Diff for /imach/src/imach.c between versions 1.2 and 1.114

version 1.2, 2001/03/13 18:10:26 version 1.114, 2006/02/26 12:57:58
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.114  2006/02/26 12:57:58  brouard
   individuals from different ages are interviewed on their health status    (Module): Some improvements in processing parameter
   or degree of  disability. At least a second wave of interviews    filename with strsep.
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.113  2006/02/24 14:20:24  brouard
   waves and are computed for each degree of severity of disability (number    (Module): Memory leaks checks with valgrind and:
   of life states). More degrees you consider, more time is necessary to    datafile was not closed, some imatrix were not freed and on matrix
   reach the Maximum Likelihood of the parameters involved in the model.    allocation too.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.112  2006/01/30 09:55:26  brouard
   to be observed in state i at the first wave. Therefore the model is:    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.111  2006/01/25 20:38:18  brouard
   age", you should modify the program where the markup    (Module): Lots of cleaning and bugs added (Gompertz)
     *Covariates have to be included here again* invites you to do it.    (Module): Comments can be added in data file. Missing date values
   More covariates you add, less is the speed of the convergence.    can be a simple dot '.'.
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.110  2006/01/25 00:51:50  brouard
   delay between waves is not identical for each individual, or if some    (Module): Lots of cleaning and bugs added (Gompertz)
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.109  2006/01/24 19:37:15  brouard
   hPijx is the probability to be    (Module): Comments (lines starting with a #) are allowed in data.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.108  2006/01/19 18:05:42  lievre
   unobserved intermediate  states. This elementary transition (by month or    Gnuplot problem appeared...
   quarter trimester, semester or year) is model as a multinomial logistic.    To be fixed
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.105  2006/01/05 20:23:19  lievre
   This software have been partly granted by Euro-REVES, a concerted action    *** empty log message ***
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.104  2005/09/30 16:11:43  lievre
   software can be distributed freely for non commercial use. Latest version    (Module): sump fixed, loop imx fixed, and simplifications.
   can be accessed at http://euroreves.ined.fr/imach .    (Module): If the status is missing at the last wave but we know
   **********************************************************************/    that the person is alive, then we can code his/her status as -2
      (instead of missing=-1 in earlier versions) and his/her
 #include <math.h>    contributions to the likelihood is 1 - Prob of dying from last
 #include <stdio.h>    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #include <stdlib.h>    the healthy state at last known wave). Version is 0.98
 #include <unistd.h>  
     Revision 1.103  2005/09/30 15:54:49  lievre
 #define MAXLINE 256    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.102  2004/09/15 17:31:30  brouard
 #define windows    Add the possibility to read data file including tab characters.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.101  2004/09/15 10:38:38  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Fix on curr_time
   
 #define NINTERVMAX 8    Revision 1.100  2004/07/12 18:29:06  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Add version for Mac OS X. Just define UNIX in Makefile
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define MAXN 80000    *** empty log message ***
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.98  2004/05/16 15:05:56  brouard
 #define AGEBASE 40    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 int nvar;    This is the basic analysis of mortality and should be done before any
 static int cptcov;    other analysis, in order to test if the mortality estimated from the
 int cptcovn;    cross-longitudinal survey is different from the mortality estimated
 int npar=NPARMAX;    from other sources like vital statistic data.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    The same imach parameter file can be used but the option for mle should be -3.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     Agnès, who wrote this part of the code, tried to keep most of the
 int *wav; /* Number of waves for this individuual 0 is possible */    former routines in order to include the new code within the former code.
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    The output is very simple: only an estimate of the intercept and of
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    the slope with 95% confident intervals.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Current limitations:
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    A) Even if you enter covariates, i.e. with the
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *ficgp, *fichtm;    B) There is no computation of Life Expectancy nor Life Table.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.97  2004/02/20 13:25:42  lievre
  FILE  *ficresvij;    Version 0.96d. Population forecasting command line is (temporarily)
   char fileresv[FILENAMELENGTH];    suppressed.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
   
     Revision 1.95  2003/07/08 07:54:34  brouard
 #define NR_END 1    * imach.c (Repository):
 #define FREE_ARG char*    (Repository): Using imachwizard code to output a more meaningful covariance
 #define FTOL 1.0e-10    matrix (cov(a12,c31) instead of numbers.
   
 #define NRANSI    Revision 1.94  2003/06/27 13:00:02  brouard
 #define ITMAX 200    Just cleaning
   
 #define TOL 2.0e-4    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define CGOLD 0.3819660    exist so I changed back to asctime which exists.
 #define ZEPS 1.0e-10    (Module): Version 0.96b
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.92  2003/06/25 16:30:45  brouard
 #define GOLD 1.618034    (Module): On windows (cygwin) function asctime_r doesn't
 #define GLIMIT 100.0    exist so I changed back to asctime which exists.
 #define TINY 1.0e-20  
     Revision 1.91  2003/06/25 15:30:29  brouard
 static double maxarg1,maxarg2;    * imach.c (Repository): Duplicated warning errors corrected.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Repository): Elapsed time after each iteration is now output. It
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    helps to forecast when convergence will be reached. Elapsed time
      is stamped in powell.  We created a new html file for the graphs
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    concerning matrix of covariance. It has extension -cov.htm.
 #define rint(a) floor(a+0.5)  
     Revision 1.90  2003/06/24 12:34:15  brouard
 static double sqrarg;    (Module): Some bugs corrected for windows. Also, when
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    mle=-1 a template is output in file "or"mypar.txt with the design
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    of the covariance matrix to be input.
   
 int imx;    Revision 1.89  2003/06/24 12:30:52  brouard
 int stepm;    (Module): Some bugs corrected for windows. Also, when
 /* Stepm, step in month: minimum step interpolation*/    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    Revision 1.88  2003/06/23 17:54:56  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double **pmmij;  
     Revision 1.87  2003/06/18 12:26:01  brouard
 double *weight;    Version 0.96
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.86  2003/06/17 20:04:08  brouard
 int **nbcode, *Tcode, *Tvar, **codtab;    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /******************************************/    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 void replace(char *s, char*t)    assuming that the date of death was just one stepm after the
 {    interview.
   int i;    (Repository): Because some people have very long ID (first column)
   int lg=20;    we changed int to long in num[] and we added a new lvector for
   i=0;    memory allocation. But we also truncated to 8 characters (left
   lg=strlen(t);    truncation)
   for(i=0; i<= lg; i++) {    (Repository): No more line truncation errors.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.84  2003/06/13 21:44:43  brouard
   }    * imach.c (Repository): Replace "freqsummary" at a correct
 }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 int nbocc(char *s, char occ)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   int i,j=0;  
   int lg=20;    Revision 1.83  2003/06/10 13:39:11  lievre
   i=0;    *** empty log message ***
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.82  2003/06/05 15:57:20  brouard
   if  (s[i] == occ ) j++;    Add log in  imach.c and  fullversion number is now printed.
   }  
   return j;  */
 }  /*
      Interpolated Markov Chain
 void cutv(char *u,char *v, char*t, char occ)  
 {    Short summary of the programme:
   int i,lg,j,p;    
   i=0;    This program computes Healthy Life Expectancies from
   if (t[0]== occ) p=0;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   for(j=0; j<=strlen(t)-1; j++) {    first survey ("cross") where individuals from different ages are
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;    interviewed on their health status or degree of disability (in the
   }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
   lg=strlen(t);    (if any) in individual health status.  Health expectancies are
   for(j=0; j<p; j++) {    computed from the time spent in each health state according to a
     (u[j] = t[j]);    model. More health states you consider, more time is necessary to reach the
     u[p]='\0';    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
    for(j=0; j<= lg; j++) {    conditional to be observed in state i at the first wave. Therefore
     if (j>=(p+1))(v[j-p-1] = t[j]);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   }    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 /********************** nrerror ********************/    convergence.
   
 void nrerror(char error_text[])    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
   fprintf(stderr,"ERREUR ...\n");    identical for each individual. Also, if a individual missed an
   fprintf(stderr,"%s\n",error_text);    intermediate interview, the information is lost, but taken into
   exit(1);    account using an interpolation or extrapolation.  
 }  
 /*********************** vector *******************/    hPijx is the probability to be observed in state i at age x+h
 double *vector(int nl, int nh)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   double *v;    states. This elementary transition (by month, quarter,
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    semester or year) is modelled as a multinomial logistic.  The hPx
   if (!v) nrerror("allocation failure in vector");    matrix is simply the matrix product of nh*stepm elementary matrices
   return v-nl+NR_END;    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /************************ free vector ******************/    Also this programme outputs the covariance matrix of the parameters but also
 void free_vector(double*v, int nl, int nh)    of the life expectancies. It also computes the stable prevalence. 
 {    
   free((FREE_ARG)(v+nl-NR_END));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /************************ivector *******************************/    from the European Union.
 int *ivector(long nl,long nh)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   int *v;    can be accessed at http://euroreves.ined.fr/imach .
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return v-nl+NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /******************free ivector **************************/  /*
 void free_ivector(int *v, long nl, long nh)    main
 {    read parameterfile
   free((FREE_ARG)(v+nl-NR_END));    read datafile
 }    concatwav
     freqsummary
 /******************* imatrix *******************************/    if (mle >= 1)
 int **imatrix(long nrl, long nrh, long ncl, long nch)      mlikeli
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    print results files
 {    if mle==1 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;       computes hessian
   int **m;    read end of parameter file: agemin, agemax, bage, fage, estepm
          begin-prev-date,...
   /* allocate pointers to rows */    open gnuplot file
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    open html file
   if (!m) nrerror("allocation failure 1 in matrix()");    stable prevalence
   m += NR_END;     for age prevalim()
   m -= nrl;    h Pij x
      variance of p varprob
      forecasting if prevfcast==1 prevforecast call prevalence()
   /* allocate rows and set pointers to them */    health expectancies
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Variance-covariance of DFLE
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    prevalence()
   m[nrl] += NR_END;     movingaverage()
   m[nrl] -= ncl;    varevsij() 
      if popbased==1 varevsij(,popbased)
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    total life expectancies
      Variance of stable prevalence
   /* return pointer to array of pointers to rows */   end
   return m;  */
 }  
   
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)   
       int **m;  #include <math.h>
       long nch,ncl,nrh,nrl;  #include <stdio.h>
      /* free an int matrix allocated by imatrix() */  #include <stdlib.h>
 {  #include <string.h>
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #include <unistd.h>
   free((FREE_ARG) (m+nrl-NR_END));  
 }  #include <limits.h>
   #include <sys/types.h>
 /******************* matrix *******************************/  #include <sys/stat.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <errno.h>
 {  extern int errno;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /* #include <sys/time.h> */
   #include <time.h>
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include "timeval.h"
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* #include <libintl.h> */
   m -= nrl;  /* #define _(String) gettext (String) */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define MAXLINE 256
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define GNUPLOTPROGRAM "gnuplot"
   m[nrl] -= ncl;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /*************************free matrix ************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NINTERVMAX 8
   free((FREE_ARG)(m+nrl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /******************* ma3x *******************************/  #define MAXN 20000
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define AGEBASE 40
   double ***m;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define DIRSEPARATOR '/'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define CHARSEPARATOR "/"
   m += NR_END;  #define ODIRSEPARATOR '\\'
   m -= nrl;  #else
   #define DIRSEPARATOR '\\'
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define CHARSEPARATOR "\\"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ODIRSEPARATOR '/'
   m[nrl] += NR_END;  #endif
   m[nrl] -= ncl;  
   /* $Id$ */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* $State$ */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char fullversion[]="$Revision$ $Date$"; 
   m[nrl][ncl] += NR_END;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl][ncl] -= nll;  int nvar;
   for (j=ncl+1; j<=nch; j++)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     m[nrl][j]=m[nrl][j-1]+nlay;  int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
   for (i=nrl+1; i<=nrh; i++) {  int ndeath=1; /* Number of dead states */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     for (j=ncl+1; j<=nch; j++)  int popbased=0;
       m[i][j]=m[i][j-1]+nlay;  
   }  int *wav; /* Number of waves for this individuual 0 is possible */
   return m;  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 /*************************free ma3x ************************/  int gipmx, gsw; /* Global variables on the number of contributions 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free((FREE_ARG)(m+nrl-NR_END));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /***************** f1dim *************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 extern int ncom;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 extern double *pcom,*xicom;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 extern double (*nrfunc)(double []);  FILE *ficlog, *ficrespow;
    int globpr; /* Global variable for printing or not */
 double f1dim(double x)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   int j;  double sw; /* Sum of weights */
   double f;  char filerespow[FILENAMELENGTH];
   double *xt;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
   xt=vector(1,ncom);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  FILE *ficresprobmorprev;
   f=(*nrfunc)(xt);  FILE *fichtm, *fichtmcov; /* Html File */
   free_vector(xt,1,ncom);  FILE *ficreseij;
   return f;  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /*****************brent *************************/  FILE  *ficresvpl;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   int iter;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double a,b,d,etemp;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double fu,fv,fw,fx;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double ftemp;  char command[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int  outcmd=0;
   double e=0.0;  
    char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  char filelog[FILENAMELENGTH]; /* Log file */
   x=w=v=bx;  char filerest[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  char fileregp[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  char popfile[FILENAMELENGTH];
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 #ifdef DEBUG  struct timezone tzp;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  extern int gettimeofday();
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 #endif  long time_value;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  extern long time();
       *xmin=x;  char strcurr[80], strfor[80];
       return fx;  
     }  char *endptr;
     ftemp=fu;  long lval;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  #define NR_END 1
       q=(x-v)*(fx-fw);  #define FREE_ARG char*
       p=(x-v)*q-(x-w)*r;  #define FTOL 1.0e-10
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #define NRANSI 
       q=fabs(q);  #define ITMAX 200 
       etemp=e;  
       e=d;  #define TOL 2.0e-4 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define CGOLD 0.3819660 
       else {  #define ZEPS 1.0e-10 
         d=p/q;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  #define GOLD 1.618034 
           d=SIGN(tol1,xm-x);  #define GLIMIT 100.0 
       }  #define TINY 1.0e-20 
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  static double maxarg1,maxarg2;
     }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     fu=(*f)(u);    
     if (fu <= fx) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       if (u >= x) a=x; else b=x;  #define rint(a) floor(a+0.5)
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  static double sqrarg;
         } else {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
           if (u < x) a=u; else b=u;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
           if (fu <= fw || w == x) {  int agegomp= AGEGOMP;
             v=w;  
             w=u;  int imx; 
             fv=fw;  int stepm=1;
             fw=fu;  /* Stepm, step in month: minimum step interpolation*/
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  int estepm;
             fv=fu;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           }  
         }  int m,nb;
   }  long *num;
   nrerror("Too many iterations in brent");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   *xmin=x;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return fx;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /****************** mnbrak ***********************/  
   double *weight;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int **s; /* Status */
             double (*func)(double))  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double ulim,u,r,q, dum;  double *lsurv, *lpop, *tpop;
   double fu;  
    double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   *fa=(*func)(*ax);  double ftolhess; /* Tolerance for computing hessian */
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /**************** split *************************/
     SHFT(dum,*ax,*bx,dum)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       SHFT(dum,*fb,*fa,dum)  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   *cx=(*bx)+GOLD*(*bx-*ax);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   *fc=(*func)(*cx);    */ 
   while (*fb > *fc) {    char  *ss;                            /* pointer */
     r=(*bx-*ax)*(*fb-*fc);    int   l1, l2;                         /* length counters */
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    l1 = strlen(path );                   /* length of path */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ulim=(*bx)+GLIMIT*(*cx-*bx);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ((*bx-u)*(u-*cx) > 0.0) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       fu=(*func)(u);      strcpy( name, path );               /* we got the fullname name because no directory */
     } else if ((*cx-u)*(u-ulim) > 0.0) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       fu=(*func)(u);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       if (fu < *fc) {      /* get current working directory */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      /*    extern  char* getcwd ( char *buf , int len);*/
           SHFT(*fb,*fc,fu,(*func)(u))      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           }        return( GLOCK_ERROR_GETCWD );
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      }
       u=ulim;      /* got dirc from getcwd*/
       fu=(*func)(u);      printf(" DIRC = %s \n",dirc);
     } else {    } else {                              /* strip direcotry from path */
       u=(*cx)+GOLD*(*cx-*bx);      ss++;                               /* after this, the filename */
       fu=(*func)(u);      l2 = strlen( ss );                  /* length of filename */
     }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     SHFT(*ax,*bx,*cx,u)      strcpy( name, ss );         /* save file name */
       SHFT(*fa,*fb,*fc,fu)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       }      dirc[l1-l2] = 0;                    /* add zero */
 }      printf(" DIRC2 = %s \n",dirc);
     }
 /*************** linmin ************************/    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
 int ncom;    if( dirc[l1-1] != DIRSEPARATOR ){
 double *pcom,*xicom;      dirc[l1] =  DIRSEPARATOR;
 double (*nrfunc)(double []);      dirc[l1+1] = 0; 
        printf(" DIRC3 = %s \n",dirc);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {    ss = strrchr( name, '.' );            /* find last / */
   double brent(double ax, double bx, double cx,    if (ss >0){
                double (*f)(double), double tol, double *xmin);      ss++;
   double f1dim(double x);      strcpy(ext,ss);                     /* save extension */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      l1= strlen( name);
               double *fc, double (*func)(double));      l2= strlen(ss)+1;
   int j;      strncpy( finame, name, l1-l2);
   double xx,xmin,bx,ax;      finame[l1-l2]= 0;
   double fx,fb,fa;    }
    
   ncom=n;    return( 0 );                          /* we're done */
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /******************************************/
     pcom[j]=p[j];  
     xicom[j]=xi[j];  void replace_back_to_slash(char *s, char*t)
   }  {
   ax=0.0;    int i;
   xx=1.0;    int lg=0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    i=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      (s[i] = t[i]);
 #endif      if (t[i]== '\\') s[i]='/';
   for (j=1;j<=n;j++) {    }
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  int nbocc(char *s, char occ)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    int i,j=0;
 }    int lg=20;
     i=0;
 /*************** powell ************************/    lg=strlen(s);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for(i=0; i<= lg; i++) {
             double (*func)(double []))    if  (s[i] == occ ) j++;
 {    }
   void linmin(double p[], double xi[], int n, double *fret,    return j;
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  void cutv(char *u,char *v, char*t, char occ)
   double fp,fptt;  {
   double *xits;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   pt=vector(1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   ptt=vector(1,n);       gives u="abcedf" and v="ghi2j" */
   xit=vector(1,n);    int i,lg,j,p=0;
   xits=vector(1,n);    i=0;
   *fret=(*func)(p);    for(j=0; j<=strlen(t)-1; j++) {
   for (j=1;j<=n;j++) pt[j]=p[j];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);  
     ibig=0;    lg=strlen(t);
     del=0.0;    for(j=0; j<p; j++) {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      (u[j] = t[j]);
     for (i=1;i<=n;i++)    }
       printf(" %d %.12f",i, p[i]);       u[p]='\0';
     printf("\n");  
     for (i=1;i<=n;i++) {     for(j=0; j<= lg; j++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      if (j>=(p+1))(v[j-p-1] = t[j]);
       fptt=(*fret);    }
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
 #endif  /********************** nrerror ********************/
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  void nrerror(char error_text[])
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    fprintf(stderr,"ERREUR ...\n");
         ibig=i;    fprintf(stderr,"%s\n",error_text);
       }    exit(EXIT_FAILURE);
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  /*********************** vector *******************/
       for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for(j=1;j<=n;j++)    if (!v) nrerror("allocation failure in vector");
         printf(" p=%.12e",p[j]);    return v-nl+NR_END;
       printf("\n");  }
 #endif  
     }  /************************ free vector ******************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  void free_vector(double*v, int nl, int nh)
 #ifdef DEBUG  {
       int k[2],l;    free((FREE_ARG)(v+nl-NR_END));
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /************************ivector *******************************/
       for (j=1;j<=n;j++)  int *ivector(long nl,long nh)
         printf(" %.12e",p[j]);  {
       printf("\n");    int *v;
       for(l=0;l<=1;l++) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return v-nl+NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
 #endif  {
     free((FREE_ARG)(v+nl-NR_END));
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /************************lvector *******************************/
       free_vector(ptt,1,n);  long *lvector(long nl,long nh)
       free_vector(pt,1,n);  {
       return;    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=n;j++) {    return v-nl+NR_END;
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    free((FREE_ARG)(v+nl-NR_END));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /******************* imatrix *******************************/
         for (j=1;j<=n;j++) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           xi[j][ibig]=xi[j][n];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
           xi[j][n]=xit[j];  { 
         }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    
         for(j=1;j<=n;j++)    /* allocate pointers to rows */ 
           printf(" %.12e",xit[j]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #endif    m += NR_END; 
       }    m -= nrl; 
     }    
   }    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /**** Prevalence limit ****************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl] -= ncl; 
 {    
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      matrix by transitions matrix until convergence is reached */    
     /* return pointer to array of pointers to rows */ 
   int i, ii,j,k;    return m; 
   double min, max, maxmin, maxmax,sumnew=0.;  } 
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /****************** free_imatrix *************************/
   double **newm;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double agefin, delaymax=50 ; /* Max number of years to converge */        int **m;
         long nch,ncl,nrh,nrl; 
   for (ii=1;ii<=nlstate+ndeath;ii++)       /* free an int matrix allocated by imatrix() */ 
     for (j=1;j<=nlstate+ndeath;j++){  { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /******************* matrix *******************************/
     /* Covariates have to be included here again */  double **matrix(long nrl, long nrh, long ncl, long nch)
     cov[1]=1.;  {
     cov[2]=agefin;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     if (cptcovn>0){    double **m;
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}  
     }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
     savm=oldm;    m -= nrl;
     oldm=newm;  
     maxmax=0.;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=1;j<=nlstate;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       min=1.;    m[nrl] += NR_END;
       max=0.;    m[nrl] -= ncl;
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    return m;
         prlim[i][j]= newm[i][j]/(1-sumnew);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         max=FMAX(max,prlim[i][j]);     */
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  /*************************free matrix ************************/
       maxmax=FMAX(maxmax,maxmin);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
     if(maxmax < ftolpl){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       return prlim;    free((FREE_ARG)(m+nrl-NR_END));
     }  }
   }  
 }  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 /*************** transition probabilities **********/  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double ***m;
 {  
   double s1, s2;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /*double t34;*/    if (!m) nrerror("allocation failure 1 in matrix()");
   int i,j,j1, nc, ii, jj;    m += NR_END;
     m -= nrl;
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         /*s2 += param[i][j][nc]*cov[nc];*/    m[nrl] += NR_END;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl] -= ncl;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for(j=i+1; j<=nlstate+ndeath;j++){    m[nrl][ncl] += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl][ncl] -= nll;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (j=ncl+1; j<=nch; j++) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
       ps[i][j]=s2;    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   }      for (j=ncl+1; j<=nch; j++) 
   for(i=1; i<= nlstate; i++){        m[i][j]=m[i][j-1]+nlay;
      s1=0;    }
     for(j=1; j<i; j++)    return m; 
       s1+=exp(ps[i][j]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(j=i+1; j<=nlstate+ndeath; j++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       s1+=exp(ps[i][j]);    */
     ps[i][i]=1./(s1+1.);  }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*************************free ma3x ************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   } /* end i */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /*************** function subdirf ***********/
       ps[ii][ii]=1;  char *subdirf(char fileres[])
     }  {
   }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,"/"); /* Add to the right */
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,fileres);
      printf("%lf ",ps[ii][jj]);    return tmpout;
    }  }
     printf("\n ");  
     }  /*************** function subdirf2 ***********/
     printf("\n ");printf("%lf ",cov[2]);*/  char *subdirf2(char fileres[], char *preop)
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    
   goto end;*/    /* Caution optionfilefiname is hidden */
     return ps;    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 /**************** Product of 2 matrices ******************/    strcat(tmpout,fileres);
     return tmpout;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  }
 {  
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /*************** function subdirf3 ***********/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  char *subdirf3(char fileres[], char *preop, char *preop2)
   /* in, b, out are matrice of pointers which should have been initialized  {
      before: only the contents of out is modified. The function returns    
      a pointer to pointers identical to out */    /* Caution optionfilefiname is hidden */
   long i, j, k;    strcpy(tmpout,optionfilefiname);
   for(i=nrl; i<= nrh; i++)    strcat(tmpout,"/");
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,preop);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    strcat(tmpout,preop2);
         out[i][k] +=in[i][j]*b[j][k];    strcat(tmpout,fileres);
     return tmpout;
   return out;  }
 }  
   /***************** f1dim *************************/
   extern int ncom; 
 /************* Higher Matrix Product ***************/  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )   
 {  double f1dim(double x) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  { 
      duration (i.e. until    int j; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double f;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double *xt; 
      (typically every 2 years instead of every month which is too big).   
      Model is determined by parameters x and covariates have to be    xt=vector(1,ncom); 
      included manually here.    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
      */    free_vector(xt,1,ncom); 
     return f; 
   int i, j, d, h, k;  } 
   double **out, cov[NCOVMAX];  
   double **newm;  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /* Hstepm could be zero and should return the unit matrix */  { 
   for (i=1;i<=nlstate+ndeath;i++)    int iter; 
     for (j=1;j<=nlstate+ndeath;j++){    double a,b,d,etemp;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double fu,fv,fw,fx;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double e=0.0; 
   for(h=1; h <=nhstepm; h++){   
     for(d=1; d <=hstepm; d++){    a=(ax < cx ? ax : cx); 
       newm=savm;    b=(ax > cx ? ax : cx); 
       /* Covariates have to be included here again */    x=w=v=bx; 
       cov[1]=1.;    fw=fv=fx=(*f)(x); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (iter=1;iter<=ITMAX;iter++) { 
       if (cptcovn>0){      xm=0.5*(a+b); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      printf(".");fflush(stdout);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fprintf(ficlog,".");fflush(ficlog);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       savm=oldm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       oldm=newm;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
     for(i=1; i<=nlstate+ndeath; i++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(j=1;j<=nlstate+ndeath;j++) {        *xmin=x; 
         po[i][j][h]=newm[i][j];        return fx; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      } 
          */      ftemp=fu;
       }      if (fabs(e) > tol1) { 
   } /* end h */        r=(x-w)*(fx-fv); 
   return po;        q=(x-v)*(fx-fw); 
 }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
 /*************** log-likelihood *************/        q=fabs(q); 
 double func( double *x)        etemp=e; 
 {        e=d; 
   int i, ii, j, k, mi, d;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **out;        else { 
   double sw; /* Sum of weights */          d=p/q; 
   double lli; /* Individual log likelihood */          u=x+d; 
   long ipmx;          if (u-a < tol2 || b-u < tol2) 
   /*extern weight */            d=SIGN(tol1,xm-x); 
   /* We are differentiating ll according to initial status */        } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } else { 
   /*for(i=1;i<imx;i++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 printf(" %d\n",s[4][i]);      } 
   */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if (fu <= fx) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        if (u >= x) a=x; else b=x; 
        for(mi=1; mi<= wav[i]-1; mi++){        SHFT(v,w,x,u) 
       for (ii=1;ii<=nlstate+ndeath;ii++)          SHFT(fv,fw,fx,fu) 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          } else { 
             for(d=0; d<dh[mi][i]; d++){            if (u < x) a=u; else b=u; 
         newm=savm;            if (fu <= fw || w == x) { 
           cov[1]=1.;              v=w; 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              w=u; 
           if (cptcovn>0){              fv=fw; 
             for (k=1; k<=cptcovn;k++) {              fw=fu; 
               cov[2+k]=covar[Tvar[k]][i];            } else if (fu <= fv || v == x || v == w) { 
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/              v=u; 
             }              fv=fu; 
             }            } 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          } 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    } 
           savm=oldm;    nrerror("Too many iterations in brent"); 
           oldm=newm;    *xmin=x; 
       } /* end mult */    return fx; 
      } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /****************** mnbrak ***********************/
       ipmx +=1;  
       sw += weight[i];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              double (*func)(double)) 
     } /* end of wave */  { 
   } /* end of individual */    double ulim,u,r,q, dum;
     double fu; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];   
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    *fa=(*func)(*ax); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   return -l;      SHFT(dum,*ax,*bx,dum) 
 }        SHFT(dum,*fb,*fa,dum) 
         } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 /*********** Maximum Likelihood Estimation ***************/    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      r=(*bx-*ax)*(*fb-*fc); 
 {      q=(*bx-*cx)*(*fb-*fa); 
   int i,j, iter;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double **xi,*delti;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double fret;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   xi=matrix(1,npar,1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
   printf("Powell\n");        if (fu < *fc) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
 }        fu=(*func)(u); 
       } else { 
 /**** Computes Hessian and covariance matrix ***/        u=(*cx)+GOLD*(*cx-*bx); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fu=(*func)(u); 
 {      } 
   double  **a,**y,*x,pd;      SHFT(*ax,*bx,*cx,u) 
   double **hess;        SHFT(*fa,*fb,*fc,fu) 
   int i, j,jk;        } 
   int *indx;  } 
   
   double hessii(double p[], double delta, int theta, double delti[]);  /*************** linmin ************************/
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  int ncom; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  double *pcom,*xicom;
   double (*nrfunc)(double []); 
    
   hess=matrix(1,npar,1,npar);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   printf("\nCalculation of the hessian matrix. Wait...\n");    double brent(double ax, double bx, double cx, 
   for (i=1;i<=npar;i++){                 double (*f)(double), double tol, double *xmin); 
     printf("%d",i);fflush(stdout);    double f1dim(double x); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     /*printf(" %f ",p[i]);*/                double *fc, double (*func)(double)); 
   }    int j; 
     double xx,xmin,bx,ax; 
   for (i=1;i<=npar;i++) {    double fx,fb,fa;
     for (j=1;j<=npar;j++)  {   
       if (j>i) {    ncom=n; 
         printf(".%d%d",i,j);fflush(stdout);    pcom=vector(1,n); 
         hess[i][j]=hessij(p,delti,i,j);    xicom=vector(1,n); 
         hess[j][i]=hess[i][j];    nrfunc=func; 
       }    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
   }      xicom[j]=xi[j]; 
   printf("\n");    } 
     ax=0.0; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    xx=1.0; 
      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   a=matrix(1,npar,1,npar);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   y=matrix(1,npar,1,npar);  #ifdef DEBUG
   x=vector(1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   indx=ivector(1,npar);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for (j=1;j<=n;j++) { 
   ludcmp(a,npar,indx,&pd);      xi[j] *= xmin; 
       p[j] += xi[j]; 
   for (j=1;j<=npar;j++) {    } 
     for (i=1;i<=npar;i++) x[i]=0;    free_vector(xicom,1,n); 
     x[j]=1;    free_vector(pcom,1,n); 
     lubksb(a,npar,indx,x);  } 
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
   }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   printf("\n#Hessian matrix#\n");    sec_left = (time_sec) % (60*60*24);
   for (i=1;i<=npar;i++) {    hours = (sec_left) / (60*60) ;
     for (j=1;j<=npar;j++) {    sec_left = (sec_left) %(60*60);
       printf("%.3e ",hess[i][j]);    minutes = (sec_left) /60;
     }    sec_left = (sec_left) % (60);
     printf("\n");    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   }    return ascdiff;
   }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /*************** powell ************************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   ludcmp(a,npar,indx,&pd);              double (*func)(double [])) 
   { 
   /*  printf("\n#Hessian matrix recomputed#\n");    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   for (j=1;j<=npar;j++) {    int i,ibig,j; 
     for (i=1;i<=npar;i++) x[i]=0;    double del,t,*pt,*ptt,*xit;
     x[j]=1;    double fp,fptt;
     lubksb(a,npar,indx,x);    double *xits;
     for (i=1;i<=npar;i++){    int niterf, itmp;
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);    pt=vector(1,n); 
     }    ptt=vector(1,n); 
     printf("\n");    xit=vector(1,n); 
   }    xits=vector(1,n); 
   */    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   free_matrix(a,1,npar,1,npar);    for (*iter=1;;++(*iter)) { 
   free_matrix(y,1,npar,1,npar);      fp=(*fret); 
   free_vector(x,1,npar);      ibig=0; 
   free_ivector(indx,1,npar);      del=0.0; 
   free_matrix(hess,1,npar,1,npar);      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 }      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 /*************** hessian matrix ****************/      */
 double hessii( double x[], double delta, int theta, double delti[])     for (i=1;i<=n;i++) {
 {        printf(" %d %.12f",i, p[i]);
   int i;        fprintf(ficlog," %d %.12lf",i, p[i]);
   int l=1, lmax=20;        fprintf(ficrespow," %.12lf", p[i]);
   double k1,k2;      }
   double p2[NPARMAX+1];      printf("\n");
   double res;      fprintf(ficlog,"\n");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double fx;      if(*iter <=3){
   int k=0,kmax=10;        tm = *localtime(&curr_time.tv_sec);
   double l1;        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
   fx=func(x);        forecast_time=curr_time; 
   for (i=1;i<=npar;i++) p2[i]=x[i];        itmp = strlen(strcurr);
   for(l=0 ; l <=lmax; l++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     l1=pow(10,l);          strcurr[itmp-1]='\0';
     delts=delt;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       delt = delta*(l1*k);        for(niterf=10;niterf<=30;niterf+=10){
       p2[theta]=x[theta] +delt;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       k1=func(p2)-fx;          tmf = *localtime(&forecast_time.tv_sec);
       p2[theta]=x[theta]-delt;  /*      asctime_r(&tmf,strfor); */
       k2=func(p2)-fx;          strcpy(strfor,asctime(&tmf));
       /*res= (k1-2.0*fx+k2)/delt/delt; */          itmp = strlen(strfor);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          if(strfor[itmp-1]=='\n')
                strfor[itmp-1]='\0';
 #ifdef DEBUG          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 #endif        }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for (i=1;i<=n;i++) { 
         k=kmax;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  #ifdef DEBUG
         k=kmax; l=lmax*10.;        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  #endif
         delts=delt;        printf("%d",i);fflush(stdout);
       }        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
   delti[theta]=delts;          del=fabs(fptt-(*fret)); 
   return res;            ibig=i; 
 }        } 
   #ifdef DEBUG
 double hessij( double x[], double delti[], int thetai,int thetaj)        printf("%d %.12e",i,(*fret));
 {        fprintf(ficlog,"%d %.12e",i,(*fret));
   int i;        for (j=1;j<=n;j++) {
   int l=1, l1, lmax=20;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double k1,k2,k3,k4,res,fx;          printf(" x(%d)=%.12e",j,xit[j]);
   double p2[NPARMAX+1];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int k;        }
         for(j=1;j<=n;j++) {
   fx=func(x);          printf(" p=%.12e",p[j]);
   for (k=1; k<=2; k++) {          fprintf(ficlog," p=%.12e",p[j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"\n");
     k1=func(p2)-fx;  #endif
        } 
     p2[thetai]=x[thetai]+delti[thetai]/k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #ifdef DEBUG
     k2=func(p2)-fx;        int k[2],l;
          k[0]=1;
     p2[thetai]=x[thetai]-delti[thetai]/k;        k[1]=-1;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        printf("Max: %.12e",(*func)(p));
     k3=func(p2)-fx;        fprintf(ficlog,"Max: %.12e",(*func)(p));
          for (j=1;j<=n;j++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;          printf(" %.12e",p[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficlog," %.12e",p[j]);
     k4=func(p2)-fx;        }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        printf("\n");
 #ifdef DEBUG        fprintf(ficlog,"\n");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(l=0;l<=1;l++) {
 #endif          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   return res;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 /************** Inverse of matrix **************/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 void ludcmp(double **a, int n, int *indx, double *d)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   int i,imax,j,k;  #endif
   double big,dum,sum,temp;  
   double *vv;  
          free_vector(xit,1,n); 
   vv=vector(1,n);        free_vector(xits,1,n); 
   *d=1.0;        free_vector(ptt,1,n); 
   for (i=1;i<=n;i++) {        free_vector(pt,1,n); 
     big=0.0;        return; 
     for (j=1;j<=n;j++)      } 
       if ((temp=fabs(a[i][j])) > big) big=temp;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for (j=1;j<=n;j++) { 
     vv[i]=1.0/big;        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
   for (j=1;j<=n;j++) {        pt[j]=p[j]; 
     for (i=1;i<j;i++) {      } 
       sum=a[i][j];      fptt=(*func)(ptt); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      if (fptt < fp) { 
       a[i][j]=sum;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
     big=0.0;          linmin(p,xit,n,fret,func); 
     for (i=j;i<=n;i++) {          for (j=1;j<=n;j++) { 
       sum=a[i][j];            xi[j][ibig]=xi[j][n]; 
       for (k=1;k<j;k++)            xi[j][n]=xit[j]; 
         sum -= a[i][k]*a[k][j];          }
       a[i][j]=sum;  #ifdef DEBUG
       if ( (dum=vv[i]*fabs(sum)) >= big) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         big=dum;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         imax=i;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
     }            fprintf(ficlog," %.12e",xit[j]);
     if (j != imax) {          }
       for (k=1;k<=n;k++) {          printf("\n");
         dum=a[imax][k];          fprintf(ficlog,"\n");
         a[imax][k]=a[j][k];  #endif
         a[j][k]=dum;        }
       }      } 
       *d = -(*d);    } 
       vv[imax]=vv[j];  } 
     }  
     indx[j]=imax;  /**** Prevalence limit (stable prevalence)  ****************/
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
   }  
   free_vector(vv,1,n);  /* Doesn't work */    int i, ii,j,k;
 ;    double min, max, maxmin, maxmax,sumnew=0.;
 }    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 void lubksb(double **a, int n, int *indx, double b[])    double **newm;
 {    double agefin, delaymax=50 ; /* Max number of years to converge */
   int i,ii=0,ip,j;  
   double sum;    for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=n;i++) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ip=indx[i];      }
     sum=b[ip];  
     b[ip]=b[i];     cov[1]=1.;
     if (ii)   
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     else if (sum) ii=i;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     b[i]=sum;      newm=savm;
   }      /* Covariates have to be included here again */
   for (i=n;i>=1;i--) {       cov[2]=agefin;
     sum=b[i];    
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovn;k++) {
     b[i]=sum/a[i][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /************ Frequencies ********************/        for (k=1; k<=cptcovprod;k++)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  /* Some frequencies */  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double ***freq; /* Frequencies */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double *pp;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double pos;  
   FILE *ficresp;      savm=oldm;
   char fileresp[FILENAMELENGTH];      oldm=newm;
       maxmax=0.;
   pp=vector(1,nlstate);      for(j=1;j<=nlstate;j++){
         min=1.;
   strcpy(fileresp,"p");        max=0.;
   strcat(fileresp,fileres);        for(i=1; i<=nlstate; i++) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {          sumnew=0;
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     exit(0);          prlim[i][j]= newm[i][j]/(1-sumnew);
   }          max=FMAX(max,prlim[i][j]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          min=FMIN(min,prlim[i][j]);
   j1=0;        }
         maxmin=max-min;
   j=cptcovn;        maxmax=FMAX(maxmax,maxmin);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
       if(maxmax < ftolpl){
   for(k1=1; k1<=j;k1++){        return prlim;
    for(i1=1; i1<=ncodemax[k1];i1++){      }
        j1++;    }
   }
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)    /*************** transition probabilities ***************/ 
            for(m=agemin; m <= agemax+3; m++)  
              freq[i][jk][m]=0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          {
        for (i=1; i<=imx; i++) {    double s1, s2;
          bool=1;    /*double t34;*/
          if  (cptcovn>0) {    int i,j,j1, nc, ii, jj;
            for (z1=1; z1<=cptcovn; z1++)  
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;      for(i=1; i<= nlstate; i++){
          }        for(j=1; j<i;j++){
           if (bool==1) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
            for(m=firstpass; m<=lastpass-1; m++){            /*s2 += param[i][j][nc]*cov[nc];*/
              if(agev[m][i]==0) agev[m][i]=agemax+1;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
              if(agev[m][i]==1) agev[m][i]=agemax+2;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          ps[i][j]=s2;
            }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          }        }
        }        for(j=i+1; j<=nlstate+ndeath;j++){
         if  (cptcovn>0) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          fprintf(ficresp, "\n#Variable");            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
        }          }
        fprintf(ficresp, "\n#");          ps[i][j]=s2;
        for(i=1; i<=nlstate;i++)        }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      }
        fprintf(ficresp, "\n");      /*ps[3][2]=1;*/
              
   for(i=(int)agemin; i <= (int)agemax+3; i++){      for(i=1; i<= nlstate; i++){
     if(i==(int)agemax+3)        s1=0;
       printf("Total");        for(j=1; j<i; j++)
     else          s1+=exp(ps[i][j]);
       printf("Age %d", i);        for(j=i+1; j<=nlstate+ndeath; j++)
     for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        ps[i][i]=1./(s1+1.);
         pp[jk] += freq[jk][m][i];        for(j=1; j<i; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(jk=1; jk <=nlstate ; jk++){        for(j=i+1; j<=nlstate+ndeath; j++)
       for(m=-1, pos=0; m <=0 ; m++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
         pos += freq[jk][m][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       if(pp[jk]>=1.e-10)      } /* end i */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      
       else      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(jj=1; jj<= nlstate+ndeath; jj++){
     }          ps[ii][jj]=0;
     for(jk=1; jk <=nlstate ; jk++){          ps[ii][ii]=1;
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        }
         pp[jk] += freq[jk][m][i];      }
     }      
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     for(jk=1; jk <=nlstate ; jk++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       if(pos>=1.e-5)  /*         printf("ddd %lf ",ps[ii][jj]); */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*       } */
       else  /*       printf("\n "); */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*        } */
       if( i <= (int) agemax){  /*        printf("\n ");printf("%lf ",cov[2]); */
         if(pos>=1.e-5)         /*
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       else        goto end;*/
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      return ps;
       }  }
     }  
     for(jk=-1; jk <=nlstate+ndeath; jk++)  /**************** Product of 2 matrices ******************/
       for(m=-1; m <=nlstate+ndeath; m++)  
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     if(i <= (int) agemax)  {
       fprintf(ficresp,"\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     printf("\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     }    /* in, b, out are matrice of pointers which should have been initialized 
     }       before: only the contents of out is modified. The function returns
  }       a pointer to pointers identical to out */
      long i, j, k;
   fclose(ficresp);    for(i=nrl; i<= nrh; i++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for(k=ncolol; k<=ncoloh; k++)
   free_vector(pp,1,nlstate);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 }  /* End of Freq */  
     return out;
 /************* Waves Concatenation ***************/  }
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  /************* Higher Matrix Product ***************/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    /* Computes the transition matrix starting at age 'age' over 
      and mw[mi+1][i]. dh depends on stepm.       'nhstepm*hstepm*stepm' months (i.e. until
      */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   int i, mi, m;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       (typically every 2 years instead of every month which is too big 
 float sum=0.;       for the memory).
        Model is determined by parameters x and covariates have to be 
   for(i=1; i<=imx; i++){       included manually here. 
     mi=0;  
     m=firstpass;       */
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    int i, j, d, h, k;
         mw[++mi][i]=m;    double **out, cov[NCOVMAX];
       if(m >=lastpass)    double **newm;
         break;  
       else    /* Hstepm could be zero and should return the unit matrix */
         m++;    for (i=1;i<=nlstate+ndeath;i++)
     }/* end while */      for (j=1;j<=nlstate+ndeath;j++){
     if (s[m][i] > nlstate){        oldm[i][j]=(i==j ? 1.0 : 0.0);
       mi++;     /* Death is another wave */        po[i][j][0]=(i==j ? 1.0 : 0.0);
       /* if(mi==0)  never been interviewed correctly before death */      }
          /* Only death is a correct wave */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       mw[mi][i]=m;    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
         newm=savm;
     wav[i]=mi;        /* Covariates have to be included here again */
     if(mi==0)        cov[1]=1.;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
   for(i=1; i<=imx; i++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(mi=1; mi<wav[i];mi++){        for (k=1; k<=cptcovprod;k++)
       if (stepm <=0)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         dh[mi][i]=1;  
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           if(j=0) j=1;  /* Survives at least one month after exam */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         else{        savm=oldm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        oldm=newm;
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/      }
       for(i=1; i<=nlstate+ndeath; i++)
           k=k+1;        for(j=1;j<=nlstate+ndeath;j++) {
           if (j >= jmax) jmax=j;          po[i][j][h]=newm[i][j];
           else if (j <= jmin)jmin=j;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           sum=sum+j;           */
         }        }
         jk= j/stepm;    } /* end h */
         jl= j -jk*stepm;    return po;
         ju= j -(jk+1)*stepm;  }
         if(jl <= -ju)  
           dh[mi][i]=jk;  
         else  /*************** log-likelihood *************/
           dh[mi][i]=jk+1;  double func( double *x)
         if(dh[mi][i]==0)  {
           dh[mi][i]=1; /* At least one step */    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
   }    double sw; /* Sum of weights */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);    double lli; /* Individual log likelihood */
 }    int s1, s2;
 /*********** Tricode ****************************/    double bbh, survp;
 void tricode(int *Tvar, int **nbcode, int imx)    long ipmx;
 {    /*extern weight */
   int Ndum[80],ij, k, j, i;    /* We are differentiating ll according to initial status */
   int cptcode=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (k=0; k<79; k++) Ndum[k]=0;    /*for(i=1;i<imx;i++) 
   for (k=1; k<=7; k++) ncodemax[k]=0;      printf(" %d\n",s[4][i]);
      */
   for (j=1; j<=cptcovn; j++) {    cov[1]=1.;
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       Ndum[ij]++;  
       if (ij > cptcode) cptcode=ij;    if(mle==1){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=0; i<=cptcode; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       if(Ndum[i]!=0) ncodemax[j]++;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ij=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=ncodemax[j]; i++) {            }
       for (k=0; k<=79; k++) {          for(d=0; d<dh[mi][i]; d++){
         if (Ndum[k] != 0) {            newm=savm;
           nbcode[Tvar[j]][ij]=k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           ij++;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (ij > ncodemax[j]) break;            }
       }              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }              savm=oldm;
             oldm=newm;
   }          } /* end mult */
         
 /*********** Health Expectancies ****************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   /* Health expectancies */           * the nearest (and in case of equal distance, to the lowest) interval but now
   int i, j, nhstepm, hstepm, h;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double age, agelim,hf;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double ***p3mat;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   fprintf(ficreseij,"# Health expectancies\n");           * -stepm/2 to stepm/2 .
   fprintf(ficreseij,"# Age");           * For stepm=1 the results are the same as for previous versions of Imach.
   for(i=1; i<=nlstate;i++)           * For stepm > 1 the results are less biased than in previous versions. 
     for(j=1; j<=nlstate;j++)           */
       fprintf(ficreseij," %1d-%1d",i,j);          s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"\n");          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   hstepm=1*YEARM; /*  Every j years of age (in month) */          /* bias bh is positive if real duration
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           * is higher than the multiple of stepm and negative otherwise.
            */
   agelim=AGESUP;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if( s2 > nlstate){ 
     /* nhstepm age range expressed in number of stepm */            /* i.e. if s2 is a death state and if the date of death is known 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);               then the contribution to the likelihood is the probability to 
     /* Typically if 20 years = 20*12/6=40 stepm */               die between last step unit time and current  step unit time, 
     if (stepm >= YEARM) hstepm=1;               which is also equal to probability to die before dh 
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */               minus probability to die before dh-stepm . 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               In version up to 0.92 likelihood was computed
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          as if date of death was unknown. Death was treated as any other
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          health state: the date of the interview describes the actual state
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
     for(i=1; i<=nlstate;i++)          introduced the exact date of death then we should have modified
       for(j=1; j<=nlstate;j++)          the contribution of an exact death to the likelihood. This new
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          contribution is smaller and very dependent of the step unit
           eij[i][j][(int)age] +=p3mat[i][j][h];          stepm. It is no more the probability to die between last interview
         }          and month of death but the probability to survive from last
              interview up to one month before death multiplied by the
     hf=1;          probability to die within a month. Thanks to Chris
     if (stepm >= YEARM) hf=stepm/YEARM;          Jackson for correcting this bug.  Former versions increased
     fprintf(ficreseij,"%.0f",age );          mortality artificially. The bad side is that we add another loop
     for(i=1; i<=nlstate;i++)          which slows down the processing. The difference can be up to 10%
       for(j=1; j<=nlstate;j++){          lower mortality.
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            */
       }            lli=log(out[s1][s2] - savm[s1][s2]);
     fprintf(ficreseij,"\n");  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }          } else if  (s2==-2) {
 }            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
 /************ Variance ******************/            lli= survp;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {          
   /* Variance of health expectancies */          else if  (s2==-4) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for (j=3,survp=0. ; j<=nlstate; j++) 
   double **newm;              survp += out[s1][j];
   double **dnewm,**doldm;            lli= survp;
   int i, j, nhstepm, hstepm, h;          }
   int k, cptcode;          
    double *xp;          else if  (s2==-5) {
   double **gp, **gm;            for (j=1,survp=0. ; j<=2; j++) 
   double ***gradg, ***trgradg;              survp += out[s1][j];
   double ***p3mat;            lli= survp;
   double age,agelim;          }
   int theta;  
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");          else{
   fprintf(ficresvij,"# Age");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for(i=1; i<=nlstate;i++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for(j=1; j<=nlstate;j++)          } 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   fprintf(ficresvij,"\n");          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   xp=vector(1,npar);          ipmx +=1;
   dnewm=matrix(1,nlstate,1,npar);          sw += weight[i];
   doldm=matrix(1,nlstate,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   hstepm=1*YEARM; /* Every year of age */      } /* end of individual */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }  else if(mle==2){
   agelim = AGESUP;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(mi=1; mi<= wav[i]-1; mi++){
     if (stepm >= YEARM) hstepm=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            for (j=1;j<=nlstate+ndeath;j++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate);            }
     gm=matrix(0,nhstepm,1,nlstate);          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
     for(theta=1; theta <=npar; theta++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++){ /* Computes gradient */            for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate; j++){            savm=oldm;
         for(h=0; h<=nhstepm; h++){            oldm=newm;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          } /* end mult */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1; i<=npar; i++) /* Computes gradient */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ipmx +=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            sw += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++){        } /* end of wave */
         for(h=0; h<=nhstepm; h++){      } /* end of individual */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* End theta */            }
           for(d=0; d<dh[mi][i]; d++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(h=0; h<=nhstepm; h++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(theta=1; theta <=npar; theta++)            }
           trgradg[h][j][theta]=gradg[h][theta][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1;i<=nlstate;i++)            savm=oldm;
       for(j=1;j<=nlstate;j++)            oldm=newm;
         vareij[i][j][(int)age] =0.;          } /* end mult */
     for(h=0;h<=nhstepm;h++){        
       for(k=0;k<=nhstepm;k++){          s1=s[mw[mi][i]][i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          s2=s[mw[mi+1][i]][i];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          bbh=(double)bh[mi][i]/(double)stepm; 
         for(i=1;i<=nlstate;i++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(j=1;j<=nlstate;j++)          ipmx +=1;
             vareij[i][j][(int)age] += doldm[i][j];          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
     h=1;      } /* end of individual */
     if (stepm >= YEARM) h=stepm/YEARM;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     fprintf(ficresvij,"%.0f ",age );      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<=nlstate;j++){        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficresvij,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gp,0,nhstepm,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gm,0,nhstepm,1,nlstate);            }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            newm=savm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   } /* End age */            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,npar);          
   free_matrix(dnewm,1,nlstate,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************ Variance of prevlim ******************/          } /* end mult */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        
 {          s1=s[mw[mi][i]][i];
   /* Variance of prevalence limit */          s2=s[mw[mi+1][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          if( s2 > nlstate){ 
   double **newm;            lli=log(out[s1][s2] - savm[s1][s2]);
   double **dnewm,**doldm;          }else{
   int i, j, nhstepm, hstepm;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int k, cptcode;          }
   double *xp;          ipmx +=1;
   double *gp, *gm;          sw += weight[i];
   double **gradg, **trgradg;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age,agelim;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int theta;        } /* end of wave */
          } /* end of individual */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficresvpl,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresvpl," %1d-%1d",i,i);        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresvpl,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   xp=vector(1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);            }
            for(d=0; d<dh[mi][i]; d++){
   hstepm=1*YEARM; /* Every year of age */            newm=savm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   agelim = AGESUP;            for (kk=1; kk<=cptcovage;kk++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }
     if (stepm >= YEARM) hstepm=1;          
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gradg=matrix(1,npar,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gp=vector(1,nlstate);            savm=oldm;
     gm=vector(1,nlstate);            oldm=newm;
           } /* end mult */
     for(theta=1; theta <=npar; theta++){        
       for(i=1; i<=npar; i++){ /* Computes gradient */          s1=s[mw[mi][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
       }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
       for(i=1;i<=nlstate;i++)          sw += weight[i];
         gp[i] = prlim[i][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */        } /* end of wave */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end of individual */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } /* End of if */
       for(i=1;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         gm[i] = prlim[i][i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(i=1;i<=nlstate;i++)    return -l;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  }
     } /* End theta */  
   /*************** log-likelihood *************/
     trgradg =matrix(1,nlstate,1,npar);  double funcone( double *x)
   {
     for(j=1; j<=nlstate;j++)    /* Same as likeli but slower because of a lot of printf and if */
       for(theta=1; theta <=npar; theta++)    int i, ii, j, k, mi, d, kk;
         trgradg[j][theta]=gradg[theta][j];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     for(i=1;i<=nlstate;i++)    double lli; /* Individual log likelihood */
       varpl[i][(int)age] =0.;    double llt;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int s1, s2;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double bbh, survp;
     for(i=1;i<=nlstate;i++)    /*extern weight */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     fprintf(ficresvpl,"%.0f ",age );    /*for(i=1;i<imx;i++) 
     for(i=1; i<=nlstate;i++)      printf(" %d\n",s[4][i]);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    */
     fprintf(ficresvpl,"\n");    cov[1]=1.;
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   } /* End age */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(xp,1,npar);        for (ii=1;ii<=nlstate+ndeath;ii++)
   free_matrix(doldm,1,nlstate,1,npar);          for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }          }
         for(d=0; d<dh[mi][i]; d++){
           newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /***********************************************/          for (kk=1; kk<=cptcovage;kk++) {
 /**************** Main Program *****************/            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /***********************************************/          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*int main(int argc, char *argv[])*/                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 int main()          savm=oldm;
 {          oldm=newm;
         } /* end mult */
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;        
   double agedeb, agefin,hf;        s1=s[mw[mi][i]][i];
   double agemin=1.e20, agemax=-1.e20;        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   double fret;        /* bias is positive if real duration
   double **xi,tmp,delta;         * is higher than the multiple of stepm and negative otherwise.
          */
   double dum; /* Dummy variable */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double ***p3mat;          lli=log(out[s1][s2] - savm[s1][s2]);
   int *indx;        } else if (mle==1){
   char line[MAXLINE], linepar[MAXLINE];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   char title[MAXLINE];        } else if(mle==2){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        } else if(mle==3){  /* exponential inter-extrapolation */
   char filerest[FILENAMELENGTH];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   char fileregp[FILENAMELENGTH];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          lli=log(out[s1][s2]); /* Original formula */
   int firstobs=1, lastobs=10;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   int sdeb, sfin; /* Status at beginning and end */          lli=log(out[s1][s2]); /* Original formula */
   int c,  h , cpt,l;        } /* End of if */
   int ju,jl, mi;        ipmx +=1;
   int i1,j1, k1,jk,aa,bb, stepsize;        sw += weight[i];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int hstepm, nhstepm;        if(globpr){
   double bage, fage, age, agelim, agebase;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   double ftolpl=FTOL;   %10.6f %10.6f %10.6f ", \
   double **prlim;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double *severity;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double ***param; /* Matrix of parameters */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double  *p;            llt +=ll[k]*gipmx/gsw;
   double **matcov; /* Matrix of covariance */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double ***delti3; /* Scale */          }
   double *delti; /* Scale */          fprintf(ficresilk," %10.6f\n", -llt);
   double ***eij, ***vareij;        }
   double **varpl; /* Variances of prevalence limits by age */      } /* end of wave */
   double *epj, vepp;    } /* end of individual */
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   char z[1]="c", occ;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 #include <sys/time.h>    if(globpr==0){ /* First time we count the contributions and weights */
 #include <time.h>      gipmx=ipmx;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      gsw=sw;
   /* long total_usecs;    }
   struct timeval start_time, end_time;    return -l;
    }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   
   /*************** function likelione ***********/
   printf("\nIMACH, Version 0.63");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   printf("\nEnter the parameter file name: ");  {
     /* This routine should help understanding what is done with 
 #ifdef windows       the selection of individuals/waves and
   scanf("%s",pathtot);       to check the exact contribution to the likelihood.
   getcwd(pathcd, size);       Plotting could be done.
   cutv(path,optionfile,pathtot,'\\');     */
   chdir(path);    int k;
   replace(pathc,path);  
 #endif    if(*globpri !=0){ /* Just counts and sums, no printings */
 #ifdef unix      strcpy(fileresilk,"ilk"); 
   scanf("%s",optionfile);      strcat(fileresilk,fileres);
 #endif      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
 /*-------- arguments in the command line --------*/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   strcpy(fileres,"r");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   strcat(fileres, optionfile);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /*---------arguments file --------*/      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     printf("Problem with optionfile %s\n",optionfile);    }
     goto end;  
   }    *fretone=(*funcone)(p);
     if(*globpri !=0){
   strcpy(filereso,"o");      fclose(ficresilk);
   strcat(filereso,fileres);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   if((ficparo=fopen(filereso,"w"))==NULL) {      fflush(fichtm); 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    } 
   }    return;
   }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /*********** Maximum Likelihood Estimation ***************/
     fgets(line, MAXLINE, ficpar);  
     puts(line);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     fputs(line,ficparo);  {
   }    int i,j, iter;
   ungetc(c,ficpar);    double **xi;
     double fret;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double fretone; /* Only one call to likelihood */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    /*  char filerespow[FILENAMELENGTH];*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   covar=matrix(1,NCOVMAX,1,n);          for (j=1;j<=npar;j++)
   if (strlen(model)<=1) cptcovn=0;        xi[i][j]=(i==j ? 1.0 : 0.0);
   else {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     j=0;    strcpy(filerespow,"pow"); 
     j=nbocc(model,'+');    strcat(filerespow,fileres);
     cptcovn=j+1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for (i=1;i<=nlstate;i++)
   /* Read guess parameters */      for(j=1;j<=nlstate+ndeath;j++)
   /* Reads comments: lines beginning with '#' */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrespow,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    powell(p,xi,npar,ftol,&iter,&fret,func);
     puts(line);  
     fputs(line,ficparo);    fclose(ficrespow);
   }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   ungetc(c,ficpar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)  }
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /**** Computes Hessian and covariance matrix ***/
       fprintf(ficparo,"%1d%1d",i1,j1);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       printf("%1d%1d",i,j);  {
       for(k=1; k<=ncovmodel;k++){    double  **a,**y,*x,pd;
         fscanf(ficpar," %lf",&param[i][j][k]);    double **hess;
         printf(" %lf",param[i][j][k]);    int i, j,jk;
         fprintf(ficparo," %lf",param[i][j][k]);    int *indx;
       }  
       fscanf(ficpar,"\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       printf("\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       fprintf(ficparo,"\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
     }    void ludcmp(double **a, int npar, int *indx, double *d) ;
      double gompertz(double p[]);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    hess=matrix(1,npar,1,npar);
   p=param[1][1];  
      printf("\nCalculation of the hessian matrix. Wait...\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=npar;i++){
     ungetc(c,ficpar);      printf("%d",i);fflush(stdout);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"%d",i);fflush(ficlog);
     puts(line);     
     fputs(line,ficparo);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   }      
   ungetc(c,ficpar);      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){    for (i=1;i<=npar;i++) {
     for(j=1; j <=nlstate+ndeath-1; j++){      for (j=1;j<=npar;j++)  {
       fscanf(ficpar,"%1d%1d",&i1,&j1);        if (j>i) { 
       printf("%1d%1d",i,j);          printf(".%d%d",i,j);fflush(stdout);
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(k=1; k<=ncovmodel;k++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          
         printf(" %le",delti3[i][j][k]);          hess[j][i]=hess[i][j];    
         fprintf(ficparo," %le",delti3[i][j][k]);          /*printf(" %lf ",hess[i][j]);*/
       }        }
       fscanf(ficpar,"\n");      }
       printf("\n");    }
       fprintf(ficparo,"\n");    printf("\n");
     }    fprintf(ficlog,"\n");
   }  
   delti=delti3[1][1];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    a=matrix(1,npar,1,npar);
     ungetc(c,ficpar);    y=matrix(1,npar,1,npar);
     fgets(line, MAXLINE, ficpar);    x=vector(1,npar);
     puts(line);    indx=ivector(1,npar);
     fputs(line,ficparo);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   ungetc(c,ficpar);    ludcmp(a,npar,indx,&pd);
    
   matcov=matrix(1,npar,1,npar);    for (j=1;j<=npar;j++) {
   for(i=1; i <=npar; i++){      for (i=1;i<=npar;i++) x[i]=0;
     fscanf(ficpar,"%s",&str);      x[j]=1;
     printf("%s",str);      lubksb(a,npar,indx,x);
     fprintf(ficparo,"%s",str);      for (i=1;i<=npar;i++){ 
     for(j=1; j <=i; j++){        matcov[i][j]=x[i];
       fscanf(ficpar," %le",&matcov[i][j]);      }
       printf(" %.5le",matcov[i][j]);    }
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    printf("\n#Hessian matrix#\n");
     fscanf(ficpar,"\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
     printf("\n");    for (i=1;i<=npar;i++) { 
     fprintf(ficparo,"\n");      for (j=1;j<=npar;j++) { 
   }        printf("%.3e ",hess[i][j]);
   for(i=1; i <=npar; i++)        fprintf(ficlog,"%.3e ",hess[i][j]);
     for(j=i+1;j<=npar;j++)      }
       matcov[i][j]=matcov[j][i];      printf("\n");
          fprintf(ficlog,"\n");
   printf("\n");    }
   
     /* Recompute Inverse */
    if(mle==1){    for (i=1;i<=npar;i++)
     /*-------- data file ----------*/      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     if((ficres =fopen(fileres,"w"))==NULL) {    ludcmp(a,npar,indx,&pd);
       printf("Problem with resultfile: %s\n", fileres);goto end;  
     }    /*  printf("\n#Hessian matrix recomputed#\n");
     fprintf(ficres,"#%s\n",version);  
        for (j=1;j<=npar;j++) {
     if((fic=fopen(datafile,"r"))==NULL)    {      for (i=1;i<=npar;i++) x[i]=0;
       printf("Problem with datafile: %s\n", datafile);goto end;      x[j]=1;
     }      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     n= lastobs;        y[i][j]=x[i];
     severity = vector(1,maxwav);        printf("%.3e ",y[i][j]);
     outcome=imatrix(1,maxwav+1,1,n);        fprintf(ficlog,"%.3e ",y[i][j]);
     num=ivector(1,n);      }
     moisnais=vector(1,n);      printf("\n");
     annais=vector(1,n);      fprintf(ficlog,"\n");
     moisdc=vector(1,n);    }
     andc=vector(1,n);    */
     agedc=vector(1,n);  
     cod=ivector(1,n);    free_matrix(a,1,npar,1,npar);
     weight=vector(1,n);    free_matrix(y,1,npar,1,npar);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_vector(x,1,npar);
     mint=matrix(1,maxwav,1,n);    free_ivector(indx,1,npar);
     anint=matrix(1,maxwav,1,n);    free_matrix(hess,1,npar,1,npar);
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);  }
     ncodemax=ivector(1,NCOVMAX);  
   /*************** hessian matrix ****************/
     i=1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     while (fgets(line, MAXLINE, fic) != NULL)    {  {
       if ((i >= firstobs) && (i <=lastobs)) {    int i;
            int l=1, lmax=20;
         for (j=maxwav;j>=1;j--){    double k1,k2;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double p2[NPARMAX+1];
           strcpy(line,stra);    double res;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double fx;
         }    int k=0,kmax=10;
            double l1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(l=0 ; l <=lmax; l++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      l1=pow(10,l);
       delts=delt;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      for(k=1 ; k <kmax; k=k+1){
         for (j=ncov;j>=1;j--){        delt = delta*(l1*k);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        p2[theta]=x[theta] +delt;
         }        k1=func(p2)-fx;
         num[i]=atol(stra);        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/        
   #ifdef DEBUG
         i=i+1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }  #endif
     /*scanf("%d",i);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   imx=i-1; /* Number of individuals */          k=kmax;
          }
   /* Calculation of the number of parameter from char model*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   Tvar=ivector(1,8);              k=kmax; l=lmax*10.;
            }
   if (strlen(model) >1){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     j=0;          delts=delt;
     j=nbocc(model,'+');        }
     cptcovn=j+1;      }
      }
     strcpy(modelsav,model);    delti[theta]=delts;
     if (j==0) {    return res; 
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    
     }  }
     else {  
       for(i=j; i>=1;i--){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         cutv(stra,strb,modelsav,'+');  {
         if (strchr(strb,'*')) {    int i;
           cutv(strd,strc,strb,'*');    int l=1, l1, lmax=20;
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;    double k1,k2,k3,k4,res,fx;
           cutv(strb,strc,strd,'V');    double p2[NPARMAX+1];
           for (k=1; k<=lastobs;k++)    int k;
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
         }    fx=func(x);
         else {    for (k=1; k<=2; k++) {
           cutv(strd,strc,strb,'V');      for (i=1;i<=npar;i++) p2[i]=x[i];
           Tvar[i+1]=atoi(strc);      p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         strcpy(modelsav,stra);        k1=func(p2)-fx;
       }    
       /*cutv(strd,strc,stra,'V');*/      p2[thetai]=x[thetai]+delti[thetai]/k;
       Tvar[1]=atoi(strc);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k2=func(p2)-fx;
   }    
   /*printf("tvar=%d ",Tvar[1]);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
   /*scanf("%d ",i);*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fclose(fic);      k3=func(p2)-fx;
     
     if (weightopt != 1) { /* Maximisation without weights*/      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1;i<=n;i++) weight[i]=1.0;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k4=func(p2)-fx;
     /*-calculation of age at interview from date of interview and age at death -*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     agev=matrix(1,maxwav,1,imx);  #ifdef DEBUG
          printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for (i=1; i<=imx; i++)  {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  #endif
       for(m=1; (m<= maxwav); m++){    }
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;      return res;
         if(s[m][i] >0){  }
           if (s[m][i] == nlstate+1) {  
             if(agedc[i]>0)  /************** Inverse of matrix **************/
               if(moisdc[i]!=99 && andc[i]!=9999)  void ludcmp(double **a, int n, int *indx, double *d) 
               agev[m][i]=agedc[i];  { 
             else{    int i,imax,j,k; 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double big,dum,sum,temp; 
               agev[m][i]=-1;    double *vv; 
             }   
           }    vv=vector(1,n); 
           else if(s[m][i] !=9){ /* Should no more exist */    *d=1.0; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    for (i=1;i<=n;i++) { 
             if(mint[m][i]==99 || anint[m][i]==9999){      big=0.0; 
               agev[m][i]=1;      for (j=1;j<=n;j++) 
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */        if ((temp=fabs(a[i][j])) > big) big=temp; 
             }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
             else if(agev[m][i] <agemin){      vv[i]=1.0/big; 
               agemin=agev[m][i];    } 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    for (j=1;j<=n;j++) { 
             }      for (i=1;i<j;i++) { 
             else if(agev[m][i] >agemax){        sum=a[i][j]; 
               agemax=agev[m][i];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        a[i][j]=sum; 
             }      } 
             /*agev[m][i]=anint[m][i]-annais[i];*/      big=0.0; 
             /*   agev[m][i] = age[i]+2*m;*/      for (i=j;i<=n;i++) { 
           }        sum=a[i][j]; 
           else { /* =9 */        for (k=1;k<j;k++) 
             agev[m][i]=1;          sum -= a[i][k]*a[k][j]; 
             s[m][i]=-1;        a[i][j]=sum; 
           }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         }          big=dum; 
         else /*= 0 Unknown */          imax=i; 
           agev[m][i]=1;        } 
       }      } 
          if (j != imax) { 
     }        for (k=1;k<=n;k++) { 
     for (i=1; i<=imx; i++)  {          dum=a[imax][k]; 
       for(m=1; (m<= maxwav); m++){          a[imax][k]=a[j][k]; 
         if (s[m][i] > (nlstate+ndeath)) {          a[j][k]=dum; 
           printf("Error: Wrong value in nlstate or ndeath\n");          } 
           goto end;        *d = -(*d); 
         }        vv[imax]=vv[j]; 
       }      } 
     }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      if (j != n) { 
         dum=1.0/(a[j][j]); 
     free_vector(severity,1,maxwav);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     free_imatrix(outcome,1,maxwav+1,1,n);      } 
     free_vector(moisnais,1,n);    } 
     free_vector(annais,1,n);    free_vector(vv,1,n);  /* Doesn't work */
     free_matrix(mint,1,maxwav,1,n);  ;
     free_matrix(anint,1,maxwav,1,n);  } 
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
        int i,ii=0,ip,j; 
     wav=ivector(1,imx);    double sum; 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
     /* Concatenates waves */      sum=b[ip]; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      b[ip]=b[i]; 
       if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 Tcode=ivector(1,100);      else if (sum) ii=i; 
    nbcode=imatrix(1,nvar,1,8);        b[i]=sum; 
    ncodemax[1]=1;    } 
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    for (i=n;i>=1;i--) { 
        sum=b[i]; 
    codtab=imatrix(1,100,1,10);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
    h=0;      b[i]=sum/a[i][i]; 
    m=pow(2,cptcovn);    } 
    } 
    for(k=1;k<=cptcovn; k++){  
      for(i=1; i <=(m/pow(2,k));i++){  /************ Frequencies ********************/
        for(j=1; j <= ncodemax[k]; j++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){  {  /* Some frequencies */
            h++;    
            if (h>m) h=1;codtab[h][k]=j;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
          }    int first;
        }    double ***freq; /* Frequencies */
      }    double *pp, **prop;
    }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
    /*for(i=1; i <=m ;i++){    char fileresp[FILENAMELENGTH];
      for(k=1; k <=cptcovn; k++){    
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    pp=vector(1,nlstate);
      }    prop=matrix(1,nlstate,iagemin,iagemax+3);
      printf("\n");    strcpy(fileresp,"p");
    }    strcat(fileresp,fileres);
   scanf("%d",i);*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
          printf("Problem with prevalence resultfile: %s\n", fileresp);
    /* Calculates basic frequencies. Computes observed prevalence at single age      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        and prints on file fileres'p'. */      exit(0);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    j1=0;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    j=cptcoveff;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        first=1;
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    for(k1=1; k1<=j;k1++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      for(i1=1; i1<=ncodemax[k1];i1++){
     /*scanf("%d",i);*/        j1++;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
     /*--------- results files --------------*/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);            for(m=iagemin; m <= iagemax+3; m++)
                  freq[i][jk][m]=0;
    jk=1;  
    fprintf(ficres,"# Parameters\n");      for (i=1; i<=nlstate; i++)  
    printf("# Parameters\n");        for(m=iagemin; m <= iagemax+3; m++)
    for(i=1,jk=1; i <=nlstate; i++){          prop[i][m]=0;
      for(k=1; k <=(nlstate+ndeath); k++){        
        if (k != i)        dateintsum=0;
          {        k2cpt=0;
            printf("%d%d ",i,k);        for (i=1; i<=imx; i++) {
            fprintf(ficres,"%1d%1d ",i,k);          bool=1;
            for(j=1; j <=ncovmodel; j++){          if  (cptcovn>0) {
              printf("%f ",p[jk]);            for (z1=1; z1<=cptcoveff; z1++) 
              fprintf(ficres,"%f ",p[jk]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
              jk++;                bool=0;
            }          }
            printf("\n");          if (bool==1){
            fprintf(ficres,"\n");            for(m=firstpass; m<=lastpass; m++){
          }              k2=anint[m][i]+(mint[m][i]/12.);
      }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
    }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /* Computing hessian and covariance matrix */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     ftolhess=ftol; /* Usually correct */                if (m<lastpass) {
     hesscov(matcov, p, npar, delti, ftolhess, func);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficres,"# Scales\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     printf("# Scales\n");                }
      for(i=1,jk=1; i <=nlstate; i++){                
       for(j=1; j <=nlstate+ndeath; j++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         if (j!=i) {                  dateintsum=dateintsum+k2;
           fprintf(ficres,"%1d%1d",i,j);                  k2cpt++;
           printf("%1d%1d",i,j);                }
           for(k=1; k<=ncovmodel;k++){                /*}*/
             printf(" %.5e",delti[jk]);            }
             fprintf(ficres," %.5e",delti[jk]);          }
             jk++;        }
           }         
           printf("\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           fprintf(ficres,"\n");  fprintf(ficresp, "#Local time at start: %s", strstart);
         }        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresp, "**********\n#");
     k=1;        }
     fprintf(ficres,"# Covariance\n");        for(i=1; i<=nlstate;i++) 
     printf("# Covariance\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(i=1;i<=npar;i++){        fprintf(ficresp, "\n");
       /*  if (k>nlstate) k=1;        
       i1=(i-1)/(ncovmodel*nlstate)+1;        for(i=iagemin; i <= iagemax+3; i++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          if(i==iagemax+3){
       printf("%s%d%d",alph[k],i1,tab[i]);*/            fprintf(ficlog,"Total");
       fprintf(ficres,"%3d",i);          }else{
       printf("%3d",i);            if(first==1){
       for(j=1; j<=i;j++){              first=0;
         fprintf(ficres," %.5e",matcov[i][j]);              printf("See log file for details...\n");
         printf(" %.5e",matcov[i][j]);            }
       }            fprintf(ficlog,"Age %d", i);
       fprintf(ficres,"\n");          }
       printf("\n");          for(jk=1; jk <=nlstate ; jk++){
       k++;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     }              pp[jk] += freq[jk][m][i]; 
              }
     while((c=getc(ficpar))=='#' && c!= EOF){          for(jk=1; jk <=nlstate ; jk++){
       ungetc(c,ficpar);            for(m=-1, pos=0; m <=0 ; m++)
       fgets(line, MAXLINE, ficpar);              pos += freq[jk][m][i];
       puts(line);            if(pp[jk]>=1.e-10){
       fputs(line,ficparo);              if(first==1){
     }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     ungetc(c,ficpar);              }
                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            }else{
                  if(first==1)
     if (fage <= 2) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       bage = agemin;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fage = agemax;            }
     }          }
   
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 /*------------ gnuplot -------------*/              pp[jk] += freq[jk][m][i];
 chdir(pathcd);          }       
   if((ficgp=fopen("graph.plt","w"))==NULL) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     printf("Problem with file graph.gp");goto end;            pos += pp[jk];
   }            posprop += prop[jk][i];
 #ifdef windows          }
   fprintf(ficgp,"cd \"%s\" \n",pathc);          for(jk=1; jk <=nlstate ; jk++){
 #endif            if(pos>=1.e-5){
 m=pow(2,cptcovn);              if(first==1)
                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  /* 1eme*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for (cpt=1; cpt<= nlstate ; cpt ++) {            }else{
    for (k1=1; k1<= m ; k1 ++) {              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 #ifdef windows              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            }
 #endif            if( i <= iagemax){
 #ifdef unix              if(pos>=1.e-5){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 #endif                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              else
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 }            }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
     for (i=1; i<= nlstate ; i ++) {          
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=-1; m <=nlstate+ndeath; m++)
 }              if(freq[jk][m][i] !=0 ) {
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              if(first==1)
      for (i=1; i<= nlstate ; i ++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }            if(i <= iagemax)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            fprintf(ficresp,"\n");
 #ifdef unix          if(first==1)
 fprintf(ficgp,"\nset ter gif small size 400,300");            printf("Others in log...\n");
 #endif          fprintf(ficlog,"\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
    }      }
   }    }
   /*2 eme*/    dateintmean=dateintsum/k2cpt; 
    
   for (k1=1; k1<= m ; k1 ++) {    fclose(ficresp);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
        free_vector(pp,1,nlstate);
     for (i=1; i<= nlstate+1 ; i ++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       k=2*i;    /* End of Freq */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /************ Prevalence ********************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 }    {  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       We still use firstpass and lastpass as another selection.
       for (j=1; j<= nlstate+1 ; j ++) {    */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 }      double ***freq; /* Frequencies */
       fprintf(ficgp,"\" t\"\" w l 0,");    double *pp, **prop;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double pos,posprop; 
       for (j=1; j<= nlstate+1 ; j ++) {    double  y2; /* in fractional years */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int iagemin, iagemax;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      iagemin= (int) agemin;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    iagemax= (int) agemax;
       else fprintf(ficgp,"\" t\"\" w l 0,");    /*pp=vector(1,nlstate);*/
     }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
      
   /*3eme*/    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    for(k1=1; k1<=j;k1++){
       k=2+nlstate*(cpt-1);      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        j1++;
       for (i=1; i< nlstate ; i ++) {        
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        for (i=1; i<=nlstate; i++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            prop[i][m]=0.0;
     }       
   }        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
   /* CV preval stat */          if  (cptcovn>0) {
   for (k1=1; k1<= m ; k1 ++) {            for (z1=1; z1<=cptcoveff; z1++) 
     for (cpt=1; cpt<nlstate ; cpt ++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       k=3;                bool=0;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          } 
       for (i=1; i< nlstate ; i ++)          if (bool==1) { 
         fprintf(ficgp,"+$%d",k+i+1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       l=3+(nlstate+ndeath)*cpt;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for (i=1; i< nlstate ; i ++) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         l=3+(nlstate+ndeath)*cpt;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         fprintf(ficgp,"+$%d",l+i+1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                    prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                } 
     }              }
   }            } /* end selection of waves */
           }
   /* proba elementaires */        }
   for(i=1,jk=1; i <=nlstate; i++){        for(i=iagemin; i <= iagemax+3; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){          
       if (k != i) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/            posprop += prop[jk][i]; 
         for(j=1; j <=ncovmodel; j++){          } 
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);  
           jk++;          for(jk=1; jk <=nlstate ; jk++){     
           fprintf(ficgp,"\n");            if( i <=  iagemax){ 
         }              if(posprop>=1.e-5){ 
       }                probs[i][jk][j1]= prop[jk][i]/posprop;
     }              } 
   }            } 
   for(jk=1; jk <=m; jk++) {          }/* end jk */ 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        }/* end i */ 
   for(i=1; i <=nlstate; i++) {      } /* end i1 */
     for(k=1; k <=(nlstate+ndeath); k++){    } /* end k1 */
       if (k != i) {    
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for(j=3; j <=ncovmodel; j++)    /*free_vector(pp,1,nlstate);*/
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficgp,")/(1");  }  /* End of prevalence */
         for(k1=1; k1 <=(nlstate+ndeath); k1++)  
           if (k1 != i) {  /************* Waves Concatenation ***************/
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);  
             for(j=3; j <=ncovmodel; j++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
             fprintf(ficgp,")");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           }       Death is a valid wave (if date is known).
         fprintf(ficgp,") t \"p%d%d\" ", i,k);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       }       and mw[mi+1][i]. dh depends on stepm.
     }       */
   }  
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      int i, mi, m;
   }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fclose(ficgp);       double sum=0., jmean=0.;*/
        int first;
 chdir(path);    int j, k=0,jk, ju, jl;
     free_matrix(agev,1,maxwav,1,imx);    double sum=0.;
     free_ivector(wav,1,imx);    first=0;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    jmin=1e+5;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    jmax=-1;
        jmean=0.;
     free_imatrix(s,1,maxwav+1,1,n);    for(i=1; i<=imx; i++){
          mi=0;
          m=firstpass;
     free_ivector(num,1,n);      while(s[m][i] <= nlstate){
     free_vector(agedc,1,n);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     free_vector(weight,1,n);          mw[++mi][i]=m;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        if(m >=lastpass)
     fclose(ficparo);          break;
     fclose(ficres);        else
    }          m++;
          }/* end while */
    /*________fin mle=1_________*/      if (s[m][i] > nlstate){
            mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
     /* No more information from the sample is required now */        mw[mi][i]=m;
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      wav[i]=mi;
     fgets(line, MAXLINE, ficpar);      if(mi==0){
     puts(line);        nbwarn++;
     fputs(line,ficparo);        if(first==0){
   }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   ungetc(c,ficpar);          first=1;
          }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        if(first==1){
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
 /*--------- index.htm --------*/      } /* end mi==0 */
     } /* End individuals */
   if((fichtm=fopen("index.htm","w"))==NULL)    {  
     printf("Problem with index.htm \n");goto end;    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n          dh[mi][i]=1;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        else{
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>            if (agedc[i] < 2*AGESUP) {
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>              if(j==0) j=1;  /* Survives at least one month after exam */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>              else if(j<0){
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>                nberr++;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  fprintf(fichtm," <li>Graphs</li>\n<p>");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  m=cptcovn;              }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              k=k+1;
               if (j >= jmax){
  j1=0;                jmax=j;
  for(k1=1; k1<=m;k1++){                ijmax=i;
    for(i1=1; i1<=ncodemax[k1];i1++){              }
        j1++;              if (j <= jmin){
        if (cptcovn > 0) {                jmin=j;
          fprintf(fichtm,"<hr>************ Results for covariates");                ijmin=i;
          for (cpt=1; cpt<=cptcovn;cpt++)              }
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);              sum=sum+j;
          fprintf(fichtm," ************\n<hr>");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              }
        for(cpt=1; cpt<nlstate;cpt++){          else{
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {            k=k+1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            if (j >= jmax) {
 interval) in state (%d): v%s%d%d.gif <br>              jmax=j;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                ijmax=i;
      }            }
      for(cpt=1; cpt<=nlstate;cpt++) {            else if (j <= jmin){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              jmin=j;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              ijmin=i;
      }            }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 health expectancies in states (1) and (2): e%s%d.gif<br>            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            if(j<0){
 fprintf(fichtm,"\n</body>");              nberr++;
    }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fclose(fichtm);            }
             sum=sum+j;
   /*--------------- Prevalence limit --------------*/          }
            jk= j/stepm;
   strcpy(filerespl,"pl");          jl= j -jk*stepm;
   strcat(filerespl,fileres);          ju= j -(jk+1)*stepm;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            if(jl==0){
   }              dh[mi][i]=jk;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              bh[mi][i]=0;
   fprintf(ficrespl,"#Prevalence limit\n");            }else{ /* We want a negative bias in order to only have interpolation ie
   fprintf(ficrespl,"#Age ");                    * at the price of an extra matrix product in likelihood */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              dh[mi][i]=jk+1;
   fprintf(ficrespl,"\n");              bh[mi][i]=ju;
              }
   prlim=matrix(1,nlstate,1,nlstate);          }else{
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(jl <= -ju){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=jl;       /* bias is positive if real duration
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                   * is higher than the multiple of stepm and negative otherwise.
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                                   */
   k=0;            }
   agebase=agemin;            else{
   agelim=agemax;              dh[mi][i]=jk+1;
   ftolpl=1.e-10;              bh[mi][i]=ju;
   i1=cptcovn;            }
   if (cptcovn < 1){i1=1;}            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
   for(cptcov=1;cptcov<=i1;cptcov++){              bh[mi][i]=ju; /* At least one step */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         k=k+1;            }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          } /* end if mle */
         fprintf(ficrespl,"\n#****** ");        }
         for(j=1;j<=cptcovn;j++)      } /* end wave */
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    }
         fprintf(ficrespl,"******\n");    jmean=sum/k;
            printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         for (age=agebase; age<=agelim; age++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   }
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)  /*********** Tricode ****************************/
           fprintf(ficrespl," %.5f", prlim[i][i]);  void tricode(int *Tvar, int **nbcode, int imx)
           fprintf(ficrespl,"\n");  {
         }    
       }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     }    int cptcode=0;
   fclose(ficrespl);    cptcoveff=0; 
   /*------------- h Pij x at various ages ------------*/   
      for (k=0; k<maxncov; k++) Ndum[k]=0;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    for (k=1; k<=7; k++) ncodemax[k]=0;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   printf("Computing pij: result on file '%s' \n", filerespij);                                 modality*/ 
          ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;        Ndum[ij]++; /*store the modality */
   if (stepm<=24) stepsize=2;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   agelim=AGESUP;                                         Tvar[j]. If V=sex and male is 0 and 
   hstepm=stepsize*YEARM; /* Every year of age */                                         female is 1, then  cptcode=1.*/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      }
    
   k=0;      for (i=0; i<=cptcode; i++) {
   for(cptcov=1;cptcov<=i1;cptcov++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");      ij=1; 
         for(j=1;j<=cptcovn;j++)      for (i=1; i<=ncodemax[j]; i++) {
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        for (k=0; k<= maxncov; k++) {
         fprintf(ficrespij,"******\n");          if (Ndum[k] != 0) {
                    nbcode[Tvar[j]][ij]=k; 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            ij++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;          if (ij > ncodemax[j]) break; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }  
           fprintf(ficrespij,"# Age");      } 
           for(i=1; i<=nlstate;i++)    }  
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);   for (k=0; k< maxncov; k++) Ndum[k]=0;
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){   for (i=1; i<=ncovmodel-2; i++) { 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             for(i=1; i<=nlstate;i++)     ij=Tvar[i];
               for(j=1; j<=nlstate+ndeath;j++)     Ndum[ij]++;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   }
             fprintf(ficrespij,"\n");  
           }   ij=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   for (i=1; i<= maxncov; i++) {
           fprintf(ficrespij,"\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
         }       Tvaraff[ij]=i; /*For printing */
     }       ij++;
   }     }
    }
   fclose(ficrespij);   
    cptcoveff=ij-1; /*Number of simple covariates*/
   /*---------- Health expectancies and variances ------------*/  }
   
   strcpy(filerest,"t");  /*********** Health Expectancies ****************/
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }  {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     double age, agelim, hf;
   strcpy(filerese,"e");    double ***p3mat,***varhe;
   strcat(filerese,fileres);    double **dnewm,**doldm;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double *xp;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double **gp, **gm;
   }    double ***gradg, ***trgradg;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    int theta;
   
  strcpy(fileresv,"v");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   strcat(fileresv,fileres);    xp=vector(1,npar);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   }    
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficreseij,"# Local time at start: %s", strstart);
     fprintf(ficreseij,"# Health expectancies\n");
   k=0;    fprintf(ficreseij,"# Age");
   for(cptcov=1;cptcov<=i1;cptcov++){    for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(j=1; j<=nlstate;j++)
       k=k+1;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficrest,"\n#****** ");    fprintf(ficreseij,"\n");
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    if(estepm < stepm){
       fprintf(ficrest,"******\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
       fprintf(ficreseij,"\n#****** ");    else  hstepm=estepm;   
       for(j=1;j<=cptcovn;j++)    /* We compute the life expectancy from trapezoids spaced every estepm months
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);     * This is mainly to measure the difference between two models: for example
       fprintf(ficreseij,"******\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficresvij,"\n#****** ");     * progression in between and thus overestimating or underestimating according
       for(j=1;j<=cptcovn;j++)     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficresvij,"******\n");     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * curvature will be obtained if estepm is as small as stepm. */
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      /* For example we decided to compute the life expectancy with the smallest unit */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       oldm=oldms;savm=savms;       nhstepm is the number of hstepm from age to agelim 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       nstepm is the number of stepm from age to agelin. 
             Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       and note for a fixed period like estepm months */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficrest,"\n");       survival function given by stepm (the optimization length). Unfortunately it
               means that if the survival funtion is printed only each two years of age and if
       hf=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       if (stepm >= YEARM) hf=stepm/YEARM;       results. So we changed our mind and took the option of the best precision.
       epj=vector(1,nlstate+1);    */
       for(age=bage; age <=fage ;age++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         fprintf(ficrest," %.0f",age);    agelim=AGESUP;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      /* nhstepm age range expressed in number of stepm */
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           epj[nlstate+1] +=epj[j];      /* if (stepm >= YEARM) hstepm=1;*/
         }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for(i=1, vepp=0.;i <=nlstate;i++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(j=1;j <=nlstate;j++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             vepp += vareij[i][j][(int)age];      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      gm=matrix(0,nhstepm,1,nlstate*nlstate);
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficrest,"\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       }   
     }  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          
  fclose(ficreseij);      /* Computing  Variances of health expectancies */
  fclose(ficresvij);  
   fclose(ficrest);       for(theta=1; theta <=npar; theta++){
   fclose(ficpar);        for(i=1; i<=npar; i++){ 
   free_vector(epj,1,nlstate+1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*  scanf("%d ",i); */        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /*------- Variance limit prevalence------*/      
         cptj=0;
 strcpy(fileresvpl,"vpl");        for(j=1; j<= nlstate; j++){
   strcat(fileresvpl,fileres);          for(i=1; i<=nlstate; i++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            cptj=cptj+1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     exit(0);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          }
         }
  k=0;       
  for(cptcov=1;cptcov<=i1;cptcov++){       
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(i=1; i<=npar; i++) 
      k=k+1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      fprintf(ficresvpl,"\n#****** ");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for(j=1;j<=cptcovn;j++)        
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        cptj=0;
      fprintf(ficresvpl,"******\n");        for(j=1; j<= nlstate; j++){
                for(i=1;i<=nlstate;i++){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            cptj=cptj+1;
      oldm=oldms;savm=savms;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  }            }
           }
   fclose(ficresvpl);        }
         for(j=1; j<= nlstate*nlstate; j++)
   /*---------- End : free ----------------*/          for(h=0; h<=nhstepm-1; h++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       } 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     
    /* End theta */
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       for(h=0; h<=nhstepm-1; h++)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   free_matrix(matcov,1,npar,1,npar);            trgradg[h][j][theta]=gradg[h][theta][j];
   free_vector(delti,1,npar);       
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       for(i=1;i<=nlstate*nlstate;i++)
         for(j=1;j<=nlstate*nlstate;j++)
   printf("End of Imach\n");          varhe[i][j][(int)age] =0.;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
         printf("%d|",(int)age);fflush(stdout);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /*printf("Total time was %d uSec.\n", total_usecs);*/       for(h=0;h<=nhstepm-1;h++){
   /*------ End -----------*/        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
  end:          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 #ifdef windows          for(i=1;i<=nlstate*nlstate;i++)
  chdir(pathcd);            for(j=1;j<=nlstate*nlstate;j++)
 #endif              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
  system("wgnuplot ../gp37mgw/graph.plt");        }
       }
 #ifdef windows      /* Computing expectancies */
   while (z[0] != 'q') {      for(i=1; i<=nlstate;i++)
     chdir(pathcd);        for(j=1; j<=nlstate;j++)
     printf("\nType e to edit output files, c to start again, and q for exiting: ");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     scanf("%s",z);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     if (z[0] == 'c') system("./imach");            
     else if (z[0] == 'e') {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       chdir(path);  
       system("index.htm");          }
     }  
     else if (z[0] == 'q') exit(0);      fprintf(ficreseij,"%3.0f",age );
   }      cptj=0;
 #endif      for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++){
           cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
       fprintf(ficreseij,"\n");
      
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficresvij, "#Local time at start: %s", strstart);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.114


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>