double **xi;
   gpp=vector(nlstate+1,nlstate+ndeath);    double fret;
   gmp=vector(nlstate+1,nlstate+ndeath);    double fretone; /* Only one call to likelihood */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /*  char filerespow[FILENAMELENGTH];*/
      xi=matrix(1,npar,1,npar);
   if(estepm < stepm){    for (i=1;i<=npar;i++)
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (j=1;j<=npar;j++)
   }        xi[i][j]=(i==j ? 1.0 : 0.0);
   else  hstepm=estepm;      printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /* For example we decided to compute the life expectancy with the smallest unit */    strcpy(filerespow,"pow"); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    strcat(filerespow,fileres);
      nhstepm is the number of hstepm from age to agelim    if((ficrespow=fopen(filerespow,"w"))==NULL) {
      nstepm is the number of stepm from age to agelin.      printf("Problem with resultfile: %s\n", filerespow);
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      and note for a fixed period like k years */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      survival function given by stepm (the optimization length). Unfortunately it    for (i=1;i<=nlstate;i++)
      means that if the survival funtion is printed only each two years of age and if      for(j=1;j<=nlstate+ndeath;j++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      results. So we changed our mind and took the option of the best precision.    fprintf(ficrespow,"\n");
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    powell(p,xi,npar,ftol,&iter,&fret,func);
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_matrix(xi,1,npar,1,npar);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fclose(ficrespow);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);  }
   
   /**** Computes Hessian and covariance matrix ***/
     for(theta=1; theta <=npar; theta++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(i=1; i<=npar; i++){ /* Computes gradient */  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double  **a,**y,*x,pd;
       }    double **hess;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, j,jk;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int *indx;
   
       if (popbased==1) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(i=1; i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           prlim[i][i]=probs[(int)age][i][ij];    void lubksb(double **a, int npar, int *indx, double b[]) ;
       }    void ludcmp(double **a, int npar, int *indx, double *d) ;
      double gompertz(double p[]);
       for(j=1; j<= nlstate; j++){    hess=matrix(1,npar,1,npar);
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         }    for (i=1;i<=npar;i++){
       }      printf("%d",i);fflush(stdout);
       /* This for computing forces of mortality (h=1)as a weighted average */      fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){     
         for(i=1; i<= nlstate; i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      
       }          /*  printf(" %f ",p[i]);
       /* end force of mortality */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++)  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if (j>i) { 
            printf(".%d%d",i,j);fflush(stdout);
       if (popbased==1) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(i=1; i<=nlstate;i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
           prlim[i][i]=probs[(int)age][i][ij];          
       }          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){      }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\n");
         }    fprintf(ficlog,"\n");
       }  
       /* This for computing force of mortality (h=1)as a weighted average */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(i=1; i<= nlstate; i++)    
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    a=matrix(1,npar,1,npar);
       }        y=matrix(1,npar,1,npar);
       /* end force of mortality */    x=vector(1,npar);
     indx=ivector(1,npar);
       for(j=1; j<= nlstate; j++) /* vareij */    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    ludcmp(a,npar,indx,&pd);
         }  
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    for (j=1;j<=npar;j++) {
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
       lubksb(a,npar,indx,x);
     } /* End theta */      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      }
     }
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)    printf("\n#Hessian matrix#\n");
         for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\n#Hessian matrix#\n");
           trgradg[h][j][theta]=gradg[h][theta][j];    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        printf("%.3e ",hess[i][j]);
       for(theta=1; theta <=npar; theta++)        fprintf(ficlog,"%.3e ",hess[i][j]);
         trgradgp[j][theta]=gradgp[theta][j];      }
       printf("\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fprintf(ficlog,"\n");
     for(i=1;i<=nlstate;i++)    }
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     for(h=0;h<=nhstepm;h++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(k=0;k<=nhstepm;k++){    ludcmp(a,npar,indx,&pd);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /*  printf("\n#Hessian matrix recomputed#\n");
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    for (j=1;j<=npar;j++) {
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
     }      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     /* pptj */        y[i][j]=x[i];
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        printf("%.3e ",y[i][j]);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        fprintf(ficlog,"%.3e ",y[i][j]);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      }
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      printf("\n");
         varppt[j][i]=doldmp[j][i];      fprintf(ficlog,"\n");
     /* end ppptj */    }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  
      free_matrix(a,1,npar,1,npar);
     if (popbased==1) {    free_matrix(y,1,npar,1,npar);
       for(i=1; i<=nlstate;i++)    free_vector(x,1,npar);
         prlim[i][i]=probs[(int)age][i][ij];    free_ivector(indx,1,npar);
     }    free_matrix(hess,1,npar,1,npar);
      
     /* This for computing force of mortality (h=1)as a weighted average */  
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  }
       for(i=1; i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  /*************** hessian matrix ****************/
     }      double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     /* end force of mortality */  {
     int i;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    int l=1, lmax=20;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double k1,k2;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    double p2[MAXPARM+1]; /* identical to x */
       for(i=1; i<=nlstate;i++){    double res;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    double fx;
     }    int k=0,kmax=10;
     fprintf(ficresprobmorprev,"\n");    double l1;
   
     fprintf(ficresvij,"%.0f ",age );    fx=func(x);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(j=1; j<=nlstate;j++){    for(l=0 ; l <=lmax; l++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      l1=pow(10,l);
       }      delts=delt;
     fprintf(ficresvij,"\n");      for(k=1 ; k <kmax; k=k+1){
     free_matrix(gp,0,nhstepm,1,nlstate);        delt = delta*(l1*k);
     free_matrix(gm,0,nhstepm,1,nlstate);        p2[theta]=x[theta] +delt;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        k1=func(p2)-fx;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        p2[theta]=x[theta]-delt;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k2=func(p2)-fx;
   } /* End age */        /*res= (k1-2.0*fx+k2)/delt/delt; */
   free_vector(gpp,nlstate+1,nlstate+ndeath);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   free_vector(gmp,nlstate+1,nlstate+ndeath);        
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  #ifdef DEBUGHESS
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  #endif
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);          k=kmax;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);        }
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);          k=kmax; l=lmax*10.;
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        }
 */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);          delts=delt;
         }
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,nlstate);    }
   free_matrix(dnewm,1,nlstate,1,npar);    delti[theta]=delts;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    return res; 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  }
   fclose(ficresprobmorprev);  
   fclose(ficgp);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   fclose(fichtm);  {
     int i;
 }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 /************ Variance of prevlim ******************/    double p2[MAXPARM+1];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int k;
 {  
   /* Variance of prevalence limit */    fx=func(x);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (k=1; k<=2; k++) {
   double **newm;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double **dnewm,**doldm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int i, j, nhstepm, hstepm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int k, cptcode;      k1=func(p2)-fx;
   double *xp;    
   double *gp, *gm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double **gradg, **trgradg;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double age,agelim;      k2=func(p2)-fx;
   int theta;    
          p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresvpl,"# Age");      k3=func(p2)-fx;
   for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %1d-%1d",i,i);      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresvpl,"\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   xp=vector(1,npar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   dnewm=matrix(1,nlstate,1,npar);  #ifdef DEBUG
   doldm=matrix(1,nlstate,1,nlstate);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   hstepm=1*YEARM; /* Every year of age */  #endif
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }
   agelim = AGESUP;    return res;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /************** Inverse of matrix **************/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void ludcmp(double **a, int n, int *indx, double *d) 
     gradg=matrix(1,npar,1,nlstate);  { 
     gp=vector(1,nlstate);    int i,imax,j,k; 
     gm=vector(1,nlstate);    double big,dum,sum,temp; 
     double *vv; 
     for(theta=1; theta <=npar; theta++){   
       for(i=1; i<=npar; i++){ /* Computes gradient */    vv=vector(1,n); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    *d=1.0; 
       }    for (i=1;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      big=0.0; 
       for(i=1;i<=nlstate;i++)      for (j=1;j<=n;j++) 
         gp[i] = prlim[i][i];        if ((temp=fabs(a[i][j])) > big) big=temp; 
          if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(i=1; i<=npar; i++) /* Computes gradient */      vv[i]=1.0/big; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1;j<=n;j++) { 
       for(i=1;i<=nlstate;i++)      for (i=1;i<j;i++) { 
         gm[i] = prlim[i][i];        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for(i=1;i<=nlstate;i++)        a[i][j]=sum; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      } 
     } /* End theta */      big=0.0; 
       for (i=j;i<=n;i++) { 
     trgradg =matrix(1,nlstate,1,npar);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
     for(j=1; j<=nlstate;j++)          sum -= a[i][k]*a[k][j]; 
       for(theta=1; theta <=npar; theta++)        a[i][j]=sum; 
         trgradg[j][theta]=gradg[theta][j];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     for(i=1;i<=nlstate;i++)          imax=i; 
       varpl[i][(int)age] =0.;        } 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      if (j != imax) { 
     for(i=1;i<=nlstate;i++)        for (k=1;k<=n;k++) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
     fprintf(ficresvpl,"%.0f ",age );          a[j][k]=dum; 
     for(i=1; i<=nlstate;i++)        } 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        *d = -(*d); 
     fprintf(ficresvpl,"\n");        vv[imax]=vv[j]; 
     free_vector(gp,1,nlstate);      } 
     free_vector(gm,1,nlstate);      indx[j]=imax; 
     free_matrix(gradg,1,npar,1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     free_matrix(trgradg,1,nlstate,1,npar);      if (j != n) { 
   } /* End age */        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   free_vector(xp,1,npar);      } 
   free_matrix(doldm,1,nlstate,1,npar);    } 
   free_matrix(dnewm,1,nlstate,1,nlstate);    free_vector(vv,1,n);  /* Doesn't work */
   ;
 }  } 
   
 /************ Variance of one-step probabilities  ******************/  void lubksb(double **a, int n, int *indx, double b[]) 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  { 
 {    int i,ii=0,ip,j; 
   int i, j=0,  i1, k1, l1, t, tj;    double sum; 
   int k2, l2, j1,  z1;   
   int k=0,l, cptcode;    for (i=1;i<=n;i++) { 
   int first=1, first1;      ip=indx[i]; 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      sum=b[ip]; 
   double **dnewm,**doldm;      b[ip]=b[i]; 
   double *xp;      if (ii) 
   double *gp, *gm;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   double **gradg, **trgradg;      else if (sum) ii=i; 
   double **mu;      b[i]=sum; 
   double age,agelim, cov[NCOVMAX];    } 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    for (i=n;i>=1;i--) { 
   int theta;      sum=b[i]; 
   char fileresprob[FILENAMELENGTH];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   char fileresprobcov[FILENAMELENGTH];      b[i]=sum/a[i][i]; 
   char fileresprobcor[FILENAMELENGTH];    } 
   } 
   double ***varpij;  
   void pstamp(FILE *fichier)
   strcpy(fileresprob,"prob");  {
   strcat(fileresprob,fileres);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  /************ Frequencies ********************/
   }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   strcpy(fileresprobcov,"probcov");  {  /* Some frequencies */
   strcat(fileresprobcov,fileres);    
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    int i, m, jk, k1,i1, j1, bool, z1,j;
     printf("Problem with resultfile: %s\n", fileresprobcov);    int first;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    double ***freq; /* Frequencies */
   }    double *pp, **prop;
   strcpy(fileresprobcor,"probcor");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   strcat(fileresprobcor,fileres);    char fileresp[FILENAMELENGTH];
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    
     printf("Problem with resultfile: %s\n", fileresprobcor);    pp=vector(1,nlstate);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    strcat(fileresp,fileres);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      exit(0);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    }
      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    j1=0;
   fprintf(ficresprob,"# Age");    
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    j=cptcoveff;
   fprintf(ficresprobcov,"# Age");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");    first=1;
   
     for(k1=1; k1<=j;k1++){
   for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
     for(j=1; j<=(nlstate+ndeath);j++){        j1++;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          scanf("%d", i);*/
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for (i=-5; i<=nlstate+ndeath; i++)  
     }            for (jk=-5; jk<=nlstate+ndeath; jk++)  
   fprintf(ficresprob,"\n");            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprobcov,"\n");              freq[i][jk][m]=0;
   fprintf(ficresprobcor,"\n");  
   xp=vector(1,npar);      for (i=1; i<=nlstate; i++)  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        for(m=iagemin; m <= iagemax+3; m++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          prop[i][m]=0;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        dateintsum=0;
   first=1;        k2cpt=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for (i=1; i<=imx; i++) {
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          bool=1;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          if  (cptcovn>0) {
     exit(0);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   else{                bool=0;
     fprintf(ficgp,"\n# Routine varprob");          }
   }          if (bool==1){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            for(m=firstpass; m<=lastpass; m++){
     printf("Problem with html file: %s\n", optionfilehtm);              k2=anint[m][i]+(mint[m][i]/12.);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     exit(0);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   else{                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");                if (m<lastpass) {
     fprintf(fichtm,"\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");                }
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");                
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   }                  k2cpt++;
                 }
                  /*}*/
   cov[1]=1;            }
   tj=cptcoveff;          }
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        }
   j1=0;         
   for(t=1; t<=tj;t++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     for(i1=1; i1<=ncodemax[t];i1++){        pstamp(ficresp);
       j1++;        if  (cptcovn>0) {
                fprintf(ficresp, "\n#********** Variable "); 
       if  (cptcovn>0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresprob, "\n#********** Variable ");          fprintf(ficresp, "**********\n#");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresprob, "**********\n#");        for(i=1; i<=nlstate;i++) 
         fprintf(ficresprobcov, "\n#********** Variable ");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficresp, "\n");
         fprintf(ficresprobcov, "**********\n#");        
                for(i=iagemin; i <= iagemax+3; i++){
         fprintf(ficgp, "\n#********** Variable ");          if(i==iagemax+3){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            fprintf(ficlog,"Total");
         fprintf(ficgp, "**********\n#");          }else{
                    if(first==1){
                      first=0;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");              printf("See log file for details...\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");            fprintf(ficlog,"Age %d", i);
                  }
         fprintf(ficresprobcor, "\n#********** Variable ");              for(jk=1; jk <=nlstate ; jk++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         fprintf(ficgp, "**********\n#");                  pp[jk] += freq[jk][m][i]; 
       }          }
                for(jk=1; jk <=nlstate ; jk++){
       for (age=bage; age<=fage; age ++){            for(m=-1, pos=0; m <=0 ; m++)
         cov[2]=age;              pos += freq[jk][m][i];
         for (k=1; k<=cptcovn;k++) {            if(pp[jk]>=1.e-10){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              if(first==1){
         }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              }
         for (k=1; k<=cptcovprod;k++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            }else{
                      if(first==1)
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         gp=vector(1,(nlstate)*(nlstate+ndeath));            }
         gm=vector(1,(nlstate)*(nlstate+ndeath));          }
      
         for(theta=1; theta <=npar; theta++){          for(jk=1; jk <=nlstate ; jk++){
           for(i=1; i<=npar; i++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              pp[jk] += freq[jk][m][i];
                    }       
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                      pos += pp[jk];
           k=0;            posprop += prop[jk][i];
           for(i=1; i<= (nlstate); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){
               k=k+1;            if(pos>=1.e-5){
               gp[k]=pmmij[i][j];              if(first==1)
             }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                      }else{
           for(i=1; i<=npar; i++)              if(first==1)
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
           k=0;            if( i <= iagemax){
           for(i=1; i<=(nlstate); i++){              if(pos>=1.e-5){
             for(j=1; j<=(nlstate+ndeath);j++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               k=k+1;                /*probs[i][jk][j1]= pp[jk]/pos;*/
               gm[k]=pmmij[i][j];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             }              }
           }              else
                      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            }
         }          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            for(m=-1; m <=nlstate+ndeath; m++)
           for(theta=1; theta <=npar; theta++)              if(freq[jk][m][i] !=0 ) {
             trgradg[j][theta]=gradg[theta][j];              if(first==1)
                        printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              }
                  if(i <= iagemax)
         pmij(pmmij,cov,ncovmodel,x,nlstate);            fprintf(ficresp,"\n");
                  if(first==1)
         k=0;            printf("Others in log...\n");
         for(i=1; i<=(nlstate); i++){          fprintf(ficlog,"\n");
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;      }
             mu[k][(int) age]=pmmij[i][j];    }
           }    dateintmean=dateintsum/k2cpt; 
         }   
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    fclose(ficresp);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             varpij[i][j][(int)age] = doldm[i][j];    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         /*printf("\n%d ",(int)age);    /* End of Freq */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /************ Prevalence ********************/
      }*/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
         fprintf(ficresprob,"\n%d ",(int)age);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         fprintf(ficresprobcov,"\n%d ",(int)age);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         fprintf(ficresprobcor,"\n%d ",(int)age);       We still use firstpass and lastpass as another selection.
     */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)   
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    int i, m, jk, k1, i1, j1, bool, z1,j;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double ***freq; /* Frequencies */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    double *pp, **prop;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    double pos,posprop; 
         }    double  y2; /* in fractional years */
         i=0;    int iagemin, iagemax;
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){    iagemin= (int) agemin;
             i=i++;    iagemax= (int) agemax;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    /*pp=vector(1,nlstate);*/
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             for (j=1; j<=i;j++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    j1=0;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    
             }    j=cptcoveff;
           }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         }/* end of loop for state */    
       } /* end of loop for age */    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
       /* Confidence intervalle of pij  */        j1++;
       /*        
       fprintf(ficgp,"\nset noparametric;unset label");        for (i=1; i<=nlstate; i++)  
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            prop[i][m]=0.0;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);       
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        for (i=1; i<=imx; i++) { /* Each individual */
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          bool=1;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          if  (cptcovn>0) {
       */            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                bool=0;
       first1=1;          } 
       for (k2=1; k2<=(nlstate);k2++){          if (bool==1) { 
         for (l2=1; l2<=(nlstate+ndeath);l2++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           if(l2==k2) continue;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           j=(k2-1)*(nlstate+ndeath)+l2;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           for (k1=1; k1<=(nlstate);k1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             for (l1=1; l1<=(nlstate+ndeath);l1++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if(l1==k1) continue;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
               i=(k1-1)*(nlstate+ndeath)+l1;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
               if(i<=j) continue;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               for (age=bage; age<=fage; age ++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if ((int)age %5==0){                  prop[s[m][i]][iagemax+3] += weight[i]; 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                } 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            } /* end selection of waves */
                   mu1=mu[i][(int) age]/stepm*YEARM ;          }
                   mu2=mu[j][(int) age]/stepm*YEARM;        }
                   c12=cv12/sqrt(v1*v2);        for(i=iagemin; i <= iagemax+3; i++){  
                   /* Computing eigen value of matrix of covariance */          
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            posprop += prop[jk][i]; 
                   /* Eigen vectors */          } 
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   /*v21=sqrt(1.-v11*v11); *//* error */          for(jk=1; jk <=nlstate ; jk++){     
                   v21=(lc1-v1)/cv12*v11;            if( i <=  iagemax){ 
                   v12=-v21;              if(posprop>=1.e-5){ 
                   v22=v11;                probs[i][jk][j1]= prop[jk][i]/posprop;
                   tnalp=v21/v11;              } else
                   if(first1==1){                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                     first1=0;            } 
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          }/* end jk */ 
                   }        }/* end i */ 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      } /* end i1 */
                   /*printf(fignu*/    } /* end k1 */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   if(first==1){    /*free_vector(pp,1,nlstate);*/
                     first=0;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                     fprintf(ficgp,"\nset parametric;unset label");  }  /* End of prevalence */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  /************* Waves Concatenation ***************/
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);  {
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);       Death is a valid wave (if date is known).
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\       and mw[mi+1][i]. dh depends on stepm.
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));       */
                   }else{  
                     first=0;    int i, mi, m;
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);       double sum=0., jmean=0.;*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    int first;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    int j, k=0,jk, ju, jl;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double sum=0.;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    first=0;
                   }/* if first */    jmin=1e+5;
                 } /* age mod 5 */    jmax=-1;
               } /* end loop age */    jmean=0.;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    for(i=1; i<=imx; i++){
               first=1;      mi=0;
             } /*l12 */      m=firstpass;
           } /* k12 */      while(s[m][i] <= nlstate){
         } /*l1 */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       }/* k1 */          mw[++mi][i]=m;
     } /* loop covariates */        if(m >=lastpass)
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          break;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        else
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          m++;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      }/* end while */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (s[m][i] > nlstate){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        mi++;     /* Death is another wave */
   }        /* if(mi==0)  never been interviewed correctly before death */
   free_vector(xp,1,npar);           /* Only death is a correct wave */
   fclose(ficresprob);        mw[mi][i]=m;
   fclose(ficresprobcov);      }
   fclose(ficresprobcor);  
   fclose(ficgp);      wav[i]=mi;
   fclose(fichtm);      if(mi==0){
 }        nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 /******************* Printing html file ***********/          first=1;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        }
                   int lastpass, int stepm, int weightopt, char model[],\        if(first==1){
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                   int popforecast, int estepm ,\        }
                   double jprev1, double mprev1,double anprev1, \      } /* end mi==0 */
                   double jprev2, double mprev2,double anprev2){    } /* End individuals */
   int jj1, k1, i1, cpt;  
   /*char optionfilehtm[FILENAMELENGTH];*/    for(i=1; i<=imx; i++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      for(mi=1; mi<wav[i];mi++){
     printf("Problem with %s \n",optionfilehtm), exit(0);        if (stepm <=0)
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          dh[mi][i]=1;
   }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n            if (agedc[i] < 2*AGESUP) {
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              else if(j<0){
  - Life expectancies by age and initial health status (estepm=%2d months):                nberr++;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  m=cptcoveff;              }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              k=k+1;
               if (j >= jmax){
  jj1=0;                jmax=j;
  for(k1=1; k1<=m;k1++){                ijmax=i;
    for(i1=1; i1<=ncodemax[k1];i1++){              }
      jj1++;              if (j <= jmin){
      if (cptcovn > 0) {                jmin=j;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                ijmin=i;
        for (cpt=1; cpt<=cptcoveff;cpt++)              }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              sum=sum+j;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      /* Pij */            }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              else{
      /* Quasi-incidences */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */            k=k+1;
        for(cpt=1; cpt<nlstate;cpt++){            if (j >= jmax) {
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              jmax=j;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              ijmax=i;
        }            }
      for(cpt=1; cpt<=nlstate;cpt++) {            else if (j <= jmin){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              jmin=j;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              ijmin=i;
      }            }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 health expectancies in states (1) and (2): e%s%d.png<br>            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if(j<0){
    } /* end i1 */              nberr++;
  }/* End k1 */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  fprintf(fichtm,"</ul>");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          jk= j/stepm;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          jl= j -jk*stepm;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          ju= j -(jk+1)*stepm;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            if(jl==0){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              dh[mi][i]=jk;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
  if(popforecast==1) fprintf(fichtm,"\n                    * to avoid the price of an extra matrix product in likelihood */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              dh[mi][i]=jk+1;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              bh[mi][i]=ju;
         <br>",fileres,fileres,fileres,fileres);            }
  else          }else{
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            if(jl <= -ju){
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
  m=cptcoveff;                                   * is higher than the multiple of stepm and negative otherwise.
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                                   */
             }
  jj1=0;            else{
  for(k1=1; k1<=m;k1++){              dh[mi][i]=jk+1;
    for(i1=1; i1<=ncodemax[k1];i1++){              bh[mi][i]=ju;
      jj1++;            }
      if (cptcovn > 0) {            if(dh[mi][i]==0){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              dh[mi][i]=1; /* At least one step */
        for (cpt=1; cpt<=cptcoveff;cpt++)              bh[mi][i]=ju; /* At least one step */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            }
      }          } /* end if mle */
      for(cpt=1; cpt<=nlstate;cpt++) {        }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      } /* end wave */
 interval) in state (%d): v%s%d%d.png <br>    }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      jmean=sum/k;
      }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
    } /* end i1 */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
  }/* End k1 */   }
  fprintf(fichtm,"</ul>");  
 fclose(fichtm);  /*********** Tricode ****************************/
 }  void tricode(int *Tvar, int **nbcode, int imx)
   {
 /******************* Gnuplot file **************/    /* Uses cptcovn+2*cptcovprod as the number of covariates */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   int ng;    int modmaxcovj=0; /* Modality max of covariates j */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    cptcoveff=0; 
     printf("Problem with file %s",optionfilegnuplot);   
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   }    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   
 #ifdef windows    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
 #endif                                 modality of this covariate Vj*/ 
 m=pow(2,cptcoveff);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                          modality of the nth covariate of individual i. */
  /* 1eme*/        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    for (k1=1; k1<= m ; k1 ++) {        if (ij > modmaxcovj) modmaxcovj=ij; 
         /* getting the maximum value of the modality of the covariate
 #ifdef windows           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);           female is 1, then modmaxcovj=1.*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      }
 #endif      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 #ifdef unix      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if( Ndum[i] != 0 )
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          ncodemax[j]++; 
 #endif        /* Number of modalities of the j th covariate. In fact
            ncodemax[j]=2 (dichotom. variables only) but it could be more for
 for (i=1; i<= nlstate ; i ++) {           historical reasons */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* Ndum[-1] number of undefined modalities */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      ij=1; 
     for (i=1; i<= nlstate ; i ++) {      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                                       k is a modality. If we have model=V1+V1*sex 
      for (i=1; i<= nlstate ; i ++) {                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            ij++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            if (ij > ncodemax[j]) break; 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        }  /* end of loop on */
 #ifdef unix      } /* end of loop on modality */ 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 #endif    
    }    for (k=0; k< maxncov; k++) Ndum[k]=0;
   }    
   /*2 eme*/    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   for (k1=1; k1<= m ; k1 ++) {     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);     Ndum[ij]++;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);   }
      
     for (i=1; i<= nlstate+1 ; i ++) {   ij=1;
       k=2*i;   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);     if((Ndum[i]!=0) && (i<=ncovcol)){
       for (j=1; j<= nlstate+1 ; j ++) {       Tvaraff[ij]=i; /*For printing */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       ij++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");     }
 }     }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   ij--;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);   cptcoveff=ij; /*Number of simple covariates*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*********** Health Expectancies ****************/
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  {
       for (j=1; j<= nlstate+1 ; j ++) {    /* Health expectancies, no variances */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int nhstepma, nstepma; /* Decreasing with age */
 }      double age, agelim, hf;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double ***p3mat;
       else fprintf(ficgp,"\" t\"\" w l 0,");    double eip;
     }  
   }    pstamp(ficreseij);
      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   /*3eme*/    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   for (k1=1; k1<= m ; k1 ++) {      for(j=1; j<=nlstate;j++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficreseij," e%1d%1d ",i,j);
       k=2+nlstate*(2*cpt-2);      }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fprintf(ficreseij," e%1d. ",i);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(ficreseij,"\n");
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    if(estepm < stepm){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      printf ("Problem %d lower than %d\n",estepm, stepm);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    }
     else  hstepm=estepm;   
 */    /* We compute the life expectancy from trapezoids spaced every estepm months
       for (i=1; i< nlstate ; i ++) {     * This is mainly to measure the difference between two models: for example
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   /* CV preval stat */     * hypothesis. A more precise result, taking into account a more precise
     for (k1=1; k1<= m ; k1 ++) {     * curvature will be obtained if estepm is as small as stepm. */
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
       for (i=1; i< nlstate ; i ++)       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficgp,"+$%d",k+i+1);       and note for a fixed period like estepm months */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             survival function given by stepm (the optimization length). Unfortunately it
       l=3+(nlstate+ndeath)*cpt;       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (i=1; i< nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
         l=3+(nlstate+ndeath)*cpt;    */
         fprintf(ficgp,"+$%d",l+i+1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      agelim=AGESUP;
     }    /* If stepm=6 months */
   }        /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /* proba elementaires */      
    for(i=1,jk=1; i <=nlstate; i++){  /* nhstepm age range expressed in number of stepm */
     for(k=1; k <=(nlstate+ndeath); k++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       if (k != i) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for(j=1; j <=ncovmodel; j++){    /* if (stepm >= YEARM) hstepm=1;*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           jk++;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,"\n");  
         }    for (age=bage; age<=fage; age ++){ 
       }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    }      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {      /* If stepm=6 months */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        if (ng==2)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      
        else      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
          fprintf(ficgp,"\nset title \"Probability\"\n");      
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        i=1;      
        for(k2=1; k2<=nlstate; k2++) {      printf("%d|",(int)age);fflush(stdout);
          k3=i;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
          for(k=1; k<=(nlstate+ndeath); k++) {      
            if (k != k2){      /* Computing expectancies */
              if(ng==2)      for(i=1; i<=nlstate;i++)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        for(j=1; j<=nlstate;j++)
              else          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              ij=1;            
              for(j=3; j <=ncovmodel; j++) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
                  ij++;  
                }      fprintf(ficreseij,"%3.0f",age );
                else      for(i=1; i<=nlstate;i++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        eip=0;
              }        for(j=1; j<=nlstate;j++){
              fprintf(ficgp,")/(1");          eip +=eij[i][j][(int)age];
                        fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
              for(k1=1; k1 <=nlstate; k1++){          }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        fprintf(ficreseij,"%9.4f", eip );
                ij=1;      }
                for(j=3; j <=ncovmodel; j++){      fprintf(ficreseij,"\n");
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }
                    ij++;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  }    printf("\n");
                  else    fprintf(ficlog,"\n");
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
                }  }
                fprintf(ficgp,")");  
              }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  {
              i=i+ncovmodel;    /* Covariances of health expectancies eij and of total life expectancies according
            }     to initial status i, ei. .
          } /* end k */    */
        } /* end k2 */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      } /* end jk */    int nhstepma, nstepma; /* Decreasing with age */
    } /* end ng */    double age, agelim, hf;
    fclose(ficgp);    double ***p3matp, ***p3matm, ***varhe;
 }  /* end gnuplot */    double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
 /*************** Moving average **************/    double ***gradg, ***trgradg;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    int theta;
   
   int i, cpt, cptcod;    double eip, vip;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    xp=vector(1,npar);
           mobaverage[(int)agedeb][i][cptcod]=0.;    xm=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for (i=1; i<=nlstate;i++){    
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    pstamp(ficresstdeij);
           for (cpt=0;cpt<=4;cpt++){    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    fprintf(ficresstdeij,"# Age");
           }    for(i=1; i<=nlstate;i++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(j=1; j<=nlstate;j++)
         }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       }      fprintf(ficresstdeij," e%1d. ",i);
     }    }
        fprintf(ficresstdeij,"\n");
 }  
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 /************** Forecasting ******************/    fprintf(ficrescveij,"# Age");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        cptj= (j-1)*nlstate+i;
   int *popage;        for(i2=1; i2<=nlstate;i2++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(j2=1; j2<=nlstate;j2++){
   double *popeffectif,*popcount;            cptj2= (j2-1)*nlstate+i2;
   double ***p3mat;            if(cptj2 <= cptj)
   char fileresf[FILENAMELENGTH];              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
  agelim=AGESUP;      }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficrescveij,"\n");
     
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   strcpy(fileresf,"f");    else  hstepm=estepm;   
   strcat(fileresf,fileres);    /* We compute the life expectancy from trapezoids spaced every estepm months
   if((ficresf=fopen(fileresf,"w"))==NULL) {     * This is mainly to measure the difference between two models: for example
     printf("Problem with forecast resultfile: %s\n", fileresf);     * if stepm=24 months pijx are given only every 2 years and by summing them
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
   printf("Computing forecasting: result on file '%s' \n", fileresf);     * to the curvature of the survival function. If, for the same date, we 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* For example we decided to compute the life expectancy with the smallest unit */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   stepsize=(int) (stepm+YEARM-1)/YEARM;       Look at hpijx to understand the reason of that which relies in memory size
   if (stepm<=12) stepsize=1;       and note for a fixed period like estepm months */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   agelim=AGESUP;       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   hstepm=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   hstepm=hstepm/stepm;       results. So we changed our mind and took the option of the best precision.
   yp1=modf(dateintmean,&yp);    */
   anprojmean=yp;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;    /* If stepm=6 months */
   yp1=modf((yp2*30.5),&yp);    /* nhstepm age range expressed in number of stepm */
   jprojmean=yp;    agelim=AGESUP;
   if(jprojmean==0) jprojmean=1;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   if(mprojmean==0) jprojmean=1;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      
   for(cptcov=1;cptcov<=i2;cptcov++){    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=k+1;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficresf,"\n#******");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       for(j=1;j<=cptcoveff;j++) {    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       }  
       fprintf(ficresf,"******\n");    for (age=bage; age<=fage; age ++){ 
       fprintf(ficresf,"# StartingAge FinalAge");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            /* if (stepm >= YEARM) hstepm=1;*/
            nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");      /* If stepm=6 months */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           nhstepm = nhstepm/hstepm;  
                /* Computing  Variances of health expectancies */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           oldm=oldms;savm=savms;         decrease memory allocation */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(theta=1; theta <=npar; theta++){
                for(i=1; i<=npar; i++){ 
           for (h=0; h<=nhstepm; h++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             if (h==(int) (calagedate+YEARM*cpt)) {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        }
             }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
             for(j=1; j<=nlstate+ndeath;j++) {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<= nlstate; j++){
                 if (mobilav==1)          for(i=1; i<=nlstate; i++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            for(h=0; h<=nhstepm-1; h++){
                 else {              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                 }            }
                          }
               }        }
               if (h==(int)(calagedate+12*cpt)){       
                 fprintf(ficresf," %.3f", kk1);        for(ij=1; ij<= nlstate*nlstate; ij++)
                                  for(h=0; h<=nhstepm-1; h++){
               }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
             }          }
           }      }/* End theta */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
         }      
       }      for(h=0; h<=nhstepm-1; h++)
     }        for(j=1; j<=nlstate*nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
                    trgradg[h][j][theta]=gradg[h][theta][j];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   
   fclose(ficresf);       for(ij=1;ij<=nlstate*nlstate;ij++)
 }        for(ji=1;ji<=nlstate*nlstate;ji++)
 /************** Forecasting ******************/          varhe[ij][ji][(int)age] =0.;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
         printf("%d|",(int)age);fflush(stdout);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int *popage;       for(h=0;h<=nhstepm-1;h++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for(k=0;k<=nhstepm-1;k++){
   double *popeffectif,*popcount;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double ***p3mat,***tabpop,***tabpopprev;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   char filerespop[FILENAMELENGTH];          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   agelim=AGESUP;      }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
        /* Computing expectancies */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   strcpy(filerespop,"pop");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcat(filerespop,fileres);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            
     printf("Problem with forecast resultfile: %s\n", filerespop);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }          }
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        eip=0.;
         vip=0.;
   if (mobilav==1) {        for(j=1; j<=nlstate;j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          eip += eij[i][j][(int)age];
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   if (stepm<=12) stepsize=1;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
   agelim=AGESUP;      fprintf(ficresstdeij,"\n");
    
   hstepm=1;      fprintf(ficrescveij,"%3.0f",age );
   hstepm=hstepm/stepm;      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   if (popforecast==1) {          cptj= (j-1)*nlstate+i;
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(i2=1; i2<=nlstate;i2++)
       printf("Problem with population file : %s\n",popfile);exit(0);            for(j2=1; j2<=nlstate;j2++){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);              cptj2= (j2-1)*nlstate+i2;
     }              if(cptj2 <= cptj)
     popage=ivector(0,AGESUP);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     popeffectif=vector(0,AGESUP);            }
     popcount=vector(0,AGESUP);        }
          fprintf(ficrescveij,"\n");
     i=1;       
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    }
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     imx=i;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i2;cptcov++){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf("\n");
       k=k+1;    fprintf(ficlog,"\n");
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    free_vector(xm,1,npar);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(xp,1,npar);
       }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       fprintf(ficrespop,"******\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficrespop,"# Age");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  }
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
        /************ Variance ******************/
       for (cpt=0; cpt<=0;cpt++) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    {
            /* Variance of health expectancies */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* double **newm;*/
           nhstepm = nhstepm/hstepm;    double **dnewm,**doldm;
              double **dnewmp,**doldmp;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, j, nhstepm, hstepm, h, nstepm ;
           oldm=oldms;savm=savms;    int k, cptcode;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double *xp;
            double **gp, **gm;  /* for var eij */
           for (h=0; h<=nhstepm; h++){    double ***gradg, ***trgradg; /*for var eij */
             if (h==(int) (calagedate+YEARM*cpt)) {    double **gradgp, **trgradgp; /* for var p point j */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double *gpp, *gmp; /* for var p point j */
             }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             for(j=1; j<=nlstate+ndeath;j++) {    double ***p3mat;
               kk1=0.;kk2=0;    double age,agelim, hf;
               for(i=1; i<=nlstate;i++) {                  double ***mobaverage;
                 if (mobilav==1)    int theta;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    char digit[4];
                 else {    char digitp[25];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    char fileresprobmorprev[FILENAMELENGTH];
               }  
               if (h==(int)(calagedate+12*cpt)){    if(popbased==1){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      if(mobilav!=0)
                   /*fprintf(ficrespop," %.3f", kk1);        strcpy(digitp,"-populbased-mobilav-");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      else strcpy(digitp,"-populbased-nomobil-");
               }    }
             }    else 
             for(i=1; i<=nlstate;i++){      strcpy(digitp,"-stablbased-");
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    if (mobilav!=0) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    strcpy(fileresprobmorprev,"prmorprev"); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    sprintf(digit,"%-d",ij);
         }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   /******/    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           nhstepm = nhstepm/hstepm;   
              fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    pstamp(ficresprobmorprev);
           oldm=oldms;savm=savms;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           for (h=0; h<=nhstepm; h++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficresprobmorprev," p.%-d SE",j);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(i=1; i<=nlstate;i++)
             }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             for(j=1; j<=nlstate+ndeath;j++) {    }  
               kk1=0.;kk2=0;    fprintf(ficresprobmorprev,"\n");
               for(i=1; i<=nlstate;i++) {                  fprintf(ficgp,"\n# Routine varevsij");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
               }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             }  /*   } */
           }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    pstamp(ficresvij);
         }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       }    if(popbased==1)
    }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   }    else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   if (popforecast==1) {      for(j=1; j<=nlstate;j++)
     free_ivector(popage,0,AGESUP);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     free_vector(popeffectif,0,AGESUP);    fprintf(ficresvij,"\n");
     free_vector(popcount,0,AGESUP);  
   }    xp=vector(1,npar);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewm=matrix(1,nlstate,1,npar);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    doldm=matrix(1,nlstate,1,nlstate);
   fclose(ficrespop);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
 /***********************************************/    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 /**************** Main Program *****************/    gpp=vector(nlstate+1,nlstate+ndeath);
 /***********************************************/    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 int main(int argc, char *argv[])    
 {    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    }
   double agedeb, agefin,hf;    else  hstepm=estepm;   
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double fret;       nhstepm is the number of hstepm from age to agelim 
   double **xi,tmp,delta;       nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
   double dum; /* Dummy variable */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double ***p3mat;       survival function given by stepm (the optimization length). Unfortunately it
   int *indx;       means that if the survival funtion is printed every two years of age and if
   char line[MAXLINE], linepar[MAXLINE];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];       results. So we changed our mind and took the option of the best precision.
   int firstobs=1, lastobs=10;    */
   int sdeb, sfin; /* Status at beginning and end */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   int c,  h , cpt,l;    agelim = AGESUP;
   int ju,jl, mi;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int mobilav=0,popforecast=0;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int hstepm, nhstepm;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  
   double **prlim;      for(theta=1; theta <=npar; theta++){
   double *severity;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   double ***param; /* Matrix of parameters */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double  *p;        }
   double **matcov; /* Matrix of covariance */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double ***delti3; /* Scale */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double *delti; /* Scale */  
   double ***eij, ***vareij;        if (popbased==1) {
   double **varpl; /* Variances of prevalence limits by age */          if(mobilav ==0){
   double *epj, vepp;            for(i=1; i<=nlstate;i++)
   double kk1, kk2;              prlim[i][i]=probs[(int)age][i][ij];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   char *alph[]={"a","a","b","c","d","e"}, str[4];          }
         }
     
   char z[1]="c", occ;        for(j=1; j<= nlstate; j++){
 #include <sys/time.h>          for(h=0; h<=nhstepm; h++){
 #include <time.h>            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   /* long total_usecs;        }
   struct timeval start_time, end_time;        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */           as a weighted average of prlim.
   getcwd(pathcd, size);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   printf("\n%s",version);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   if(argc <=1){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     printf("\nEnter the parameter file name: ");        }    
     scanf("%s",pathtot);        /* end probability of death */
   }  
   else{        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     strcpy(pathtot,argv[1]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*cygwin_split_path(pathtot,path,optionfile);   
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        if (popbased==1) {
   /* cutv(path,optionfile,pathtot,'\\');*/          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              prlim[i][i]=probs[(int)age][i][ij];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          }else{ /* mobilav */ 
   chdir(path);            for(i=1; i<=nlstate;i++)
   replace(pathc,path);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
 /*-------- arguments in the command line --------*/        }
   
   /* Log file */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   strcat(filelog, optionfilefiname);          for(h=0; h<=nhstepm; h++){
   strcat(filelog,".log");    /* */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   if((ficlog=fopen(filelog,"w"))==NULL)    {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     printf("Problem with logfile %s\n",filelog);          }
     goto end;        }
   }        /* This for computing probability of death (h=1 means
   fprintf(ficlog,"Log filename:%s\n",filelog);           computed over hstepm matrices product = hstepm*stepm months) 
   fprintf(ficlog,"\n%s",version);           as a weighted average of prlim.
   fprintf(ficlog,"\nEnter the parameter file name: ");        */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fflush(ficlog);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   /* */        }    
   strcpy(fileres,"r");        /* end probability of death */
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   /*---------arguments file --------*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     goto end;        }
   }  
       } /* End theta */
   strcpy(filereso,"o");  
   strcat(filereso,fileres);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);      for(h=0; h<=nhstepm; h++) /* veij */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        for(j=1; j<=nlstate;j++)
     goto end;          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   
   /* Reads comments: lines beginning with '#' */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   while((c=getc(ficpar))=='#' && c!= EOF){        for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);          trgradgp[j][theta]=gradgp[theta][j];
     fgets(line, MAXLINE, ficpar);    
     puts(line);  
     fputs(line,ficparo);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for(h=0;h<=nhstepm;h++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(k=0;k<=nhstepm;k++){
 while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     ungetc(c,ficpar);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     fgets(line, MAXLINE, ficpar);          for(i=1;i<=nlstate;i++)
     puts(line);            for(j=1;j<=nlstate;j++)
     fputs(line,ficparo);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   }        }
   ungetc(c,ficpar);      }
      
          /* pptj */
   covar=matrix(0,NCOVMAX,1,n);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   cptcovn=0;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
   ncovmodel=2+cptcovn;          varppt[j][i]=doldmp[j][i];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      /* end ppptj */
        /*  x centered again */
   /* Read guess parameters */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /* Reads comments: lines beginning with '#' */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);      if (popbased==1) {
     fgets(line, MAXLINE, ficpar);        if(mobilav ==0){
     puts(line);          for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
   ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)      }
     for(j=1; j <=nlstate+ndeath-1; j++){               
       fscanf(ficpar,"%1d%1d",&i1,&j1);      /* This for computing probability of death (h=1 means
       fprintf(ficparo,"%1d%1d",i1,j1);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       if(mle==1)         as a weighted average of prlim.
         printf("%1d%1d",i,j);      */
       fprintf(ficlog,"%1d%1d",i,j);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(k=1; k<=ncovmodel;k++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         fscanf(ficpar," %lf",&param[i][j][k]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         if(mle==1){      }    
           printf(" %lf",param[i][j][k]);      /* end probability of death */
           fprintf(ficlog," %lf",param[i][j][k]);  
         }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         else      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficlog," %lf",param[i][j][k]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficparo," %lf",param[i][j][k]);        for(i=1; i<=nlstate;i++){
       }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       fscanf(ficpar,"\n");        }
       if(mle==1)      } 
         printf("\n");      fprintf(ficresprobmorprev,"\n");
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");      fprintf(ficresvij,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   p=param[1][1];      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   /* Reads comments: lines beginning with '#' */      free_matrix(gm,0,nhstepm,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     ungetc(c,ficpar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);    } /* End age */
     fputs(line,ficparo);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   for(i=1; i <=nlstate; i++){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     for(j=1; j <=nlstate+ndeath-1; j++){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       printf("%1d%1d",i,j);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
         printf(" %le",delti3[i][j][k]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fscanf(ficpar,"\n");  */
       printf("\n");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       fprintf(ficparo,"\n");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }  
   }    free_vector(xp,1,npar);
   delti=delti3[1][1];    free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
   /* Reads comments: lines beginning with '#' */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     ungetc(c,ficpar);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);    fclose(ficresprobmorprev);
     fputs(line,ficparo);    fflush(ficgp);
   }    fflush(fichtm); 
   ungetc(c,ficpar);  }  /* end varevsij */
    
   matcov=matrix(1,npar,1,npar);  /************ Variance of prevlim ******************/
   for(i=1; i <=npar; i++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     fscanf(ficpar,"%s",&str);  {
     if(mle==1)    /* Variance of prevalence limit */
       printf("%s",str);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     fprintf(ficlog,"%s",str);    double **newm;
     fprintf(ficparo,"%s",str);    double **dnewm,**doldm;
     for(j=1; j <=i; j++){    int i, j, nhstepm, hstepm;
       fscanf(ficpar," %le",&matcov[i][j]);    int k, cptcode;
       if(mle==1){    double *xp;
         printf(" %.5le",matcov[i][j]);    double *gp, *gm;
         fprintf(ficlog," %.5le",matcov[i][j]);    double **gradg, **trgradg;
       }    double age,agelim;
       else    int theta;
         fprintf(ficlog," %.5le",matcov[i][j]);    
       fprintf(ficparo," %.5le",matcov[i][j]);    pstamp(ficresvpl);
     }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fscanf(ficpar,"\n");    fprintf(ficresvpl,"# Age");
     if(mle==1)    for(i=1; i<=nlstate;i++)
       printf("\n");        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficlog,"\n");    fprintf(ficresvpl,"\n");
     fprintf(ficparo,"\n");  
   }    xp=vector(1,npar);
   for(i=1; i <=npar; i++)    dnewm=matrix(1,nlstate,1,npar);
     for(j=i+1;j<=npar;j++)    doldm=matrix(1,nlstate,1,nlstate);
       matcov[i][j]=matcov[j][i];    
        hstepm=1*YEARM; /* Every year of age */
   if(mle==1)    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     printf("\n");    agelim = AGESUP;
   fprintf(ficlog,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
     /*-------- Rewriting paramater file ----------*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      strcpy(rfileres,"r");    /* "Rparameterfile */      gradg=matrix(1,npar,1,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      gp=vector(1,nlstate);
      strcat(rfileres,".");    /* */      gm=vector(1,nlstate);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(i=1; i<=npar; i++){ /* Computes gradient */
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
     fprintf(ficres,"#%s\n",version);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            for(i=1;i<=nlstate;i++)
     /*-------- data file ----------*/          gp[i] = prlim[i][i];
     if((fic=fopen(datafile,"r"))==NULL)    {      
       printf("Problem with datafile: %s\n", datafile);goto end;        for(i=1; i<=npar; i++) /* Computes gradient */
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
     n= lastobs;          gm[i] = prlim[i][i];
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);        for(i=1;i<=nlstate;i++)
     num=ivector(1,n);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     moisnais=vector(1,n);      } /* End theta */
     annais=vector(1,n);  
     moisdc=vector(1,n);      trgradg =matrix(1,nlstate,1,npar);
     andc=vector(1,n);  
     agedc=vector(1,n);      for(j=1; j<=nlstate;j++)
     cod=ivector(1,n);        for(theta=1; theta <=npar; theta++)
     weight=vector(1,n);          trgradg[j][theta]=gradg[theta][j];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);      for(i=1;i<=nlstate;i++)
     anint=matrix(1,maxwav,1,n);        varpl[i][(int)age] =0.;
     s=imatrix(1,maxwav+1,1,n);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     adl=imatrix(1,maxwav+1,1,n);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     tab=ivector(1,NCOVMAX);      for(i=1;i<=nlstate;i++)
     ncodemax=ivector(1,8);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
     i=1;      fprintf(ficresvpl,"%.0f ",age );
     while (fgets(line, MAXLINE, fic) != NULL)    {      for(i=1; i<=nlstate;i++)
       if ((i >= firstobs) && (i <=lastobs)) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
              fprintf(ficresvpl,"\n");
         for (j=maxwav;j>=1;j--){      free_vector(gp,1,nlstate);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      free_vector(gm,1,nlstate);
           strcpy(line,stra);      free_matrix(gradg,1,npar,1,nlstate);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      free_matrix(trgradg,1,nlstate,1,npar);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    } /* End age */
         }  
            free_vector(xp,1,npar);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(doldm,1,nlstate,1,npar);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
   /************ Variance of one-step probabilities  ******************/
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         for (j=ncovcol;j>=1;j--){  {
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i, j=0,  i1, k1, l1, t, tj;
         }    int k2, l2, j1,  z1;
         num[i]=atol(stra);    int k=0,l, cptcode;
            int first=1, first1;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    double **dnewm,**doldm;
     double *xp;
         i=i+1;    double *gp, *gm;
       }    double **gradg, **trgradg;
     }    double **mu;
     /* printf("ii=%d", ij);    double age,agelim, cov[NCOVMAX];
        scanf("%d",i);*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   imx=i-1; /* Number of individuals */    int theta;
     char fileresprob[FILENAMELENGTH];
   /* for (i=1; i<=imx; i++){    char fileresprobcov[FILENAMELENGTH];
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    char fileresprobcor[FILENAMELENGTH];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double ***varpij;
     }*/  
    /*  for (i=1; i<=imx; i++){    strcpy(fileresprob,"prob"); 
      if (s[4][i]==9)  s[4][i]=-1;    strcat(fileresprob,fileres);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   /* Calculation of the number of parameter from char model*/    }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    strcpy(fileresprobcov,"probcov"); 
   Tprod=ivector(1,15);    strcat(fileresprobcov,fileres);
   Tvaraff=ivector(1,15);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   Tvard=imatrix(1,15,1,2);      printf("Problem with resultfile: %s\n", fileresprobcov);
   Tage=ivector(1,15);            fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
   if (strlen(model) >1){    strcpy(fileresprobcor,"probcor"); 
     j=0, j1=0, k1=1, k2=1;    strcat(fileresprobcor,fileres);
     j=nbocc(model,'+');    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     j1=nbocc(model,'*');      printf("Problem with resultfile: %s\n", fileresprobcor);
     cptcovn=j+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     cptcovprod=j1;    }
        printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     strcpy(modelsav,model);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       printf("Error. Non available option model=%s ",model);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficlog,"Error. Non available option model=%s ",model);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       goto end;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }    pstamp(ficresprob);
        fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     for(i=(j+1); i>=1;i--){    fprintf(ficresprob,"# Age");
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    pstamp(ficresprobcov);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficresprobcov,"# Age");
       /*scanf("%d",i);*/    pstamp(ficresprobcor);
       if (strchr(strb,'*')) {  /* Model includes a product */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    fprintf(ficresprobcor,"# Age");
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;  
           cutv(strb,stre,strd,'V');    for(i=1; i<=nlstate;i++)
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      for(j=1; j<=(nlstate+ndeath);j++){
           cptcovage++;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
             Tage[cptcovage]=i;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
             /*printf("stre=%s ", stre);*/        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         }      }  
         else if (strcmp(strd,"age")==0) { /* or age*Vn */   /* fprintf(ficresprob,"\n");
           cptcovprod--;    fprintf(ficresprobcov,"\n");
           cutv(strb,stre,strc,'V');    fprintf(ficresprobcor,"\n");
           Tvar[i]=atoi(stre);   */
           cptcovage++;    xp=vector(1,npar);
           Tage[cptcovage]=i;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         else {  /* Age is not in the model */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           Tvar[i]=ncovcol+k1;    first=1;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    fprintf(ficgp,"\n# Routine varprob");
           Tprod[k1]=i;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           Tvard[k1][1]=atoi(strc); /* m*/    fprintf(fichtm,"\n");
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           for (k=1; k<=lastobs;k++)    file %s<br>\n",optionfilehtmcov);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           k1++;  and drawn. It helps understanding how is the covariance between two incidences.\
           k2=k2+2;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       else { /* no more sum */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  standard deviations wide on each axis. <br>\
        /*  scanf("%d",i);*/   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       cutv(strd,strc,strb,'V');   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       Tvar[i]=atoi(strc);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       }  
       strcpy(modelsav,stra);      cov[1]=1;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    tj=cptcoveff;
         scanf("%d",i);*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     } /* end of loop + */    j1=0;
   } /* end model */    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        j1++;
   printf("cptcovprod=%d ", cptcovprod);        if  (cptcovn>0) {
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          fprintf(ficresprob, "\n#********** Variable "); 
   scanf("%d ",i);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fclose(fic);          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
     /*  if(mle==1){*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficresprobcov, "**********\n#\n");
       for(i=1;i<=n;i++) weight[i]=1.0;          
     }          fprintf(ficgp, "\n#********** Variable "); 
     /*-calculation of age at interview from date of interview and age at death -*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     agev=matrix(1,maxwav,1,imx);          fprintf(ficgp, "**********\n#\n");
           
     for (i=1; i<=imx; i++) {          
       for(m=2; (m<= maxwav); m++) {          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          anint[m][i]=9999;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          s[m][i]=-1;          
        }          fprintf(ficresprobcor, "\n#********** Variable ");    
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprobcor, "**********\n#");    
     }        }
         
     for (i=1; i<=imx; i++)  {        for (age=bage; age<=fage; age ++){ 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          cov[2]=age;
       for(m=1; (m<= maxwav); m++){          for (k=1; k<=cptcovn;k++) {
         if(s[m][i] >0){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           if (s[m][i] >= nlstate+1) {          }
             if(agedc[i]>0)          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               if(moisdc[i]!=99 && andc[i]!=9999)          for (k=1; k<=cptcovprod;k++)
                 agev[m][i]=agedc[i];            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          
            else {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
               if (andc[i]!=9999){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          gp=vector(1,(nlstate)*(nlstate+ndeath));
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);          gm=vector(1,(nlstate)*(nlstate+ndeath));
               agev[m][i]=-1;      
               }          for(theta=1; theta <=npar; theta++){
             }            for(i=1; i<=npar; i++)
           }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           else if(s[m][i] !=9){ /* Should no more exist */            
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             if(mint[m][i]==99 || anint[m][i]==9999)            
               agev[m][i]=1;            k=0;
             else if(agev[m][i] <agemin){            for(i=1; i<= (nlstate); i++){
               agemin=agev[m][i];              for(j=1; j<=(nlstate+ndeath);j++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                k=k+1;
             }                gp[k]=pmmij[i][j];
             else if(agev[m][i] >agemax){              }
               agemax=agev[m][i];            }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            
             }            for(i=1; i<=npar; i++)
             /*agev[m][i]=anint[m][i]-annais[i];*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             /*   agev[m][i] = age[i]+2*m;*/      
           }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           else { /* =9 */            k=0;
             agev[m][i]=1;            for(i=1; i<=(nlstate); i++){
             s[m][i]=-1;              for(j=1; j<=(nlstate+ndeath);j++){
           }                k=k+1;
         }                gm[k]=pmmij[i][j];
         else /*= 0 Unknown */              }
           agev[m][i]=1;            }
       }       
                for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     for (i=1; i<=imx; i++)  {          }
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              for(theta=1; theta <=npar; theta++)
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                trgradg[j][theta]=gradg[theta][j];
           goto end;          
         }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
     free_vector(severity,1,maxwav);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);          
     free_vector(moisnais,1,n);          k=0;
     free_vector(annais,1,n);          for(i=1; i<=(nlstate); i++){
     /* free_matrix(mint,1,maxwav,1,n);            for(j=1; j<=(nlstate+ndeath);j++){
        free_matrix(anint,1,maxwav,1,n);*/              k=k+1;
     free_vector(moisdc,1,n);              mu[k][(int) age]=pmmij[i][j];
     free_vector(andc,1,n);            }
           }
              for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     wav=ivector(1,imx);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              varpij[i][j][(int)age] = doldm[i][j];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
              /*printf("\n%d ",(int)age);
     /* Concatenates waves */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          fprintf(ficresprob,"\n%d ",(int)age);
       ncodemax[1]=1;          fprintf(ficresprobcov,"\n%d ",(int)age);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(ficresprobcor,"\n%d ",(int)age);
        
    codtab=imatrix(1,100,1,10);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
    h=0;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    m=pow(2,cptcoveff);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
    for(k=1;k<=cptcoveff; k++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
      for(i=1; i <=(m/pow(2,k));i++){          }
        for(j=1; j <= ncodemax[k]; j++){          i=0;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          for (k=1; k<=(nlstate);k++){
            h++;            for (l=1; l<=(nlstate+ndeath);l++){ 
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;              i=i++;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
          }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
        }              for (j=1; j<=i;j++){
      }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
    }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);              }
       codtab[1][2]=1;codtab[2][2]=2; */            }
    /* for(i=1; i <=m ;i++){          }/* end of loop for state */
       for(k=1; k <=cptcovn; k++){        } /* end of loop for age */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }        /* Confidence intervalle of pij  */
       printf("\n");        /*
       }          fprintf(ficgp,"\nunset parametric;unset label");
       scanf("%d",i);*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
              fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    /* Calculates basic frequencies. Computes observed prevalence at single age          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
        and prints on file fileres'p'. */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
            */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        first1=1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (k2=1; k2<=(nlstate);k2++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                  if(l2==k2) continue;
     /* For Powell, parameters are in a vector p[] starting at p[1]            j=(k2-1)*(nlstate+ndeath)+l2;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            for (k1=1; k1<=(nlstate);k1++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
     if(mle==1){                i=(k1-1)*(nlstate+ndeath)+l1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                if(i<=j) continue;
     }                for (age=bage; age<=fage; age ++){ 
                      if ((int)age %5==0){
     /*--------- results files --------------*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
    jk=1;                    mu2=mu[j][(int) age]/stepm*YEARM;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    c12=cv12/sqrt(v1*v2);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    /* Computing eigen value of matrix of covariance */
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    for(i=1,jk=1; i <=nlstate; i++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      for(k=1; k <=(nlstate+ndeath); k++){                    if ((lc2 <0) || (lc1 <0) ){
        if (k != i)                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
          {                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
            printf("%d%d ",i,k);                      lc1=fabs(lc1);
            fprintf(ficlog,"%d%d ",i,k);                      lc2=fabs(lc2);
            fprintf(ficres,"%1d%1d ",i,k);                    }
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);                    /* Eigen vectors */
              fprintf(ficlog,"%f ",p[jk]);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
              fprintf(ficres,"%f ",p[jk]);                    /*v21=sqrt(1.-v11*v11); *//* error */
              jk++;                    v21=(lc1-v1)/cv12*v11;
            }                    v12=-v21;
            printf("\n");                    v22=v11;
            fprintf(ficlog,"\n");                    tnalp=v21/v11;
            fprintf(ficres,"\n");                    if(first1==1){
          }                      first1=0;
      }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    }                    }
    if(mle==1){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      /* Computing hessian and covariance matrix */                    /*printf(fignu*/
      ftolhess=ftol; /* Usually correct */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
      hesscov(matcov, p, npar, delti, ftolhess, func);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
    }                    if(first==1){
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                      first=0;
    printf("# Scales (for hessian or gradient estimation)\n");                      fprintf(ficgp,"\nset parametric;unset label");
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
    for(i=1,jk=1; i <=nlstate; i++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      for(j=1; j <=nlstate+ndeath; j++){                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
        if (j!=i) {   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
          fprintf(ficres,"%1d%1d",i,j);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
          printf("%1d%1d",i,j);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
          fprintf(ficlog,"%1d%1d",i,j);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          for(k=1; k<=ncovmodel;k++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            printf(" %.5e",delti[jk]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
            fprintf(ficlog," %.5e",delti[jk]);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            fprintf(ficres," %.5e",delti[jk]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
            jk++;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
          }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
          printf("\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
          fprintf(ficlog,"\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
          fprintf(ficres,"\n");                    }else{
        }                      first=0;
      }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
    }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    k=1;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    if(mle==1)                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                    }/* if first */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                  } /* age mod 5 */
    for(i=1;i<=npar;i++){                } /* end loop age */
      /*  if (k>nlstate) k=1;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          i1=(i-1)/(ncovmodel*nlstate)+1;                first=1;
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              } /*l12 */
          printf("%s%d%d",alph[k],i1,tab[i]);*/            } /* k12 */
      fprintf(ficres,"%3d",i);          } /*l1 */
      if(mle==1)        }/* k1 */
        printf("%3d",i);      } /* loop covariates */
      fprintf(ficlog,"%3d",i);    }
      for(j=1; j<=i;j++){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        fprintf(ficres," %.5e",matcov[i][j]);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
        if(mle==1)    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
          printf(" %.5e",matcov[i][j]);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
        fprintf(ficlog," %.5e",matcov[i][j]);    free_vector(xp,1,npar);
      }    fclose(ficresprob);
      fprintf(ficres,"\n");    fclose(ficresprobcov);
      if(mle==1)    fclose(ficresprobcor);
        printf("\n");    fflush(ficgp);
      fprintf(ficlog,"\n");    fflush(fichtmcov);
      k++;  }
    }  
      
    while((c=getc(ficpar))=='#' && c!= EOF){  /******************* Printing html file ***********/
      ungetc(c,ficpar);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
      fgets(line, MAXLINE, ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
      puts(line);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      fputs(line,ficparo);                    int popforecast, int estepm ,\
    }                    double jprev1, double mprev1,double anprev1, \
    ungetc(c,ficpar);                    double jprev2, double mprev2,double anprev2){
    estepm=0;    int jj1, k1, i1, cpt;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
    if (estepm==0 || estepm < stepm) estepm=stepm;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
    if (fage <= 2) {     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
      bage = ageminpar;  </ul>");
      fage = agemaxpar;     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                 jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");     fprintf(fichtm,"\
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
         fprintf(fichtm,"\
    while((c=getc(ficpar))=='#' && c!= EOF){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
      ungetc(c,ficpar);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fgets(line, MAXLINE, ficpar);     fprintf(fichtm,"\
      puts(line);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      fputs(line,ficparo);     <a href=\"%s\">%s</a> <br>\n",
    }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    ungetc(c,ficpar);     fprintf(fichtm,"\
     - Population projections by age and states: \
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      
    while((c=getc(ficpar))=='#' && c!= EOF){   m=cptcoveff;
      ungetc(c,ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      fgets(line, MAXLINE, ficpar);  
      puts(line);   jj1=0;
      fputs(line,ficparo);   for(k1=1; k1<=m;k1++){
    }     for(i1=1; i1<=ncodemax[k1];i1++){
    ungetc(c,ficpar);       jj1++;
         if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         for (cpt=1; cpt<=cptcoveff;cpt++) 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   fscanf(ficpar,"pop_based=%d\n",&popbased);       }
   fprintf(ficparo,"pop_based=%d\n",popbased);         /* Pij */
   fprintf(ficres,"pop_based=%d\n",popbased);         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
    <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   while((c=getc(ficpar))=='#' && c!= EOF){       /* Quasi-incidences */
     ungetc(c,ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fgets(line, MAXLINE, ficpar);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
     puts(line);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     fputs(line,ficparo);         /* Period (stable) prevalence in each health state */
   }         for(cpt=1; cpt<nlstate;cpt++){
   ungetc(c,ficpar);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       for(cpt=1; cpt<=nlstate;cpt++) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
 while((c=getc(ficpar))=='#' && c!= EOF){     } /* end i1 */
     ungetc(c,ficpar);   }/* End k1 */
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"</ul>");
     puts(line);  
     fputs(line,ficparo);  
   }   fprintf(fichtm,"\
   ungetc(c,ficpar);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 /*------------ gnuplot -------------*/  
   strcpy(optionfilegnuplot,optionfilefiname);   fprintf(fichtm,"\
   strcat(optionfilegnuplot,".gp");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     printf("Problem with file %s",optionfilegnuplot);   fprintf(fichtm,"\
   }   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   fclose(ficgp);     <a href=\"%s\">%s</a> <br>\n</li>",
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 /*--------- index.htm --------*/   fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   strcpy(optionfilehtm,optionfile);     <a href=\"%s\">%s</a> <br>\n</li>",
   strcat(optionfilehtm,".htm");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {   fprintf(fichtm,"\
     printf("Problem with %s \n",optionfilehtm), exit(0);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 \n   fprintf(fichtm,"\
 Total number of observations=%d <br>\n   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li><h4>Parameter files</h4>\n  /*  if(popforecast==1) fprintf(fichtm,"\n */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);  /*      <br>",fileres,fileres,fileres,fileres); */
   fclose(fichtm);  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 /*------------ free_vector  -------------*/  
  chdir(path);   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   jj1=0;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     for(k1=1; k1<=m;k1++){
  free_ivector(num,1,n);     for(i1=1; i1<=ncodemax[k1];i1++){
  free_vector(agedc,1,n);       jj1++;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/       if (cptcovn > 0) {
  fclose(ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  fclose(ficres);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*--------------- Prevalence limit --------------*/       }
         for(cpt=1; cpt<=nlstate;cpt++) {
   strcpy(filerespl,"pl");         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   strcat(filerespl,fileres);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       }
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   }  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  true period expectancies (those weighted with period prevalences are also\
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);   drawn in addition to the population based expectancies computed using\
   fprintf(ficrespl,"#Prevalence limit\n");   observed and cahotic prevalences: %s%d.png<br>\
   fprintf(ficrespl,"#Age ");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     } /* end i1 */
   fprintf(ficrespl,"\n");   }/* End k1 */
     fprintf(fichtm,"</ul>");
   prlim=matrix(1,nlstate,1,nlstate);   fflush(fichtm);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /******************* Gnuplot file **************/
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;    char dirfileres[132],optfileres[132];
   agebase=ageminpar;    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
   agelim=agemaxpar;    int ng=0;
   ftolpl=1.e-10;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   i1=cptcoveff;  /*     printf("Problem with file %s",optionfilegnuplot); */
   if (cptcovn < 1){i1=1;}  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*#ifdef windows */
         k=k+1;    fprintf(ficgp,"cd \"%s\" \n",pathc);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      /*#endif */
         fprintf(ficrespl,"\n#******");    m=pow(2,cptcoveff);
         printf("\n#******");  
         fprintf(ficlog,"\n#******");    strcpy(dirfileres,optionfilefiname);
         for(j=1;j<=cptcoveff;j++) {    strcpy(optfileres,"vpl");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   /* 1eme*/
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for (k1=1; k1<= m ; k1 ++) {
         }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficrespl,"******\n");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         printf("******\n");       fprintf(ficgp,"set xlabel \"Age\" \n\
         fprintf(ficlog,"******\n");  set ylabel \"Probability\" \n\
          set ter png small\n\
         for (age=agebase; age<=agelim; age++){  set size 0.65,0.65\n\
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)       for (i=1; i<= nlstate ; i ++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespl,"\n");         else        fprintf(ficgp," \%%*lf (\%%*lf)");
         }       }
       }       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     }       for (i=1; i<= nlstate ; i ++) {
   fclose(ficrespl);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   /*------------- h Pij x at various ages ------------*/       } 
         fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       for (i=1; i<= nlstate ; i ++) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;       }  
   }       fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   printf("Computing pij: result on file '%s' \n", filerespij);     }
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    }
      /*2 eme*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    
   /*if (stepm<=24) stepsize=2;*/    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   agelim=AGESUP;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   hstepm=stepsize*YEARM; /* Every year of age */      
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
   /* hstepm=1;   aff par mois*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   k=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }   
       k=k+1;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         fprintf(ficrespij,"\n#****** ");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrespij,"******\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                  else fprintf(ficgp," \%%*lf (\%%*lf)");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        }   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficgp,"\" t\"\" w l lt 1,");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }   
           oldm=oldms;savm=savms;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          else fprintf(ficgp,"\" t\"\" w l lt 1,");
           fprintf(ficrespij,"# Age");      }
           for(i=1; i<=nlstate;i++)    }
             for(j=1; j<=nlstate+ndeath;j++)    
               fprintf(ficrespij," %1d-%1d",i,j);    /*3eme*/
           fprintf(ficrespij,"\n");    
            for (h=0; h<=nhstepm; h++){    for (k1=1; k1<= m ; k1 ++) { 
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      for (cpt=1; cpt<= nlstate ; cpt ++) {
             for(i=1; i<=nlstate;i++)        /*       k=2+nlstate*(2*cpt-2); */
               for(j=1; j<=nlstate+ndeath;j++)        k=2+(nlstate+1)*(cpt-1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
             fprintf(ficrespij,"\n");        fprintf(ficgp,"set ter png small\n\
              }  set size 0.65,0.65\n\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           fprintf(ficrespij,"\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
   fclose(ficrespij);        */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   /*---------- Forecasting ------------------*/          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   if((stepm == 1) && (strcmp(model,".")==0)){          
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        } 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   }      }
   else{    }
     erreur=108;    
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    /* CV preval stable (period) */
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<=nlstate ; cpt ++) {
          k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   /*---------- Health expectancies and variances ------------*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   strcpy(filerest,"t");  unset log y\n\
   strcat(filerest,fileres);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   if((ficrest=fopen(filerest,"w"))==NULL) {        
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for (i=1; i< nlstate ; i ++)
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          fprintf(ficgp,"+$%d",k+i+1);
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
   strcpy(filerese,"e");          l=3+(nlstate+ndeath)*cpt;
   strcat(filerese,fileres);          fprintf(ficgp,"+$%d",l+i+1);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      } 
   }    }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
   strcpy(fileresv,"v");      for(k=1; k <=(nlstate+ndeath); k++){
   strcat(fileresv,fileres);        if (k != i) {
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for(j=1; j <=ncovmodel; j++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);            jk++; 
   }            fprintf(ficgp,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          }
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
   calagedate=-1;      }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     }
   
   k=0;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   for(cptcov=1;cptcov<=i1;cptcov++){       for(jk=1; jk <=m; jk++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
       k=k+1;         if (ng==2)
       fprintf(ficrest,"\n#****** ");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       for(j=1;j<=cptcoveff;j++)         else
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(ficgp,"\nset title \"Probability\"\n");
       fprintf(ficrest,"******\n");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
       fprintf(ficreseij,"\n#****** ");         for(k2=1; k2<=nlstate; k2++) {
       for(j=1;j<=cptcoveff;j++)           k3=i;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           for(k=1; k<=(nlstate+ndeath); k++) {
       fprintf(ficreseij,"******\n");             if (k != k2){
                if(ng==2)
       fprintf(ficresvij,"\n#****** ");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       for(j=1;j<=cptcoveff;j++)               else
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       fprintf(ficresvij,"******\n");               ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
       oldm=oldms;savm=savms;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                     ij++;
                   }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 else
       oldm=oldms;savm=savms;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);               }
       if(popbased==1){               fprintf(ficgp,")/(1");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);               
        }               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   ij=1;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                 for(j=3; j <=ncovmodel; j++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       fprintf(ficrest,"\n");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
       epj=vector(1,nlstate+1);                   }
       for(age=bage; age <=fage ;age++){                   else
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         if (popbased==1) {                 }
           for(i=1; i<=nlstate;i++)                 fprintf(ficgp,")");
             prlim[i][i]=probs[(int)age][i][k];               }
         }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                       if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         fprintf(ficrest," %4.0f",age);               i=i+ncovmodel;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){             }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {           } /* end k */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         } /* end k2 */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       } /* end jk */
           }     } /* end ng */
           epj[nlstate+1] +=epj[j];     fflush(ficgp); 
         }  }  /* end gnuplot */
   
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)  /*************** Moving average **************/
             vepp += vareij[i][j][(int)age];  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    int i, cpt, cptcod;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    int modcovmax =1;
         }    int mobilavrange, mob;
         fprintf(ficrest,"\n");    double age;
       }  
     }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   }                             a covariate has 2 modalities */
 free_matrix(mint,1,maxwav,1,n);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   fclose(ficreseij);      if(mobilav==1) mobilavrange=5; /* default */
   fclose(ficresvij);      else mobilavrange=mobilav;
   fclose(ficrest);      for (age=bage; age<=fage; age++)
   fclose(ficpar);        for (i=1; i<=nlstate;i++)
   free_vector(epj,1,nlstate+1);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   /*------- Variance limit prevalence------*/        /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   strcpy(fileresvpl,"vpl");         we use a 5 terms etc. until the borders are no more concerned. 
   strcat(fileresvpl,fileres);      */ 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for (mob=3;mob <=mobilavrange;mob=mob+2){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     exit(0);          for (i=1; i<=nlstate;i++){
   }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   k=0;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   for(cptcov=1;cptcov<=i1;cptcov++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                }
       k=k+1;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fprintf(ficresvpl,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }/* end age */
       fprintf(ficresvpl,"******\n");      }/* end mob */
          }else return -1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    return 0;
       oldm=oldms;savm=savms;  }/* End movingaverage */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }  
  }  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   fclose(ficresvpl);    /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   /*---------- End : free ----------------*/       dateprev1 dateprev2 range of dates during which prevalence is computed
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       anproj2 year of en of projection (same day and month as proj1).
      */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int *popage;
      double agec; /* generic age */
      double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double *popeffectif,*popcount;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double ***p3mat;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double ***mobaverage;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    char fileresf[FILENAMELENGTH];
    
   free_matrix(matcov,1,npar,1,npar);    agelim=AGESUP;
   free_vector(delti,1,npar);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   free_matrix(agev,1,maxwav,1,imx);   
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
   fprintf(fichtm,"\n</body>");    if((ficresf=fopen(fileresf,"w"))==NULL) {
   fclose(fichtm);      printf("Problem with forecast resultfile: %s\n", fileresf);
   fclose(ficgp);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
   if(erreur >0){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     printf("End of Imach with error or warning %d\n",erreur);  
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   }else{  
    printf("End of Imach\n");    if (mobilav!=0) {
    fprintf(ficlog,"End of Imach\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   printf("See log file on %s\n",filelog);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficlog);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      }
      }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
   /*------ End -----------*/    if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
  end:    }
 #ifdef windows    else  hstepm=estepm;   
   /* chdir(pathcd);*/  
 #endif    hstepm=hstepm/stepm; 
  /*system("wgnuplot graph.plt");*/    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
  /*system("../gp37mgw/wgnuplot graph.plt");*/                                 fractional in yp1 */
  /*system("cd ../gp37mgw");*/    anprojmean=yp;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    yp2=modf((yp1*12),&yp);
  strcpy(plotcmd,GNUPLOTPROGRAM);    mprojmean=yp;
  strcat(plotcmd," ");    yp1=modf((yp2*30.5),&yp);
  strcat(plotcmd,optionfilegnuplot);    jprojmean=yp;
  system(plotcmd);    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
 #ifdef windows  
   while (z[0] != 'q') {    i1=cptcoveff;
     /* chdir(path); */    if (cptcovn < 1){i1=1;}
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    
     scanf("%s",z);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     if (z[0] == 'c') system("./imach");    
     else if (z[0] == 'e') system(optionfilehtm);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);  /*            if (h==(int)(YEARM*yearp)){ */
   }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 #endif      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 }        k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.52  
changed lines
  Added in v.1.142


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>