Diff for /imach/src/imach.c between versions 1.125 and 1.130

version 1.125, 2006/04/04 15:20:31 version 1.130, 2009/05/26 06:44:34
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence
    for age prevalim()     for age prevalim()
   h Pij x    h Pij x
   variance of p varprob    variance of p varprob
   forecasting if prevfcast==1 prevforecast call prevalence()    forecasting if prevfcast==1 prevforecast call prevalence()
   health expectancies    health expectancies
   Variance-covariance of DFLE    Variance-covariance of DFLE
   prevalence()    prevalence()
    movingaverage()     movingaverage()
   varevsij()    varevsij() 
   if popbased==1 varevsij(,popbased)    if popbased==1 varevsij(,popbased)
   total life expectancies    total life expectancies
   Variance of period (stable) prevalence    Variance of period (stable) prevalence
  end   end
 */  */
   
   
   
     
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
 #include <stdlib.h>  #include <stdlib.h>
 #include <string.h>  #include <string.h>
 #include <unistd.h>  #include <unistd.h>
   
 #include <limits.h>  #include <limits.h>
 #include <sys/types.h>  #include <sys/types.h>
 #include <sys/stat.h>  #include <sys/stat.h>
 #include <errno.h>  #include <errno.h>
 extern int errno;  extern int errno;
   
 /* #include <sys/time.h> */  /* #include <sys/time.h> */
 #include <time.h>  #include <time.h>
 #include "timeval.h"  #include "timeval.h"
   
 /* #include <libintl.h> */  /* #include <libintl.h> */
 /* #define _(String) gettext (String) */  /* #define _(String) gettext (String) */
   
 #define MAXLINE 256  #define MAXLINE 256
   
 #define GNUPLOTPROGRAM "gnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 132  #define FILENAMELENGTH 132
   
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NINTERVMAX 8  #define NINTERVMAX 8
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define NCOVMAX 8 /* Maximum number of covariates */  #define NCOVMAX 20 /* Maximum number of covariates */
 #define MAXN 20000  #define MAXN 20000
 #define YEARM 12. /* Number of months per year */  #define YEARM 12. /* Number of months per year */
 #define AGESUP 130  #define AGESUP 130
 #define AGEBASE 40  #define AGEBASE 40
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 #ifdef UNIX  #ifdef UNIX
 #define DIRSEPARATOR '/'  #define DIRSEPARATOR '/'
 #define CHARSEPARATOR "/"  #define CHARSEPARATOR "/"
 #define ODIRSEPARATOR '\\'  #define ODIRSEPARATOR '\\'
 #else  #else
 #define DIRSEPARATOR '\\'  #define DIRSEPARATOR '\\'
 #define CHARSEPARATOR "\\"  #define CHARSEPARATOR "\\"
 #define ODIRSEPARATOR '/'  #define ODIRSEPARATOR '/'
 #endif  #endif
   
 /* $Id$ */  /* $Id$ */
 /* $State$ */  /* $State$ */
   
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
 char fullversion[]="$Revision$ $Date$";  char fullversion[]="$Revision$ $Date$"; 
 char strstart[80];  char strstart[80];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int nvar;  int nvar=0;
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 int npar=NPARMAX;  int npar=NPARMAX;
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int popbased=0;  int popbased=0;
   
 int *wav; /* Number of waves for this individuual 0 is possible */  int *wav; /* Number of waves for this individuual 0 is possible */
 int maxwav; /* Maxim number of waves */  int maxwav=0; /* Maxim number of waves */
 int jmin, jmax; /* min, max spacing between 2 waves */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 int ijmin, ijmax; /* Individuals having jmin and jmax */  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 int gipmx, gsw; /* Global variables on the number of contributions  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
                    to the likelihood and the sum of weights (done by funcone)*/                     to the likelihood and the sum of weights (done by funcone)*/
 int mle, weightopt;  int mle=1, weightopt=0;
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
            * wave mi and wave mi+1 is not an exact multiple of stepm. */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double jmean; /* Mean space between 2 waves */  double jmean=1; /* Mean space between 2 waves */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 FILE *ficlog, *ficrespow;  FILE *ficlog, *ficrespow;
 int globpr; /* Global variable for printing or not */  int globpr=0; /* Global variable for printing or not */
 double fretone; /* Only one call to likelihood */  double fretone; /* Only one call to likelihood */
 long ipmx; /* Number of contributions */  long ipmx=0; /* Number of contributions */
 double sw; /* Sum of weights */  double sw; /* Sum of weights */
 char filerespow[FILENAMELENGTH];  char filerespow[FILENAMELENGTH];
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 FILE *ficresilk;  FILE *ficresilk;
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 FILE *ficresprobmorprev;  FILE *ficresprobmorprev;
 FILE *fichtm, *fichtmcov; /* Html File */  FILE *fichtm, *fichtmcov; /* Html File */
 FILE *ficreseij;  FILE *ficreseij;
 char filerese[FILENAMELENGTH];  char filerese[FILENAMELENGTH];
 FILE *ficresstdeij;  FILE *ficresstdeij;
 char fileresstde[FILENAMELENGTH];  char fileresstde[FILENAMELENGTH];
 FILE *ficrescveij;  FILE *ficrescveij;
 char filerescve[FILENAMELENGTH];  char filerescve[FILENAMELENGTH];
 FILE  *ficresvij;  FILE  *ficresvij;
 char fileresv[FILENAMELENGTH];  char fileresv[FILENAMELENGTH];
 FILE  *ficresvpl;  FILE  *ficresvpl;
 char fileresvpl[FILENAMELENGTH];  char fileresvpl[FILENAMELENGTH];
 char title[MAXLINE];  char title[MAXLINE];
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 char command[FILENAMELENGTH];  char command[FILENAMELENGTH];
 int  outcmd=0;  int  outcmd=0;
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 char filelog[FILENAMELENGTH]; /* Log file */  char filelog[FILENAMELENGTH]; /* Log file */
 char filerest[FILENAMELENGTH];  char filerest[FILENAMELENGTH];
 char fileregp[FILENAMELENGTH];  char fileregp[FILENAMELENGTH];
 char popfile[FILENAMELENGTH];  char popfile[FILENAMELENGTH];
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 struct timezone tzp;  struct timezone tzp;
 extern int gettimeofday();  extern int gettimeofday();
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 long time_value;  long time_value;
 extern long time();  extern long time();
 char strcurr[80], strfor[80];  char strcurr[80], strfor[80];
   
 char *endptr;  char *endptr;
 long lval;  long lval;
 double dval;  double dval;
   
 #define NR_END 1  #define NR_END 1
 #define FREE_ARG char*  #define FREE_ARG char*
 #define FTOL 1.0e-10  #define FTOL 1.0e-10
   
 #define NRANSI  #define NRANSI 
 #define ITMAX 200  #define ITMAX 200 
   
 #define TOL 2.0e-4  #define TOL 2.0e-4 
   
 #define CGOLD 0.3819660  #define CGOLD 0.3819660 
 #define ZEPS 1.0e-10  #define ZEPS 1.0e-10 
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 #define GOLD 1.618034  #define GOLD 1.618034 
 #define GLIMIT 100.0  #define GLIMIT 100.0 
 #define TINY 1.0e-20  #define TINY 1.0e-20 
   
 static double maxarg1,maxarg2;  static double maxarg1,maxarg2;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #define rint(a) floor(a+0.5)  #define rint(a) floor(a+0.5)
   
 static double sqrarg;  static double sqrarg;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 int agegomp= AGEGOMP;  int agegomp= AGEGOMP;
   
 int imx;  int imx; 
 int stepm=1;  int stepm=1;
 /* Stepm, step in month: minimum step interpolation*/  /* Stepm, step in month: minimum step interpolation*/
   
 int estepm;  int estepm;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 int m,nb;  int m,nb;
 long *num;  long *num;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij, ***probs;  double **pmmij, ***probs;
 double *ageexmed,*agecens;  double *ageexmed,*agecens;
 double dateintmean=0;  double dateintmean=0;
   
 double *weight;  double *weight;
 int **s; /* Status */  int **s; /* Status */
 double *agedc, **covar, idx;  double *agedc, **covar, idx;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double *lsurv, *lpop, *tpop;  double *lsurv, *lpop, *tpop;
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double ftolhess; /* Tolerance for computing hessian */  double ftolhess; /* Tolerance for computing hessian */
   
 /**************** split *************************/  /**************** split *************************/
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
      the name of the file (name), its extension only (ext) and its first part of the name (finame)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   */    */ 
   char  *ss;                            /* pointer */    char  *ss;                            /* pointer */
   int   l1, l2;                         /* length counters */    int   l1, l2;                         /* length counters */
   
   l1 = strlen(path );                   /* length of path */    l1 = strlen(path );                   /* length of path */
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if ( ss == NULL ) {                   /* no directory, so determine current directory */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     strcpy( name, path );               /* we got the fullname name because no directory */      strcpy( name, path );               /* we got the fullname name because no directory */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     /* get current working directory */      /* get current working directory */
     /*    extern  char* getcwd ( char *buf , int len);*/      /*    extern  char* getcwd ( char *buf , int len);*/
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       return( GLOCK_ERROR_GETCWD );        return( GLOCK_ERROR_GETCWD );
     }      }
     /* got dirc from getcwd*/      /* got dirc from getcwd*/
     printf(" DIRC = %s \n",dirc);      printf(" DIRC = %s \n",dirc);
   } else {                              /* strip direcotry from path */    } else {                              /* strip direcotry from path */
     ss++;                               /* after this, the filename */      ss++;                               /* after this, the filename */
     l2 = strlen( ss );                  /* length of filename */      l2 = strlen( ss );                  /* length of filename */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     strcpy( name, ss );         /* save file name */      strcpy( name, ss );         /* save file name */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     dirc[l1-l2] = 0;                    /* add zero */      dirc[l1-l2] = 0;                    /* add zero */
     printf(" DIRC2 = %s \n",dirc);      printf(" DIRC2 = %s \n",dirc);
   }    }
   /* We add a separator at the end of dirc if not exists */    /* We add a separator at the end of dirc if not exists */
   l1 = strlen( dirc );                  /* length of directory */    l1 = strlen( dirc );                  /* length of directory */
   if( dirc[l1-1] != DIRSEPARATOR ){    if( dirc[l1-1] != DIRSEPARATOR ){
     dirc[l1] =  DIRSEPARATOR;      dirc[l1] =  DIRSEPARATOR;
     dirc[l1+1] = 0;      dirc[l1+1] = 0; 
     printf(" DIRC3 = %s \n",dirc);      printf(" DIRC3 = %s \n",dirc);
   }    }
   ss = strrchr( name, '.' );            /* find last / */    ss = strrchr( name, '.' );            /* find last / */
   if (ss >0){    if (ss >0){
     ss++;      ss++;
     strcpy(ext,ss);                     /* save extension */      strcpy(ext,ss);                     /* save extension */
     l1= strlen( name);      l1= strlen( name);
     l2= strlen(ss)+1;      l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);      strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;      finame[l1-l2]= 0;
   }    }
   
   return( 0 );                          /* we're done */    return( 0 );                          /* we're done */
 }  }
   
   
 /******************************************/  /******************************************/
   
 void replace_back_to_slash(char *s, char*t)  void replace_back_to_slash(char *s, char*t)
 {  {
   int i;    int i;
   int lg=0;    int lg=0;
   i=0;    i=0;
   lg=strlen(t);    lg=strlen(t);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
     (s[i] = t[i]);      (s[i] = t[i]);
     if (t[i]== '\\') s[i]='/';      if (t[i]== '\\') s[i]='/';
   }    }
 }  }
   
 int nbocc(char *s, char occ)  int nbocc(char *s, char occ)
 {  {
   int i,j=0;    int i,j=0;
   int lg=20;    int lg=20;
   i=0;    i=0;
   lg=strlen(s);    lg=strlen(s);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
   if  (s[i] == occ ) j++;    if  (s[i] == occ ) j++;
   }    }
   return j;    return j;
 }  }
   
 void cutv(char *u,char *v, char*t, char occ)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   /* cuts string t into u and v where u ends before first occurence of char 'occ'    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
      gives u="abcedf" and v="ghi2j" */       gives u="abcedf" and v="ghi2j" */
   int i,lg,j,p=0;    int i,lg,j,p=0;
   i=0;    i=0;
   for(j=0; j<=strlen(t)-1; j++) {    for(j=0; j<=strlen(t)-1; j++) {
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   }    }
   
   lg=strlen(t);    lg=strlen(t);
   for(j=0; j<p; j++) {    for(j=0; j<p; j++) {
     (u[j] = t[j]);      (u[j] = t[j]);
   }    }
      u[p]='\0';       u[p]='\0';
   
    for(j=0; j<= lg; j++) {     for(j=0; j<= lg; j++) {
     if (j>=(p+1))(v[j-p-1] = t[j]);      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
 }  }
   
 /********************** nrerror ********************/  /********************** nrerror ********************/
   
 void nrerror(char error_text[])  void nrerror(char error_text[])
 {  {
   fprintf(stderr,"ERREUR ...\n");    fprintf(stderr,"ERREUR ...\n");
   fprintf(stderr,"%s\n",error_text);    fprintf(stderr,"%s\n",error_text);
   exit(EXIT_FAILURE);    exit(EXIT_FAILURE);
 }  }
 /*********************** vector *******************/  /*********************** vector *******************/
 double *vector(int nl, int nh)  double *vector(int nl, int nh)
 {  {
   double *v;    double *v;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!v) nrerror("allocation failure in vector");    if (!v) nrerror("allocation failure in vector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /************************ free vector ******************/  /************************ free vector ******************/
 void free_vector(double*v, int nl, int nh)  void free_vector(double*v, int nl, int nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /************************ivector *******************************/  /************************ivector *******************************/
 int *ivector(long nl,long nh)  int *ivector(long nl,long nh)
 {  {
   int *v;    int *v;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   if (!v) nrerror("allocation failure in ivector");    if (!v) nrerror("allocation failure in ivector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /******************free ivector **************************/  /******************free ivector **************************/
 void free_ivector(int *v, long nl, long nh)  void free_ivector(int *v, long nl, long nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /************************lvector *******************************/  /************************lvector *******************************/
 long *lvector(long nl,long nh)  long *lvector(long nl,long nh)
 {  {
   long *v;    long *v;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   if (!v) nrerror("allocation failure in ivector");    if (!v) nrerror("allocation failure in ivector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /******************free lvector **************************/  /******************free lvector **************************/
 void free_lvector(long *v, long nl, long nh)  void free_lvector(long *v, long nl, long nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /******************* imatrix *******************************/  /******************* imatrix *******************************/
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int **m;    int **m; 
      
   /* allocate pointers to rows */    /* allocate pointers to rows */ 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()"); 
   m += NR_END;    m += NR_END; 
   m -= nrl;    m -= nrl; 
      
      
   /* allocate rows and set pointers to them */    /* allocate rows and set pointers to them */ 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   m[nrl] += NR_END;    m[nrl] += NR_END; 
   m[nrl] -= ncl;    m[nrl] -= ncl; 
      
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   /* return pointer to array of pointers to rows */    /* return pointer to array of pointers to rows */ 
   return m;    return m; 
 }  } 
   
 /****************** free_imatrix *************************/  /****************** free_imatrix *************************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  void free_imatrix(m,nrl,nrh,ncl,nch)
       int **m;        int **m;
       long nch,ncl,nrh,nrl;        long nch,ncl,nrh,nrl; 
      /* free an int matrix allocated by imatrix() */       /* free an int matrix allocated by imatrix() */ 
 {  { 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   free((FREE_ARG) (m+nrl-NR_END));    free((FREE_ARG) (m+nrl-NR_END)); 
 }  } 
   
 /******************* matrix *******************************/  /******************* matrix *******************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **m;    double **m;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m += NR_END;    m += NR_END;
   m -= nrl;    m -= nrl;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl] += NR_END;    m[nrl] += NR_END;
   m[nrl] -= ncl;    m[nrl] -= ncl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   return m;    return m;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
    */     */
 }  }
   
 /*************************free matrix ************************/  /*************************free matrix ************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /******************* ma3x *******************************/  /******************* ma3x *******************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double ***m;    double ***m;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m += NR_END;    m += NR_END;
   m -= nrl;    m -= nrl;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl] += NR_END;    m[nrl] += NR_END;
   m[nrl] -= ncl;    m[nrl] -= ncl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   m[nrl][ncl] += NR_END;    m[nrl][ncl] += NR_END;
   m[nrl][ncl] -= nll;    m[nrl][ncl] -= nll;
   for (j=ncl+1; j<=nch; j++)    for (j=ncl+1; j<=nch; j++) 
     m[nrl][j]=m[nrl][j-1]+nlay;      m[nrl][j]=m[nrl][j-1]+nlay;
      
   for (i=nrl+1; i<=nrh; i++) {    for (i=nrl+1; i<=nrh; i++) {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=ncl+1; j<=nch; j++)      for (j=ncl+1; j<=nch; j++) 
       m[i][j]=m[i][j-1]+nlay;        m[i][j]=m[i][j-1]+nlay;
   }    }
   return m;    return m; 
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   */    */
 }  }
   
 /*************************free ma3x ************************/  /*************************free ma3x ************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /*************** function subdirf ***********/  /*************** function subdirf ***********/
 char *subdirf(char fileres[])  char *subdirf(char fileres[])
 {  {
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/"); /* Add to the right */    strcat(tmpout,"/"); /* Add to the right */
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /*************** function subdirf2 ***********/  /*************** function subdirf2 ***********/
 char *subdirf2(char fileres[], char *preop)  char *subdirf2(char fileres[], char *preop)
 {  {
      
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/");    strcat(tmpout,"/");
   strcat(tmpout,preop);    strcat(tmpout,preop);
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /*************** function subdirf3 ***********/  /*************** function subdirf3 ***********/
 char *subdirf3(char fileres[], char *preop, char *preop2)  char *subdirf3(char fileres[], char *preop, char *preop2)
 {  {
      
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/");    strcat(tmpout,"/");
   strcat(tmpout,preop);    strcat(tmpout,preop);
   strcat(tmpout,preop2);    strcat(tmpout,preop2);
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /***************** f1dim *************************/  /***************** f1dim *************************/
 extern int ncom;  extern int ncom; 
 extern double *pcom,*xicom;  extern double *pcom,*xicom;
 extern double (*nrfunc)(double []);  extern double (*nrfunc)(double []); 
     
 double f1dim(double x)  double f1dim(double x) 
 {  { 
   int j;    int j; 
   double f;    double f;
   double *xt;    double *xt; 
     
   xt=vector(1,ncom);    xt=vector(1,ncom); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   f=(*nrfunc)(xt);    f=(*nrfunc)(xt); 
   free_vector(xt,1,ncom);    free_vector(xt,1,ncom); 
   return f;    return f; 
 }  } 
   
 /*****************brent *************************/  /*****************brent *************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 {  { 
   int iter;    int iter; 
   double a,b,d,etemp;    double a,b,d,etemp;
   double fu,fv,fw,fx;    double fu,fv,fw,fx;
   double ftemp;    double ftemp;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double e=0.0;    double e=0.0; 
     
   a=(ax < cx ? ax : cx);    a=(ax < cx ? ax : cx); 
   b=(ax > cx ? ax : cx);    b=(ax > cx ? ax : cx); 
   x=w=v=bx;    x=w=v=bx; 
   fw=fv=fx=(*f)(x);    fw=fv=fx=(*f)(x); 
   for (iter=1;iter<=ITMAX;iter++) {    for (iter=1;iter<=ITMAX;iter++) { 
     xm=0.5*(a+b);      xm=0.5*(a+b); 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf(".");fflush(stdout);      printf(".");fflush(stdout);
     fprintf(ficlog,".");fflush(ficlog);      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #endif  #endif
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       *xmin=x;        *xmin=x; 
       return fx;        return fx; 
     }      } 
     ftemp=fu;      ftemp=fu;
     if (fabs(e) > tol1) {      if (fabs(e) > tol1) { 
       r=(x-w)*(fx-fv);        r=(x-w)*(fx-fv); 
       q=(x-v)*(fx-fw);        q=(x-v)*(fx-fw); 
       p=(x-v)*q-(x-w)*r;        p=(x-v)*q-(x-w)*r; 
       q=2.0*(q-r);        q=2.0*(q-r); 
       if (q > 0.0) p = -p;        if (q > 0.0) p = -p; 
       q=fabs(q);        q=fabs(q); 
       etemp=e;        etemp=e; 
       e=d;        e=d; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       else {        else { 
         d=p/q;          d=p/q; 
         u=x+d;          u=x+d; 
         if (u-a < tol2 || b-u < tol2)          if (u-a < tol2 || b-u < tol2) 
           d=SIGN(tol1,xm-x);            d=SIGN(tol1,xm-x); 
       }        } 
     } else {      } else { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     fu=(*f)(u);      fu=(*f)(u); 
     if (fu <= fx) {      if (fu <= fx) { 
       if (u >= x) a=x; else b=x;        if (u >= x) a=x; else b=x; 
       SHFT(v,w,x,u)        SHFT(v,w,x,u) 
         SHFT(fv,fw,fx,fu)          SHFT(fv,fw,fx,fu) 
         } else {          } else { 
           if (u < x) a=u; else b=u;            if (u < x) a=u; else b=u; 
           if (fu <= fw || w == x) {            if (fu <= fw || w == x) { 
             v=w;              v=w; 
             w=u;              w=u; 
             fv=fw;              fv=fw; 
             fw=fu;              fw=fu; 
           } else if (fu <= fv || v == x || v == w) {            } else if (fu <= fv || v == x || v == w) { 
             v=u;              v=u; 
             fv=fu;              fv=fu; 
           }            } 
         }          } 
   }    } 
   nrerror("Too many iterations in brent");    nrerror("Too many iterations in brent"); 
   *xmin=x;    *xmin=x; 
   return fx;    return fx; 
 }  } 
   
 /****************** mnbrak ***********************/  /****************** mnbrak ***********************/
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             double (*func)(double))              double (*func)(double)) 
 {  { 
   double ulim,u,r,q, dum;    double ulim,u,r,q, dum;
   double fu;    double fu; 
     
   *fa=(*func)(*ax);    *fa=(*func)(*ax); 
   *fb=(*func)(*bx);    *fb=(*func)(*bx); 
   if (*fb > *fa) {    if (*fb > *fa) { 
     SHFT(dum,*ax,*bx,dum)      SHFT(dum,*ax,*bx,dum) 
       SHFT(dum,*fb,*fa,dum)        SHFT(dum,*fb,*fa,dum) 
       }        } 
   *cx=(*bx)+GOLD*(*bx-*ax);    *cx=(*bx)+GOLD*(*bx-*ax); 
   *fc=(*func)(*cx);    *fc=(*func)(*cx); 
   while (*fb > *fc) {    while (*fb > *fc) { 
     r=(*bx-*ax)*(*fb-*fc);      r=(*bx-*ax)*(*fb-*fc); 
     q=(*bx-*cx)*(*fb-*fa);      q=(*bx-*cx)*(*fb-*fa); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     if ((*bx-u)*(u-*cx) > 0.0) {      if ((*bx-u)*(u-*cx) > 0.0) { 
       fu=(*func)(u);        fu=(*func)(u); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       fu=(*func)(u);        fu=(*func)(u); 
       if (fu < *fc) {        if (fu < *fc) { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           SHFT(*fb,*fc,fu,(*func)(u))            SHFT(*fb,*fc,fu,(*func)(u)) 
           }            } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       u=ulim;        u=ulim; 
       fu=(*func)(u);        fu=(*func)(u); 
     } else {      } else { 
       u=(*cx)+GOLD*(*cx-*bx);        u=(*cx)+GOLD*(*cx-*bx); 
       fu=(*func)(u);        fu=(*func)(u); 
     }      } 
     SHFT(*ax,*bx,*cx,u)      SHFT(*ax,*bx,*cx,u) 
       SHFT(*fa,*fb,*fc,fu)        SHFT(*fa,*fb,*fc,fu) 
       }        } 
 }  } 
   
 /*************** linmin ************************/  /*************** linmin ************************/
   
 int ncom;  int ncom; 
 double *pcom,*xicom;  double *pcom,*xicom;
 double (*nrfunc)(double []);  double (*nrfunc)(double []); 
     
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   double brent(double ax, double bx, double cx,    double brent(double ax, double bx, double cx, 
                double (*f)(double), double tol, double *xmin);                 double (*f)(double), double tol, double *xmin); 
   double f1dim(double x);    double f1dim(double x); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
               double *fc, double (*func)(double));                double *fc, double (*func)(double)); 
   int j;    int j; 
   double xx,xmin,bx,ax;    double xx,xmin,bx,ax; 
   double fx,fb,fa;    double fx,fb,fa;
     
   ncom=n;    ncom=n; 
   pcom=vector(1,n);    pcom=vector(1,n); 
   xicom=vector(1,n);    xicom=vector(1,n); 
   nrfunc=func;    nrfunc=func; 
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     pcom[j]=p[j];      pcom[j]=p[j]; 
     xicom[j]=xi[j];      xicom[j]=xi[j]; 
   }    } 
   ax=0.0;    ax=0.0; 
   xx=1.0;    xx=1.0; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 #endif  #endif
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     xi[j] *= xmin;      xi[j] *= xmin; 
     p[j] += xi[j];      p[j] += xi[j]; 
   }    } 
   free_vector(xicom,1,n);    free_vector(xicom,1,n); 
   free_vector(pcom,1,n);    free_vector(pcom,1,n); 
 }  } 
   
 char *asc_diff_time(long time_sec, char ascdiff[])  char *asc_diff_time(long time_sec, char ascdiff[])
 {  {
   long sec_left, days, hours, minutes;    long sec_left, days, hours, minutes;
   days = (time_sec) / (60*60*24);    days = (time_sec) / (60*60*24);
   sec_left = (time_sec) % (60*60*24);    sec_left = (time_sec) % (60*60*24);
   hours = (sec_left) / (60*60) ;    hours = (sec_left) / (60*60) ;
   sec_left = (sec_left) %(60*60);    sec_left = (sec_left) %(60*60);
   minutes = (sec_left) /60;    minutes = (sec_left) /60;
   sec_left = (sec_left) % (60);    sec_left = (sec_left) % (60);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   return ascdiff;    return ascdiff;
 }  }
   
 /*************** powell ************************/  /*************** powell ************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             double (*func)(double []))              double (*func)(double [])) 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    void linmin(double p[], double xi[], int n, double *fret, 
               double (*func)(double []));                double (*func)(double [])); 
   int i,ibig,j;    int i,ibig,j; 
   double del,t,*pt,*ptt,*xit;    double del,t,*pt,*ptt,*xit;
   double fp,fptt;    double fp,fptt;
   double *xits;    double *xits;
   int niterf, itmp;    int niterf, itmp;
   
   pt=vector(1,n);    pt=vector(1,n); 
   ptt=vector(1,n);    ptt=vector(1,n); 
   xit=vector(1,n);    xit=vector(1,n); 
   xits=vector(1,n);    xits=vector(1,n); 
   *fret=(*func)(p);    *fret=(*func)(p); 
   for (j=1;j<=n;j++) pt[j]=p[j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (*iter=1;;++(*iter)) {    for (*iter=1;;++(*iter)) { 
     fp=(*fret);      fp=(*fret); 
     ibig=0;      ibig=0; 
     del=0.0;      del=0.0; 
     last_time=curr_time;      last_time=curr_time;
     (void) gettimeofday(&curr_time,&tzp);      (void) gettimeofday(&curr_time,&tzp);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
    for (i=1;i<=n;i++) {     for (i=1;i<=n;i++) {
       printf(" %d %.12f",i, p[i]);        printf(" %d %.12f",i, p[i]);
       fprintf(ficlog," %d %.12lf",i, p[i]);        fprintf(ficlog," %d %.12lf",i, p[i]);
       fprintf(ficrespow," %.12lf", p[i]);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
     fprintf(ficrespow,"\n");fflush(ficrespow);      fprintf(ficrespow,"\n");fflush(ficrespow);
     if(*iter <=3){      if(*iter <=3){
       tm = *localtime(&curr_time.tv_sec);        tm = *localtime(&curr_time.tv_sec);
       strcpy(strcurr,asctime(&tm));        strcpy(strcurr,asctime(&tm));
 /*       asctime_r(&tm,strcurr); */  /*       asctime_r(&tm,strcurr); */
       forecast_time=curr_time;        forecast_time=curr_time; 
       itmp = strlen(strcurr);        itmp = strlen(strcurr);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         strcurr[itmp-1]='\0';          strcurr[itmp-1]='\0';
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for(niterf=10;niterf<=30;niterf+=10){        for(niterf=10;niterf<=30;niterf+=10){
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         tmf = *localtime(&forecast_time.tv_sec);          tmf = *localtime(&forecast_time.tv_sec);
 /*      asctime_r(&tmf,strfor); */  /*      asctime_r(&tmf,strfor); */
         strcpy(strfor,asctime(&tmf));          strcpy(strfor,asctime(&tmf));
         itmp = strlen(strfor);          itmp = strlen(strfor);
         if(strfor[itmp-1]=='\n')          if(strfor[itmp-1]=='\n')
         strfor[itmp-1]='\0';          strfor[itmp-1]='\0';
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
     }      }
     for (i=1;i<=n;i++) {      for (i=1;i<=n;i++) { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       fptt=(*fret);        fptt=(*fret); 
 #ifdef DEBUG  #ifdef DEBUG
       printf("fret=%lf \n",*fret);        printf("fret=%lf \n",*fret);
       fprintf(ficlog,"fret=%lf \n",*fret);        fprintf(ficlog,"fret=%lf \n",*fret);
 #endif  #endif
       printf("%d",i);fflush(stdout);        printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"%d",i);fflush(ficlog);
       linmin(p,xit,n,fret,func);        linmin(p,xit,n,fret,func); 
       if (fabs(fptt-(*fret)) > del) {        if (fabs(fptt-(*fret)) > del) { 
         del=fabs(fptt-(*fret));          del=fabs(fptt-(*fret)); 
         ibig=i;          ibig=i; 
       }        } 
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));        printf("%d %.12e",i,(*fret));
       fprintf(ficlog,"%d %.12e",i,(*fret));        fprintf(ficlog,"%d %.12e",i,(*fret));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf(" x(%d)=%.12e",j,xit[j]);          printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(j=1;j<=n;j++) {        for(j=1;j<=n;j++) {
         printf(" p=%.12e",p[j]);          printf(" p=%.12e",p[j]);
         fprintf(ficlog," p=%.12e",p[j]);          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
 #endif  #endif
     }      } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 #ifdef DEBUG  #ifdef DEBUG
       int k[2],l;        int k[2],l;
       k[0]=1;        k[0]=1;
       k[1]=-1;        k[1]=-1;
       printf("Max: %.12e",(*func)(p));        printf("Max: %.12e",(*func)(p));
       fprintf(ficlog,"Max: %.12e",(*func)(p));        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         printf(" %.12e",p[j]);          printf(" %.12e",p[j]);
         fprintf(ficlog," %.12e",p[j]);          fprintf(ficlog," %.12e",p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
       for(l=0;l<=1;l++) {        for(l=0;l<=1;l++) {
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }          }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
 #endif  #endif
   
   
       free_vector(xit,1,n);        free_vector(xit,1,n); 
       free_vector(xits,1,n);        free_vector(xits,1,n); 
       free_vector(ptt,1,n);        free_vector(ptt,1,n); 
       free_vector(pt,1,n);        free_vector(pt,1,n); 
       return;        return; 
     }      } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=n;j++) {      for (j=1;j<=n;j++) { 
       ptt[j]=2.0*p[j]-pt[j];        ptt[j]=2.0*p[j]-pt[j]; 
       xit[j]=p[j]-pt[j];        xit[j]=p[j]-pt[j]; 
       pt[j]=p[j];        pt[j]=p[j]; 
     }      } 
     fptt=(*func)(ptt);      fptt=(*func)(ptt); 
     if (fptt < fp) {      if (fptt < fp) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if (t < 0.0) {        if (t < 0.0) { 
         linmin(p,xit,n,fret,func);          linmin(p,xit,n,fret,func); 
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) { 
           xi[j][ibig]=xi[j][n];            xi[j][ibig]=xi[j][n]; 
           xi[j][n]=xit[j];            xi[j][n]=xit[j]; 
         }          }
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(j=1;j<=n;j++){          for(j=1;j<=n;j++){
           printf(" %.12e",xit[j]);            printf(" %.12e",xit[j]);
           fprintf(ficlog," %.12e",xit[j]);            fprintf(ficlog," %.12e",xit[j]);
         }          }
         printf("\n");          printf("\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
 #endif  #endif
       }        }
     }      } 
   }    } 
 }  } 
   
 /**** Prevalence limit (stable or period prevalence)  ****************/  /**** Prevalence limit (stable or period prevalence)  ****************/
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      matrix by transitions matrix until convergence is reached */       matrix by transitions matrix until convergence is reached */
   
   int i, ii,j,k;    int i, ii,j,k;
   double min, max, maxmin, maxmax,sumnew=0.;    double min, max, maxmin, maxmax,sumnew=0.;
   double **matprod2();    double **matprod2();
   double **out, cov[NCOVMAX], **pmij();    double **out, cov[NCOVMAX], **pmij();
   double **newm;    double **newm;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
   
    cov[1]=1.;     cov[1]=1.;
     
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     newm=savm;      newm=savm;
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
      cov[2]=agefin;       cov[2]=agefin;
      
       for (k=1; k<=cptcovn;k++) {        for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
     savm=oldm;      savm=oldm;
     oldm=newm;      oldm=newm;
     maxmax=0.;      maxmax=0.;
     for(j=1;j<=nlstate;j++){      for(j=1;j<=nlstate;j++){
       min=1.;        min=1.;
       max=0.;        max=0.;
       for(i=1; i<=nlstate; i++) {        for(i=1; i<=nlstate; i++) {
         sumnew=0;          sumnew=0;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         prlim[i][j]= newm[i][j]/(1-sumnew);          prlim[i][j]= newm[i][j]/(1-sumnew);
         max=FMAX(max,prlim[i][j]);          max=FMAX(max,prlim[i][j]);
         min=FMIN(min,prlim[i][j]);          min=FMIN(min,prlim[i][j]);
       }        }
       maxmin=max-min;        maxmin=max-min;
       maxmax=FMAX(maxmax,maxmin);        maxmax=FMAX(maxmax,maxmin);
     }      }
     if(maxmax < ftolpl){      if(maxmax < ftolpl){
       return prlim;        return prlim;
     }      }
   }    }
 }  }
   
 /*************** transition probabilities ***************/  /*************** transition probabilities ***************/ 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   double s1, s2;    double s1, s2;
   /*double t34;*/    /*double t34;*/
   int i,j,j1, nc, ii, jj;    int i,j,j1, nc, ii, jj;
   
     for(i=1; i<= nlstate; i++){      for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){        for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/            /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         }          }
         ps[i][j]=s2;          ps[i][j]=s2;
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       }        }
       for(j=i+1; j<=nlstate+ndeath;j++){        for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         }          }
         ps[i][j]=s2;          ps[i][j]=s2;
       }        }
     }      }
     /*ps[3][2]=1;*/      /*ps[3][2]=1;*/
          
     for(i=1; i<= nlstate; i++){      for(i=1; i<= nlstate; i++){
       s1=0;        s1=0;
       for(j=1; j<i; j++)        for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);          s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)        for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);          s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);        ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)        for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)        for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */      } /* end i */
          
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){        for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;          ps[ii][jj]=0;
         ps[ii][ii]=1;          ps[ii][ii]=1;
       }        }
     }      }
          
   
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 /*         printf("ddd %lf ",ps[ii][jj]); */  /*         printf("ddd %lf ",ps[ii][jj]); */
 /*       } */  /*       } */
 /*       printf("\n "); */  /*       printf("\n "); */
 /*        } */  /*        } */
 /*        printf("\n ");printf("%lf ",cov[2]); */  /*        printf("\n ");printf("%lf ",cov[2]); */
        /*         /*
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       goto end;*/        goto end;*/
     return ps;      return ps;
 }  }
   
 /**************** Product of 2 matrices ******************/  /**************** Product of 2 matrices ******************/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /* in, b, out are matrice of pointers which should have been initialized    /* in, b, out are matrice of pointers which should have been initialized 
      before: only the contents of out is modified. The function returns       before: only the contents of out is modified. The function returns
      a pointer to pointers identical to out */       a pointer to pointers identical to out */
   long i, j, k;    long i, j, k;
   for(i=nrl; i<= nrh; i++)    for(i=nrl; i<= nrh; i++)
     for(k=ncolol; k<=ncoloh; k++)      for(k=ncolol; k<=ncoloh; k++)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         out[i][k] +=in[i][j]*b[j][k];          out[i][k] +=in[i][j]*b[j][k];
   
   return out;    return out;
 }  }
   
   
 /************* Higher Matrix Product ***************/  /************* Higher Matrix Product ***************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   /* Computes the transition matrix starting at age 'age' over    /* Computes the transition matrix starting at age 'age' over 
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      nhstepm*hstepm matrices.       nhstepm*hstepm matrices. 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      (typically every 2 years instead of every month which is too big       (typically every 2 years instead of every month which is too big 
      for the memory).       for the memory).
      Model is determined by parameters x and covariates have to be       Model is determined by parameters x and covariates have to be 
      included manually here.       included manually here. 
   
      */       */
   
   int i, j, d, h, k;    int i, j, d, h, k;
   double **out, cov[NCOVMAX];    double **out, cov[NCOVMAX];
   double **newm;    double **newm;
   
   /* Hstepm could be zero and should return the unit matrix */    /* Hstepm could be zero and should return the unit matrix */
   for (i=1;i<=nlstate+ndeath;i++)    for (i=1;i<=nlstate+ndeath;i++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[i][j]=(i==j ? 1.0 : 0.0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(h=1; h <=nhstepm; h++){    for(h=1; h <=nhstepm; h++){
     for(d=1; d <=hstepm; d++){      for(d=1; d <=hstepm; d++){
       newm=savm;        newm=savm;
       /* Covariates have to be included here again */        /* Covariates have to be included here again */
       cov[1]=1.;        cov[1]=1.;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1; k<=cptcovage;k++)        for (k=1; k<=cptcovage;k++)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       savm=oldm;        savm=oldm;
       oldm=newm;        oldm=newm;
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      for(i=1; i<=nlstate+ndeath; i++)
       for(j=1;j<=nlstate+ndeath;j++) {        for(j=1;j<=nlstate+ndeath;j++) {
         po[i][j][h]=newm[i][j];          po[i][j][h]=newm[i][j];
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
          */        }
       }      /*printf("h=%d ",h);*/
   } /* end h */    } /* end h */
   return po;  /*     printf("\n H=%d \n",h); */
 }    return po;
   }
   
 /*************** log-likelihood *************/  
 double func( double *x)  /*************** log-likelihood *************/
 {  double func( double *x)
   int i, ii, j, k, mi, d, kk;  {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    int i, ii, j, k, mi, d, kk;
   double **out;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double sw; /* Sum of weights */    double **out;
   double lli; /* Individual log likelihood */    double sw; /* Sum of weights */
   int s1, s2;    double lli; /* Individual log likelihood */
   double bbh, survp;    int s1, s2;
   long ipmx;    double bbh, survp;
   /*extern weight */    long ipmx;
   /* We are differentiating ll according to initial status */    /*extern weight */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* We are differentiating ll according to initial status */
   /*for(i=1;i<imx;i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf(" %d\n",s[4][i]);    /*for(i=1;i<imx;i++) 
   */      printf(" %d\n",s[4][i]);
   cov[1]=1.;    */
     cov[1]=1.;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   if(mle==1){  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    if(mle==1){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(mi=1; mi<= wav[i]-1; mi++){
           for (j=1;j<=nlstate+ndeath;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(d=0; d<dh[mi][i]; d++){            }
           newm=savm;          for(d=0; d<dh[mi][i]; d++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            newm=savm;
           for (kk=1; kk<=cptcovage;kk++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           savm=oldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           oldm=newm;            savm=oldm;
         } /* end mult */            oldm=newm;
                } /* end mult */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        
         /* But now since version 0.9 we anticipate for bias at large stepm.          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
          * If stepm is larger than one month (smallest stepm) and if the exact delay          /* But now since version 0.9 we anticipate for bias at large stepm.
          * (in months) between two waves is not a multiple of stepm, we rounded to           * If stepm is larger than one month (smallest stepm) and if the exact delay 
          * the nearest (and in case of equal distance, to the lowest) interval but now           * (in months) between two waves is not a multiple of stepm, we rounded to 
          * we keep into memory the bias bh[mi][i] and also the previous matrix product           * the nearest (and in case of equal distance, to the lowest) interval but now
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          * probability in order to take into account the bias as a fraction of the way           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies           * probability in order to take into account the bias as a fraction of the way
          * -stepm/2 to stepm/2 .           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
          * For stepm=1 the results are the same as for previous versions of Imach.           * -stepm/2 to stepm/2 .
          * For stepm > 1 the results are less biased than in previous versions.           * For stepm=1 the results are the same as for previous versions of Imach.
          */           * For stepm > 1 the results are less biased than in previous versions. 
         s1=s[mw[mi][i]][i];           */
         s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;          s2=s[mw[mi+1][i]][i];
         /* bias bh is positive if real duration          bbh=(double)bh[mi][i]/(double)stepm; 
          * is higher than the multiple of stepm and negative otherwise.          /* bias bh is positive if real duration
          */           * is higher than the multiple of stepm and negative otherwise.
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/           */
         if( s2 > nlstate){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           /* i.e. if s2 is a death state and if the date of death is known          if( s2 > nlstate){ 
              then the contribution to the likelihood is the probability to            /* i.e. if s2 is a death state and if the date of death is known 
              die between last step unit time and current  step unit time,               then the contribution to the likelihood is the probability to 
              which is also equal to probability to die before dh               die between last step unit time and current  step unit time, 
              minus probability to die before dh-stepm .               which is also equal to probability to die before dh 
              In version up to 0.92 likelihood was computed               minus probability to die before dh-stepm . 
         as if date of death was unknown. Death was treated as any other               In version up to 0.92 likelihood was computed
         health state: the date of the interview describes the actual state          as if date of death was unknown. Death was treated as any other
         and not the date of a change in health state. The former idea was          health state: the date of the interview describes the actual state
         to consider that at each interview the state was recorded          and not the date of a change in health state. The former idea was
         (healthy, disable or death) and IMaCh was corrected; but when we          to consider that at each interview the state was recorded
         introduced the exact date of death then we should have modified          (healthy, disable or death) and IMaCh was corrected; but when we
         the contribution of an exact death to the likelihood. This new          introduced the exact date of death then we should have modified
         contribution is smaller and very dependent of the step unit          the contribution of an exact death to the likelihood. This new
         stepm. It is no more the probability to die between last interview          contribution is smaller and very dependent of the step unit
         and month of death but the probability to survive from last          stepm. It is no more the probability to die between last interview
         interview up to one month before death multiplied by the          and month of death but the probability to survive from last
         probability to die within a month. Thanks to Chris          interview up to one month before death multiplied by the
         Jackson for correcting this bug.  Former versions increased          probability to die within a month. Thanks to Chris
         mortality artificially. The bad side is that we add another loop          Jackson for correcting this bug.  Former versions increased
         which slows down the processing. The difference can be up to 10%          mortality artificially. The bad side is that we add another loop
         lower mortality.          which slows down the processing. The difference can be up to 10%
           */          lower mortality.
           lli=log(out[s1][s2] - savm[s1][s2]);            */
             lli=log(out[s1][s2] - savm[s1][s2]);
   
         } else if  (s2==-2) {  
           for (j=1,survp=0. ; j<=nlstate; j++)          } else if  (s2==-2) {
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            for (j=1,survp=0. ; j<=nlstate; j++) 
           /*survp += out[s1][j]; */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);            /*survp += out[s1][j]; */
         }            lli= log(survp);
                  }
         else if  (s2==-4) {          
           for (j=3,survp=0. ; j<=nlstate; j++)            else if  (s2==-4) { 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            for (j=3,survp=0. ; j<=nlstate; j++)  
           lli= log(survp);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
           } 
         else if  (s2==-5) {  
           for (j=1,survp=0. ; j<=2; j++)            else if  (s2==-5) { 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            for (j=1,survp=0. ; j<=2; j++)  
           lli= log(survp);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
                  } 
         else{          
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          else{
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          } 
         /*if(lli ==000.0)*/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          /*if(lli ==000.0)*/
         ipmx +=1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         sw += weight[i];          ipmx +=1;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          sw += weight[i];
       } /* end of wave */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* end of individual */        } /* end of wave */
   }  else if(mle==2){      } /* end of individual */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }  else if(mle==2){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(mi=1; mi<= wav[i]-1; mi++){
           for (j=1;j<=nlstate+ndeath;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(d=0; d<=dh[mi][i]; d++){            }
           newm=savm;          for(d=0; d<=dh[mi][i]; d++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            newm=savm;
           for (kk=1; kk<=cptcovage;kk++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           savm=oldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           oldm=newm;            savm=oldm;
         } /* end mult */            oldm=newm;
                } /* end mult */
         s1=s[mw[mi][i]][i];        
         s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;          s2=s[mw[mi+1][i]][i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          bbh=(double)bh[mi][i]/(double)stepm; 
         ipmx +=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         sw += weight[i];          ipmx +=1;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          sw += weight[i];
       } /* end of wave */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* end of individual */        } /* end of wave */
   }  else if(mle==3){  /* exponential inter-extrapolation */      } /* end of individual */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(mi=1; mi<= wav[i]-1; mi++){
           for (j=1;j<=nlstate+ndeath;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(d=0; d<dh[mi][i]; d++){            }
           newm=savm;          for(d=0; d<dh[mi][i]; d++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            newm=savm;
           for (kk=1; kk<=cptcovage;kk++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           savm=oldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           oldm=newm;            savm=oldm;
         } /* end mult */            oldm=newm;
                } /* end mult */
         s1=s[mw[mi][i]][i];        
         s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;          s2=s[mw[mi+1][i]][i];
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          bbh=(double)bh[mi][i]/(double)stepm; 
         ipmx +=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         sw += weight[i];          ipmx +=1;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          sw += weight[i];
       } /* end of wave */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* end of individual */        } /* end of wave */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */      } /* end of individual */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(mi=1; mi<= wav[i]-1; mi++){
           for (j=1;j<=nlstate+ndeath;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(d=0; d<dh[mi][i]; d++){            }
           newm=savm;          for(d=0; d<dh[mi][i]; d++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            newm=savm;
           for (kk=1; kk<=cptcovage;kk++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           savm=oldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           oldm=newm;            savm=oldm;
         } /* end mult */            oldm=newm;
                } /* end mult */
         s1=s[mw[mi][i]][i];        
         s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
         if( s2 > nlstate){          s2=s[mw[mi+1][i]][i];
           lli=log(out[s1][s2] - savm[s1][s2]);          if( s2 > nlstate){ 
         }else{            lli=log(out[s1][s2] - savm[s1][s2]);
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          }else{
         }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         ipmx +=1;          }
         sw += weight[i];          ipmx +=1;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          sw += weight[i];
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } /* end of wave */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     } /* end of individual */        } /* end of wave */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */      } /* end of individual */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (ii=1;ii<=nlstate+ndeath;ii++)        for(mi=1; mi<= wav[i]-1; mi++){
           for (j=1;j<=nlstate+ndeath;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(d=0; d<dh[mi][i]; d++){            }
           newm=savm;          for(d=0; d<dh[mi][i]; d++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            newm=savm;
           for (kk=1; kk<=cptcovage;kk++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           savm=oldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           oldm=newm;            savm=oldm;
         } /* end mult */            oldm=newm;
                } /* end mult */
         s1=s[mw[mi][i]][i];        
         s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          s2=s[mw[mi+1][i]][i];
         ipmx +=1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         sw += weight[i];          ipmx +=1;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          sw += weight[i];
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } /* end of wave */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     } /* end of individual */        } /* end of wave */
   } /* End of if */      } /* end of individual */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    } /* End of if */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   return -l;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 }    return -l;
   }
 /*************** log-likelihood *************/  
 double funcone( double *x)  /*************** log-likelihood *************/
 {  double funcone( double *x)
   /* Same as likeli but slower because of a lot of printf and if */  {
   int i, ii, j, k, mi, d, kk;    /* Same as likeli but slower because of a lot of printf and if */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    int i, ii, j, k, mi, d, kk;
   double **out;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double lli; /* Individual log likelihood */    double **out;
   double llt;    double lli; /* Individual log likelihood */
   int s1, s2;    double llt;
   double bbh, survp;    int s1, s2;
   /*extern weight */    double bbh, survp;
   /* We are differentiating ll according to initial status */    /*extern weight */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* We are differentiating ll according to initial status */
   /*for(i=1;i<imx;i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf(" %d\n",s[4][i]);    /*for(i=1;i<imx;i++) 
   */      printf(" %d\n",s[4][i]);
   cov[1]=1.;    */
     cov[1]=1.;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(mi=1; mi<= wav[i]-1; mi++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (ii=1;ii<=nlstate+ndeath;ii++)      for(mi=1; mi<= wav[i]-1; mi++){
         for (j=1;j<=nlstate+ndeath;j++){        for (ii=1;ii<=nlstate+ndeath;ii++)
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for (j=1;j<=nlstate+ndeath;j++){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(d=0; d<dh[mi][i]; d++){          }
         newm=savm;        for(d=0; d<dh[mi][i]; d++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          newm=savm;
         for (kk=1; kk<=cptcovage;kk++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for (kk=1; kk<=cptcovage;kk++) {
         }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         savm=oldm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         oldm=newm;          savm=oldm;
       } /* end mult */          oldm=newm;
              } /* end mult */
       s1=s[mw[mi][i]][i];        
       s2=s[mw[mi+1][i]][i];        s1=s[mw[mi][i]][i];
       bbh=(double)bh[mi][i]/(double)stepm;        s2=s[mw[mi+1][i]][i];
       /* bias is positive if real duration        bbh=(double)bh[mi][i]/(double)stepm; 
        * is higher than the multiple of stepm and negative otherwise.        /* bias is positive if real duration
        */         * is higher than the multiple of stepm and negative otherwise.
       if( s2 > nlstate && (mle <5) ){  /* Jackson */         */
         lli=log(out[s1][s2] - savm[s1][s2]);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       } else if  (s2==-2) {          lli=log(out[s1][s2] - savm[s1][s2]);
         for (j=1,survp=0. ; j<=nlstate; j++)        } else if  (s2==-2) {
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          for (j=1,survp=0. ; j<=nlstate; j++) 
         lli= log(survp);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }else if (mle==1){          lli= log(survp);
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        }else if (mle==1){
       } else if(mle==2){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        } else if(mle==2){
       } else if(mle==3){  /* exponential inter-extrapolation */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        } else if(mle==3){  /* exponential inter-extrapolation */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         lli=log(out[s1][s2]); /* Original formula */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          lli=log(out[s1][s2]); /* Original formula */
         lli=log(out[s1][s2]); /* Original formula */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       } /* End of if */          lli=log(out[s1][s2]); /* Original formula */
       ipmx +=1;        } /* End of if */
       sw += weight[i];        ipmx +=1;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        sw += weight[i];
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(globpr){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\        if(globpr){
  %11.6f %11.6f %11.6f ", \          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],   %11.6f %11.6f %11.6f ", \
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           llt +=ll[k]*gipmx/gsw;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         fprintf(ficresilk," %10.6f\n", -llt);          }
       }          fprintf(ficresilk," %10.6f\n", -llt);
     } /* end of wave */        }
   } /* end of individual */      } /* end of wave */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    } /* end of individual */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   if(globpr==0){ /* First time we count the contributions and weights */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     gipmx=ipmx;    if(globpr==0){ /* First time we count the contributions and weights */
     gsw=sw;      gipmx=ipmx;
   }      gsw=sw;
   return -l;    }
 }    return -l;
   }
   
 /*************** function likelione ***********/  
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  /*************** function likelione ***********/
 {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /* This routine should help understanding what is done with  {
      the selection of individuals/waves and    /* This routine should help understanding what is done with 
      to check the exact contribution to the likelihood.       the selection of individuals/waves and
      Plotting could be done.       to check the exact contribution to the likelihood.
    */       Plotting could be done.
   int k;     */
     int k;
   if(*globpri !=0){ /* Just counts and sums, no printings */  
     strcpy(fileresilk,"ilk");    if(*globpri !=0){ /* Just counts and sums, no printings */
     strcat(fileresilk,fileres);      strcpy(fileresilk,"ilk"); 
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {      strcat(fileresilk,fileres);
       printf("Problem with resultfile: %s\n", fileresilk);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        printf("Problem with resultfile: %s\n", fileresilk);
     }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      }
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(k=1; k<=nlstate; k++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);      for(k=1; k<=nlstate; k++) 
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   *fretone=(*funcone)(p);  
   if(*globpri !=0){    *fretone=(*funcone)(p);
     fclose(ficresilk);    if(*globpri !=0){
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      fclose(ficresilk);
     fflush(fichtm);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   }      fflush(fichtm); 
   return;    } 
 }    return;
   }
   
 /*********** Maximum Likelihood Estimation ***************/  
   /*********** Maximum Likelihood Estimation ***************/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   int i,j, iter;  {
   double **xi;    int i,j, iter;
   double fret;    double **xi;
   double fretone; /* Only one call to likelihood */    double fret;
   /*  char filerespow[FILENAMELENGTH];*/    double fretone; /* Only one call to likelihood */
   xi=matrix(1,npar,1,npar);    /*  char filerespow[FILENAMELENGTH];*/
   for (i=1;i<=npar;i++)    xi=matrix(1,npar,1,npar);
     for (j=1;j<=npar;j++)    for (i=1;i<=npar;i++)
       xi[i][j]=(i==j ? 1.0 : 0.0);      for (j=1;j<=npar;j++)
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
   strcpy(filerespow,"pow");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   strcat(filerespow,fileres);    strcpy(filerespow,"pow"); 
   if((ficrespow=fopen(filerespow,"w"))==NULL) {    strcat(filerespow,fileres);
     printf("Problem with resultfile: %s\n", filerespow);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");    }
   for (i=1;i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(j=1;j<=nlstate+ndeath;j++)    for (i=1;i<=nlstate;i++)
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficrespow,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   powell(p,xi,npar,ftol,&iter,&fret,func);  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   free_matrix(xi,1,npar,1,npar);  
   fclose(ficrespow);    free_matrix(xi,1,npar,1,npar);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    fclose(ficrespow);
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 }  
   }
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /**** Computes Hessian and covariance matrix ***/
 {  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double  **a,**y,*x,pd;  {
   double **hess;    double  **a,**y,*x,pd;
   int i, j,jk;    double **hess;
   int *indx;    int i, j,jk;
     int *indx;
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);  
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double gompertz(double p[]);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   hess=matrix(1,npar,1,npar);    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   for (i=1;i<=npar;i++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     printf("%d",i);fflush(stdout);    for (i=1;i<=npar;i++){
     fprintf(ficlog,"%d",i);fflush(ficlog);      printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);     
           hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     /*  printf(" %f ",p[i]);      
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/      /*  printf(" %f ",p[i]);
   }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      }
   for (i=1;i<=npar;i++) {    
     for (j=1;j<=npar;j++)  {    for (i=1;i<=npar;i++) {
       if (j>i) {      for (j=1;j<=npar;j++)  {
         printf(".%d%d",i,j);fflush(stdout);        if (j>i) { 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          printf(".%d%d",i,j);fflush(stdout);
         hess[i][j]=hessij(p,delti,i,j,func,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
                  hess[i][j]=hessij(p,delti,i,j,func,npar);
         hess[j][i]=hess[i][j];              
         /*printf(" %lf ",hess[i][j]);*/          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
     }        }
   }      }
   printf("\n");    }
   fprintf(ficlog,"\n");    printf("\n");
     fprintf(ficlog,"\n");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   a=matrix(1,npar,1,npar);    
   y=matrix(1,npar,1,npar);    a=matrix(1,npar,1,npar);
   x=vector(1,npar);    y=matrix(1,npar,1,npar);
   indx=ivector(1,npar);    x=vector(1,npar);
   for (i=1;i<=npar;i++)    indx=ivector(1,npar);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for (i=1;i<=npar;i++)
   ludcmp(a,npar,indx,&pd);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    for (j=1;j<=npar;j++) {
     x[j]=1;      for (i=1;i<=npar;i++) x[i]=0;
     lubksb(a,npar,indx,x);      x[j]=1;
     for (i=1;i<=npar;i++){      lubksb(a,npar,indx,x);
       matcov[i][j]=x[i];      for (i=1;i<=npar;i++){ 
     }        matcov[i][j]=x[i];
   }      }
     }
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");    printf("\n#Hessian matrix#\n");
   for (i=1;i<=npar;i++) {    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (j=1;j<=npar;j++) {    for (i=1;i<=npar;i++) { 
       printf("%.3e ",hess[i][j]);      for (j=1;j<=npar;j++) { 
       fprintf(ficlog,"%.3e ",hess[i][j]);        printf("%.3e ",hess[i][j]);
     }        fprintf(ficlog,"%.3e ",hess[i][j]);
     printf("\n");      }
     fprintf(ficlog,"\n");      printf("\n");
   }      fprintf(ficlog,"\n");
     }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)    /* Recompute Inverse */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    for (i=1;i<=npar;i++)
   ludcmp(a,npar,indx,&pd);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   /*  printf("\n#Hessian matrix recomputed#\n");  
     /*  printf("\n#Hessian matrix recomputed#\n");
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    for (j=1;j<=npar;j++) {
     x[j]=1;      for (i=1;i<=npar;i++) x[i]=0;
     lubksb(a,npar,indx,x);      x[j]=1;
     for (i=1;i<=npar;i++){      lubksb(a,npar,indx,x);
       y[i][j]=x[i];      for (i=1;i<=npar;i++){ 
       printf("%.3e ",y[i][j]);        y[i][j]=x[i];
       fprintf(ficlog,"%.3e ",y[i][j]);        printf("%.3e ",y[i][j]);
     }        fprintf(ficlog,"%.3e ",y[i][j]);
     printf("\n");      }
     fprintf(ficlog,"\n");      printf("\n");
   }      fprintf(ficlog,"\n");
   */    }
     */
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    free_matrix(a,1,npar,1,npar);
   free_vector(x,1,npar);    free_matrix(y,1,npar,1,npar);
   free_ivector(indx,1,npar);    free_vector(x,1,npar);
   free_matrix(hess,1,npar,1,npar);    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   
 }  
   }
 /*************** hessian matrix ****************/  
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)  /*************** hessian matrix ****************/
 {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int i;  {
   int l=1, lmax=20;    int i;
   double k1,k2;    int l=1, lmax=20;
   double p2[NPARMAX+1];    double k1,k2;
   double res;    double p2[NPARMAX+1];
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double res;
   double fx;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   int k=0,kmax=10;    double fx;
   double l1;    int k=0,kmax=10;
     double l1;
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    fx=func(x);
   for(l=0 ; l <=lmax; l++){    for (i=1;i<=npar;i++) p2[i]=x[i];
     l1=pow(10,l);    for(l=0 ; l <=lmax; l++){
     delts=delt;      l1=pow(10,l);
     for(k=1 ; k <kmax; k=k+1){      delts=delt;
       delt = delta*(l1*k);      for(k=1 ; k <kmax; k=k+1){
       p2[theta]=x[theta] +delt;        delt = delta*(l1*k);
       k1=func(p2)-fx;        p2[theta]=x[theta] +delt;
       p2[theta]=x[theta]-delt;        k1=func(p2)-fx;
       k2=func(p2)-fx;        p2[theta]=x[theta]-delt;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        k2=func(p2)-fx;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        /*res= (k1-2.0*fx+k2)/delt/delt; */
              res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 #ifdef DEBUG        
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  #ifdef DEBUG
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #endif        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #endif
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         k=kmax;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        }
         k=kmax; l=lmax*10.;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       }          delts=delt;
     }        }
   }      }
   delti[theta]=delts;    }
   return res;    delti[theta]=delts;
      return res; 
 }    
   }
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)  
 {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   int i;  {
   int l=1, l1, lmax=20;    int i;
   double k1,k2,k3,k4,res,fx;    int l=1, l1, lmax=20;
   double p2[NPARMAX+1];    double k1,k2,k3,k4,res,fx;
   int k;    double p2[NPARMAX+1];
     int k;
   fx=func(x);  
   for (k=1; k<=2; k++) {    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];    for (k=1; k<=2; k++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (i=1;i<=npar;i++) p2[i]=x[i];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetai]=x[thetai]+delti[thetai]/k;
     k1=func(p2)-fx;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
     p2[thetai]=x[thetai]+delti[thetai]/k;    
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetai]=x[thetai]+delti[thetai]/k;
     k2=func(p2)-fx;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
     p2[thetai]=x[thetai]-delti[thetai]/k;    
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetai]=x[thetai]-delti[thetai]/k;
     k3=func(p2)-fx;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
     p2[thetai]=x[thetai]-delti[thetai]/k;    
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetai]=x[thetai]-delti[thetai]/k;
     k4=func(p2)-fx;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      k4=func(p2)-fx;
 #ifdef DEBUG      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #ifdef DEBUG
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #endif      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }  #endif
   return res;    }
 }    return res;
   }
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  /************** Inverse of matrix **************/
 {  void ludcmp(double **a, int n, int *indx, double *d) 
   int i,imax,j,k;  { 
   double big,dum,sum,temp;    int i,imax,j,k; 
   double *vv;    double big,dum,sum,temp; 
      double *vv; 
   vv=vector(1,n);   
   *d=1.0;    vv=vector(1,n); 
   for (i=1;i<=n;i++) {    *d=1.0; 
     big=0.0;    for (i=1;i<=n;i++) { 
     for (j=1;j<=n;j++)      big=0.0; 
       if ((temp=fabs(a[i][j])) > big) big=temp;      for (j=1;j<=n;j++) 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        if ((temp=fabs(a[i][j])) > big) big=temp; 
     vv[i]=1.0/big;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   }      vv[i]=1.0/big; 
   for (j=1;j<=n;j++) {    } 
     for (i=1;i<j;i++) {    for (j=1;j<=n;j++) { 
       sum=a[i][j];      for (i=1;i<j;i++) { 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        sum=a[i][j]; 
       a[i][j]=sum;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
     big=0.0;      } 
     for (i=j;i<=n;i++) {      big=0.0; 
       sum=a[i][j];      for (i=j;i<=n;i++) { 
       for (k=1;k<j;k++)        sum=a[i][j]; 
         sum -= a[i][k]*a[k][j];        for (k=1;k<j;k++) 
       a[i][j]=sum;          sum -= a[i][k]*a[k][j]; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        a[i][j]=sum; 
         big=dum;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         imax=i;          big=dum; 
       }          imax=i; 
     }        } 
     if (j != imax) {      } 
       for (k=1;k<=n;k++) {      if (j != imax) { 
         dum=a[imax][k];        for (k=1;k<=n;k++) { 
         a[imax][k]=a[j][k];          dum=a[imax][k]; 
         a[j][k]=dum;          a[imax][k]=a[j][k]; 
       }          a[j][k]=dum; 
       *d = -(*d);        } 
       vv[imax]=vv[j];        *d = -(*d); 
     }        vv[imax]=vv[j]; 
     indx[j]=imax;      } 
     if (a[j][j] == 0.0) a[j][j]=TINY;      indx[j]=imax; 
     if (j != n) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
       dum=1.0/(a[j][j]);      if (j != n) { 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }      } 
   free_vector(vv,1,n);  /* Doesn't work */    } 
 ;    free_vector(vv,1,n);  /* Doesn't work */
 }  ;
   } 
 void lubksb(double **a, int n, int *indx, double b[])  
 {  void lubksb(double **a, int n, int *indx, double b[]) 
   int i,ii=0,ip,j;  { 
   double sum;    int i,ii=0,ip,j; 
      double sum; 
   for (i=1;i<=n;i++) {   
     ip=indx[i];    for (i=1;i<=n;i++) { 
     sum=b[ip];      ip=indx[i]; 
     b[ip]=b[i];      sum=b[ip]; 
     if (ii)      b[ip]=b[i]; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      if (ii) 
     else if (sum) ii=i;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     b[i]=sum;      else if (sum) ii=i; 
   }      b[i]=sum; 
   for (i=n;i>=1;i--) {    } 
     sum=b[i];    for (i=n;i>=1;i--) { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      sum=b[i]; 
     b[i]=sum/a[i][i];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
 }    } 
   } 
 void pstamp(FILE *fichier)  
 {  void pstamp(FILE *fichier)
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);  {
 }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])  /************ Frequencies ********************/
 {  /* Some frequencies */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    {  /* Some frequencies */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    
   int first;    int i, m, jk, k1,i1, j1, bool, z1,j;
   double ***freq; /* Frequencies */    int first;
   double *pp, **prop;    double ***freq; /* Frequencies */
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    double *pp, **prop;
   char fileresp[FILENAMELENGTH];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      char fileresp[FILENAMELENGTH];
   pp=vector(1,nlstate);    
   prop=matrix(1,nlstate,iagemin,iagemax+3);    pp=vector(1,nlstate);
   strcpy(fileresp,"p");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   strcat(fileresp,fileres);    strcpy(fileresp,"p");
   if((ficresp=fopen(fileresp,"w"))==NULL) {    strcat(fileresp,fileres);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     exit(0);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   }      exit(0);
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    }
   j1=0;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   first=1;  
     first=1;
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    for(k1=1; k1<=j;k1++){
       j1++;      for(i1=1; i1<=ncodemax[k1];i1++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        j1++;
         scanf("%d", i);*/        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for (i=-5; i<=nlstate+ndeath; i++)            scanf("%d", i);*/
         for (jk=-5; jk<=nlstate+ndeath; jk++)          for (i=-5; i<=nlstate+ndeath; i++)  
           for(m=iagemin; m <= iagemax+3; m++)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             freq[i][jk][m]=0;            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
     for (i=1; i<=nlstate; i++)    
       for(m=iagemin; m <= iagemax+3; m++)      for (i=1; i<=nlstate; i++)  
         prop[i][m]=0;        for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0;
       dateintsum=0;        
       k2cpt=0;        dateintsum=0;
       for (i=1; i<=imx; i++) {        k2cpt=0;
         bool=1;        for (i=1; i<=imx; i++) {
         if  (cptcovn>0) {          bool=1;
           for (z1=1; z1<=cptcoveff; z1++)          if  (cptcovn>0) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (z1=1; z1<=cptcoveff; z1++) 
               bool=0;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         }                bool=0;
         if (bool==1){          }
           for(m=firstpass; m<=lastpass; m++){          if (bool==1){
             k2=anint[m][i]+(mint[m][i]/12.);            for(m=firstpass; m<=lastpass; m++){
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/              k2=anint[m][i]+(mint[m][i]/12.);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if (m<lastpass) {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                if (m<lastpass) {
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
               }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                              }
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {                
                 dateintsum=dateintsum+k2;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                 k2cpt++;                  dateintsum=dateintsum+k2;
               }                  k2cpt++;
               /*}*/                }
           }                /*}*/
         }            }
       }          }
                }
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/         
       pstamp(ficresp);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       if  (cptcovn>0) {        pstamp(ficresp);
         fprintf(ficresp, "\n#********** Variable ");        if  (cptcovn>0) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresp, "\n#********** Variable "); 
         fprintf(ficresp, "**********\n#");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresp, "**********\n#");
       for(i=1; i<=nlstate;i++)        }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for(i=1; i<=nlstate;i++) 
       fprintf(ficresp, "\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
              fprintf(ficresp, "\n");
       for(i=iagemin; i <= iagemax+3; i++){        
         if(i==iagemax+3){        for(i=iagemin; i <= iagemax+3; i++){
           fprintf(ficlog,"Total");          if(i==iagemax+3){
         }else{            fprintf(ficlog,"Total");
           if(first==1){          }else{
             first=0;            if(first==1){
             printf("See log file for details...\n");              first=0;
           }              printf("See log file for details...\n");
           fprintf(ficlog,"Age %d", i);            }
         }            fprintf(ficlog,"Age %d", i);
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(jk=1; jk <=nlstate ; jk++){
             pp[jk] += freq[jk][m][i];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         }              pp[jk] += freq[jk][m][i]; 
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pos=0; m <=0 ; m++)          for(jk=1; jk <=nlstate ; jk++){
             pos += freq[jk][m][i];            for(m=-1, pos=0; m <=0 ; m++)
           if(pp[jk]>=1.e-10){              pos += freq[jk][m][i];
             if(first==1){            if(pp[jk]>=1.e-10){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              if(first==1){
             }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              }
           }else{              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             if(first==1)            }else{
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              if(first==1)
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
           }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for(jk=1; jk <=nlstate ; jk++){
             pp[jk] += freq[jk][m][i];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         }                    pp[jk] += freq[jk][m][i];
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          }       
           pos += pp[jk];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           posprop += prop[jk][i];            pos += pp[jk];
         }            posprop += prop[jk][i];
         for(jk=1; jk <=nlstate ; jk++){          }
           if(pos>=1.e-5){          for(jk=1; jk <=nlstate ; jk++){
             if(first==1)            if(pos>=1.e-5){
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              if(first==1)
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }else{              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             if(first==1)            }else{
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              if(first==1)
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           if( i <= iagemax){            }
             if(pos>=1.e-5){            if( i <= iagemax){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);              if(pos>=1.e-5){
               /*probs[i][jk][j1]= pp[jk]/pos;*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
             }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             else              }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);              else
           }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         }            }
                  }
         for(jk=-1; jk <=nlstate+ndeath; jk++)          
           for(m=-1; m <=nlstate+ndeath; m++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
             if(freq[jk][m][i] !=0 ) {            for(m=-1; m <=nlstate+ndeath; m++)
             if(first==1)              if(freq[jk][m][i] !=0 ) {
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              if(first==1)
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         if(i <= iagemax)              }
           fprintf(ficresp,"\n");          if(i <= iagemax)
         if(first==1)            fprintf(ficresp,"\n");
           printf("Others in log...\n");          if(first==1)
         fprintf(ficlog,"\n");            printf("Others in log...\n");
       }          fprintf(ficlog,"\n");
     }        }
   }      }
   dateintmean=dateintsum/k2cpt;    }
      dateintmean=dateintsum/k2cpt; 
   fclose(ficresp);   
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);    fclose(ficresp);
   free_vector(pp,1,nlstate);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    free_vector(pp,1,nlstate);
   /* End of Freq */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 }    /* End of Freq */
   }
 /************ Prevalence ********************/  
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  /************ Prevalence ********************/
 {    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people  {  
      in each health status at the date of interview (if between dateprev1 and dateprev2).    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      We still use firstpass and lastpass as another selection.       in each health status at the date of interview (if between dateprev1 and dateprev2).
   */       We still use firstpass and lastpass as another selection.
      */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;   
   double ***freq; /* Frequencies */    int i, m, jk, k1, i1, j1, bool, z1,j;
   double *pp, **prop;    double ***freq; /* Frequencies */
   double pos,posprop;    double *pp, **prop;
   double  y2; /* in fractional years */    double pos,posprop; 
   int iagemin, iagemax;    double  y2; /* in fractional years */
     int iagemin, iagemax;
   iagemin= (int) agemin;  
   iagemax= (int) agemax;    iagemin= (int) agemin;
   /*pp=vector(1,nlstate);*/    iagemax= (int) agemax;
   prop=matrix(1,nlstate,iagemin,iagemax+3);    /*pp=vector(1,nlstate);*/
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   j1=0;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      j1=0;
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for(k1=1; k1<=j;k1++){    
     for(i1=1; i1<=ncodemax[k1];i1++){    for(k1=1; k1<=j;k1++){
       j1++;      for(i1=1; i1<=ncodemax[k1];i1++){
              j1++;
       for (i=1; i<=nlstate; i++)          
         for(m=iagemin; m <= iagemax+3; m++)        for (i=1; i<=nlstate; i++)  
           prop[i][m]=0.0;          for(m=iagemin; m <= iagemax+3; m++)
                  prop[i][m]=0.0;
       for (i=1; i<=imx; i++) { /* Each individual */       
         bool=1;        for (i=1; i<=imx; i++) { /* Each individual */
         if  (cptcovn>0) {          bool=1;
           for (z1=1; z1<=cptcoveff; z1++)          if  (cptcovn>0) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (z1=1; z1<=cptcoveff; z1++) 
               bool=0;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         }                bool=0;
         if (bool==1) {          } 
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/          if (bool==1) { 
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if (s[m][i]>0 && s[m][i]<=nlstate) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                 prop[s[m][i]][iagemax+3] += weight[i];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               }                  prop[s[m][i]][iagemax+3] += weight[i]; 
             }                } 
           } /* end selection of waves */              }
         }            } /* end selection of waves */
       }          }
       for(i=iagemin; i <= iagemax+3; i++){          }
                for(i=iagemin; i <= iagemax+3; i++){  
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {          
           posprop += prop[jk][i];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         }            posprop += prop[jk][i]; 
           } 
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <=  iagemax){          for(jk=1; jk <=nlstate ; jk++){     
             if(posprop>=1.e-5){            if( i <=  iagemax){ 
               probs[i][jk][j1]= prop[jk][i]/posprop;              if(posprop>=1.e-5){ 
             }                probs[i][jk][j1]= prop[jk][i]/posprop;
           }              } else
         }/* end jk */                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
       }/* end i */            } 
     } /* end i1 */          }/* end jk */ 
   } /* end k1 */        }/* end i */ 
        } /* end i1 */
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    } /* end k1 */
   /*free_vector(pp,1,nlstate);*/    
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 }  /* End of prevalence */    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 /************* Waves Concatenation ***************/  }  /* End of prevalence */
   
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /************* Waves Concatenation ***************/
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      Death is a valid wave (if date is known).  {
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]       Death is a valid wave (if date is known).
      and mw[mi+1][i]. dh depends on stepm.       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   int i, mi, m;       */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/    int i, mi, m;
   int first;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   int j, k=0,jk, ju, jl;       double sum=0., jmean=0.;*/
   double sum=0.;    int first;
   first=0;    int j, k=0,jk, ju, jl;
   jmin=1e+5;    double sum=0.;
   jmax=-1;    first=0;
   jmean=0.;    jmin=1e+5;
   for(i=1; i<=imx; i++){    jmax=-1;
     mi=0;    jmean=0.;
     m=firstpass;    for(i=1; i<=imx; i++){
     while(s[m][i] <= nlstate){      mi=0;
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)      m=firstpass;
         mw[++mi][i]=m;      while(s[m][i] <= nlstate){
       if(m >=lastpass)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         break;          mw[++mi][i]=m;
       else        if(m >=lastpass)
         m++;          break;
     }/* end while */        else
     if (s[m][i] > nlstate){          m++;
       mi++;     /* Death is another wave */      }/* end while */
       /* if(mi==0)  never been interviewed correctly before death */      if (s[m][i] > nlstate){
          /* Only death is a correct wave */        mi++;     /* Death is another wave */
       mw[mi][i]=m;        /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
         mw[mi][i]=m;
     wav[i]=mi;      }
     if(mi==0){  
       nbwarn++;      wav[i]=mi;
       if(first==0){      if(mi==0){
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);        nbwarn++;
         first=1;        if(first==0){
       }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       if(first==1){          first=1;
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);        }
       }        if(first==1){
     } /* end mi==0 */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   } /* End individuals */        }
       } /* end mi==0 */
   for(i=1; i<=imx; i++){    } /* End individuals */
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)    for(i=1; i<=imx; i++){
         dh[mi][i]=1;      for(mi=1; mi<wav[i];mi++){
       else{        if (stepm <=0)
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          dh[mi][i]=1;
           if (agedc[i] < 2*AGESUP) {        else{
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if(j==0) j=1;  /* Survives at least one month after exam */            if (agedc[i] < 2*AGESUP) {
             else if(j<0){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               nberr++;              if(j==0) j=1;  /* Survives at least one month after exam */
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              else if(j<0){
               j=1; /* Temporary Dangerous patch */                nberr++;
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                j=1; /* Temporary Dangerous patch */
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             k=k+1;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             if (j >= jmax){              }
               jmax=j;              k=k+1;
               ijmax=i;              if (j >= jmax){
             }                jmax=j;
             if (j <= jmin){                ijmax=i;
               jmin=j;              }
               ijmin=i;              if (j <= jmin){
             }                jmin=j;
             sum=sum+j;                ijmin=i;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/              }
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              sum=sum+j;
           }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         else{            }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          }
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           k=k+1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           if (j >= jmax) {  
             jmax=j;            k=k+1;
             ijmax=i;            if (j >= jmax) {
           }              jmax=j;
           else if (j <= jmin){              ijmax=i;
             jmin=j;            }
             ijmin=i;            else if (j <= jmin){
           }              jmin=j;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              ijmin=i;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/            }
           if(j<0){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             nberr++;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            if(j<0){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              nberr++;
           }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           sum=sum+j;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
         jk= j/stepm;            sum=sum+j;
         jl= j -jk*stepm;          }
         ju= j -(jk+1)*stepm;          jk= j/stepm;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */          jl= j -jk*stepm;
           if(jl==0){          ju= j -(jk+1)*stepm;
             dh[mi][i]=jk;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             bh[mi][i]=0;            if(jl==0){
           }else{ /* We want a negative bias in order to only have interpolation ie              dh[mi][i]=jk;
                   * at the price of an extra matrix product in likelihood */              bh[mi][i]=0;
             dh[mi][i]=jk+1;            }else{ /* We want a negative bias in order to only have interpolation ie
             bh[mi][i]=ju;                    * at the price of an extra matrix product in likelihood */
           }              dh[mi][i]=jk+1;
         }else{              bh[mi][i]=ju;
           if(jl <= -ju){            }
             dh[mi][i]=jk;          }else{
             bh[mi][i]=jl;       /* bias is positive if real duration            if(jl <= -ju){
                                  * is higher than the multiple of stepm and negative otherwise.              dh[mi][i]=jk;
                                  */              bh[mi][i]=jl;       /* bias is positive if real duration
           }                                   * is higher than the multiple of stepm and negative otherwise.
           else{                                   */
             dh[mi][i]=jk+1;            }
             bh[mi][i]=ju;            else{
           }              dh[mi][i]=jk+1;
           if(dh[mi][i]==0){              bh[mi][i]=ju;
             dh[mi][i]=1; /* At least one step */            }
             bh[mi][i]=ju; /* At least one step */            if(dh[mi][i]==0){
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              dh[mi][i]=1; /* At least one step */
           }              bh[mi][i]=ju; /* At least one step */
         } /* end if mle */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
     } /* end wave */          } /* end if mle */
   }        }
   jmean=sum/k;      } /* end wave */
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);    jmean=sum/k;
  }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 /*********** Tricode ****************************/   }
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
   int Ndum[20],ij=1, k, j, i, maxncov=19;  {
   int cptcode=0;    
   cptcoveff=0;    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
    
   for (k=0; k<maxncov; k++) Ndum[k]=0;    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=19;
   for (k=1; k<=7; k++) ncodemax[k]=0;    int cptcode=0;
     cptcoveff=0; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {   
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum    for (k=0; k<maxncov; k++) Ndum[k]=0;
                                modality*/    for (k=1; k<=7; k++) ncodemax[k]=0;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/  
       Ndum[ij]++; /*store the modality */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable                                 modality*/ 
                                        Tvar[j]. If V=sex and male is 0 and        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                                        female is 1, then  cptcode=1.*/        Ndum[ij]++; /*store the modality */
     }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     for (i=0; i<=cptcode; i++) {                                         Tvar[j]. If V=sex and male is 0 and 
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */                                         female is 1, then  cptcode=1.*/
     }      }
   
     ij=1;      for (i=0; i<=cptcode; i++) {
     for (i=1; i<=ncodemax[j]; i++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       for (k=0; k<= maxncov; k++) {      }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;      ij=1; 
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */      for (i=1; i<=ncodemax[j]; i++) {
                  for (k=0; k<= maxncov; k++) {
           ij++;          if (Ndum[k] != 0) {
         }            nbcode[Tvar[j]][ij]=k; 
         if (ij > ncodemax[j]) break;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       }              
     }            ij++;
   }            }
           if (ij > ncodemax[j]) break; 
  for (k=0; k< maxncov; k++) Ndum[k]=0;        }  
       } 
  for (i=1; i<=ncovmodel-2; i++) {    }  
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/  
    ij=Tvar[i];   for (k=0; k< maxncov; k++) Ndum[k]=0;
    Ndum[ij]++;  
  }   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
  ij=1;     ij=Tvar[i];
  for (i=1; i<= maxncov; i++) {     Ndum[ij]++;
    if((Ndum[i]!=0) && (i<=ncovcol)){   }
      Tvaraff[ij]=i; /*For printing */  
      ij++;   ij=1;
    }   for (i=1; i<= maxncov; i++) {
  }     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
  cptcoveff=ij-1; /*Number of simple covariates*/       ij++;
 }     }
    }
 /*********** Health Expectancies ****************/   
    cptcoveff=ij-1; /*Number of simple covariates*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )  }
   
 {  /*********** Health Expectancies ****************/
   /* Health expectancies, no variances */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double age, agelim, hf;  
   double ***p3mat;  {
   double eip;    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   pstamp(ficreseij);    int nhstepma, nstepma; /* Decreasing with age */
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    double age, agelim, hf;
   fprintf(ficreseij,"# Age");    double ***p3mat;
   for(i=1; i<=nlstate;i++){    double eip;
     for(j=1; j<=nlstate;j++){  
       fprintf(ficreseij," e%1d%1d ",i,j);    pstamp(ficreseij);
     }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij," e%1d. ",i);    fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++){
   fprintf(ficreseij,"\n");      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
        }
   if(estepm < stepm){      fprintf(ficreseij," e%1d. ",i);
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    fprintf(ficreseij,"\n");
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    
    * This is mainly to measure the difference between two models: for example    if(estepm < stepm){
    * if stepm=24 months pijx are given only every 2 years and by summing them      printf ("Problem %d lower than %d\n",estepm, stepm);
    * we are calculating an estimate of the Life Expectancy assuming a linear    }
    * progression in between and thus overestimating or underestimating according    else  hstepm=estepm;   
    * to the curvature of the survival function. If, for the same date, we    /* We compute the life expectancy from trapezoids spaced every estepm months
    * estimate the model with stepm=1 month, we can keep estepm to 24 months     * This is mainly to measure the difference between two models: for example
    * to compare the new estimate of Life expectancy with the same linear     * if stepm=24 months pijx are given only every 2 years and by summing them
    * hypothesis. A more precise result, taking into account a more precise     * we are calculating an estimate of the Life Expectancy assuming a linear 
    * curvature will be obtained if estepm is as small as stepm. */     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   /* For example we decided to compute the life expectancy with the smallest unit */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     * to compare the new estimate of Life expectancy with the same linear 
      nhstepm is the number of hstepm from age to agelim     * hypothesis. A more precise result, taking into account a more precise
      nstepm is the number of stepm from age to agelin.     * curvature will be obtained if estepm is as small as stepm. */
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    /* For example we decided to compute the life expectancy with the smallest unit */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      survival function given by stepm (the optimization length). Unfortunately it       nhstepm is the number of hstepm from age to agelim 
      means that if the survival funtion is printed only each two years of age and if       nstepm is the number of stepm from age to agelin. 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       Look at hpijx to understand the reason of that which relies in memory size
      results. So we changed our mind and took the option of the best precision.       and note for a fixed period like estepm months */
   */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* If stepm=6 months */       results. So we changed our mind and took the option of the best precision.
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      
 /* nhstepm age range expressed in number of stepm */    agelim=AGESUP;
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);    /* If stepm=6 months */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* if (stepm >= YEARM) hstepm=1;*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   for (age=bage; age<=fage; age ++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for (age=bage; age<=fage; age ++){ 
          nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     printf("%d|",(int)age);fflush(stdout);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      /* if (stepm >= YEARM) hstepm=1;*/
          nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
     /* Computing expectancies */      /* If stepm=6 months */
     for(i=1; i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       for(j=1; j<=nlstate;j++)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
         }      printf("%d|",(int)age);fflush(stdout);
          fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficreseij,"%3.0f",age );      
     for(i=1; i<=nlstate;i++){      /* Computing expectancies */
       eip=0;      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){        for(j=1; j<=nlstate;j++)
         eip +=eij[i][j][(int)age];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
       fprintf(ficreseij,"%9.4f", eip );            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
     fprintf(ficreseij,"\n");          }
      
   }      fprintf(ficreseij,"%3.0f",age );
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++){
   printf("\n");        eip=0;
   fprintf(ficlog,"\n");        for(j=1; j<=nlstate;j++){
            eip +=eij[i][j][(int)age];
 }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )        fprintf(ficreseij,"%9.4f", eip );
       }
 {      fprintf(ficreseij,"\n");
   /* Covariances of health expectancies eij and of total life expectancies according      
    to initial status i, ei. .    }
   */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    printf("\n");
   double age, agelim, hf;    fprintf(ficlog,"\n");
   double ***p3matp, ***p3matm, ***varhe;    
   double **dnewm,**doldm;  }
   double *xp, *xm;  
   double **gp, **gm;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   double ***gradg, ***trgradg;  
   int theta;  {
     /* Covariances of health expectancies eij and of total life expectancies according
   double eip, vip;     to initial status i, ei. .
     */
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   xp=vector(1,npar);    int nhstepma, nstepma; /* Decreasing with age */
   xm=vector(1,npar);    double age, agelim, hf;
   dnewm=matrix(1,nlstate*nlstate,1,npar);    double ***p3matp, ***p3matm, ***varhe;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    double **dnewm,**doldm;
      double *xp, *xm;
   pstamp(ficresstdeij);    double **gp, **gm;
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");    double ***gradg, ***trgradg;
   fprintf(ficresstdeij,"# Age");    int theta;
   for(i=1; i<=nlstate;i++){  
     for(j=1; j<=nlstate;j++)    double eip, vip;
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);  
     fprintf(ficresstdeij," e%1d. ",i);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
   fprintf(ficresstdeij,"\n");    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   pstamp(ficrescveij);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    
   fprintf(ficrescveij,"# Age");    pstamp(ficresstdeij);
   for(i=1; i<=nlstate;i++)    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     for(j=1; j<=nlstate;j++){    fprintf(ficresstdeij,"# Age");
       cptj= (j-1)*nlstate+i;    for(i=1; i<=nlstate;i++){
       for(i2=1; i2<=nlstate;i2++)      for(j=1; j<=nlstate;j++)
         for(j2=1; j2<=nlstate;j2++){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           cptj2= (j2-1)*nlstate+i2;      fprintf(ficresstdeij," e%1d. ",i);
           if(cptj2 <= cptj)    }
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    fprintf(ficresstdeij,"\n");
         }  
     }    pstamp(ficrescveij);
   fprintf(ficrescveij,"\n");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
   if(estepm < stepm){    for(i=1; i<=nlstate;i++)
     printf ("Problem %d lower than %d\n",estepm, stepm);      for(j=1; j<=nlstate;j++){
   }        cptj= (j-1)*nlstate+i;
   else  hstepm=estepm;          for(i2=1; i2<=nlstate;i2++)
   /* We compute the life expectancy from trapezoids spaced every estepm months          for(j2=1; j2<=nlstate;j2++){
    * This is mainly to measure the difference between two models: for example            cptj2= (j2-1)*nlstate+i2;
    * if stepm=24 months pijx are given only every 2 years and by summing them            if(cptj2 <= cptj)
    * we are calculating an estimate of the Life Expectancy assuming a linear              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
    * progression in between and thus overestimating or underestimating according          }
    * to the curvature of the survival function. If, for the same date, we      }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    fprintf(ficrescveij,"\n");
    * to compare the new estimate of Life expectancy with the same linear    
    * hypothesis. A more precise result, taking into account a more precise    if(estepm < stepm){
    * curvature will be obtained if estepm is as small as stepm. */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   /* For example we decided to compute the life expectancy with the smallest unit */    else  hstepm=estepm;   
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /* We compute the life expectancy from trapezoids spaced every estepm months
      nhstepm is the number of hstepm from age to agelim     * This is mainly to measure the difference between two models: for example
      nstepm is the number of stepm from age to agelin.     * if stepm=24 months pijx are given only every 2 years and by summing them
      Look at hpijx to understand the reason of that which relies in memory size     * we are calculating an estimate of the Life Expectancy assuming a linear 
      and note for a fixed period like estepm months */     * progression in between and thus overestimating or underestimating according
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the     * to the curvature of the survival function. If, for the same date, we 
      survival function given by stepm (the optimization length). Unfortunately it     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      means that if the survival funtion is printed only each two years of age and if     * to compare the new estimate of Life expectancy with the same linear 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     * hypothesis. A more precise result, taking into account a more precise
      results. So we changed our mind and took the option of the best precision.     * curvature will be obtained if estepm is as small as stepm. */
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /* If stepm=6 months */       nhstepm is the number of hstepm from age to agelim 
   /* nhstepm age range expressed in number of stepm */       nstepm is the number of stepm from age to agelin. 
   agelim=AGESUP;       Look at hpijx to understand the reason of that which relies in memory size
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);       and note for a fixed period like estepm months */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* if (stepm >= YEARM) hstepm=1;*/       survival function given by stepm (the optimization length). Unfortunately it
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);  
   gp=matrix(0,nhstepm,1,nlstate*nlstate);    /* If stepm=6 months */
   gm=matrix(0,nhstepm,1,nlstate*nlstate);    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
   for (age=bage; age<=fage; age ++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* if (stepm >= YEARM) hstepm=1;*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* Computing  Variances of health expectancies */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        decrease memory allocation */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for(theta=1; theta <=npar; theta++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (age=bage; age<=fage; age ++){ 
         xm[i] = x[i] - (i==theta ?delti[theta]:0);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);        /* if (stepm >= YEARM) hstepm=1;*/
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);        nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    
       for(j=1; j<= nlstate; j++){      /* If stepm=6 months */
         for(i=1; i<=nlstate; i++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           for(h=0; h<=nhstepm-1; h++){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;      
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           }  
         }      /* Computing  Variances of health expectancies */
       }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
               decrease memory allocation */
       for(ij=1; ij<= nlstate*nlstate; ij++)      for(theta=1; theta <=npar; theta++){
         for(h=0; h<=nhstepm-1; h++){        for(i=1; i<=npar; i++){ 
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     }/* End theta */        }
            hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
            hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     for(h=0; h<=nhstepm-1; h++)    
       for(j=1; j<=nlstate*nlstate;j++)        for(j=1; j<= nlstate; j++){
         for(theta=1; theta <=npar; theta++)          for(i=1; i<=nlstate; i++){
           trgradg[h][j][theta]=gradg[h][theta][j];            for(h=0; h<=nhstepm-1; h++){
                  gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
      for(ij=1;ij<=nlstate*nlstate;ij++)            }
       for(ji=1;ji<=nlstate*nlstate;ji++)          }
         varhe[ij][ji][(int)age] =0.;        }
        
      printf("%d|",(int)age);fflush(stdout);        for(ij=1; ij<= nlstate*nlstate; ij++)
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          for(h=0; h<=nhstepm-1; h++){
      for(h=0;h<=nhstepm-1;h++){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       for(k=0;k<=nhstepm-1;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);      }/* End theta */
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);      
         for(ij=1;ij<=nlstate*nlstate;ij++)      
           for(ji=1;ji<=nlstate*nlstate;ji++)      for(h=0; h<=nhstepm-1; h++)
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;        for(j=1; j<=nlstate*nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
       
     /* Computing expectancies */  
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);         for(ij=1;ij<=nlstate*nlstate;ij++)
     for(i=1; i<=nlstate;i++)        for(ji=1;ji<=nlstate*nlstate;ji++)
       for(j=1; j<=nlstate;j++)          varhe[ij][ji][(int)age] =0.;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;       printf("%d|",(int)age);fflush(stdout);
                 fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     fprintf(ficresstdeij,"%3.0f",age );          for(ij=1;ij<=nlstate*nlstate;ij++)
     for(i=1; i<=nlstate;i++){            for(ji=1;ji<=nlstate*nlstate;ji++)
       eip=0.;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       vip=0.;        }
       for(j=1; j<=nlstate;j++){      }
         eip += eij[i][j][(int)age];  
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */      /* Computing expectancies */
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     fprintf(ficresstdeij,"\n");            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficrescveij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++){  
         cptj= (j-1)*nlstate+i;      fprintf(ficresstdeij,"%3.0f",age );
         for(i2=1; i2<=nlstate;i2++)      for(i=1; i<=nlstate;i++){
           for(j2=1; j2<=nlstate;j2++){        eip=0.;
             cptj2= (j2-1)*nlstate+i2;        vip=0.;
             if(cptj2 <= cptj)        for(j=1; j<=nlstate;j++){
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);          eip += eij[i][j][(int)age];
           }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     fprintf(ficrescveij,"\n");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
            }
   }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);      }
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);      fprintf(ficresstdeij,"\n");
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);  
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);      fprintf(ficrescveij,"%3.0f",age );
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate;j++){
   printf("\n");          cptj= (j-1)*nlstate+i;
   fprintf(ficlog,"\n");          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
   free_vector(xm,1,npar);              cptj2= (j2-1)*nlstate+i2;
   free_vector(xp,1,npar);              if(cptj2 <= cptj)
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);            }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);        }
 }      fprintf(ficrescveij,"\n");
      
 /************ Variance ******************/    }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 {    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /* Variance of health expectancies */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /* double **newm;*/    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **dnewm,**doldm;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **dnewmp,**doldmp;    printf("\n");
   int i, j, nhstepm, hstepm, h, nstepm ;    fprintf(ficlog,"\n");
   int k, cptcode;  
   double *xp;    free_vector(xm,1,npar);
   double **gp, **gm;  /* for var eij */    free_vector(xp,1,npar);
   double ***gradg, ***trgradg; /*for var eij */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double **gradgp, **trgradgp; /* for var p point j */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double *gpp, *gmp; /* for var p point j */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  }
   double ***p3mat;  
   double age,agelim, hf;  /************ Variance ******************/
   double ***mobaverage;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   int theta;  {
   char digit[4];    /* Variance of health expectancies */
   char digitp[25];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   char fileresprobmorprev[FILENAMELENGTH];    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   if(popbased==1){    int i, j, nhstepm, hstepm, h, nstepm ;
     if(mobilav!=0)    int k, cptcode;
       strcpy(digitp,"-populbased-mobilav-");    double *xp;
     else strcpy(digitp,"-populbased-nomobil-");    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
   else    double **gradgp, **trgradgp; /* for var p point j */
     strcpy(digitp,"-stablbased-");    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if (mobilav!=0) {    double ***p3mat;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age,agelim, hf;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    double ***mobaverage;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    int theta;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    char digit[4];
     }    char digitp[25];
   }  
     char fileresprobmorprev[FILENAMELENGTH];
   strcpy(fileresprobmorprev,"prmorprev");  
   sprintf(digit,"%-d",ij);    if(popbased==1){
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      if(mobilav!=0)
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        strcpy(digitp,"-populbased-mobilav-");
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */      else strcpy(digitp,"-populbased-nomobil-");
   strcat(fileresprobmorprev,fileres);    }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    else 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      strcpy(digitp,"-stablbased-");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }    if (mobilav!=0) {
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   pstamp(ficresprobmorprev);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);      }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);    strcpy(fileresprobmorprev,"prmorprev"); 
     for(i=1; i<=nlstate;i++)    sprintf(digit,"%-d",ij);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }      strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fprintf(ficresprobmorprev,"\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   fprintf(ficgp,"\n# Routine varevsij");    strcat(fileresprobmorprev,fileres);
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 /*   } */    }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   pstamp(ficresvij);   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if(popbased==1)    pstamp(ficresprobmorprev);
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   else    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(ficresvij,"# Age");      fprintf(ficresprobmorprev," p.%-d SE",j);
   for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
     for(j=1; j<=nlstate;j++)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    }  
   fprintf(ficresvij,"\n");    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   xp=vector(1,npar);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   dnewm=matrix(1,nlstate,1,npar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  /*   } */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   gpp=vector(nlstate+1,nlstate+ndeath);    if(popbased==1)
   gmp=vector(nlstate+1,nlstate+ndeath);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   if(estepm < stepm){    fprintf(ficresvij,"# Age");
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   else  hstepm=estepm;          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficresvij,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    xp=vector(1,npar);
      nstepm is the number of stepm from age to agelin.    dnewm=matrix(1,nlstate,1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    doldm=matrix(1,nlstate,1,nlstate);
      and note for a fixed period like k years */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed every two years of age and if    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    gpp=vector(nlstate+1,nlstate+ndeath);
      results. So we changed our mind and took the option of the best precision.    gmp=vector(nlstate+1,nlstate+ndeath);
   */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
   agelim = AGESUP;    if(estepm < stepm){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf ("Problem %d lower than %d\n",estepm, stepm);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    else  hstepm=estepm;   
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* For example we decided to compute the life expectancy with the smallest unit */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     gp=matrix(0,nhstepm,1,nlstate);       nhstepm is the number of hstepm from age to agelim 
     gm=matrix(0,nhstepm,1,nlstate);       nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(theta=1; theta <=npar; theta++){       survival function given by stepm (the optimization length). Unfortunately it
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/       means that if the survival funtion is printed every two years of age and if
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
       if (popbased==1) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         if(mobilav ==0){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           for(i=1; i<=nlstate;i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             prlim[i][i]=probs[(int)age][i][ij];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }else{ /* mobilav */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           for(i=1; i<=nlstate;i++)      gp=matrix(0,nhstepm,1,nlstate);
             prlim[i][i]=mobaverage[(int)age][i][ij];      gm=matrix(0,nhstepm,1,nlstate);
         }  
       }  
        for(theta=1; theta <=npar; theta++){
       for(j=1; j<= nlstate; j++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         for(h=0; h<=nhstepm; h++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }  
       /* This for computing probability of death (h=1 means        if (popbased==1) {
          computed over hstepm matrices product = hstepm*stepm months)          if(mobilav ==0){
          as a weighted average of prlim.            for(i=1; i<=nlstate;i++)
       */              prlim[i][i]=probs[(int)age][i][ij];
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          }else{ /* mobilav */ 
         for(i=1,gpp[j]=0.; i<= nlstate; i++)            for(i=1; i<=nlstate;i++)
           gpp[j] += prlim[i][i]*p3mat[i][j][1];              prlim[i][i]=mobaverage[(int)age][i][ij];
       }              }
       /* end probability of death */        }
     
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */        for(j=1; j<= nlstate; j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(h=0; h<=nhstepm; h++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
       if (popbased==1) {        }
         if(mobilav ==0){        /* This for computing probability of death (h=1 means
           for(i=1; i<=nlstate;i++)           computed over hstepm matrices product = hstepm*stepm months) 
             prlim[i][i]=probs[(int)age][i][ij];           as a weighted average of prlim.
         }else{ /* mobilav */        */
           for(i=1; i<=nlstate;i++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             prlim[i][i]=mobaverage[(int)age][i][ij];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
         /* end probability of death */
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }   
       /* This for computing probability of death (h=1 means        if (popbased==1) {
          computed over hstepm matrices product = hstepm*stepm months)          if(mobilav ==0){
          as a weighted average of prlim.            for(i=1; i<=nlstate;i++)
       */              prlim[i][i]=probs[(int)age][i][ij];
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          }else{ /* mobilav */ 
         for(i=1,gmp[j]=0.; i<= nlstate; i++)            for(i=1; i<=nlstate;i++)
          gmp[j] += prlim[i][i]*p3mat[i][j][1];              prlim[i][i]=mobaverage[(int)age][i][ij];
       }              }
       /* end probability of death */        }
   
       for(j=1; j<= nlstate; j++) /* vareij */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
         for(h=0; h<=nhstepm; h++){          for(h=0; h<=nhstepm; h++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        }
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        /* This for computing probability of death (h=1 means
       }           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
     } /* End theta */        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
     for(h=0; h<=nhstepm; h++) /* veij */        }    
       for(j=1; j<=nlstate;j++)        /* end probability of death */
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for(theta=1; theta <=npar; theta++)          }
         trgradgp[j][theta]=gradgp[theta][j];  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)      } /* End theta */
         vareij[i][j][(int)age] =0.;  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){      for(h=0; h<=nhstepm; h++) /* veij */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for(j=1; j<=nlstate;j++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(theta=1; theta <=npar; theta++)
         for(i=1;i<=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       }        for(theta=1; theta <=npar; theta++)
     }          trgradgp[j][theta]=gradgp[theta][j];
      
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      for(i=1;i<=nlstate;i++)
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        for(j=1;j<=nlstate;j++)
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          vareij[i][j][(int)age] =0.;
         varppt[j][i]=doldmp[j][i];  
     /* end ppptj */      for(h=0;h<=nhstepm;h++){
     /*  x centered again */        for(k=0;k<=nhstepm;k++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
     if (popbased==1) {            for(j=1;j<=nlstate;j++)
       if(mobilav ==0){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];      }
       }else{ /* mobilav */    
         for(i=1; i<=nlstate;i++)      /* pptj */
           prlim[i][i]=mobaverage[(int)age][i][ij];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                      for(i=nlstate+1;i<=nlstate+ndeath;i++)
     /* This for computing probability of death (h=1 means          varppt[j][i]=doldmp[j][i];
        computed over hstepm (estepm) matrices product = hstepm*stepm months)      /* end ppptj */
        as a weighted average of prlim.      /*  x centered again */
     */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       for(i=1,gmp[j]=0.;i<= nlstate; i++)   
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      if (popbased==1) {
     }            if(mobilav ==0){
     /* end probability of death */          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        }else{ /* mobilav */ 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          for(i=1; i<=nlstate;i++)
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));            prlim[i][i]=mobaverage[(int)age][i][ij];
       for(i=1; i<=nlstate;i++){        }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      }
       }               
     }      /* This for computing probability of death (h=1 means
     fprintf(ficresprobmorprev,"\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
     fprintf(ficresvij,"%.0f ",age );      */
     for(i=1; i<=nlstate;i++)      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }      }    
     fprintf(ficresvij,"\n");      /* end probability of death */
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=nlstate;i++){
   } /* End age */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   free_vector(gpp,nlstate+1,nlstate+ndeath);        }
   free_vector(gmp,nlstate+1,nlstate+ndeath);      } 
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      fprintf(ficresprobmorprev,"\n");
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      fprintf(ficresvij,"%.0f ",age );
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        for(j=1; j<=nlstate;j++){
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */        }
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      fprintf(ficresvij,"\n");
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      free_matrix(gp,0,nhstepm,1,nlstate);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));      free_matrix(gm,0,nhstepm,1,nlstate);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    } /* End age */
 */    free_vector(gpp,nlstate+1,nlstate+ndeath);
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   free_vector(xp,1,npar);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   free_matrix(doldm,1,nlstate,1,nlstate);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   free_matrix(dnewm,1,nlstate,1,npar);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   fclose(ficresprobmorprev);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   fflush(ficgp);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   fflush(fichtm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 }  /* end varevsij */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 /************ Variance of prevlim ******************/  */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    free_vector(xp,1,npar);
   double **newm;    free_matrix(doldm,1,nlstate,1,nlstate);
   double **dnewm,**doldm;    free_matrix(dnewm,1,nlstate,1,npar);
   int i, j, nhstepm, hstepm;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int k, cptcode;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   double *xp;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double *gp, *gm;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double **gradg, **trgradg;    fclose(ficresprobmorprev);
   double age,agelim;    fflush(ficgp);
   int theta;    fflush(fichtm); 
    }  /* end varevsij */
   pstamp(ficresvpl);  
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");  /************ Variance of prevlim ******************/
   fprintf(ficresvpl,"# Age");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %1d-%1d",i,i);    /* Variance of prevalence limit */
   fprintf(ficresvpl,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   xp=vector(1,npar);    double **dnewm,**doldm;
   dnewm=matrix(1,nlstate,1,npar);    int i, j, nhstepm, hstepm;
   doldm=matrix(1,nlstate,1,nlstate);    int k, cptcode;
      double *xp;
   hstepm=1*YEARM; /* Every year of age */    double *gp, *gm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double **gradg, **trgradg;
   agelim = AGESUP;    double age,agelim;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int theta;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     if (stepm >= YEARM) hstepm=1;    pstamp(ficresvpl);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficresvpl,"# Age");
     gp=vector(1,nlstate);    for(i=1; i<=nlstate;i++)
     gm=vector(1,nlstate);        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    xp=vector(1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    
       for(i=1;i<=nlstate;i++)    hstepm=1*YEARM; /* Every year of age */
         gp[i] = prlim[i][i];    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
        agelim = AGESUP;
       for(i=1; i<=npar; i++) /* Computes gradient */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if (stepm >= YEARM) hstepm=1;
       for(i=1;i<=nlstate;i++)      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         gm[i] = prlim[i][i];      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       for(i=1;i<=nlstate;i++)      gm=vector(1,nlstate);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
     trgradg =matrix(1,nlstate,1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     for(j=1; j<=nlstate;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(theta=1; theta <=npar; theta++)        for(i=1;i<=nlstate;i++)
         trgradg[j][theta]=gradg[theta][j];          gp[i] = prlim[i][i];
       
     for(i=1;i<=nlstate;i++)        for(i=1; i<=npar; i++) /* Computes gradient */
       varpl[i][(int)age] =0.;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for(i=1;i<=nlstate;i++)
     for(i=1;i<=nlstate;i++)          gm[i] = prlim[i][i];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
         for(i=1;i<=nlstate;i++)
     fprintf(ficresvpl,"%.0f ",age );          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     for(i=1; i<=nlstate;i++)      } /* End theta */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");      trgradg =matrix(1,nlstate,1,npar);
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);      for(j=1; j<=nlstate;j++)
     free_matrix(gradg,1,npar,1,nlstate);        for(theta=1; theta <=npar; theta++)
     free_matrix(trgradg,1,nlstate,1,npar);          trgradg[j][theta]=gradg[theta][j];
   } /* End age */  
       for(i=1;i<=nlstate;i++)
   free_vector(xp,1,npar);        varpl[i][(int)age] =0.;
   free_matrix(doldm,1,nlstate,1,npar);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   free_matrix(dnewm,1,nlstate,1,nlstate);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
 }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
 /************ Variance of one-step probabilities  ******************/      fprintf(ficresvpl,"%.0f ",age );
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])      for(i=1; i<=nlstate;i++)
 {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   int i, j=0,  i1, k1, l1, t, tj;      fprintf(ficresvpl,"\n");
   int k2, l2, j1,  z1;      free_vector(gp,1,nlstate);
   int k=0,l, cptcode;      free_vector(gm,1,nlstate);
   int first=1, first1;      free_matrix(gradg,1,npar,1,nlstate);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      free_matrix(trgradg,1,nlstate,1,npar);
   double **dnewm,**doldm;    } /* End age */
   double *xp;  
   double *gp, *gm;    free_vector(xp,1,npar);
   double **gradg, **trgradg;    free_matrix(doldm,1,nlstate,1,npar);
   double **mu;    free_matrix(dnewm,1,nlstate,1,nlstate);
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  }
   int theta;  
   char fileresprob[FILENAMELENGTH];  /************ Variance of one-step probabilities  ******************/
   char fileresprobcov[FILENAMELENGTH];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   char fileresprobcor[FILENAMELENGTH];  {
     int i, j=0,  i1, k1, l1, t, tj;
   double ***varpij;    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   strcpy(fileresprob,"prob");    int first=1, first1;
   strcat(fileresprob,fileres);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with resultfile: %s\n", fileresprob);    double *xp;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    double *gp, *gm;
   }    double **gradg, **trgradg;
   strcpy(fileresprobcov,"probcov");    double **mu;
   strcat(fileresprobcov,fileres);    double age,agelim, cov[NCOVMAX];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     printf("Problem with resultfile: %s\n", fileresprobcov);    int theta;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
   strcpy(fileresprobcor,"probcor");    char fileresprobcor[FILENAMELENGTH];
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    double ***varpij;
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    strcpy(fileresprob,"prob"); 
   }    strcat(fileresprob,fileres);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      printf("Problem with resultfile: %s\n", fileresprob);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    strcpy(fileresprobcov,"probcov"); 
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    strcat(fileresprobcov,fileres);
   pstamp(ficresprob);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      printf("Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficresprob,"# Age");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   pstamp(ficresprobcov);    }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    strcpy(fileresprobcor,"probcor"); 
   fprintf(ficresprobcov,"# Age");    strcat(fileresprobcor,fileres);
   pstamp(ficresprobcor);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficresprobcor,"# Age");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   for(i=1; i<=nlstate;i++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(j=1; j<=(nlstate+ndeath);j++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }      pstamp(ficresprob);
  /* fprintf(ficresprob,"\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fprintf(ficresprobcov,"\n");    fprintf(ficresprob,"# Age");
   fprintf(ficresprobcor,"\n");    pstamp(ficresprobcov);
  */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
  xp=vector(1,npar);    fprintf(ficresprobcov,"# Age");
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    pstamp(ficresprobcor);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    fprintf(ficresprobcor,"# Age");
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;  
   fprintf(ficgp,"\n# Routine varprob");    for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(fichtm,"\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\      }  
   file %s<br>\n",optionfilehtmcov);   /* fprintf(ficresprob,"\n");
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    fprintf(ficresprobcov,"\n");
 and drawn. It helps understanding how is the covariance between two incidences.\    fprintf(ficresprobcor,"\n");
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");   */
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \   xp=vector(1,npar);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 standard deviations wide on each axis. <br>\    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    first=1;
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   cov[1]=1;    fprintf(fichtm,"\n");
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   j1=0;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   for(t=1; t<=tj;t++){    file %s<br>\n",optionfilehtmcov);
     for(i1=1; i1<=ncodemax[t];i1++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       j1++;  and drawn. It helps understanding how is the covariance between two incidences.\
       if  (cptcovn>0) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fprintf(ficresprob, "\n#********** Variable ");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         fprintf(ficresprob, "**********\n#\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         fprintf(ficresprobcov, "\n#********** Variable ");  standard deviations wide on each axis. <br>\
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         fprintf(ficresprobcov, "**********\n#\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
          To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         fprintf(ficgp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    cov[1]=1;
         fprintf(ficgp, "**********\n#\n");    tj=cptcoveff;
            if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            j1=0;
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    for(t=1; t<=tj;t++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i1=1; i1<=ncodemax[t];i1++){ 
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        j1++;
                if  (cptcovn>0) {
         fprintf(ficresprobcor, "\n#********** Variable ");              fprintf(ficresprob, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresprobcor, "**********\n#");              fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (age=bage; age<=fage; age ++){          fprintf(ficresprobcov, "**********\n#\n");
         cov[2]=age;          
         for (k=1; k<=cptcovn;k++) {          fprintf(ficgp, "\n#********** Variable "); 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficgp, "**********\n#\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          
         for (k=1; k<=cptcovprod;k++)          
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          
         gp=vector(1,(nlstate)*(nlstate+ndeath));          fprintf(ficresprobcor, "\n#********** Variable ");    
         gm=vector(1,(nlstate)*(nlstate+ndeath));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprobcor, "**********\n#");    
         for(theta=1; theta <=npar; theta++){        }
           for(i=1; i<=npar; i++)        
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);        for (age=bage; age<=fage; age ++){ 
                    cov[2]=age;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for (k=1; k<=cptcovn;k++) {
                      cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           k=0;          }
           for(i=1; i<= (nlstate); i++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             for(j=1; j<=(nlstate+ndeath);j++){          for (k=1; k<=cptcovprod;k++)
               k=k+1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               gp[k]=pmmij[i][j];          
             }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                    gp=vector(1,(nlstate)*(nlstate+ndeath));
           for(i=1; i<=npar; i++)          gm=vector(1,(nlstate)*(nlstate+ndeath));
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);      
              for(theta=1; theta <=npar; theta++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for(i=1; i<=npar; i++)
           k=0;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           for(i=1; i<=(nlstate); i++){            
             for(j=1; j<=(nlstate+ndeath);j++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               k=k+1;            
               gm[k]=pmmij[i][j];            k=0;
             }            for(i=1; i<= (nlstate); i++){
           }              for(j=1; j<=(nlstate+ndeath);j++){
                      k=k+1;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)                gp[k]=pmmij[i][j];
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];                }
         }            }
             
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            for(i=1; i<=npar; i++)
           for(theta=1; theta <=npar; theta++)              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             trgradg[j][theta]=gradg[theta][j];      
                    pmij(pmmij,cov,ncovmodel,xp,nlstate);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            k=0;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            for(i=1; i<=(nlstate); i++){
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              for(j=1; j<=(nlstate+ndeath);j++){
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                k=k+1;
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                gm[k]=pmmij[i][j];
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              }
             }
         pmij(pmmij,cov,ncovmodel,x,nlstate);       
                    for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         k=0;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         for(i=1; i<=(nlstate); i++){          }
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             mu[k][(int) age]=pmmij[i][j];            for(theta=1; theta <=npar; theta++)
           }              trgradg[j][theta]=gradg[theta][j];
         }          
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             varpij[i][j][(int)age] = doldm[i][j];          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         /*printf("\n%d ",(int)age);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          pmij(pmmij,cov,ncovmodel,x,nlstate);
           }*/          
           k=0;
         fprintf(ficresprob,"\n%d ",(int)age);          for(i=1; i<=(nlstate); i++){
         fprintf(ficresprobcov,"\n%d ",(int)age);            for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobcor,"\n%d ",(int)age);              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              varpij[i][j][(int)age] = doldm[i][j];
         }  
         i=0;          /*printf("\n%d ",(int)age);
         for (k=1; k<=(nlstate);k++){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           for (l=1; l<=(nlstate+ndeath);l++){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             i=i++;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            }*/
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){          fprintf(ficresprob,"\n%d ",(int)age);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          fprintf(ficresprobcov,"\n%d ",(int)age);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          fprintf(ficresprobcor,"\n%d ",(int)age);
             }  
           }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         }/* end of loop for state */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       } /* end of loop for age */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       /* Confidence intervalle of pij  */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       /*          }
         fprintf(ficgp,"\nset noparametric;unset label");          i=0;
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          for (k=1; k<=(nlstate);k++){
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            for (l=1; l<=(nlstate+ndeath);l++){ 
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              i=i++;
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);              for (j=1; j<=i;j++){
       */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              }
       first1=1;            }
       for (k2=1; k2<=(nlstate);k2++){          }/* end of loop for state */
         for (l2=1; l2<=(nlstate+ndeath);l2++){        } /* end of loop for age */
           if(l2==k2) continue;  
           j=(k2-1)*(nlstate+ndeath)+l2;        /* Confidence intervalle of pij  */
           for (k1=1; k1<=(nlstate);k1++){        /*
             for (l1=1; l1<=(nlstate+ndeath);l1++){          fprintf(ficgp,"\nset noparametric;unset label");
               if(l1==k1) continue;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
               i=(k1-1)*(nlstate+ndeath)+l1;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               if(i<=j) continue;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
               for (age=bage; age<=fage; age ++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                 if ((int)age %5==0){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   mu2=mu[j][(int) age]/stepm*YEARM;        first1=1;
                   c12=cv12/sqrt(v1*v2);        for (k2=1; k2<=(nlstate);k2++){
                   /* Computing eigen value of matrix of covariance */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            if(l2==k2) continue;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            j=(k2-1)*(nlstate+ndeath)+l2;
                   /* Eigen vectors */            for (k1=1; k1<=(nlstate);k1++){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   /*v21=sqrt(1.-v11*v11); *//* error */                if(l1==k1) continue;
                   v21=(lc1-v1)/cv12*v11;                i=(k1-1)*(nlstate+ndeath)+l1;
                   v12=-v21;                if(i<=j) continue;
                   v22=v11;                for (age=bage; age<=fage; age ++){ 
                   tnalp=v21/v11;                  if ((int)age %5==0){
                   if(first1==1){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     first1=0;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                    mu2=mu[j][(int) age]/stepm*YEARM;
                   /*printf(fignu*/                    c12=cv12/sqrt(v1*v2);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */                    /* Computing eigen value of matrix of covariance */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   if(first==1){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     first=0;                    /* Eigen vectors */
                     fprintf(ficgp,"\nset parametric;unset label");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                    /*v21=sqrt(1.-v11*v11); *//* error */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                    v21=(lc1-v1)/cv12*v11;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\                    v12=-v21;
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\                    v22=v11;
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\                    tnalp=v21/v11;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\                    if(first1==1){
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                      first1=0;
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);                    }
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                    /*printf(fignu*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                    if(first==1){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                      first=0;
                   }else{                      fprintf(ficgp,"\nset parametric;unset label");
                     first=0;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   }/* if first */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 } /* age mod 5 */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
               } /* end loop age */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               first=1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             } /*l12 */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           } /* k12 */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         } /*l1 */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }/* k1 */                    }else{
     } /* loop covariates */                      first=0;
   }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   free_vector(xp,1,npar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fclose(ficresprob);                    }/* if first */
   fclose(ficresprobcov);                  } /* age mod 5 */
   fclose(ficresprobcor);                } /* end loop age */
   fflush(ficgp);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fflush(fichtmcov);                first=1;
 }              } /*l12 */
             } /* k12 */
           } /*l1 */
 /******************* Printing html file ***********/        }/* k1 */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      } /* loop covariates */
                   int lastpass, int stepm, int weightopt, char model[],\    }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   int popforecast, int estepm ,\    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                   double jprev1, double mprev1,double anprev1, \    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   double jprev2, double mprev2,double anprev2){    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   int jj1, k1, i1, cpt;    free_vector(xp,1,npar);
     fclose(ficresprob);
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    fclose(ficresprobcov);
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    fclose(ficresprobcor);
 </ul>");    fflush(ficgp);
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \    fflush(fichtmcov);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",  }
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));  
    fprintf(fichtm,"\  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",  /******************* Printing html file ***********/
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    fprintf(fichtm,"\                    int lastpass, int stepm, int weightopt, char model[],\
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));                    int popforecast, int estepm ,\
    fprintf(fichtm,"\                    double jprev1, double mprev1,double anprev1, \
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \                    double jprev2, double mprev2,double anprev2){
    <a href=\"%s\">%s</a> <br>\n",    int jj1, k1, i1, cpt;
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));  
    fprintf(fichtm,"\     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
  - Population projections by age and states: \     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
  m=cptcoveff;     fprintf(fichtm,"\
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
  jj1=0;     fprintf(fichtm,"\
  for(k1=1; k1<=m;k1++){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
    for(i1=1; i1<=ncodemax[k1];i1++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      jj1++;     fprintf(fichtm,"\
      if (cptcovn > 0) {   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");     <a href=\"%s\">%s</a> <br>\n",
        for (cpt=1; cpt<=cptcoveff;cpt++)             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);     fprintf(fichtm,"\
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   - Population projections by age and states: \
      }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);      
      /* Quasi-incidences */   m=cptcoveff;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \  
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);   jj1=0;
        /* Period (stable) prevalence in each health state */   for(k1=1; k1<=m;k1++){
        for(cpt=1; cpt<nlstate;cpt++){     for(i1=1; i1<=ncodemax[k1];i1++){
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \       jj1++;
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);       if (cptcovn > 0) {
        }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      for(cpt=1; cpt<=nlstate;cpt++) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      }       }
    } /* end i1 */       /* Pij */
  }/* End k1 */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
  fprintf(fichtm,"</ul>");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  fprintf(fichtm,"\   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
  fprintf(fichtm,"\         }
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",       for(cpt=1; cpt<=nlstate;cpt++) {
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
  fprintf(fichtm,"\       }
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",     } /* end i1 */
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));   }/* End k1 */
  fprintf(fichtm,"\   fprintf(fichtm,"</ul>");
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \  
    <a href=\"%s\">%s</a> <br>\n</li>",  
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));   fprintf(fichtm,"\
  fprintf(fichtm,"\  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
    <a href=\"%s\">%s</a> <br>\n</li>",  
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  fprintf(fichtm,"\           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",   fprintf(fichtm,"\
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  fprintf(fichtm,"\           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));   fprintf(fichtm,"\
  fprintf(fichtm,"\   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 /*  if(popforecast==1) fprintf(fichtm,"\n */     <a href=\"%s\">%s</a> <br>\n</li>",
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */   fprintf(fichtm,"\
 /*      <br>",fileres,fileres,fileres,fileres); */   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 /*  else  */     <a href=\"%s\">%s</a> <br>\n</li>",
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
  fflush(fichtm);   fprintf(fichtm,"\
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
  m=cptcoveff;   fprintf(fichtm,"\
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
  jj1=0;   fprintf(fichtm,"\
  for(k1=1; k1<=m;k1++){   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
    for(i1=1; i1<=ncodemax[k1];i1++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
      jj1++;  
      if (cptcovn > 0) {  /*  if(popforecast==1) fprintf(fichtm,"\n */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
        for (cpt=1; cpt<=cptcoveff;cpt++)  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /*      <br>",fileres,fileres,fileres,fileres); */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  /*  else  */
      }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      for(cpt=1; cpt<=nlstate;cpt++) {   fflush(fichtm);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\  
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);     m=cptcoveff;
      }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \  
 health expectancies in states (1) and (2): %s%d.png<br>\   jj1=0;
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);   for(k1=1; k1<=m;k1++){
    } /* end i1 */     for(i1=1; i1<=ncodemax[k1];i1++){
  }/* End k1 */       jj1++;
  fprintf(fichtm,"</ul>");       if (cptcovn > 0) {
  fflush(fichtm);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 }         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 /******************* Gnuplot file **************/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   char dirfileres[132],optfileres[132];         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   int ng;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */       }
 /*     printf("Problem with file %s",optionfilegnuplot); */       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 /*   } */  true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
   /*#ifdef windows */   observed and cahotic prevalences: %s%d.png<br>\
   fprintf(ficgp,"cd \"%s\" \n",pathc);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     /*#endif */     } /* end i1 */
   m=pow(2,cptcoveff);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   strcpy(dirfileres,optionfilefiname);   fflush(fichtm);
   strcpy(optfileres,"vpl");  }
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /******************* Gnuplot file **************/
    for (k1=1; k1<= m ; k1 ++) {  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);  
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    char dirfileres[132],optfileres[132];
      fprintf(ficgp,"set xlabel \"Age\" \n\    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 set ylabel \"Probability\" \n\    int ng=0;
 set ter png small\n\  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 set size 0.65,0.65\n\  /*     printf("Problem with file %s",optionfilegnuplot); */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
      for (i=1; i<= nlstate ; i ++) {  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*#ifdef windows */
        else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficgp,"cd \"%s\" \n",pathc);
      }      /*#endif */
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    m=pow(2,cptcoveff);
      for (i=1; i<= nlstate ; i ++) {  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(dirfileres,optionfilefiname);
        else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(optfileres,"vpl");
      }   /* 1eme*/
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (i=1; i<= nlstate ; i ++) {     for (k1=1; k1<= m ; k1 ++) {
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        else fprintf(ficgp," \%%*lf (\%%*lf)");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
      }         fprintf(ficgp,"set xlabel \"Age\" \n\
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));  set ylabel \"Probability\" \n\
    }  set ter png small\n\
   }  set size 0.65,0.65\n\
   /*2 eme*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
   for (k1=1; k1<= m ; k1 ++) {       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }
     for (i=1; i<= nlstate+1 ; i ++) {       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       k=2*i;       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for (j=1; j<= nlstate+1 ; j ++) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       } 
         else fprintf(ficgp," \%%*lf (\%%*lf)");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       }         for (i=1; i<= nlstate ; i ++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);       }  
       for (j=1; j<= nlstate+1 ; j ++) {       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     }
         else fprintf(ficgp," \%%*lf (\%%*lf)");    }
       }      /*2 eme*/
       fprintf(ficgp,"\" t\"\" w l 0,");    
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    for (k1=1; k1<= m ; k1 ++) { 
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      
       }        for (i=1; i<= nlstate+1 ; i ++) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        k=2*i;
       else fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     }        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   /*3eme*/        }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   for (k1=1; k1<= m ; k1 ++) {        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       /*       k=2+nlstate*(2*cpt-2); */        for (j=1; j<= nlstate+1 ; j ++) {
       k=2+(nlstate+1)*(cpt-1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficgp,"set ter png small\n\        }   
 set size 0.65,0.65\n\        fprintf(ficgp,"\" t\"\" w l 0,");
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for (j=1; j<= nlstate+1 ; j ++) {
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }   
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        else fprintf(ficgp,"\" t\"\" w l 0,");
              }
       */    }
       for (i=1; i< nlstate ; i ++) {    
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);    /*3eme*/
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/    
            for (k1=1; k1<= m ; k1 ++) { 
       }      for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);        /*       k=2+nlstate*(2*cpt-2); */
     }        k=2+(nlstate+1)*(cpt-1);
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficgp,"set ter png small\n\
   /* CV preval stable (period) */  set size 0.65,0.65\n\
   for (k1=1; k1<= m ; k1 ++) {  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     for (cpt=1; cpt<=nlstate ; cpt ++) {        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       k=3;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 set ter png small\nset size 0.65,0.65\n\          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 unset log y\n\          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          
              */
       for (i=1; i< nlstate ; i ++)        for (i=1; i< nlstate ; i ++) {
         fprintf(ficgp,"+$%d",k+i+1);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                
       l=3+(nlstate+ndeath)*cpt;        } 
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       for (i=1; i< nlstate ; i ++) {      }
         l=3+(nlstate+ndeath)*cpt;    }
         fprintf(ficgp,"+$%d",l+i+1);    
       }    /* CV preval stable (period) */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for (k1=1; k1<= m ; k1 ++) { 
     }      for (cpt=1; cpt<=nlstate ; cpt ++) {
   }          k=3;
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   /* proba elementaires */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   for(i=1,jk=1; i <=nlstate; i++){  set ter png small\nset size 0.65,0.65\n\
     for(k=1; k <=(nlstate+ndeath); k++){  unset log y\n\
       if (k != i) {  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         for(j=1; j <=ncovmodel; j++){        
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for (i=1; i< nlstate ; i ++)
           jk++;          fprintf(ficgp,"+$%d",k+i+1);
           fprintf(ficgp,"\n");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         }        
       }        l=3+(nlstate+ndeath)*cpt;
     }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
    }        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          fprintf(ficgp,"+$%d",l+i+1);
      for(jk=1; jk <=m; jk++) {        }
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
        if (ng==2)      } 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    }  
        else    
          fprintf(ficgp,"\nset title \"Probability\"\n");    /* proba elementaires */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for(i=1,jk=1; i <=nlstate; i++){
        i=1;      for(k=1; k <=(nlstate+ndeath); k++){
        for(k2=1; k2<=nlstate; k2++) {        if (k != i) {
          k3=i;          for(j=1; j <=ncovmodel; j++){
          for(k=1; k<=(nlstate+ndeath); k++) {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
            if (k != k2){            jk++; 
              if(ng==2)            fprintf(ficgp,"\n");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          }
              else        }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      }
              ij=1;     }
              for(j=3; j <=ncovmodel; j++) {  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       for(jk=1; jk <=m; jk++) {
                  ij++;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
                }         if (ng==2)
                else           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         else
              }           fprintf(ficgp,"\nset title \"Probability\"\n");
              fprintf(ficgp,")/(1");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                       i=1;
              for(k1=1; k1 <=nlstate; k1++){           for(k2=1; k2<=nlstate; k2++) {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);           k3=i;
                ij=1;           for(k=1; k<=(nlstate+ndeath); k++) {
                for(j=3; j <=ncovmodel; j++){             if (k != k2){
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {               if(ng==2)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                    ij++;               else
                  }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else               ij=1;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);               for(j=3; j <=ncovmodel; j++) {
                }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                fprintf(ficgp,")");                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
              }                   ij++;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                 }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                 else
              i=i+ncovmodel;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            }               }
          } /* end k */               fprintf(ficgp,")/(1");
        } /* end k2 */               
      } /* end jk */               for(k1=1; k1 <=nlstate; k1++){   
    } /* end ng */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
    fflush(ficgp);                 ij=1;
 }  /* end gnuplot */                 for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 /*************** Moving average **************/                     ij++;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){                   }
                    else
   int i, cpt, cptcod;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   int modcovmax =1;                 }
   int mobilavrange, mob;                 fprintf(ficgp,")");
   double age;               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                            a covariate has 2 modalities */               i=i+ncovmodel;
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */             }
            } /* end k */
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){         } /* end k2 */
     if(mobilav==1) mobilavrange=5; /* default */       } /* end jk */
     else mobilavrange=mobilav;     } /* end ng */
     for (age=bage; age<=fage; age++)     fflush(ficgp); 
       for (i=1; i<=nlstate;i++)  }  /* end gnuplot */
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];  
     /* We keep the original values on the extreme ages bage, fage and for  /*************** Moving average **************/
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
        we use a 5 terms etc. until the borders are no more concerned.  
     */    int i, cpt, cptcod;
     for (mob=3;mob <=mobilavrange;mob=mob+2){    int modcovmax =1;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){    int mobilavrange, mob;
         for (i=1; i<=nlstate;i++){    double age;
           for (cptcod=1;cptcod<=modcovmax;cptcod++){  
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                             a covariate has 2 modalities */
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];  
               }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;      if(mobilav==1) mobilavrange=5; /* default */
           }      else mobilavrange=mobilav;
         }      for (age=bage; age<=fage; age++)
       }/* end age */        for (i=1; i<=nlstate;i++)
     }/* end mob */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   }else return -1;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   return 0;      /* We keep the original values on the extreme ages bage, fage and for 
 }/* End movingaverage */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
 /************** Forecasting ******************/      for (mob=3;mob <=mobilavrange;mob=mob+2){
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   /* proj1, year, month, day of starting projection          for (i=1; i<=nlstate;i++){
      agemin, agemax range of age            for (cptcod=1;cptcod<=modcovmax;cptcod++){
      dateprev1 dateprev2 range of dates during which prevalence is computed              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
      anproj2 year of en of projection (same day and month as proj1).                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   int *popage;                }
   double agec; /* generic age */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            }
   double *popeffectif,*popcount;          }
   double ***p3mat;        }/* end age */
   double ***mobaverage;      }/* end mob */
   char fileresf[FILENAMELENGTH];    }else return -1;
     return 0;
   agelim=AGESUP;  }/* End movingaverage */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
    
   strcpy(fileresf,"f");  /************** Forecasting ******************/
   strcat(fileresf,fileres);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /* proj1, year, month, day of starting projection 
     printf("Problem with forecast resultfile: %s\n", fileresf);       agemin, agemax range of age
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);       dateprev1 dateprev2 range of dates during which prevalence is computed
   }       anproj2 year of en of projection (same day and month as proj1).
   printf("Computing forecasting: result on file '%s' \n", fileresf);    */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   if (mobilav!=0) {    double *popeffectif,*popcount;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***p3mat;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    double ***mobaverage;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    char fileresf[FILENAMELENGTH];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }    agelim=AGESUP;
   }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcpy(fileresf,"f"); 
   if (stepm<=12) stepsize=1;    strcat(fileresf,fileres);
   if(estepm < stepm){    if((ficresf=fopen(fileresf,"w"))==NULL) {
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf("Problem with forecast resultfile: %s\n", fileresf);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   else  hstepm=estepm;      }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
   hstepm=hstepm/stepm;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  
                                fractional in yp1 */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    if (mobilav!=0) {
   mprojmean=yp;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   yp1=modf((yp2*30.5),&yp);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   jprojmean=yp;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if(jprojmean==0) jprojmean=1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if(mprojmean==0) jprojmean=1;      }
     }
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresf,"#****** Routine prevforecast **\n");    }
     else  hstepm=estepm;   
 /*            if (h==(int)(YEARM*yearp)){ */  
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    hstepm=hstepm/stepm; 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       k=k+1;                                 fractional in yp1 */
       fprintf(ficresf,"\n#******");    anprojmean=yp;
       for(j=1;j<=cptcoveff;j++) {    yp2=modf((yp1*12),&yp);
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    mprojmean=yp;
       }    yp1=modf((yp2*30.5),&yp);
       fprintf(ficresf,"******\n");    jprojmean=yp;
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    if(jprojmean==0) jprojmean=1;
       for(j=1; j<=nlstate+ndeath;j++){    if(mprojmean==0) jprojmean=1;
         for(i=1; i<=nlstate;i++)                
           fprintf(ficresf," p%d%d",i,j);    i1=cptcoveff;
         fprintf(ficresf," p.%d",j);    if (cptcovn < 1){i1=1;}
       }    
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
         fprintf(ficresf,"\n");    
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      fprintf(ficresf,"#****** Routine prevforecast **\n");
   
         for (agec=fage; agec>=(ageminpar-1); agec--){  /*            if (h==(int)(YEARM*yearp)){ */
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           nhstepm = nhstepm/hstepm;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k=k+1;
           oldm=oldms;savm=savms;        fprintf(ficresf,"\n#******");
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1;j<=cptcoveff;j++) {
                  fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for (h=0; h<=nhstepm; h++){        }
             if (h*hstepm/YEARM*stepm ==yearp) {        fprintf(ficresf,"******\n");
               fprintf(ficresf,"\n");        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
               for(j=1;j<=cptcoveff;j++)        for(j=1; j<=nlstate+ndeath;j++){ 
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1; i<=nlstate;i++)              
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);            fprintf(ficresf," p%d%d",i,j);
             }          fprintf(ficresf," p.%d",j);
             for(j=1; j<=nlstate+ndeath;j++) {        }
               ppij=0.;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
               for(i=1; i<=nlstate;i++) {          fprintf(ficresf,"\n");
                 if (mobilav==1)          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];  
                 else {          for (agec=fage; agec>=(ageminpar-1); agec--){ 
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                 }            nhstepm = nhstepm/hstepm; 
                 if (h*hstepm/YEARM*stepm== yearp) {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);            oldm=oldms;savm=savms;
                 }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
               } /* end i */          
               if (h*hstepm/YEARM*stepm==yearp) {            for (h=0; h<=nhstepm; h++){
                 fprintf(ficresf," %.3f", ppij);              if (h*hstepm/YEARM*stepm ==yearp) {
               }                fprintf(ficresf,"\n");
             }/* end j */                for(j=1;j<=cptcoveff;j++) 
           } /* end h */                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         } /* end agec */              } 
       } /* end yearp */              for(j=1; j<=nlstate+ndeath;j++) {
     } /* end cptcod */                ppij=0.;
   } /* end  cptcov */                for(i=1; i<=nlstate;i++) {
                          if (mobilav==1) 
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   fclose(ficresf);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 }                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
 /************** Forecasting *****not tested NB*************/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                  }
                  } /* end i */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                if (h*hstepm/YEARM*stepm==yearp) {
   int *popage;                  fprintf(ficresf," %.3f", ppij);
   double calagedatem, agelim, kk1, kk2;                }
   double *popeffectif,*popcount;              }/* end j */
   double ***p3mat,***tabpop,***tabpopprev;            } /* end h */
   double ***mobaverage;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char filerespop[FILENAMELENGTH];          } /* end agec */
         } /* end yearp */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* end cptcod */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* end  cptcov */
   agelim=AGESUP;         
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    fclose(ficresf);
    }
    
   strcpy(filerespop,"pop");  /************** Forecasting *****not tested NB*************/
   strcat(filerespop,fileres);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    
     printf("Problem with forecast resultfile: %s\n", filerespop);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    int *popage;
   }    double calagedatem, agelim, kk1, kk2;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    double *popeffectif,*popcount;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    char filerespop[FILENAMELENGTH];
   
   if (mobilav!=0) {    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    agelim=AGESUP;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    
     }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }    
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcpy(filerespop,"pop"); 
   if (stepm<=12) stepsize=1;    strcat(filerespop,fileres);
      if((ficrespop=fopen(filerespop,"w"))==NULL) {
   agelim=AGESUP;      printf("Problem with forecast resultfile: %s\n", filerespop);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   hstepm=1;    }
   hstepm=hstepm/stepm;    printf("Computing forecasting: result on file '%s' \n", filerespop);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    if (mobilav!=0) {
     }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     popage=ivector(0,AGESUP);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     popeffectif=vector(0,AGESUP);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     popcount=vector(0,AGESUP);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
          }
     i=1;      }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
        stepsize=(int) (stepm+YEARM-1)/YEARM;
     imx=i;    if (stepm<=12) stepsize=1;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    
   }    agelim=AGESUP;
     
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    hstepm=1;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    hstepm=hstepm/stepm; 
       k=k+1;    
       fprintf(ficrespop,"\n#******");    if (popforecast==1) {
       for(j=1;j<=cptcoveff;j++) {      if((ficpop=fopen(popfile,"r"))==NULL) {
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Problem with population file : %s\n",popfile);exit(0);
       }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       fprintf(ficrespop,"******\n");      } 
       fprintf(ficrespop,"# Age");      popage=ivector(0,AGESUP);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      popeffectif=vector(0,AGESUP);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      popcount=vector(0,AGESUP);
            
       for (cpt=0; cpt<=0;cpt++) {      i=1;   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
             
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){      imx=i;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
           nhstepm = nhstepm/hstepm;    }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           oldm=oldms;savm=savms;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          k=k+1;
                fprintf(ficrespop,"\n#******");
           for (h=0; h<=nhstepm; h++){        for(j=1;j<=cptcoveff;j++) {
             if (h==(int) (calagedatem+YEARM*cpt)) {          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }        fprintf(ficrespop,"******\n");
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficrespop,"# Age");
               kk1=0.;kk2=0;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
               for(i=1; i<=nlstate;i++) {                      if (popforecast==1)  fprintf(ficrespop," [Population]");
                 if (mobilav==1)        
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for (cpt=0; cpt<=0;cpt++) { 
                 else {          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          
                 }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
               }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
               if (h==(int)(calagedatem+12*cpt)){            nhstepm = nhstepm/hstepm; 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            
                   /*fprintf(ficrespop," %.3f", kk1);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            oldm=oldms;savm=savms;
               }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             }          
             for(i=1; i<=nlstate;i++){            for (h=0; h<=nhstepm; h++){
               kk1=0.;              if (h==(int) (calagedatem+YEARM*cpt)) {
                 for(j=1; j<=nlstate;j++){                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              } 
                 }              for(j=1; j<=nlstate+ndeath;j++) {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                kk1=0.;kk2=0;
             }                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                  else {
           }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  }
         }                }
       }                if (h==(int)(calagedatem+12*cpt)){
                    tabpop[(int)(agedeb)][j][cptcod]=kk1;
   /******/                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){              for(i=1; i<=nlstate;i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                kk1=0.;
           nhstepm = nhstepm/hstepm;                  for(j=1; j<=nlstate;j++){
                              kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  }
           oldm=oldms;savm=savms;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedatem+YEARM*cpt)) {              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }            }
             for(j=1; j<=nlstate+ndeath;j++) {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                      }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       
               }    /******/
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          
             }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
         }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       }            nhstepm = nhstepm/hstepm; 
    }            
   }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   if (popforecast==1) {              if (h==(int) (calagedatem+YEARM*cpt)) {
     free_ivector(popage,0,AGESUP);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     free_vector(popeffectif,0,AGESUP);              } 
     free_vector(popcount,0,AGESUP);              for(j=1; j<=nlstate+ndeath;j++) {
   }                kk1=0.;kk2=0;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                for(i=1; i<=nlstate;i++) {              
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   fclose(ficrespop);                }
 } /* End of popforecast */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
 int fileappend(FILE *fichier, char *optionfich)            }
 {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((fichier=fopen(optionfich,"a"))==NULL) {          }
     printf("Problem with file: %s\n", optionfich);        }
     fprintf(ficlog,"Problem with file: %s\n", optionfich);     } 
     return (0);    }
   }   
   fflush(fichier);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   return (1);  
 }    if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
 /**************** function prwizard **********************/      free_vector(popcount,0,AGESUP);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    }
 {    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Wizard to print covariance matrix template */    fclose(ficrespop);
   } /* End of popforecast */
   char ca[32], cb[32], cc[32];  
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;  int fileappend(FILE *fichier, char *optionfich)
   int numlinepar;  {
     if((fichier=fopen(optionfich,"a"))==NULL) {
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("Problem with file: %s\n", optionfich);
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   for(i=1; i <=nlstate; i++){      return (0);
     jj=0;    }
     for(j=1; j <=nlstate+ndeath; j++){    fflush(fichier);
       if(j==i) continue;    return (1);
       jj++;  }
       /*ca[0]= k+'a'-1;ca[1]='\0';*/  
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i,j);  /**************** function prwizard **********************/
       for(k=1; k<=ncovmodel;k++){  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
         /*        printf(" %lf",param[i][j][k]); */  {
         /*        fprintf(ficparo," %lf",param[i][j][k]); */  
         printf(" 0.");    /* Wizard to print covariance matrix template */
         fprintf(ficparo," 0.");  
       }    char ca[32], cb[32], cc[32];
       printf("\n");    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
       fprintf(ficparo,"\n");    int numlinepar;
     }  
   }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");    for(i=1; i <=nlstate; i++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/      jj=0;
   for(i=1; i <=nlstate; i++){      for(j=1; j <=nlstate+ndeath; j++){
     jj=0;        if(j==i) continue;
     for(j=1; j <=nlstate+ndeath; j++){        jj++;
       if(j==i) continue;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
       jj++;        printf("%1d%1d",i,j);
       fprintf(ficparo,"%1d%1d",i,j);        fprintf(ficparo,"%1d%1d",i,j);
       printf("%1d%1d",i,j);        for(k=1; k<=ncovmodel;k++){
       fflush(stdout);          /*        printf(" %lf",param[i][j][k]); */
       for(k=1; k<=ncovmodel;k++){          /*        fprintf(ficparo," %lf",param[i][j][k]); */
         /*      printf(" %le",delti3[i][j][k]); */          printf(" 0.");
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */          fprintf(ficparo," 0.");
         printf(" 0.");        }
         fprintf(ficparo," 0.");        printf("\n");
       }        fprintf(ficparo,"\n");
       numlinepar++;      }
       printf("\n");    }
       fprintf(ficparo,"\n");    printf("# Scales (for hessian or gradient estimation)\n");
     }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   printf("# Covariance matrix\n");    for(i=1; i <=nlstate; i++){
 /* # 121 Var(a12)\n\ */      jj=0;
 /* # 122 Cov(b12,a12) Var(b12)\n\ */      for(j=1; j <=nlstate+ndeath; j++){
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */        if(j==i) continue;
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        jj++;
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        fprintf(ficparo,"%1d%1d",i,j);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */        printf("%1d%1d",i,j);
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        fflush(stdout);
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        for(k=1; k<=ncovmodel;k++){
   fflush(stdout);          /*      printf(" %le",delti3[i][j][k]); */
   fprintf(ficparo,"# Covariance matrix\n");          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   /* # 121 Var(a12)\n\ */          printf(" 0.");
   /* # 122 Cov(b12,a12) Var(b12)\n\ */          fprintf(ficparo," 0.");
   /* #   ...\n\ */        }
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */        numlinepar++;
          printf("\n");
   for(itimes=1;itimes<=2;itimes++){        fprintf(ficparo,"\n");
     jj=0;      }
     for(i=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath; j++){    printf("# Covariance matrix\n");
         if(j==i) continue;  /* # 121 Var(a12)\n\ */
         for(k=1; k<=ncovmodel;k++){  /* # 122 Cov(b12,a12) Var(b12)\n\ */
           jj++;  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
           ca[0]= k+'a'-1;ca[1]='\0';  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
           if(itimes==1){  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
             printf("#%1d%1d%d",i,j,k);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             fprintf(ficparo,"#%1d%1d%d",i,j,k);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           }else{  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
             printf("%1d%1d%d",i,j,k);    fflush(stdout);
             fprintf(ficparo,"%1d%1d%d",i,j,k);    fprintf(ficparo,"# Covariance matrix\n");
             /*  printf(" %.5le",matcov[i][j]); */    /* # 121 Var(a12)\n\ */
           }    /* # 122 Cov(b12,a12) Var(b12)\n\ */
           ll=0;    /* #   ...\n\ */
           for(li=1;li <=nlstate; li++){    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
             for(lj=1;lj <=nlstate+ndeath; lj++){    
               if(lj==li) continue;    for(itimes=1;itimes<=2;itimes++){
               for(lk=1;lk<=ncovmodel;lk++){      jj=0;
                 ll++;      for(i=1; i <=nlstate; i++){
                 if(ll<=jj){        for(j=1; j <=nlstate+ndeath; j++){
                   cb[0]= lk +'a'-1;cb[1]='\0';          if(j==i) continue;
                   if(ll<jj){          for(k=1; k<=ncovmodel;k++){
                     if(itimes==1){            jj++;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            ca[0]= k+'a'-1;ca[1]='\0';
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            if(itimes==1){
                     }else{              printf("#%1d%1d%d",i,j,k);
                       printf(" 0.");              fprintf(ficparo,"#%1d%1d%d",i,j,k);
                       fprintf(ficparo," 0.");            }else{
                     }              printf("%1d%1d%d",i,j,k);
                   }else{              fprintf(ficparo,"%1d%1d%d",i,j,k);
                     if(itimes==1){              /*  printf(" %.5le",matcov[i][j]); */
                       printf(" Var(%s%1d%1d)",ca,i,j);            }
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);            ll=0;
                     }else{            for(li=1;li <=nlstate; li++){
                       printf(" 0.");              for(lj=1;lj <=nlstate+ndeath; lj++){
                       fprintf(ficparo," 0.");                if(lj==li) continue;
                     }                for(lk=1;lk<=ncovmodel;lk++){
                   }                  ll++;
                 }                  if(ll<=jj){
               } /* end lk */                    cb[0]= lk +'a'-1;cb[1]='\0';
             } /* end lj */                    if(ll<jj){
           } /* end li */                      if(itimes==1){
           printf("\n");                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           fprintf(ficparo,"\n");                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           numlinepar++;                      }else{
         } /* end k*/                        printf(" 0.");
       } /*end j */                        fprintf(ficparo," 0.");
     } /* end i */                      }
   } /* end itimes */                    }else{
                       if(itimes==1){
 } /* end of prwizard */                        printf(" Var(%s%1d%1d)",ca,i,j);
 /******************* Gompertz Likelihood ******************************/                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 double gompertz(double x[])                      }else{
 {                        printf(" 0.");
   double A,B,L=0.0,sump=0.,num=0.;                        fprintf(ficparo," 0.");
   int i,n=0; /* n is the size of the sample */                      }
                     }
   for (i=0;i<=imx-1 ; i++) {                  }
     sump=sump+weight[i];                } /* end lk */
     /*    sump=sump+1;*/              } /* end lj */
     num=num+1;            } /* end li */
   }            printf("\n");
              fprintf(ficparo,"\n");
              numlinepar++;
   /* for (i=0; i<=imx; i++)          } /* end k*/
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/        } /*end j */
       } /* end i */
   for (i=1;i<=imx ; i++)    } /* end itimes */
     {  
       if (cens[i] == 1 && wav[i]>1)  } /* end of prwizard */
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));  /******************* Gompertz Likelihood ******************************/
        double gompertz(double x[])
       if (cens[i] == 0 && wav[i]>1)  { 
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))    double A,B,L=0.0,sump=0.,num=0.;
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);      int i,n=0; /* n is the size of the sample */
        
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */    for (i=0;i<=imx-1 ; i++) {
       if (wav[i] > 1 ) { /* ??? */      sump=sump+weight[i];
         L=L+A*weight[i];      /*    sump=sump+1;*/
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/      num=num+1;
       }    }
     }   
    
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/    /* for (i=0; i<=imx; i++) 
         if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   return -2*L*num/sump;  
 }    for (i=1;i<=imx ; i++)
       {
 /******************* Printing html file ***********/        if (cens[i] == 1 && wav[i]>1)
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
                   int lastpass, int stepm, int weightopt, char model[],\        
                   int imx,  double p[],double **matcov,double agemortsup){        if (cens[i] == 0 && wav[i]>1)
   int i,k;          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");        
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   for (i=1;i<=2;i++)        if (wav[i] > 1 ) { /* ??? */
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));          L=L+A*weight[i];
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   fprintf(fichtm,"</ul>");        }
       }
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");  
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");   
     return -2*L*num/sump;
  for (k=agegomp;k<(agemortsup-2);k++)  }
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);  
   /******************* Printing html file ***********/
    void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   fflush(fichtm);                    int lastpass, int stepm, int weightopt, char model[],\
 }                    int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
 /******************* Gnuplot file **************/  
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   char dirfileres[132],optfileres[132];    for (i=1;i<=2;i++) 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   int ng;    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   /*#ifdef windows */  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
     /*#endif */   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
   strcpy(dirfileres,optionfilefiname);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   strcpy(optfileres,"vpl");  
   fprintf(ficgp,"set out \"graphmort.png\"\n ");   
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");    fflush(fichtm);
   fprintf(ficgp, "set ter png small\n set log y\n");  }
   fprintf(ficgp, "set size 0.65,0.65\n");  
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);  /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 }  
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
 /***********************************************/    /*#ifdef windows */
 /**************** Main Program *****************/    fprintf(ficgp,"cd \"%s\" \n",pathc);
 /***********************************************/      /*#endif */
   
 int main(int argc, char *argv[])  
 {    strcpy(dirfileres,optionfilefiname);
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    strcpy(optfileres,"vpl");
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
   int linei, month, year,iout;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
   int jj, ll, li, lj, lk, imk;    fprintf(ficgp, "set ter png small\n set log y\n"); 
   int numlinepar=0; /* Current linenumber of parameter file */    fprintf(ficgp, "set size 0.65,0.65\n");
   int itimes;    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   int NDIM=2;  
   } 
   char ca[32], cb[32], cc[32];  
   char dummy[]="                         ";  
   /*  FILE *fichtm; *//* Html File */  
   /* FILE *ficgp;*/ /*Gnuplot File */  
   struct stat info;  
   double agedeb, agefin,hf;  /***********************************************/
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  /**************** Main Program *****************/
   /***********************************************/
   double fret;  
   double **xi,tmp,delta;  int main(int argc, char *argv[])
   {
   double dum; /* Dummy variable */    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   double ***p3mat;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   double ***mobaverage;    int linei, month, year,iout;
   int *indx;    int jj, ll, li, lj, lk, imk;
   char line[MAXLINE], linepar[MAXLINE];    int numlinepar=0; /* Current linenumber of parameter file */
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    int itimes;
   char pathr[MAXLINE], pathimach[MAXLINE];    int NDIM=2;
   char **bp, *tok, *val; /* pathtot */    int vpopbased=0;
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */    char ca[32], cb[32], cc[32];
   int c,  h , cpt,l;    char dummy[]="                         ";
   int ju,jl, mi;    /*  FILE *fichtm; *//* Html File */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    /* FILE *ficgp;*/ /*Gnuplot File */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;    struct stat info;
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    double agedeb, agefin,hf;
   int mobilav=0,popforecast=0;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   int hstepm, nhstepm;  
   int agemortsup;    double fret;
   float  sumlpop=0.;    double **xi,tmp,delta;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;  
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    double dum; /* Dummy variable */
     double ***p3mat;
   double bage, fage, age, agelim, agebase;    double ***mobaverage;
   double ftolpl=FTOL;    int *indx;
   double **prlim;    char line[MAXLINE], linepar[MAXLINE];
   double *severity;    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   double ***param; /* Matrix of parameters */    char pathr[MAXLINE], pathimach[MAXLINE]; 
   double  *p;    char **bp, *tok, *val; /* pathtot */
   double **matcov; /* Matrix of covariance */    int firstobs=1, lastobs=10;
   double ***delti3; /* Scale */    int sdeb, sfin; /* Status at beginning and end */
   double *delti; /* Scale */    int c,  h , cpt,l;
   double ***eij, ***vareij;    int ju,jl, mi;
   double **varpl; /* Variances of prevalence limits by age */    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   double *epj, vepp;    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
   double kk1, kk2;    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    int mobilav=0,popforecast=0;
   double **ximort;    int hstepm, nhstepm;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int agemortsup;
   int *dcwave;    float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   char z[1]="c", occ;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double bage, fage, age, agelim, agebase;
   char  *strt, strtend[80];    double ftolpl=FTOL;
   char *stratrunc;    double **prlim;
   int lstra;    double *severity;
     double ***param; /* Matrix of parameters */
   long total_usecs;    double  *p;
      double **matcov; /* Matrix of covariance */
 /*   setlocale (LC_ALL, ""); */    double ***delti3; /* Scale */
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    double *delti; /* Scale */
 /*   textdomain (PACKAGE); */    double ***eij, ***vareij;
 /*   setlocale (LC_CTYPE, ""); */    double **varpl; /* Variances of prevalence limits by age */
 /*   setlocale (LC_MESSAGES, ""); */    double *epj, vepp;
     double kk1, kk2;
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   (void) gettimeofday(&start_time,&tzp);    double **ximort;
   curr_time=start_time;    char *alph[]={"a","a","b","c","d","e"}, str[4];
   tm = *localtime(&start_time.tv_sec);    int *dcwave;
   tmg = *gmtime(&start_time.tv_sec);  
   strcpy(strstart,asctime(&tm));    char z[1]="c", occ;
   
 /*  printf("Localtime (at start)=%s",strstart); */    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 /*  tp.tv_sec = tp.tv_sec +86400; */    char  *strt, strtend[80];
 /*  tm = *localtime(&start_time.tv_sec); */    char *stratrunc;
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    int lstra;
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */  
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    long total_usecs;
 /*   tp.tv_sec = mktime(&tmg); */   
 /*   strt=asctime(&tmg); */  /*   setlocale (LC_ALL, ""); */
 /*   printf("Time(after) =%s",strstart);  */  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 /*  (void) time (&time_value);  /*   textdomain (PACKAGE); */
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);  /*   setlocale (LC_CTYPE, ""); */
 *  tm = *localtime(&time_value);  /*   setlocale (LC_MESSAGES, ""); */
 *  strstart=asctime(&tm);  
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 */    (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
   nberr=0; /* Number of errors and warnings */    tm = *localtime(&start_time.tv_sec);
   nbwarn=0;    tmg = *gmtime(&start_time.tv_sec);
   getcwd(pathcd, size);    strcpy(strstart,asctime(&tm));
   
   printf("\n%s\n%s",version,fullversion);  /*  printf("Localtime (at start)=%s",strstart); */
   if(argc <=1){  /*  tp.tv_sec = tp.tv_sec +86400; */
     printf("\nEnter the parameter file name: ");  /*  tm = *localtime(&start_time.tv_sec); */
     fgets(pathr,FILENAMELENGTH,stdin);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     i=strlen(pathr);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     if(pathr[i-1]=='\n')  /*   tmg.tm_hour=tmg.tm_hour + 1; */
       pathr[i-1]='\0';  /*   tp.tv_sec = mktime(&tmg); */
    for (tok = pathr; tok != NULL; ){  /*   strt=asctime(&tmg); */
       printf("Pathr |%s|\n",pathr);  /*   printf("Time(after) =%s",strstart);  */
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');  /*  (void) time (&time_value);
       printf("val= |%s| pathr=%s\n",val,pathr);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       strcpy (pathtot, val);  *  tm = *localtime(&time_value);
       if(pathr[0] == '\0') break; /* Dirty */  *  strstart=asctime(&tm);
     }  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   }  */
   else{  
     strcpy(pathtot,argv[1]);    nberr=0; /* Number of errors and warnings */
   }    nbwarn=0;
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    getcwd(pathcd, size);
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    printf("\n%s\n%s",version,fullversion);
   /* cutv(path,optionfile,pathtot,'\\');*/    if(argc <=1){
       printf("\nEnter the parameter file name: ");
   /* Split argv[0], imach program to get pathimach */      fgets(pathr,FILENAMELENGTH,stdin);
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);      i=strlen(pathr);
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);      if(pathr[i-1]=='\n')
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);        pathr[i-1]='\0';
  /*   strcpy(pathimach,argv[0]); */     for (tok = pathr; tok != NULL; ){
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */        printf("Pathr |%s|\n",pathr);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        printf("val= |%s| pathr=%s\n",val,pathr);
   chdir(path); /* Can be a relative path */        strcpy (pathtot, val);
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */        if(pathr[0] == '\0') break; /* Dirty */
     printf("Current directory %s!\n",pathcd);      }
   strcpy(command,"mkdir ");    }
   strcat(command,optionfilefiname);    else{
   if((outcmd=system(command)) != 0){      strcpy(pathtot,argv[1]);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    }
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /* fclose(ficlog); */    /*cygwin_split_path(pathtot,path,optionfile);
 /*     exit(1); */      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   }    /* cutv(path,optionfile,pathtot,'\\');*/
 /*   if((imk=mkdir(optionfilefiname))<0){ */  
 /*     perror("mkdir"); */    /* Split argv[0], imach program to get pathimach */
 /*   } */    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   /*-------- arguments in the command line --------*/    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
   /* Log file */    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   strcat(filelog, optionfilefiname);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcat(filelog,".log");    /* */    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   if((ficlog=fopen(filelog,"w"))==NULL)    {    chdir(path); /* Can be a relative path */
     printf("Problem with logfile %s\n",filelog);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
     goto end;      printf("Current directory %s!\n",pathcd);
   }    strcpy(command,"mkdir ");
   fprintf(ficlog,"Log filename:%s\n",filelog);    strcat(command,optionfilefiname);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    if((outcmd=system(command)) != 0){
   fprintf(ficlog,"\nEnter the parameter file name: \n");      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
  path=%s \n\      /* fclose(ficlog); */
  optionfile=%s\n\  /*     exit(1); */
  optionfilext=%s\n\    }
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   printf("Local time (at start):%s",strstart);  /*   } */
   fprintf(ficlog,"Local time (at start): %s",strstart);  
   fflush(ficlog);    /*-------- arguments in the command line --------*/
 /*   (void) gettimeofday(&curr_time,&tzp); */  
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    /* Log file */
     strcat(filelog, optionfilefiname);
   /* */    strcat(filelog,".log");    /* */
   strcpy(fileres,"r");    if((ficlog=fopen(filelog,"w"))==NULL)    {
   strcat(fileres, optionfilefiname);      printf("Problem with logfile %s\n",filelog);
   strcat(fileres,".txt");    /* Other files have txt extension */      goto end;
     }
   /*---------arguments file --------*/    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficlog,"\nEnter the parameter file name: \n");
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);   path=%s \n\
     fflush(ficlog);   optionfile=%s\n\
     goto end;   optionfilext=%s\n\
   }   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
   strcpy(filereso,"o");    fflush(ficlog);
   strcat(filereso,fileres);  /*   (void) gettimeofday(&curr_time,&tzp); */
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    /* */
     fflush(ficlog);    strcpy(fileres,"r");
     goto end;    strcat(fileres, optionfilefiname);
   }    strcat(fileres,".txt");    /* Other files have txt extension */
   
   /* Reads comments: lines beginning with '#' */    /*---------arguments file --------*/
   numlinepar=0;  
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     ungetc(c,ficpar);      printf("Problem with optionfile %s\n",optionfile);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     numlinepar++;      fflush(ficlog);
     puts(line);      goto end;
     fputs(line,ficparo);    }
     fputs(line,ficlog);  
   }  
   ungetc(c,ficpar);  
     strcpy(filereso,"o");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    strcat(filereso,fileres);
   numlinepar++;    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      printf("Problem with Output resultfile: %s\n", filereso);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fflush(ficlog);
   fflush(ficlog);      goto end;
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    /* Reads comments: lines beginning with '#' */
     numlinepar++;    numlinepar=0;
     puts(line);    while((c=getc(ficpar))=='#' && c!= EOF){
     fputs(line,ficparo);      ungetc(c,ficpar);
     fputs(line,ficlog);      fgets(line, MAXLINE, ficpar);
   }      numlinepar++;
   ungetc(c,ficpar);      puts(line);
       fputs(line,ficparo);
          fputs(line,ficlog);
   covar=matrix(0,NCOVMAX,1,n);    }
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    ungetc(c,ficpar);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    numlinepar++;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fflush(ficlog);
   delti=delti3[1][1];    while((c=getc(ficpar))=='#' && c!= EOF){
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/      ungetc(c,ficpar);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */      fgets(line, MAXLINE, ficpar);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      numlinepar++;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      puts(line);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      fputs(line,ficparo);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fputs(line,ficlog);
     fclose (ficparo);    }
     fclose (ficlog);    ungetc(c,ficpar);
     goto end;  
     exit(0);     
   }    covar=matrix(0,NCOVMAX,1,n); 
   else if(mle==-3) {    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     matcov=matrix(1,npar,1,npar);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   }  
   else{    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* Read guess parameters */    delti=delti3[1][1];
     /* Reads comments: lines beginning with '#' */    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     while((c=getc(ficpar))=='#' && c!= EOF){    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       ungetc(c,ficpar);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       fgets(line, MAXLINE, ficpar);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       numlinepar++;      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       puts(line);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fputs(line,ficparo);      fclose (ficparo);
       fputs(line,ficlog);      fclose (ficlog);
     }      goto end;
     ungetc(c,ficpar);      exit(0);
        }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    else if(mle==-3) {
     for(i=1; i <=nlstate; i++){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       j=0;      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       for(jj=1; jj <=nlstate+ndeath; jj++){      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         if(jj==i) continue;      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         j++;      matcov=matrix(1,npar,1,npar);
         fscanf(ficpar,"%1d%1d",&i1,&j1);    }
         if ((i1 != i) && (j1 != j)){    else{
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \      /* Read guess parameters */
 It might be a problem of design; if ncovcol and the model are correct\n \      /* Reads comments: lines beginning with '#' */
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);      while((c=getc(ficpar))=='#' && c!= EOF){
           exit(1);        ungetc(c,ficpar);
         }        fgets(line, MAXLINE, ficpar);
         fprintf(ficparo,"%1d%1d",i1,j1);        numlinepar++;
         if(mle==1)        puts(line);
           printf("%1d%1d",i,j);        fputs(line,ficparo);
         fprintf(ficlog,"%1d%1d",i,j);        fputs(line,ficlog);
         for(k=1; k<=ncovmodel;k++){      }
           fscanf(ficpar," %lf",&param[i][j][k]);      ungetc(c,ficpar);
           if(mle==1){      
             printf(" %lf",param[i][j][k]);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
             fprintf(ficlog," %lf",param[i][j][k]);      for(i=1; i <=nlstate; i++){
           }        j=0;
           else        for(jj=1; jj <=nlstate+ndeath; jj++){
             fprintf(ficlog," %lf",param[i][j][k]);          if(jj==i) continue;
           fprintf(ficparo," %lf",param[i][j][k]);          j++;
         }          fscanf(ficpar,"%1d%1d",&i1,&j1);
         fscanf(ficpar,"\n");          if ((i1 != i) && (j1 != j)){
         numlinepar++;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
         if(mle==1)  It might be a problem of design; if ncovcol and the model are correct\n \
           printf("\n");  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
         fprintf(ficlog,"\n");            exit(1);
         fprintf(ficparo,"\n");          }
       }          fprintf(ficparo,"%1d%1d",i1,j1);
     }            if(mle==1)
     fflush(ficlog);            printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
     p=param[1][1];          for(k=1; k<=ncovmodel;k++){
                fscanf(ficpar," %lf",&param[i][j][k]);
     /* Reads comments: lines beginning with '#' */            if(mle==1){
     while((c=getc(ficpar))=='#' && c!= EOF){              printf(" %lf",param[i][j][k]);
       ungetc(c,ficpar);              fprintf(ficlog," %lf",param[i][j][k]);
       fgets(line, MAXLINE, ficpar);            }
       numlinepar++;            else
       puts(line);              fprintf(ficlog," %lf",param[i][j][k]);
       fputs(line,ficparo);            fprintf(ficparo," %lf",param[i][j][k]);
       fputs(line,ficlog);          }
     }          fscanf(ficpar,"\n");
     ungetc(c,ficpar);          numlinepar++;
           if(mle==1)
     for(i=1; i <=nlstate; i++){            printf("\n");
       for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficlog,"\n");
         fscanf(ficpar,"%1d%1d",&i1,&j1);          fprintf(ficparo,"\n");
         if ((i1-i)*(j1-j)!=0){        }
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);      }  
           exit(1);      fflush(ficlog);
         }  
         printf("%1d%1d",i,j);      p=param[1][1];
         fprintf(ficparo,"%1d%1d",i1,j1);      
         fprintf(ficlog,"%1d%1d",i1,j1);      /* Reads comments: lines beginning with '#' */
         for(k=1; k<=ncovmodel;k++){      while((c=getc(ficpar))=='#' && c!= EOF){
           fscanf(ficpar,"%le",&delti3[i][j][k]);        ungetc(c,ficpar);
           printf(" %le",delti3[i][j][k]);        fgets(line, MAXLINE, ficpar);
           fprintf(ficparo," %le",delti3[i][j][k]);        numlinepar++;
           fprintf(ficlog," %le",delti3[i][j][k]);        puts(line);
         }        fputs(line,ficparo);
         fscanf(ficpar,"\n");        fputs(line,ficlog);
         numlinepar++;      }
         printf("\n");      ungetc(c,ficpar);
         fprintf(ficparo,"\n");  
         fprintf(ficlog,"\n");      for(i=1; i <=nlstate; i++){
       }        for(j=1; j <=nlstate+ndeath-1; j++){
     }          fscanf(ficpar,"%1d%1d",&i1,&j1);
     fflush(ficlog);          if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
     delti=delti3[1][1];            exit(1);
           }
           printf("%1d%1d",i,j);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */          fprintf(ficparo,"%1d%1d",i1,j1);
            fprintf(ficlog,"%1d%1d",i1,j1);
     /* Reads comments: lines beginning with '#' */          for(k=1; k<=ncovmodel;k++){
     while((c=getc(ficpar))=='#' && c!= EOF){            fscanf(ficpar,"%le",&delti3[i][j][k]);
       ungetc(c,ficpar);            printf(" %le",delti3[i][j][k]);
       fgets(line, MAXLINE, ficpar);            fprintf(ficparo," %le",delti3[i][j][k]);
       numlinepar++;            fprintf(ficlog," %le",delti3[i][j][k]);
       puts(line);          }
       fputs(line,ficparo);          fscanf(ficpar,"\n");
       fputs(line,ficlog);          numlinepar++;
     }          printf("\n");
     ungetc(c,ficpar);          fprintf(ficparo,"\n");
            fprintf(ficlog,"\n");
     matcov=matrix(1,npar,1,npar);        }
     for(i=1; i <=npar; i++){      }
       fscanf(ficpar,"%s",&str);      fflush(ficlog);
       if(mle==1)  
         printf("%s",str);      delti=delti3[1][1];
       fprintf(ficlog,"%s",str);  
       fprintf(ficparo,"%s",str);  
       for(j=1; j <=i; j++){      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
         fscanf(ficpar," %le",&matcov[i][j]);    
         if(mle==1){      /* Reads comments: lines beginning with '#' */
           printf(" %.5le",matcov[i][j]);      while((c=getc(ficpar))=='#' && c!= EOF){
         }        ungetc(c,ficpar);
         fprintf(ficlog," %.5le",matcov[i][j]);        fgets(line, MAXLINE, ficpar);
         fprintf(ficparo," %.5le",matcov[i][j]);        numlinepar++;
       }        puts(line);
       fscanf(ficpar,"\n");        fputs(line,ficparo);
       numlinepar++;        fputs(line,ficlog);
       if(mle==1)      }
         printf("\n");      ungetc(c,ficpar);
       fprintf(ficlog,"\n");    
       fprintf(ficparo,"\n");      matcov=matrix(1,npar,1,npar);
     }      for(i=1; i <=npar; i++){
     for(i=1; i <=npar; i++)        fscanf(ficpar,"%s",&str);
       for(j=i+1;j<=npar;j++)        if(mle==1)
         matcov[i][j]=matcov[j][i];          printf("%s",str);
            fprintf(ficlog,"%s",str);
     if(mle==1)        fprintf(ficparo,"%s",str);
       printf("\n");        for(j=1; j <=i; j++){
     fprintf(ficlog,"\n");          fscanf(ficpar," %le",&matcov[i][j]);
              if(mle==1){
     fflush(ficlog);            printf(" %.5le",matcov[i][j]);
              }
     /*-------- Rewriting parameter file ----------*/          fprintf(ficlog," %.5le",matcov[i][j]);
     strcpy(rfileres,"r");    /* "Rparameterfile */          fprintf(ficparo," %.5le",matcov[i][j]);
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
     strcat(rfileres,".");    /* */        fscanf(ficpar,"\n");
     strcat(rfileres,optionfilext);    /* Other files have txt extension */        numlinepar++;
     if((ficres =fopen(rfileres,"w"))==NULL) {        if(mle==1)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          printf("\n");
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        fprintf(ficlog,"\n");
     }        fprintf(ficparo,"\n");
     fprintf(ficres,"#%s\n",version);      }
   }    /* End of mle != -3 */      for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
   /*-------- data file ----------*/          matcov[i][j]=matcov[j][i];
   if((fic=fopen(datafile,"r"))==NULL)    {      
     printf("Problem while opening datafile: %s\n", datafile);goto end;      if(mle==1)
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;        printf("\n");
   }      fprintf(ficlog,"\n");
       
   n= lastobs;      fflush(ficlog);
   severity = vector(1,maxwav);      
   outcome=imatrix(1,maxwav+1,1,n);      /*-------- Rewriting parameter file ----------*/
   num=lvector(1,n);      strcpy(rfileres,"r");    /* "Rparameterfile */
   moisnais=vector(1,n);      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   annais=vector(1,n);      strcat(rfileres,".");    /* */
   moisdc=vector(1,n);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
   andc=vector(1,n);      if((ficres =fopen(rfileres,"w"))==NULL) {
   agedc=vector(1,n);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
   cod=ivector(1,n);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   weight=vector(1,n);      }
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      fprintf(ficres,"#%s\n",version);
   mint=matrix(1,maxwav,1,n);    }    /* End of mle != -3 */
   anint=matrix(1,maxwav,1,n);  
   s=imatrix(1,maxwav+1,1,n);    /*-------- data file ----------*/
   tab=ivector(1,NCOVMAX);    if((fic=fopen(datafile,"r"))==NULL)    {
   ncodemax=ivector(1,8);      printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   i=1;    }
   linei=0;  
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    n= lastobs;
     linei=linei+1;    severity = vector(1,maxwav);
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    outcome=imatrix(1,maxwav+1,1,n);
       if(line[j] == '\t')    num=lvector(1,n);
         line[j] = ' ';    moisnais=vector(1,n);
     }    annais=vector(1,n);
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    moisdc=vector(1,n);
       ;    andc=vector(1,n);
     };    agedc=vector(1,n);
     line[j+1]=0;  /* Trims blanks at end of line */    cod=ivector(1,n);
     if(line[0]=='#'){    weight=vector(1,n);
       fprintf(ficlog,"Comment line\n%s\n",line);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
       printf("Comment line\n%s\n",line);    mint=matrix(1,maxwav,1,n);
       continue;    anint=matrix(1,maxwav,1,n);
     }    s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     for (j=maxwav;j>=1;j--){    ncodemax=ivector(1,8);
       cutv(stra, strb,line,' ');  
       errno=0;    i=1;
       lval=strtol(strb,&endptr,10);    linei=0;
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       if( strb[0]=='\0' || (*endptr != '\0')){      linei=linei+1;
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         exit(1);        if(line[j] == '\t')
       }          line[j] = ' ';
       s[j][i]=lval;      }
            for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
       strcpy(line,stra);        ;
       cutv(stra, strb,line,' ');      };
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      line[j+1]=0;  /* Trims blanks at end of line */
       }      if(line[0]=='#'){
       else  if(iout=sscanf(strb,"%s.") != 0){        fprintf(ficlog,"Comment line\n%s\n",line);
         month=99;        printf("Comment line\n%s\n",line);
         year=9999;        continue;
       }else{      }
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);  
         exit(1);      for (j=maxwav;j>=1;j--){
       }        cutv(stra, strb,line,' '); 
       anint[j][i]= (double) year;        errno=0;
       mint[j][i]= (double)month;        lval=strtol(strb,&endptr,10); 
       strcpy(line,stra);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     } /* ENd Waves */        if( strb[0]=='\0' || (*endptr != '\0')){
              printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     cutv(stra, strb,line,' ');          exit(1);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        }
     }        s[j][i]=lval;
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){        
       month=99;        strcpy(line,stra);
       year=9999;        cutv(stra, strb,line,' ');
     }else{        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        }
       exit(1);        else  if(iout=sscanf(strb,"%s.") != 0){
     }          month=99;
     andc[i]=(double) year;          year=9999;
     moisdc[i]=(double) month;        }else{
     strcpy(line,stra);          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
              exit(1);
     cutv(stra, strb,line,' ');        }
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        anint[j][i]= (double) year; 
     }        mint[j][i]= (double)month; 
     else  if(iout=sscanf(strb,"%s.") != 0){        strcpy(line,stra);
       month=99;      } /* ENd Waves */
       year=9999;      
     }else{      cutv(stra, strb,line,' '); 
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       exit(1);      }
     }      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     annais[i]=(double)(year);        month=99;
     moisnais[i]=(double)(month);        year=9999;
     strcpy(line,stra);      }else{
            printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
     cutv(stra, strb,line,' ');        exit(1);
     errno=0;      }
     dval=strtod(strb,&endptr);      andc[i]=(double) year; 
     if( strb[0]=='\0' || (*endptr != '\0')){      moisdc[i]=(double) month; 
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);      strcpy(line,stra);
       exit(1);      
     }      cutv(stra, strb,line,' '); 
     weight[i]=dval;      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     strcpy(line,stra);      }
          else  if(iout=sscanf(strb,"%s.") != 0){
     for (j=ncovcol;j>=1;j--){        month=99;
       cutv(stra, strb,line,' ');        year=9999;
       errno=0;      }else{
       lval=strtol(strb,&endptr,10);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
       if( strb[0]=='\0' || (*endptr != '\0')){        exit(1);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);      }
         exit(1);      annais[i]=(double)(year);
       }      moisnais[i]=(double)(month); 
       if(lval <-1 || lval >1){      strcpy(line,stra);
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \      
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \      cutv(stra, strb,line,' '); 
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \      errno=0;
  For example, for multinomial values like 1, 2 and 3,\n \      dval=strtod(strb,&endptr); 
  build V1=0 V2=0 for the reference value (1),\n \      if( strb[0]=='\0' || (*endptr != '\0')){
         V1=1 V2=0 for (2) \n \        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \        exit(1);
  output of IMaCh is often meaningless.\n \      }
  Exiting.\n",lval,linei, i,line,j);      weight[i]=dval; 
         exit(1);      strcpy(line,stra);
       }      
       covar[j][i]=(double)(lval);      for (j=ncovcol;j>=1;j--){
       strcpy(line,stra);        cutv(stra, strb,line,' '); 
     }        errno=0;
     lstra=strlen(stra);        lval=strtol(strb,&endptr,10); 
            if( strb[0]=='\0' || (*endptr != '\0')){
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
       stratrunc = &(stra[lstra-9]);          exit(1);
       num[i]=atol(stratrunc);        }
     }        if(lval <-1 || lval >1){
     else          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
       num[i]=atol(stra);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   For example, for multinomial values like 1, 2 and 3,\n \
       build V1=0 V2=0 for the reference value (1),\n \
     i=i+1;          V1=1 V2=0 for (2) \n \
   } /* End loop reading  data */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   fclose(fic);   output of IMaCh is often meaningless.\n \
   /* printf("ii=%d", ij);   Exiting.\n",lval,linei, i,line,j);
      scanf("%d",i);*/          goto end;
   imx=i-1; /* Number of individuals */        }
         covar[j][i]=(double)(lval);
   /* for (i=1; i<=imx; i++){        strcpy(line,stra);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      }  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      lstra=strlen(stra);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       
     }*/      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
    /*  for (i=1; i<=imx; i++){        stratrunc = &(stra[lstra-9]);
      if (s[4][i]==9)  s[4][i]=-1;        num[i]=atol(stratrunc);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }
        else
   /* for (i=1; i<=imx; i++) */        num[i]=atol(stra);
        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      else weight[i]=1;*/      
       i=i+1;
   /* Calculation of the number of parameters from char model */    } /* End loop reading  data */
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    fclose(fic);
   Tprod=ivector(1,15);    /* printf("ii=%d", ij);
   Tvaraff=ivector(1,15);       scanf("%d",i);*/
   Tvard=imatrix(1,15,1,2);    imx=i-1; /* Number of individuals */
   Tage=ivector(1,15);        
        /* for (i=1; i<=imx; i++){
   if (strlen(model) >1){ /* If there is at least 1 covariate */      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
     j=0, j1=0, k1=1, k2=1;      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
     j=nbocc(model,'+'); /* j=Number of '+' */      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     j1=nbocc(model,'*'); /* j1=Number of '*' */      }*/
     cptcovn=j+1;     /*  for (i=1; i<=imx; i++){
     cptcovprod=j1; /*Number of products */       if (s[4][i]==9)  s[4][i]=-1; 
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     strcpy(modelsav,model);    
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    /* for (i=1; i<=imx; i++) */
       printf("Error. Non available option model=%s ",model);   
       fprintf(ficlog,"Error. Non available option model=%s ",model);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
       goto end;       else weight[i]=1;*/
     }  
        /* Calculation of the number of parameters from char model */
     /* This loop fills the array Tvar from the string 'model'.*/    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     for(i=(j+1); i>=1;i--){    Tvaraff=ivector(1,15); 
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    Tvard=imatrix(1,15,1,2);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    Tage=ivector(1,15);      
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/     
       /*scanf("%d",i);*/    if (strlen(model) >1){ /* If there is at least 1 covariate */
       if (strchr(strb,'*')) {  /* Model includes a product */      j=0, j1=0, k1=1, k2=1;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      j=nbocc(model,'+'); /* j=Number of '+' */
         if (strcmp(strc,"age")==0) { /* Vn*age */      j1=nbocc(model,'*'); /* j1=Number of '*' */
           cptcovprod--;      cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
           cutv(strb,stre,strd,'V');      cptcovprod=j1; /*Number of products  V1*V2 =1 */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      
           cptcovage++;      strcpy(modelsav,model); 
             Tage[cptcovage]=i;      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
             /*printf("stre=%s ", stre);*/        printf("Error. Non available option model=%s ",model);
         }        fprintf(ficlog,"Error. Non available option model=%s ",model);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        goto end;
           cptcovprod--;      }
           cutv(strb,stre,strc,'V');      
           Tvar[i]=atoi(stre);      /* This loop fills the array Tvar from the string 'model'.*/
           cptcovage++;      /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
           Tage[cptcovage]=i;      for(i=(j+1); i>=1;i--){
         }        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
         else {  /* Age is not in the model */                                       modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                                       stra=V2
           Tvar[i]=ncovcol+k1;                                      */ 
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           Tprod[k1]=i;        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           Tvard[k1][1]=atoi(strc); /* m*/        /*scanf("%d",i);*/
           Tvard[k1][2]=atoi(stre); /* n */        if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           Tvar[cptcovn+k2]=Tvard[k1][1];          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          if (strcmp(strc,"age")==0) { /* Vn*age */
           for (k=1; k<=lastobs;k++)            cptcovprod--;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            cutv(strb,stre,strd,'V');
           k1++;            Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
           k2=k2+2;            cptcovage++; /* Sum the number of covariates including ages as a product */
         }            Tage[cptcovage]=i;  /* Tage[1] =2 */
       }            /*printf("stre=%s ", stre);*/
       else { /* no more sum */          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          else if (strcmp(strd,"age")==0) { /* or age*Vn */
        /*  scanf("%d",i);*/            cptcovprod--;
       cutv(strd,strc,strb,'V');            cutv(strb,stre,strc,'V');
       Tvar[i]=atoi(strc);            Tvar[i]=atoi(stre);
       }            cptcovage++;
       strcpy(modelsav,stra);              Tage[cptcovage]=i;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          }
         scanf("%d",i);*/          else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
     } /* end of loop + */            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
   } /* end model */            Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                      If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/            Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            Tvard[k1][2]=atoi(stre); /* n */
   printf("cptcovprod=%d ", cptcovprod);            Tvar[cptcovn+k2]=Tvard[k1][1];
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
   scanf("%d ",i);*/              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
     /*  if(mle==1){*/            k2=k2+2;
   if (weightopt != 1) { /* Maximisation without weights*/          }
     for(i=1;i<=n;i++) weight[i]=1.0;        }
   }        else { /* no more sum */
     /*-calculation of age at interview from date of interview and age at death -*/          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   agev=matrix(1,maxwav,1,imx);         /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
   for (i=1; i<=imx; i++) {        Tvar[i]=atoi(strc);
     for(m=2; (m<= maxwav); m++) {        }
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         anint[m][i]=9999;        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
         s[m][i]=-1;          scanf("%d",i);*/
       }      } /* end of loop + */
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    } /* end model */
         nberr++;    
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
         s[m][i]=-1;  
       }    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    printf("cptcovprod=%d ", cptcovprod);
         nberr++;    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);  
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);    scanf("%d ",i);*/
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */  
       }      /*  if(mle==1){*/
     }    if (weightopt != 1) { /* Maximisation without weights*/
   }      for(i=1;i<=n;i++) weight[i]=1.0;
     }
   for (i=1; i<=imx; i++)  {      /*-calculation of age at interview from date of interview and age at death -*/
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    agev=matrix(1,maxwav,1,imx);
     for(m=firstpass; (m<= lastpass); m++){  
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){    for (i=1; i<=imx; i++) {
         if (s[m][i] >= nlstate+1) {      for(m=2; (m<= maxwav); m++) {
           if(agedc[i]>0)        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)          anint[m][i]=9999;
               agev[m][i]=agedc[i];          s[m][i]=-1;
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
             else {        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
               if ((int)andc[i]!=9999){          nberr++;
                 nbwarn++;          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);          s[m][i]=-1;
                 agev[m][i]=-1;        }
               }        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
             }          nberr++;
         }          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
         else if(s[m][i] !=9){ /* Standard case, age in fractional          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
                                  years but with the precision of a month */          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)      }
             agev[m][i]=1;    }
           else if(agev[m][i] <agemin){  
             agemin=agev[m][i];    for (i=1; i<=imx; i++)  {
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           }      for(m=firstpass; (m<= lastpass); m++){
           else if(agev[m][i] >agemax){        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
             agemax=agev[m][i];          if (s[m][i] >= nlstate+1) {
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            if(agedc[i]>0)
           }              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
           /*agev[m][i]=anint[m][i]-annais[i];*/                agev[m][i]=agedc[i];
           /*     agev[m][i] = age[i]+2*m;*/            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
         }              else {
         else { /* =9 */                if ((int)andc[i]!=9999){
           agev[m][i]=1;                  nbwarn++;
           s[m][i]=-1;                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
         }                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
       }                  agev[m][i]=-1;
       else /*= 0 Unknown */                }
         agev[m][i]=1;              }
     }          }
              else if(s[m][i] !=9){ /* Standard case, age in fractional
   }                                   years but with the precision of a month */
   for (i=1; i<=imx; i++)  {            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     for(m=firstpass; (m<=lastpass); m++){            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
       if (s[m][i] > (nlstate+ndeath)) {              agev[m][i]=1;
         nberr++;            else if(agev[m][i] <agemin){ 
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                  agemin=agev[m][i];
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                  /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
         goto end;            }
       }            else if(agev[m][i] >agemax){
     }              agemax=agev[m][i];
   }              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
   /*for (i=1; i<=imx; i++){            /*agev[m][i]=anint[m][i]-annais[i];*/
   for (m=firstpass; (m<lastpass); m++){            /*     agev[m][i] = age[i]+2*m;*/
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          }
 }          else { /* =9 */
             agev[m][i]=1;
 }*/            s[m][i]=-1;
           }
         }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        else /*= 0 Unknown */
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          agev[m][i]=1;
       }
   agegomp=(int)agemin;      
   free_vector(severity,1,maxwav);    }
   free_imatrix(outcome,1,maxwav+1,1,n);    for (i=1; i<=imx; i++)  {
   free_vector(moisnais,1,n);      for(m=firstpass; (m<=lastpass); m++){
   free_vector(annais,1,n);        if (s[m][i] > (nlstate+ndeath)) {
   /* free_matrix(mint,1,maxwav,1,n);          nberr++;
      free_matrix(anint,1,maxwav,1,n);*/          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   free_vector(moisdc,1,n);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   free_vector(andc,1,n);          goto end;
         }
          }
   wav=ivector(1,imx);    }
   dh=imatrix(1,lastpass-firstpass+1,1,imx);  
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    /*for (i=1; i<=imx; i++){
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    for (m=firstpass; (m<lastpass); m++){
           printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   /* Concatenates waves */  }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
   }*/
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */  
   
   Tcode=ivector(1,100);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   ncodemax[1]=1;  
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    agegomp=(int)agemin;
          free_vector(severity,1,maxwav);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    free_imatrix(outcome,1,maxwav+1,1,n);
                                  the estimations*/    free_vector(moisnais,1,n);
   h=0;    free_vector(annais,1,n);
   m=pow(2,cptcoveff);    /* free_matrix(mint,1,maxwav,1,n);
         free_matrix(anint,1,maxwav,1,n);*/
   for(k=1;k<=cptcoveff; k++){    free_vector(moisdc,1,n);
     for(i=1; i <=(m/pow(2,k));i++){    free_vector(andc,1,n);
       for(j=1; j <= ncodemax[k]; j++){  
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){     
           h++;    wav=ivector(1,imx);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    dh=imatrix(1,lastpass-firstpass+1,1,imx);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    bh=imatrix(1,lastpass-firstpass+1,1,imx);
         }    mw=imatrix(1,lastpass-firstpass+1,1,imx);
       }     
     }    /* Concatenates waves */
   }    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
      codtab[1][2]=1;codtab[2][2]=2; */    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   /* for(i=1; i <=m ;i++){  
      for(k=1; k <=cptcovn; k++){    Tcode=ivector(1,100);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
      }    ncodemax[1]=1;
      printf("\n");    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
      }        
      scanf("%d",i);*/    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                       the estimations*/
   /*------------ gnuplot -------------*/    h=0;
   strcpy(optionfilegnuplot,optionfilefiname);    m=pow(2,cptcoveff);
   if(mle==-3)   
     strcat(optionfilegnuplot,"-mort");    for(k=1;k<=cptcoveff; k++){
   strcat(optionfilegnuplot,".gp");      for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
     printf("Problem with file %s",optionfilegnuplot);            h++;
   }            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
   else{            printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
     fprintf(ficgp,"\n# %s\n", version);          } 
     fprintf(ficgp,"# %s\n", optionfilegnuplot);        }
     fprintf(ficgp,"set missing 'NaNq'\n");      }
   }    } 
   /*  fclose(ficgp);*/    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
   /*--------- index.htm --------*/       codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */       for(k=1; k <=cptcovn; k++){
   if(mle==-3)       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     strcat(optionfilehtm,"-mort");       }
   strcat(optionfilehtm,".htm");       printf("\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {       }
     printf("Problem with %s \n",optionfilehtm), exit(0);       scanf("%d",i);*/
   }      
     /*------------ gnuplot -------------*/
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    strcpy(optionfilegnuplot,optionfilefiname);
   strcat(optionfilehtmcov,"-cov.htm");    if(mle==-3)
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      strcat(optionfilegnuplot,"-mort");
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    strcat(optionfilegnuplot,".gp");
   }  
   else{    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      printf("Problem with file %s",optionfilegnuplot);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    else{
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      fprintf(ficgp,"\n# %s\n", version); 
   }      fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    /*  fclose(ficgp);*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    /*--------- index.htm --------*/
 \n\  
 <hr  size=\"2\" color=\"#EC5E5E\">\    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
  <ul><li><h4>Parameter files</h4>\n\    if(mle==-3)
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\      strcat(optionfilehtm,"-mort");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    strcat(optionfilehtm,".htm");
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\      printf("Problem with %s \n",optionfilehtm), exit(0);
  - Date and time at start: %s</ul>\n",\    }
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\  
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
           fileres,fileres,\    strcat(optionfilehtmcov,"-cov.htm");
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
   fflush(fichtm);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
   strcpy(pathr,path);    else{
   strcat(pathr,optionfilefiname);    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   chdir(optionfilefiname); /* Move to directory named optionfile */  <hr size=\"2\" color=\"#EC5E5E\"> \n\
    Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
   /* Calculates basic frequencies. Computes observed prevalence at single age            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
      and prints on file fileres'p'. */    }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);  
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   fprintf(fichtm,"\n");  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  \n\
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  <hr  size=\"2\" color=\"#EC5E5E\">\
           imx,agemin,agemax,jmin,jmax,jmean);   <ul><li><h4>Parameter files</h4>\n\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   - Date and time at start: %s</ul>\n",\
                optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
   /* For Powell, parameters are in a vector p[] starting at p[1]            fileres,fileres,\
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fflush(fichtm);
   
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   if (mle==-3){    chdir(optionfilefiname); /* Move to directory named optionfile */
     ximort=matrix(1,NDIM,1,NDIM);    
     cens=ivector(1,n);    /* Calculates basic frequencies. Computes observed prevalence at single age
     ageexmed=vector(1,n);       and prints on file fileres'p'. */
     agecens=vector(1,n);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     dcwave=ivector(1,n);  
      fprintf(fichtm,"\n");
     for (i=1; i<=imx; i++){    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
       dcwave[i]=-1;  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
       for (m=firstpass; m<=lastpass; m++)  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
         if (s[m][i]>nlstate) {            imx,agemin,agemax,jmin,jmax,jmean);
           dcwave[i]=m;    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           break;      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         }      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     }      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
     for (i=1; i<=imx; i++) {     
       if (wav[i]>0){    /* For Powell, parameters are in a vector p[] starting at p[1]
         ageexmed[i]=agev[mw[1][i]][i];       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
         j=wav[i];    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
         agecens[i]=1.;  
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
         if (ageexmed[i]> 1 && wav[i] > 0){  
           agecens[i]=agev[mw[j][i]][i];    if (mle==-3){
           cens[i]= 1;      ximort=matrix(1,NDIM,1,NDIM);
         }else if (ageexmed[i]< 1)      cens=ivector(1,n);
           cens[i]= -1;      ageexmed=vector(1,n);
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)      agecens=vector(1,n);
           cens[i]=0 ;      dcwave=ivector(1,n);
       }   
       else cens[i]=-1;      for (i=1; i<=imx; i++){
     }        dcwave[i]=-1;
            for (m=firstpass; m<=lastpass; m++)
     for (i=1;i<=NDIM;i++) {          if (s[m][i]>nlstate) {
       for (j=1;j<=NDIM;j++)            dcwave[i]=m;
         ximort[i][j]=(i == j ? 1.0 : 0.0);            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     }            break;
              }
     p[1]=0.0268; p[NDIM]=0.083;      }
     /*printf("%lf %lf", p[1], p[2]);*/  
          for (i=1; i<=imx; i++) {
            if (wav[i]>0){
     printf("Powell\n");  fprintf(ficlog,"Powell\n");          ageexmed[i]=agev[mw[1][i]][i];
     strcpy(filerespow,"pow-mort");          j=wav[i];
     strcat(filerespow,fileres);          agecens[i]=1.; 
     if((ficrespow=fopen(filerespow,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", filerespow);          if (ageexmed[i]> 1 && wav[i] > 0){
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            agecens[i]=agev[mw[j][i]][i];
     }            cens[i]= 1;
     fprintf(ficrespow,"# Powell\n# iter -2*LL");          }else if (ageexmed[i]< 1) 
     /*  for (i=1;i<=nlstate;i++)            cens[i]= -1;
         for(j=1;j<=nlstate+ndeath;j++)          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);            cens[i]=0 ;
     */        }
     fprintf(ficrespow,"\n");        else cens[i]=-1;
          }
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);      
     fclose(ficrespow);      for (i=1;i<=NDIM;i++) {
            for (j=1;j<=NDIM;j++)
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);          ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
     for(i=1; i <=NDIM; i++)      
       for(j=i+1;j<=NDIM;j++)      p[1]=0.0268; p[NDIM]=0.083;
         matcov[i][j]=matcov[j][i];      /*printf("%lf %lf", p[1], p[2]);*/
          
     printf("\nCovariance matrix\n ");      
     for(i=1; i <=NDIM; i++) {      printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(j=1;j<=NDIM;j++){      strcpy(filerespow,"pow-mort"); 
         printf("%f ",matcov[i][j]);      strcat(filerespow,fileres);
       }      if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("\n ");        printf("Problem with resultfile: %s\n", filerespow);
     }        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
          }
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=NDIM;i++)      /*  for (i=1;i<=nlstate;i++)
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));          for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     lsurv=vector(1,AGESUP);      */
     lpop=vector(1,AGESUP);      fprintf(ficrespow,"\n");
     tpop=vector(1,AGESUP);      
     lsurv[agegomp]=100000;      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
          fclose(ficrespow);
     for (k=agegomp;k<=AGESUP;k++) {      
       agemortsup=k;      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;  
     }      for(i=1; i <=NDIM; i++)
            for(j=i+1;j<=NDIM;j++)
     for (k=agegomp;k<agemortsup;k++)          matcov[i][j]=matcov[j][i];
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));      
          printf("\nCovariance matrix\n ");
     for (k=agegomp;k<agemortsup;k++){      for(i=1; i <=NDIM; i++) {
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;        for(j=1;j<=NDIM;j++){ 
       sumlpop=sumlpop+lpop[k];          printf("%f ",matcov[i][j]);
     }        }
            printf("\n ");
     tpop[agegomp]=sumlpop;      }
     for (k=agegomp;k<(agemortsup-3);k++){      
       /*  tpop[k+1]=2;*/      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       tpop[k+1]=tpop[k]-lpop[k];      for (i=1;i<=NDIM;i++) 
     }        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
      
          lsurv=vector(1,AGESUP);
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");      lpop=vector(1,AGESUP);
     for (k=agegomp;k<(agemortsup-2);k++)      tpop=vector(1,AGESUP);
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);      lsurv[agegomp]=100000;
          
          for (k=agegomp;k<=AGESUP;k++) {
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */        agemortsup=k;
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
          }
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      
                      stepm, weightopt,\      for (k=agegomp;k<agemortsup;k++)
                      model,imx,p,matcov,agemortsup);        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
          
     free_vector(lsurv,1,AGESUP);      for (k=agegomp;k<agemortsup;k++){
     free_vector(lpop,1,AGESUP);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
     free_vector(tpop,1,AGESUP);        sumlpop=sumlpop+lpop[k];
   } /* Endof if mle==-3 */      }
        
   else{ /* For mle >=1 */      tpop[agegomp]=sumlpop;
        for (k=agegomp;k<(agemortsup-3);k++){
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        /*  tpop[k+1]=2;*/
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        tpop[k+1]=tpop[k]-lpop[k];
     for (k=1; k<=npar;k++)      }
       printf(" %d %8.5f",k,p[k]);      
     printf("\n");      
     globpr=1; /* to print the contributions */      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      for (k=agegomp;k<(agemortsup-2);k++) 
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     for (k=1; k<=npar;k++)      
       printf(" %d %8.5f",k,p[k]);      
     printf("\n");      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     if(mle>=1){ /* Could be 1 or 2 */      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      
     }      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                           stepm, weightopt,\
     /*--------- results files --------------*/                       model,imx,p,matcov,agemortsup);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      
          free_vector(lsurv,1,AGESUP);
          free_vector(lpop,1,AGESUP);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      free_vector(tpop,1,AGESUP);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    } /* Endof if mle==-3 */
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    
     for(i=1,jk=1; i <=nlstate; i++){    else{ /* For mle >=1 */
       for(k=1; k <=(nlstate+ndeath); k++){    
         if (k != i) {      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           printf("%d%d ",i,k);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           fprintf(ficlog,"%d%d ",i,k);      for (k=1; k<=npar;k++)
           fprintf(ficres,"%1d%1d ",i,k);        printf(" %d %8.5f",k,p[k]);
           for(j=1; j <=ncovmodel; j++){      printf("\n");
             printf("%lf ",p[jk]);      globpr=1; /* to print the contributions */
             fprintf(ficlog,"%lf ",p[jk]);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
             fprintf(ficres,"%lf ",p[jk]);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
             jk++;      for (k=1; k<=npar;k++)
           }        printf(" %d %8.5f",k,p[k]);
           printf("\n");      printf("\n");
           fprintf(ficlog,"\n");      if(mle>=1){ /* Could be 1 or 2 */
           fprintf(ficres,"\n");        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
         }      }
       }      
     }      /*--------- results files --------------*/
     if(mle!=0){      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       /* Computing hessian and covariance matrix */      
       ftolhess=ftol; /* Usually correct */      
       hesscov(matcov, p, npar, delti, ftolhess, func);      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     }      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Scales (for hessian or gradient estimation)\n");      for(i=1,jk=1; i <=nlstate; i++){
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        for(k=1; k <=(nlstate+ndeath); k++){
     for(i=1,jk=1; i <=nlstate; i++){          if (k != i) {
       for(j=1; j <=nlstate+ndeath; j++){            printf("%d%d ",i,k);
         if (j!=i) {            fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d",i,j);            fprintf(ficres,"%1d%1d ",i,k);
           printf("%1d%1d",i,j);            for(j=1; j <=ncovmodel; j++){
           fprintf(ficlog,"%1d%1d",i,j);              printf("%lf ",p[jk]);
           for(k=1; k<=ncovmodel;k++){              fprintf(ficlog,"%lf ",p[jk]);
             printf(" %.5e",delti[jk]);              fprintf(ficres,"%lf ",p[jk]);
             fprintf(ficlog," %.5e",delti[jk]);              jk++; 
             fprintf(ficres," %.5e",delti[jk]);            }
             jk++;            printf("\n");
           }            fprintf(ficlog,"\n");
           printf("\n");            fprintf(ficres,"\n");
           fprintf(ficlog,"\n");          }
           fprintf(ficres,"\n");        }
         }      }
       }      if(mle!=0){
     }        /* Computing hessian and covariance matrix */
            ftolhess=ftol; /* Usually correct */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        hesscov(matcov, p, npar, delti, ftolhess, func);
     if(mle>=1)      }
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf("# Scales (for hessian or gradient estimation)\n");
     /* # 121 Var(a12)\n\ */      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     /* # 122 Cov(b12,a12) Var(b12)\n\ */      for(i=1,jk=1; i <=nlstate; i++){
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */        for(j=1; j <=nlstate+ndeath; j++){
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */          if (j!=i) {
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */            fprintf(ficres,"%1d%1d",i,j);
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */            printf("%1d%1d",i,j);
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */            fprintf(ficlog,"%1d%1d",i,j);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */            for(k=1; k<=ncovmodel;k++){
                  printf(" %.5e",delti[jk]);
                  fprintf(ficlog," %.5e",delti[jk]);
     /* Just to have a covariance matrix which will be more understandable              fprintf(ficres," %.5e",delti[jk]);
        even is we still don't want to manage dictionary of variables              jk++;
     */            }
     for(itimes=1;itimes<=2;itimes++){            printf("\n");
       jj=0;            fprintf(ficlog,"\n");
       for(i=1; i <=nlstate; i++){            fprintf(ficres,"\n");
         for(j=1; j <=nlstate+ndeath; j++){          }
           if(j==i) continue;        }
           for(k=1; k<=ncovmodel;k++){      }
             jj++;      
             ca[0]= k+'a'-1;ca[1]='\0';      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
             if(itimes==1){      if(mle>=1)
               if(mle>=1)        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                 printf("#%1d%1d%d",i,j,k);      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
               fprintf(ficlog,"#%1d%1d%d",i,j,k);      /* # 121 Var(a12)\n\ */
               fprintf(ficres,"#%1d%1d%d",i,j,k);      /* # 122 Cov(b12,a12) Var(b12)\n\ */
             }else{      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
               if(mle>=1)      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                 printf("%1d%1d%d",i,j,k);      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
               fprintf(ficlog,"%1d%1d%d",i,j,k);      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
               fprintf(ficres,"%1d%1d%d",i,j,k);      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
             }      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
             ll=0;      
             for(li=1;li <=nlstate; li++){      
               for(lj=1;lj <=nlstate+ndeath; lj++){      /* Just to have a covariance matrix which will be more understandable
                 if(lj==li) continue;         even is we still don't want to manage dictionary of variables
                 for(lk=1;lk<=ncovmodel;lk++){      */
                   ll++;      for(itimes=1;itimes<=2;itimes++){
                   if(ll<=jj){        jj=0;
                     cb[0]= lk +'a'-1;cb[1]='\0';        for(i=1; i <=nlstate; i++){
                     if(ll<jj){          for(j=1; j <=nlstate+ndeath; j++){
                       if(itimes==1){            if(j==i) continue;
                         if(mle>=1)            for(k=1; k<=ncovmodel;k++){
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              jj++;
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              ca[0]= k+'a'-1;ca[1]='\0';
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              if(itimes==1){
                       }else{                if(mle>=1)
                         if(mle>=1)                  printf("#%1d%1d%d",i,j,k);
                           printf(" %.5e",matcov[jj][ll]);                fprintf(ficlog,"#%1d%1d%d",i,j,k);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                fprintf(ficres,"#%1d%1d%d",i,j,k);
                         fprintf(ficres," %.5e",matcov[jj][ll]);              }else{
                       }                if(mle>=1)
                     }else{                  printf("%1d%1d%d",i,j,k);
                       if(itimes==1){                fprintf(ficlog,"%1d%1d%d",i,j,k);
                         if(mle>=1)                fprintf(ficres,"%1d%1d%d",i,j,k);
                           printf(" Var(%s%1d%1d)",ca,i,j);              }
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);              ll=0;
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);              for(li=1;li <=nlstate; li++){
                       }else{                for(lj=1;lj <=nlstate+ndeath; lj++){
                         if(mle>=1)                  if(lj==li) continue;
                           printf(" %.5e",matcov[jj][ll]);                  for(lk=1;lk<=ncovmodel;lk++){
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                    ll++;
                         fprintf(ficres," %.5e",matcov[jj][ll]);                    if(ll<=jj){
                       }                      cb[0]= lk +'a'-1;cb[1]='\0';
                     }                      if(ll<jj){
                   }                        if(itimes==1){
                 } /* end lk */                          if(mle>=1)
               } /* end lj */                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
             } /* end li */                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
             if(mle>=1)                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
               printf("\n");                        }else{
             fprintf(ficlog,"\n");                          if(mle>=1)
             fprintf(ficres,"\n");                            printf(" %.5e",matcov[jj][ll]); 
             numlinepar++;                          fprintf(ficlog," %.5e",matcov[jj][ll]); 
           } /* end k*/                          fprintf(ficres," %.5e",matcov[jj][ll]); 
         } /*end j */                        }
       } /* end i */                      }else{
     } /* end itimes */                        if(itimes==1){
                              if(mle>=1)
     fflush(ficlog);                            printf(" Var(%s%1d%1d)",ca,i,j);
     fflush(ficres);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                              fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     while((c=getc(ficpar))=='#' && c!= EOF){                        }else{
       ungetc(c,ficpar);                          if(mle>=1)
       fgets(line, MAXLINE, ficpar);                            printf(" %.5e",matcov[jj][ll]); 
       puts(line);                          fprintf(ficlog," %.5e",matcov[jj][ll]); 
       fputs(line,ficparo);                          fprintf(ficres," %.5e",matcov[jj][ll]); 
     }                        }
     ungetc(c,ficpar);                      }
                        }
     estepm=0;                  } /* end lk */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                } /* end lj */
     if (estepm==0 || estepm < stepm) estepm=stepm;              } /* end li */
     if (fage <= 2) {              if(mle>=1)
       bage = ageminpar;                printf("\n");
       fage = agemaxpar;              fprintf(ficlog,"\n");
     }              fprintf(ficres,"\n");
                  numlinepar++;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            } /* end k*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          } /*end j */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        } /* end i */
          } /* end itimes */
     while((c=getc(ficpar))=='#' && c!= EOF){      
       ungetc(c,ficpar);      fflush(ficlog);
       fgets(line, MAXLINE, ficpar);      fflush(ficres);
       puts(line);      
       fputs(line,ficparo);      while((c=getc(ficpar))=='#' && c!= EOF){
     }        ungetc(c,ficpar);
     ungetc(c,ficpar);        fgets(line, MAXLINE, ficpar);
            puts(line);
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        fputs(line,ficparo);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      }
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      ungetc(c,ficpar);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      estepm=0;
          fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     while((c=getc(ficpar))=='#' && c!= EOF){      if (estepm==0 || estepm < stepm) estepm=stepm;
       ungetc(c,ficpar);      if (fage <= 2) {
       fgets(line, MAXLINE, ficpar);        bage = ageminpar;
       puts(line);        fage = agemaxpar;
       fputs(line,ficparo);      }
     }      
     ungetc(c,ficpar);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
          fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
          fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      while((c=getc(ficpar))=='#' && c!= EOF){
            ungetc(c,ficpar);
     fscanf(ficpar,"pop_based=%d\n",&popbased);        fgets(line, MAXLINE, ficpar);
     fprintf(ficparo,"pop_based=%d\n",popbased);          puts(line);
     fprintf(ficres,"pop_based=%d\n",popbased);          fputs(line,ficparo);
          }
     while((c=getc(ficpar))=='#' && c!= EOF){      ungetc(c,ficpar);
       ungetc(c,ficpar);      
       fgets(line, MAXLINE, ficpar);      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       puts(line);      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fputs(line,ficparo);      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     }      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     ungetc(c,ficpar);      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
          
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      while((c=getc(ficpar))=='#' && c!= EOF){
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        ungetc(c,ficpar);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        fgets(line, MAXLINE, ficpar);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        puts(line);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        fputs(line,ficparo);
     /* day and month of proj2 are not used but only year anproj2.*/      }
          ungetc(c,ficpar);
          
          
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
          
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      fscanf(ficpar,"pop_based=%d\n",&popbased);
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      fprintf(ficparo,"pop_based=%d\n",popbased);   
          fprintf(ficres,"pop_based=%d\n",popbased);   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      while((c=getc(ficpar))=='#' && c!= EOF){
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        ungetc(c,ficpar);
              fgets(line, MAXLINE, ficpar);
    /*------------ free_vector  -------------*/        puts(line);
    /*  chdir(path); */        fputs(line,ficparo);
        }
     free_ivector(wav,1,imx);      ungetc(c,ficpar);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     free_lvector(num,1,n);      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     free_vector(agedc,1,n);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      /* day and month of proj2 are not used but only year anproj2.*/
     fclose(ficparo);      
     fclose(ficres);      
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        
     strcpy(filerespl,"pl");      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     strcat(filerespl,fileres);      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     }                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);        
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);     /*------------ free_vector  -------------*/
     pstamp(ficrespl);     /*  chdir(path); */
     fprintf(ficrespl,"# Period (stable) prevalence \n");   
     fprintf(ficrespl,"#Age ");      free_ivector(wav,1,imx);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     fprintf(ficrespl,"\n");      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
        free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     prlim=matrix(1,nlstate,1,nlstate);      free_lvector(num,1,n);
       free_vector(agedc,1,n);
     agebase=ageminpar;      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     agelim=agemaxpar;      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     ftolpl=1.e-10;      fclose(ficparo);
     i1=cptcoveff;      fclose(ficres);
     if (cptcovn < 1){i1=1;}  
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
         k=k+1;      strcpy(filerespl,"pl");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      strcat(filerespl,fileres);
         fprintf(ficrespl,"\n#******");      if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("\n#******");        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"\n#******");        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         for(j=1;j<=cptcoveff;j++) {      }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      pstamp(ficrespl);
         }      fprintf(ficrespl,"# Period (stable) prevalence \n");
         fprintf(ficrespl,"******\n");      fprintf(ficrespl,"#Age ");
         printf("******\n");      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
         fprintf(ficlog,"******\n");      fprintf(ficrespl,"\n");
            
         for (age=agebase; age<=agelim; age++){      prlim=matrix(1,nlstate,1,nlstate);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f ",age );      agebase=ageminpar;
           for(j=1;j<=cptcoveff;j++)      agelim=agemaxpar;
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      ftolpl=1.e-10;
           for(i=1; i<=nlstate;i++)      i1=cptcoveff;
             fprintf(ficrespl," %.5f", prlim[i][i]);      if (cptcovn < 1){i1=1;}
           fprintf(ficrespl,"\n");  
         }      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       }        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     }          k=k+1;
     fclose(ficrespl);          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
     /*------------- h Pij x at various ages ------------*/          printf("\n#******");
            fprintf(ficlog,"\n#******");
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);          for(j=1;j<=cptcoveff;j++) {
     if((ficrespij=fopen(filerespij,"w"))==NULL) {            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     }          }
     printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficrespl,"******\n");
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          printf("******\n");
            fprintf(ficlog,"******\n");
     stepsize=(int) (stepm+YEARM-1)/YEARM;          
     /*if (stepm<=24) stepsize=2;*/          for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     agelim=AGESUP;            fprintf(ficrespl,"%.0f ",age );
     hstepm=stepsize*YEARM; /* Every year of age */            for(j=1;j<=cptcoveff;j++)
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
     /* hstepm=1;   aff par mois*/              fprintf(ficrespl," %.5f", prlim[i][i]);
     pstamp(ficrespij);            fprintf(ficrespl,"\n");
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");          }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        }
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
         k=k+1;      fclose(ficrespl);
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)      /*------------- h Pij x at various ages ------------*/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
         fprintf(ficrespij,"******\n");      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
              if((ficrespij=fopen(filerespij,"w"))==NULL) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
       printf("Computing pij: result on file '%s' \n", filerespij);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      stepsize=(int) (stepm+YEARM-1)/YEARM;
           oldm=oldms;savm=savms;      /*if (stepm<=24) stepsize=2;*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");      agelim=AGESUP;
           for(i=1; i<=nlstate;i++)      hstepm=stepsize*YEARM; /* Every year of age */
             for(j=1; j<=nlstate+ndeath;j++)      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");      /* hstepm=1;   aff par mois*/
           for (h=0; h<=nhstepm; h++){      pstamp(ficrespij);
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
             for(i=1; i<=nlstate;i++)      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
               for(j=1; j<=nlstate+ndeath;j++)        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          k=k+1;
             fprintf(ficrespij,"\n");          fprintf(ficrespij,"\n#****** ");
           }          for(j=1;j<=cptcoveff;j++) 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"\n");          fprintf(ficrespij,"******\n");
         }          
       }          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
     }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);  
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
     fclose(ficrespij);  
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            oldm=oldms;savm=savms;
     for(i=1;i<=AGESUP;i++)            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       for(j=1;j<=NCOVMAX;j++)            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
         for(k=1;k<=NCOVMAX;k++)            for(i=1; i<=nlstate;i++)
           probs[i][j][k]=0.;              for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
     /*---------- Forecasting ------------------*/            fprintf(ficrespij,"\n");
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/            for (h=0; h<=nhstepm; h++){
     if(prevfcast==1){              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
       /*    if(stepm ==1){*/              for(i=1; i<=nlstate;i++)
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);                for(j=1; j<=nlstate+ndeath;j++)
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
       /*      }  */              fprintf(ficrespij,"\n");
       /*      else{ */            }
       /*        erreur=108; */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */            fprintf(ficrespij,"\n");
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */          }
       /*      } */        }
     }      }
    
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
     /*---------- Health expectancies and variances ------------*/  
       fclose(ficrespij);
     strcpy(filerest,"t");  
     strcat(filerest,fileres);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if((ficrest=fopen(filerest,"w"))==NULL) {      for(i=1;i<=AGESUP;i++)
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for(j=1;j<=NCOVMAX;j++)
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          for(k=1;k<=NCOVMAX;k++)
     }            probs[i][j][k]=0.;
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);  
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);      /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
     strcpy(filerese,"e");        /*    if(stepm ==1){*/
     strcat(filerese,fileres);        prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
     if((ficreseij=fopen(filerese,"w"))==NULL) {        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        /*      }  */
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        /*      else{ */
     }        /*        erreur=108; */
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);        /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
     strcpy(fileresstde,"stde");      }
     strcat(fileresstde,fileres);    
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {  
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);      /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  
     }      prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);          ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
     strcpy(filerescve,"cve");  
     strcat(filerescve,fileres);      if (mobilav!=0) {
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     }          printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);        }
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      }
   
     strcpy(fileresv,"v");  
     strcat(fileresv,fileres);      /*---------- Health expectancies, no variances ------------*/
     if((ficresvij=fopen(fileresv,"w"))==NULL) {  
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      strcpy(filerese,"e");
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      strcat(filerese,fileres);
     }      if((ficreseij=fopen(filerese,"w"))==NULL) {
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     */          k=k+1; 
           fprintf(ficreseij,"\n#****** ");
     if (mobilav!=0) {          for(j=1;j<=cptcoveff;j++) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          }
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          fprintf(ficreseij,"******\n");
         printf(" Error in movingaverage mobilav=%d\n",mobilav);  
       }          eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
     }          oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         k=k+1;        }
         fprintf(ficrest,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)      fclose(ficreseij);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrest,"******\n");  
       /*---------- Health expectancies and variances ------------*/
         fprintf(ficreseij,"\n#****** ");  
         fprintf(ficresstdeij,"\n#****** ");  
         fprintf(ficrescveij,"\n#****** ");      strcpy(filerest,"t");
         for(j=1;j<=cptcoveff;j++) {      strcat(filerest,fileres);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if((ficrest=fopen(filerest,"w"))==NULL) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
         }      }
         fprintf(ficreseij,"******\n");      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
         fprintf(ficresstdeij,"******\n");      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
         fprintf(ficrescveij,"******\n");  
   
         fprintf(ficresvij,"\n#****** ");      strcpy(fileresstde,"stde");
         for(j=1;j<=cptcoveff;j++)      strcat(fileresstde,fileres);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         fprintf(ficresvij,"******\n");        printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
         oldm=oldms;savm=savms;      printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);        fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);    
        strcpy(filerescve,"cve");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      strcat(filerescve,fileres);
         oldm=oldms;savm=savms;      if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);        printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         if(popbased==1){        fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      }
         }      printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
         pstamp(ficrest);  
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");      strcpy(fileresv,"v");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      strcat(fileresv,fileres);
         fprintf(ficrest,"\n");      if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         epj=vector(1,nlstate+1);        fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
         for(age=bage; age <=fage ;age++){      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
           if (popbased==1) {      fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
             if(mobilav ==0){  
               for(i=1; i<=nlstate;i++)      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                 prlim[i][i]=probs[(int)age][i][k];        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
             }else{ /* mobilav */          k=k+1; 
               for(i=1; i<=nlstate;i++)          fprintf(ficrest,"\n#****** ");
                 prlim[i][i]=mobaverage[(int)age][i][k];          for(j=1;j<=cptcoveff;j++) 
             }            fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }          fprintf(ficrest,"******\n");
          
           fprintf(ficrest," %4.0f",age);          fprintf(ficresstdeij,"\n#****** ");
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          fprintf(ficrescveij,"\n#****** ");
             for(i=1, epj[j]=0.;i <=nlstate;i++) {          for(j=1;j<=cptcoveff;j++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];            fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             }          }
             epj[nlstate+1] +=epj[j];          fprintf(ficresstdeij,"******\n");
           }          fprintf(ficrescveij,"******\n");
   
           for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(ficresvij,"\n#****** ");
             for(j=1;j <=nlstate;j++)          for(j=1;j<=cptcoveff;j++) 
               vepp += vareij[i][j][(int)age];            fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          fprintf(ficresvij,"******\n");
           for(j=1;j <=nlstate;j++){  
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           }          oldm=oldms;savm=savms;
           fprintf(ficrest,"\n");          cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
         }   
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          pstamp(ficrest);
         free_vector(epj,1,nlstate+1);          for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
       }            oldm=oldms;savm=savms;
     }            varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
     free_vector(weight,1,n);            if(vpopbased==1)
     free_imatrix(Tvard,1,15,1,2);              fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
     free_imatrix(s,1,maxwav+1,1,n);            else
     free_matrix(anint,1,maxwav,1,n);              fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
     free_matrix(mint,1,maxwav,1,n);            fprintf(ficrest,"# Age e.. (std) ");
     free_ivector(cod,1,n);            for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
     free_ivector(tab,1,NCOVMAX);            fprintf(ficrest,"\n");
     fclose(ficreseij);  
     fclose(ficresstdeij);            epj=vector(1,nlstate+1);
     fclose(ficrescveij);            for(age=bage; age <=fage ;age++){
     fclose(ficresvij);              prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     fclose(ficrest);              if (vpopbased==1) {
     fclose(ficpar);                if(mobilav ==0){
                    for(i=1; i<=nlstate;i++)
     /*------- Variance of period (stable) prevalence------*/                      prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
     strcpy(fileresvpl,"vpl");                  for(i=1; i<=nlstate;i++)
     strcat(fileresvpl,fileres);                    prlim[i][i]=mobaverage[(int)age][i][k];
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                }
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);              }
       exit(0);          
     }              fprintf(ficrest," %4.0f",age);
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);              for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){                  epj[j] += prlim[i][i]*eij[i][j][(int)age];
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
         k=k+1;                }
         fprintf(ficresvpl,"\n#****** ");                epj[nlstate+1] +=epj[j];
         for(j=1;j<=cptcoveff;j++)              }
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficresvpl,"******\n");              for(i=1, vepp=0.;i <=nlstate;i++)
                      for(j=1;j <=nlstate;j++)
         varpl=matrix(1,nlstate,(int) bage, (int) fage);                  vepp += vareij[i][j][(int)age];
         oldm=oldms;savm=savms;              fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);              for(j=1;j <=nlstate;j++){
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
       }              }
     }              fprintf(ficrest,"\n");
             }
     fclose(ficresvpl);          }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     /*---------- End : free ----------------*/          free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          free_vector(epj,1,nlstate+1);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
       }
   }  /* mle==-3 arrives here for freeing */      free_vector(weight,1,n);
   free_matrix(prlim,1,nlstate,1,nlstate);      free_imatrix(Tvard,1,15,1,2);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(anint,1,maxwav,1,n); 
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(mint,1,maxwav,1,n);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_ivector(cod,1,n);
     free_matrix(covar,0,NCOVMAX,1,n);      free_ivector(tab,1,NCOVMAX);
     free_matrix(matcov,1,npar,1,npar);      fclose(ficresstdeij);
     /*free_vector(delti,1,npar);*/      fclose(ficrescveij);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fclose(ficresvij);
     free_matrix(agev,1,maxwav,1,imx);      fclose(ficrest);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fclose(ficpar);
     
     free_ivector(ncodemax,1,8);      /*------- Variance of period (stable) prevalence------*/   
     free_ivector(Tvar,1,15);  
     free_ivector(Tprod,1,15);      strcpy(fileresvpl,"vpl");
     free_ivector(Tvaraff,1,15);      strcat(fileresvpl,fileres);
     free_ivector(Tage,1,15);      if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
     free_ivector(Tcode,1,100);        printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      }
     free_imatrix(codtab,1,100,1,10);      printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   fflush(fichtm);  
   fflush(ficgp);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
          for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
   if((nberr >0) || (nbwarn>0)){          fprintf(ficresvpl,"\n#****** ");
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);          for(j=1;j<=cptcoveff;j++) 
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);            fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }else{          fprintf(ficresvpl,"******\n");
     printf("End of Imach\n");        
     fprintf(ficlog,"End of Imach\n");          varpl=matrix(1,nlstate,(int) bage, (int) fage);
   }          oldm=oldms;savm=savms;
   printf("See log file on %s\n",filelog);          varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
   (void) gettimeofday(&end_time,&tzp);        }
   tm = *localtime(&end_time.tv_sec);      }
   tmg = *gmtime(&end_time.tv_sec);  
   strcpy(strtend,asctime(&tm));      fclose(ficresvpl);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);  
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);      /*---------- End : free ----------------*/
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);  
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));    }  /* mle==-3 arrives here for freeing */
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    free_matrix(prlim,1,nlstate,1,nlstate);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 /*   if(fileappend(fichtm,optionfilehtm)){ */      free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);      free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
   fclose(fichtm);      free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);      free_matrix(covar,0,NCOVMAX,1,n);
   fclose(fichtmcov);      free_matrix(matcov,1,npar,1,npar);
   fclose(ficgp);      /*free_vector(delti,1,npar);*/
   fclose(ficlog);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
   /*------ End -----------*/      free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
    printf("Before Current directory %s!\n",pathcd);      free_ivector(ncodemax,1,8);
    if(chdir(pathcd) != 0)      free_ivector(Tvar,1,15);
     printf("Can't move to directory %s!\n",path);      free_ivector(Tprod,1,15);
   if(getcwd(pathcd,MAXLINE) > 0)      free_ivector(Tvaraff,1,15);
     printf("Current directory %s!\n",pathcd);      free_ivector(Tage,1,15);
   /*strcat(plotcmd,CHARSEPARATOR);*/      free_ivector(Tcode,1,100);
   sprintf(plotcmd,"gnuplot");  
 #ifndef UNIX      free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);      free_imatrix(codtab,1,100,1,10);
 #endif    fflush(fichtm);
   if(!stat(plotcmd,&info)){    fflush(ficgp);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);    
     if(!stat(getenv("GNUPLOTBIN"),&info)){  
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);    if((nberr >0) || (nbwarn>0)){
     }else      printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       strcpy(pplotcmd,plotcmd);      fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 #ifdef UNIX    }else{
     strcpy(plotcmd,GNUPLOTPROGRAM);      printf("End of Imach\n");
     if(!stat(plotcmd,&info)){      fprintf(ficlog,"End of Imach\n");
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);    }
     }else    printf("See log file on %s\n",filelog);
       strcpy(pplotcmd,plotcmd);    /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 #endif    (void) gettimeofday(&end_time,&tzp);
   }else    tm = *localtime(&end_time.tv_sec);
     strcpy(pplotcmd,plotcmd);    tmg = *gmtime(&end_time.tv_sec);
      strcpy(strtend,asctime(&tm));
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);    printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);    fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   if((outcmd=system(plotcmd)) != 0){  
     printf("\n Problem with gnuplot\n");    printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
   }    fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   printf(" Wait...");    fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
   while (z[0] != 'q') {    /*  printf("Total time was %d uSec.\n", total_usecs);*/
     /* chdir(path); */  /*   if(fileappend(fichtm,optionfilehtm)){ */
     printf("\nType e to edit output files, g to graph again and q for exiting: ");    fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     scanf("%s",z);    fclose(fichtm);
 /*     if (z[0] == 'c') system("./imach"); */    fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     if (z[0] == 'e') {    fclose(fichtmcov);
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);    fclose(ficgp);
       system(optionfilehtm);    fclose(ficlog);
     }    /*------ End -----------*/
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);  
   }     printf("Before Current directory %s!\n",pathcd);
   end:     if(chdir(pathcd) != 0)
   while (z[0] != 'q') {      printf("Can't move to directory %s!\n",path);
     printf("\nType  q for exiting: ");    if(getcwd(pathcd,MAXLINE) > 0)
     scanf("%s",z);      printf("Current directory %s!\n",pathcd);
   }    /*strcat(plotcmd,CHARSEPARATOR);*/
 }    sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.125  
changed lines
  Added in v.1.130


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>