Diff for /imach/src/imach.c between versions 1.35 and 1.113

version 1.35, 2002/03/26 17:08:39 version 1.113, 2006/02/24 14:20:24
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.113  2006/02/24 14:20:24  brouard
      (Module): Memory leaks checks with valgrind and:
   This program computes Healthy Life Expectancies from    datafile was not closed, some imatrix were not freed and on matrix
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    allocation too.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.112  2006/01/30 09:55:26  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.111  2006/01/25 20:38:18  brouard
   computed from the time spent in each health state according to a    (Module): Lots of cleaning and bugs added (Gompertz)
   model. More health states you consider, more time is necessary to reach the    (Module): Comments can be added in data file. Missing date values
   Maximum Likelihood of the parameters involved in the model.  The    can be a simple dot '.'.
   simplest model is the multinomial logistic model where pij is the  
   probabibility to be observed in state j at the second wave    Revision 1.110  2006/01/25 00:51:50  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Lots of cleaning and bugs added (Gompertz)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.109  2006/01/24 19:37:15  brouard
   complex model than "constant and age", you should modify the program    (Module): Comments (lines starting with a #) are allowed in data.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.108  2006/01/19 18:05:42  lievre
   convergence.    Gnuplot problem appeared...
     To be fixed
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.107  2006/01/19 16:20:37  brouard
   identical for each individual. Also, if a individual missed an    Test existence of gnuplot in imach path
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.105  2006/01/05 20:23:19  lievre
   split into an exact number (nh*stepm) of unobserved intermediate    *** empty log message ***
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.104  2005/09/30 16:11:43  lievre
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): sump fixed, loop imx fixed, and simplifications.
   and the contribution of each individual to the likelihood is simply    (Module): If the status is missing at the last wave but we know
   hPijx.    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
   Also this programme outputs the covariance matrix of the parameters but also    contributions to the likelihood is 1 - Prob of dying from last
   of the life expectancies. It also computes the prevalence limits.    health status (= 1-p13= p11+p12 in the easiest case of somebody in
      the healthy state at last known wave). Version is 0.98
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.103  2005/09/30 15:54:49  lievre
   This software have been partly granted by Euro-REVES, a concerted action    (Module): sump fixed, loop imx fixed, and simplifications.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.102  2004/09/15 17:31:30  brouard
   software can be distributed freely for non commercial use. Latest version    Add the possibility to read data file including tab characters.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.101  2004/09/15 10:38:38  brouard
      Fix on curr_time
 #include <math.h>  
 #include <stdio.h>    Revision 1.100  2004/07/12 18:29:06  brouard
 #include <stdlib.h>    Add version for Mac OS X. Just define UNIX in Makefile
 #include <unistd.h>  
     Revision 1.99  2004/06/05 08:57:40  brouard
 #define MAXLINE 256    *** empty log message ***
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.98  2004/05/16 15:05:56  brouard
 #define FILENAMELENGTH 80    New version 0.97 . First attempt to estimate force of mortality
 /*#define DEBUG*/    directly from the data i.e. without the need of knowing the health
 #define windows    state at each age, but using a Gompertz model: log u =a + b*age .
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    This is the basic analysis of mortality and should be done before any
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    from other sources like vital statistic data.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     The same imach parameter file can be used but the option for mle should be -3.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Agnès, who wrote this part of the code, tried to keep most of the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    former routines in order to include the new code within the former code.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    The output is very simple: only an estimate of the intercept and of
 #define YEARM 12. /* Number of months per year */    the slope with 95% confident intervals.
 #define AGESUP 130  
 #define AGEBASE 40    Current limitations:
     A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int erreur; /* Error number */    B) There is no computation of Life Expectancy nor Life Table.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.97  2004/02/20 13:25:42  lievre
 int npar=NPARMAX;    Version 0.96d. Population forecasting command line is (temporarily)
 int nlstate=2; /* Number of live states */    suppressed.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.96  2003/07/15 15:38:55  brouard
 int popbased=0;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.95  2003/07/08 07:54:34  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository):
 int mle, weightopt;    (Repository): Using imachwizard code to output a more meaningful covariance
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    matrix (cov(a12,c31) instead of numbers.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.94  2003/06/27 13:00:02  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Just cleaning
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.93  2003/06/25 16:33:55  brouard
 FILE *ficgp,*ficresprob,*ficpop;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *ficreseij;    exist so I changed back to asctime which exists.
   char filerese[FILENAMELENGTH];    (Module): Version 0.96b
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.92  2003/06/25 16:30:45  brouard
  FILE  *ficresvpl;    (Module): On windows (cygwin) function asctime_r doesn't
   char fileresvpl[FILENAMELENGTH];    exist so I changed back to asctime which exists.
   
 #define NR_END 1    Revision 1.91  2003/06/25 15:30:29  brouard
 #define FREE_ARG char*    * imach.c (Repository): Duplicated warning errors corrected.
 #define FTOL 1.0e-10    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define NRANSI    is stamped in powell.  We created a new html file for the graphs
 #define ITMAX 200    concerning matrix of covariance. It has extension -cov.htm.
   
 #define TOL 2.0e-4    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define CGOLD 0.3819660    mle=-1 a template is output in file "or"mypar.txt with the design
 #define ZEPS 1.0e-10    of the covariance matrix to be input.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define GOLD 1.618034    (Module): Some bugs corrected for windows. Also, when
 #define GLIMIT 100.0    mle=-1 a template is output in file "or"mypar.txt with the design
 #define TINY 1.0e-20    of the covariance matrix to be input.
   
 static double maxarg1,maxarg2;    Revision 1.88  2003/06/23 17:54:56  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.87  2003/06/18 12:26:01  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Version 0.96
 #define rint(a) floor(a+0.5)  
     Revision 1.86  2003/06/17 20:04:08  brouard
 static double sqrarg;    (Module): Change position of html and gnuplot routines and added
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    routine fileappend.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.85  2003/06/17 13:12:43  brouard
 int imx;    * imach.c (Repository): Check when date of death was earlier that
 int stepm;    current date of interview. It may happen when the death was just
 /* Stepm, step in month: minimum step interpolation*/    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 int m,nb;    assuming that the date of death was just one stepm after the
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    interview.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Repository): Because some people have very long ID (first column)
 double **pmmij, ***probs, ***mobaverage;    we changed int to long in num[] and we added a new lvector for
 double dateintmean=0;    memory allocation. But we also truncated to 8 characters (left
     truncation)
 double *weight;    (Repository): No more line truncation errors.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.84  2003/06/13 21:44:43  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    many times. Probs is memory consuming and must be used with
 double ftolhess; /* Tolerance for computing hessian */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  */
 #ifdef windows  /*
    s = strrchr( path, '\\' );           /* find last / */     Interpolated Markov Chain
 #else  
    s = strrchr( path, '/' );            /* find last / */    Short summary of the programme:
 #endif    
    if ( s == NULL ) {                   /* no directory, so use current */    This program computes Healthy Life Expectancies from
 #if     defined(__bsd__)                /* get current working directory */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       extern char       *getwd( );    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
       if ( getwd( dirc ) == NULL ) {    case of a health survey which is our main interest) -2- at least a
 #else    second wave of interviews ("longitudinal") which measure each change
       extern char       *getcwd( );    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    model. More health states you consider, more time is necessary to reach the
 #endif    Maximum Likelihood of the parameters involved in the model.  The
          return( GLOCK_ERROR_GETCWD );    simplest model is the multinomial logistic model where pij is the
       }    probability to be observed in state j at the second wave
       strcpy( name, path );             /* we've got it */    conditional to be observed in state i at the first wave. Therefore
    } else {                             /* strip direcotry from path */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       s++;                              /* after this, the filename */    'age' is age and 'sex' is a covariate. If you want to have a more
       l2 = strlen( s );                 /* length of filename */    complex model than "constant and age", you should modify the program
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    where the markup *Covariates have to be included here again* invites
       strcpy( name, s );                /* save file name */    you to do it.  More covariates you add, slower the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    convergence.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    The advantage of this computer programme, compared to a simple
    l1 = strlen( dirc );                 /* length of directory */    multinomial logistic model, is clear when the delay between waves is not
 #ifdef windows    identical for each individual. Also, if a individual missed an
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    intermediate interview, the information is lost, but taken into
 #else    account using an interpolation or extrapolation.  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    hPijx is the probability to be observed in state i at age x+h
    s = strrchr( name, '.' );            /* find last / */    conditional to the observed state i at age x. The delay 'h' can be
    s++;    split into an exact number (nh*stepm) of unobserved intermediate
    strcpy(ext,s);                       /* save extension */    states. This elementary transition (by month, quarter,
    l1= strlen( name);    semester or year) is modelled as a multinomial logistic.  The hPx
    l2= strlen( s)+1;    matrix is simply the matrix product of nh*stepm elementary matrices
    strncpy( finame, name, l1-l2);    and the contribution of each individual to the likelihood is simply
    finame[l1-l2]= 0;    hPijx.
    return( 0 );                         /* we're done */  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
     
 /******************************************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 void replace(char *s, char*t)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   int i;    It is copyrighted identically to a GNU software product, ie programme and
   int lg=20;    software can be distributed freely for non commercial use. Latest version
   i=0;    can be accessed at http://euroreves.ined.fr/imach .
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     (s[i] = t[i]);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     if (t[i]== '\\') s[i]='/';    
   }    **********************************************************************/
 }  /*
     main
 int nbocc(char *s, char occ)    read parameterfile
 {    read datafile
   int i,j=0;    concatwav
   int lg=20;    freqsummary
   i=0;    if (mle >= 1)
   lg=strlen(s);      mlikeli
   for(i=0; i<= lg; i++) {    print results files
   if  (s[i] == occ ) j++;    if mle==1 
   }       computes hessian
   return j;    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 void cutv(char *u,char *v, char*t, char occ)    open html file
 {    stable prevalence
   int i,lg,j,p=0;     for age prevalim()
   i=0;    h Pij x
   for(j=0; j<=strlen(t)-1; j++) {    variance of p varprob
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    forecasting if prevfcast==1 prevforecast call prevalence()
   }    health expectancies
     Variance-covariance of DFLE
   lg=strlen(t);    prevalence()
   for(j=0; j<p; j++) {     movingaverage()
     (u[j] = t[j]);    varevsij() 
   }    if popbased==1 varevsij(,popbased)
      u[p]='\0';    total life expectancies
     Variance of stable prevalence
    for(j=0; j<= lg; j++) {   end
     if (j>=(p+1))(v[j-p-1] = t[j]);  */
   }  
 }  
   
 /********************** nrerror ********************/   
   #include <math.h>
 void nrerror(char error_text[])  #include <stdio.h>
 {  #include <stdlib.h>
   fprintf(stderr,"ERREUR ...\n");  #include <string.h>
   fprintf(stderr,"%s\n",error_text);  #include <unistd.h>
   exit(1);  
 }  #include <limits.h>
 /*********************** vector *******************/  #include <sys/types.h>
 double *vector(int nl, int nh)  #include <sys/stat.h>
 {  #include <errno.h>
   double *v;  extern int errno;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  /* #include <sys/time.h> */
   return v-nl+NR_END;  #include <time.h>
 }  #include "timeval.h"
   
 /************************ free vector ******************/  /* #include <libintl.h> */
 void free_vector(double*v, int nl, int nh)  /* #define _(String) gettext (String) */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /************************ivector *******************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int *ivector(long nl,long nh)  #define FILENAMELENGTH 132
 {  
   int *v;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /******************free ivector **************************/  #define NINTERVMAX 8
 void free_ivector(int *v, long nl, long nh)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   free((FREE_ARG)(v+nl-NR_END));  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /******************* imatrix *******************************/  #define AGESUP 130
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define AGEBASE 40
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define DIRSEPARATOR '/'
   int **m;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   /* allocate pointers to rows */  #else
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define DIRSEPARATOR '\\'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define CHARSEPARATOR "\\"
   m += NR_END;  #define ODIRSEPARATOR '/'
   m -= nrl;  #endif
    
    /* $Id$ */
   /* allocate rows and set pointers to them */  /* $State$ */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   m[nrl] += NR_END;  char fullversion[]="$Revision$ $Date$"; 
   m[nrl] -= ncl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    int npar=NPARMAX;
   /* return pointer to array of pointers to rows */  int nlstate=2; /* Number of live states */
   return m;  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  int *wav; /* Number of waves for this individuual 0 is possible */
       int **m;  int maxwav; /* Maxim number of waves */
       long nch,ncl,nrh,nrl;  int jmin, jmax; /* min, max spacing between 2 waves */
      /* free an int matrix allocated by imatrix() */  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG) (m+nrl-NR_END));  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /******************* matrix *******************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double **matrix(long nrl, long nrh, long ncl, long nch)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **m;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficlog, *ficrespow;
   if (!m) nrerror("allocation failure 1 in matrix()");  int globpr; /* Global variable for printing or not */
   m += NR_END;  double fretone; /* Only one call to likelihood */
   m -= nrl;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerespow[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl] += NR_END;  FILE *ficresilk;
   m[nrl] -= ncl;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *fichtm, *fichtmcov; /* Html File */
   return m;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /*************************free matrix ************************/  char fileresv[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char title[MAXLINE];
   free((FREE_ARG)(m+nrl-NR_END));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /******************* ma3x *******************************/  char command[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int  outcmd=0;
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double ***m;  
   char filelog[FILENAMELENGTH]; /* Log file */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerest[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileregp[FILENAMELENGTH];
   m += NR_END;  char popfile[FILENAMELENGTH];
   m -= nrl;  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl] += NR_END;  struct timezone tzp;
   m[nrl] -= ncl;  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  long time_value;
   extern long time();
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char strcurr[80], strfor[80];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  char *endptr;
   m[nrl][ncl] -= nll;  long lval;
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  #define NR_END 1
    #define FREE_ARG char*
   for (i=nrl+1; i<=nrh; i++) {  #define FTOL 1.0e-10
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define NRANSI 
       m[i][j]=m[i][j-1]+nlay;  #define ITMAX 200 
   }  
   return m;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /*************************free ma3x ************************/  #define ZEPS 1.0e-10 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define GOLD 1.618034 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GLIMIT 100.0 
   free((FREE_ARG)(m+nrl-NR_END));  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /***************** f1dim *************************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 extern int ncom;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 extern double *pcom,*xicom;    
 extern double (*nrfunc)(double []);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
 double f1dim(double x)  
 {  static double sqrarg;
   int j;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double f;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double *xt;  int agegomp= AGEGOMP;
    
   xt=vector(1,ncom);  int imx; 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int stepm=1;
   f=(*nrfunc)(xt);  /* Stepm, step in month: minimum step interpolation*/
   free_vector(xt,1,ncom);  
   return f;  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /*****************brent *************************/  int m,nb;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   int iter;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double a,b,d,etemp;  double **pmmij, ***probs;
   double fu,fv,fw,fx;  double *ageexmed,*agecens;
   double ftemp;  double dateintmean=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  double *weight;
    int **s; /* Status */
   a=(ax < cx ? ax : cx);  double *agedc, **covar, idx;
   b=(ax > cx ? ax : cx);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   x=w=v=bx;  double *lsurv, *lpop, *tpop;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     xm=0.5*(a+b);  double ftolhess; /* Tolerance for computing hessian */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /**************** split *************************/
     printf(".");fflush(stdout);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #endif    */ 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    char  *ss;                            /* pointer */
       *xmin=x;    int   l1, l2;                         /* length counters */
       return fx;  
     }    l1 = strlen(path );                   /* length of path */
     ftemp=fu;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     if (fabs(e) > tol1) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       r=(x-w)*(fx-fv);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       q=(x-v)*(fx-fw);      strcpy( name, path );               /* we got the fullname name because no directory */
       p=(x-v)*q-(x-w)*r;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       q=2.0*(q-r);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       if (q > 0.0) p = -p;      /* get current working directory */
       q=fabs(q);      /*    extern  char* getcwd ( char *buf , int len);*/
       etemp=e;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       e=d;        return( GLOCK_ERROR_GETCWD );
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      /* got dirc from getcwd*/
       else {      printf(" DIRC = %s \n",dirc);
         d=p/q;    } else {                              /* strip direcotry from path */
         u=x+d;      ss++;                               /* after this, the filename */
         if (u-a < tol2 || b-u < tol2)      l2 = strlen( ss );                  /* length of filename */
           d=SIGN(tol1,xm-x);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       }      strcpy( name, ss );         /* save file name */
     } else {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      dirc[l1-l2] = 0;                    /* add zero */
     }      printf(" DIRC2 = %s \n",dirc);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    }
     fu=(*f)(u);    /* We add a separator at the end of dirc if not exists */
     if (fu <= fx) {    l1 = strlen( dirc );                  /* length of directory */
       if (u >= x) a=x; else b=x;    if( dirc[l1-1] != DIRSEPARATOR ){
       SHFT(v,w,x,u)      dirc[l1] =  DIRSEPARATOR;
         SHFT(fv,fw,fx,fu)      dirc[l1+1] = 0; 
         } else {      printf(" DIRC3 = %s \n",dirc);
           if (u < x) a=u; else b=u;    }
           if (fu <= fw || w == x) {    ss = strrchr( name, '.' );            /* find last / */
             v=w;    if (ss >0){
             w=u;      ss++;
             fv=fw;      strcpy(ext,ss);                     /* save extension */
             fw=fu;      l1= strlen( name);
           } else if (fu <= fv || v == x || v == w) {      l2= strlen(ss)+1;
             v=u;      strncpy( finame, name, l1-l2);
             fv=fu;      finame[l1-l2]= 0;
           }    }
         }  
   }    return( 0 );                          /* we're done */
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  
 }  /******************************************/
   
 /****************** mnbrak ***********************/  void replace_back_to_slash(char *s, char*t)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    int i;
             double (*func)(double))    int lg=0;
 {    i=0;
   double ulim,u,r,q, dum;    lg=strlen(t);
   double fu;    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
   *fa=(*func)(*ax);      if (t[i]== '\\') s[i]='/';
   *fb=(*func)(*bx);    }
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  int nbocc(char *s, char occ)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    int i,j=0;
   *fc=(*func)(*cx);    int lg=20;
   while (*fb > *fc) {    i=0;
     r=(*bx-*ax)*(*fb-*fc);    lg=strlen(s);
     q=(*bx-*cx)*(*fb-*fa);    for(i=0; i<= lg; i++) {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if  (s[i] == occ ) j++;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    }
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return j;
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void cutv(char *u,char *v, char*t, char occ)
       fu=(*func)(u);  {
       if (fu < *fc) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
           SHFT(*fb,*fc,fu,(*func)(u))       gives u="abcedf" and v="ghi2j" */
           }    int i,lg,j,p=0;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    i=0;
       u=ulim;    for(j=0; j<=strlen(t)-1; j++) {
       fu=(*func)(u);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     } else {    }
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     SHFT(*ax,*bx,*cx,u)      (u[j] = t[j]);
       SHFT(*fa,*fb,*fc,fu)    }
       }       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /*************** linmin ************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 int ncom;  }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /********************** nrerror ********************/
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void nrerror(char error_text[])
 {  {
   double brent(double ax, double bx, double cx,    fprintf(stderr,"ERREUR ...\n");
                double (*f)(double), double tol, double *xmin);    fprintf(stderr,"%s\n",error_text);
   double f1dim(double x);    exit(EXIT_FAILURE);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  /*********************** vector *******************/
   int j;  double *vector(int nl, int nh)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    double *v;
      v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   ncom=n;    if (!v) nrerror("allocation failure in vector");
   pcom=vector(1,n);    return v-nl+NR_END;
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /************************ free vector ******************/
     pcom[j]=p[j];  void free_vector(double*v, int nl, int nh)
     xicom[j]=xi[j];  {
   }    free((FREE_ARG)(v+nl-NR_END));
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /************************ivector *******************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int *ivector(long nl,long nh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int *v;
 #endif    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
     xi[j] *= xmin;    return v-nl+NR_END;
     p[j] += xi[j];  }
   }  
   free_vector(xicom,1,n);  /******************free ivector **************************/
   free_vector(pcom,1,n);  void free_ivector(int *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** powell ************************/  }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /************************lvector *******************************/
 {  long *lvector(long nl,long nh)
   void linmin(double p[], double xi[], int n, double *fret,  {
               double (*func)(double []));    long *v;
   int i,ibig,j;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double del,t,*pt,*ptt,*xit;    if (!v) nrerror("allocation failure in ivector");
   double fp,fptt;    return v-nl+NR_END;
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /******************free lvector **************************/
   xit=vector(1,n);  void free_lvector(long *v, long nl, long nh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /******************* imatrix *******************************/
     ibig=0;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     del=0.0;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  { 
     for (i=1;i<=n;i++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       printf(" %d %.12f",i, p[i]);    int **m; 
     printf("\n");    
     for (i=1;i<=n;i++) {    /* allocate pointers to rows */ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       fptt=(*fret);    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #ifdef DEBUG    m += NR_END; 
       printf("fret=%lf \n",*fret);    m -= nrl; 
 #endif    
       printf("%d",i);fflush(stdout);    
       linmin(p,xit,n,fret,func);    /* allocate rows and set pointers to them */ 
       if (fabs(fptt-(*fret)) > del) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         del=fabs(fptt-(*fret));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         ibig=i;    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
 #ifdef DEBUG    
       printf("%d %.12e",i,(*fret));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for (j=1;j<=n;j++) {    
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    /* return pointer to array of pointers to rows */ 
         printf(" x(%d)=%.12e",j,xit[j]);    return m; 
       }  } 
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /****************** free_imatrix *************************/
       printf("\n");  void free_imatrix(m,nrl,nrh,ncl,nch)
 #endif        int **m;
     }        long nch,ncl,nrh,nrl; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {       /* free an int matrix allocated by imatrix() */ 
 #ifdef DEBUG  { 
       int k[2],l;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       k[0]=1;    free((FREE_ARG) (m+nrl-NR_END)); 
       k[1]=-1;  } 
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /******************* matrix *******************************/
         printf(" %.12e",p[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf("\n");  {
       for(l=0;l<=1;l++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         for (j=1;j<=n;j++) {    double **m;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m += NR_END;
       }    m -= nrl;
 #endif  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       free_vector(xit,1,n);    m[nrl] += NR_END;
       free_vector(xits,1,n);    m[nrl] -= ncl;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       return;    return m;
     }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     */
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /*************************free matrix ************************/
       pt[j]=p[j];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
     fptt=(*func)(ptt);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (fptt < fp) {    free((FREE_ARG)(m+nrl-NR_END));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /******************* ma3x *******************************/
         for (j=1;j<=n;j++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         }    double ***m;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         for(j=1;j<=n;j++)    if (!m) nrerror("allocation failure 1 in matrix()");
           printf(" %.12e",xit[j]);    m += NR_END;
         printf("\n");    m -= nrl;
 #endif  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /**** Prevalence limit ****************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m[nrl][ncl] += NR_END;
      matrix by transitions matrix until convergence is reached */    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   int i, ii,j,k;      m[nrl][j]=m[nrl][j-1]+nlay;
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    for (i=nrl+1; i<=nrh; i++) {
   double **out, cov[NCOVMAX], **pmij();      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double **newm;      for (j=ncl+1; j<=nch; j++) 
   double agefin, delaymax=50 ; /* Max number of years to converge */        m[i][j]=m[i][j-1]+nlay;
     }
   for (ii=1;ii<=nlstate+ndeath;ii++)    return m; 
     for (j=1;j<=nlstate+ndeath;j++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
   }
    cov[1]=1.;  
    /*************************free ma3x ************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     /* Covariates have to be included here again */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      cov[2]=agefin;    free((FREE_ARG)(m+nrl-NR_END));
    }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************** function subdirf ***********/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  char *subdirf(char fileres[])
       }  {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovprod;k++)    strcpy(tmpout,optionfilefiname);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    return tmpout;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
     savm=oldm;  {
     oldm=newm;    
     maxmax=0.;    /* Caution optionfilefiname is hidden */
     for(j=1;j<=nlstate;j++){    strcpy(tmpout,optionfilefiname);
       min=1.;    strcat(tmpout,"/");
       max=0.;    strcat(tmpout,preop);
       for(i=1; i<=nlstate; i++) {    strcat(tmpout,fileres);
         sumnew=0;    return tmpout;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /*************** function subdirf3 ***********/
         min=FMIN(min,prlim[i][j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
       }  {
       maxmin=max-min;    
       maxmax=FMAX(maxmax,maxmin);    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if(maxmax < ftolpl){    strcat(tmpout,"/");
       return prlim;    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
   }    strcat(tmpout,fileres);
 }    return tmpout;
   }
 /*************** transition probabilities ***************/  
   /***************** f1dim *************************/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  extern int ncom; 
 {  extern double *pcom,*xicom;
   double s1, s2;  extern double (*nrfunc)(double []); 
   /*double t34;*/   
   int i,j,j1, nc, ii, jj;  double f1dim(double x) 
   { 
     for(i=1; i<= nlstate; i++){    int j; 
     for(j=1; j<i;j++){    double f;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double *xt; 
         /*s2 += param[i][j][nc]*cov[nc];*/   
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    xt=vector(1,ncom); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
       ps[i][j]=s2;    free_vector(xt,1,ncom); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    return f; 
     }  } 
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*****************brent *************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  { 
       }    int iter; 
       ps[i][j]=s2;    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
   }    double ftemp;
     /*ps[3][2]=1;*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   for(i=1; i<= nlstate; i++){   
      s1=0;    a=(ax < cx ? ax : cx); 
     for(j=1; j<i; j++)    b=(ax > cx ? ax : cx); 
       s1+=exp(ps[i][j]);    x=w=v=bx; 
     for(j=i+1; j<=nlstate+ndeath; j++)    fw=fv=fx=(*f)(x); 
       s1+=exp(ps[i][j]);    for (iter=1;iter<=ITMAX;iter++) { 
     ps[i][i]=1./(s1+1.);      xm=0.5*(a+b); 
     for(j=1; j<i; j++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(j=i+1; j<=nlstate+ndeath; j++)      printf(".");fflush(stdout);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fprintf(ficlog,".");fflush(ficlog);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #ifdef DEBUG
   } /* end i */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
       ps[ii][jj]=0;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       ps[ii][ii]=1;        *xmin=x; 
     }        return fx; 
   }      } 
       ftemp=fu;
       if (fabs(e) > tol1) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        r=(x-w)*(fx-fv); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        q=(x-v)*(fx-fw); 
      printf("%lf ",ps[ii][jj]);        p=(x-v)*q-(x-w)*r; 
    }        q=2.0*(q-r); 
     printf("\n ");        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
     printf("\n ");printf("%lf ",cov[2]);*/        etemp=e; 
 /*        e=d; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   goto end;*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     return ps;        else { 
 }          d=p/q; 
           u=x+d; 
 /**************** Product of 2 matrices ******************/          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        } 
 {      } else { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      } 
   /* in, b, out are matrice of pointers which should have been initialized      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      before: only the contents of out is modified. The function returns      fu=(*f)(u); 
      a pointer to pointers identical to out */      if (fu <= fx) { 
   long i, j, k;        if (u >= x) a=x; else b=x; 
   for(i=nrl; i<= nrh; i++)        SHFT(v,w,x,u) 
     for(k=ncolol; k<=ncoloh; k++)          SHFT(fv,fw,fx,fu) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          } else { 
         out[i][k] +=in[i][j]*b[j][k];            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   return out;              v=w; 
 }              w=u; 
               fv=fw; 
               fw=fu; 
 /************* Higher Matrix Product ***************/            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )              fv=fu; 
 {            } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          } 
      duration (i.e. until    } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    nrerror("Too many iterations in brent"); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    *xmin=x; 
      (typically every 2 years instead of every month which is too big).    return fx; 
      Model is determined by parameters x and covariates have to be  } 
      included manually here.  
   /****************** mnbrak ***********************/
      */  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   int i, j, d, h, k;              double (*func)(double)) 
   double **out, cov[NCOVMAX];  { 
   double **newm;    double ulim,u,r,q, dum;
     double fu; 
   /* Hstepm could be zero and should return the unit matrix */   
   for (i=1;i<=nlstate+ndeath;i++)    *fa=(*func)(*ax); 
     for (j=1;j<=nlstate+ndeath;j++){    *fb=(*func)(*bx); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    if (*fb > *fa) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        } 
   for(h=1; h <=nhstepm; h++){    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(d=1; d <=hstepm; d++){    *fc=(*func)(*cx); 
       newm=savm;    while (*fb > *fc) { 
       /* Covariates have to be included here again */      r=(*bx-*ax)*(*fb-*fc); 
       cov[1]=1.;      q=(*bx-*cx)*(*fb-*fa); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for (k=1; k<=cptcovage;k++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if ((*bx-u)*(u-*cx) > 0.0) { 
       for (k=1; k<=cptcovprod;k++)        fu=(*func)(u); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
         if (fu < *fc) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,            } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       savm=oldm;        u=ulim; 
       oldm=newm;        fu=(*func)(u); 
     }      } else { 
     for(i=1; i<=nlstate+ndeath; i++)        u=(*cx)+GOLD*(*cx-*bx); 
       for(j=1;j<=nlstate+ndeath;j++) {        fu=(*func)(u); 
         po[i][j][h]=newm[i][j];      } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      SHFT(*ax,*bx,*cx,u) 
          */        SHFT(*fa,*fb,*fc,fu) 
       }        } 
   } /* end h */  } 
   return po;  
 }  /*************** linmin ************************/
   
   int ncom; 
 /*************** log-likelihood *************/  double *pcom,*xicom;
 double func( double *x)  double (*nrfunc)(double []); 
 {   
   int i, ii, j, k, mi, d, kk;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  { 
   double **out;    double brent(double ax, double bx, double cx, 
   double sw; /* Sum of weights */                 double (*f)(double), double tol, double *xmin); 
   double lli; /* Individual log likelihood */    double f1dim(double x); 
   long ipmx;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /*extern weight */                double *fc, double (*func)(double)); 
   /* We are differentiating ll according to initial status */    int j; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double xx,xmin,bx,ax; 
   /*for(i=1;i<imx;i++)    double fx,fb,fa;
     printf(" %d\n",s[4][i]);   
   */    ncom=n; 
   cov[1]=1.;    pcom=vector(1,n); 
     xicom=vector(1,n); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    nrfunc=func; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (j=1;j<=n;j++) { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      pcom[j]=p[j]; 
     for(mi=1; mi<= wav[i]-1; mi++){      xicom[j]=xi[j]; 
       for (ii=1;ii<=nlstate+ndeath;ii++)    } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    ax=0.0; 
       for(d=0; d<dh[mi][i]; d++){    xx=1.0; 
         newm=savm;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         for (kk=1; kk<=cptcovage;kk++) {  #ifdef DEBUG
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
          #endif
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      xi[j] *= xmin; 
         savm=oldm;      p[j] += xi[j]; 
         oldm=newm;    } 
            free_vector(xicom,1,n); 
            free_vector(pcom,1,n); 
       } /* end mult */  } 
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  char *asc_diff_time(long time_sec, char ascdiff[])
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  {
       ipmx +=1;    long sec_left, days, hours, minutes;
       sw += weight[i];    days = (time_sec) / (60*60*24);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    sec_left = (time_sec) % (60*60*24);
     } /* end of wave */    hours = (sec_left) / (60*60) ;
   } /* end of individual */    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    sec_left = (sec_left) % (60);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    return ascdiff;
   return -l;  }
 }  
   /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 /*********** Maximum Likelihood Estimation ***************/              double (*func)(double [])) 
   { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    void linmin(double p[], double xi[], int n, double *fret, 
 {                double (*func)(double [])); 
   int i,j, iter;    int i,ibig,j; 
   double **xi,*delti;    double del,t,*pt,*ptt,*xit;
   double fret;    double fp,fptt;
   xi=matrix(1,npar,1,npar);    double *xits;
   for (i=1;i<=npar;i++)    int niterf, itmp;
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    pt=vector(1,n); 
   printf("Powell\n");    ptt=vector(1,n); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    xit=vector(1,n); 
     xits=vector(1,n); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    *fret=(*func)(p); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 }      fp=(*fret); 
       ibig=0; 
 /**** Computes Hessian and covariance matrix ***/      del=0.0; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      last_time=curr_time;
 {      (void) gettimeofday(&curr_time,&tzp);
   double  **a,**y,*x,pd;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double **hess;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   int i, j,jk;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   int *indx;      */
      for (i=1;i<=n;i++) {
   double hessii(double p[], double delta, int theta, double delti[]);        printf(" %d %.12f",i, p[i]);
   double hessij(double p[], double delti[], int i, int j);        fprintf(ficlog," %d %.12lf",i, p[i]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fprintf(ficrespow," %.12lf", p[i]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;      }
       printf("\n");
   hess=matrix(1,npar,1,npar);      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   printf("\nCalculation of the hessian matrix. Wait...\n");      if(*iter <=3){
   for (i=1;i<=npar;i++){        tm = *localtime(&curr_time.tv_sec);
     printf("%d",i);fflush(stdout);        strcpy(strcurr,asctime(&tm));
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*       asctime_r(&tm,strcurr); */
     /*printf(" %f ",p[i]);*/        forecast_time=curr_time; 
     /*printf(" %lf ",hess[i][i]);*/        itmp = strlen(strcurr);
   }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
            strcurr[itmp-1]='\0';
   for (i=1;i<=npar;i++) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=npar;j++)  {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       if (j>i) {        for(niterf=10;niterf<=30;niterf+=10){
         printf(".%d%d",i,j);fflush(stdout);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         hess[i][j]=hessij(p,delti,i,j);          tmf = *localtime(&forecast_time.tv_sec);
         hess[j][i]=hess[i][j];      /*      asctime_r(&tmf,strfor); */
         /*printf(" %lf ",hess[i][j]);*/          strcpy(strfor,asctime(&tmf));
       }          itmp = strlen(strfor);
     }          if(strfor[itmp-1]=='\n')
   }          strfor[itmp-1]='\0';
   printf("\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        }
        }
   a=matrix(1,npar,1,npar);      for (i=1;i<=n;i++) { 
   y=matrix(1,npar,1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   x=vector(1,npar);        fptt=(*fret); 
   indx=ivector(1,npar);  #ifdef DEBUG
   for (i=1;i<=npar;i++)        printf("fret=%lf \n",*fret);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog,"fret=%lf \n",*fret);
   ludcmp(a,npar,indx,&pd);  #endif
         printf("%d",i);fflush(stdout);
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=1;i<=npar;i++) x[i]=0;        linmin(p,xit,n,fret,func); 
     x[j]=1;        if (fabs(fptt-(*fret)) > del) { 
     lubksb(a,npar,indx,x);          del=fabs(fptt-(*fret)); 
     for (i=1;i<=npar;i++){          ibig=i; 
       matcov[i][j]=x[i];        } 
     }  #ifdef DEBUG
   }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   printf("\n#Hessian matrix#\n");        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (j=1;j<=npar;j++) {          printf(" x(%d)=%.12e",j,xit[j]);
       printf("%.3e ",hess[i][j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
     printf("\n");        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   /* Recompute Inverse */        }
   for (i=1;i<=npar;i++)        printf("\n");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        fprintf(ficlog,"\n");
   ludcmp(a,npar,indx,&pd);  #endif
       } 
   /*  printf("\n#Hessian matrix recomputed#\n");      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        int k[2],l;
     for (i=1;i<=npar;i++) x[i]=0;        k[0]=1;
     x[j]=1;        k[1]=-1;
     lubksb(a,npar,indx,x);        printf("Max: %.12e",(*func)(p));
     for (i=1;i<=npar;i++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       y[i][j]=x[i];        for (j=1;j<=n;j++) {
       printf("%.3e ",y[i][j]);          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     printf("\n");        }
   }        printf("\n");
   */        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   free_matrix(a,1,npar,1,npar);          for (j=1;j<=n;j++) {
   free_matrix(y,1,npar,1,npar);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   free_vector(x,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_ivector(indx,1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_matrix(hess,1,npar,1,npar);          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }        }
   #endif
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  
 {        free_vector(xit,1,n); 
   int i;        free_vector(xits,1,n); 
   int l=1, lmax=20;        free_vector(ptt,1,n); 
   double k1,k2;        free_vector(pt,1,n); 
   double p2[NPARMAX+1];        return; 
   double res;      } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double fx;      for (j=1;j<=n;j++) { 
   int k=0,kmax=10;        ptt[j]=2.0*p[j]-pt[j]; 
   double l1;        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   fx=func(x);      } 
   for (i=1;i<=npar;i++) p2[i]=x[i];      fptt=(*func)(ptt); 
   for(l=0 ; l <=lmax; l++){      if (fptt < fp) { 
     l1=pow(10,l);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     delts=delt;        if (t < 0.0) { 
     for(k=1 ; k <kmax; k=k+1){          linmin(p,xit,n,fret,func); 
       delt = delta*(l1*k);          for (j=1;j<=n;j++) { 
       p2[theta]=x[theta] +delt;            xi[j][ibig]=xi[j][n]; 
       k1=func(p2)-fx;            xi[j][n]=xit[j]; 
       p2[theta]=x[theta]-delt;          }
       k2=func(p2)-fx;  #ifdef DEBUG
       /*res= (k1-2.0*fx+k2)/delt/delt; */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                for(j=1;j<=n;j++){
 #ifdef DEBUG            printf(" %.12e",xit[j]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            fprintf(ficlog," %.12e",xit[j]);
 #endif          }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          printf("\n");
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          fprintf(ficlog,"\n");
         k=kmax;  #endif
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      } 
         k=kmax; l=lmax*10.;    } 
       }  } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  /**** Prevalence limit (stable prevalence)  ****************/
       }  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  {
   delti[theta]=delts;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   return res;       matrix by transitions matrix until convergence is reached */
    
 }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 double hessij( double x[], double delti[], int thetai,int thetaj)    double **matprod2();
 {    double **out, cov[NCOVMAX], **pmij();
   int i;    double **newm;
   int l=1, l1, lmax=20;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    for (ii=1;ii<=nlstate+ndeath;ii++)
   int k;      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fx=func(x);      }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];     cov[1]=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;   
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     k1=func(p2)-fx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        newm=savm;
     p2[thetai]=x[thetai]+delti[thetai]/k;      /* Covariates have to be included here again */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       cov[2]=agefin;
     k2=func(p2)-fx;    
          for (k=1; k<=cptcovn;k++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     k3=func(p2)-fx;        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     p2[thetai]=x[thetai]-delti[thetai]/k;        for (k=1; k<=cptcovprod;k++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 #ifdef DEBUG        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 #endif      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   }  
   return res;      savm=oldm;
 }      oldm=newm;
       maxmax=0.;
 /************** Inverse of matrix **************/      for(j=1;j<=nlstate;j++){
 void ludcmp(double **a, int n, int *indx, double *d)        min=1.;
 {        max=0.;
   int i,imax,j,k;        for(i=1; i<=nlstate; i++) {
   double big,dum,sum,temp;          sumnew=0;
   double *vv;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   vv=vector(1,n);          max=FMAX(max,prlim[i][j]);
   *d=1.0;          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=n;i++) {        }
     big=0.0;        maxmin=max-min;
     for (j=1;j<=n;j++)        maxmax=FMAX(maxmax,maxmin);
       if ((temp=fabs(a[i][j])) > big) big=temp;      }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      if(maxmax < ftolpl){
     vv[i]=1.0/big;        return prlim;
   }      }
   for (j=1;j<=n;j++) {    }
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*************** transition probabilities ***************/ 
       a[i][j]=sum;  
     }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     big=0.0;  {
     for (i=j;i<=n;i++) {    double s1, s2;
       sum=a[i][j];    /*double t34;*/
       for (k=1;k<j;k++)    int i,j,j1, nc, ii, jj;
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;      for(i=1; i<= nlstate; i++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=1; j<i;j++){
         big=dum;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         imax=i;            /*s2 += param[i][j][nc]*cov[nc];*/
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     if (j != imax) {          }
       for (k=1;k<=n;k++) {          ps[i][j]=s2;
         dum=a[imax][k];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         a[imax][k]=a[j][k];        }
         a[j][k]=dum;        for(j=i+1; j<=nlstate+ndeath;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       *d = -(*d);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       vv[imax]=vv[j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     }          }
     indx[j]=imax;          ps[i][j]=s2;
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {      }
       dum=1.0/(a[j][j]);      /*ps[3][2]=1;*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      
     }      for(i=1; i<= nlstate; i++){
   }        s1=0;
   free_vector(vv,1,n);  /* Doesn't work */        for(j=1; j<i; j++)
 ;          s1+=exp(ps[i][j]);
 }        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
 void lubksb(double **a, int n, int *indx, double b[])        ps[i][i]=1./(s1+1.);
 {        for(j=1; j<i; j++)
   int i,ii=0,ip,j;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double sum;        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=n;i++) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     ip=indx[i];      } /* end i */
     sum=b[ip];      
     b[ip]=b[i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     if (ii)        for(jj=1; jj<= nlstate+ndeath; jj++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          ps[ii][jj]=0;
     else if (sum) ii=i;          ps[ii][ii]=1;
     b[i]=sum;        }
   }      }
   for (i=n;i>=1;i--) {      
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     b[i]=sum/a[i][i];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   }  /*         printf("ddd %lf ",ps[ii][jj]); */
 }  /*       } */
   /*       printf("\n "); */
 /************ Frequencies ********************/  /*        } */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*        printf("\n ");printf("%lf ",cov[2]); */
 {  /* Some frequencies */         /*
          for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        goto end;*/
   double ***freq; /* Frequencies */      return ps;
   double *pp;  }
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  /**************** Product of 2 matrices ******************/
   char fileresp[FILENAMELENGTH];  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   strcpy(fileresp,"p");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   strcat(fileresp,fileres);    /* in, b, out are matrice of pointers which should have been initialized 
   if((ficresp=fopen(fileresp,"w"))==NULL) {       before: only the contents of out is modified. The function returns
     printf("Problem with prevalence resultfile: %s\n", fileresp);       a pointer to pointers identical to out */
     exit(0);    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for(k=ncolol; k<=ncoloh; k++)
   j1=0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    return out;
    }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /************* Higher Matrix Product ***************/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       for (i=-1; i<=nlstate+ndeath; i++)    {
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* Computes the transition matrix starting at age 'age' over 
           for(m=agemin; m <= agemax+3; m++)       'nhstepm*hstepm*stepm' months (i.e. until
             freq[i][jk][m]=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             nhstepm*hstepm matrices. 
       dateintsum=0;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       k2cpt=0;       (typically every 2 years instead of every month which is too big 
       for (i=1; i<=imx; i++) {       for the memory).
         bool=1;       Model is determined by parameters x and covariates have to be 
         if  (cptcovn>0) {       included manually here. 
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       */
               bool=0;  
         }    int i, j, d, h, k;
         if (bool==1) {    double **out, cov[NCOVMAX];
           for(m=firstpass; m<=lastpass; m++){    double **newm;
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* Hstepm could be zero and should return the unit matrix */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    for (i=1;i<=nlstate+ndeath;i++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (j=1;j<=nlstate+ndeath;j++){
               if (m<lastpass) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      }
               }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                  for(h=1; h <=nhstepm; h++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for(d=1; d <=hstepm; d++){
                 dateintsum=dateintsum+k2;        newm=savm;
                 k2cpt++;        /* Covariates have to be included here again */
               }        cov[1]=1.;
             }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
       }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                for (k=1; k<=cptcovprod;k++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         fprintf(ficresp, "**********\n#");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=nlstate;i++)        savm=oldm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        oldm=newm;
       fprintf(ficresp, "\n");      }
            for(i=1; i<=nlstate+ndeath; i++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(j=1;j<=nlstate+ndeath;j++) {
         if(i==(int)agemax+3)          po[i][j][h]=newm[i][j];
           printf("Total");          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         else           */
           printf("Age %d", i);        }
         for(jk=1; jk <=nlstate ; jk++){    } /* end h */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    return po;
             pp[jk] += freq[jk][m][i];  }
         }  
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  /*************** log-likelihood *************/
             pos += freq[jk][m][i];  double func( double *x)
           if(pp[jk]>=1.e-10)  {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    int i, ii, j, k, mi, d, kk;
           else    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double **out;
         }    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
         for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double bbh, survp;
             pp[jk] += freq[jk][m][i];    long ipmx;
         }    /*extern weight */
     /* We are differentiating ll according to initial status */
         for(jk=1,pos=0; jk <=nlstate ; jk++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           pos += pp[jk];    /*for(i=1;i<imx;i++) 
         for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
           if(pos>=1.e-5)    */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    cov[1]=1.;
           else  
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    for(k=1; k<=nlstate; k++) ll[k]=0.;
           if( i <= (int) agemax){  
             if(pos>=1.e-5){    if(mle==1){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               probs[i][jk][j1]= pp[jk]/pos;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for(mi=1; mi<= wav[i]-1; mi++){
             }          for (ii=1;ii<=nlstate+ndeath;ii++)
             else            for (j=1;j<=nlstate+ndeath;j++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
                  for(d=0; d<dh[mi][i]; d++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)            newm=savm;
           for(m=-1; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            for (kk=1; kk<=cptcovage;kk++) {
         if(i <= (int) agemax)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           fprintf(ficresp,"\n");            }
         printf("\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
   dateintmean=dateintsum/k2cpt;          } /* end mult */
          
   fclose(ficresp);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /* But now since version 0.9 we anticipate for bias at large stepm.
   free_vector(pp,1,nlstate);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   /* End of Freq */           * the nearest (and in case of equal distance, to the lowest) interval but now
 }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 /************ Prevalence ********************/           * probability in order to take into account the bias as a fraction of the way
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 {  /* Some frequencies */           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * For stepm > 1 the results are less biased than in previous versions. 
   double ***freq; /* Frequencies */           */
   double *pp;          s1=s[mw[mi][i]][i];
   double pos, k2;          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   pp=vector(1,nlstate);          /* bias bh is positive if real duration
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * is higher than the multiple of stepm and negative otherwise.
             */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   j1=0;          if( s2 > nlstate){ 
              /* i.e. if s2 is a death state and if the date of death is known 
   j=cptcoveff;               then the contribution to the likelihood is the probability to 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
  for(k1=1; k1<=j;k1++){               minus probability to die before dh-stepm . 
     for(i1=1; i1<=ncodemax[k1];i1++){               In version up to 0.92 likelihood was computed
       j1++;          as if date of death was unknown. Death was treated as any other
            health state: the date of the interview describes the actual state
       for (i=-1; i<=nlstate+ndeath; i++)            and not the date of a change in health state. The former idea was
         for (jk=-1; jk<=nlstate+ndeath; jk++)            to consider that at each interview the state was recorded
           for(m=agemin; m <= agemax+3; m++)          (healthy, disable or death) and IMaCh was corrected; but when we
             freq[i][jk][m]=0;          introduced the exact date of death then we should have modified
                the contribution of an exact death to the likelihood. This new
       for (i=1; i<=imx; i++) {          contribution is smaller and very dependent of the step unit
         bool=1;          stepm. It is no more the probability to die between last interview
         if  (cptcovn>0) {          and month of death but the probability to survive from last
           for (z1=1; z1<=cptcoveff; z1++)          interview up to one month before death multiplied by the
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          probability to die within a month. Thanks to Chris
               bool=0;          Jackson for correcting this bug.  Former versions increased
         }          mortality artificially. The bad side is that we add another loop
         if (bool==1) {          which slows down the processing. The difference can be up to 10%
           for(m=firstpass; m<=lastpass; m++){          lower mortality.
             k2=anint[m][i]+(mint[m][i]/12.);            */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            lli=log(out[s1][s2] - savm[s1][s2]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          } else if  (s2==-2) {
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */            for (j=1,survp=0. ; j<=nlstate; j++) 
             }              survp += out[s1][j];
           }            lli= survp;
         }          }
       }          
         for(i=(int)agemin; i <= (int)agemax+3; i++){          else if  (s2==-4) {
           for(jk=1; jk <=nlstate ; jk++){            for (j=3,survp=0. ; j<=nlstate; j++) 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              survp += out[s1][j];
               pp[jk] += freq[jk][m][i];            lli= survp;
           }          }
           for(jk=1; jk <=nlstate ; jk++){          
             for(m=-1, pos=0; m <=0 ; m++)          else if  (s2==-5) {
             pos += freq[jk][m][i];            for (j=1,survp=0. ; j<=2; j++) 
         }              survp += out[s1][j];
                    lli= survp;
          for(jk=1; jk <=nlstate ; jk++){          }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];  
          }          else{
                      lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
          for(jk=1; jk <=nlstate ; jk++){                    /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            if( i <= (int) agemax){          /*if(lli ==000.0)*/
              if(pos>=1.e-5){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                probs[i][jk][j1]= pp[jk]/pos;          ipmx +=1;
              }          sw += weight[i];
            }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          }        } /* end of wave */
                } /* end of individual */
         }    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (j=1;j<=nlstate+ndeath;j++){
   free_vector(pp,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }  /* End of Freq */            }
           for(d=0; d<=dh[mi][i]; d++){
 /************* Waves Concatenation ***************/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            }
      Death is a valid wave (if date is known).            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            savm=oldm;
      and mw[mi+1][i]. dh depends on stepm.            oldm=newm;
      */          } /* end mult */
         
   int i, mi, m;          s1=s[mw[mi][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          s2=s[mw[mi+1][i]][i];
      double sum=0., jmean=0.;*/          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int j, k=0,jk, ju, jl;          ipmx +=1;
   double sum=0.;          sw += weight[i];
   jmin=1e+5;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmax=-1;        } /* end of wave */
   jmean=0.;      } /* end of individual */
   for(i=1; i<=imx; i++){    }  else if(mle==3){  /* exponential inter-extrapolation */
     mi=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     m=firstpass;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     while(s[m][i] <= nlstate){        for(mi=1; mi<= wav[i]-1; mi++){
       if(s[m][i]>=1)          for (ii=1;ii<=nlstate+ndeath;ii++)
         mw[++mi][i]=m;            for (j=1;j<=nlstate+ndeath;j++){
       if(m >=lastpass)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         break;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            }
         m++;          for(d=0; d<dh[mi][i]; d++){
     }/* end while */            newm=savm;
     if (s[m][i] > nlstate){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       mi++;     /* Death is another wave */            for (kk=1; kk<=cptcovage;kk++) {
       /* if(mi==0)  never been interviewed correctly before death */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          /* Only death is a correct wave */            }
       mw[mi][i]=m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     wav[i]=mi;            oldm=newm;
     if(mi==0)          } /* end mult */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(mi=1; mi<wav[i];mi++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if (stepm <=0)          ipmx +=1;
         dh[mi][i]=1;          sw += weight[i];
       else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (s[mw[mi+1][i]][i] > nlstate) {        } /* end of wave */
           if (agedc[i] < 2*AGESUP) {      } /* end of individual */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           if(j==0) j=1;  /* Survives at least one month after exam */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           k=k+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j >= jmax) jmax=j;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j <= jmin) jmin=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           sum=sum+j;            for (j=1;j<=nlstate+ndeath;j++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         else{          for(d=0; d<dh[mi][i]; d++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            newm=savm;
           k=k+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if (j >= jmax) jmax=j;            for (kk=1; kk<=cptcovage;kk++) {
           else if (j <= jmin)jmin=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            }
           sum=sum+j;          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         jk= j/stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jl= j -jk*stepm;            savm=oldm;
         ju= j -(jk+1)*stepm;            oldm=newm;
         if(jl <= -ju)          } /* end mult */
           dh[mi][i]=jk;        
         else          s1=s[mw[mi][i]][i];
           dh[mi][i]=jk+1;          s2=s[mw[mi+1][i]][i];
         if(dh[mi][i]==0)          if( s2 > nlstate){ 
           dh[mi][i]=1; /* At least one step */            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          }
   jmean=sum/k;          ipmx +=1;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          sw += weight[i];
  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Tricode ****************************/  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 void tricode(int *Tvar, int **nbcode, int imx)        } /* end of wave */
 {      } /* end of individual */
   int Ndum[20],ij=1, k, j, i;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   int cptcode=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   cptcoveff=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   for (k=0; k<19; k++) Ndum[k]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=imx; i++) {            }
       ij=(int)(covar[Tvar[j]][i]);          for(d=0; d<dh[mi][i]; d++){
       Ndum[ij]++;            newm=savm;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (ij > cptcode) cptcode=ij;            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for (i=0; i<=cptcode; i++) {          
       if(Ndum[i]!=0) ncodemax[j]++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     ij=1;            savm=oldm;
             oldm=newm;
           } /* end mult */
     for (i=1; i<=ncodemax[j]; i++) {        
       for (k=0; k<=19; k++) {          s1=s[mw[mi][i]][i];
         if (Ndum[k] != 0) {          s2=s[mw[mi+1][i]][i];
           nbcode[Tvar[j]][ij]=k;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/          ipmx +=1;
           ij++;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (ij > ncodemax[j]) break;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }          } /* end of wave */
     }      } /* end of individual */
   }      } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  for (k=0; k<19; k++) Ndum[k]=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  for (i=1; i<=ncovmodel-2; i++) {    return -l;
       ij=Tvar[i];  }
       Ndum[ij]++;  
     }  /*************** log-likelihood *************/
   double funcone( double *x)
  ij=1;  {
  for (i=1; i<=10; i++) {    /* Same as likeli but slower because of a lot of printf and if */
    if((Ndum[i]!=0) && (i<=ncovcol)){    int i, ii, j, k, mi, d, kk;
      Tvaraff[ij]=i;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      ij++;    double **out;
    }    double lli; /* Individual log likelihood */
  }    double llt;
      int s1, s2;
     cptcoveff=ij-1;    double bbh, survp;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /*********** Health Expectancies ****************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      printf(" %d\n",s[4][i]);
 {    */
   /* Health expectancies */    cov[1]=1.;
   int i, j, nhstepm, hstepm, h, nstepm, k;  
   double age, agelim, hf;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double ***p3mat;  
      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficreseij,"# Health expectancies\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficreseij,"# Age");      for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=nlstate;i++)        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)          for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficreseij," %1d-%1d",i,j);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   k=1;             /* For example stepm=6 months */        for(d=0; d<dh[mi][i]; d++){
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */          newm=savm;
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for (kk=1; kk<=cptcovage;kk++) {
      nhstepm is the number of hstepm from age to agelim            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      nstepm is the number of stepm from age to agelin.          }
      Look at hpijx to understand the reason of that which relies in memory size          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      and note for a fixed period like k years */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          savm=oldm;
      survival function given by stepm (the optimization length). Unfortunately it          oldm=newm;
      means that if the survival funtion is printed only each two years of age and if        } /* end mult */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        
      results. So we changed our mind and took the option of the best precision.        s1=s[mw[mi][i]][i];
   */        s2=s[mw[mi+1][i]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   agelim=AGESUP;         * is higher than the multiple of stepm and negative otherwise.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         */
     /* nhstepm age range expressed in number of stepm */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          lli=log(out[s1][s2] - savm[s1][s2]);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        } else if (mle==1){
     /* if (stepm >= YEARM) hstepm=1;*/          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        } else if(mle==2){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        } else if(mle==3){  /* exponential inter-extrapolation */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } else if (mle==4){  /* mle=4 no inter-extrapolation */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          lli=log(out[s1][s2]); /* Original formula */
     for(i=1; i<=nlstate;i++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2]); /* Original formula */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        } /* End of if */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        ipmx +=1;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficreseij,"%3.0f",age );  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1; i<=nlstate;i++)        if(globpr){
       for(j=1; j<=nlstate;j++){          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);   %10.6f %10.6f %10.6f ", \
       }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     fprintf(ficreseij,"\n");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
 }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
 /************ Variance ******************/          fprintf(ficresilk," %10.6f\n", -llt);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        }
 {      } /* end of wave */
   /* Variance of health expectancies */    } /* end of individual */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double **newm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double **dnewm,**doldm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, j, nhstepm, hstepm, h, nstepm, kk;    if(globpr==0){ /* First time we count the contributions and weights */
   int k, cptcode;      gipmx=ipmx;
   double *xp;      gsw=sw;
   double **gp, **gm;    }
   double ***gradg, ***trgradg;    return -l;
   double ***p3mat;  }
   double age,agelim, hf;  
   int theta;  
   /*************** function likelione ***********/
    fprintf(ficresvij,"# Covariances of life expectancies\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   fprintf(ficresvij,"# Age");  {
   for(i=1; i<=nlstate;i++)    /* This routine should help understanding what is done with 
     for(j=1; j<=nlstate;j++)       the selection of individuals/waves and
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       to check the exact contribution to the likelihood.
   fprintf(ficresvij,"\n");       Plotting could be done.
      */
   xp=vector(1,npar);    int k;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
        strcpy(fileresilk,"ilk"); 
   kk=1;             /* For example stepm=6 months */      strcat(fileresilk,fileres);
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */        printf("Problem with resultfile: %s\n", fileresilk);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      nhstepm is the number of hstepm from age to agelim      }
      nstepm is the number of stepm from age to agelin.      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      and note for a fixed period like k years */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for(k=1; k<=nlstate; k++) 
      survival function given by stepm (the optimization length). Unfortunately it        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    }
      results. So we changed our mind and took the option of the best precision.  
   */    *fretone=(*funcone)(p);
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    if(*globpri !=0){
   agelim = AGESUP;      fclose(ficresilk);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fflush(fichtm); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  }
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);  
   /*********** Maximum Likelihood Estimation ***************/
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    int i,j, iter;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **xi;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double fret;
     double fretone; /* Only one call to likelihood */
       if (popbased==1) {    /*  char filerespow[FILENAMELENGTH];*/
         for(i=1; i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
          xi[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for(h=0; h<=nhstepm; h++){    strcpy(filerespow,"pow"); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    strcat(filerespow,fileres);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        }
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=nlstate;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(j=1;j<=nlstate+ndeath;j++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      fprintf(ficrespow,"\n");
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
           prlim[i][i]=probs[(int)age][i][ij];  
       }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(j=1; j<= nlstate; j++)  {
         for(h=0; h<=nhstepm; h++){    double  **a,**y,*x,pd;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double **hess;
         }    int i, j,jk;
     } /* End theta */    int *indx;
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(h=0; h<=nhstepm; h++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<=nlstate;j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(theta=1; theta <=npar; theta++)    double gompertz(double p[]);
           trgradg[h][j][theta]=gradg[h][theta][j];    hess=matrix(1,npar,1,npar);
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("\nCalculation of the hessian matrix. Wait...\n");
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++){
         vareij[i][j][(int)age] =0.;      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     for(h=0;h<=nhstepm;h++){     
       for(k=0;k<=nhstepm;k++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      /*  printf(" %f ",p[i]);
         for(i=1;i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           for(j=1;j<=nlstate;j++)    }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }    for (i=1;i<=npar;i++) {
     }      for (j=1;j<=npar;j++)  {
         if (j>i) { 
     fprintf(ficresvij,"%.0f ",age );          printf(".%d%d",i,j);fflush(stdout);
     for(i=1; i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(j=1; j<=nlstate;j++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          
       }          hess[j][i]=hess[i][j];    
     fprintf(ficresvij,"\n");          /*printf(" %lf ",hess[i][j]);*/
     free_matrix(gp,0,nhstepm,1,nlstate);        }
     free_matrix(gm,0,nhstepm,1,nlstate);      }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    printf("\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n");
   } /* End age */  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_vector(xp,1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
 }    x=vector(1,npar);
     indx=ivector(1,npar);
 /************ Variance of prevlim ******************/    for (i=1;i<=npar;i++)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 {    ludcmp(a,npar,indx,&pd);
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (j=1;j<=npar;j++) {
   double **newm;      for (i=1;i<=npar;i++) x[i]=0;
   double **dnewm,**doldm;      x[j]=1;
   int i, j, nhstepm, hstepm;      lubksb(a,npar,indx,x);
   int k, cptcode;      for (i=1;i<=npar;i++){ 
   double *xp;        matcov[i][j]=x[i];
   double *gp, *gm;      }
   double **gradg, **trgradg;    }
   double age,agelim;  
   int theta;    printf("\n#Hessian matrix#\n");
        fprintf(ficlog,"\n#Hessian matrix#\n");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    for (i=1;i<=npar;i++) { 
   fprintf(ficresvpl,"# Age");      for (j=1;j<=npar;j++) { 
   for(i=1; i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
       fprintf(ficresvpl," %1d-%1d",i,i);        fprintf(ficlog,"%.3e ",hess[i][j]);
   fprintf(ficresvpl,"\n");      }
       printf("\n");
   xp=vector(1,npar);      fprintf(ficlog,"\n");
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);  
      /* Recompute Inverse */
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   agelim = AGESUP;    ludcmp(a,npar,indx,&pd);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*  printf("\n#Hessian matrix recomputed#\n");
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (j=1;j<=npar;j++) {
     gradg=matrix(1,npar,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
     gp=vector(1,nlstate);      x[j]=1;
     gm=vector(1,nlstate);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     for(theta=1; theta <=npar; theta++){        y[i][j]=x[i];
       for(i=1; i<=npar; i++){ /* Computes gradient */        printf("%.3e ",y[i][j]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("\n");
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"\n");
         gp[i] = prlim[i][i];    }
        */
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(a,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(y,1,npar,1,npar);
       for(i=1;i<=nlstate;i++)    free_vector(x,1,npar);
         gm[i] = prlim[i][i];    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  }
   
     trgradg =matrix(1,nlstate,1,npar);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(j=1; j<=nlstate;j++)  {
       for(theta=1; theta <=npar; theta++)    int i;
         trgradg[j][theta]=gradg[theta][j];    int l=1, lmax=20;
     double k1,k2;
     for(i=1;i<=nlstate;i++)    double p2[NPARMAX+1];
       varpl[i][(int)age] =0.;    double res;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double fx;
     for(i=1;i<=nlstate;i++)    int k=0,kmax=10;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double l1;
   
     fprintf(ficresvpl,"%.0f ",age );    fx=func(x);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for(l=0 ; l <=lmax; l++){
     fprintf(ficresvpl,"\n");      l1=pow(10,l);
     free_vector(gp,1,nlstate);      delts=delt;
     free_vector(gm,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
     free_matrix(gradg,1,npar,1,nlstate);        delt = delta*(l1*k);
     free_matrix(trgradg,1,nlstate,1,npar);        p2[theta]=x[theta] +delt;
   } /* End age */        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
   free_vector(xp,1,npar);        k2=func(p2)-fx;
   free_matrix(doldm,1,nlstate,1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   free_matrix(dnewm,1,nlstate,1,nlstate);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
 }  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /************ Variance of one-step probabilities  ******************/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  #endif
 {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int i, j;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int k=0, cptcode;          k=kmax;
   double **dnewm,**doldm;        }
   double *xp;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double *gp, *gm;          k=kmax; l=lmax*10.;
   double **gradg, **trgradg;        }
   double age,agelim, cov[NCOVMAX];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int theta;          delts=delt;
   char fileresprob[FILENAMELENGTH];        }
       }
   strcpy(fileresprob,"prob");    }
   strcat(fileresprob,fileres);    delti[theta]=delts;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    return res; 
     printf("Problem with resultfile: %s\n", fileresprob);    
   }  }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  
    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   xp=vector(1,npar);    int i;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int l=1, l1, lmax=20;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
   cov[1]=1;    int k;
   for (age=bage; age<=fage; age ++){  
     cov[2]=age;    fx=func(x);
     gradg=matrix(1,npar,1,9);    for (k=1; k<=2; k++) {
     trgradg=matrix(1,9,1,npar);      for (i=1;i<=npar;i++) p2[i]=x[i];
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetai]=x[thetai]+delti[thetai]/k;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            k2=func(p2)-fx;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    
          p2[thetai]=x[thetai]-delti[thetai]/k;
       k=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1; i<= (nlstate+ndeath); i++){      k3=func(p2)-fx;
         for(j=1; j<=(nlstate+ndeath);j++){    
            k=k+1;      p2[thetai]=x[thetai]-delti[thetai]/k;
           gp[k]=pmmij[i][j];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k4=func(p2)-fx;
       }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
       for(i=1; i<=npar; i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      #endif
     }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    return res;
       k=0;  }
       for(i=1; i<=(nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){  /************** Inverse of matrix **************/
           k=k+1;  void ludcmp(double **a, int n, int *indx, double *d) 
           gm[k]=pmmij[i][j];  { 
         }    int i,imax,j,k; 
       }    double big,dum,sum,temp; 
          double *vv; 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)   
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      vv=vector(1,n); 
     }    *d=1.0; 
     for (i=1;i<=n;i++) { 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      big=0.0; 
       for(theta=1; theta <=npar; theta++)      for (j=1;j<=n;j++) 
       trgradg[j][theta]=gradg[theta][j];        if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      vv[i]=1.0/big; 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    } 
     for (j=1;j<=n;j++) { 
      pmij(pmmij,cov,ncovmodel,x,nlstate);      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
      k=0;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      for(i=1; i<=(nlstate+ndeath); i++){        a[i][j]=sum; 
        for(j=1; j<=(nlstate+ndeath);j++){      } 
          k=k+1;      big=0.0; 
          gm[k]=pmmij[i][j];      for (i=j;i<=n;i++) { 
         }        sum=a[i][j]; 
      }        for (k=1;k<j;k++) 
                sum -= a[i][k]*a[k][j]; 
      /*printf("\n%d ",(int)age);        a[i][j]=sum; 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
                  big=dum; 
           imax=i; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        } 
      }*/      } 
       if (j != imax) { 
   fprintf(ficresprob,"\n%d ",(int)age);        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          a[imax][k]=a[j][k]; 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          a[j][k]=dum; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        } 
   }        *d = -(*d); 
         vv[imax]=vv[j]; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      } 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      indx[j]=imax; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (j != n) { 
 }        dum=1.0/(a[j][j]); 
  free_vector(xp,1,npar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 fclose(ficresprob);      } 
     } 
 }    free_vector(vv,1,n);  /* Doesn't work */
   ;
 /******************* Printing html file ***********/  } 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\  void lubksb(double **a, int n, int *indx, double b[]) 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  { 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    int i,ii=0,ip,j; 
  char version[], int popforecast ){    double sum; 
   int jj1, k1, i1, cpt;   
   FILE *fichtm;    for (i=1;i<=n;i++) { 
   /*char optionfilehtm[FILENAMELENGTH];*/      ip=indx[i]; 
       sum=b[ip]; 
   strcpy(optionfilehtm,optionfile);      b[ip]=b[i]; 
   strcat(optionfilehtm,".htm");      if (ii) 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     printf("Problem with %s \n",optionfilehtm), exit(0);      else if (sum) ii=i; 
   }      b[i]=sum; 
     } 
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    for (i=n;i>=1;i--) { 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      sum=b[i]; 
 \n      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 Total number of observations=%d <br>\n      b[i]=sum/a[i][i]; 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    } 
 <hr  size=\"2\" color=\"#EC5E5E\">  } 
  <ul><li>Outputs files<br>\n  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  /************ Frequencies ********************/
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  {  /* Some frequencies */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    int first;
     double ***freq; /* Frequencies */
  fprintf(fichtm,"\n    double *pp, **prop;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    double pos,posprop, k2, dateintsum=0,k2cpt=0;
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n    FILE *ficresp;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    char fileresp[FILENAMELENGTH];
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);    
     pp=vector(1,nlstate);
  if(popforecast==1) fprintf(fichtm,"\n    prop=matrix(1,nlstate,iagemin,iagemax+3);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    strcpy(fileresp,"p");
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    strcat(fileresp,fileres);
         <br>",fileres,fileres,fileres,fileres);    if((ficresp=fopen(fileresp,"w"))==NULL) {
  else      printf("Problem with prevalence resultfile: %s\n", fileresp);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 fprintf(fichtm," <li>Graphs</li><p>");      exit(0);
     }
  m=cptcoveff;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    j1=0;
     
  jj1=0;    j=cptcoveff;
  for(k1=1; k1<=m;k1++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    for(i1=1; i1<=ncodemax[k1];i1++){  
        jj1++;    first=1;
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    for(k1=1; k1<=j;k1++){
          for (cpt=1; cpt<=cptcoveff;cpt++)      for(i1=1; i1<=ncodemax[k1];i1++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        j1++;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
        }          scanf("%d", i);*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        for (i=-5; i<=nlstate+ndeath; i++)  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              for (jk=-5; jk<=nlstate+ndeath; jk++)  
        for(cpt=1; cpt<nlstate;cpt++){            for(m=iagemin; m <= iagemax+3; m++)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              freq[i][jk][m]=0;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }      for (i=1; i<=nlstate; i++)  
     for(cpt=1; cpt<=nlstate;cpt++) {        for(m=iagemin; m <= iagemax+3; m++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          prop[i][m]=0;
 interval) in state (%d): v%s%d%d.gif <br>        
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          dateintsum=0;
      }        k2cpt=0;
      for(cpt=1; cpt<=nlstate;cpt++) {        for (i=1; i<=imx; i++) {
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          bool=1;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if  (cptcovn>0) {
      }            for (z1=1; z1<=cptcoveff; z1++) 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 health expectancies in states (1) and (2): e%s%d.gif<br>                bool=0;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
 fprintf(fichtm,"\n</body>");          if (bool==1){
    }            for(m=firstpass; m<=lastpass; m++){
    }              k2=anint[m][i]+(mint[m][i]/12.);
 fclose(fichtm);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /******************* Gnuplot file **************/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   strcpy(optionfilegnuplot,optionfilefiname);                
   strcat(optionfilegnuplot,".gp.txt");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                  dateintsum=dateintsum+k2;
     printf("Problem with file %s",optionfilegnuplot);                  k2cpt++;
   }                }
                 /*}*/
 #ifdef windows            }
     fprintf(ficgp,"cd \"%s\" \n",pathc);          }
 #endif        }
 m=pow(2,cptcoveff);         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  /* 1eme*/  fprintf(ficresp, "#Local time at start: %s", strstart);
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if  (cptcovn>0) {
    for (k1=1; k1<= m ; k1 ++) {          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 #ifdef windows          fprintf(ficresp, "**********\n#");
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        }
 #endif        for(i=1; i<=nlstate;i++) 
 #ifdef unix          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        fprintf(ficresp, "\n");
 #endif        
         for(i=iagemin; i <= iagemax+3; i++){
 for (i=1; i<= nlstate ; i ++) {          if(i==iagemax+3){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            fprintf(ficlog,"Total");
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }else{
 }            if(first==1){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              first=0;
     for (i=1; i<= nlstate ; i ++) {              printf("See log file for details...\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            fprintf(ficlog,"Age %d", i);
 }          }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
      for (i=1; i<= nlstate ; i ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              pp[jk] += freq[jk][m][i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            for(jk=1; jk <=nlstate ; jk++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            for(m=-1, pos=0; m <=0 ; m++)
 #ifdef unix              pos += freq[jk][m][i];
 fprintf(ficgp,"\nset ter gif small size 400,300");            if(pp[jk]>=1.e-10){
 #endif              if(first==1){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    }              }
   }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /*2 eme*/            }else{
               if(first==1)
   for (k1=1; k1<= m ; k1 ++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                }
     for (i=1; i<= nlstate+1 ; i ++) {          }
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
       for (j=1; j<= nlstate+1 ; j ++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              pp[jk] += freq[jk][m][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }       
 }            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            pos += pp[jk];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            posprop += prop[jk][i];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=1; jk <=nlstate ; jk++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if(pos>=1.e-5){
         else fprintf(ficgp," \%%*lf (\%%*lf)");              if(first==1)
 }                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficgp,"\" t\"\" w l 0,");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }else{
       for (j=1; j<= nlstate+1 ; j ++) {              if(first==1)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if( i <= iagemax){
       else fprintf(ficgp,"\" t\"\" w l 0,");              if(pos>=1.e-5){
     }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                }
   /*3eme*/              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(cpt-1);          
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          for(jk=-1; jk <=nlstate+ndeath; jk++)
       for (i=1; i< nlstate ; i ++) {            for(m=-1; m <=nlstate+ndeath; m++)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     }              }
            if(i <= iagemax)
   /* CV preval stat */            fprintf(ficresp,"\n");
     for (k1=1; k1<= m ; k1 ++) {          if(first==1)
     for (cpt=1; cpt<nlstate ; cpt ++) {            printf("Others in log...\n");
       k=3;          fprintf(ficlog,"\n");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
       }
       for (i=1; i< nlstate ; i ++)    }
         fprintf(ficgp,"+$%d",k+i+1);    dateintmean=dateintsum/k2cpt; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);   
          fclose(ficresp);
       l=3+(nlstate+ndeath)*cpt;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    free_vector(pp,1,nlstate);
       for (i=1; i< nlstate ; i ++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         l=3+(nlstate+ndeath)*cpt;    /* End of Freq */
         fprintf(ficgp,"+$%d",l+i+1);  }
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /************ Prevalence ********************/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     }  {  
   }      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   /* proba elementaires */       We still use firstpass and lastpass as another selection.
    for(i=1,jk=1; i <=nlstate; i++){    */
     for(k=1; k <=(nlstate+ndeath); k++){   
       if (k != i) {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         for(j=1; j <=ncovmodel; j++){    double ***freq; /* Frequencies */
            double *pp, **prop;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double pos,posprop; 
           jk++;    double  y2; /* in fractional years */
           fprintf(ficgp,"\n");    int iagemin, iagemax;
         }  
       }    iagemin= (int) agemin;
     }    iagemax= (int) agemax;
     }    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     for(jk=1; jk <=m; jk++) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    j1=0;
    i=1;    
    for(k2=1; k2<=nlstate; k2++) {    j=cptcoveff;
      k3=i;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      for(k=1; k<=(nlstate+ndeath); k++) {    
        if (k != k2){    for(k1=1; k1<=j;k1++){
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for(i1=1; i1<=ncodemax[k1];i1++){
 ij=1;        j1++;
         for(j=3; j <=ncovmodel; j++) {        
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for (i=1; i<=nlstate; i++)  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(m=iagemin; m <= iagemax+3; m++)
             ij++;            prop[i][m]=0.0;
           }       
           else        for (i=1; i<=imx; i++) { /* Each individual */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          bool=1;
         }          if  (cptcovn>0) {
           fprintf(ficgp,")/(1");            for (z1=1; z1<=cptcoveff; z1++) 
                      if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(k1=1; k1 <=nlstate; k1++){                  bool=0;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          } 
 ij=1;          if (bool==1) { 
           for(j=3; j <=ncovmodel; j++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
             ij++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           else                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           fprintf(ficgp,")");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                  prop[s[m][i]][iagemax+3] += weight[i]; 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);                } 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              }
         i=i+ncovmodel;            } /* end selection of waves */
        }          }
      }        }
    }        for(i=iagemin; i <= iagemax+3; i++){  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          
    }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                posprop += prop[jk][i]; 
   fclose(ficgp);          } 
 }  /* end gnuplot */  
           for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
 /*************** Moving average **************/              if(posprop>=1.e-5){ 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
   int i, cpt, cptcod;            } 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          }/* end jk */ 
       for (i=1; i<=nlstate;i++)        }/* end i */ 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      } /* end i1 */
           mobaverage[(int)agedeb][i][cptcod]=0.;    } /* end k1 */
        
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for (i=1; i<=nlstate;i++){    /*free_vector(pp,1,nlstate);*/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           for (cpt=0;cpt<=4;cpt++){  }  /* End of prevalence */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }  /************* Waves Concatenation ***************/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
     }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           Death is a valid wave (if date is known).
 }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
 /************** Forecasting ******************/       */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
      int i, mi, m;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   int *popage;       double sum=0., jmean=0.;*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    int first;
   double *popeffectif,*popcount;    int j, k=0,jk, ju, jl;
   double ***p3mat;    double sum=0.;
   char fileresf[FILENAMELENGTH];    first=0;
     jmin=1e+5;
  agelim=AGESUP;    jmax=-1;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    jmean=0.;
     for(i=1; i<=imx; i++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      mi=0;
        m=firstpass;
        while(s[m][i] <= nlstate){
   strcpy(fileresf,"f");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   strcat(fileresf,fileres);          mw[++mi][i]=m;
   if((ficresf=fopen(fileresf,"w"))==NULL) {        if(m >=lastpass)
     printf("Problem with forecast resultfile: %s\n", fileresf);          break;
   }        else
   printf("Computing forecasting: result on file '%s' \n", fileresf);          m++;
       }/* end while */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   if (mobilav==1) {        /* if(mi==0)  never been interviewed correctly before death */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           /* Only death is a correct wave */
     movingaverage(agedeb, fage, ageminpar, mobaverage);        mw[mi][i]=m;
   }      }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      wav[i]=mi;
   if (stepm<=12) stepsize=1;      if(mi==0){
          nbwarn++;
   agelim=AGESUP;        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   hstepm=1;          first=1;
   hstepm=hstepm/stepm;        }
   yp1=modf(dateintmean,&yp);        if(first==1){
   anprojmean=yp;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   yp2=modf((yp1*12),&yp);        }
   mprojmean=yp;      } /* end mi==0 */
   yp1=modf((yp2*30.5),&yp);    } /* End individuals */
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    for(i=1; i<=imx; i++){
   if(mprojmean==0) jprojmean=1;      for(mi=1; mi<wav[i];mi++){
          if (stepm <=0)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          dh[mi][i]=1;
          else{
   for(cptcov=1;cptcov<=i2;cptcov++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if (agedc[i] < 2*AGESUP) {
       k=k+1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       fprintf(ficresf,"\n#******");              if(j==0) j=1;  /* Survives at least one month after exam */
       for(j=1;j<=cptcoveff;j++) {              else if(j<0){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresf,"******\n");                j=1; /* Temporary Dangerous patch */
       fprintf(ficresf,"# StartingAge FinalAge");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              k=k+1;
         fprintf(ficresf,"\n");              if (j >= jmax){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                  jmax=j;
                 ijmax=i;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              if (j <= jmin){
           nhstepm = nhstepm/hstepm;                jmin=j;
                          ijmin=i;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
           oldm=oldms;savm=savms;              sum=sum+j;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                      /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          else{
             }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             for(j=1; j<=nlstate+ndeath;j++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                          k=k+1;
                 if (mobilav==1)            if (j >= jmax) {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              jmax=j;
                 else {              ijmax=i;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            }
                 }            else if (j <= jmin){
                              jmin=j;
               }              ijmin=i;
               if (h==(int)(calagedate+12*cpt)){            }
                 fprintf(ficresf," %.3f", kk1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                                    /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               }            if(j<0){
             }              nberr++;
           }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
       }            sum=sum+j;
     }          }
   }          jk= j/stepm;
                  jl= j -jk*stepm;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fclose(ficresf);            if(jl==0){
 }              dh[mi][i]=jk;
 /************** Forecasting ******************/              bh[mi][i]=0;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            }else{ /* We want a negative bias in order to only have interpolation ie
                      * at the price of an extra matrix product in likelihood */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              dh[mi][i]=jk+1;
   int *popage;              bh[mi][i]=ju;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            }
   double *popeffectif,*popcount;          }else{
   double ***p3mat,***tabpop,***tabpopprev;            if(jl <= -ju){
   char filerespop[FILENAMELENGTH];              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                   * is higher than the multiple of stepm and negative otherwise.
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                   */
   agelim=AGESUP;            }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            else{
                dh[mi][i]=jk+1;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              bh[mi][i]=ju;
              }
              if(dh[mi][i]==0){
   strcpy(filerespop,"pop");              dh[mi][i]=1; /* At least one step */
   strcat(filerespop,fileres);              bh[mi][i]=ju; /* At least one step */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     printf("Problem with forecast resultfile: %s\n", filerespop);            }
   }          } /* end if mle */
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
       } /* end wave */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }
     jmean=sum/k;
   if (mobilav==1) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     movingaverage(agedeb, fage, ageminpar, mobaverage);   }
   }  
   /*********** Tricode ****************************/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void tricode(int *Tvar, int **nbcode, int imx)
   if (stepm<=12) stepsize=1;  {
      
   agelim=AGESUP;    int Ndum[20],ij=1, k, j, i, maxncov=19;
      int cptcode=0;
   hstepm=1;    cptcoveff=0; 
   hstepm=hstepm/stepm;   
      for (k=0; k<maxncov; k++) Ndum[k]=0;
   if (popforecast==1) {    for (k=1; k<=7; k++) ncodemax[k]=0;
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     popage=ivector(0,AGESUP);                                 modality*/ 
     popeffectif=vector(0,AGESUP);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     popcount=vector(0,AGESUP);        Ndum[ij]++; /*store the modality */
            /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     i=1;          if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                                         Tvar[j]. If V=sex and male is 0 and 
                                             female is 1, then  cptcode=1.*/
     imx=i;      }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   for(cptcov=1;cptcov<=i2;cptcov++){      }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      ij=1; 
       fprintf(ficrespop,"\n#******");      for (i=1; i<=ncodemax[j]; i++) {
       for(j=1;j<=cptcoveff;j++) {        for (k=0; k<= maxncov; k++) {
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (Ndum[k] != 0) {
       }            nbcode[Tvar[j]][ij]=k; 
       fprintf(ficrespop,"******\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficrespop,"# Age");            
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            ij++;
       if (popforecast==1)  fprintf(ficrespop," [Population]");          }
                if (ij > ncodemax[j]) break; 
       for (cpt=0; cpt<=0;cpt++) {        }  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        } 
            }  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   for (k=0; k< maxncov; k++) Ndum[k]=0;
           nhstepm = nhstepm/hstepm;  
             for (i=1; i<=ncovmodel-2; i++) { 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           oldm=oldms;savm=savms;     ij=Tvar[i];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       Ndum[ij]++;
           }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {   ij=1;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   for (i=1; i<= maxncov; i++) {
             }     if((Ndum[i]!=0) && (i<=ncovcol)){
             for(j=1; j<=nlstate+ndeath;j++) {       Tvaraff[ij]=i; /*For printing */
               kk1=0.;kk2=0;       ij++;
               for(i=1; i<=nlstate;i++) {                   }
                 if (mobilav==1)   }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   
                 else {   cptcoveff=ij-1; /*Number of simple covariates*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  }
                 }  
               }  /*********** Health Expectancies ****************/
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  {
               }    /* Health expectancies */
             }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
             for(i=1; i<=nlstate;i++){    double age, agelim, hf;
               kk1=0.;    double ***p3mat,***varhe;
                 for(j=1; j<=nlstate;j++){    double **dnewm,**doldm;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    double *xp;
                 }    double **gp, **gm;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    double ***gradg, ***trgradg;
             }    int theta;
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    xp=vector(1,npar);
           }    dnewm=matrix(1,nlstate*nlstate,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         }    
       }    fprintf(ficreseij,"# Local time at start: %s", strstart);
      fprintf(ficreseij,"# Health expectancies\n");
   /******/    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      for(j=1; j<=nlstate;j++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          fprintf(ficreseij," %1d-%1d (SE)",i,j);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficreseij,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    if(estepm < stepm){
                printf ("Problem %d lower than %d\n",estepm, stepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    else  hstepm=estepm;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* We compute the life expectancy from trapezoids spaced every estepm months
           for (h=0; h<=nhstepm; h++){     * This is mainly to measure the difference between two models: for example
             if (h==(int) (calagedate+YEARM*cpt)) {     * if stepm=24 months pijx are given only every 2 years and by summing them
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
             }     * progression in between and thus overestimating or underestimating according
             for(j=1; j<=nlstate+ndeath;j++) {     * to the curvature of the survival function. If, for the same date, we 
               kk1=0.;kk2=0;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               for(i=1; i<=nlstate;i++) {                   * to compare the new estimate of Life expectancy with the same linear 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];         * hypothesis. A more precise result, taking into account a more precise
               }     * curvature will be obtained if estepm is as small as stepm. */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }    /* For example we decided to compute the life expectancy with the smallest unit */
           }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
    }       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if (popforecast==1) {       results. So we changed our mind and took the option of the best precision.
     free_ivector(popage,0,AGESUP);    */
     free_vector(popeffectif,0,AGESUP);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_vector(popcount,0,AGESUP);  
   }    agelim=AGESUP;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* nhstepm age range expressed in number of stepm */
   fclose(ficrespop);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
 /***********************************************/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 /**************** Main Program *****************/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /***********************************************/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
 int main(int argc, char *argv[])      gm=matrix(0,nhstepm,1,nlstate*nlstate);
 {  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double agedeb, agefin,hf;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;   
   
   double fret;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double **xi,tmp,delta;  
       /* Computing  Variances of health expectancies */
   double dum; /* Dummy variable */  
   double ***p3mat;       for(theta=1; theta <=npar; theta++){
   int *indx;        for(i=1; i<=npar; i++){ 
   char line[MAXLINE], linepar[MAXLINE];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   char title[MAXLINE];        }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    
          cptj=0;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
   char filerest[FILENAMELENGTH];            cptj=cptj+1;
   char fileregp[FILENAMELENGTH];            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   char popfile[FILENAMELENGTH];              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            }
   int firstobs=1, lastobs=10;          }
   int sdeb, sfin; /* Status at beginning and end */        }
   int c,  h , cpt,l;       
   int ju,jl, mi;       
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(i=1; i<=npar; i++) 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   int mobilav=0,popforecast=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int hstepm, nhstepm;        
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;        cptj=0;
         for(j=1; j<= nlstate; j++){
   double bage, fage, age, agelim, agebase;          for(i=1;i<=nlstate;i++){
   double ftolpl=FTOL;            cptj=cptj+1;
   double **prlim;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   double *severity;  
   double ***param; /* Matrix of parameters */              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   double  *p;            }
   double **matcov; /* Matrix of covariance */          }
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */        for(j=1; j<= nlstate*nlstate; j++)
   double ***eij, ***vareij;          for(h=0; h<=nhstepm-1; h++){
   double **varpl; /* Variances of prevalence limits by age */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   double *epj, vepp;          }
   double kk1, kk2;       } 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;     
    /* End theta */
   
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
        for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   char z[1]="c", occ;          for(theta=1; theta <=npar; theta++)
 #include <sys/time.h>            trgradg[h][j][theta]=gradg[h][theta][j];
 #include <time.h>       
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
         for(i=1;i<=nlstate*nlstate;i++)
   /* long total_usecs;        for(j=1;j<=nlstate*nlstate;j++)
   struct timeval start_time, end_time;          varhe[i][j][(int)age] =0.;
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       printf("%d|",(int)age);fflush(stdout);
   getcwd(pathcd, size);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   printf("\n%s",version);        for(k=0;k<=nhstepm-1;k++){
   if(argc <=1){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     printf("\nEnter the parameter file name: ");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     scanf("%s",pathtot);          for(i=1;i<=nlstate*nlstate;i++)
   }            for(j=1;j<=nlstate*nlstate;j++)
   else{              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     strcpy(pathtot,argv[1]);        }
   }      }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      /* Computing expectancies */
   /*cygwin_split_path(pathtot,path,optionfile);      for(i=1; i<=nlstate;i++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for(j=1; j<=nlstate;j++)
   /* cutv(path,optionfile,pathtot,'\\');*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   chdir(path);  
   replace(pathc,path);          }
   
 /*-------- arguments in the command line --------*/      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
   strcpy(fileres,"r");      for(i=1; i<=nlstate;i++)
   strcat(fileres, optionfilefiname);        for(j=1; j<=nlstate;j++){
   strcat(fileres,".txt");    /* Other files have txt extension */          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   /*---------arguments file --------*/        }
       fprintf(ficreseij,"\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {     
     printf("Problem with optionfile %s\n",optionfile);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     goto end;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   strcpy(filereso,"o");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filereso,fileres);    }
   if((ficparo=fopen(filereso,"w"))==NULL) {    printf("\n");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fprintf(ficlog,"\n");
   }  
     free_vector(xp,1,npar);
   /* Reads comments: lines beginning with '#' */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     ungetc(c,ficpar);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   ungetc(c,ficpar);  {
     /* Variance of health expectancies */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    /* double **newm;*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double **dnewm,**doldm;
 while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewmp,**doldmp;
     ungetc(c,ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     fgets(line, MAXLINE, ficpar);    int k, cptcode;
     puts(line);    double *xp;
     fputs(line,ficparo);    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
   ungetc(c,ficpar);    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
        double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   covar=matrix(0,NCOVMAX,1,n);    double ***p3mat;
   cptcovn=0;    double age,agelim, hf;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double ***mobaverage;
     int theta;
   ncovmodel=2+cptcovn;    char digit[4];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    char digitp[25];
    
   /* Read guess parameters */    char fileresprobmorprev[FILENAMELENGTH];
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    if(popbased==1){
     ungetc(c,ficpar);      if(mobilav!=0)
     fgets(line, MAXLINE, ficpar);        strcpy(digitp,"-populbased-mobilav-");
     puts(line);      else strcpy(digitp,"-populbased-nomobil-");
     fputs(line,ficparo);    }
   }    else 
   ungetc(c,ficpar);      strcpy(digitp,"-stablbased-");
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if (mobilav!=0) {
     for(i=1; i <=nlstate; i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(j=1; j <=nlstate+ndeath-1; j++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficparo,"%1d%1d",i1,j1);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       printf("%1d%1d",i,j);      }
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);    strcpy(fileresprobmorprev,"prmorprev"); 
         fprintf(ficparo," %lf",param[i][j][k]);    sprintf(digit,"%-d",ij);
       }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fscanf(ficpar,"\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       printf("\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fprintf(ficparo,"\n");    strcat(fileresprobmorprev,fileres);
     }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   p=param[1][1];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     puts(line);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresprobmorprev,"\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficgp,"\n# Routine varevsij");
   for(i=1; i <=nlstate; i++){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       printf("%1d%1d",i,j);  /*   } */
       fprintf(ficparo,"%1d%1d",i1,j1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(k=1; k<=ncovmodel;k++){   fprintf(ficresvij, "#Local time at start: %s", strstart);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         printf(" %le",delti3[i][j][k]);    fprintf(ficresvij,"# Age");
         fprintf(ficparo," %le",delti3[i][j][k]);    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++)
       fscanf(ficpar,"\n");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       printf("\n");    fprintf(ficresvij,"\n");
       fprintf(ficparo,"\n");  
     }    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   delti=delti3[1][1];    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /* Reads comments: lines beginning with '#' */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    gpp=vector(nlstate+1,nlstate+ndeath);
     puts(line);    gmp=vector(nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    
   ungetc(c,ficpar);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   matcov=matrix(1,npar,1,npar);    }
   for(i=1; i <=npar; i++){    else  hstepm=estepm;   
     fscanf(ficpar,"%s",&str);    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("%s",str);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fprintf(ficparo,"%s",str);       nhstepm is the number of hstepm from age to agelim 
     for(j=1; j <=i; j++){       nstepm is the number of stepm from age to agelin. 
       fscanf(ficpar," %le",&matcov[i][j]);       Look at hpijx to understand the reason of that which relies in memory size
       printf(" %.5le",matcov[i][j]);       and note for a fixed period like k years */
       fprintf(ficparo," %.5le",matcov[i][j]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
     fscanf(ficpar,"\n");       means that if the survival funtion is printed every two years of age and if
     printf("\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficparo,"\n");       results. So we changed our mind and took the option of the best precision.
   }    */
   for(i=1; i <=npar; i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for(j=i+1;j<=npar;j++)    agelim = AGESUP;
       matcov[i][j]=matcov[j][i];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   printf("\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     /*-------- Rewriting paramater file ----------*/      gp=matrix(0,nhstepm,1,nlstate);
      strcpy(rfileres,"r");    /* "Rparameterfile */      gm=matrix(0,nhstepm,1,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      for(theta=1; theta <=npar; theta++){
     if((ficres =fopen(rfileres,"w"))==NULL) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
     fprintf(ficres,"#%s\n",version);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {        if (popbased==1) {
       printf("Problem with datafile: %s\n", datafile);goto end;          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
     n= lastobs;          }else{ /* mobilav */ 
     severity = vector(1,maxwav);            for(i=1; i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
     num=ivector(1,n);          }
     moisnais=vector(1,n);        }
     annais=vector(1,n);    
     moisdc=vector(1,n);        for(j=1; j<= nlstate; j++){
     andc=vector(1,n);          for(h=0; h<=nhstepm; h++){
     agedc=vector(1,n);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     cod=ivector(1,n);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     weight=vector(1,n);          }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }
     mint=matrix(1,maxwav,1,n);        /* This for computing probability of death (h=1 means
     anint=matrix(1,maxwav,1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     s=imatrix(1,maxwav+1,1,n);           as a weighted average of prlim.
     adl=imatrix(1,maxwav+1,1,n);            */
     tab=ivector(1,NCOVMAX);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     ncodemax=ivector(1,8);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
     i=1;        }    
     while (fgets(line, MAXLINE, fic) != NULL)    {        /* end probability of death */
       if ((i >= firstobs) && (i <=lastobs)) {  
                for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         for (j=maxwav;j>=1;j--){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           strcpy(line,stra);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if (popbased==1) {
         }          if(mobilav ==0){
                    for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=probs[(int)age][i][ij];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=mobaverage[(int)age][i][ij];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){        for(j=1; j<= nlstate; j++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm; h++){
         }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         num[i]=atol(stra);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                  }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
         i=i+1;           as a weighted average of prlim.
       }        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /* printf("ii=%d", ij);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
        scanf("%d",i);*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   imx=i-1; /* Number of individuals */        }    
         /* end probability of death */
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(j=1; j<= nlstate; j++) /* vareij */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for(h=0; h<=nhstepm; h++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     }*/          }
    
   /* for (i=1; i<=imx; i++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
      if (s[4][i]==9)  s[4][i]=-1;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}        }
   */  
        } /* End theta */
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);      for(h=0; h<=nhstepm; h++) /* veij */
   Tvard=imatrix(1,15,1,2);        for(j=1; j<=nlstate;j++)
   Tage=ivector(1,15);                for(theta=1; theta <=npar; theta++)
                trgradg[h][j][theta]=gradg[h][theta][j];
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     j=nbocc(model,'+');        for(theta=1; theta <=npar; theta++)
     j1=nbocc(model,'*');          trgradgp[j][theta]=gradgp[theta][j];
     cptcovn=j+1;    
     cptcovprod=j1;  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     strcpy(modelsav,model);      for(i=1;i<=nlstate;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        for(j=1;j<=nlstate;j++)
       printf("Error. Non available option model=%s ",model);          vareij[i][j][(int)age] =0.;
       goto end;  
     }      for(h=0;h<=nhstepm;h++){
            for(k=0;k<=nhstepm;k++){
     for(i=(j+1); i>=1;i--){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       cutv(stra,strb,modelsav,'+');          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for(i=1;i<=nlstate;i++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            for(j=1;j<=nlstate;j++)
       /*scanf("%d",i);*/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       if (strchr(strb,'*')) {        }
         cutv(strd,strc,strb,'*');      }
         if (strcmp(strc,"age")==0) {    
           cptcovprod--;      /* pptj */
           cutv(strb,stre,strd,'V');      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           Tvar[i]=atoi(stre);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           cptcovage++;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
             Tage[cptcovage]=i;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
             /*printf("stre=%s ", stre);*/          varppt[j][i]=doldmp[j][i];
         }      /* end ppptj */
         else if (strcmp(strd,"age")==0) {      /*  x centered again */
           cptcovprod--;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           cutv(strb,stre,strc,'V');      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           Tvar[i]=atoi(stre);   
           cptcovage++;      if (popbased==1) {
           Tage[cptcovage]=i;        if(mobilav ==0){
         }          for(i=1; i<=nlstate;i++)
         else {            prlim[i][i]=probs[(int)age][i][ij];
           cutv(strb,stre,strc,'V');        }else{ /* mobilav */ 
           Tvar[i]=ncovcol+k1;          for(i=1; i<=nlstate;i++)
           cutv(strb,strc,strd,'V');            prlim[i][i]=mobaverage[(int)age][i][ij];
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);      }
           Tvard[k1][2]=atoi(stre);               
           Tvar[cptcovn+k2]=Tvard[k1][1];      /* This for computing probability of death (h=1 means
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           for (k=1; k<=lastobs;k++)         as a weighted average of prlim.
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      */
           k1++;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           k2=k2+2;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }      }    
       else {      /* end probability of death */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       cutv(strd,strc,strb,'V');      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       Tvar[i]=atoi(strc);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       }        for(i=1; i<=nlstate;i++){
       strcpy(modelsav,stra);            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        }
         scanf("%d",i);*/      } 
     }      fprintf(ficresprobmorprev,"\n");
 }  
        fprintf(ficresvij,"%.0f ",age );
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      for(i=1; i<=nlstate;i++)
   printf("cptcovprod=%d ", cptcovprod);        for(j=1; j<=nlstate;j++){
   scanf("%d ",i);*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     fclose(fic);        }
       fprintf(ficresvij,"\n");
     /*  if(mle==1){*/      free_matrix(gp,0,nhstepm,1,nlstate);
     if (weightopt != 1) { /* Maximisation without weights*/      free_matrix(gm,0,nhstepm,1,nlstate);
       for(i=1;i<=n;i++) weight[i]=1.0;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     /*-calculation of age at interview from date of interview and age at death -*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     agev=matrix(1,maxwav,1,imx);    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     for (i=1; i<=imx; i++) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
       for(m=2; (m<= maxwav); m++) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          anint[m][i]=9999;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
          s[m][i]=-1;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     for (i=1; i<=imx; i++)  {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       for(m=1; (m<= maxwav); m++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         if(s[m][i] >0){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           if (s[m][i] >= nlstate+1) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             if(agedc[i]>0)  */
               if(moisdc[i]!=99 && andc[i]!=9999)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                 agev[m][i]=agedc[i];    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {    free_vector(xp,1,npar);
               if (andc[i]!=9999){    free_matrix(doldm,1,nlstate,1,nlstate);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_matrix(dnewm,1,nlstate,1,npar);
               agev[m][i]=-1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           else if(s[m][i] !=9){ /* Should no more exist */    fclose(ficresprobmorprev);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fflush(ficgp);
             if(mint[m][i]==99 || anint[m][i]==9999)    fflush(fichtm); 
               agev[m][i]=1;  }  /* end varevsij */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];  /************ Variance of prevlim ******************/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             }  {
             else if(agev[m][i] >agemax){    /* Variance of prevalence limit */
               agemax=agev[m][i];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double **newm;
             }    double **dnewm,**doldm;
             /*agev[m][i]=anint[m][i]-annais[i];*/    int i, j, nhstepm, hstepm;
             /*   agev[m][i] = age[i]+2*m;*/    int k, cptcode;
           }    double *xp;
           else { /* =9 */    double *gp, *gm;
             agev[m][i]=1;    double **gradg, **trgradg;
             s[m][i]=-1;    double age,agelim;
           }    int theta;
         }    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
         else /*= 0 Unknown */    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           agev[m][i]=1;    fprintf(ficresvpl,"# Age");
       }    for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %1d-%1d",i,i);
     }    fprintf(ficresvpl,"\n");
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    xp=vector(1,npar);
         if (s[m][i] > (nlstate+ndeath)) {    dnewm=matrix(1,nlstate,1,npar);
           printf("Error: Wrong value in nlstate or ndeath\n");      doldm=matrix(1,nlstate,1,nlstate);
           goto end;    
         }    hstepm=1*YEARM; /* Every year of age */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
     free_vector(severity,1,maxwav);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     free_imatrix(outcome,1,maxwav+1,1,n);      gradg=matrix(1,npar,1,nlstate);
     free_vector(moisnais,1,n);      gp=vector(1,nlstate);
     free_vector(annais,1,n);      gm=vector(1,nlstate);
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/      for(theta=1; theta <=npar; theta++){
     free_vector(moisdc,1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
     free_vector(andc,1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     wav=ivector(1,imx);        for(i=1;i<=nlstate;i++)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          gp[i] = prlim[i][i];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      
            for(i=1; i<=npar; i++) /* Computes gradient */
     /* Concatenates waves */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for(i=1;i<=nlstate;i++)
       ncodemax[1]=1;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      } /* End theta */
        
    codtab=imatrix(1,100,1,10);      trgradg =matrix(1,nlstate,1,npar);
    h=0;  
    m=pow(2,cptcoveff);      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
    for(k=1;k<=cptcoveff; k++){          trgradg[j][theta]=gradg[theta][j];
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){      for(i=1;i<=nlstate;i++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        varpl[i][(int)age] =0.;
            h++;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      for(i=1;i<=nlstate;i++)
          }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
        }  
      }      fprintf(ficresvpl,"%.0f ",age );
    }      for(i=1; i<=nlstate;i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       codtab[1][2]=1;codtab[2][2]=2; */      fprintf(ficresvpl,"\n");
    /* for(i=1; i <=m ;i++){      free_vector(gp,1,nlstate);
       for(k=1; k <=cptcovn; k++){      free_vector(gm,1,nlstate);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
       printf("\n");    } /* End age */
       }  
       scanf("%d",i);*/    free_vector(xp,1,npar);
        free_matrix(doldm,1,nlstate,1,npar);
    /* Calculates basic frequencies. Computes observed prevalence at single age    free_matrix(dnewm,1,nlstate,1,nlstate);
        and prints on file fileres'p'. */  
   }
      
      /************ Variance of one-step probabilities  ******************/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, j=0,  i1, k1, l1, t, tj;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int k2, l2, j1,  z1;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    int k=0,l, cptcode;
          int first=1, first1;
     /* For Powell, parameters are in a vector p[] starting at p[1]    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double **dnewm,**doldm;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double *xp;
     double *gp, *gm;
     if(mle==1){    double **gradg, **trgradg;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double **mu;
     }    double age,agelim, cov[NCOVMAX];
        double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     /*--------- results files --------------*/    int theta;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double ***varpij;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){    strcpy(fileresprob,"prob"); 
      for(k=1; k <=(nlstate+ndeath); k++){    strcat(fileresprob,fileres);
        if (k != i)    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
          {      printf("Problem with resultfile: %s\n", fileresprob);
            printf("%d%d ",i,k);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
            fprintf(ficres,"%1d%1d ",i,k);    }
            for(j=1; j <=ncovmodel; j++){    strcpy(fileresprobcov,"probcov"); 
              printf("%f ",p[jk]);    strcat(fileresprobcov,fileres);
              fprintf(ficres,"%f ",p[jk]);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
              jk++;      printf("Problem with resultfile: %s\n", fileresprobcov);
            }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
            printf("\n");    }
            fprintf(ficres,"\n");    strcpy(fileresprobcor,"probcor"); 
          }    strcat(fileresprobcor,fileres);
      }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    }      printf("Problem with resultfile: %s\n", fileresprobcor);
  if(mle==1){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     /* Computing hessian and covariance matrix */    }
     ftolhess=ftol; /* Usually correct */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     hesscov(matcov, p, npar, delti, ftolhess, func);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("# Scales (for hessian or gradient estimation)\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresprob, "#Local time at start: %s", strstart);
         if (j!=i) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficresprob,"# Age");
           printf("%1d%1d",i,j);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
           for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
             printf(" %.5e",delti[jk]);    fprintf(ficresprobcov,"# Age");
             fprintf(ficres," %.5e",delti[jk]);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
             jk++;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           }    fprintf(ficresprobcov,"# Age");
           printf("\n");  
           fprintf(ficres,"\n");  
         }    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=(nlstate+ndeath);j++){
      }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
            fprintf(ficresprobcov," p%1d-%1d ",i,j);
     k=1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   /* fprintf(ficresprob,"\n");
     for(i=1;i<=npar;i++){    fprintf(ficresprobcov,"\n");
       /*  if (k>nlstate) k=1;    fprintf(ficresprobcor,"\n");
       i1=(i-1)/(ncovmodel*nlstate)+1;   */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   xp=vector(1,npar);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficres,"%3d",i);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       printf("%3d",i);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       for(j=1; j<=i;j++){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficres," %.5e",matcov[i][j]);    first=1;
         printf(" %.5e",matcov[i][j]);    fprintf(ficgp,"\n# Routine varprob");
       }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(ficres,"\n");    fprintf(fichtm,"\n");
       printf("\n");  
       k++;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
        file %s<br>\n",optionfilehtmcov);
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       ungetc(c,ficpar);  and drawn. It helps understanding how is the covariance between two incidences.\
       fgets(line, MAXLINE, ficpar);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       puts(line);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fputs(line,ficparo);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     ungetc(c,ficpar);  standard deviations wide on each axis. <br>\
     Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     if (fage <= 2) {  
       bage = ageminpar;    cov[1]=1;
       fage = agemaxpar;    tj=cptcoveff;
     }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        j1=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    for(t=1; t<=tj;t++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);      for(i1=1; i1<=ncodemax[t];i1++){ 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);        j1++;
          if  (cptcovn>0) {
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprob, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprob, "**********\n#\n");
     puts(line);          fprintf(ficresprobcov, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcov, "**********\n#\n");
   ungetc(c,ficpar);          
            fprintf(ficgp, "\n#********** Variable "); 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp, "**********\n#\n");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
                
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     puts(line);          
     fputs(line,ficparo);          fprintf(ficresprobcor, "\n#********** Variable ");    
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ungetc(c,ficpar);          fprintf(ficresprobcor, "**********\n#");    
          }
         
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        for (age=bage; age<=fage; age ++){ 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   fscanf(ficpar,"pop_based=%d\n",&popbased);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fprintf(ficparo,"pop_based=%d\n",popbased);            }
   fprintf(ficres,"pop_based=%d\n",popbased);            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
   while((c=getc(ficpar))=='#' && c!= EOF){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     puts(line);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fputs(line,ficparo);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   }          gm=vector(1,(nlstate)*(nlstate+ndeath));
   ungetc(c,ficpar);      
           for(theta=1; theta <=npar; theta++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            for(i=1; i<=npar; i++)
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
 while((c=getc(ficpar))=='#' && c!= EOF){            k=0;
     ungetc(c,ficpar);            for(i=1; i<= (nlstate); i++){
     fgets(line, MAXLINE, ficpar);              for(j=1; j<=(nlstate+ndeath);j++){
     puts(line);                k=k+1;
     fputs(line,ficparo);                gp[k]=pmmij[i][j];
   }              }
   ungetc(c,ficpar);            }
             
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            for(i=1; i<=npar; i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            k=0;
             for(i=1; i<=(nlstate); i++){
 /*------------ gnuplot -------------*/              for(j=1; j<=(nlstate+ndeath);j++){
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);                k=k+1;
                  gm[k]=pmmij[i][j];
 /*------------ free_vector  -------------*/              }
  chdir(path);            }
         
  free_ivector(wav,1,imx);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            }
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            for(theta=1; theta <=npar; theta++)
  fclose(ficparo);              trgradg[j][theta]=gradg[theta][j];
  fclose(ficres);          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 /*--------- index.htm --------*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /*--------------- Prevalence limit --------------*/  
            pmij(pmmij,cov,ncovmodel,x,nlstate);
   strcpy(filerespl,"pl");          
   strcat(filerespl,fileres);          k=0;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for(i=1; i<=(nlstate); i++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            for(j=1; j<=(nlstate+ndeath);j++){
   }              k=k+1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              mu[k][(int) age]=pmmij[i][j];
   fprintf(ficrespl,"#Prevalence limit\n");            }
   fprintf(ficrespl,"#Age ");          }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   fprintf(ficrespl,"\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                varpij[i][j][(int)age] = doldm[i][j];
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*printf("\n%d ",(int)age);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }*/
   k=0;  
   agebase=ageminpar;          fprintf(ficresprob,"\n%d ",(int)age);
   agelim=agemaxpar;          fprintf(ficresprobcov,"\n%d ",(int)age);
   ftolpl=1.e-10;          fprintf(ficresprobcor,"\n%d ",(int)age);
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   for(cptcov=1;cptcov<=i1;cptcov++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         k=k+1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          }
         fprintf(ficrespl,"\n#******");          i=0;
         for(j=1;j<=cptcoveff;j++)          for (k=1; k<=(nlstate);k++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for (l=1; l<=(nlstate+ndeath);l++){ 
         fprintf(ficrespl,"******\n");              i=i++;
                      fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         for (age=agebase; age<=agelim; age++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              for (j=1; j<=i;j++){
           fprintf(ficrespl,"%.0f",age );                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           for(i=1; i<=nlstate;i++)                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           fprintf(ficrespl," %.5f", prlim[i][i]);              }
           fprintf(ficrespl,"\n");            }
         }          }/* end of loop for state */
       }        } /* end of loop for age */
     }  
   fclose(ficrespl);        /* Confidence intervalle of pij  */
         /*
   /*------------- h Pij x at various ages ------------*/          fprintf(ficgp,"\nset noparametric;unset label");
            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
   agelim=AGESUP;        for (k2=1; k2<=(nlstate);k2++){
   hstepm=stepsize*YEARM; /* Every year of age */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            if(l2==k2) continue;
              j=(k2-1)*(nlstate+ndeath)+l2;
   k=0;            for (k1=1; k1<=(nlstate);k1++){
   for(cptcov=1;cptcov<=i1;cptcov++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                if(l1==k1) continue;
       k=k+1;                i=(k1-1)*(nlstate+ndeath)+l1;
         fprintf(ficrespij,"\n#****** ");                if(i<=j) continue;
         for(j=1;j<=cptcoveff;j++)                for (age=bage; age<=fage; age ++){ 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  if ((int)age %5==0){
         fprintf(ficrespij,"******\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                            v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    mu1=mu[i][(int) age]/stepm*YEARM ;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    mu2=mu[j][(int) age]/stepm*YEARM;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    c12=cv12/sqrt(v1*v2);
           oldm=oldms;savm=savms;                    /* Computing eigen value of matrix of covariance */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           fprintf(ficrespij,"# Age");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           for(i=1; i<=nlstate;i++)                    /* Eigen vectors */
             for(j=1; j<=nlstate+ndeath;j++)                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
               fprintf(ficrespij," %1d-%1d",i,j);                    /*v21=sqrt(1.-v11*v11); *//* error */
           fprintf(ficrespij,"\n");                    v21=(lc1-v1)/cv12*v11;
           for (h=0; h<=nhstepm; h++){                    v12=-v21;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                    v22=v11;
             for(i=1; i<=nlstate;i++)                    tnalp=v21/v11;
               for(j=1; j<=nlstate+ndeath;j++)                    if(first1==1){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      first1=0;
             fprintf(ficrespij,"\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           }                    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           fprintf(ficrespij,"\n");                    /*printf(fignu*/
         }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   }                    if(first==1){
                       first=0;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   fclose(ficrespij);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   /*---------- Forecasting ------------------*/  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   if((stepm == 1) && (strcmp(model,".")==0)){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_matrix(mint,1,maxwav,1,n);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(weight,1,n);}                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   else{                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     erreur=108;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }else{
                       first=0;
   /*---------- Health expectancies and variances ------------*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   strcpy(filerest,"t");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   strcat(filerest,fileres);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   if((ficrest=fopen(filerest,"w"))==NULL) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }/* if first */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                  } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcpy(filerese,"e");                first=1;
   strcat(filerese,fileres);              } /*l12 */
   if((ficreseij=fopen(filerese,"w"))==NULL) {            } /* k12 */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          } /*l1 */
   }        }/* k1 */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      } /* loop covariates */
     }
  strcpy(fileresv,"v");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   strcat(fileresv,fileres);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   }    free_vector(xp,1,npar);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fclose(ficresprob);
     fclose(ficresprobcov);
   k=0;    fclose(ficresprobcor);
   for(cptcov=1;cptcov<=i1;cptcov++){    fflush(ficgp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fflush(fichtmcov);
       k=k+1;  }
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /******************* Printing html file ***********/
       fprintf(ficrest,"******\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
       fprintf(ficreseij,"\n#****** ");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       for(j=1;j<=cptcoveff;j++)                    int popforecast, int estepm ,\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    double jprev1, double mprev1,double anprev1, \
       fprintf(ficreseij,"******\n");                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       fprintf(ficresvij,"******\n");  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       oldm=oldms;savm=savms;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);       fprintf(fichtm,"\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       oldm=oldms;savm=savms;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     fprintf(fichtm,"\
       - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(fichtm,"\
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   - Life expectancies by age and initial health status (estepm=%2d months): \
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     <a href=\"%s\">%s</a> <br>\n</li>",
       fprintf(ficrest,"\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
       epj=vector(1,nlstate+1);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   m=cptcoveff;
         if (popbased==1) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];   jj1=0;
         }   for(k1=1; k1<=m;k1++){
             for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficrest," %4.0f",age);       jj1++;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       if (cptcovn > 0) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         for (cpt=1; cpt<=cptcoveff;cpt++) 
           }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           epj[nlstate+1] +=epj[j];         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }       }
         for(i=1, vepp=0.;i <=nlstate;i++)       /* Pij */
           for(j=1;j <=nlstate;j++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
             vepp += vareij[i][j][(int)age];  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));       /* Quasi-incidences */
         for(j=1;j <=nlstate;j++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
         }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
         fprintf(ficrest,"\n");         /* Stable prevalence in each health state */
       }         for(cpt=1; cpt<nlstate;cpt++){
     }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
   fclose(ficreseij);       for(cpt=1; cpt<=nlstate;cpt++) {
   fclose(ficresvij);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   fclose(ficrest);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   fclose(ficpar);       }
   free_vector(epj,1,nlstate+1);     } /* end i1 */
     }/* End k1 */
   /*------- Variance limit prevalence------*/     fprintf(fichtm,"</ul>");
   
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);   fprintf(fichtm,"\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     exit(0);  
   }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
   k=0;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   for(cptcov=1;cptcov<=i1;cptcov++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;   fprintf(fichtm,"\
       fprintf(ficresvpl,"\n#****** ");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       for(j=1;j<=cptcoveff;j++)           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficresvpl,"******\n");   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     }   fprintf(fichtm,"\
  }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   fclose(ficresvpl);  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*---------- End : free ----------------*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    /*      <br>",fileres,fileres,fileres,fileres); */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*  else  */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   m=cptcoveff;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     jj1=0;
   free_matrix(matcov,1,npar,1,npar);   for(k1=1; k1<=m;k1++){
   free_vector(delti,1,npar);     for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(agev,1,maxwav,1,imx);       jj1++;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if(erreur >0)         for (cpt=1; cpt<=cptcoveff;cpt++) 
     printf("End of Imach with error or warning %d\n",erreur);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   else   printf("End of Imach\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       }
         for(cpt=1; cpt<=nlstate;cpt++) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   /*printf("Total time was %d uSec.\n", total_usecs);*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   /*------ End -----------*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
  end:  health expectancies in states (1) and (2): %s%d.png<br>\
 #ifdef windows  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   /* chdir(pathcd);*/     } /* end i1 */
 #endif   }/* End k1 */
  /*system("wgnuplot graph.plt");*/   fprintf(fichtm,"</ul>");
  /*system("../gp37mgw/wgnuplot graph.plt");*/   fflush(fichtm);
  /*system("cd ../gp37mgw");*/  }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);  /******************* Gnuplot file **************/
  strcat(plotcmd," ");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 #ifdef windows    int ng;
   while (z[0] != 'q') {  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     /* chdir(path); */  /*     printf("Problem with file %s",optionfilegnuplot); */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     scanf("%s",z);  /*   } */
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);    /*#ifdef windows */
     else if (z[0] == 'g') system(plotcmd);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     else if (z[0] == 'q') exit(0);      /*#endif */
   }    m=pow(2,cptcoveff);
 #endif  
 }    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.113


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>