Diff for /imach/src/imach.c between versions 1.21 and 1.94

version 1.21, 2002/02/21 18:42:24 version 1.94, 2003/06/27 13:00:02
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.94  2003/06/27 13:00:02  brouard
   individuals from different ages are interviewed on their health status    Just cleaning
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.93  2003/06/25 16:33:55  brouard
   Health expectancies are computed from the transistions observed between    (Module): On windows (cygwin) function asctime_r doesn't
   waves and are computed for each degree of severity of disability (number    exist so I changed back to asctime which exists.
   of life states). More degrees you consider, more time is necessary to    (Module): Version 0.96b
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.92  2003/06/25 16:30:45  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): On windows (cygwin) function asctime_r doesn't
   to be observed in state i at the first wave. Therefore the model is:    exist so I changed back to asctime which exists.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.91  2003/06/25 15:30:29  brouard
   age", you should modify the program where the markup    * imach.c (Repository): Duplicated warning errors corrected.
     *Covariates have to be included here again* invites you to do it.    (Repository): Elapsed time after each iteration is now output. It
   More covariates you add, less is the speed of the convergence.    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
   The advantage that this computer programme claims, comes from that if the    concerning matrix of covariance. It has extension -cov.htm.
   delay between waves is not identical for each individual, or if some  
   individual missed an interview, the information is not rounded or lost, but    Revision 1.90  2003/06/24 12:34:15  brouard
   taken into account using an interpolation or extrapolation.    (Module): Some bugs corrected for windows. Also, when
   hPijx is the probability to be    mle=-1 a template is output in file "or"mypar.txt with the design
   observed in state i at age x+h conditional to the observed state i at age    of the covariance matrix to be input.
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.89  2003/06/24 12:30:52  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    (Module): Some bugs corrected for windows. Also, when
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    mle=-1 a template is output in file "or"mypar.txt with the design
   and the contribution of each individual to the likelihood is simply hPijx.    of the covariance matrix to be input.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.88  2003/06/23 17:54:56  brouard
   of the life expectancies. It also computes the prevalence limits.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.87  2003/06/18 12:26:01  brouard
            Institut national d'études démographiques, Paris.    Version 0.96
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.86  2003/06/17 20:04:08  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Change position of html and gnuplot routines and added
   software can be distributed freely for non commercial use. Latest version    routine fileappend.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.85  2003/06/17 13:12:43  brouard
      * imach.c (Repository): Check when date of death was earlier that
 #include <math.h>    current date of interview. It may happen when the death was just
 #include <stdio.h>    prior to the death. In this case, dh was negative and likelihood
 #include <stdlib.h>    was wrong (infinity). We still send an "Error" but patch by
 #include <unistd.h>    assuming that the date of death was just one stepm after the
     interview.
 #define MAXLINE 256    (Repository): Because some people have very long ID (first column)
 #define FILENAMELENGTH 80    we changed int to long in num[] and we added a new lvector for
 /*#define DEBUG*/    memory allocation. But we also truncated to 8 characters (left
 #define windows    truncation)
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Repository): No more line truncation errors.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.84  2003/06/13 21:44:43  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Repository): Replace "freqsummary" at a correct
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define NINTERVMAX 8    parcimony.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.83  2003/06/10 13:39:11  lievre
 #define MAXN 20000    *** empty log message ***
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.82  2003/06/05 15:57:20  brouard
 #define AGEBASE 40    Add log in  imach.c and  fullversion number is now printed.
   
   */
 int erreur; /* Error number */  /*
 int nvar;     Interpolated Markov Chain
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Short summary of the programme:
 int nlstate=2; /* Number of live states */    
 int ndeath=1; /* Number of dead states */    This program computes Healthy Life Expectancies from
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int popbased=0;    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 int *wav; /* Number of waves for this individuual 0 is possible */    case of a health survey which is our main interest) -2- at least a
 int maxwav; /* Maxim number of waves */    second wave of interviews ("longitudinal") which measure each change
 int jmin, jmax; /* min, max spacing between 2 waves */    (if any) in individual health status.  Health expectancies are
 int mle, weightopt;    computed from the time spent in each health state according to a
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    model. More health states you consider, more time is necessary to reach the
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Maximum Likelihood of the parameters involved in the model.  The
 double jmean; /* Mean space between 2 waves */    simplest model is the multinomial logistic model where pij is the
 double **oldm, **newm, **savm; /* Working pointers to matrices */    probability to be observed in state j at the second wave
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    conditional to be observed in state i at the first wave. Therefore
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    'age' is age and 'sex' is a covariate. If you want to have a more
 FILE *ficreseij;    complex model than "constant and age", you should modify the program
   char filerese[FILENAMELENGTH];    where the markup *Covariates have to be included here again* invites
  FILE  *ficresvij;    you to do it.  More covariates you add, slower the
   char fileresv[FILENAMELENGTH];    convergence.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define NR_END 1    identical for each individual. Also, if a individual missed an
 #define FREE_ARG char*    intermediate interview, the information is lost, but taken into
 #define FTOL 1.0e-10    account using an interpolation or extrapolation.  
   
 #define NRANSI    hPijx is the probability to be observed in state i at age x+h
 #define ITMAX 200    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 #define TOL 2.0e-4    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define CGOLD 0.3819660    matrix is simply the matrix product of nh*stepm elementary matrices
 #define ZEPS 1.0e-10    and the contribution of each individual to the likelihood is simply
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    hPijx.
   
 #define GOLD 1.618034    Also this programme outputs the covariance matrix of the parameters but also
 #define GLIMIT 100.0    of the life expectancies. It also computes the stable prevalence. 
 #define TINY 1.0e-20    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 static double maxarg1,maxarg2;             Institut national d'études démographiques, Paris.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    This software have been partly granted by Euro-REVES, a concerted action
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    from the European Union.
      It is copyrighted identically to a GNU software product, ie programme and
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    software can be distributed freely for non commercial use. Latest version
 #define rint(a) floor(a+0.5)    can be accessed at http://euroreves.ined.fr/imach .
   
 static double sqrarg;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    
     **********************************************************************/
 int imx;  /*
 int stepm;    main
 /* Stepm, step in month: minimum step interpolation*/    read parameterfile
     read datafile
 int m,nb;    concatwav
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    freqsummary
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    if (mle >= 1)
 double **pmmij, ***probs, ***mobaverage;      mlikeli
 double dateintmean=0;    print results files
     if mle==1 
 double *weight;       computes hessian
 int **s; /* Status */    read end of parameter file: agemin, agemax, bage, fage, estepm
 double *agedc, **covar, idx;        begin-prev-date,...
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    open gnuplot file
     open html file
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    stable prevalence
 double ftolhess; /* Tolerance for computing hessian */     for age prevalim()
     h Pij x
 /**************** split *************************/    variance of p varprob
 static  int split( char *path, char *dirc, char *name )    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
    char *s;                             /* pointer */    Variance-covariance of DFLE
    int  l1, l2;                         /* length counters */    prevalence()
      movingaverage()
    l1 = strlen( path );                 /* length of path */    varevsij() 
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    if popbased==1 varevsij(,popbased)
    s = strrchr( path, '\\' );           /* find last / */    total life expectancies
    if ( s == NULL ) {                   /* no directory, so use current */    Variance of stable prevalence
 #if     defined(__bsd__)                /* get current working directory */   end
       extern char       *getwd( );  */
   
       if ( getwd( dirc ) == NULL ) {  
 #else  
       extern char       *getcwd( );   
   #include <math.h>
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #include <stdio.h>
 #endif  #include <stdlib.h>
          return( GLOCK_ERROR_GETCWD );  #include <unistd.h>
       }  
       strcpy( name, path );             /* we've got it */  #include <sys/time.h>
    } else {                             /* strip direcotry from path */  #include <time.h>
       s++;                              /* after this, the filename */  #include "timeval.h"
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define MAXLINE 256
       strcpy( name, s );                /* save file name */  #define GNUPLOTPROGRAM "gnuplot"
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       dirc[l1-l2] = 0;                  /* add zero */  #define FILENAMELENGTH 132
    }  /*#define DEBUG*/
    l1 = strlen( dirc );                 /* length of directory */  /*#define windows*/
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    return( 0 );                         /* we're done */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /******************************************/  
   #define NINTERVMAX 8
 void replace(char *s, char*t)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int i;  #define NCOVMAX 8 /* Maximum number of covariates */
   int lg=20;  #define MAXN 20000
   i=0;  #define YEARM 12. /* Number of months per year */
   lg=strlen(t);  #define AGESUP 130
   for(i=0; i<= lg; i++) {  #define AGEBASE 40
     (s[i] = t[i]);  #ifdef unix
     if (t[i]== '\\') s[i]='/';  #define DIRSEPARATOR '/'
   }  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 int nbocc(char *s, char occ)  #define ODIRSEPARATOR '/'
 {  #endif
   int i,j=0;  
   int lg=20;  /* $Id$ */
   i=0;  /* $State$ */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
   if  (s[i] == occ ) j++;  char fullversion[]="$Revision$ $Date$"; 
   }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   return j;  int nvar;
 }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 void cutv(char *u,char *v, char*t, char occ)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   int i,lg,j,p=0;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   i=0;  int popbased=0;
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int *wav; /* Number of waves for this individuual 0 is possible */
   }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
   lg=strlen(t);  int gipmx, gsw; /* Global variables on the number of contributions 
   for(j=0; j<p; j++) {                     to the likelihood and the sum of weights (done by funcone)*/
     (u[j] = t[j]);  int mle, weightopt;
   }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
      u[p]='\0';  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    for(j=0; j<= lg; j++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     if (j>=(p+1))(v[j-p-1] = t[j]);  double jmean; /* Mean space between 2 waves */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /********************** nrerror ********************/  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 void nrerror(char error_text[])  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   fprintf(stderr,"ERREUR ...\n");  double sw; /* Sum of weights */
   fprintf(stderr,"%s\n",error_text);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   exit(1);  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /*********************** vector *******************/  FILE *ficresprobmorprev;
 double *vector(int nl, int nh)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   double *v;  char filerese[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE  *ficresvij;
   if (!v) nrerror("allocation failure in vector");  char fileresv[FILENAMELENGTH];
   return v-nl+NR_END;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /************************ free vector ******************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH]; 
   free((FREE_ARG)(v+nl-NR_END));  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /************************ivector *******************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int *ivector(long nl,long nh)  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   int *v;  char filerest[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char fileregp[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char popfile[FILENAMELENGTH];
   return v-nl+NR_END;  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /******************free ivector **************************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 void free_ivector(int *v, long nl, long nh)  struct timezone tzp;
 {  extern int gettimeofday();
   free((FREE_ARG)(v+nl-NR_END));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /******************* imatrix *******************************/  char strcurr[80], strfor[80];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define NR_END 1
 {  #define FREE_ARG char*
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define FTOL 1.0e-10
   int **m;  
    #define NRANSI 
   /* allocate pointers to rows */  #define ITMAX 200 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define TOL 2.0e-4 
   m += NR_END;  
   m -= nrl;  #define CGOLD 0.3819660 
    #define ZEPS 1.0e-10 
    #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define GOLD 1.618034 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GLIMIT 100.0 
   m[nrl] += NR_END;  #define TINY 1.0e-20 
   m[nrl] -= ncl;  
    static double maxarg1,maxarg2;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   /* return pointer to array of pointers to rows */    
   return m;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /****************** free_imatrix *************************/  static double sqrarg;
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       int **m;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  int imx; 
 {  int stepm;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG) (m+nrl-NR_END));  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  int m,nb;
 {  long *num;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **m;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double dateintmean=0;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  double *weight;
   m -= nrl;  int **s; /* Status */
   double *agedc, **covar, idx;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl] -= ncl;  double ftolhess; /* Tolerance for computing hessian */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /**************** split *************************/
   return m;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 /*************************free matrix ************************/    int   l1, l2;                         /* length counters */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    l1 = strlen(path );                   /* length of path */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG)(m+nrl-NR_END));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /******************* ma3x *******************************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double ***m;        return( GLOCK_ERROR_GETCWD );
       }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      strcpy( name, path );               /* we've got it */
   if (!m) nrerror("allocation failure 1 in matrix()");    } else {                              /* strip direcotry from path */
   m += NR_END;      ss++;                               /* after this, the filename */
   m -= nrl;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      strcpy( name, ss );         /* save file name */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl] += NR_END;      dirc[l1-l2] = 0;                    /* add zero */
   m[nrl] -= ncl;    }
     l1 = strlen( dirc );                  /* length of directory */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    /*#ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #else
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl][ncl] += NR_END;  #endif
   m[nrl][ncl] -= nll;    */
   for (j=ncl+1; j<=nch; j++)    ss = strrchr( name, '.' );            /* find last / */
     m[nrl][j]=m[nrl][j-1]+nlay;    ss++;
      strcpy(ext,ss);                       /* save extension */
   for (i=nrl+1; i<=nrh; i++) {    l1= strlen( name);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    l2= strlen(ss)+1;
     for (j=ncl+1; j<=nch; j++)    strncpy( finame, name, l1-l2);
       m[i][j]=m[i][j-1]+nlay;    finame[l1-l2]= 0;
   }    return( 0 );                          /* we're done */
   return m;  }
 }  
   
 /*************************free ma3x ************************/  /******************************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  void replace_back_to_slash(char *s, char*t)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int i;
   free((FREE_ARG)(m+nrl-NR_END));    int lg=0;
 }    i=0;
     lg=strlen(t);
 /***************** f1dim *************************/    for(i=0; i<= lg; i++) {
 extern int ncom;      (s[i] = t[i]);
 extern double *pcom,*xicom;      if (t[i]== '\\') s[i]='/';
 extern double (*nrfunc)(double []);    }
    }
 double f1dim(double x)  
 {  int nbocc(char *s, char occ)
   int j;  {
   double f;    int i,j=0;
   double *xt;    int lg=20;
      i=0;
   xt=vector(1,ncom);    lg=strlen(s);
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for(i=0; i<= lg; i++) {
   f=(*nrfunc)(xt);    if  (s[i] == occ ) j++;
   free_vector(xt,1,ncom);    }
   return f;    return j;
 }  }
   
 /*****************brent *************************/  void cutv(char *u,char *v, char*t, char occ)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    /* cuts string t into u and v where u is ended by char occ excluding it
   int iter;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   double a,b,d,etemp;       gives u="abcedf" and v="ghi2j" */
   double fu,fv,fw,fx;    int i,lg,j,p=0;
   double ftemp;    i=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    for(j=0; j<=strlen(t)-1; j++) {
   double e=0.0;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    lg=strlen(t);
   x=w=v=bx;    for(j=0; j<p; j++) {
   fw=fv=fx=(*f)(x);      (u[j] = t[j]);
   for (iter=1;iter<=ITMAX;iter++) {    }
     xm=0.5*(a+b);       u[p]='\0';
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/     for(j=0; j<= lg; j++) {
     printf(".");fflush(stdout);      if (j>=(p+1))(v[j-p-1] = t[j]);
 #ifdef DEBUG    }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /********************** nrerror ********************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  void nrerror(char error_text[])
       return fx;  {
     }    fprintf(stderr,"ERREUR ...\n");
     ftemp=fu;    fprintf(stderr,"%s\n",error_text);
     if (fabs(e) > tol1) {    exit(EXIT_FAILURE);
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  /*********************** vector *******************/
       p=(x-v)*q-(x-w)*r;  double *vector(int nl, int nh)
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    double *v;
       q=fabs(q);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       etemp=e;    if (!v) nrerror("allocation failure in vector");
       e=d;    return v-nl+NR_END;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  /************************ free vector ******************/
         d=p/q;  void free_vector(double*v, int nl, int nh)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    free((FREE_ARG)(v+nl-NR_END));
           d=SIGN(tol1,xm-x);  }
       }  
     } else {  /************************ivector *******************************/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int *ivector(long nl,long nh)
     }  {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    int *v;
     fu=(*f)(u);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (fu <= fx) {    if (!v) nrerror("allocation failure in ivector");
       if (u >= x) a=x; else b=x;    return v-nl+NR_END;
       SHFT(v,w,x,u)  }
         SHFT(fv,fw,fx,fu)  
         } else {  /******************free ivector **************************/
           if (u < x) a=u; else b=u;  void free_ivector(int *v, long nl, long nh)
           if (fu <= fw || w == x) {  {
             v=w;    free((FREE_ARG)(v+nl-NR_END));
             w=u;  }
             fv=fw;  
             fw=fu;  /************************lvector *******************************/
           } else if (fu <= fv || v == x || v == w) {  long *lvector(long nl,long nh)
             v=u;  {
             fv=fu;    long *v;
           }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         }    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /******************free lvector **************************/
 }  void free_lvector(long *v, long nl, long nh)
   {
 /****************** mnbrak ***********************/    free((FREE_ARG)(v+nl-NR_END));
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /******************* imatrix *******************************/
 {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double ulim,u,r,q, dum;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double fu;  { 
      long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   *fa=(*func)(*ax);    int **m; 
   *fb=(*func)(*bx);    
   if (*fb > *fa) {    /* allocate pointers to rows */ 
     SHFT(dum,*ax,*bx,dum)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       SHFT(dum,*fb,*fa,dum)    if (!m) nrerror("allocation failure 1 in matrix()"); 
       }    m += NR_END; 
   *cx=(*bx)+GOLD*(*bx-*ax);    m -= nrl; 
   *fc=(*func)(*cx);    
   while (*fb > *fc) {    
     r=(*bx-*ax)*(*fb-*fc);    /* allocate rows and set pointers to them */ 
     q=(*bx-*cx)*(*fb-*fa);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m[nrl] += NR_END; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] -= ncl; 
     if ((*bx-u)*(u-*cx) > 0.0) {    
       fu=(*func)(u);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    
       fu=(*func)(u);    /* return pointer to array of pointers to rows */ 
       if (fu < *fc) {    return m; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  } 
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /****************** free_imatrix *************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  void free_imatrix(m,nrl,nrh,ncl,nch)
       u=ulim;        int **m;
       fu=(*func)(u);        long nch,ncl,nrh,nrl; 
     } else {       /* free an int matrix allocated by imatrix() */ 
       u=(*cx)+GOLD*(*cx-*bx);  { 
       fu=(*func)(u);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     SHFT(*ax,*bx,*cx,u)  } 
       SHFT(*fa,*fb,*fc,fu)  
       }  /******************* matrix *******************************/
 }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 /*************** linmin ************************/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 int ncom;  
 double *pcom,*xicom;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 double (*nrfunc)(double []);    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m -= nrl;
 {  
   double brent(double ax, double bx, double cx,    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                double (*f)(double), double tol, double *xmin);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double f1dim(double x);    m[nrl] += NR_END;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl] -= ncl;
               double *fc, double (*func)(double));  
   int j;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double xx,xmin,bx,ax;    return m;
   double fx,fb,fa;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       */
   ncom=n;  }
   pcom=vector(1,n);  
   xicom=vector(1,n);  /*************************free matrix ************************/
   nrfunc=func;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=n;j++) {  {
     pcom[j]=p[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     xicom[j]=xi[j];    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   ax=0.0;  
   xx=1.0;  /******************* ma3x *******************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double ***m;
 #endif  
   for (j=1;j<=n;j++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     xi[j] *= xmin;    if (!m) nrerror("allocation failure 1 in matrix()");
     p[j] += xi[j];    m += NR_END;
   }    m -= nrl;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** powell ************************/    m[nrl] -= ncl;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {  
   void linmin(double p[], double xi[], int n, double *fret,    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
               double (*func)(double []));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   int i,ibig,j;    m[nrl][ncl] += NR_END;
   double del,t,*pt,*ptt,*xit;    m[nrl][ncl] -= nll;
   double fp,fptt;    for (j=ncl+1; j<=nch; j++) 
   double *xits;      m[nrl][j]=m[nrl][j-1]+nlay;
   pt=vector(1,n);    
   ptt=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   xit=vector(1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   xits=vector(1,n);      for (j=ncl+1; j<=nch; j++) 
   *fret=(*func)(p);        m[i][j]=m[i][j-1]+nlay;
   for (j=1;j<=n;j++) pt[j]=p[j];    }
   for (*iter=1;;++(*iter)) {    return m; 
     fp=(*fret);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     ibig=0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     del=0.0;    */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /*************************free ma3x ************************/
     printf("\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       fptt=(*fret);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /*************** function subdirf ***********/
       linmin(p,xit,n,fret,func);  char *subdirf(char fileres[])
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    /* Caution optionfilefiname is hidden */
         ibig=i;    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
 #ifdef DEBUG    strcat(tmpout,fileres);
       printf("%d %.12e",i,(*fret));    return tmpout;
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    
       printf("\n");    /* Caution optionfilefiname is hidden */
 #endif    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    strcat(tmpout,preop);
 #ifdef DEBUG    strcat(tmpout,fileres);
       int k[2],l;    return tmpout;
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /*************** function subdirf3 ***********/
       for (j=1;j<=n;j++)  char *subdirf3(char fileres[], char *preop, char *preop2)
         printf(" %.12e",p[j]);  {
       printf("\n");    
       for(l=0;l<=1;l++) {    /* Caution optionfilefiname is hidden */
         for (j=1;j<=n;j++) {    strcpy(tmpout,optionfilefiname);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcat(tmpout,"/");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,preop);
         }    strcat(tmpout,preop2);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,fileres);
       }    return tmpout;
 #endif  }
   
   /***************** f1dim *************************/
       free_vector(xit,1,n);  extern int ncom; 
       free_vector(xits,1,n);  extern double *pcom,*xicom;
       free_vector(ptt,1,n);  extern double (*nrfunc)(double []); 
       free_vector(pt,1,n);   
       return;  double f1dim(double x) 
     }  { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    int j; 
     for (j=1;j<=n;j++) {    double f;
       ptt[j]=2.0*p[j]-pt[j];    double *xt; 
       xit[j]=p[j]-pt[j];   
       pt[j]=p[j];    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     fptt=(*func)(ptt);    f=(*nrfunc)(xt); 
     if (fptt < fp) {    free_vector(xt,1,ncom); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return f; 
       if (t < 0.0) {  } 
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /*****************brent *************************/
           xi[j][ibig]=xi[j][n];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
           xi[j][n]=xit[j];  { 
         }    int iter; 
 #ifdef DEBUG    double a,b,d,etemp;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double fu,fv,fw,fx;
         for(j=1;j<=n;j++)    double ftemp;
           printf(" %.12e",xit[j]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         printf("\n");    double e=0.0; 
 #endif   
       }    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
 }    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
 /**** Prevalence limit ****************/      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      fprintf(ficlog,".");fflush(ficlog);
      matrix by transitions matrix until convergence is reached */  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, ii,j,k;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double min, max, maxmin, maxmax,sumnew=0.;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double **matprod2();  #endif
   double **out, cov[NCOVMAX], **pmij();      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double **newm;        *xmin=x; 
   double agefin, delaymax=50 ; /* Max number of years to converge */        return fx; 
       } 
   for (ii=1;ii<=nlstate+ndeath;ii++)      ftemp=fu;
     for (j=1;j<=nlstate+ndeath;j++){      if (fabs(e) > tol1) { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        r=(x-w)*(fx-fv); 
     }        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
    cov[1]=1.;        q=2.0*(q-r); 
          if (q > 0.0) p = -p; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        q=fabs(q); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        etemp=e; 
     newm=savm;        e=d; 
     /* Covariates have to be included here again */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      cov[2]=agefin;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          else { 
       for (k=1; k<=cptcovn;k++) {          d=p/q; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          u=x+d; 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/          if (u-a < tol2 || b-u < tol2) 
       }            d=SIGN(tol1,xm-x); 
       for (k=1; k<=cptcovage;k++)        } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } else { 
       for (k=1; k<=cptcovprod;k++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      fu=(*f)(u); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
     savm=oldm;          } else { 
     oldm=newm;            if (u < x) a=u; else b=u; 
     maxmax=0.;            if (fu <= fw || w == x) { 
     for(j=1;j<=nlstate;j++){              v=w; 
       min=1.;              w=u; 
       max=0.;              fv=fw; 
       for(i=1; i<=nlstate; i++) {              fw=fu; 
         sumnew=0;            } else if (fu <= fv || v == x || v == w) { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];              v=u; 
         prlim[i][j]= newm[i][j]/(1-sumnew);              fv=fu; 
         max=FMAX(max,prlim[i][j]);            } 
         min=FMIN(min,prlim[i][j]);          } 
       }    } 
       maxmin=max-min;    nrerror("Too many iterations in brent"); 
       maxmax=FMAX(maxmax,maxmin);    *xmin=x; 
     }    return fx; 
     if(maxmax < ftolpl){  } 
       return prlim;  
     }  /****************** mnbrak ***********************/
   }  
 }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 /*************** transition probabilities ***************/  { 
     double ulim,u,r,q, dum;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double fu; 
 {   
   double s1, s2;    *fa=(*func)(*ax); 
   /*double t34;*/    *fb=(*func)(*bx); 
   int i,j,j1, nc, ii, jj;    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
     for(i=1; i<= nlstate; i++){        SHFT(dum,*fb,*fa,dum) 
     for(j=1; j<i;j++){        } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *cx=(*bx)+GOLD*(*bx-*ax); 
         /*s2 += param[i][j][nc]*cov[nc];*/    *fc=(*func)(*cx); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    while (*fb > *fc) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      r=(*bx-*ax)*(*fb-*fc); 
       }      q=(*bx-*cx)*(*fb-*fa); 
       ps[i][j]=s2;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(j=i+1; j<=nlstate+ndeath;j++){      if ((*bx-u)*(u-*cx) > 0.0) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fu=(*func)(u); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fu=(*func)(u); 
       }        if (fu < *fc) { 
       ps[i][j]=(s2);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
     /*ps[3][2]=1;*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   for(i=1; i<= nlstate; i++){        fu=(*func)(u); 
      s1=0;      } else { 
     for(j=1; j<i; j++)        u=(*cx)+GOLD*(*cx-*bx); 
       s1+=exp(ps[i][j]);        fu=(*func)(u); 
     for(j=i+1; j<=nlstate+ndeath; j++)      } 
       s1+=exp(ps[i][j]);      SHFT(*ax,*bx,*cx,u) 
     ps[i][i]=1./(s1+1.);        SHFT(*fa,*fb,*fc,fu) 
     for(j=1; j<i; j++)        } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*************** linmin ************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  int ncom; 
   double *pcom,*xicom;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double (*nrfunc)(double []); 
     for(jj=1; jj<= nlstate+ndeath; jj++){   
       ps[ii][jj]=0;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       ps[ii][ii]=1;  { 
     }    double brent(double ax, double bx, double cx, 
   }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){                double *fc, double (*func)(double)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    int j; 
      printf("%lf ",ps[ii][jj]);    double xx,xmin,bx,ax; 
    }    double fx,fb,fa;
     printf("\n ");   
     }    ncom=n; 
     printf("\n ");printf("%lf ",cov[2]);*/    pcom=vector(1,n); 
 /*    xicom=vector(1,n); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    nrfunc=func; 
   goto end;*/    for (j=1;j<=n;j++) { 
     return ps;      pcom[j]=p[j]; 
 }      xicom[j]=xi[j]; 
     } 
 /**************** Product of 2 matrices ******************/    ax=0.0; 
     xx=1.0; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #ifdef DEBUG
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* in, b, out are matrice of pointers which should have been initialized    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      before: only the contents of out is modified. The function returns  #endif
      a pointer to pointers identical to out */    for (j=1;j<=n;j++) { 
   long i, j, k;      xi[j] *= xmin; 
   for(i=nrl; i<= nrh; i++)      p[j] += xi[j]; 
     for(k=ncolol; k<=ncoloh; k++)    } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    free_vector(xicom,1,n); 
         out[i][k] +=in[i][j]*b[j][k];    free_vector(pcom,1,n); 
   } 
   return out;  
 }  char *asc_diff_time(long time_sec, char ascdiff[])
   {
     long sec_left, days, hours, minutes;
 /************* Higher Matrix Product ***************/    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    minutes = (sec_left) /60;
      duration (i.e. until    sec_left = (sec_left) % (60);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    return ascdiff;
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      */              double (*func)(double [])) 
   { 
   int i, j, d, h, k;    void linmin(double p[], double xi[], int n, double *fret, 
   double **out, cov[NCOVMAX];                double (*func)(double [])); 
   double **newm;    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   /* Hstepm could be zero and should return the unit matrix */    double fp,fptt;
   for (i=1;i<=nlstate+ndeath;i++)    double *xits;
     for (j=1;j<=nlstate+ndeath;j++){    int niterf, itmp;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    pt=vector(1,n); 
     }    ptt=vector(1,n); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    xit=vector(1,n); 
   for(h=1; h <=nhstepm; h++){    xits=vector(1,n); 
     for(d=1; d <=hstepm; d++){    *fret=(*func)(p); 
       newm=savm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       /* Covariates have to be included here again */    for (*iter=1;;++(*iter)) { 
       cov[1]=1.;      fp=(*fret); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      ibig=0; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      del=0.0; 
       for (k=1; k<=cptcovage;k++)      last_time=curr_time;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      (void) gettimeofday(&curr_time,&tzp);
       for (k=1; k<=cptcovprod;k++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       for (i=1;i<=n;i++) {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        printf(" %d %.12f",i, p[i]);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fprintf(ficlog," %d %.12lf",i, p[i]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficrespow," %.12lf", p[i]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      }
       savm=oldm;      printf("\n");
       oldm=newm;      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
     for(i=1; i<=nlstate+ndeath; i++)      if(*iter <=3){
       for(j=1;j<=nlstate+ndeath;j++) {        tm = *localtime(&curr_time.tv_sec);
         po[i][j][h]=newm[i][j];        strcpy(strcurr,asctime(&tmf));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /*       asctime_r(&tm,strcurr); */
          */        forecast_time=curr_time;
       }        itmp = strlen(strcurr);
   } /* end h */        if(strcurr[itmp-1]=='\n')
   return po;          strcurr[itmp-1]='\0';
 }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
 /*************** log-likelihood *************/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 double func( double *x)          tmf = *localtime(&forecast_time.tv_sec);
 {  /*      asctime_r(&tmf,strfor); */
   int i, ii, j, k, mi, d, kk;          strcpy(strfor,asctime(&tmf));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          itmp = strlen(strfor);
   double **out;          if(strfor[itmp-1]=='\n')
   double sw; /* Sum of weights */          strfor[itmp-1]='\0';
   double lli; /* Individual log likelihood */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   long ipmx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /*extern weight */        }
   /* We are differentiating ll according to initial status */      }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for (i=1;i<=n;i++) { 
   /*for(i=1;i<imx;i++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     printf(" %d\n",s[4][i]);        fptt=(*fret); 
   */  #ifdef DEBUG
   cov[1]=1.;        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #endif
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        printf("%d",i);fflush(stdout);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        fprintf(ficlog,"%d",i);fflush(ficlog);
     for(mi=1; mi<= wav[i]-1; mi++){        linmin(p,xit,n,fret,func); 
       for (ii=1;ii<=nlstate+ndeath;ii++)        if (fabs(fptt-(*fret)) > del) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          del=fabs(fptt-(*fret)); 
       for(d=0; d<dh[mi][i]; d++){          ibig=i; 
         newm=savm;        } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #ifdef DEBUG
         for (kk=1; kk<=cptcovage;kk++) {        printf("%d %.12e",i,(*fret));
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fprintf(ficlog,"%d %.12e",i,(*fret));
         }        for (j=1;j<=n;j++) {
                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          printf(" x(%d)=%.12e",j,xit[j]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         savm=oldm;        }
         oldm=newm;        for(j=1;j<=n;j++) {
                  printf(" p=%.12e",p[j]);
                  fprintf(ficlog," p=%.12e",p[j]);
       } /* end mult */        }
              printf("\n");
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fprintf(ficlog,"\n");
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  #endif
       ipmx +=1;      } 
       sw += weight[i];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #ifdef DEBUG
     } /* end of wave */        int k[2],l;
   } /* end of individual */        k[0]=1;
         k[1]=-1;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        printf("Max: %.12e",(*func)(p));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        fprintf(ficlog,"Max: %.12e",(*func)(p));
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for (j=1;j<=n;j++) {
   return -l;          printf(" %.12e",p[j]);
 }          fprintf(ficlog," %.12e",p[j]);
         }
         printf("\n");
 /*********** Maximum Likelihood Estimation ***************/        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          for (j=1;j<=n;j++) {
 {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int i,j, iter;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double **xi,*delti;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double fret;          }
   xi=matrix(1,npar,1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++)        }
       xi[i][j]=(i==j ? 1.0 : 0.0);  #endif
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  
         free_vector(xit,1,n); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        free_vector(xits,1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
 }        return; 
       } 
 /**** Computes Hessian and covariance matrix ***/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for (j=1;j<=n;j++) { 
 {        ptt[j]=2.0*p[j]-pt[j]; 
   double  **a,**y,*x,pd;        xit[j]=p[j]-pt[j]; 
   double **hess;        pt[j]=p[j]; 
   int i, j,jk;      } 
   int *indx;      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   double hessii(double p[], double delta, int theta, double delti[]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double hessij(double p[], double delti[], int i, int j);        if (t < 0.0) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;          linmin(p,xit,n,fret,func); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   hess=matrix(1,npar,1,npar);            xi[j][n]=xit[j]; 
           }
   printf("\nCalculation of the hessian matrix. Wait...\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     printf("%d",i);fflush(stdout);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     hess[i][i]=hessii(p,ftolhess,i,delti);          for(j=1;j<=n;j++){
     /*printf(" %f ",p[i]);*/            printf(" %.12e",xit[j]);
     /*printf(" %lf ",hess[i][i]);*/            fprintf(ficlog," %.12e",xit[j]);
   }          }
            printf("\n");
   for (i=1;i<=npar;i++) {          fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++)  {  #endif
       if (j>i) {        }
         printf(".%d%d",i,j);fflush(stdout);      } 
         hess[i][j]=hessij(p,delti,i,j);    } 
         hess[j][i]=hess[i][j];      } 
         /*printf(" %lf ",hess[i][j]);*/  
       }  /**** Prevalence limit (stable prevalence)  ****************/
     }  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   printf("\n");  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       matrix by transitions matrix until convergence is reached */
    
   a=matrix(1,npar,1,npar);    int i, ii,j,k;
   y=matrix(1,npar,1,npar);    double min, max, maxmin, maxmax,sumnew=0.;
   x=vector(1,npar);    double **matprod2();
   indx=ivector(1,npar);    double **out, cov[NCOVMAX], **pmij();
   for (i=1;i<=npar;i++)    double **newm;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double agefin, delaymax=50 ; /* Max number of years to converge */
   ludcmp(a,npar,indx,&pd);  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1;j<=npar;j++) {      for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++) x[i]=0;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     x[j]=1;      }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){     cov[1]=1.;
       matcov[i][j]=x[i];   
     }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   printf("\n#Hessian matrix#\n");      /* Covariates have to be included here again */
   for (i=1;i<=npar;i++) {       cov[2]=agefin;
     for (j=1;j<=npar;j++) {    
       printf("%.3e ",hess[i][j]);        for (k=1; k<=cptcovn;k++) {
     }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     printf("\n");          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* Recompute Inverse */        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /*  printf("\n#Hessian matrix recomputed#\n");        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;      savm=oldm;
     x[j]=1;      oldm=newm;
     lubksb(a,npar,indx,x);      maxmax=0.;
     for (i=1;i<=npar;i++){      for(j=1;j<=nlstate;j++){
       y[i][j]=x[i];        min=1.;
       printf("%.3e ",y[i][j]);        max=0.;
     }        for(i=1; i<=nlstate; i++) {
     printf("\n");          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   */          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   free_matrix(a,1,npar,1,npar);          min=FMIN(min,prlim[i][j]);
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);        maxmin=max-min;
   free_ivector(indx,1,npar);        maxmax=FMAX(maxmax,maxmin);
   free_matrix(hess,1,npar,1,npar);      }
       if(maxmax < ftolpl){
         return prlim;
 }      }
     }
 /*************** hessian matrix ****************/  }
 double hessii( double x[], double delta, int theta, double delti[])  
 {  /*************** transition probabilities ***************/ 
   int i;  
   int l=1, lmax=20;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double k1,k2;  {
   double p2[NPARMAX+1];    double s1, s2;
   double res;    /*double t34;*/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    int i,j,j1, nc, ii, jj;
   double fx;  
   int k=0,kmax=10;      for(i=1; i<= nlstate; i++){
   double l1;      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   fx=func(x);          /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1;i<=npar;i++) p2[i]=x[i];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for(l=0 ; l <=lmax; l++){          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
     l1=pow(10,l);        }
     delts=delt;        ps[i][j]=s2;
     for(k=1 ; k <kmax; k=k+1){        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       delt = delta*(l1*k);      }
       p2[theta]=x[theta] +delt;      for(j=i+1; j<=nlstate+ndeath;j++){
       k1=func(p2)-fx;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       p2[theta]=x[theta]-delt;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       k2=func(p2)-fx;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */        }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        ps[i][j]=s2;
            }
 #ifdef DEBUG    }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      /*ps[3][2]=1;*/
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for(i=1; i<= nlstate; i++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){       s1=0;
         k=kmax;      for(j=1; j<i; j++)
       }        s1+=exp(ps[i][j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for(j=i+1; j<=nlstate+ndeath; j++)
         k=kmax; l=lmax*10.;        s1+=exp(ps[i][j]);
       }      ps[i][i]=1./(s1+1.);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for(j=1; j<i; j++)
         delts=delt;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       }      for(j=i+1; j<=nlstate+ndeath; j++)
     }        ps[i][j]= exp(ps[i][j])*ps[i][i];
   }      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   delti[theta]=delts;    } /* end i */
   return res;  
      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 }      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
 double hessij( double x[], double delti[], int thetai,int thetaj)        ps[ii][ii]=1;
 {      }
   int i;    }
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   int k;      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
   fx=func(x);     }
   for (k=1; k<=2; k++) {      printf("\n ");
     for (i=1;i<=npar;i++) p2[i]=x[i];      }
     p2[thetai]=x[thetai]+delti[thetai]/k;      printf("\n ");printf("%lf ",cov[2]);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*
     k1=func(p2)-fx;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
      goto end;*/
     p2[thetai]=x[thetai]+delti[thetai]/k;      return ps;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k2=func(p2)-fx;  
    /**************** Product of 2 matrices ******************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     k3=func(p2)-fx;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     p2[thetai]=x[thetai]-delti[thetai]/k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* in, b, out are matrice of pointers which should have been initialized 
     k4=func(p2)-fx;       before: only the contents of out is modified. The function returns
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       a pointer to pointers identical to out */
 #ifdef DEBUG    long i, j, k;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for(i=nrl; i<= nrh; i++)
 #endif      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   return res;          out[i][k] +=in[i][j]*b[j][k];
 }  
     return out;
 /************** Inverse of matrix **************/  }
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  
   int i,imax,j,k;  /************* Higher Matrix Product ***************/
   double big,dum,sum,temp;  
   double *vv;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
    {
   vv=vector(1,n);    /* Computes the transition matrix starting at age 'age' over 
   *d=1.0;       'nhstepm*hstepm*stepm' months (i.e. until
   for (i=1;i<=n;i++) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     big=0.0;       nhstepm*hstepm matrices. 
     for (j=1;j<=n;j++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       if ((temp=fabs(a[i][j])) > big) big=temp;       (typically every 2 years instead of every month which is too big 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       for the memory).
     vv[i]=1.0/big;       Model is determined by parameters x and covariates have to be 
   }       included manually here. 
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {       */
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    int i, j, d, h, k;
       a[i][j]=sum;    double **out, cov[NCOVMAX];
     }    double **newm;
     big=0.0;  
     for (i=j;i<=n;i++) {    /* Hstepm could be zero and should return the unit matrix */
       sum=a[i][j];    for (i=1;i<=nlstate+ndeath;i++)
       for (k=1;k<j;k++)      for (j=1;j<=nlstate+ndeath;j++){
         sum -= a[i][k]*a[k][j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
       a[i][j]=sum;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       if ( (dum=vv[i]*fabs(sum)) >= big) {      }
         big=dum;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         imax=i;    for(h=1; h <=nhstepm; h++){
       }      for(d=1; d <=hstepm; d++){
     }        newm=savm;
     if (j != imax) {        /* Covariates have to be included here again */
       for (k=1;k<=n;k++) {        cov[1]=1.;
         dum=a[imax][k];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         a[imax][k]=a[j][k];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         a[j][k]=dum;        for (k=1; k<=cptcovage;k++)
       }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       *d = -(*d);        for (k=1; k<=cptcovprod;k++)
       vv[imax]=vv[j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     if (j != n) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       dum=1.0/(a[j][j]);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     }        savm=oldm;
   }        oldm=newm;
   free_vector(vv,1,n);  /* Doesn't work */      }
 ;      for(i=1; i<=nlstate+ndeath; i++)
 }        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
 void lubksb(double **a, int n, int *indx, double b[])          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 {           */
   int i,ii=0,ip,j;        }
   double sum;    } /* end h */
      return po;
   for (i=1;i<=n;i++) {  }
     ip=indx[i];  
     sum=b[ip];  
     b[ip]=b[i];  /*************** log-likelihood *************/
     if (ii)  double func( double *x)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  {
     else if (sum) ii=i;    int i, ii, j, k, mi, d, kk;
     b[i]=sum;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   }    double **out;
   for (i=n;i>=1;i--) {    double sw; /* Sum of weights */
     sum=b[i];    double lli; /* Individual log likelihood */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    int s1, s2;
     b[i]=sum/a[i][i];    double bbh, survp;
   }    long ipmx;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /************ Frequencies ********************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)    /*for(i=1;i<imx;i++) 
 {  /* Some frequencies */      printf(" %d\n",s[4][i]);
      */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    cov[1]=1.;
   double ***freq; /* Frequencies */  
   double *pp;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;    if(mle==1){
   char fileresp[FILENAMELENGTH];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   pp=vector(1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (ii=1;ii<=nlstate+ndeath;ii++)
   strcpy(fileresp,"p");            for (j=1;j<=nlstate+ndeath;j++){
   strcat(fileresp,fileres);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with prevalence resultfile: %s\n", fileresp);            }
     exit(0);          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j1=0;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){            savm=oldm;
    for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
        j1++;          } /* end mult */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        
          scanf("%d", i);*/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for (i=-1; i<=nlstate+ndeath; i++)            /* But now since version 0.9 we anticipate for bias and large stepm.
          for (jk=-1; jk<=nlstate+ndeath; jk++)             * If stepm is larger than one month (smallest stepm) and if the exact delay 
            for(m=agemin; m <= agemax+3; m++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
              freq[i][jk][m]=0;           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
         dateintsum=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         k2cpt=0;           * probability in order to take into account the bias as a fraction of the way
        for (i=1; i<=imx; i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
          bool=1;           * -stepm/2 to stepm/2 .
          if  (cptcovn>0) {           * For stepm=1 the results are the same as for previous versions of Imach.
            for (z1=1; z1<=cptcoveff; z1++)           * For stepm > 1 the results are less biased than in previous versions. 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           */
                bool=0;          s1=s[mw[mi][i]][i];
          }          s2=s[mw[mi+1][i]][i];
          if (bool==1) {          bbh=(double)bh[mi][i]/(double)stepm; 
            for(m=firstpass; m<=lastpass; m++){          /* bias is positive if real duration
              k2=anint[m][i]+(mint[m][i]/12.);           * is higher than the multiple of stepm and negative otherwise.
              if ((k2>=dateprev1) && (k2<=dateprev2)) {           */
                if(agev[m][i]==0) agev[m][i]=agemax+1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                if(agev[m][i]==1) agev[m][i]=agemax+2;          if( s2 > nlstate){ 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];               to the likelihood is the probability to die between last step unit time and current 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {               step unit time, which is also the differences between probability to die before dh 
                  dateintsum=dateintsum+k2;               and probability to die before dh-stepm . 
                  k2cpt++;               In version up to 0.92 likelihood was computed
                }          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
              }          and not the date of a change in health state. The former idea was
            }          to consider that at each interview the state was recorded
          }          (healthy, disable or death) and IMaCh was corrected; but when we
        }          introduced the exact date of death then we should have modified
         if  (cptcovn>0) {          the contribution of an exact death to the likelihood. This new
          fprintf(ficresp, "\n#********** Variable ");          contribution is smaller and very dependent of the step unit
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          stepm. It is no more the probability to die between last interview
        fprintf(ficresp, "**********\n#");          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
        for(i=1; i<=nlstate;i++)          probability to die within a month. Thanks to Chris
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          Jackson for correcting this bug.  Former versions increased
        fprintf(ficresp, "\n");          mortality artificially. The bad side is that we add another loop
                  which slows down the processing. The difference can be up to 10%
   for(i=(int)agemin; i <= (int)agemax+3; i++){          lower mortality.
     if(i==(int)agemax+3)            */
       printf("Total");            lli=log(out[s1][s2] - savm[s1][s2]);
     else          }else{
       printf("Age %d", i);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(jk=1; jk <=nlstate ; jk++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          } 
         pp[jk] += freq[jk][m][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
     for(jk=1; jk <=nlstate ; jk++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(m=-1, pos=0; m <=0 ; m++)          ipmx +=1;
         pos += freq[jk][m][i];          sw += weight[i];
       if(pp[jk]>=1.e-10)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        } /* end of wave */
       else      } /* end of individual */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
      }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=1,pos=0; jk <=nlstate ; jk++)            }
       pos += pp[jk];          for(d=0; d<=dh[mi][i]; d++){
     for(jk=1; jk <=nlstate ; jk++){            newm=savm;
       if(pos>=1.e-5)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (kk=1; kk<=cptcovage;kk++) {
       else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
       if( i <= (int) agemax){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(pos>=1.e-5){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            savm=oldm;
           probs[i][jk][j1]= pp[jk]/pos;            oldm=newm;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          } /* end mult */
         }        
       else          s1=s[mw[mi][i]][i];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(jk=-1; jk <=nlstate+ndeath; jk++)          ipmx +=1;
       for(m=-1; m <=nlstate+ndeath; m++)          sw += weight[i];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if(i <= (int) agemax)        } /* end of wave */
       fprintf(ficresp,"\n");      } /* end of individual */
     printf("\n");    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }        for(mi=1; mi<= wav[i]-1; mi++){
   dateintmean=dateintsum/k2cpt;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficresp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);            }
           for(d=0; d<dh[mi][i]; d++){
   /* End of Freq */            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************ Prevalence ********************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            }
 {  /* Some frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            savm=oldm;
   double ***freq; /* Frequencies */            oldm=newm;
   double *pp;          } /* end mult */
   double pos, k2;        
           s1=s[mw[mi][i]][i];
   pp=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ipmx +=1;
   j1=0;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   j=cptcoveff;        } /* end of wave */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
  for(k1=1; k1<=j;k1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       j1++;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=-1; i<=nlstate+ndeath; i++)              for (j=1;j<=nlstate+ndeath;j++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=agemin; m <= agemax+3; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             freq[i][jk][m]=0;            }
                for(d=0; d<dh[mi][i]; d++){
       for (i=1; i<=imx; i++) {            newm=savm;
         bool=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if  (cptcovn>0) {            for (kk=1; kk<=cptcovage;kk++) {
           for (z1=1; z1<=cptcoveff; z1++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            }
               bool=0;          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (bool==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=firstpass; m<=lastpass; m++){            savm=oldm;
             k2=anint[m][i]+(mint[m][i]/12.);            oldm=newm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          } /* end mult */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        
               if(agev[m][i]==1) agev[m][i]=agemax+2;          s1=s[mw[mi][i]][i];
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          s2=s[mw[mi+1][i]][i];
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            if( s2 > nlstate){ 
             }            lli=log(out[s1][s2] - savm[s1][s2]);
           }          }else{
         }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          }
                ipmx +=1;
         for(i=(int)agemin; i <= (int)agemax+3; i++){          sw += weight[i];
           for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
               pp[jk] += freq[jk][m][i];        } /* end of wave */
           }      } /* end of individual */
           for(jk=1; jk <=nlstate ; jk++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             for(m=-1, pos=0; m <=0 ; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pos += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
          for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          }            }
                    for(d=0; d<dh[mi][i]; d++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          for(jk=1; jk <=nlstate ; jk++){                      for (kk=1; kk<=cptcovage;kk++) {
            if( i <= (int) agemax){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              if(pos>=1.e-5){            }
                probs[i][jk][j1]= pp[jk]/pos;          
              }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
            }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          }            savm=oldm;
                      oldm=newm;
         }          } /* end mult */
     }        
   }          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ipmx +=1;
   free_vector(pp,1,nlstate);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /* End of Freq */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
 /************* Waves Concatenation ***************/      } /* end of individual */
     } /* End of if */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      Death is a valid wave (if date is known).    return -l;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  /*************** log-likelihood *************/
      */  double funcone( double *x)
   {
   int i, mi, m;    /* Same as likeli but slower because of a lot of printf and if */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    int i, ii, j, k, mi, d, kk;
      double sum=0., jmean=0.;*/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   int j, k=0,jk, ju, jl;    double lli; /* Individual log likelihood */
   double sum=0.;    double llt;
   jmin=1e+5;    int s1, s2;
   jmax=-1;    double bbh, survp;
   jmean=0.;    /*extern weight */
   for(i=1; i<=imx; i++){    /* We are differentiating ll according to initial status */
     mi=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     m=firstpass;    /*for(i=1;i<imx;i++) 
     while(s[m][i] <= nlstate){      printf(" %d\n",s[4][i]);
       if(s[m][i]>=1)    */
         mw[++mi][i]=m;    cov[1]=1.;
       if(m >=lastpass)  
         break;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       else  
         m++;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }/* end while */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (s[m][i] > nlstate){      for(mi=1; mi<= wav[i]-1; mi++){
       mi++;     /* Death is another wave */        for (ii=1;ii<=nlstate+ndeath;ii++)
       /* if(mi==0)  never been interviewed correctly before death */          for (j=1;j<=nlstate+ndeath;j++){
          /* Only death is a correct wave */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       mw[mi][i]=m;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }          }
         for(d=0; d<dh[mi][i]; d++){
     wav[i]=mi;          newm=savm;
     if(mi==0)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (kk=1; kk<=cptcovage;kk++) {
   }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   for(i=1; i<=imx; i++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(mi=1; mi<wav[i];mi++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (stepm <=0)          savm=oldm;
         dh[mi][i]=1;          oldm=newm;
       else{        } /* end mult */
         if (s[mw[mi+1][i]][i] > nlstate) {        
           if (agedc[i] < 2*AGESUP) {        s1=s[mw[mi][i]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        s2=s[mw[mi+1][i]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */        bbh=(double)bh[mi][i]/(double)stepm; 
           k=k+1;        /* bias is positive if real duration
           if (j >= jmax) jmax=j;         * is higher than the multiple of stepm and negative otherwise.
           if (j <= jmin) jmin=j;         */
           sum=sum+j;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           /* if (j<10) printf("j=%d num=%d ",j,i); */          lli=log(out[s1][s2] - savm[s1][s2]);
           }        } else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         else{        } else if(mle==2){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           k=k+1;        } else if(mle==3){  /* exponential inter-extrapolation */
           if (j >= jmax) jmax=j;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           else if (j <= jmin)jmin=j;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          lli=log(out[s1][s2]); /* Original formula */
           sum=sum+j;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         }          lli=log(out[s1][s2]); /* Original formula */
         jk= j/stepm;        } /* End of if */
         jl= j -jk*stepm;        ipmx +=1;
         ju= j -(jk+1)*stepm;        sw += weight[i];
         if(jl <= -ju)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=jk;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         else        if(globpr){
           dh[mi][i]=jk+1;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         if(dh[mi][i]==0)   %10.6f %10.6f %10.6f ", \
           dh[mi][i]=1; /* At least one step */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
   jmean=sum/k;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          }
  }          fprintf(ficresilk," %10.6f\n", -llt);
 /*********** Tricode ****************************/        }
 void tricode(int *Tvar, int **nbcode, int imx)      } /* end of wave */
 {    } /* end of individual */
   int Ndum[20],ij=1, k, j, i;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int cptcode=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   cptcoveff=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      if(globpr==0){ /* First time we count the contributions and weights */
   for (k=0; k<19; k++) Ndum[k]=0;      gipmx=ipmx;
   for (k=1; k<=7; k++) ncodemax[k]=0;      gsw=sw;
     }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    return -l;
     for (i=1; i<=imx; i++) {  }
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  /*************** function likelione ***********/
       if (ij > cptcode) cptcode=ij;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     }  {
     /* This routine should help understanding what is done with 
     for (i=0; i<=cptcode; i++) {       the selection of individuals/waves and
       if(Ndum[i]!=0) ncodemax[j]++;       to check the exact contribution to the likelihood.
     }       Plotting could be done.
     ij=1;     */
     int k;
   
     for (i=1; i<=ncodemax[j]; i++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
       for (k=0; k<=19; k++) {      strcpy(fileresilk,"ilk"); 
         if (Ndum[k] != 0) {      strcat(fileresilk,fileres);
           nbcode[Tvar[j]][ij]=k;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           ij++;        printf("Problem with resultfile: %s\n", fileresilk);
         }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         if (ij > ncodemax[j]) break;      }
       }        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   }        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
  for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
  for (i=1; i<=ncovmodel-2; i++) {    }
       ij=Tvar[i];  
       Ndum[ij]++;    *fretone=(*funcone)(p);
     }    if(*globpri !=0){
       fclose(ficresilk);
  ij=1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  for (i=1; i<=10; i++) {      fflush(fichtm); 
    if((Ndum[i]!=0) && (i<=ncov)){    } 
      Tvaraff[ij]=i;    return;
      ij++;  }
    }  
  }  
    /*********** Maximum Likelihood Estimation ***************/
     cptcoveff=ij-1;  
 }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
 /*********** Health Expectancies ****************/    int i,j, iter;
     double **xi;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    double fret;
 {    double fretone; /* Only one call to likelihood */
   /* Health expectancies */    char filerespow[FILENAMELENGTH];
   int i, j, nhstepm, hstepm, h;    xi=matrix(1,npar,1,npar);
   double age, agelim,hf;    for (i=1;i<=npar;i++)
   double ***p3mat;      for (j=1;j<=npar;j++)
          xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Health expectancies\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   fprintf(ficreseij,"# Age");    strcpy(filerespow,"pow"); 
   for(i=1; i<=nlstate;i++)    strcat(filerespow,fileres);
     for(j=1; j<=nlstate;j++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       fprintf(ficreseij," %1d-%1d",i,j);      printf("Problem with resultfile: %s\n", filerespow);
   fprintf(ficreseij,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
   hstepm=1*YEARM; /*  Every j years of age (in month) */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   agelim=AGESUP;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficrespow,"\n");
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    powell(p,xi,npar,ftol,&iter,&fret,func);
     /* Typically if 20 years = 20*12/6=40 stepm */  
     if (stepm >= YEARM) hstepm=1;    fclose(ficrespow);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    }
   
   /**** Computes Hessian and covariance matrix ***/
     for(i=1; i<=nlstate;i++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(j=1; j<=nlstate;j++)  {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    double  **a,**y,*x,pd;
           eij[i][j][(int)age] +=p3mat[i][j][h];    double **hess;
         }    int i, j,jk;
        int *indx;
     hf=1;  
     if (stepm >= YEARM) hf=stepm/YEARM;    double hessii(double p[], double delta, int theta, double delti[]);
     fprintf(ficreseij,"%.0f",age );    double hessij(double p[], double delti[], int i, int j);
     for(i=1; i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<=nlstate;j++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);  
       }    hess=matrix(1,npar,1,npar);
     fprintf(ficreseij,"\n");  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 /************ Variance ******************/      fprintf(ficlog,"%d",i);fflush(ficlog);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      hess[i][i]=hessii(p,ftolhess,i,delti);
 {      /*printf(" %f ",p[i]);*/
   /* Variance of health expectancies */      /*printf(" %lf ",hess[i][i]);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   double **newm;    
   double **dnewm,**doldm;    for (i=1;i<=npar;i++) {
   int i, j, nhstepm, hstepm, h;      for (j=1;j<=npar;j++)  {
   int k, cptcode;        if (j>i) { 
   double *xp;          printf(".%d%d",i,j);fflush(stdout);
   double **gp, **gm;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double ***gradg, ***trgradg;          hess[i][j]=hessij(p,delti,i,j);
   double ***p3mat;          hess[j][i]=hess[i][j];    
   double age,agelim;          /*printf(" %lf ",hess[i][j]);*/
   int theta;        }
       }
    fprintf(ficresvij,"# Covariances of life expectancies\n");    }
   fprintf(ficresvij,"# Age");    printf("\n");
   for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n");
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresvij,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   xp=vector(1,npar);    a=matrix(1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    y=matrix(1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    x=vector(1,npar);
      indx=ivector(1,npar);
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   agelim = AGESUP;    ludcmp(a,npar,indx,&pd);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (j=1;j<=npar;j++) {
     if (stepm >= YEARM) hstepm=1;      for (i=1;i<=npar;i++) x[i]=0;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      x[j]=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      lubksb(a,npar,indx,x);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (i=1;i<=npar;i++){ 
     gp=matrix(0,nhstepm,1,nlstate);        matcov[i][j]=x[i];
     gm=matrix(0,nhstepm,1,nlstate);      }
     }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("\n#Hessian matrix#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
       if (popbased==1) {      }
         for(i=1; i<=nlstate;i++)      printf("\n");
           prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficlog,"\n");
       }    }
        
       for(j=1; j<= nlstate; j++){    /* Recompute Inverse */
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    ludcmp(a,npar,indx,&pd);
         }  
       }    /*  printf("\n#Hessian matrix recomputed#\n");
      
       for(i=1; i<=npar; i++) /* Computes gradient */    for (j=1;j<=npar;j++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) x[i]=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        x[j]=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
       if (popbased==1) {        y[i][j]=x[i];
         for(i=1; i<=nlstate;i++)        printf("%.3e ",y[i][j]);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
       printf("\n");
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
       for(j=1; j<= nlstate; j++)    free_ivector(indx,1,npar);
         for(h=0; h<=nhstepm; h++){    free_matrix(hess,1,npar,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  
     } /* End theta */  }
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
     for(h=0; h<=nhstepm; h++)  {
       for(j=1; j<=nlstate;j++)    int i;
         for(theta=1; theta <=npar; theta++)    int l=1, lmax=20;
           trgradg[h][j][theta]=gradg[h][theta][j];    double k1,k2;
     double p2[NPARMAX+1];
     for(i=1;i<=nlstate;i++)    double res;
       for(j=1;j<=nlstate;j++)    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         vareij[i][j][(int)age] =0.;    double fx;
     for(h=0;h<=nhstepm;h++){    int k=0,kmax=10;
       for(k=0;k<=nhstepm;k++){    double l1;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fx=func(x);
         for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
           for(j=1;j<=nlstate;j++)    for(l=0 ; l <=lmax; l++){
             vareij[i][j][(int)age] += doldm[i][j];      l1=pow(10,l);
       }      delts=delt;
     }      for(k=1 ; k <kmax; k=k+1){
     h=1;        delt = delta*(l1*k);
     if (stepm >= YEARM) h=stepm/YEARM;        p2[theta]=x[theta] +delt;
     fprintf(ficresvij,"%.0f ",age );        k1=func(p2)-fx;
     for(i=1; i<=nlstate;i++)        p2[theta]=x[theta]-delt;
       for(j=1; j<=nlstate;j++){        k2=func(p2)-fx;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fprintf(ficresvij,"\n");        
     free_matrix(gp,0,nhstepm,1,nlstate);  #ifdef DEBUG
     free_matrix(gm,0,nhstepm,1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  #endif
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   } /* End age */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   free_matrix(dnewm,1,nlstate,1,nlstate);          k=kmax; l=lmax*10.;
         }
 }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
 /************ Variance of prevlim ******************/        }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {    }
   /* Variance of prevalence limit */    delti[theta]=delts;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    return res; 
   double **newm;    
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  double hessij( double x[], double delti[], int thetai,int thetaj)
   double *xp;  {
   double *gp, *gm;    int i;
   double **gradg, **trgradg;    int l=1, l1, lmax=20;
   double age,agelim;    double k1,k2,k3,k4,res,fx;
   int theta;    double p2[NPARMAX+1];
        int k;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");    fx=func(x);
   for(i=1; i<=nlstate;i++)    for (k=1; k<=2; k++) {
       fprintf(ficresvpl," %1d-%1d",i,i);      for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficresvpl,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   xp=vector(1,npar);      k1=func(p2)-fx;
   dnewm=matrix(1,nlstate,1,npar);    
   doldm=matrix(1,nlstate,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   hstepm=1*YEARM; /* Every year of age */      k2=func(p2)-fx;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    
   agelim = AGESUP;      p2[thetai]=x[thetai]-delti[thetai]/k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      k3=func(p2)-fx;
     if (stepm >= YEARM) hstepm=1;    
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      p2[thetai]=x[thetai]-delti[thetai]/k;
     gradg=matrix(1,npar,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gp=vector(1,nlstate);      k4=func(p2)-fx;
     gm=vector(1,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
     for(theta=1; theta <=npar; theta++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1; i<=npar; i++){ /* Computes gradient */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #endif
       }    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return res;
       for(i=1;i<=nlstate;i++)  }
         gp[i] = prlim[i][i];  
      /************** Inverse of matrix **************/
       for(i=1; i<=npar; i++) /* Computes gradient */  void ludcmp(double **a, int n, int *indx, double *d) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,imax,j,k; 
       for(i=1;i<=nlstate;i++)    double big,dum,sum,temp; 
         gm[i] = prlim[i][i];    double *vv; 
    
       for(i=1;i<=nlstate;i++)    vv=vector(1,n); 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    *d=1.0; 
     } /* End theta */    for (i=1;i<=n;i++) { 
       big=0.0; 
     trgradg =matrix(1,nlstate,1,npar);      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     for(j=1; j<=nlstate;j++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(theta=1; theta <=npar; theta++)      vv[i]=1.0/big; 
         trgradg[j][theta]=gradg[theta][j];    } 
     for (j=1;j<=n;j++) { 
     for(i=1;i<=nlstate;i++)      for (i=1;i<j;i++) { 
       varpl[i][(int)age] =0.;        sum=a[i][j]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        a[i][j]=sum; 
     for(i=1;i<=nlstate;i++)      } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      big=0.0; 
       for (i=j;i<=n;i++) { 
     fprintf(ficresvpl,"%.0f ",age );        sum=a[i][j]; 
     for(i=1; i<=nlstate;i++)        for (k=1;k<j;k++) 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          sum -= a[i][k]*a[k][j]; 
     fprintf(ficresvpl,"\n");        a[i][j]=sum; 
     free_vector(gp,1,nlstate);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_vector(gm,1,nlstate);          big=dum; 
     free_matrix(gradg,1,npar,1,nlstate);          imax=i; 
     free_matrix(trgradg,1,nlstate,1,npar);        } 
   } /* End age */      } 
       if (j != imax) { 
   free_vector(xp,1,npar);        for (k=1;k<=n;k++) { 
   free_matrix(doldm,1,nlstate,1,npar);          dum=a[imax][k]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
 }        } 
         *d = -(*d); 
 /************ Variance of one-step probabilities  ******************/        vv[imax]=vv[j]; 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      } 
 {      indx[j]=imax; 
   int i, j;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int k=0, cptcode;      if (j != n) { 
   double **dnewm,**doldm;        dum=1.0/(a[j][j]); 
   double *xp;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double *gp, *gm;      } 
   double **gradg, **trgradg;    } 
   double age,agelim, cov[NCOVMAX];    free_vector(vv,1,n);  /* Doesn't work */
   int theta;  ;
   char fileresprob[FILENAMELENGTH];  } 
   
   strcpy(fileresprob,"prob");  void lubksb(double **a, int n, int *indx, double b[]) 
   strcat(fileresprob,fileres);  { 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    int i,ii=0,ip,j; 
     printf("Problem with resultfile: %s\n", fileresprob);    double sum; 
   }   
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    for (i=1;i<=n;i++) { 
        ip=indx[i]; 
       sum=b[ip]; 
   xp=vector(1,npar);      b[ip]=b[i]; 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (ii) 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
   cov[1]=1;      b[i]=sum; 
   for (age=bage; age<=fage; age ++){    } 
     cov[2]=age;    for (i=n;i>=1;i--) { 
     gradg=matrix(1,npar,1,9);      sum=b[i]; 
     trgradg=matrix(1,9,1,npar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      b[i]=sum/a[i][i]; 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    } 
      } 
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++)  /************ Frequencies ********************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
        {  /* Some frequencies */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    
        int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       k=0;    int first;
       for(i=1; i<= (nlstate+ndeath); i++){    double ***freq; /* Frequencies */
         for(j=1; j<=(nlstate+ndeath);j++){    double *pp, **prop;
            k=k+1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           gp[k]=pmmij[i][j];    FILE *ficresp;
         }    char fileresp[FILENAMELENGTH];
       }    
     pp=vector(1,nlstate);
       for(i=1; i<=npar; i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       k=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for(i=1; i<=(nlstate+ndeath); i++){      exit(0);
         for(j=1; j<=(nlstate+ndeath);j++){    }
           k=k+1;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
           gm[k]=pmmij[i][j];    j1=0;
         }    
       }    j=cptcoveff;
          if (cptcovn<1) {j=1;ncodemax[1]=1;}
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      first=1;
     }  
     for(k1=1; k1<=j;k1++){
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      for(i1=1; i1<=ncodemax[k1];i1++){
       for(theta=1; theta <=npar; theta++)        j1++;
       trgradg[j][theta]=gradg[theta][j];        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        for (i=-1; i<=nlstate+ndeath; i++)  
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
      pmij(pmmij,cov,ncovmodel,x,nlstate);              freq[i][jk][m]=0;
   
      k=0;      for (i=1; i<=nlstate; i++)  
      for(i=1; i<=(nlstate+ndeath); i++){        for(m=iagemin; m <= iagemax+3; m++)
        for(j=1; j<=(nlstate+ndeath);j++){          prop[i][m]=0;
          k=k+1;        
          gm[k]=pmmij[i][j];        dateintsum=0;
         }        k2cpt=0;
      }        for (i=1; i<=imx; i++) {
                bool=1;
      /*printf("\n%d ",(int)age);          if  (cptcovn>0) {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            for (z1=1; z1<=cptcoveff; z1++) 
                      if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
      }*/          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
   fprintf(ficresprob,"\n%d ",(int)age);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 }                  dateintsum=dateintsum+k2;
  free_vector(xp,1,npar);                  k2cpt++;
 fclose(ficresprob);                }
  exit(0);                /*}*/
 }            }
           }
 /***********************************************/        }
 /**************** Main Program *****************/         
 /***********************************************/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
 /*int main(int argc, char *argv[])*/        if  (cptcovn>0) {
 int main()          fprintf(ficresp, "\n#********** Variable "); 
 {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;        for(i=1; i<=nlstate;i++) 
   double agemin=1.e20, agemax=-1.e20;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
   double fret;        
   double **xi,tmp,delta;        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
   double dum; /* Dummy variable */            fprintf(ficlog,"Total");
   double ***p3mat;          }else{
   int *indx;            if(first==1){
   char line[MAXLINE], linepar[MAXLINE];              first=0;
   char title[MAXLINE];              printf("See log file for details...\n");
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];            fprintf(ficlog,"Age %d", i);
   char filerest[FILENAMELENGTH];          }
   char fileregp[FILENAMELENGTH];          for(jk=1; jk <=nlstate ; jk++){
   char popfile[FILENAMELENGTH];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              pp[jk] += freq[jk][m][i]; 
   int firstobs=1, lastobs=10;          }
   int sdeb, sfin; /* Status at beginning and end */          for(jk=1; jk <=nlstate ; jk++){
   int c,  h , cpt,l;            for(m=-1, pos=0; m <=0 ; m++)
   int ju,jl, mi;              pos += freq[jk][m][i];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            if(pp[jk]>=1.e-10){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              if(first==1){
   int mobilav=0,popforecast=0;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int hstepm, nhstepm;              }
   int *popage;/*boolprev=0 if date and zero if wave*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;            }else{
               if(first==1)
   double bage, fage, age, agelim, agebase;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double ftolpl=FTOL;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double **prlim;            }
   double *severity;          }
   double ***param; /* Matrix of parameters */  
   double  *p;          for(jk=1; jk <=nlstate ; jk++){
   double **matcov; /* Matrix of covariance */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double ***delti3; /* Scale */              pp[jk] += freq[jk][m][i];
   double *delti; /* Scale */          }       
   double ***eij, ***vareij;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double **varpl; /* Variances of prevalence limits by age */            pos += pp[jk];
   double *epj, vepp;            posprop += prop[jk][i];
   double kk1, kk2;          }
   double *popeffectif,*popcount;          for(jk=1; jk <=nlstate ; jk++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;            if(pos>=1.e-5){
   double yp,yp1,yp2;              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   char *alph[]={"a","a","b","c","d","e"}, str[4];            }else{
               if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   char z[1]="c", occ;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 #include <sys/time.h>            }
 #include <time.h>            if( i <= iagemax){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              if(pos>=1.e-5){
                  fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   /* long total_usecs;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   struct timeval start_time, end_time;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
   printf("\nIMACH, Version 0.7");          }
   printf("\nEnter the parameter file name: ");          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
 #ifdef windows            for(m=-1; m <=nlstate+ndeath; m++)
   scanf("%s",pathtot);              if(freq[jk][m][i] !=0 ) {
   getcwd(pathcd, size);              if(first==1)
   /*cygwin_split_path(pathtot,path,optionfile);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /* cutv(path,optionfile,pathtot,'\\');*/              }
           if(i <= iagemax)
 split(pathtot, path,optionfile);            fprintf(ficresp,"\n");
   chdir(path);          if(first==1)
   replace(pathc,path);            printf("Others in log...\n");
 #endif          fprintf(ficlog,"\n");
 #ifdef unix        }
   scanf("%s",optionfile);      }
 #endif    }
     dateintmean=dateintsum/k2cpt; 
 /*-------- arguments in the command line --------*/   
     fclose(ficresp);
   strcpy(fileres,"r");    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   strcat(fileres, optionfile);    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   /*---------arguments file --------*/    /* End of Freq */
   }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);  /************ Prevalence ********************/
     goto end;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   strcpy(filereso,"o");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcat(filereso,fileres);       We still use firstpass and lastpass as another selection.
   if((ficparo=fopen(filereso,"w"))==NULL) {    */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;   
   }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
   /* Reads comments: lines beginning with '#' */    double *pp, **prop;
   while((c=getc(ficpar))=='#' && c!= EOF){    double pos,posprop; 
     ungetc(c,ficpar);    double  y2; /* in fractional years */
     fgets(line, MAXLINE, ficpar);    int iagemin, iagemax;
     puts(line);  
     fputs(line,ficparo);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   ungetc(c,ficpar);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    j1=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){    j=cptcoveff;
     ungetc(c,ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fgets(line, MAXLINE, ficpar);    
     puts(line);    for(k1=1; k1<=j;k1++){
     fputs(line,ficparo);      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   ungetc(c,ficpar);        
          for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
   covar=matrix(0,NCOVMAX,1,n);            prop[i][m]=0.0;
   cptcovn=0;       
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   ncovmodel=2+cptcovn;          if  (cptcovn>0) {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /* Read guess parameters */                bool=0;
   /* Reads comments: lines beginning with '#' */          } 
   while((c=getc(ficpar))=='#' && c!= EOF){          if (bool==1) { 
     ungetc(c,ficpar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fgets(line, MAXLINE, ficpar);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     puts(line);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fputs(line,ficparo);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   ungetc(c,ficpar);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     for(i=1; i <=nlstate; i++)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(j=1; j <=nlstate+ndeath-1; j++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);                } 
       fprintf(ficparo,"%1d%1d",i1,j1);              }
       printf("%1d%1d",i,j);            } /* end selection of waves */
       for(k=1; k<=ncovmodel;k++){          }
         fscanf(ficpar," %lf",&param[i][j][k]);        }
         printf(" %lf",param[i][j][k]);        for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(ficparo," %lf",param[i][j][k]);          
       }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       fscanf(ficpar,"\n");            posprop += prop[jk][i]; 
       printf("\n");          } 
       fprintf(ficparo,"\n");  
     }          for(jk=1; jk <=nlstate ; jk++){     
              if( i <=  iagemax){ 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   p=param[1][1];              } 
              } 
   /* Reads comments: lines beginning with '#' */          }/* end jk */ 
   while((c=getc(ficpar))=='#' && c!= EOF){        }/* end i */ 
     ungetc(c,ficpar);      } /* end i1 */
     fgets(line, MAXLINE, ficpar);    } /* end k1 */
     puts(line);    
     fputs(line,ficparo);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   }    /*free_vector(pp,1,nlstate);*/
   ungetc(c,ficpar);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  /************* Waves Concatenation ***************/
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       fscanf(ficpar,"%1d%1d",&i1,&j1);  {
       printf("%1d%1d",i,j);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       fprintf(ficparo,"%1d%1d",i1,j1);       Death is a valid wave (if date is known).
       for(k=1; k<=ncovmodel;k++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         fscanf(ficpar,"%le",&delti3[i][j][k]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         printf(" %le",delti3[i][j][k]);       and mw[mi+1][i]. dh depends on stepm.
         fprintf(ficparo," %le",delti3[i][j][k]);       */
       }  
       fscanf(ficpar,"\n");    int i, mi, m;
       printf("\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficparo,"\n");       double sum=0., jmean=0.;*/
     }    int first;
   }    int j, k=0,jk, ju, jl;
   delti=delti3[1][1];    double sum=0.;
      first=0;
   /* Reads comments: lines beginning with '#' */    jmin=1e+5;
   while((c=getc(ficpar))=='#' && c!= EOF){    jmax=-1;
     ungetc(c,ficpar);    jmean=0.;
     fgets(line, MAXLINE, ficpar);    for(i=1; i<=imx; i++){
     puts(line);      mi=0;
     fputs(line,ficparo);      m=firstpass;
   }      while(s[m][i] <= nlstate){
   ungetc(c,ficpar);        if(s[m][i]>=1)
            mw[++mi][i]=m;
   matcov=matrix(1,npar,1,npar);        if(m >=lastpass)
   for(i=1; i <=npar; i++){          break;
     fscanf(ficpar,"%s",&str);        else
     printf("%s",str);          m++;
     fprintf(ficparo,"%s",str);      }/* end while */
     for(j=1; j <=i; j++){      if (s[m][i] > nlstate){
       fscanf(ficpar," %le",&matcov[i][j]);        mi++;     /* Death is another wave */
       printf(" %.5le",matcov[i][j]);        /* if(mi==0)  never been interviewed correctly before death */
       fprintf(ficparo," %.5le",matcov[i][j]);           /* Only death is a correct wave */
     }        mw[mi][i]=m;
     fscanf(ficpar,"\n");      }
     printf("\n");  
     fprintf(ficparo,"\n");      wav[i]=mi;
   }      if(mi==0){
   for(i=1; i <=npar; i++)        nbwarn++;
     for(j=i+1;j<=npar;j++)        if(first==0){
       matcov[i][j]=matcov[j][i];          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
              first=1;
   printf("\n");        }
         if(first==1){
           fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     /*-------- data file ----------*/        }
     if((ficres =fopen(fileres,"w"))==NULL) {      } /* end mi==0 */
       printf("Problem with resultfile: %s\n", fileres);goto end;    } /* End individuals */
     }  
     fprintf(ficres,"#%s\n",version);    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
     if((fic=fopen(datafile,"r"))==NULL)    {        if (stepm <=0)
       printf("Problem with datafile: %s\n", datafile);goto end;          dh[mi][i]=1;
     }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     n= lastobs;            if (agedc[i] < 2*AGESUP) {
     severity = vector(1,maxwav);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     outcome=imatrix(1,maxwav+1,1,n);              if(j==0) j=1;  /* Survives at least one month after exam */
     num=ivector(1,n);              else if(j<0){
     moisnais=vector(1,n);                nberr++;
     annais=vector(1,n);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     moisdc=vector(1,n);                j=1; /* Temporary Dangerous patch */
     andc=vector(1,n);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     agedc=vector(1,n);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     cod=ivector(1,n);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     weight=vector(1,n);              }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              k=k+1;
     mint=matrix(1,maxwav,1,n);              if (j >= jmax) jmax=j;
     anint=matrix(1,maxwav,1,n);              if (j <= jmin) jmin=j;
     s=imatrix(1,maxwav+1,1,n);              sum=sum+j;
     adl=imatrix(1,maxwav+1,1,n);                  /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     tab=ivector(1,NCOVMAX);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     ncodemax=ivector(1,8);            }
           }
     i=1;          else{
     while (fgets(line, MAXLINE, fic) != NULL)    {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       if ((i >= firstobs) && (i <=lastobs)) {            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                    k=k+1;
         for (j=maxwav;j>=1;j--){            if (j >= jmax) jmax=j;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            else if (j <= jmin)jmin=j;
           strcpy(line,stra);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(j<0){
         }              nberr++;
                      printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            }
             sum=sum+j;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          jk= j/stepm;
           jl= j -jk*stepm;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          ju= j -(jk+1)*stepm;
         for (j=ncov;j>=1;j--){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(jl==0){
         }              dh[mi][i]=jk;
         num[i]=atol(stra);              bh[mi][i]=0;
                    }else{ /* We want a negative bias in order to only have interpolation ie
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                    * at the price of an extra matrix product in likelihood */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
         i=i+1;            }
       }          }else{
     }            if(jl <= -ju){
     /* printf("ii=%d", ij);              dh[mi][i]=jk;
        scanf("%d",i);*/              bh[mi][i]=jl;       /* bias is positive if real duration
   imx=i-1; /* Number of individuals */                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
   /* for (i=1; i<=imx; i++){            }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            else{
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              dh[mi][i]=jk+1;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              bh[mi][i]=ju;
     }            }
             if(dh[mi][i]==0){
     for (i=1; i<=imx; i++)              dh[mi][i]=1; /* At least one step */
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   /* Calculation of the number of parameter from char model*/            }
   Tvar=ivector(1,15);          } /* end if mle */
   Tprod=ivector(1,15);        }
   Tvaraff=ivector(1,15);      } /* end wave */
   Tvard=imatrix(1,15,1,2);    }
   Tage=ivector(1,15);          jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   if (strlen(model) >1){    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     j=0, j1=0, k1=1, k2=1;   }
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');  /*********** Tricode ****************************/
     cptcovn=j+1;  void tricode(int *Tvar, int **nbcode, int imx)
     cptcovprod=j1;  {
        
        int Ndum[20],ij=1, k, j, i, maxncov=19;
     strcpy(modelsav,model);    int cptcode=0;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    cptcoveff=0; 
       printf("Error. Non available option model=%s ",model);   
       goto end;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     }    for (k=1; k<=7; k++) ncodemax[k]=0;
      
     for(i=(j+1); i>=1;i--){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       cutv(stra,strb,modelsav,'+');      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                                 modality*/ 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       /*scanf("%d",i);*/        Ndum[ij]++; /*store the modality */
       if (strchr(strb,'*')) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         cutv(strd,strc,strb,'*');        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         if (strcmp(strc,"age")==0) {                                         Tvar[j]. If V=sex and male is 0 and 
           cptcovprod--;                                         female is 1, then  cptcode=1.*/
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre);  
           cptcovage++;      for (i=0; i<=cptcode; i++) {
             Tage[cptcovage]=i;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             /*printf("stre=%s ", stre);*/      }
         }  
         else if (strcmp(strd,"age")==0) {      ij=1; 
           cptcovprod--;      for (i=1; i<=ncodemax[j]; i++) {
           cutv(strb,stre,strc,'V');        for (k=0; k<= maxncov; k++) {
           Tvar[i]=atoi(stre);          if (Ndum[k] != 0) {
           cptcovage++;            nbcode[Tvar[j]][ij]=k; 
           Tage[cptcovage]=i;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         }            
         else {            ij++;
           cutv(strb,stre,strc,'V');          }
           Tvar[i]=ncov+k1;          if (ij > ncodemax[j]) break; 
           cutv(strb,strc,strd,'V');        }  
           Tprod[k1]=i;      } 
           Tvard[k1][1]=atoi(strc);    }  
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];   for (k=0; k< maxncov; k++) Ndum[k]=0;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)   for (i=1; i<=ncovmodel-2; i++) { 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           k1++;     ij=Tvar[i];
           k2=k2+2;     Ndum[ij]++;
         }   }
       }  
       else {   ij=1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/   for (i=1; i<= maxncov; i++) {
        /*  scanf("%d",i);*/     if((Ndum[i]!=0) && (i<=ncovcol)){
       cutv(strd,strc,strb,'V');       Tvaraff[ij]=i; /*For printing */
       Tvar[i]=atoi(strc);       ij++;
       }     }
       strcpy(modelsav,stra);     }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);   
         scanf("%d",i);*/   cptcoveff=ij-1; /*Number of simple covariates*/
     }  }
 }  
    /*********** Health Expectancies ****************/
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   scanf("%d ",i);*/  
     fclose(fic);  {
     /* Health expectancies */
     /*  if(mle==1){*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     if (weightopt != 1) { /* Maximisation without weights*/    double age, agelim, hf;
       for(i=1;i<=n;i++) weight[i]=1.0;    double ***p3mat,***varhe;
     }    double **dnewm,**doldm;
     /*-calculation of age at interview from date of interview and age at death -*/    double *xp;
     agev=matrix(1,maxwav,1,imx);    double **gp, **gm;
     double ***gradg, ***trgradg;
    for (i=1; i<=imx; i++)    int theta;
      for(m=2; (m<= maxwav); m++)  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
          anint[m][i]=9999;    xp=vector(1,npar);
          s[m][i]=-1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
        }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
     for (i=1; i<=imx; i++)  {    fprintf(ficreseij,"# Health expectancies\n");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficreseij,"# Age");
       for(m=1; (m<= maxwav); m++){    for(i=1; i<=nlstate;i++)
         if(s[m][i] >0){      for(j=1; j<=nlstate;j++)
           if (s[m][i] == nlstate+1) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
             if(agedc[i]>0)    fprintf(ficreseij,"\n");
               if(moisdc[i]!=99 && andc[i]!=9999)  
               agev[m][i]=agedc[i];    if(estepm < stepm){
             else {      printf ("Problem %d lower than %d\n",estepm, stepm);
               if (andc[i]!=9999){    }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    else  hstepm=estepm;   
               agev[m][i]=-1;    /* We compute the life expectancy from trapezoids spaced every estepm months
               }     * This is mainly to measure the difference between two models: for example
             }     * if stepm=24 months pijx are given only every 2 years and by summing them
           }     * we are calculating an estimate of the Life Expectancy assuming a linear 
           else if(s[m][i] !=9){ /* Should no more exist */     * progression in between and thus overestimating or underestimating according
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);     * to the curvature of the survival function. If, for the same date, we 
             if(mint[m][i]==99 || anint[m][i]==9999)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               agev[m][i]=1;     * to compare the new estimate of Life expectancy with the same linear 
             else if(agev[m][i] <agemin){     * hypothesis. A more precise result, taking into account a more precise
               agemin=agev[m][i];     * curvature will be obtained if estepm is as small as stepm. */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }    /* For example we decided to compute the life expectancy with the smallest unit */
             else if(agev[m][i] >agemax){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               agemax=agev[m][i];       nhstepm is the number of hstepm from age to agelim 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       nstepm is the number of stepm from age to agelin. 
             }       Look at hpijx to understand the reason of that which relies in memory size
             /*agev[m][i]=anint[m][i]-annais[i];*/       and note for a fixed period like estepm months */
             /*   agev[m][i] = age[i]+2*m;*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           else { /* =9 */       means that if the survival funtion is printed only each two years of age and if
             agev[m][i]=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             s[m][i]=-1;       results. So we changed our mind and took the option of the best precision.
           }    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         else /*= 0 Unknown */  
           agev[m][i]=1;    agelim=AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          /* nhstepm age range expressed in number of stepm */
     }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     for (i=1; i<=imx; i++)  {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(m=1; (m<= maxwav); m++){      /* if (stepm >= YEARM) hstepm=1;*/
         if (s[m][i] > (nlstate+ndeath)) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           printf("Error: Wrong value in nlstate or ndeath\n");        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           goto end;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     }  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     free_vector(severity,1,maxwav);   
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);      /* Computing Variances of health expectancies */
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);       for(theta=1; theta <=npar; theta++){
     free_vector(andc,1,n);        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
     wav=ivector(1,imx);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        cptj=0;
            for(j=1; j<= nlstate; j++){
     /* Concatenates waves */          for(i=1; i<=nlstate; i++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       Tcode=ivector(1,100);            }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          }
       ncodemax[1]=1;        }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);       
             
    codtab=imatrix(1,100,1,10);        for(i=1; i<=npar; i++) 
    h=0;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    m=pow(2,cptcoveff);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          
    for(k=1;k<=cptcoveff; k++){        cptj=0;
      for(i=1; i <=(m/pow(2,k));i++){        for(j=1; j<= nlstate; j++){
        for(j=1; j <= ncodemax[k]; j++){          for(i=1;i<=nlstate;i++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            cptj=cptj+1;
            h++;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
            if (h>m) h=1;codtab[h][k]=j;  
          }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
        }            }
      }          }
    }        }
            for(j=1; j<= nlstate*nlstate; j++)
    /* Calculates basic frequencies. Computes observed prevalence at single age          for(h=0; h<=nhstepm-1; h++){
        and prints on file fileres'p'. */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
           } 
         
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* End theta */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       for(h=0; h<=nhstepm-1; h++)
              for(j=1; j<=nlstate*nlstate;j++)
     /* For Powell, parameters are in a vector p[] starting at p[1]          for(theta=1; theta <=npar; theta++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            trgradg[h][j][theta]=gradg[h][theta][j];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       
   
     if(mle==1){       for(i=1;i<=nlstate*nlstate;i++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for(j=1;j<=nlstate*nlstate;j++)
     }          varhe[i][j][(int)age] =0.;
      
     /*--------- results files --------------*/       printf("%d|",(int)age);fflush(stdout);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
    jk=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
    fprintf(ficres,"# Parameters\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
    printf("# Parameters\n");          for(i=1;i<=nlstate*nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){            for(j=1;j<=nlstate*nlstate;j++)
      for(k=1; k <=(nlstate+ndeath); k++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
        if (k != i)        }
          {      }
            printf("%d%d ",i,k);      /* Computing expectancies */
            fprintf(ficres,"%1d%1d ",i,k);      for(i=1; i<=nlstate;i++)
            for(j=1; j <=ncovmodel; j++){        for(j=1; j<=nlstate;j++)
              printf("%f ",p[jk]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              fprintf(ficres,"%f ",p[jk]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              jk++;            
            }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
            printf("\n");  
            fprintf(ficres,"\n");          }
          }  
      }      fprintf(ficreseij,"%3.0f",age );
    }      cptj=0;
  if(mle==1){      for(i=1; i<=nlstate;i++)
     /* Computing hessian and covariance matrix */        for(j=1; j<=nlstate;j++){
     ftolhess=ftol; /* Usually correct */          cptj++;
     hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
  }        }
     fprintf(ficres,"# Scales\n");      fprintf(ficreseij,"\n");
     printf("# Scales\n");     
      for(i=1,jk=1; i <=nlstate; i++){      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       for(j=1; j <=nlstate+ndeath; j++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         if (j!=i) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           fprintf(ficres,"%1d%1d",i,j);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           printf("%1d%1d",i,j);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(k=1; k<=ncovmodel;k++){    }
             printf(" %.5e",delti[jk]);    printf("\n");
             fprintf(ficres," %.5e",delti[jk]);    fprintf(ficlog,"\n");
             jk++;  
           }    free_vector(xp,1,npar);
           printf("\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           fprintf(ficres,"\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       }  }
      }  
      /************ Variance ******************/
     k=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     fprintf(ficres,"# Covariance\n");  {
     printf("# Covariance\n");    /* Variance of health expectancies */
     for(i=1;i<=npar;i++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       /*  if (k>nlstate) k=1;    /* double **newm;*/
       i1=(i-1)/(ncovmodel*nlstate)+1;    double **dnewm,**doldm;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double **dnewmp,**doldmp;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    int i, j, nhstepm, hstepm, h, nstepm ;
       fprintf(ficres,"%3d",i);    int k, cptcode;
       printf("%3d",i);    double *xp;
       for(j=1; j<=i;j++){    double **gp, **gm;  /* for var eij */
         fprintf(ficres," %.5e",matcov[i][j]);    double ***gradg, ***trgradg; /*for var eij */
         printf(" %.5e",matcov[i][j]);    double **gradgp, **trgradgp; /* for var p point j */
       }    double *gpp, *gmp; /* for var p point j */
       fprintf(ficres,"\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       printf("\n");    double ***p3mat;
       k++;    double age,agelim, hf;
     }    double ***mobaverage;
        int theta;
     while((c=getc(ficpar))=='#' && c!= EOF){    char digit[4];
       ungetc(c,ficpar);    char digitp[25];
       fgets(line, MAXLINE, ficpar);  
       puts(line);    char fileresprobmorprev[FILENAMELENGTH];
       fputs(line,ficparo);  
     }    if(popbased==1){
     ungetc(c,ficpar);      if(mobilav!=0)
          strcpy(digitp,"-populbased-mobilav-");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      else strcpy(digitp,"-populbased-nomobil-");
        }
     if (fage <= 2) {    else 
       bage = agemin;      strcpy(digitp,"-stablbased-");
       fage = agemax;  
     }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficres,"# agemin agemax for life expectancy.\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      }
      }
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    strcpy(fileresprobmorprev,"prmorprev"); 
     fgets(line, MAXLINE, ficpar);    sprintf(digit,"%-d",ij);
     puts(line);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fputs(line,ficparo);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   ungetc(c,ficpar);    strcat(fileresprobmorprev,fileres);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    }
          printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     puts(line);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
     fprintf(ficresprobmorprev,"\n");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    fprintf(ficgp,"\n# Routine varevsij");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  /*   } */
    fprintf(ficparo,"pop_based=%d\n",popbased);      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficres,"pop_based=%d\n",popbased);    
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvij,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++)
     puts(line);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fputs(line,ficparo);    fprintf(ficresvij,"\n");
   }  
   ungetc(c,ficpar);    xp=vector(1,npar);
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    dnewm=matrix(1,nlstate,1,npar);
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    doldm=matrix(1,nlstate,1,nlstate);
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  /*------------ gnuplot -------------*/    gpp=vector(nlstate+1,nlstate+ndeath);
 chdir(pathcd);    gmp=vector(nlstate+1,nlstate+ndeath);
   if((ficgp=fopen("graph.plt","w"))==NULL) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("Problem with file graph.gp");goto end;    
   }    if(estepm < stepm){
 #ifdef windows      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    }
 #endif    else  hstepm=estepm;   
 m=pow(2,cptcoveff);    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  /* 1eme*/       nhstepm is the number of hstepm from age to agelim 
   for (cpt=1; cpt<= nlstate ; cpt ++) {       nstepm is the number of stepm from age to agelin. 
    for (k1=1; k1<= m ; k1 ++) {       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
 #ifdef windows    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);       survival function given by stepm (the optimization length). Unfortunately it
 #endif       means that if the survival funtion is printed every two years of age and if
 #ifdef unix       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);       results. So we changed our mind and took the option of the best precision.
 #endif    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 for (i=1; i<= nlstate ; i ++) {    agelim = AGESUP;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (i=1; i<= nlstate ; i ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      gp=matrix(0,nhstepm,1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      gm=matrix(0,nhstepm,1,nlstate);
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {      for(theta=1; theta <=npar; theta++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 #ifdef unix        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif        if (popbased==1) {
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(mobilav ==0){
    }            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   /*2 eme*/          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          }
            }
     for (i=1; i<= nlstate+1 ; i ++) {    
       k=2*i;        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          for(h=0; h<=nhstepm; h++){
       for (j=1; j<= nlstate+1 ; j ++) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        /* This for computing probability of death (h=1 means
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);           as a weighted average of prlim.
       for (j=1; j<= nlstate+1 ; j ++) {        */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 }              gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficgp,"\" t\"\" w l 0,");        }    
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        /* end probability of death */
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       else fprintf(ficgp,"\" t\"\" w l 0,");   
     }        if (popbased==1) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   /*3eme*/          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(cpt-1);        }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  
       for (i=1; i< nlstate ; i ++) {        for(j=1; j<= nlstate; j++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
   }        }
          /* This for computing probability of death (h=1 means
   /* CV preval stat */           computed over hstepm matrices product = hstepm*stepm months) 
   for (k1=1; k1<= m ; k1 ++) {           as a weighted average of prlim.
     for (cpt=1; cpt<nlstate ; cpt ++) {        */
       k=3;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       for (i=1; i< nlstate ; i ++)           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficgp,"+$%d",k+i+1);        }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        /* end probability of death */
        
       l=3+(nlstate+ndeath)*cpt;        for(j=1; j<= nlstate; j++) /* vareij */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for(h=0; h<=nhstepm; h++){
       for (i=1; i< nlstate ; i ++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         l=3+(nlstate+ndeath)*cpt;          }
         fprintf(ficgp,"+$%d",l+i+1);  
       }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
     }  
   }        } /* End theta */
   
   /* proba elementaires */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){      for(h=0; h<=nhstepm; h++) /* veij */
       if (k != i) {        for(j=1; j<=nlstate;j++)
         for(j=1; j <=ncovmodel; j++){          for(theta=1; theta <=npar; theta++)
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            trgradg[h][j][theta]=gradg[h][theta][j];
           /*fprintf(ficgp,"%s",alph[1]);*/  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           jk++;        for(theta=1; theta <=npar; theta++)
           fprintf(ficgp,"\n");          trgradgp[j][theta]=gradgp[theta][j];
         }    
       }  
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   for(jk=1; jk <=m; jk++) {          vareij[i][j][(int)age] =0.;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  
    i=1;      for(h=0;h<=nhstepm;h++){
    for(k2=1; k2<=nlstate; k2++) {        for(k=0;k<=nhstepm;k++){
      k3=i;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      for(k=1; k<=(nlstate+ndeath); k++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
        if (k != k2){          for(i=1;i<=nlstate;i++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            for(j=1;j<=nlstate;j++)
 ij=1;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         for(j=3; j <=ncovmodel; j++) {        }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    
             ij++;      /* pptj */
           }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           else      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           fprintf(ficgp,")/(1");          varppt[j][i]=doldmp[j][i];
              /* end ppptj */
         for(k1=1; k1 <=nlstate; k1++){        /*  x centered again */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 ij=1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           for(j=3; j <=ncovmodel; j++){   
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      if (popbased==1) {
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        if(mobilav ==0){
             ij++;          for(i=1; i<=nlstate;i++)
           }            prlim[i][i]=probs[(int)age][i][ij];
           else        }else{ /* mobilav */ 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(i=1; i<=nlstate;i++)
           }            prlim[i][i]=mobaverage[(int)age][i][ij];
           fprintf(ficgp,")");        }
         }      }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);               
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      /* This for computing probability of death (h=1 means
         i=i+ncovmodel;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
        }         as a weighted average of prlim.
      }      */
    }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
          }    
   fclose(ficgp);      /* end probability of death */
   /* end gnuplot */  
          fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 chdir(path);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     free_ivector(wav,1,imx);        for(i=1; i<=nlstate;i++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }
     free_ivector(num,1,n);      } 
     free_vector(agedc,1,n);      fprintf(ficresprobmorprev,"\n");
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  
     fclose(ficparo);      fprintf(ficresvij,"%.0f ",age );
     fclose(ficres);      for(i=1; i<=nlstate;i++)
     /*  }*/        for(j=1; j<=nlstate;j++){
              fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
    /*________fin mle=1_________*/        }
          fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
     /* No more information from the sample is required now */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   /* Reads comments: lines beginning with '#' */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    } /* End age */
     fgets(line, MAXLINE, ficpar);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     puts(line);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   ungetc(c,ficpar);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 /*--------- index.htm --------*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   strcpy(optionfilehtm,optionfile);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   strcat(optionfilehtm,".htm");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     printf("Problem with %s \n",optionfilehtm);goto end;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 Total number of observations=%d <br>  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    free_vector(xp,1,npar);
 <hr  size=\"2\" color=\"#EC5E5E\">    free_matrix(doldm,1,nlstate,1,nlstate);
 <li>Outputs files<br><br>\n    free_matrix(dnewm,1,nlstate,1,npar);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    fclose(ficresprobmorprev);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    fflush(ficgp);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    fflush(fichtm); 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  }  /* end varevsij */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>  
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>  /************ Variance of prevlim ******************/
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
  fprintf(fichtm," <li>Graphs</li><p>");    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
  m=cptcoveff;    double **newm;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
  j1=0;    int k, cptcode;
  for(k1=1; k1<=m;k1++){    double *xp;
    for(i1=1; i1<=ncodemax[k1];i1++){    double *gp, *gm;
        j1++;    double **gradg, **trgradg;
        if (cptcovn > 0) {    double age,agelim;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    int theta;
          for (cpt=1; cpt<=cptcoveff;cpt++)     
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficresvpl,"# Age");
        }    for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        fprintf(ficresvpl," %1d-%1d",i,i);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        fprintf(ficresvpl,"\n");
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    xp=vector(1,npar);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    dnewm=matrix(1,nlstate,1,npar);
        }    doldm=matrix(1,nlstate,1,nlstate);
     for(cpt=1; cpt<=nlstate;cpt++) {    
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    hstepm=1*YEARM; /* Every year of age */
 interval) in state (%d): v%s%d%d.gif <br>    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      agelim = AGESUP;
      }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      for(cpt=1; cpt<=nlstate;cpt++) {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      if (stepm >= YEARM) hstepm=1;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      }      gradg=matrix(1,npar,1,nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      gp=vector(1,nlstate);
 health expectancies in states (1) and (2): e%s%d.gif<br>      gm=vector(1,nlstate);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");      for(theta=1; theta <=npar; theta++){
    }        for(i=1; i<=npar; i++){ /* Computes gradient */
  }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 fclose(fichtm);        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*--------------- Prevalence limit --------------*/        for(i=1;i<=nlstate;i++)
            gp[i] = prlim[i][i];
   strcpy(filerespl,"pl");      
   strcat(filerespl,fileres);        for(i=1; i<=npar; i++) /* Computes gradient */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          gm[i] = prlim[i][i];
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");        for(i=1;i<=nlstate;i++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   fprintf(ficrespl,"\n");      } /* End theta */
    
   prlim=matrix(1,nlstate,1,nlstate);      trgradg =matrix(1,nlstate,1,npar);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=1; j<=nlstate;j++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(theta=1; theta <=npar; theta++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          trgradg[j][theta]=gradg[theta][j];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;      for(i=1;i<=nlstate;i++)
   agebase=agemin;        varpl[i][(int)age] =0.;
   agelim=agemax;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   ftolpl=1.e-10;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   i1=cptcoveff;      for(i=1;i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficresvpl,"%.0f ",age );
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1; i<=nlstate;i++)
         k=k+1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fprintf(ficresvpl,"\n");
         fprintf(ficrespl,"\n#******");      free_vector(gp,1,nlstate);
         for(j=1;j<=cptcoveff;j++)      free_vector(gm,1,nlstate);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_matrix(gradg,1,npar,1,nlstate);
         fprintf(ficrespl,"******\n");      free_matrix(trgradg,1,nlstate,1,npar);
            } /* End age */
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_vector(xp,1,npar);
           fprintf(ficrespl,"%.0f",age );    free_matrix(doldm,1,nlstate,1,npar);
           for(i=1; i<=nlstate;i++)    free_matrix(dnewm,1,nlstate,1,nlstate);
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  }
         }  
       }  /************ Variance of one-step probabilities  ******************/
     }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   fclose(ficrespl);  {
     int i, j=0,  i1, k1, l1, t, tj;
   /*------------- h Pij x at various ages ------------*/    int k2, l2, j1,  z1;
      int k=0,l, cptcode;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    int first=1, first1;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double **dnewm,**doldm;
   }    double *xp;
   printf("Computing pij: result on file '%s' \n", filerespij);    double *gp, *gm;
      double **gradg, **trgradg;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double **mu;
   /*if (stepm<=24) stepsize=2;*/    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   agelim=AGESUP;    int theta;
   hstepm=stepsize*YEARM; /* Every year of age */    char fileresprob[FILENAMELENGTH];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***varpij;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    strcpy(fileresprob,"prob"); 
         fprintf(ficrespij,"\n#****** ");    strcat(fileresprob,fileres);
         for(j=1;j<=cptcoveff;j++)    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with resultfile: %s\n", fileresprob);
         fprintf(ficrespij,"******\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
            }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    strcpy(fileresprobcov,"probcov"); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcat(fileresprobcov,fileres);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprobcov);
           oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
           fprintf(ficrespij,"# Age");    strcpy(fileresprobcor,"probcor"); 
           for(i=1; i<=nlstate;i++)    strcat(fileresprobcor,fileres);
             for(j=1; j<=nlstate+ndeath;j++)    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               fprintf(ficrespij," %1d-%1d",i,j);      printf("Problem with resultfile: %s\n", fileresprobcor);
           fprintf(ficrespij,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           for (h=0; h<=nhstepm; h++){    }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             for(i=1; i<=nlstate;i++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               for(j=1; j<=nlstate+ndeath;j++)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             fprintf(ficrespij,"\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           fprintf(ficrespij,"\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         }    fprintf(ficresprob,"# Age");
     }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   }    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    fprintf(ficresprobcov,"# Age");
   
   fclose(ficrespij);  
     for(i=1; i<=nlstate;i++)
   if(stepm == 1) {      for(j=1; j<=(nlstate+ndeath);j++){
   /*---------- Forecasting ------------------*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /*printf("calage= %f", calagedate);*/      }  
     /* fprintf(ficresprob,"\n");
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
   strcpy(fileresf,"f");   xp=vector(1,npar);
   strcat(fileresf,fileres);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    first=1;
     fprintf(ficgp,"\n# Routine varprob");
   free_matrix(mint,1,maxwav,1,n);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   free_matrix(anint,1,maxwav,1,n);    fprintf(fichtm,"\n");
   free_matrix(agev,1,maxwav,1,imx);  
   /* Mobile average */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   if (mobilav==1) {  and drawn. It helps understanding how is the covariance between two incidences.\
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       for (i=1; i<=nlstate;i++)  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           mobaverage[(int)agedeb][i][cptcod]=0.;  standard deviations wide on each axis. <br>\
       Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     for (agedeb=bage+4; agedeb<=fage; agedeb++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       for (i=1; i<=nlstate;i++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    cov[1]=1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    tj=cptcoveff;
           }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    j1=0;
         }    for(t=1; t<=tj;t++){
       }      for(i1=1; i1<=ncodemax[t];i1++){ 
     }          j1++;
   }        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (stepm<=12) stepsize=1;          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
   agelim=AGESUP;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*hstepm=stepsize*YEARM; *//* Every year of age */          fprintf(ficresprobcov, "**********\n#\n");
   hstepm=1;          
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */          fprintf(ficgp, "\n#********** Variable "); 
   yp1=modf(dateintmean,&yp);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   anprojmean=yp;          fprintf(ficgp, "**********\n#\n");
   yp2=modf((yp1*12),&yp);          
   mprojmean=yp;          
   yp1=modf((yp2*30.5),&yp);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   jprojmean=yp;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if(jprojmean==0) jprojmean=1;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   if(mprojmean==0) jprojmean=1;          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
   if (popforecast==1) {        }
     if((ficpop=fopen(popfile,"r"))==NULL)    {        
       printf("Problem with population file : %s\n",popfile);goto end;        for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
     popage=ivector(0,AGESUP);          for (k=1; k<=cptcovn;k++) {
     popeffectif=vector(0,AGESUP);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     popcount=vector(0,AGESUP);          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     i=1;            for (k=1; k<=cptcovprod;k++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       {          
         i=i+1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     imx=i;          gp=vector(1,(nlstate)*(nlstate+ndeath));
              gm=vector(1,(nlstate)*(nlstate+ndeath));
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      
   }          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            
       k=k+1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficresf,"\n#******");            
       for(j=1;j<=cptcoveff;j++) {            k=0;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<= (nlstate); i++){
       }              for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficresf,"******\n");                k=k+1;
       fprintf(ficresf,"# StartingAge FinalAge");                gp[k]=pmmij[i][j];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              }
       if (popforecast==1)  fprintf(ficresf," [Population]");            }
                
       for (cpt=0; cpt<4;cpt++) {            for(i=1; i<=npar; i++)
         fprintf(ficresf,"\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */            k=0;
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(i=1; i<=(nlstate); i++){
         nhstepm = nhstepm/hstepm;              for(j=1; j<=(nlstate+ndeath);j++){
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/                k=k+1;
                 gm[k]=pmmij[i][j];
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
         oldm=oldms;savm=savms;            }
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         
                    for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         for (h=0; h<=nhstepm; h++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           if (h==(int) (calagedate+YEARM*cpt)) {          }
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);  
           }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           for(j=1; j<=nlstate+ndeath;j++) {            for(theta=1; theta <=npar; theta++)
             kk1=0.;kk2=0;              trgradg[j][theta]=gradg[theta][j];
             for(i=1; i<=nlstate;i++) {                  
               if (mobilav==1)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
               else {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          pmij(pmmij,cov,ncovmodel,x,nlstate);
             }          
                    k=0;
             if (h==(int)(calagedate+12*cpt)){          for(i=1; i<=(nlstate); i++){
               fprintf(ficresf," %.3f", kk1);            for(j=1; j<=(nlstate+ndeath);j++){
                            k=k+1;
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);              mu[k][(int) age]=pmmij[i][j];
             }            }
           }          }
         }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       }              varpij[i][j][(int)age] = doldm[i][j];
       }  
     }          /*printf("\n%d ",(int)age);
   }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if (popforecast==1) {            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     free_ivector(popage,0,AGESUP);            }*/
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);          fprintf(ficresprob,"\n%d ",(int)age);
   }          fprintf(ficresprobcov,"\n%d ",(int)age);
   free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
   free_vector(weight,1,n);  
   fclose(ficresf);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   }/* End forecasting */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   else{          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     erreur=108;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   }          }
           i=0;
   /*---------- Health expectancies and variances ------------*/          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   strcpy(filerest,"t");              i=i++;
   strcat(filerest,fileres);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   if((ficrest=fopen(filerest,"w"))==NULL) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
   strcpy(filerese,"e");          }/* end of loop for state */
   strcat(filerese,fileres);        } /* end of loop for age */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        /* Confidence intervalle of pij  */
   }        /*
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  strcpy(fileresv,"v");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcat(fileresv,fileres);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        */
   
   k=0;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   for(cptcov=1;cptcov<=i1;cptcov++){        first1=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (k2=1; k2<=(nlstate);k2++){
       k=k+1;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       fprintf(ficrest,"\n#****** ");            if(l2==k2) continue;
       for(j=1;j<=cptcoveff;j++)            j=(k2-1)*(nlstate+ndeath)+l2;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for (k1=1; k1<=(nlstate);k1++){
       fprintf(ficrest,"******\n");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
       fprintf(ficreseij,"\n#****** ");                i=(k1-1)*(nlstate+ndeath)+l1;
       for(j=1;j<=cptcoveff;j++)                if(i<=j) continue;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                for (age=bage; age<=fage; age ++){ 
       fprintf(ficreseij,"******\n");                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficresvij,"\n#****** ");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       for(j=1;j<=cptcoveff;j++)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                    mu1=mu[i][(int) age]/stepm*YEARM ;
       fprintf(ficresvij,"******\n");                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    /* Computing eigen value of matrix of covariance */
       oldm=oldms;savm=savms;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    /* Eigen vectors */
       oldm=oldms;savm=savms;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    /*v21=sqrt(1.-v11*v11); *//* error */
                          v21=(lc1-v1)/cv12*v11;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                    v12=-v21;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                    v22=v11;
       fprintf(ficrest,"\n");                    tnalp=v21/v11;
                            if(first1==1){
       hf=1;                      first1=0;
       if (stepm >= YEARM) hf=stepm/YEARM;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       epj=vector(1,nlstate+1);                    }
       for(age=bage; age <=fage ;age++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    /*printf(fignu*/
         if (popbased==1) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           for(i=1; i<=nlstate;i++)                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
             prlim[i][i]=probs[(int)age][i][k];                    if(first==1){
         }                      first=0;
                              fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficrest," %.0f",age);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           epj[nlstate+1] +=epj[j];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         for(i=1, vepp=0.;i <=nlstate;i++)                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           for(j=1;j <=nlstate;j++)                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
             vepp += vareij[i][j][(int)age];                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         for(j=1;j <=nlstate;j++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficrest,"\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }else{
     }                      first=0;
   }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                              fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                              fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  fclose(ficreseij);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  fclose(ficresvij);                    }/* if first */
   fclose(ficrest);                  } /* age mod 5 */
   fclose(ficpar);                } /* end loop age */
   free_vector(epj,1,nlstate+1);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*  scanf("%d ",i); */                first=1;
               } /*l12 */
   /*------- Variance limit prevalence------*/              } /* k12 */
           } /*l1 */
 strcpy(fileresvpl,"vpl");        }/* k1 */
   strcat(fileresvpl,fileres);      } /* loop covariates */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     exit(0);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   }    free_vector(xp,1,npar);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fclose(ficresprob);
     fclose(ficresprobcov);
  k=0;    fclose(ficresprobcor);
  for(cptcov=1;cptcov<=i1;cptcov++){    fflush(ficgp);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fflush(fichtmcov);
      k=k+1;  }
      fprintf(ficresvpl,"\n#****** ");  
      for(j=1;j<=cptcoveff;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /******************* Printing html file ***********/
      fprintf(ficresvpl,"******\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                          int lastpass, int stepm, int weightopt, char model[],\
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      oldm=oldms;savm=savms;                    int popforecast, int estepm ,\
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    double jprev1, double mprev1,double anprev1, \
    }                    double jprev2, double mprev2,double anprev2){
  }    int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   fclose(ficresvpl);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*---------- End : free ----------------*/  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /*   } */
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
     - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   - Life expectancies by age and initial health status (estepm=%2d months): \
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     <a href=\"%s\">%s</a> <br>\n</li>", \
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
   free_matrix(matcov,1,npar,1,npar);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   free_vector(delti,1,npar);  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
    m=cptcoveff;
   if(erreur >0)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("End of Imach with error %d\n",erreur);  
   else   printf("End of Imach\n");   jj1=0;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       jj1++;
   /*printf("Total time was %d uSec.\n", total_usecs);*/       if (cptcovn > 0) {
   /*------ End -----------*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  end:         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 #ifdef windows       }
  chdir(pathcd);       /* Pij */
 #endif       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
    <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
  system("..\\gp37mgw\\wgnuplot graph.plt");       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 #ifdef windows   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   while (z[0] != 'q') {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     chdir(pathcd);         /* Stable prevalence in each health state */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");         for(cpt=1; cpt<nlstate;cpt++){
     scanf("%s",z);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     if (z[0] == 'c') system("./imach");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     else if (z[0] == 'e') {         }
       chdir(path);       for(cpt=1; cpt<=nlstate;cpt++) {
       system(optionfilehtm);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     else if (z[0] == 'q') exit(0);       }
   }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 #endif  health expectancies in states (1) and (2): %s%d.png<br>\
 }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.21  
changed lines
  Added in v.1.94


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>