Diff for /imach/src/imach.c between versions 1.125 and 1.183

version 1.125, 2006/04/04 15:20:31 version 1.183, 2015/03/10 20:34:32
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
     We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   
     Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
   
     Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
   
     Author:
   
     Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
     Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   
     Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   
     Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   
     Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   
     Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   
     Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
     Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
     Still problem with utsname.h on Windows
   
     Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
     Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
   
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
    for age prevalim()     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   h Pij x                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   variance of p varprob      freexexit2 possible for memory heap.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    h Pij x                         | pij_nom  ficrestpij
   Variance-covariance of DFLE     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   prevalence()         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
    movingaverage()         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   varevsij()  
   if popbased==1 varevsij(,popbased)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   total life expectancies         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   Variance of period (stable) prevalence    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  end     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
      Variance-covariance of DFLE
 #include <math.h>    prevalence()
 #include <stdio.h>     movingaverage()
 #include <stdlib.h>    varevsij() 
 #include <string.h>    if popbased==1 varevsij(,popbased)
 #include <unistd.h>    total life expectancies
     Variance of period (stable) prevalence
 #include <limits.h>   end
 #include <sys/types.h>  */
 #include <sys/stat.h>  
 #include <errno.h>  #define POWELL /* Instead of NLOPT */
 extern int errno;  /* #define POWELLORIGINAL */ /* Don't use Directest to decide new direction but original Powell test */
   
 /* #include <sys/time.h> */  #include <math.h>
 #include <time.h>  #include <stdio.h>
 #include "timeval.h"  #include <stdlib.h>
   #include <string.h>
 /* #include <libintl.h> */  
 /* #define _(String) gettext (String) */  #ifdef _WIN32
   #include <io.h>
 #define MAXLINE 256  #include <windows.h>
   #include <tchar.h>
 #define GNUPLOTPROGRAM "gnuplot"  #else
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  #include <unistd.h>
 #define FILENAMELENGTH 132  #endif
   
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #include <limits.h>
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #include <sys/types.h>
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #if defined(__GNUC__)
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #include <sys/utsname.h> /* Doesn't work on Windows */
   #endif
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #include <sys/stat.h>
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #include <errno.h>
 #define NCOVMAX 8 /* Maximum number of covariates */  /* extern int errno; */
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */  /* #ifdef LINUX */
 #define AGESUP 130  /* #include <time.h> */
 #define AGEBASE 40  /* #include "timeval.h" */
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  /* #else */
 #ifdef UNIX  /* #include <sys/time.h> */
 #define DIRSEPARATOR '/'  /* #endif */
 #define CHARSEPARATOR "/"  
 #define ODIRSEPARATOR '\\'  #include <time.h>
 #else  
 #define DIRSEPARATOR '\\'  #ifdef GSL
 #define CHARSEPARATOR "\\"  #include <gsl/gsl_errno.h>
 #define ODIRSEPARATOR '/'  #include <gsl/gsl_multimin.h>
 #endif  #endif
   
 /* $Id$ */  
 /* $State$ */  #ifdef NLOPT
   #include <nlopt.h>
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  typedef struct {
 char fullversion[]="$Revision$ $Date$";    double (* function)(double [] );
 char strstart[80];  } myfunc_data ;
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #endif
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  
 int nvar;  /* #include <libintl.h> */
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  /* #define _(String) gettext (String) */
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #define GNUPLOTPROGRAM "gnuplot"
 int popbased=0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int jmin, jmax; /* min, max spacing between 2 waves */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int ijmin, ijmax; /* Individuals having jmin and jmax */  
 int gipmx, gsw; /* Global variables on the number of contributions  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
                    to the likelihood and the sum of weights (done by funcone)*/  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define NINTERVMAX 8
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 double jmean; /* Mean space between 2 waves */  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define MAXN 20000
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define YEARM 12. /**< Number of months per year */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define AGESUP 130
 FILE *ficlog, *ficrespow;  #define AGEBASE 40
 int globpr; /* Global variable for printing or not */  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 double fretone; /* Only one call to likelihood */  #ifdef _WIN32
 long ipmx; /* Number of contributions */  #define DIRSEPARATOR '\\'
 double sw; /* Sum of weights */  #define CHARSEPARATOR "\\"
 char filerespow[FILENAMELENGTH];  #define ODIRSEPARATOR '/'
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #else
 FILE *ficresilk;  #define DIRSEPARATOR '/'
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define CHARSEPARATOR "/"
 FILE *ficresprobmorprev;  #define ODIRSEPARATOR '\\'
 FILE *fichtm, *fichtmcov; /* Html File */  #endif
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];  /* $Id$ */
 FILE *ficresstdeij;  /* $State$ */
 char fileresstde[FILENAMELENGTH];  
 FILE *ficrescveij;  char version[]="Imach version 0.98q0, March 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 char filerescve[FILENAMELENGTH];  char fullversion[]="$Revision$ $Date$"; 
 FILE  *ficresvij;  char strstart[80];
 char fileresv[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 FILE  *ficresvpl;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 char fileresvpl[FILENAMELENGTH];  int nvar=0, nforce=0; /* Number of variables, number of forces */
 char title[MAXLINE];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 char command[FILENAMELENGTH];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 int  outcmd=0;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   int cptcoveff=0; /* Total number of covariates to vary for printing results */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
 char filelog[FILENAMELENGTH]; /* Log file */  int nlstate=2; /* Number of live states */
 char filerest[FILENAMELENGTH];  int ndeath=1; /* Number of dead states */
 char fileregp[FILENAMELENGTH];  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 char popfile[FILENAMELENGTH];  int popbased=0;
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 struct timezone tzp;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 extern int gettimeofday();  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 struct tm tmg, tm, tmf, *gmtime(), *localtime();                     to the likelihood and the sum of weights (done by funcone)*/
 long time_value;  int mle=1, weightopt=0;
 extern long time();  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 char strcurr[80], strfor[80];  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 char *endptr;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 long lval;  int countcallfunc=0;  /* Count the number of calls to func */
 double dval;  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
 #define NR_END 1  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define FREE_ARG char*  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define FTOL 1.0e-10  /*FILE *fic ; */ /* Used in readdata only */
   FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define NRANSI  FILE *ficlog, *ficrespow;
 #define ITMAX 200  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 #define TOL 2.0e-4  long ipmx=0; /* Number of contributions */
   double sw; /* Sum of weights */
 #define CGOLD 0.3819660  char filerespow[FILENAMELENGTH];
 #define ZEPS 1.0e-10  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define GOLD 1.618034  FILE *ficresprobmorprev;
 #define GLIMIT 100.0  FILE *fichtm, *fichtmcov; /* Html File */
 #define TINY 1.0e-20  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 static double maxarg1,maxarg2;  FILE *ficresstdeij;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char fileresstde[FILENAMELENGTH];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE *ficrescveij;
    char filerescve[FILENAMELENGTH];
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE  *ficresvij;
 #define rint(a) floor(a+0.5)  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 static double sqrarg;  char fileresvpl[FILENAMELENGTH];
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char title[MAXLINE];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int agegomp= AGEGOMP;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 int imx;  char command[FILENAMELENGTH];
 int stepm=1;  int  outcmd=0;
 /* Stepm, step in month: minimum step interpolation*/  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 int m,nb;  char fileregp[FILENAMELENGTH];
 long *num;  char popfile[FILENAMELENGTH];
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double **pmmij, ***probs;  
 double *ageexmed,*agecens;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 double dateintmean=0;  /* struct timezone tzp; */
   /* extern int gettimeofday(); */
 double *weight;  struct tm tml, *gmtime(), *localtime();
 int **s; /* Status */  
 double *agedc, **covar, idx;  extern time_t time();
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
 double *lsurv, *lpop, *tpop;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  struct tm tm;
 double ftolhess; /* Tolerance for computing hessian */  
   char strcurr[80], strfor[80];
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char *endptr;
 {  long lval;
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  double dval;
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  
   */  #define NR_END 1
   char  *ss;                            /* pointer */  #define FREE_ARG char*
   int   l1, l2;                         /* length counters */  #define FTOL 1.0e-10
   
   l1 = strlen(path );                   /* length of path */  #define NRANSI 
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define ITMAX 200 
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define TOL 2.0e-4 
     strcpy( name, path );               /* we got the fullname name because no directory */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #define CGOLD 0.3819660 
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define ZEPS 1.0e-10 
     /* get current working directory */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define GOLD 1.618034 
       return( GLOCK_ERROR_GETCWD );  #define GLIMIT 100.0 
     }  #define TINY 1.0e-20 
     /* got dirc from getcwd*/  
     printf(" DIRC = %s \n",dirc);  static double maxarg1,maxarg2;
   } else {                              /* strip direcotry from path */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     ss++;                               /* after this, the filename */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     l2 = strlen( ss );                  /* length of filename */    
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     strcpy( name, ss );         /* save file name */  #define rint(a) floor(a+0.5)
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     dirc[l1-l2] = 0;                    /* add zero */  #define mytinydouble 1.0e-16
     printf(" DIRC2 = %s \n",dirc);  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   /* We add a separator at the end of dirc if not exists */  /* static double dsqrarg; */
   l1 = strlen( dirc );                  /* length of directory */  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   if( dirc[l1-1] != DIRSEPARATOR ){  static double sqrarg;
     dirc[l1] =  DIRSEPARATOR;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     dirc[l1+1] = 0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     printf(" DIRC3 = %s \n",dirc);  int agegomp= AGEGOMP;
   }  
   ss = strrchr( name, '.' );            /* find last / */  int imx; 
   if (ss >0){  int stepm=1;
     ss++;  /* Stepm, step in month: minimum step interpolation*/
     strcpy(ext,ss);                     /* save extension */  
     l1= strlen( name);  int estepm;
     l2= strlen(ss)+1;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     strncpy( finame, name, l1-l2);  
     finame[l1-l2]= 0;  int m,nb;
   }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   return( 0 );                          /* we're done */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
   double dateintmean=0;
 /******************************************/  
   double *weight;
 void replace_back_to_slash(char *s, char*t)  int **s; /* Status */
 {  double *agedc;
   int i;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   int lg=0;                    * covar=matrix(0,NCOVMAX,1,n); 
   i=0;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   lg=strlen(t);  double  idx; 
   for(i=0; i<= lg; i++) {  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     (s[i] = t[i]);  int *Ndum; /** Freq of modality (tricode */
     if (t[i]== '\\') s[i]='/';  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   }  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  double *lsurv, *lpop, *tpop;
   
 int nbocc(char *s, char occ)  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 {  double ftolhess; /**< Tolerance for computing hessian */
   int i,j=0;  
   int lg=20;  /**************** split *************************/
   i=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   lg=strlen(s);  {
   for(i=0; i<= lg; i++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   if  (s[i] == occ ) j++;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */ 
   return j;    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 void cutv(char *u,char *v, char*t, char occ)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* cuts string t into u and v where u ends before first occurence of char 'occ'    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')    if ( ss == NULL ) {                   /* no directory, so determine current directory */
      gives u="abcedf" and v="ghi2j" */      strcpy( name, path );               /* we got the fullname name because no directory */
   int i,lg,j,p=0;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   i=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for(j=0; j<=strlen(t)-1; j++) {      /* get current working directory */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   lg=strlen(t);      }
   for(j=0; j<p; j++) {      /* got dirc from getcwd*/
     (u[j] = t[j]);      printf(" DIRC = %s \n",dirc);
   }    } else {                              /* strip direcotry from path */
      u[p]='\0';      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
    for(j=0; j<= lg; j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     if (j>=(p+1))(v[j-p-1] = t[j]);      strcpy( name, ss );         /* save file name */
   }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /********************** nrerror ********************/    }
     /* We add a separator at the end of dirc if not exists */
 void nrerror(char error_text[])    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   fprintf(stderr,"ERREUR ...\n");      dirc[l1] =  DIRSEPARATOR;
   fprintf(stderr,"%s\n",error_text);      dirc[l1+1] = 0; 
   exit(EXIT_FAILURE);      printf(" DIRC3 = %s \n",dirc);
 }    }
 /*********************** vector *******************/    ss = strrchr( name, '.' );            /* find last / */
 double *vector(int nl, int nh)    if (ss >0){
 {      ss++;
   double *v;      strcpy(ext,ss);                     /* save extension */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      l1= strlen( name);
   if (!v) nrerror("allocation failure in vector");      l2= strlen(ss)+1;
   return v-nl+NR_END;      strncpy( finame, name, l1-l2);
 }      finame[l1-l2]= 0;
     }
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    return( 0 );                          /* we're done */
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  
   /******************************************/
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  void replace_back_to_slash(char *s, char*t)
 {  {
   int *v;    int i;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    int lg=0;
   if (!v) nrerror("allocation failure in ivector");    i=0;
   return v-nl+NR_END;    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /******************free ivector **************************/      if (t[i]== '\\') s[i]='/';
 void free_ivector(int *v, long nl, long nh)    }
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 /************************lvector *******************************/    char *s;
 long *lvector(long nl,long nh)    s=out;
 {    while (*in != '\0'){
   long *v;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));        in++;
   if (!v) nrerror("allocation failure in ivector");      }
   return v-nl+NR_END;      *out++ = *in++;
 }    }
     *out='\0';
 /******************free lvector **************************/    return s;
 void free_lvector(long *v, long nl, long nh)  }
 {  
   free((FREE_ARG)(v+nl-NR_END));  char *cutl(char *blocc, char *alocc, char *in, char occ)
 }  {
     /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
 /******************* imatrix *******************************/       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 int **imatrix(long nrl, long nrh, long ncl, long nch)       gives blocc="abcdef2ghi" and alocc="j".
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
 {    */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    char *s, *t;
   int **m;    t=in;s=in;
      while ((*in != occ) && (*in != '\0')){
   /* allocate pointers to rows */      *alocc++ = *in++;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");    if( *in == occ){
   m += NR_END;      *(alocc)='\0';
   m -= nrl;      s=++in;
      }
     
   /* allocate rows and set pointers to them */    if (s == t) {/* occ not found */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      *(alocc-(in-s))='\0';
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      in=s;
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;    while ( *in != '\0'){
        *blocc++ = *in++;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    }
    
   /* return pointer to array of pointers to rows */    *blocc='\0';
   return m;    return t;
 }  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
 /****************** free_imatrix *************************/  {
 void free_imatrix(m,nrl,nrh,ncl,nch)    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       int **m;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       long nch,ncl,nrh,nrl;       gives blocc="abcdef2ghi" and alocc="j".
      /* free an int matrix allocated by imatrix() */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
 {    */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    char *s, *t;
   free((FREE_ARG) (m+nrl-NR_END));    t=in;s=in;
 }    while (*in != '\0'){
       while( *in == occ){
 /******************* matrix *******************************/        *blocc++ = *in++;
 double **matrix(long nrl, long nrh, long ncl, long nch)        s=in;
 {      }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      *blocc++ = *in++;
   double **m;    }
     if (s == t) /* occ not found */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      *(blocc-(in-s))='\0';
   if (!m) nrerror("allocation failure 1 in matrix()");    else
   m += NR_END;      *(blocc-(in-s)-1)='\0';
   m -= nrl;    in=s;
     while ( *in != '\0'){
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      *alocc++ = *in++;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    *alocc='\0';
     return s;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])  int nbocc(char *s, char occ)
    */  {
 }    int i,j=0;
     int lg=20;
 /*************************free matrix ************************/    i=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if  (s[i] == occ ) j++;
   free((FREE_ARG)(m+nrl-NR_END));    }
 }    return j;
   }
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /* void cutv(char *u,char *v, char*t, char occ) */
 {  /* { */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   double ***m;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /*   int i,lg,j,p=0; */
   if (!m) nrerror("allocation failure 1 in matrix()");  /*   i=0; */
   m += NR_END;  /*   lg=strlen(t); */
   m -= nrl;  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*   } */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /*   for(j=0; j<p; j++) { */
   m[nrl] -= ncl;  /*     (u[j] = t[j]); */
   /*   } */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*      u[p]='\0'; */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /*    for(j=0; j<= lg; j++) { */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   m[nrl][ncl] += NR_END;  /*   } */
   m[nrl][ncl] -= nll;  /* } */
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  #ifdef _WIN32
    char * strsep(char **pp, const char *delim)
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    char *p, *q;
     for (j=ncl+1; j<=nch; j++)           
       m[i][j]=m[i][j-1]+nlay;    if ((p = *pp) == NULL)
   }      return 0;
   return m;    if ((q = strpbrk (p, delim)) != NULL)
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    {
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)      *pp = q + 1;
   */      *q = '\0';
 }    }
     else
 /*************************free ma3x ************************/      *pp = 0;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    return p;
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #endif
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /*************** function subdirf ***********/  {
 char *subdirf(char fileres[])    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   /* Caution optionfilefiname is hidden */    exit(EXIT_FAILURE);
   strcpy(tmpout,optionfilefiname);  }
   strcat(tmpout,"/"); /* Add to the right */  /*********************** vector *******************/
   strcat(tmpout,fileres);  double *vector(int nl, int nh)
   return tmpout;  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /*************** function subdirf2 ***********/    if (!v) nrerror("allocation failure in vector");
 char *subdirf2(char fileres[], char *preop)    return v-nl+NR_END;
 {  }
    
   /* Caution optionfilefiname is hidden */  /************************ free vector ******************/
   strcpy(tmpout,optionfilefiname);  void free_vector(double*v, int nl, int nh)
   strcat(tmpout,"/");  {
   strcat(tmpout,preop);    free((FREE_ARG)(v+nl-NR_END));
   strcat(tmpout,fileres);  }
   return tmpout;  
 }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
 /*************** function subdirf3 ***********/  {
 char *subdirf3(char fileres[], char *preop, char *preop2)    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
   /* Caution optionfilefiname is hidden */    return v-nl+NR_END;
   strcpy(tmpout,optionfilefiname);  }
   strcat(tmpout,"/");  
   strcat(tmpout,preop);  /******************free ivector **************************/
   strcat(tmpout,preop2);  void free_ivector(int *v, long nl, long nh)
   strcat(tmpout,fileres);  {
   return tmpout;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /***************** f1dim *************************/  /************************lvector *******************************/
 extern int ncom;  long *lvector(long nl,long nh)
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);    long *v;
      v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 double f1dim(double x)    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   int j;  }
   double f;  
   double *xt;  /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
   xt=vector(1,ncom);  {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    free((FREE_ARG)(v+nl-NR_END));
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /******************* imatrix *******************************/
 }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 /*****************brent *************************/  { 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 {    int **m; 
   int iter;    
   double a,b,d,etemp;    /* allocate pointers to rows */ 
   double fu,fv,fw,fx;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double ftemp;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m += NR_END; 
   double e=0.0;    m -= nrl; 
      
   a=(ax < cx ? ax : cx);    
   b=(ax > cx ? ax : cx);    /* allocate rows and set pointers to them */ 
   x=w=v=bx;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   fw=fv=fx=(*f)(x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   for (iter=1;iter<=ITMAX;iter++) {    m[nrl] += NR_END; 
     xm=0.5*(a+b);    m[nrl] -= ncl; 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     printf(".");fflush(stdout);    
     fprintf(ficlog,".");fflush(ficlog);    /* return pointer to array of pointers to rows */ 
 #ifdef DEBUG    return m; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  } 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /****************** free_imatrix *************************/
 #endif  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){        int **m;
       *xmin=x;        long nch,ncl,nrh,nrl; 
       return fx;       /* free an int matrix allocated by imatrix() */ 
     }  { 
     ftemp=fu;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     if (fabs(e) > tol1) {    free((FREE_ARG) (m+nrl-NR_END)); 
       r=(x-w)*(fx-fv);  } 
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /******************* matrix *******************************/
       q=2.0*(q-r);  double **matrix(long nrl, long nrh, long ncl, long nch)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       etemp=e;    double **m;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m) nrerror("allocation failure 1 in matrix()");
       else {    m += NR_END;
         d=p/q;    m -= nrl;
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           d=SIGN(tol1,xm-x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
     } else {    m[nrl] -= ncl;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    return m;
     fu=(*f)(u);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     if (fu <= fx) {  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       if (u >= x) a=x; else b=x;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       SHFT(v,w,x,u)     */
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /*************************free matrix ************************/
           if (fu <= fw || w == x) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             v=w;  {
             w=u;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             fv=fw;    free((FREE_ARG)(m+nrl-NR_END));
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  /******************* ma3x *******************************/
             fv=fu;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           }  {
         }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
   nrerror("Too many iterations in brent");  
   *xmin=x;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return fx;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /****************** mnbrak ***********************/  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             double (*func)(double))    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   double ulim,u,r,q, dum;  
   double fu;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
   *fa=(*func)(*ax);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *fb=(*func)(*bx);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   if (*fb > *fa) {    m[nrl][ncl] += NR_END;
     SHFT(dum,*ax,*bx,dum)    m[nrl][ncl] -= nll;
       SHFT(dum,*fb,*fa,dum)    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
   *cx=(*bx)+GOLD*(*bx-*ax);    
   *fc=(*func)(*cx);    for (i=nrl+1; i<=nrh; i++) {
   while (*fb > *fc) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     r=(*bx-*ax)*(*fb-*fc);      for (j=ncl+1; j<=nch; j++) 
     q=(*bx-*cx)*(*fb-*fa);        m[i][j]=m[i][j-1]+nlay;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return m; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     if ((*bx-u)*(u-*cx) > 0.0) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       fu=(*func)(u);    */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  }
       fu=(*func)(u);  
       if (fu < *fc) {  /*************************free ma3x ************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       u=ulim;    free((FREE_ARG)(m+nrl-NR_END));
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /*************** function subdirf ***********/
       fu=(*func)(u);  char *subdirf(char fileres[])
     }  {
     SHFT(*ax,*bx,*cx,u)    /* Caution optionfilefiname is hidden */
       SHFT(*fa,*fb,*fc,fu)    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
 }    strcat(tmpout,fileres);
     return tmpout;
 /*************** linmin ************************/  }
   
 int ncom;  /*************** function subdirf2 ***********/
 double *pcom,*xicom;  char *subdirf2(char fileres[], char *preop)
 double (*nrfunc)(double []);  {
      
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   double brent(double ax, double bx, double cx,    strcat(tmpout,"/");
                double (*f)(double), double tol, double *xmin);    strcat(tmpout,preop);
   double f1dim(double x);    strcat(tmpout,fileres);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    return tmpout;
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /*************** function subdirf3 ***********/
   double fx,fb,fa;  char *subdirf3(char fileres[], char *preop, char *preop2)
    {
   ncom=n;    
   pcom=vector(1,n);    /* Caution optionfilefiname is hidden */
   xicom=vector(1,n);    strcpy(tmpout,optionfilefiname);
   nrfunc=func;    strcat(tmpout,"/");
   for (j=1;j<=n;j++) {    strcat(tmpout,preop);
     pcom[j]=p[j];    strcat(tmpout,preop2);
     xicom[j]=xi[j];    strcat(tmpout,fileres);
   }    return tmpout;
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  char *asc_diff_time(long time_sec, char ascdiff[])
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    long sec_left, days, hours, minutes;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    days = (time_sec) / (60*60*24);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    sec_left = (time_sec) % (60*60*24);
 #endif    hours = (sec_left) / (60*60) ;
   for (j=1;j<=n;j++) {    sec_left = (sec_left) %(60*60);
     xi[j] *= xmin;    minutes = (sec_left) /60;
     p[j] += xi[j];    sec_left = (sec_left) % (60);
   }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   free_vector(xicom,1,n);    return ascdiff;
   free_vector(pcom,1,n);  }
 }  
   /***************** f1dim *************************/
 char *asc_diff_time(long time_sec, char ascdiff[])  extern int ncom; 
 {  extern double *pcom,*xicom;
   long sec_left, days, hours, minutes;  extern double (*nrfunc)(double []); 
   days = (time_sec) / (60*60*24);   
   sec_left = (time_sec) % (60*60*24);  double f1dim(double x) 
   hours = (sec_left) / (60*60) ;  { 
   sec_left = (sec_left) %(60*60);    int j; 
   minutes = (sec_left) /60;    double f;
   sec_left = (sec_left) % (60);    double *xt; 
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);     
   return ascdiff;    xt=vector(1,ncom); 
 }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 /*************** powell ************************/    free_vector(xt,1,ncom); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return f; 
             double (*func)(double []))  } 
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /*****************brent *************************/
               double (*func)(double []));  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   int i,ibig,j;  { 
   double del,t,*pt,*ptt,*xit;    int iter; 
   double fp,fptt;    double a,b,d,etemp;
   double *xits;    double fu=0,fv,fw,fx;
   int niterf, itmp;    double ftemp=0.;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   pt=vector(1,n);    double e=0.0; 
   ptt=vector(1,n);   
   xit=vector(1,n);    a=(ax < cx ? ax : cx); 
   xits=vector(1,n);    b=(ax > cx ? ax : cx); 
   *fret=(*func)(p);    x=w=v=bx; 
   for (j=1;j<=n;j++) pt[j]=p[j];    fw=fv=fx=(*f)(x); 
   for (*iter=1;;++(*iter)) {    for (iter=1;iter<=ITMAX;iter++) { 
     fp=(*fret);      xm=0.5*(a+b); 
     ibig=0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     del=0.0;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     last_time=curr_time;      printf(".");fflush(stdout);
     (void) gettimeofday(&curr_time,&tzp);      fprintf(ficlog,".");fflush(ficlog);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  #ifdef DEBUGBRENT
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
    for (i=1;i<=n;i++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       printf(" %d %.12f",i, p[i]);  #endif
       fprintf(ficlog," %d %.12lf",i, p[i]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       fprintf(ficrespow," %.12lf", p[i]);        *xmin=x; 
     }        return fx; 
     printf("\n");      } 
     fprintf(ficlog,"\n");      ftemp=fu;
     fprintf(ficrespow,"\n");fflush(ficrespow);      if (fabs(e) > tol1) { 
     if(*iter <=3){        r=(x-w)*(fx-fv); 
       tm = *localtime(&curr_time.tv_sec);        q=(x-v)*(fx-fw); 
       strcpy(strcurr,asctime(&tm));        p=(x-v)*q-(x-w)*r; 
 /*       asctime_r(&tm,strcurr); */        q=2.0*(q-r); 
       forecast_time=curr_time;        if (q > 0.0) p = -p; 
       itmp = strlen(strcurr);        q=fabs(q); 
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        etemp=e; 
         strcurr[itmp-1]='\0';        e=d; 
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(niterf=10;niterf<=30;niterf+=10){        else { 
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);          d=p/q; 
         tmf = *localtime(&forecast_time.tv_sec);          u=x+d; 
 /*      asctime_r(&tmf,strfor); */          if (u-a < tol2 || b-u < tol2) 
         strcpy(strfor,asctime(&tmf));            d=SIGN(tol1,xm-x); 
         itmp = strlen(strfor);        } 
         if(strfor[itmp-1]=='\n')      } else { 
         strfor[itmp-1]='\0';        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      } 
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       }      fu=(*f)(u); 
     }      if (fu <= fx) { 
     for (i=1;i<=n;i++) {        if (u >= x) a=x; else b=x; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        SHFT(v,w,x,u) 
       fptt=(*fret);        SHFT(fv,fw,fx,fu) 
 #ifdef DEBUG      } else { 
       printf("fret=%lf \n",*fret);        if (u < x) a=u; else b=u; 
       fprintf(ficlog,"fret=%lf \n",*fret);        if (fu <= fw || w == x) { 
 #endif          v=w; 
       printf("%d",i);fflush(stdout);          w=u; 
       fprintf(ficlog,"%d",i);fflush(ficlog);          fv=fw; 
       linmin(p,xit,n,fret,func);          fw=fu; 
       if (fabs(fptt-(*fret)) > del) {        } else if (fu <= fv || v == x || v == w) { 
         del=fabs(fptt-(*fret));          v=u; 
         ibig=i;          fv=fu; 
       }        } 
 #ifdef DEBUG      } 
       printf("%d %.12e",i,(*fret));    } 
       fprintf(ficlog,"%d %.12e",i,(*fret));    nrerror("Too many iterations in brent"); 
       for (j=1;j<=n;j++) {    *xmin=x; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    return fx; 
         printf(" x(%d)=%.12e",j,xit[j]);  } 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }  /****************** mnbrak ***********************/
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         fprintf(ficlog," p=%.12e",p[j]);              double (*func)(double)) 
       }  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
       printf("\n");  the downhill direction (defined by the function as evaluated at the initial points) and returns
       fprintf(ficlog,"\n");  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 #endif  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
     }     */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    double ulim,u,r,q, dum;
 #ifdef DEBUG    double fu; 
       int k[2],l;   
       k[0]=1;    *fa=(*func)(*ax); 
       k[1]=-1;    *fb=(*func)(*bx); 
       printf("Max: %.12e",(*func)(p));    if (*fb > *fa) { 
       fprintf(ficlog,"Max: %.12e",(*func)(p));      SHFT(dum,*ax,*bx,dum) 
       for (j=1;j<=n;j++) {      SHFT(dum,*fb,*fa,dum) 
         printf(" %.12e",p[j]);    } 
         fprintf(ficlog," %.12e",p[j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
       printf("\n");  #ifdef DEBUG
       fprintf(ficlog,"\n");    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       for(l=0;l<=1;l++) {    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         for (j=1;j<=n;j++) {  #endif
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      r=(*bx-*ax)*(*fb-*fc); 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      q=(*bx-*cx)*(*fb-*fa); 
         }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
       }      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
 #endif        fu=(*func)(u); 
   #ifdef DEBUG
         /* f(x)=A(x-u)**2+f(u) */
       free_vector(xit,1,n);        double A, fparabu; 
       free_vector(xits,1,n);        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       free_vector(ptt,1,n);        fparabu= *fa - A*(*ax-u)*(*ax-u);
       free_vector(pt,1,n);        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       return;        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     }        /* And thus,it can be that fu > *fc even if fparabu < *fc */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
     for (j=1;j<=n;j++) {          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
       ptt[j]=2.0*p[j]-pt[j];        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
       xit[j]=p[j]-pt[j];  #endif 
       pt[j]=p[j];  #ifdef MNBRAKORI
     }  #else
     fptt=(*func)(ptt);        if (fu > *fc) {
     if (fptt < fp) {  #ifdef DEBUG
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        printf("mnbrak4  fu > fc \n");
       if (t < 0.0) {        fprintf(ficlog, "mnbrak4 fu > fc\n");
         linmin(p,xit,n,fret,func);  #endif
         for (j=1;j<=n;j++) {          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
           xi[j][ibig]=xi[j][n];          /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
           xi[j][n]=xit[j];          dum=u; /* Shifting c and u */
         }          u = *cx;
 #ifdef DEBUG          *cx = dum;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          dum = fu;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fu = *fc;
         for(j=1;j<=n;j++){          *fc =dum;
           printf(" %.12e",xit[j]);        } else { /* end */
           fprintf(ficlog," %.12e",xit[j]);  #ifdef DEBUG
         }        printf("mnbrak3  fu < fc \n");
         printf("\n");        fprintf(ficlog, "mnbrak3 fu < fc\n");
         fprintf(ficlog,"\n");  #endif
 #endif          dum=u; /* Shifting c and u */
       }          u = *cx;
     }          *cx = dum;
   }          dum = fu;
 }          fu = *fc;
           *fc =dum;
 /**** Prevalence limit (stable or period prevalence)  ****************/        }
   #endif
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 {  #ifdef DEBUG
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        printf("mnbrak2  u after c but before ulim\n");
      matrix by transitions matrix until convergence is reached */        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   #endif
   int i, ii,j,k;        fu=(*func)(u); 
   double min, max, maxmin, maxmax,sumnew=0.;        if (fu < *fc) { 
   double **matprod2();  #ifdef DEBUG
   double **out, cov[NCOVMAX], **pmij();        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   double **newm;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
   double agefin, delaymax=50 ; /* Max number of years to converge */  #endif
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   for (ii=1;ii<=nlstate+ndeath;ii++)          SHFT(*fb,*fc,fu,(*func)(u)) 
     for (j=1;j<=nlstate+ndeath;j++){        } 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
     }  #ifdef DEBUG
         printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
    cov[1]=1.;        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
    #endif
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        u=ulim; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        fu=(*func)(u); 
     newm=savm;      } else { /* u could be left to b (if r > q parabola has a maximum) */
     /* Covariates have to be included here again */  #ifdef DEBUG
      cov[2]=agefin;        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
          fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
       for (k=1; k<=cptcovn;k++) {  #endif
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        u=(*cx)+GOLD*(*cx-*bx); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        fu=(*func)(u); 
       }      } /* end tests */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      SHFT(*ax,*bx,*cx,u) 
       for (k=1; k<=cptcovprod;k++)      SHFT(*fa,*fb,*fc,fu) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #ifdef DEBUG
         printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #endif
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  } 
   
     savm=oldm;  /*************** linmin ************************/
     oldm=newm;  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
     maxmax=0.;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     for(j=1;j<=nlstate;j++){  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
       min=1.;  the value of func at the returned location p . This is actually all accomplished by calling the
       max=0.;  routines mnbrak and brent .*/
       for(i=1; i<=nlstate; i++) {  int ncom; 
         sumnew=0;  double *pcom,*xicom;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  double (*nrfunc)(double []); 
         prlim[i][j]= newm[i][j]/(1-sumnew);   
         max=FMAX(max,prlim[i][j]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         min=FMIN(min,prlim[i][j]);  { 
       }    double brent(double ax, double bx, double cx, 
       maxmin=max-min;                 double (*f)(double), double tol, double *xmin); 
       maxmax=FMAX(maxmax,maxmin);    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     if(maxmax < ftolpl){                double *fc, double (*func)(double)); 
       return prlim;    int j; 
     }    double xx,xmin,bx,ax; 
   }    double fx,fb,fa;
 }   
     ncom=n; 
 /*************** transition probabilities ***************/    pcom=vector(1,n); 
     xicom=vector(1,n); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    nrfunc=func; 
 {    for (j=1;j<=n;j++) { 
   double s1, s2;      pcom[j]=p[j]; 
   /*double t34;*/      xicom[j]=xi[j]; 
   int i,j,j1, nc, ii, jj;    } 
     ax=0.0; 
     for(i=1; i<= nlstate; i++){    xx=1.0; 
       for(j=1; j<i;j++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
           /*s2 += param[i][j][nc]*cov[nc];*/  #ifdef DEBUG
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         }  #endif
         ps[i][j]=s2;    for (j=1;j<=n;j++) { 
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */      xi[j] *= xmin; 
       }      p[j] += xi[j]; 
       for(j=i+1; j<=nlstate+ndeath;j++){    } 
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free_vector(xicom,1,n); 
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free_vector(pcom,1,n); 
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  } 
         }  
         ps[i][j]=s2;  
       }  /*************** powell ************************/
     }  /*
     /*ps[3][2]=1;*/  Minimization of a function func of n variables. Input consists of an initial starting point
      p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
     for(i=1; i<= nlstate; i++){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
       s1=0;  such that failure to decrease by more than this amount on one iteration signals doneness. On
       for(j=1; j<i; j++)  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         s1+=exp(ps[i][j]);  function value at p , and iter is the number of iterations taken. The routine linmin is used.
       for(j=i+1; j<=nlstate+ndeath; j++)   */
         s1+=exp(ps[i][j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       ps[i][i]=1./(s1+1.);              double (*func)(double [])) 
       for(j=1; j<i; j++)  { 
         ps[i][j]= exp(ps[i][j])*ps[i][i];    void linmin(double p[], double xi[], int n, double *fret, 
       for(j=i+1; j<=nlstate+ndeath; j++)                double (*func)(double [])); 
         ps[i][j]= exp(ps[i][j])*ps[i][i];    int i,ibig,j; 
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double del,t,*pt,*ptt,*xit;
     } /* end i */    double directest;
        double fp,fptt;
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double *xits;
       for(jj=1; jj<= nlstate+ndeath; jj++){    int niterf, itmp;
         ps[ii][jj]=0;  
         ps[ii][ii]=1;    pt=vector(1,n); 
       }    ptt=vector(1,n); 
     }    xit=vector(1,n); 
        xits=vector(1,n); 
     *fret=(*func)(p); 
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */    for (j=1;j<=n;j++) pt[j]=p[j]; 
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      rcurr_time = time(NULL);  
 /*         printf("ddd %lf ",ps[ii][jj]); */    for (*iter=1;;++(*iter)) { 
 /*       } */      fp=(*fret); 
 /*       printf("\n "); */      ibig=0; 
 /*        } */      del=0.0; 
 /*        printf("\n ");printf("%lf ",cov[2]); */      rlast_time=rcurr_time;
        /*      /* (void) gettimeofday(&curr_time,&tzp); */
       for(i=1; i<= npar; i++) printf("%f ",x[i]);      rcurr_time = time(NULL);  
       goto end;*/      curr_time = *localtime(&rcurr_time);
     return ps;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 /**************** Product of 2 matrices ******************/     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      printf("\n");
   /* in, b, out are matrice of pointers which should have been initialized      fprintf(ficlog,"\n");
      before: only the contents of out is modified. The function returns      fprintf(ficrespow,"\n");fflush(ficrespow);
      a pointer to pointers identical to out */      if(*iter <=3){
   long i, j, k;        tml = *localtime(&rcurr_time);
   for(i=nrl; i<= nrh; i++)        strcpy(strcurr,asctime(&tml));
     for(k=ncolol; k<=ncoloh; k++)        rforecast_time=rcurr_time; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        itmp = strlen(strcurr);
         out[i][k] +=in[i][j]*b[j][k];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   return out;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(niterf=10;niterf<=30;niterf+=10){
           rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 /************* Higher Matrix Product ***************/          forecast_time = *localtime(&rforecast_time);
           strcpy(strfor,asctime(&forecast_time));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          itmp = strlen(strfor);
 {          if(strfor[itmp-1]=='\n')
   /* Computes the transition matrix starting at age 'age' over          strfor[itmp-1]='\0';
      'nhstepm*hstepm*stepm' months (i.e. until          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
      nhstepm*hstepm matrices.        }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      }
      (typically every 2 years instead of every month which is too big      for (i=1;i<=n;i++) { 
      for the memory).        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
      Model is determined by parameters x and covariates have to be        fptt=(*fret); 
      included manually here.  #ifdef DEBUG
             printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
      */            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   #endif
   int i, j, d, h, k;        printf("%d",i);fflush(stdout);
   double **out, cov[NCOVMAX];        fprintf(ficlog,"%d",i);fflush(ficlog);
   double **newm;        linmin(p,xit,n,fret,func); /* xit[n] has been loaded for direction i */
         if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
   /* Hstepm could be zero and should return the unit matrix */                                         because that direction will be replaced unless the gain del is small
   for (i=1;i<=nlstate+ndeath;i++)                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
     for (j=1;j<=nlstate+ndeath;j++){                                        Unless the n directions are conjugate some gain in the determinant may be obtained
       oldm[i][j]=(i==j ? 1.0 : 0.0);                                        with the new direction.
       po[i][j][0]=(i==j ? 1.0 : 0.0);                                        */
     }          del=fabs(fptt-(*fret)); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          ibig=i; 
   for(h=1; h <=nhstepm; h++){        } 
     for(d=1; d <=hstepm; d++){  #ifdef DEBUG
       newm=savm;        printf("%d %.12e",i,(*fret));
       /* Covariates have to be included here again */        fprintf(ficlog,"%d %.12e",i,(*fret));
       cov[1]=1.;        for (j=1;j<=n;j++) {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          printf(" x(%d)=%.12e",j,xit[j]);
       for (k=1; k<=cptcovage;k++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
       for (k=1; k<=cptcovprod;k++)        for(j=1;j<=n;j++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          printf(" p(%d)=%.12e",j,p[j]);
           fprintf(ficlog," p(%d)=%.12e",j,p[j]);
         }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        printf("\n");
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fprintf(ficlog,"\n");
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      } /* end i */
       savm=oldm;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
       oldm=newm;  #ifdef DEBUG
     }        int k[2],l;
     for(i=1; i<=nlstate+ndeath; i++)        k[0]=1;
       for(j=1;j<=nlstate+ndeath;j++) {        k[1]=-1;
         po[i][j][h]=newm[i][j];        printf("Max: %.12e",(*func)(p));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
          */        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
   } /* end h */          fprintf(ficlog," %.12e",p[j]);
   return po;        }
 }        printf("\n");
         fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /*************** log-likelihood *************/          for (j=1;j<=n;j++) {
 double func( double *x)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i, ii, j, k, mi, d, kk;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          }
   double **out;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double sw; /* Sum of weights */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double lli; /* Individual log likelihood */        }
   int s1, s2;  #endif
   double bbh, survp;  
   long ipmx;  
   /*extern weight */        free_vector(xit,1,n); 
   /* We are differentiating ll according to initial status */        free_vector(xits,1,n); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        free_vector(ptt,1,n); 
   /*for(i=1;i<imx;i++)        free_vector(pt,1,n); 
     printf(" %d\n",s[4][i]);        return; 
   */      } 
   cov[1]=1.;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   for(k=1; k<=nlstate; k++) ll[k]=0.;        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   if(mle==1){        pt[j]=p[j]; 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      fptt=(*func)(ptt); /* f_3 */
       for(mi=1; mi<= wav[i]-1; mi++){      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         for (ii=1;ii<=nlstate+ndeath;ii++)        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
           for (j=1;j<=nlstate+ndeath;j++){        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
           }        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         for(d=0; d<dh[mi][i]; d++){        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
           newm=savm;        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #ifdef NRCORIGINAL
           for (kk=1; kk<=cptcovage;kk++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #else
           }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        t= t- del*SQR(fp-fptt);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
           savm=oldm;        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
           oldm=newm;  #ifdef DEBUG
         } /* end mult */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
              fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         /* But now since version 0.9 we anticipate for bias at large stepm.               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
          * If stepm is larger than one month (smallest stepm) and if the exact delay        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
          * (in months) between two waves is not a multiple of stepm, we rounded to               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
          * the nearest (and in case of equal distance, to the lowest) interval but now        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  #endif
          * probability in order to take into account the bias as a fraction of the way  #ifdef POWELLORIGINAL
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies        if (t < 0.0) { /* Then we use it for new direction */
          * -stepm/2 to stepm/2 .  #else
          * For stepm=1 the results are the same as for previous versions of Imach.        if (directest*t < 0.0) { /* Contradiction between both tests */
          * For stepm > 1 the results are less biased than in previous versions.        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
          */        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         s1=s[mw[mi][i]][i];        fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
         s2=s[mw[mi+1][i]][i];        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         bbh=(double)bh[mi][i]/(double)stepm;      } 
         /* bias bh is positive if real duration        if (directest < 0.0) { /* Then we use it for new direction */
          * is higher than the multiple of stepm and negative otherwise.  #endif
          */          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          for (j=1;j<=n;j++) { 
         if( s2 > nlstate){            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
           /* i.e. if s2 is a death state and if the date of death is known            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
              then the contribution to the likelihood is the probability to          }
              die between last step unit time and current  step unit time,          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
              which is also equal to probability to die before dh          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
              minus probability to die before dh-stepm .  
              In version up to 0.92 likelihood was computed  #ifdef DEBUG
         as if date of death was unknown. Death was treated as any other          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         health state: the date of the interview describes the actual state          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         and not the date of a change in health state. The former idea was          for(j=1;j<=n;j++){
         to consider that at each interview the state was recorded            printf(" %.12e",xit[j]);
         (healthy, disable or death) and IMaCh was corrected; but when we            fprintf(ficlog," %.12e",xit[j]);
         introduced the exact date of death then we should have modified          }
         the contribution of an exact death to the likelihood. This new          printf("\n");
         contribution is smaller and very dependent of the step unit          fprintf(ficlog,"\n");
         stepm. It is no more the probability to die between last interview  #endif
         and month of death but the probability to survive from last        } /* end of t negative */
         interview up to one month before death multiplied by the      } /* end if (fptt < fp)  */
         probability to die within a month. Thanks to Chris    } 
         Jackson for correcting this bug.  Former versions increased  } 
         mortality artificially. The bad side is that we add another loop  
         which slows down the processing. The difference can be up to 10%  /**** Prevalence limit (stable or period prevalence)  ****************/
         lower mortality.  
           */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           lli=log(out[s1][s2] - savm[s1][s2]);  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
         } else if  (s2==-2) {    
           for (j=1,survp=0. ; j<=nlstate; j++)    int i, ii,j,k;
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    double min, max, maxmin, maxmax,sumnew=0.;
           /*survp += out[s1][j]; */    /* double **matprod2(); */ /* test */
           lli= log(survp);    double **out, cov[NCOVMAX+1], **pmij();
         }    double **newm;
            double agefin, delaymax=50 ; /* Max number of years to converge */
         else if  (s2==-4) {    
           for (j=3,survp=0. ; j<=nlstate; j++)      for (ii=1;ii<=nlstate+ndeath;ii++)
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];      for (j=1;j<=nlstate+ndeath;j++){
           lli= log(survp);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }      }
     
         else if  (s2==-5) {    cov[1]=1.;
           for (j=1,survp=0. ; j<=2; j++)      
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           lli= log(survp);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         }      newm=savm;
              /* Covariates have to be included here again */
         else{      cov[2]=agefin;
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */      for (k=1; k<=cptcovn;k++) {
         }        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
         /*if(lli ==000.0)*/      }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         ipmx +=1;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
         sw += weight[i];      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      
       } /* end of wave */      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     } /* end of individual */      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }  else if(mle==2){      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       for(mi=1; mi<= wav[i]-1; mi++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         for (ii=1;ii<=nlstate+ndeath;ii++)      
           for (j=1;j<=nlstate+ndeath;j++){      savm=oldm;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      oldm=newm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      maxmax=0.;
           }      for(j=1;j<=nlstate;j++){
         for(d=0; d<=dh[mi][i]; d++){        min=1.;
           newm=savm;        max=0.;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(i=1; i<=nlstate; i++) {
           for (kk=1; kk<=cptcovage;kk++) {          sumnew=0;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           }          prlim[i][j]= newm[i][j]/(1-sumnew);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          max=FMAX(max,prlim[i][j]);
           savm=oldm;          min=FMIN(min,prlim[i][j]);
           oldm=newm;        }
         } /* end mult */        maxmin=max-min;
              maxmax=FMAX(maxmax,maxmin);
         s1=s[mw[mi][i]][i];      } /* j loop */
         s2=s[mw[mi+1][i]][i];      if(maxmax < ftolpl){
         bbh=(double)bh[mi][i]/(double)stepm;        return prlim;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      }
         ipmx +=1;    } /* age loop */
         sw += weight[i];    return prlim; /* should not reach here */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
       } /* end of wave */  
     } /* end of individual */  /*************** transition probabilities ***************/ 
   }  else if(mle==3){  /* exponential inter-extrapolation */  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  {
       for(mi=1; mi<= wav[i]-1; mi++){    /* According to parameters values stored in x and the covariate's values stored in cov,
         for (ii=1;ii<=nlstate+ndeath;ii++)       computes the probability to be observed in state j being in state i by appying the
           for (j=1;j<=nlstate+ndeath;j++){       model to the ncovmodel covariates (including constant and age).
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
             savm[ii][j]=(ii==j ? 1.0 : 0.0);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           }       ncth covariate in the global vector x is given by the formula:
         for(d=0; d<dh[mi][i]; d++){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
           newm=savm;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           for (kk=1; kk<=cptcovage;kk++) {       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       Outputs ps[i][j] the probability to be observed in j being in j according to
           }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double s1, lnpijopii;
           savm=oldm;    /*double t34;*/
           oldm=newm;    int i,j, nc, ii, jj;
         } /* end mult */  
            for(i=1; i<= nlstate; i++){
         s1=s[mw[mi][i]][i];        for(j=1; j<i;j++){
         s2=s[mw[mi+1][i]][i];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         bbh=(double)bh[mi][i]/(double)stepm;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         ipmx +=1;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         sw += weight[i];          }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       } /* end of wave */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     } /* end of individual */        }
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        for(j=i+1; j<=nlstate+ndeath;j++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       for(mi=1; mi<= wav[i]-1; mi++){            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         for (ii=1;ii<=nlstate+ndeath;ii++)  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           for (j=1;j<=nlstate+ndeath;j++){          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        }
           }      }
         for(d=0; d<dh[mi][i]; d++){      
           newm=savm;      for(i=1; i<= nlstate; i++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        s1=0;
           for (kk=1; kk<=cptcovage;kk++) {        for(j=1; j<i; j++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(j=i+1; j<=nlstate+ndeath; j++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           savm=oldm;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           oldm=newm;        }
         } /* end mult */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
              ps[i][i]=1./(s1+1.);
         s1=s[mw[mi][i]][i];        /* Computing other pijs */
         s2=s[mw[mi+1][i]][i];        for(j=1; j<i; j++)
         if( s2 > nlstate){          ps[i][j]= exp(ps[i][j])*ps[i][i];
           lli=log(out[s1][s2] - savm[s1][s2]);        for(j=i+1; j<=nlstate+ndeath; j++)
         }else{          ps[i][j]= exp(ps[i][j])*ps[i][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
         ipmx +=1;      
         sw += weight[i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for(jj=1; jj<= nlstate+ndeath; jj++){
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          ps[ii][jj]=0;
       } /* end of wave */          ps[ii][ii]=1;
     } /* end of individual */        }
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */      }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      
       for(mi=1; mi<= wav[i]-1; mi++){      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for (ii=1;ii<=nlstate+ndeath;ii++)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           for (j=1;j<=nlstate+ndeath;j++){      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /*   } */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      /*   printf("\n "); */
           }      /* } */
         for(d=0; d<dh[mi][i]; d++){      /* printf("\n ");printf("%lf ",cov[2]);*/
           newm=savm;      /*
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           for (kk=1; kk<=cptcovage;kk++) {        goto end;*/
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      return ps;
           }  }
          
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /**************** Product of 2 matrices ******************/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
           oldm=newm;  {
         } /* end mult */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         s1=s[mw[mi][i]][i];    /* in, b, out are matrice of pointers which should have been initialized 
         s2=s[mw[mi+1][i]][i];       before: only the contents of out is modified. The function returns
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */       a pointer to pointers identical to out */
         ipmx +=1;    int i, j, k;
         sw += weight[i];    for(i=nrl; i<= nrh; i++)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(k=ncolol; k<=ncoloh; k++){
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/        out[i][k]=0.;
       } /* end of wave */        for(j=ncl; j<=nch; j++)
     } /* end of individual */          out[i][k] +=in[i][j]*b[j][k];
   } /* End of if */      }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    return out;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  
 }  /************* Higher Matrix Product ***************/
   
 /*************** log-likelihood *************/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 double funcone( double *x)  {
 {    /* Computes the transition matrix starting at age 'age' over 
   /* Same as likeli but slower because of a lot of printf and if */       'nhstepm*hstepm*stepm' months (i.e. until
   int i, ii, j, k, mi, d, kk;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];       nhstepm*hstepm matrices. 
   double **out;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double lli; /* Individual log likelihood */       (typically every 2 years instead of every month which is too big 
   double llt;       for the memory).
   int s1, s2;       Model is determined by parameters x and covariates have to be 
   double bbh, survp;       included manually here. 
   /*extern weight */  
   /* We are differentiating ll according to initial status */       */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)    int i, j, d, h, k;
     printf(" %d\n",s[4][i]);    double **out, cov[NCOVMAX+1];
   */    double **newm;
   cov[1]=1.;  
     /* Hstepm could be zero and should return the unit matrix */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for(mi=1; mi<= wav[i]-1; mi++){      }
       for (ii=1;ii<=nlstate+ndeath;ii++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for (j=1;j<=nlstate+ndeath;j++){    for(h=1; h <=nhstepm; h++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(d=1; d <=hstepm; d++){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        newm=savm;
         }        /* Covariates have to be included here again */
       for(d=0; d<dh[mi][i]; d++){        cov[1]=1.;
         newm=savm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for (k=1; k<=cptcovn;k++) 
         for (kk=1; kk<=cptcovage;kk++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         savm=oldm;  
         oldm=newm;  
       } /* end mult */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       s1=s[mw[mi][i]][i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       s2=s[mw[mi+1][i]][i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       bbh=(double)bh[mi][i]/(double)stepm;        savm=oldm;
       /* bias is positive if real duration        oldm=newm;
        * is higher than the multiple of stepm and negative otherwise.      }
        */      for(i=1; i<=nlstate+ndeath; i++)
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        for(j=1;j<=nlstate+ndeath;j++) {
         lli=log(out[s1][s2] - savm[s1][s2]);          po[i][j][h]=newm[i][j];
       } else if  (s2==-2) {          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         for (j=1,survp=0. ; j<=nlstate; j++)        }
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];      /*printf("h=%d ",h);*/
         lli= log(survp);    } /* end h */
       }else if (mle==1){  /*     printf("\n H=%d \n",h); */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */    return po;
       } else if(mle==2){  }
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  
       } else if(mle==3){  /* exponential inter-extrapolation */  #ifdef NLOPT
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
       } else if (mle==4){  /* mle=4 no inter-extrapolation */    double fret;
         lli=log(out[s1][s2]); /* Original formula */    double *xt;
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */    int j;
         lli=log(out[s1][s2]); /* Original formula */    myfunc_data *d2 = (myfunc_data *) pd;
       } /* End of if */  /* xt = (p1-1); */
       ipmx +=1;    xt=vector(1,n); 
       sw += weight[i];    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
       if(globpr){    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\    printf("Function = %.12lf ",fret);
  %11.6f %11.6f %11.6f ", \    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],    printf("\n");
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);   free_vector(xt,1,n);
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){    return fret;
           llt +=ll[k]*gipmx/gsw;  }
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);  #endif
         }  
         fprintf(ficresilk," %10.6f\n", -llt);  /*************** log-likelihood *************/
       }  double func( double *x)
     } /* end of wave */  {
   } /* end of individual */    int i, ii, j, k, mi, d, kk;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double **out;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double sw; /* Sum of weights */
   if(globpr==0){ /* First time we count the contributions and weights */    double lli; /* Individual log likelihood */
     gipmx=ipmx;    int s1, s2;
     gsw=sw;    double bbh, survp;
   }    long ipmx;
   return -l;    /*extern weight */
 }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 /*************** function likelione ***********/      printf(" %d\n",s[4][i]);
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))    */
 {  
   /* This routine should help understanding what is done with    ++countcallfunc;
      the selection of individuals/waves and  
      to check the exact contribution to the likelihood.    cov[1]=1.;
      Plotting could be done.  
    */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int k;  
     if(mle==1){
   if(*globpri !=0){ /* Just counts and sums, no printings */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     strcpy(fileresilk,"ilk");        /* Computes the values of the ncovmodel covariates of the model
     strcat(fileresilk,fileres);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       printf("Problem with resultfile: %s\n", fileresilk);           to be observed in j being in i according to the model.
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);         */
     }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");        }
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     for(k=1; k<=nlstate; k++)           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);           has been calculated etc */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   *fretone=(*funcone)(p);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(*globpri !=0){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fclose(ficresilk);            }
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          for(d=0; d<dh[mi][i]; d++){
     fflush(fichtm);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   return;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*********** Maximum Likelihood Estimation ***************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            oldm=newm;
 {          } /* end mult */
   int i,j, iter;        
   double **xi;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double fret;          /* But now since version 0.9 we anticipate for bias at large stepm.
   double fretone; /* Only one call to likelihood */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   /*  char filerespow[FILENAMELENGTH];*/           * (in months) between two waves is not a multiple of stepm, we rounded to 
   xi=matrix(1,npar,1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (i=1;i<=npar;i++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (j=1;j<=npar;j++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       xi[i][j]=(i==j ? 1.0 : 0.0);           * probability in order to take into account the bias as a fraction of the way
   printf("Powell\n");  fprintf(ficlog,"Powell\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   strcpy(filerespow,"pow");           * -stepm/2 to stepm/2 .
   strcat(filerespow,fileres);           * For stepm=1 the results are the same as for previous versions of Imach.
   if((ficrespow=fopen(filerespow,"w"))==NULL) {           * For stepm > 1 the results are less biased than in previous versions. 
     printf("Problem with resultfile: %s\n", filerespow);           */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=1;i<=nlstate;i++)          /* bias bh is positive if real duration
     for(j=1;j<=nlstate+ndeath;j++)           * is higher than the multiple of stepm and negative otherwise.
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);           */
   fprintf(ficrespow,"\n");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   powell(p,xi,npar,ftol,&iter,&fret,func);            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   free_matrix(xi,1,npar,1,npar);               die between last step unit time and current  step unit time, 
   fclose(ficrespow);               which is also equal to probability to die before dh 
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));               minus probability to die before dh-stepm . 
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));               In version up to 0.92 likelihood was computed
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /**** Computes Hessian and covariance matrix ***/          (healthy, disable or death) and IMaCh was corrected; but when we
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   double  **a,**y,*x,pd;          contribution is smaller and very dependent of the step unit
   double **hess;          stepm. It is no more the probability to die between last interview
   int i, j,jk;          and month of death but the probability to survive from last
   int *indx;          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);          Jackson for correcting this bug.  Former versions increased
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);          mortality artificially. The bad side is that we add another loop
   void lubksb(double **a, int npar, int *indx, double b[]) ;          which slows down the processing. The difference can be up to 10%
   void ludcmp(double **a, int npar, int *indx, double *d) ;          lower mortality.
   double gompertz(double p[]);            */
   hess=matrix(1,npar,1,npar);          /* If, at the beginning of the maximization mostly, the
              cumulative probability or probability to be dead is
   printf("\nCalculation of the hessian matrix. Wait...\n");             constant (ie = 1) over time d, the difference is equal to
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");             0.  out[s1][3] = savm[s1][3]: probability, being at state
   for (i=1;i<=npar;i++){             s1 at precedent wave, to be dead a month before current
     printf("%d",i);fflush(stdout);             wave is equal to probability, being at state s1 at
     fprintf(ficlog,"%d",i);fflush(ficlog);             precedent wave, to be dead at mont of the current
                 wave. Then the observed probability (that this person died)
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);             is null according to current estimated parameter. In fact,
                 it should be very low but not zero otherwise the log go to
     /*  printf(" %f ",p[i]);             infinity.
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/          */
   }  /* #ifdef INFINITYORIGINAL */
    /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   for (i=1;i<=npar;i++) {  /* #else */
     for (j=1;j<=npar;j++)  {  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
       if (j>i) {  /*          lli=log(mytinydouble); */
         printf(".%d%d",i,j);fflush(stdout);  /*        else */
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
         hess[i][j]=hessij(p,delti,i,j,func,npar);  /* #endif */
                      lli=log(out[s1][s2] - savm[s1][s2]);
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/          } else if  (s2==-2) {
       }            for (j=1,survp=0. ; j<=nlstate; j++) 
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }            /*survp += out[s1][j]; */
   printf("\n");            lli= log(survp);
   fprintf(ficlog,"\n");          }
           
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          else if  (s2==-4) { 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");            for (j=3,survp=0. ; j<=nlstate; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   a=matrix(1,npar,1,npar);            lli= log(survp); 
   y=matrix(1,npar,1,npar);          } 
   x=vector(1,npar);  
   indx=ivector(1,npar);          else if  (s2==-5) { 
   for (i=1;i<=npar;i++)            for (j=1,survp=0. ; j<=2; j++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   ludcmp(a,npar,indx,&pd);            lli= log(survp); 
           } 
   for (j=1;j<=npar;j++) {          
     for (i=1;i<=npar;i++) x[i]=0;          else{
     x[j]=1;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     lubksb(a,npar,indx,x);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (i=1;i<=npar;i++){          } 
       matcov[i][j]=x[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
   printf("\n#Hessian matrix#\n");          sw += weight[i];
   fprintf(ficlog,"\n#Hessian matrix#\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (i=1;i<=npar;i++) {          /* if (lli < log(mytinydouble)){ */
     for (j=1;j<=npar;j++) {          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
       printf("%.3e ",hess[i][j]);          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
       fprintf(ficlog,"%.3e ",hess[i][j]);          /* } */
     }        } /* end of wave */
     printf("\n");      } /* end of individual */
     fprintf(ficlog,"\n");    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Recompute Inverse */        for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=npar;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            for (j=1;j<=nlstate+ndeath;j++){
   ludcmp(a,npar,indx,&pd);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  printf("\n#Hessian matrix recomputed#\n");            }
           for(d=0; d<=dh[mi][i]; d++){
   for (j=1;j<=npar;j++) {            newm=savm;
     for (i=1;i<=npar;i++) x[i]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     x[j]=1;            for (kk=1; kk<=cptcovage;kk++) {
     lubksb(a,npar,indx,x);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1;i<=npar;i++){            }
       y[i][j]=x[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       printf("%.3e ",y[i][j]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficlog,"%.3e ",y[i][j]);            savm=oldm;
     }            oldm=newm;
     printf("\n");          } /* end mult */
     fprintf(ficlog,"\n");        
   }          s1=s[mw[mi][i]][i];
   */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   free_matrix(a,1,npar,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   free_matrix(y,1,npar,1,npar);          ipmx +=1;
   free_vector(x,1,npar);          sw += weight[i];
   free_ivector(indx,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(hess,1,npar,1,npar);        } /* end of wave */
       } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*************** hessian matrix ****************/        for(mi=1; mi<= wav[i]-1; mi++){
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int l=1, lmax=20;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double k1,k2;            }
   double p2[NPARMAX+1];          for(d=0; d<dh[mi][i]; d++){
   double res;            newm=savm;
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double fx;            for (kk=1; kk<=cptcovage;kk++) {
   int k=0,kmax=10;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double l1;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fx=func(x);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++) p2[i]=x[i];            savm=oldm;
   for(l=0 ; l <=lmax; l++){            oldm=newm;
     l1=pow(10,l);          } /* end mult */
     delts=delt;        
     for(k=1 ; k <kmax; k=k+1){          s1=s[mw[mi][i]][i];
       delt = delta*(l1*k);          s2=s[mw[mi+1][i]][i];
       p2[theta]=x[theta] +delt;          bbh=(double)bh[mi][i]/(double)stepm; 
       k1=func(p2)-fx;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       p2[theta]=x[theta]-delt;          ipmx +=1;
       k2=func(p2)-fx;          sw += weight[i];
       /*res= (k1-2.0*fx+k2)/delt/delt; */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        } /* end of wave */
            } /* end of individual */
 #ifdef DEBUG    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #endif        for(mi=1; mi<= wav[i]-1; mi++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          for (ii=1;ii<=nlstate+ndeath;ii++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            for (j=1;j<=nlstate+ndeath;j++){
         k=kmax;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            }
         k=kmax; l=lmax*10.;          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         delts=delt;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }          
   delti[theta]=delts;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   return res;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
 }            oldm=newm;
           } /* end mult */
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)        
 {          s1=s[mw[mi][i]][i];
   int i;          s2=s[mw[mi+1][i]][i];
   int l=1, l1, lmax=20;          if( s2 > nlstate){ 
   double k1,k2,k3,k4,res,fx;            lli=log(out[s1][s2] - savm[s1][s2]);
   double p2[NPARMAX+1];          }else{
   int k;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   fx=func(x);          ipmx +=1;
   for (k=1; k<=2; k++) {          sw += weight[i];
     for (i=1;i<=npar;i++) p2[i]=x[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        } /* end of wave */
     k1=func(p2)-fx;      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     k2=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k3=func(p2)-fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(d=0; d<dh[mi][i]; d++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            newm=savm;
     k4=func(p2)-fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            for (kk=1; kk<=cptcovage;kk++) {
 #ifdef DEBUG              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          
 #endif            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   return res;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************** Inverse of matrix **************/        
 void ludcmp(double **a, int n, int *indx, double *d)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   int i,imax,j,k;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double big,dum,sum,temp;          ipmx +=1;
   double *vv;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   vv=vector(1,n);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   *d=1.0;        } /* end of wave */
   for (i=1;i<=n;i++) {      } /* end of individual */
     big=0.0;    } /* End of if */
     for (j=1;j<=n;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if ((temp=fabs(a[i][j])) > big) big=temp;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     vv[i]=1.0/big;    return -l;
   }  }
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /*************** log-likelihood *************/
       sum=a[i][j];  double funcone( double *x)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    /* Same as likeli but slower because of a lot of printf and if */
     }    int i, ii, j, k, mi, d, kk;
     big=0.0;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for (i=j;i<=n;i++) {    double **out;
       sum=a[i][j];    double lli; /* Individual log likelihood */
       for (k=1;k<j;k++)    double llt;
         sum -= a[i][k]*a[k][j];    int s1, s2;
       a[i][j]=sum;    double bbh, survp;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /*extern weight */
         big=dum;    /* We are differentiating ll according to initial status */
         imax=i;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     if (j != imax) {    */
       for (k=1;k<=n;k++) {    cov[1]=1.;
         dum=a[imax][k];  
         a[imax][k]=a[j][k];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         a[j][k]=dum;  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       *d = -(*d);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       vv[imax]=vv[j];      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
     indx[j]=imax;          for (j=1;j<=nlstate+ndeath;j++){
     if (a[j][j] == 0.0) a[j][j]=TINY;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != n) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       dum=1.0/(a[j][j]);          }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(d=0; d<dh[mi][i]; d++){
     }          newm=savm;
   }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_vector(vv,1,n);  /* Doesn't work */          for (kk=1; kk<=cptcovage;kk++) {
 ;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }          }
           /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 void lubksb(double **a, int n, int *indx, double b[])          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i,ii=0,ip,j;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   double sum;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
            savm=oldm;
   for (i=1;i<=n;i++) {          oldm=newm;
     ip=indx[i];        } /* end mult */
     sum=b[ip];        
     b[ip]=b[i];        s1=s[mw[mi][i]][i];
     if (ii)        s2=s[mw[mi+1][i]][i];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        bbh=(double)bh[mi][i]/(double)stepm; 
     else if (sum) ii=i;        /* bias is positive if real duration
     b[i]=sum;         * is higher than the multiple of stepm and negative otherwise.
   }         */
   for (i=n;i>=1;i--) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     sum=b[i];          lli=log(out[s1][s2] - savm[s1][s2]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        } else if  (s2==-2) {
     b[i]=sum/a[i][i];          for (j=1,survp=0. ; j<=nlstate; j++) 
   }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 }          lli= log(survp);
         }else if (mle==1){
 void pstamp(FILE *fichier)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {        } else if(mle==2){
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 }        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /************ Frequencies ********************/        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])          lli=log(out[s1][s2]); /* Original formula */
 {  /* Some frequencies */        } else{  /* mle=0 back to 1 */
            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          /*lli=log(out[s1][s2]); */ /* Original formula */
   int first;        } /* End of if */
   double ***freq; /* Frequencies */        ipmx +=1;
   double *pp, **prop;        sw += weight[i];
   double pos,posprop, k2, dateintsum=0,k2cpt=0;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char fileresp[FILENAMELENGTH];        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          if(globpr){
   pp=vector(1,nlstate);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   prop=matrix(1,nlstate,iagemin,iagemax+3);   %11.6f %11.6f %11.6f ", \
   strcpy(fileresp,"p");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   strcat(fileresp,fileres);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);            llt +=ll[k]*gipmx/gsw;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     exit(0);          }
   }          fprintf(ficresilk," %10.6f\n", -llt);
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);        }
   j1=0;      } /* end of wave */
      } /* end of individual */
   j=cptcoveff;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   first=1;    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   for(k1=1; k1<=j;k1++){      gsw=sw;
     for(i1=1; i1<=ncodemax[k1];i1++){    }
       j1++;    return -l;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  }
         scanf("%d", i);*/  
       for (i=-5; i<=nlstate+ndeath; i++)    
         for (jk=-5; jk<=nlstate+ndeath; jk++)    /*************** function likelione ***********/
           for(m=iagemin; m <= iagemax+3; m++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
             freq[i][jk][m]=0;  {
     /* This routine should help understanding what is done with 
     for (i=1; i<=nlstate; i++)         the selection of individuals/waves and
       for(m=iagemin; m <= iagemax+3; m++)       to check the exact contribution to the likelihood.
         prop[i][m]=0;       Plotting could be done.
           */
       dateintsum=0;    int k;
       k2cpt=0;  
       for (i=1; i<=imx; i++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
         bool=1;      strcpy(fileresilk,"ilk"); 
         if  (cptcovn>0) {      strcat(fileresilk,fileres);
           for (z1=1; z1<=cptcoveff; z1++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        printf("Problem with resultfile: %s\n", fileresilk);
               bool=0;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
         if (bool==1){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           for(m=firstpass; m<=lastpass; m++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             k2=anint[m][i]+(mint[m][i]/12.);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      for(k=1; k<=nlstate; k++) 
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    }
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    *fretone=(*funcone)(p);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    if(*globpri !=0){
               }      fclose(ficresilk);
                    fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      fflush(fichtm); 
                 dateintsum=dateintsum+k2;    } 
                 k2cpt++;    return;
               }  }
               /*}*/  
           }  
         }  /*********** Maximum Likelihood Estimation ***************/
       }  
          void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  {
       pstamp(ficresp);    int i,j, iter=0;
       if  (cptcovn>0) {    double **xi;
         fprintf(ficresp, "\n#********** Variable ");    double fret;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double fretone; /* Only one call to likelihood */
         fprintf(ficresp, "**********\n#");    /*  char filerespow[FILENAMELENGTH];*/
       }  
       for(i=1; i<=nlstate;i++)  #ifdef NLOPT
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    int creturn;
       fprintf(ficresp, "\n");    nlopt_opt opt;
          /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
       for(i=iagemin; i <= iagemax+3; i++){    double *lb;
         if(i==iagemax+3){    double minf; /* the minimum objective value, upon return */
           fprintf(ficlog,"Total");    double * p1; /* Shifted parameters from 0 instead of 1 */
         }else{    myfunc_data dinst, *d = &dinst;
           if(first==1){  #endif
             first=0;  
             printf("See log file for details...\n");  
           }    xi=matrix(1,npar,1,npar);
           fprintf(ficlog,"Age %d", i);    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++)
         for(jk=1; jk <=nlstate ; jk++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             pp[jk] += freq[jk][m][i];    strcpy(filerespow,"pow"); 
         }    strcat(filerespow,fileres);
         for(jk=1; jk <=nlstate ; jk++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           for(m=-1, pos=0; m <=0 ; m++)      printf("Problem with resultfile: %s\n", filerespow);
             pos += freq[jk][m][i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           if(pp[jk]>=1.e-10){    }
             if(first==1){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for (i=1;i<=nlstate;i++)
             }      for(j=1;j<=nlstate+ndeath;j++)
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           }else{    fprintf(ficrespow,"\n");
             if(first==1)  #ifdef POWELL
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    powell(p,xi,npar,ftol,&iter,&fret,func);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  #endif
           }  
         }  #ifdef NLOPT
   #ifdef NEWUOA
         for(jk=1; jk <=nlstate ; jk++){    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  #else
             pp[jk] += freq[jk][m][i];    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
         }        #endif
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    lb=vector(0,npar-1);
           pos += pp[jk];    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
           posprop += prop[jk][i];    nlopt_set_lower_bounds(opt, lb);
         }    nlopt_set_initial_step1(opt, 0.1);
         for(jk=1; jk <=nlstate ; jk++){    
           if(pos>=1.e-5){    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
             if(first==1)    d->function = func;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    nlopt_set_min_objective(opt, myfunc, d);
           }else{    nlopt_set_xtol_rel(opt, ftol);
             if(first==1)    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      printf("nlopt failed! %d\n",creturn); 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    }
           }    else {
           if( i <= iagemax){      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
             if(pos>=1.e-5){      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      iter=1; /* not equal */
               /*probs[i][jk][j1]= pp[jk]/pos;*/    }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    nlopt_destroy(opt);
             }  #endif
             else    free_matrix(xi,1,npar,1,npar);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    fclose(ficrespow);
           }    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         }    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
            fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)  }
             if(freq[jk][m][i] !=0 ) {  
             if(first==1)  /**** Computes Hessian and covariance matrix ***/
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  {
             }    double  **a,**y,*x,pd;
         if(i <= iagemax)    double **hess;
           fprintf(ficresp,"\n");    int i, j;
         if(first==1)    int *indx;
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     }    void lubksb(double **a, int npar, int *indx, double b[]) ;
   }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   dateintmean=dateintsum/k2cpt;    double gompertz(double p[]);
      hess=matrix(1,npar,1,npar);
   fclose(ficresp);  
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);    printf("\nCalculation of the hessian matrix. Wait...\n");
   free_vector(pp,1,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    for (i=1;i<=npar;i++){
   /* End of Freq */      printf("%d",i);fflush(stdout);
 }      fprintf(ficlog,"%d",i);fflush(ficlog);
      
 /************ Prevalence ********************/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)      
 {        /*  printf(" %f ",p[i]);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      in each health status at the date of interview (if between dateprev1 and dateprev2).    }
      We still use firstpass and lastpass as another selection.    
   */    for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        if (j>i) { 
   double ***freq; /* Frequencies */          printf(".%d%d",i,j);fflush(stdout);
   double *pp, **prop;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double pos,posprop;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double  y2; /* in fractional years */          
   int iagemin, iagemax;          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
   iagemin= (int) agemin;        }
   iagemax= (int) agemax;      }
   /*pp=vector(1,nlstate);*/    }
   prop=matrix(1,nlstate,iagemin,iagemax+3);    printf("\n");
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    fprintf(ficlog,"\n");
   j1=0;  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   j=cptcoveff;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    
      a=matrix(1,npar,1,npar);
   for(k1=1; k1<=j;k1++){    y=matrix(1,npar,1,npar);
     for(i1=1; i1<=ncodemax[k1];i1++){    x=vector(1,npar);
       j1++;    indx=ivector(1,npar);
          for (i=1;i<=npar;i++)
       for (i=1; i<=nlstate; i++)        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for(m=iagemin; m <= iagemax+3; m++)    ludcmp(a,npar,indx,&pd);
           prop[i][m]=0.0;  
          for (j=1;j<=npar;j++) {
       for (i=1; i<=imx; i++) { /* Each individual */      for (i=1;i<=npar;i++) x[i]=0;
         bool=1;      x[j]=1;
         if  (cptcovn>0) {      lubksb(a,npar,indx,x);
           for (z1=1; z1<=cptcoveff; z1++)      for (i=1;i<=npar;i++){ 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        matcov[i][j]=x[i];
               bool=0;      }
         }    }
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    printf("\n#Hessian matrix#\n");
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */    fprintf(ficlog,"\n#Hessian matrix#\n");
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */    for (i=1;i<=npar;i++) { 
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      for (j=1;j<=npar;j++) { 
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        printf("%.3e ",hess[i][j]);
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);        fprintf(ficlog,"%.3e ",hess[i][j]);
               if (s[m][i]>0 && s[m][i]<=nlstate) {      }
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/      printf("\n");
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];      fprintf(ficlog,"\n");
                 prop[s[m][i]][iagemax+3] += weight[i];    }
               }  
             }    /* Recompute Inverse */
           } /* end selection of waves */    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       }    ludcmp(a,npar,indx,&pd);
       for(i=iagemin; i <= iagemax+3; i++){    
            /*  printf("\n#Hessian matrix recomputed#\n");
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {  
           posprop += prop[jk][i];    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
         for(jk=1; jk <=nlstate ; jk++){          lubksb(a,npar,indx,x);
           if( i <=  iagemax){      for (i=1;i<=npar;i++){ 
             if(posprop>=1.e-5){        y[i][j]=x[i];
               probs[i][jk][j1]= prop[jk][i]/posprop;        printf("%.3e ",y[i][j]);
             }        fprintf(ficlog,"%.3e ",y[i][j]);
           }      }
         }/* end jk */      printf("\n");
       }/* end i */      fprintf(ficlog,"\n");
     } /* end i1 */    }
   } /* end k1 */    */
    
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    free_matrix(a,1,npar,1,npar);
   /*free_vector(pp,1,nlstate);*/    free_matrix(y,1,npar,1,npar);
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    free_vector(x,1,npar);
 }  /* End of prevalence */    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 /************* Waves Concatenation ***************/  
   
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  }
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*************** hessian matrix ****************/
      Death is a valid wave (if date is known).  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  {
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    int i;
      and mw[mi+1][i]. dh depends on stepm.    int l=1, lmax=20;
      */    double k1,k2;
     double p2[MAXPARM+1]; /* identical to x */
   int i, mi, m;    double res;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double sum=0., jmean=0.;*/    double fx;
   int first;    int k=0,kmax=10;
   int j, k=0,jk, ju, jl;    double l1;
   double sum=0.;  
   first=0;    fx=func(x);
   jmin=1e+5;    for (i=1;i<=npar;i++) p2[i]=x[i];
   jmax=-1;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   jmean=0.;      l1=pow(10,l);
   for(i=1; i<=imx; i++){      delts=delt;
     mi=0;      for(k=1 ; k <kmax; k=k+1){
     m=firstpass;        delt = delta*(l1*k);
     while(s[m][i] <= nlstate){        p2[theta]=x[theta] +delt;
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         mw[++mi][i]=m;        p2[theta]=x[theta]-delt;
       if(m >=lastpass)        k2=func(p2)-fx;
         break;        /*res= (k1-2.0*fx+k2)/delt/delt; */
       else        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         m++;        
     }/* end while */  #ifdef DEBUGHESS
     if (s[m][i] > nlstate){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       mi++;     /* Death is another wave */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       /* if(mi==0)  never been interviewed correctly before death */  #endif
          /* Only death is a correct wave */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       mw[mi][i]=m;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     }          k=kmax;
         }
     wav[i]=mi;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     if(mi==0){          k=kmax; l=lmax*10;
       nbwarn++;        }
       if(first==0){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);          delts=delt;
         first=1;        }
       }      }
       if(first==1){    }
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);    delti[theta]=delts;
       }    return res; 
     } /* end mi==0 */    
   } /* End individuals */  }
   
   for(i=1; i<=imx; i++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for(mi=1; mi<wav[i];mi++){  {
       if (stepm <=0)    int i;
         dh[mi][i]=1;    int l=1, lmax=20;
       else{    double k1,k2,k3,k4,res,fx;
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    double p2[MAXPARM+1];
           if (agedc[i] < 2*AGESUP) {    int k;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
             if(j==0) j=1;  /* Survives at least one month after exam */    fx=func(x);
             else if(j<0){    for (k=1; k<=2; k++) {
               nberr++;      for (i=1;i<=npar;i++) p2[i]=x[i];
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      p2[thetai]=x[thetai]+delti[thetai]/k;
               j=1; /* Temporary Dangerous patch */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);      k1=func(p2)-fx;
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);      p2[thetai]=x[thetai]+delti[thetai]/k;
             }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             k=k+1;      k2=func(p2)-fx;
             if (j >= jmax){    
               jmax=j;      p2[thetai]=x[thetai]-delti[thetai]/k;
               ijmax=i;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             }      k3=func(p2)-fx;
             if (j <= jmin){    
               jmin=j;      p2[thetai]=x[thetai]-delti[thetai]/k;
               ijmin=i;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             }      k4=func(p2)-fx;
             sum=sum+j;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/  #ifdef DEBUG
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }  #endif
         else{    }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    return res;
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  }
   
           k=k+1;  /************** Inverse of matrix **************/
           if (j >= jmax) {  void ludcmp(double **a, int n, int *indx, double *d) 
             jmax=j;  { 
             ijmax=i;    int i,imax,j,k; 
           }    double big,dum,sum,temp; 
           else if (j <= jmin){    double *vv; 
             jmin=j;   
             ijmin=i;    vv=vector(1,n); 
           }    *d=1.0; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for (i=1;i<=n;i++) { 
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/      big=0.0; 
           if(j<0){      for (j=1;j<=n;j++) 
             nberr++;        if ((temp=fabs(a[i][j])) > big) big=temp; 
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      vv[i]=1.0/big; 
           }    } 
           sum=sum+j;    for (j=1;j<=n;j++) { 
         }      for (i=1;i<j;i++) { 
         jk= j/stepm;        sum=a[i][j]; 
         jl= j -jk*stepm;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         ju= j -(jk+1)*stepm;        a[i][j]=sum; 
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */      } 
           if(jl==0){      big=0.0; 
             dh[mi][i]=jk;      for (i=j;i<=n;i++) { 
             bh[mi][i]=0;        sum=a[i][j]; 
           }else{ /* We want a negative bias in order to only have interpolation ie        for (k=1;k<j;k++) 
                   * at the price of an extra matrix product in likelihood */          sum -= a[i][k]*a[k][j]; 
             dh[mi][i]=jk+1;        a[i][j]=sum; 
             bh[mi][i]=ju;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           }          big=dum; 
         }else{          imax=i; 
           if(jl <= -ju){        } 
             dh[mi][i]=jk;      } 
             bh[mi][i]=jl;       /* bias is positive if real duration      if (j != imax) { 
                                  * is higher than the multiple of stepm and negative otherwise.        for (k=1;k<=n;k++) { 
                                  */          dum=a[imax][k]; 
           }          a[imax][k]=a[j][k]; 
           else{          a[j][k]=dum; 
             dh[mi][i]=jk+1;        } 
             bh[mi][i]=ju;        *d = -(*d); 
           }        vv[imax]=vv[j]; 
           if(dh[mi][i]==0){      } 
             dh[mi][i]=1; /* At least one step */      indx[j]=imax; 
             bh[mi][i]=ju; /* At least one step */      if (a[j][j] == 0.0) a[j][j]=TINY; 
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/      if (j != n) { 
           }        dum=1.0/(a[j][j]); 
         } /* end if mle */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }      } 
     } /* end wave */    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   jmean=sum/k;  ;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);  } 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);  
  }  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
 /*********** Tricode ****************************/    int i,ii=0,ip,j; 
 void tricode(int *Tvar, int **nbcode, int imx)    double sum; 
 {   
      for (i=1;i<=n;i++) { 
   int Ndum[20],ij=1, k, j, i, maxncov=19;      ip=indx[i]; 
   int cptcode=0;      sum=b[ip]; 
   cptcoveff=0;      b[ip]=b[i]; 
        if (ii) 
   for (k=0; k<maxncov; k++) Ndum[k]=0;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   for (k=1; k<=7; k++) ncodemax[k]=0;      else if (sum) ii=i; 
       b[i]=sum; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    } 
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum    for (i=n;i>=1;i--) { 
                                modality*/      sum=b[i]; 
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       Ndum[ij]++; /*store the modality */      b[i]=sum/a[i][i]; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    } 
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable  } 
                                        Tvar[j]. If V=sex and male is 0 and  
                                        female is 1, then  cptcode=1.*/  void pstamp(FILE *fichier)
     }  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     for (i=0; i<=cptcode; i++) {  }
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */  
     }  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     ij=1;  {  /* Some frequencies */
     for (i=1; i<=ncodemax[j]; i++) {    
       for (k=0; k<= maxncov; k++) {    int i, m, jk, j1, bool, z1,j;
         if (Ndum[k] != 0) {    int first;
           nbcode[Tvar[j]][ij]=k;    double ***freq; /* Frequencies */
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    double *pp, **prop;
              double pos,posprop, k2, dateintsum=0,k2cpt=0;
           ij++;    char fileresp[FILENAMELENGTH];
         }    
         if (ij > ncodemax[j]) break;    pp=vector(1,nlstate);
       }      prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
   }      strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
  for (k=0; k< maxncov; k++) Ndum[k]=0;      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
  for (i=1; i<=ncovmodel-2; i++) {      exit(0);
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    }
    ij=Tvar[i];    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
    Ndum[ij]++;    j1=0;
  }    
     j=cptcoveff;
  ij=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  for (i=1; i<= maxncov; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    first=1;
      Tvaraff[ij]=i; /*For printing */  
      ij++;    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
    }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
  }    /*    j1++; */
      for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
  cptcoveff=ij-1; /*Number of simple covariates*/        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 }          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
 /*********** Health Expectancies ****************/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )              freq[i][jk][m]=0;
         
 {        for (i=1; i<=nlstate; i++)  
   /* Health expectancies, no variances */          for(m=iagemin; m <= iagemax+3; m++)
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;            prop[i][m]=0;
   double age, agelim, hf;        
   double ***p3mat;        dateintsum=0;
   double eip;        k2cpt=0;
         for (i=1; i<=imx; i++) {
   pstamp(ficreseij);          bool=1;
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   fprintf(ficreseij,"# Age");            for (z1=1; z1<=cptcoveff; z1++)       
   for(i=1; i<=nlstate;i++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
     for(j=1; j<=nlstate;j++){                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       fprintf(ficreseij," e%1d%1d ",i,j);                bool=0;
     }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
     fprintf(ficreseij," e%1d. ",i);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
   }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   fprintf(ficreseij,"\n");                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               } 
            }
   if(estepm < stepm){   
     printf ("Problem %d lower than %d\n",estepm, stepm);          if (bool==1){
   }            for(m=firstpass; m<=lastpass; m++){
   else  hstepm=estepm;                k2=anint[m][i]+(mint[m][i]/12.);
   /* We compute the life expectancy from trapezoids spaced every estepm months              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
    * This is mainly to measure the difference between two models: for example                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    * if stepm=24 months pijx are given only every 2 years and by summing them                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    * we are calculating an estimate of the Life Expectancy assuming a linear                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
    * progression in between and thus overestimating or underestimating according                if (m<lastpass) {
    * to the curvature of the survival function. If, for the same date, we                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
    * to compare the new estimate of Life expectancy with the same linear                }
    * hypothesis. A more precise result, taking into account a more precise                
    * curvature will be obtained if estepm is as small as stepm. */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   /* For example we decided to compute the life expectancy with the smallest unit */                  k2cpt++;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                }
      nhstepm is the number of hstepm from age to agelim                /*}*/
      nstepm is the number of stepm from age to agelin.            }
      Look at hpijx to understand the reason of that which relies in memory size          }
      and note for a fixed period like estepm months */        } /* end i */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the         
      survival function given by stepm (the optimization length). Unfortunately it        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      means that if the survival funtion is printed only each two years of age and if        pstamp(ficresp);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        if  (cptcovn>0) {
      results. So we changed our mind and took the option of the best precision.          fprintf(ficresp, "\n#********** Variable "); 
   */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          fprintf(ficresp, "**********\n#");
           fprintf(ficlog, "\n#********** Variable "); 
   agelim=AGESUP;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* If stepm=6 months */          fprintf(ficlog, "**********\n#");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(i=1; i<=nlstate;i++) 
              fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 /* nhstepm age range expressed in number of stepm */        fprintf(ficresp, "\n");
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */        for(i=iagemin; i <= iagemax+3; i++){
   /* if (stepm >= YEARM) hstepm=1;*/          if(i==iagemax+3){
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            fprintf(ficlog,"Total");
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{
             if(first==1){
   for (age=bage; age<=fage; age ++){              first=0;
               printf("See log file for details...\n");
             }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);              fprintf(ficlog,"Age %d", i);
              }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     printf("%d|",(int)age);fflush(stdout);              pp[jk] += freq[jk][m][i]; 
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          }
              for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
     /* Computing expectancies */              pos += freq[jk][m][i];
     for(i=1; i<=nlstate;i++)            if(pp[jk]>=1.e-10){
       for(j=1; j<=nlstate;j++)              if(first==1){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              }
                        fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            }else{
               if(first==1)
         }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficreseij,"%3.0f",age );            }
     for(i=1; i<=nlstate;i++){          }
       eip=0;  
       for(j=1; j<=nlstate;j++){          for(jk=1; jk <=nlstate ; jk++){
         eip +=eij[i][j][(int)age];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );              pp[jk] += freq[jk][m][i];
       }          }       
       fprintf(ficreseij,"%9.4f", eip );          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     }            pos += pp[jk];
     fprintf(ficreseij,"\n");            posprop += prop[jk][i];
              }
   }          for(jk=1; jk <=nlstate ; jk++){
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(pos>=1.e-5){
   printf("\n");              if(first==1)
   fprintf(ficlog,"\n");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 }            }else{
               if(first==1)
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 {            }
   /* Covariances of health expectancies eij and of total life expectancies according            if( i <= iagemax){
    to initial status i, ei. .              if(pos>=1.e-5){
   */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double age, agelim, hf;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double ***p3matp, ***p3matm, ***varhe;              }
   double **dnewm,**doldm;              else
   double *xp, *xm;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          }
   int theta;          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
   double eip, vip;            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);              if(first==1)
   xp=vector(1,npar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   xm=vector(1,npar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   dnewm=matrix(1,nlstate*nlstate,1,npar);              }
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);          if(i <= iagemax)
              fprintf(ficresp,"\n");
   pstamp(ficresstdeij);          if(first==1)
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");            printf("Others in log...\n");
   fprintf(ficresstdeij,"# Age");          fprintf(ficlog,"\n");
   for(i=1; i<=nlstate;i++){        }
     for(j=1; j<=nlstate;j++)        /*}*/
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);    }
     fprintf(ficresstdeij," e%1d. ",i);    dateintmean=dateintsum/k2cpt; 
   }   
   fprintf(ficresstdeij,"\n");    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   pstamp(ficrescveij);    free_vector(pp,1,nlstate);
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fprintf(ficrescveij,"# Age");    /* End of Freq */
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++){  
       cptj= (j-1)*nlstate+i;  /************ Prevalence ********************/
       for(i2=1; i2<=nlstate;i2++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for(j2=1; j2<=nlstate;j2++){  {  
           cptj2= (j2-1)*nlstate+i2;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           if(cptj2 <= cptj)       in each health status at the date of interview (if between dateprev1 and dateprev2).
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);       We still use firstpass and lastpass as another selection.
         }    */
     }   
   fprintf(ficrescveij,"\n");    int i, m, jk, j1, bool, z1,j;
    
   if(estepm < stepm){    double **prop;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double posprop; 
   }    double  y2; /* in fractional years */
   else  hstepm=estepm;      int iagemin, iagemax;
   /* We compute the life expectancy from trapezoids spaced every estepm months    int first; /** to stop verbosity which is redirected to log file */
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    iagemin= (int) agemin;
    * we are calculating an estimate of the Life Expectancy assuming a linear    iagemax= (int) agemax;
    * progression in between and thus overestimating or underestimating according    /*pp=vector(1,nlstate);*/
    * to the curvature of the survival function. If, for the same date, we    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
    * to compare the new estimate of Life expectancy with the same linear    j1=0;
    * hypothesis. A more precise result, taking into account a more precise    
    * curvature will be obtained if estepm is as small as stepm. */    /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    first=1;
      nhstepm is the number of hstepm from age to agelim    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
      nstepm is the number of stepm from age to agelin.      /*for(i1=1; i1<=ncodemax[k1];i1++){
      Look at hpijx to understand the reason of that which relies in memory size        j1++;*/
      and note for a fixed period like estepm months */        
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (i=1; i<=nlstate; i++)  
      survival function given by stepm (the optimization length). Unfortunately it          for(m=iagemin; m <= iagemax+3; m++)
      means that if the survival funtion is printed only each two years of age and if            prop[i][m]=0.0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       
      results. So we changed our mind and took the option of the best precision.        for (i=1; i<=imx; i++) { /* Each individual */
   */          bool=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   /* If stepm=6 months */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /* nhstepm age range expressed in number of stepm */                bool=0;
   agelim=AGESUP;          } 
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);          if (bool==1) { 
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   /* if (stepm >= YEARM) hstepm=1;*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   gp=matrix(0,nhstepm,1,nlstate*nlstate);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   gm=matrix(0,nhstepm,1,nlstate*nlstate);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   for (age=bage; age<=fage; age ++){              }
             } /* end selection of waves */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        }
          for(i=iagemin; i <= iagemax+3; i++){  
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
     /* Computing  Variances of health expectancies */          } 
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to          
        decrease memory allocation */          for(jk=1; jk <=nlstate ; jk++){     
     for(theta=1; theta <=npar; theta++){            if( i <=  iagemax){ 
       for(i=1; i<=npar; i++){              if(posprop>=1.e-5){ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                probs[i][jk][j1]= prop[jk][i]/posprop;
         xm[i] = x[i] - (i==theta ?delti[theta]:0);              } else{
       }                if(first==1){
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);                    first=0;
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);                    printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                  }
       for(j=1; j<= nlstate; j++){              }
         for(i=1; i<=nlstate; i++){            } 
           for(h=0; h<=nhstepm-1; h++){          }/* end jk */ 
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;        }/* end i */ 
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;      /*} *//* end i1 */
           }    } /* end j1 */
         }    
       }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
          /*free_vector(pp,1,nlstate);*/
       for(ij=1; ij<= nlstate*nlstate; ij++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         for(h=0; h<=nhstepm-1; h++){  }  /* End of prevalence */
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];  
         }  /************* Waves Concatenation ***************/
     }/* End theta */  
      void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      {
     for(h=0; h<=nhstepm-1; h++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for(j=1; j<=nlstate*nlstate;j++)       Death is a valid wave (if date is known).
         for(theta=1; theta <=npar; theta++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           trgradg[h][j][theta]=gradg[h][theta][j];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           and mw[mi+1][i]. dh depends on stepm.
        */
      for(ij=1;ij<=nlstate*nlstate;ij++)  
       for(ji=1;ji<=nlstate*nlstate;ji++)    int i, mi, m;
         varhe[ij][ji][(int)age] =0.;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
      printf("%d|",(int)age);fflush(stdout);    int first;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    int j, k=0,jk, ju, jl;
      for(h=0;h<=nhstepm-1;h++){    double sum=0.;
       for(k=0;k<=nhstepm-1;k++){    first=0;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    jmin=100000;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    jmax=-1;
         for(ij=1;ij<=nlstate*nlstate;ij++)    jmean=0.;
           for(ji=1;ji<=nlstate*nlstate;ji++)    for(i=1; i<=imx; i++){
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;      mi=0;
       }      m=firstpass;
     }      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     /* Computing expectancies */          mw[++mi][i]=m;
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);          if(m >=lastpass)
     for(i=1; i<=nlstate;i++)          break;
       for(j=1; j<=nlstate;j++)        else
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          m++;
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;      }/* end while */
                if (s[m][i] > nlstate){
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
         }           /* Only death is a correct wave */
         mw[mi][i]=m;
     fprintf(ficresstdeij,"%3.0f",age );      }
     for(i=1; i<=nlstate;i++){  
       eip=0.;      wav[i]=mi;
       vip=0.;      if(mi==0){
       for(j=1; j<=nlstate;j++){        nbwarn++;
         eip += eij[i][j][(int)age];        if(first==0){
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];          first=1;
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );        }
       }        if(first==1){
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     }        }
     fprintf(ficresstdeij,"\n");      } /* end mi==0 */
     } /* End individuals */
     fprintf(ficrescveij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++)    for(i=1; i<=imx; i++){
       for(j=1; j<=nlstate;j++){      for(mi=1; mi<wav[i];mi++){
         cptj= (j-1)*nlstate+i;        if (stepm <=0)
         for(i2=1; i2<=nlstate;i2++)          dh[mi][i]=1;
           for(j2=1; j2<=nlstate;j2++){        else{
             cptj2= (j2-1)*nlstate+i2;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if(cptj2 <= cptj)            if (agedc[i] < 2*AGESUP) {
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           }              if(j==0) j=1;  /* Survives at least one month after exam */
       }              else if(j<0){
     fprintf(ficrescveij,"\n");                nberr++;
                    printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                j=1; /* Temporary Dangerous patch */
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);              }
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              k=k+1;
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if (j >= jmax){
   printf("\n");                jmax=j;
   fprintf(ficlog,"\n");                ijmax=i;
               }
   free_vector(xm,1,npar);              if (j <= jmin){
   free_vector(xp,1,npar);                jmin=j;
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);                ijmin=i;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);              }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);              sum=sum+j;
 }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 /************ Variance ******************/            }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])          }
 {          else{
   /* Variance of health expectancies */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   /* double **newm;*/  
   double **dnewm,**doldm;            k=k+1;
   double **dnewmp,**doldmp;            if (j >= jmax) {
   int i, j, nhstepm, hstepm, h, nstepm ;              jmax=j;
   int k, cptcode;              ijmax=i;
   double *xp;            }
   double **gp, **gm;  /* for var eij */            else if (j <= jmin){
   double ***gradg, ***trgradg; /*for var eij */              jmin=j;
   double **gradgp, **trgradgp; /* for var p point j */              ijmin=i;
   double *gpp, *gmp; /* for var p point j */            }
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double ***p3mat;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double age,agelim, hf;            if(j<0){
   double ***mobaverage;              nberr++;
   int theta;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char digit[4];              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char digitp[25];            }
             sum=sum+j;
   char fileresprobmorprev[FILENAMELENGTH];          }
           jk= j/stepm;
   if(popbased==1){          jl= j -jk*stepm;
     if(mobilav!=0)          ju= j -(jk+1)*stepm;
       strcpy(digitp,"-populbased-mobilav-");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     else strcpy(digitp,"-populbased-nomobil-");            if(jl==0){
   }              dh[mi][i]=jk;
   else              bh[mi][i]=0;
     strcpy(digitp,"-stablbased-");            }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
   if (mobilav!=0) {              dh[mi][i]=jk+1;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              bh[mi][i]=ju;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          }else{
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            if(jl <= -ju){
     }              dh[mi][i]=jk;
   }              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
   strcpy(fileresprobmorprev,"prmorprev");                                   */
   sprintf(digit,"%-d",ij);            }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            else{
   strcat(fileresprobmorprev,digit); /* Tvar to be done */              dh[mi][i]=jk+1;
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */              bh[mi][i]=ju;
   strcat(fileresprobmorprev,fileres);            }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            if(dh[mi][i]==0){
     printf("Problem with resultfile: %s\n", fileresprobmorprev);              dh[mi][i]=1; /* At least one step */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);              bh[mi][i]=ju; /* At least one step */
   }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            }
            } /* end if mle */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        }
   pstamp(ficresprobmorprev);      } /* end wave */
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    jmean=sum/k;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficresprobmorprev," p.%-d SE",j);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     for(i=1; i<=nlstate;i++)   }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }    /*********** Tricode ****************************/
   fprintf(ficresprobmorprev,"\n");  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   fprintf(ficgp,"\n# Routine varevsij");  {
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
 /*   } */     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     * nbcode[Tvar[j]][1]= 
   pstamp(ficresvij);    */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");  
   if(popbased==1)    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    int modmaxcovj=0; /* Modality max of covariates j */
   else    int cptcode=0; /* Modality max of covariates j */
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    int modmincovj=0; /* Modality min of covariates j */
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    cptcoveff=0; 
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);   
   fprintf(ficresvij,"\n");    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    /* Loop on covariates without age and products */
   doldm=matrix(1,nlstate,1,nlstate);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                                 modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);                                      * If product of Vn*Vm, still boolean *:
   gpp=vector(nlstate+1,nlstate+ndeath);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   gmp=vector(nlstate+1,nlstate+ndeath);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                          modality of the nth covariate of individual i. */
   if(estepm < stepm){        if (ij > modmaxcovj)
     printf ("Problem %d lower than %d\n",estepm, stepm);          modmaxcovj=ij; 
   }        else if (ij < modmincovj) 
   else  hstepm=estepm;            modmincovj=ij; 
   /* For example we decided to compute the life expectancy with the smallest unit */        if ((ij < -1) && (ij > NCOVMAX)){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
      nhstepm is the number of hstepm from age to agelim          exit(1);
      nstepm is the number of stepm from age to agelin.        }else
      Look at hpijx to understand the reason of that which relies in memory size        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
      and note for a fixed period like k years */        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      survival function given by stepm (the optimization length). Unfortunately it        /* getting the maximum value of the modality of the covariate
      means that if the survival funtion is printed every two years of age and if           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
      you sum them up and add 1 year (area under the trapezoids) you won't get the same           female is 1, then modmaxcovj=1.*/
      results. So we changed our mind and took the option of the best precision.      }
   */      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      cptcode=modmaxcovj;
   agelim = AGESUP;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     /*for (i=0; i<=cptcode; i++) {*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     gp=matrix(0,nhstepm,1,nlstate);        }
     gm=matrix(0,nhstepm,1,nlstate);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
       }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           modmincovj=3; modmaxcovj = 7;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
       if (popbased==1) {         variables V1_1 and V1_2.
         if(mobilav ==0){         nbcode[Tvar[j]][ij]=k;
           for(i=1; i<=nlstate;i++)         nbcode[Tvar[j]][1]=0;
             prlim[i][i]=probs[(int)age][i][ij];         nbcode[Tvar[j]][2]=1;
         }else{ /* mobilav */         nbcode[Tvar[j]][3]=2;
           for(i=1; i<=nlstate;i++)      */
             prlim[i][i]=mobaverage[(int)age][i][ij];      ij=1; /* ij is similar to i but can jumps over null modalities */
         }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
       }        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
            /*recode from 0 */
       for(j=1; j<= nlstate; j++){          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
         for(h=0; h<=nhstepm; h++){            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)                                       k is a modality. If we have model=V1+V1*sex 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         }            ij++;
       }          }
       /* This for computing probability of death (h=1 means          if (ij > ncodemax[j]) break; 
          computed over hstepm matrices product = hstepm*stepm months)        }  /* end of loop on */
          as a weighted average of prlim.      } /* end of loop on modality */ 
       */    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    
         for(i=1,gpp[j]=0.; i<= nlstate; i++)   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    
       }        for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       /* end probability of death */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */     Ndum[ij]++; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   ij=1;
     for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       if (popbased==1) {     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         if(mobilav ==0){     if((Ndum[i]!=0) && (i<=ncovcol)){
           for(i=1; i<=nlstate;i++)       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
             prlim[i][i]=probs[(int)age][i][ij];       Tvaraff[ij]=i; /*For printing (unclear) */
         }else{ /* mobilav */       ij++;
           for(i=1; i<=nlstate;i++)     }else
             prlim[i][i]=mobaverage[(int)age][i][ij];         Tvaraff[ij]=0;
         }   }
       }   ij--;
    cptcoveff=ij; /*Number of total covariates*/
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /*********** Health Expectancies ****************/
       }  
       /* This for computing probability of death (h=1 means  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
          computed over hstepm matrices product = hstepm*stepm months)  
          as a weighted average of prlim.  {
       */    /* Health expectancies, no variances */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    int i, j, nhstepm, hstepm, h, nstepm;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)    int nhstepma, nstepma; /* Decreasing with age */
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    double age, agelim, hf;
       }        double ***p3mat;
       /* end probability of death */    double eip;
   
       for(j=1; j<= nlstate; j++) /* vareij */    pstamp(ficreseij);
         for(h=0; h<=nhstepm; h++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficreseij,"# Age");
         }    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        fprintf(ficreseij," e%1d%1d ",i,j);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      }
       }      fprintf(ficreseij," e%1d. ",i);
     }
     } /* End theta */    fprintf(ficreseij,"\n");
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    
     if(estepm < stepm){
     for(h=0; h<=nhstepm; h++) /* veij */      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(j=1; j<=nlstate;j++)    }
         for(theta=1; theta <=npar; theta++)    else  hstepm=estepm;   
           trgradg[h][j][theta]=gradg[h][theta][j];    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(theta=1; theta <=npar; theta++)     * we are calculating an estimate of the Life Expectancy assuming a linear 
         trgradgp[j][theta]=gradgp[theta][j];     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     * to compare the new estimate of Life expectancy with the same linear 
     for(i=1;i<=nlstate;i++)     * hypothesis. A more precise result, taking into account a more precise
       for(j=1;j<=nlstate;j++)     * curvature will be obtained if estepm is as small as stepm. */
         vareij[i][j][(int)age] =0.;  
     /* For example we decided to compute the life expectancy with the smallest unit */
     for(h=0;h<=nhstepm;h++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(k=0;k<=nhstepm;k++){       nhstepm is the number of hstepm from age to agelim 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);       nstepm is the number of stepm from age to agelin. 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);       Look at hpijx to understand the reason of that which relies in memory size
         for(i=1;i<=nlstate;i++)       and note for a fixed period like estepm months */
           for(j=1;j<=nlstate;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
     /* pptj */    */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    agelim=AGESUP;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    /* If stepm=6 months */
         varppt[j][i]=doldmp[j][i];      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     /* end ppptj */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     /*  x centered again */      
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    /* nhstepm age range expressed in number of stepm */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     if (popbased==1) {    /* if (stepm >= YEARM) hstepm=1;*/
       if(mobilav ==0){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for(i=1; i<=nlstate;i++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           prlim[i][i]=probs[(int)age][i][ij];  
       }else{ /* mobilav */    for (age=bage; age<=fage; age ++){ 
         for(i=1; i<=nlstate;i++)      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           prlim[i][i]=mobaverage[(int)age][i][ij];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                
     /* This for computing probability of death (h=1 means      /* If stepm=6 months */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        as a weighted average of prlim.         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     */      
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1,gmp[j]=0.;i<= nlstate; i++)      
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }          
     /* end probability of death */      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      /* Computing expectancies */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      for(i=1; i<=nlstate;i++)
       for(i=1; i<=nlstate;i++){        for(j=1; j<=nlstate;j++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     }            
     fprintf(ficresprobmorprev,"\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     fprintf(ficresvij,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){      fprintf(ficreseij,"%3.0f",age );
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for(i=1; i<=nlstate;i++){
       }        eip=0;
     fprintf(ficresvij,"\n");        for(j=1; j<=nlstate;j++){
     free_matrix(gp,0,nhstepm,1,nlstate);          eip +=eij[i][j][(int)age];
     free_matrix(gm,0,nhstepm,1,nlstate);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        fprintf(ficreseij,"%9.4f", eip );
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   } /* End age */      fprintf(ficreseij,"\n");
   free_vector(gpp,nlstate+1,nlstate+ndeath);      
   free_vector(gmp,nlstate+1,nlstate+ndeath);    }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    printf("\n");
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    fprintf(ficlog,"\n");
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  }
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */  
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));  {
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    /* Covariances of health expectancies eij and of total life expectancies according
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));     to initial status i, ei. .
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    int nhstepma, nstepma; /* Decreasing with age */
 */    double age, agelim, hf;
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    double ***p3matp, ***p3matm, ***varhe;
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    double **dnewm,**doldm;
     double *xp, *xm;
   free_vector(xp,1,npar);    double **gp, **gm;
   free_matrix(doldm,1,nlstate,1,nlstate);    double ***gradg, ***trgradg;
   free_matrix(dnewm,1,nlstate,1,npar);    int theta;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    double eip, vip;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fclose(ficresprobmorprev);    xp=vector(1,npar);
   fflush(ficgp);    xm=vector(1,npar);
   fflush(fichtm);    dnewm=matrix(1,nlstate*nlstate,1,npar);
 }  /* end varevsij */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
 /************ Variance of prevlim ******************/    pstamp(ficresstdeij);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 {    fprintf(ficresstdeij,"# Age");
   /* Variance of prevalence limit */    for(i=1; i<=nlstate;i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/      for(j=1; j<=nlstate;j++)
   double **newm;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   double **dnewm,**doldm;      fprintf(ficresstdeij," e%1d. ",i);
   int i, j, nhstepm, hstepm;    }
   int k, cptcode;    fprintf(ficresstdeij,"\n");
   double *xp;  
   double *gp, *gm;    pstamp(ficrescveij);
   double **gradg, **trgradg;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   double age,agelim;    fprintf(ficrescveij,"# Age");
   int theta;    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
   pstamp(ficresvpl);        cptj= (j-1)*nlstate+i;
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");        for(i2=1; i2<=nlstate;i2++)
   fprintf(ficresvpl,"# Age");          for(j2=1; j2<=nlstate;j2++){
   for(i=1; i<=nlstate;i++)            cptj2= (j2-1)*nlstate+i2;
       fprintf(ficresvpl," %1d-%1d",i,i);            if(cptj2 <= cptj)
   fprintf(ficresvpl,"\n");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficrescveij,"\n");
   doldm=matrix(1,nlstate,1,nlstate);    
      if(estepm < stepm){
   hstepm=1*YEARM; /* Every year of age */      printf ("Problem %d lower than %d\n",estepm, stepm);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }
   agelim = AGESUP;    else  hstepm=estepm;   
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* We compute the life expectancy from trapezoids spaced every estepm months
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     * This is mainly to measure the difference between two models: for example
     if (stepm >= YEARM) hstepm=1;     * if stepm=24 months pijx are given only every 2 years and by summing them
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     * we are calculating an estimate of the Life Expectancy assuming a linear 
     gradg=matrix(1,npar,1,nlstate);     * progression in between and thus overestimating or underestimating according
     gp=vector(1,nlstate);     * to the curvature of the survival function. If, for the same date, we 
     gm=vector(1,nlstate);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
     for(theta=1; theta <=npar; theta++){     * hypothesis. A more precise result, taking into account a more precise
       for(i=1; i<=npar; i++){ /* Computes gradient */     * curvature will be obtained if estepm is as small as stepm. */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(i=1;i<=nlstate;i++)       nhstepm is the number of hstepm from age to agelim 
         gp[i] = prlim[i][i];       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
       for(i=1; i<=npar; i++) /* Computes gradient */       and note for a fixed period like estepm months */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       survival function given by stepm (the optimization length). Unfortunately it
       for(i=1;i<=nlstate;i++)       means that if the survival funtion is printed only each two years of age and if
         gm[i] = prlim[i][i];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
       for(i=1;i<=nlstate;i++)    */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     } /* End theta */  
     /* If stepm=6 months */
     trgradg =matrix(1,nlstate,1,npar);    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     for(j=1; j<=nlstate;j++)    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       for(theta=1; theta <=npar; theta++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         trgradg[j][theta]=gradg[theta][j];    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] =0.;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     for(i=1;i<=nlstate;i++)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     fprintf(ficresvpl,"\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(gp,1,nlstate);      /* if (stepm >= YEARM) hstepm=1;*/
     free_vector(gm,1,nlstate);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);      /* If stepm=6 months */
   } /* End age */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   free_vector(xp,1,npar);      
   free_matrix(doldm,1,nlstate,1,npar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   free_matrix(dnewm,1,nlstate,1,nlstate);  
       /* Computing  Variances of health expectancies */
 }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
 /************ Variance of one-step probabilities  ******************/      for(theta=1; theta <=npar; theta++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])        for(i=1; i<=npar; i++){ 
 {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int i, j=0,  i1, k1, l1, t, tj;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   int k2, l2, j1,  z1;        }
   int k=0,l, cptcode;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   int first=1, first1;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    
   double **dnewm,**doldm;        for(j=1; j<= nlstate; j++){
   double *xp;          for(i=1; i<=nlstate; i++){
   double *gp, *gm;            for(h=0; h<=nhstepm-1; h++){
   double **gradg, **trgradg;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   double **mu;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   double age,agelim, cov[NCOVMAX];            }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          }
   int theta;        }
   char fileresprob[FILENAMELENGTH];       
   char fileresprobcov[FILENAMELENGTH];        for(ij=1; ij<= nlstate*nlstate; ij++)
   char fileresprobcor[FILENAMELENGTH];          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   double ***varpij;          }
       }/* End theta */
   strcpy(fileresprob,"prob");      
   strcat(fileresprob,fileres);      
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      for(h=0; h<=nhstepm-1; h++)
     printf("Problem with resultfile: %s\n", fileresprob);        for(j=1; j<=nlstate*nlstate;j++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   strcpy(fileresprobcov,"probcov");      
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {       for(ij=1;ij<=nlstate*nlstate;ij++)
     printf("Problem with resultfile: %s\n", fileresprobcov);        for(ji=1;ji<=nlstate*nlstate;ji++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          varhe[ij][ji][(int)age] =0.;
   }  
   strcpy(fileresprobcor,"probcor");       printf("%d|",(int)age);fflush(stdout);
   strcat(fileresprobcor,fileres);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {       for(h=0;h<=nhstepm-1;h++){
     printf("Problem with resultfile: %s\n", fileresprobcor);        for(k=0;k<=nhstepm-1;k++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          for(ij=1;ij<=nlstate*nlstate;ij++)
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            for(ji=1;ji<=nlstate*nlstate;ji++)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   pstamp(ficresprob);      /* Computing expectancies */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fprintf(ficresprob,"# Age");      for(i=1; i<=nlstate;i++)
   pstamp(ficresprobcov);        for(j=1; j<=nlstate;j++)
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficresprobcov,"# Age");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   pstamp(ficresprobcor);            
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficresprobcor,"# Age");  
           }
   
   for(i=1; i<=nlstate;i++)      fprintf(ficresstdeij,"%3.0f",age );
     for(j=1; j<=(nlstate+ndeath);j++){      for(i=1; i<=nlstate;i++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        eip=0.;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        vip=0.;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for(j=1; j<=nlstate;j++){
     }            eip += eij[i][j][(int)age];
  /* fprintf(ficresprob,"\n");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fprintf(ficresprobcov,"\n");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   fprintf(ficresprobcor,"\n");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
  */        }
  xp=vector(1,npar);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      fprintf(ficresstdeij,"\n");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      fprintf(ficrescveij,"%3.0f",age );
   first=1;      for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\n# Routine varprob");        for(j=1; j<=nlstate;j++){
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          cptj= (j-1)*nlstate+i;
   fprintf(fichtm,"\n");          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);              cptj2= (j2-1)*nlstate+i2;
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\              if(cptj2 <= cptj)
   file %s<br>\n",optionfilehtmcov);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\            }
 and drawn. It helps understanding how is the covariance between two incidences.\        }
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      fprintf(ficrescveij,"\n");
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \     
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    }
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 standard deviations wide on each axis. <br>\    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   cov[1]=1;    printf("\n");
   tj=cptcoveff;    fprintf(ficlog,"\n");
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;    free_vector(xm,1,npar);
   for(t=1; t<=tj;t++){    free_vector(xp,1,npar);
     for(i1=1; i1<=ncodemax[t];i1++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       j1++;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       if  (cptcovn>0) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         fprintf(ficresprob, "\n#********** Variable ");  }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprob, "**********\n#\n");  /************ Variance ******************/
         fprintf(ficresprobcov, "\n#********** Variable ");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
         fprintf(ficresprobcov, "**********\n#\n");    /* Variance of health expectancies */
            /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         fprintf(ficgp, "\n#********** Variable ");    /* double **newm;*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
         fprintf(ficgp, "**********\n#\n");    
            int movingaverage();
            double **dnewm,**doldm;
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    double **dnewmp,**doldmp;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i, j, nhstepm, hstepm, h, nstepm ;
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    int k;
            double *xp;
         fprintf(ficresprobcor, "\n#********** Variable ");        double **gp, **gm;  /* for var eij */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double ***gradg, ***trgradg; /*for var eij */
         fprintf(ficresprobcor, "**********\n#");        double **gradgp, **trgradgp; /* for var p point j */
       }    double *gpp, *gmp; /* for var p point j */
          double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       for (age=bage; age<=fage; age ++){    double ***p3mat;
         cov[2]=age;    double age,agelim, hf;
         for (k=1; k<=cptcovn;k++) {    double ***mobaverage;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    int theta;
         }    char digit[4];
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    char digitp[25];
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    char fileresprobmorprev[FILENAMELENGTH];
          
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    if(popbased==1){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      if(mobilav!=0)
         gp=vector(1,(nlstate)*(nlstate+ndeath));        strcpy(digitp,"-populbased-mobilav-");
         gm=vector(1,(nlstate)*(nlstate+ndeath));      else strcpy(digitp,"-populbased-nomobil-");
        }
         for(theta=1; theta <=npar; theta++){    else 
           for(i=1; i<=npar; i++)      strcpy(digitp,"-stablbased-");
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);  
              if (mobilav!=0) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           k=0;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           for(i=1; i<= (nlstate); i++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             for(j=1; j<=(nlstate+ndeath);j++){      }
               k=k+1;    }
               gp[k]=pmmij[i][j];  
             }    strcpy(fileresprobmorprev,"prmorprev"); 
           }    sprintf(digit,"%-d",ij);
              /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           for(i=1; i<=npar; i++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
        strcat(fileresprobmorprev,fileres);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           k=0;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           for(i=1; i<=(nlstate); i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             for(j=1; j<=(nlstate+ndeath);j++){    }
               k=k+1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               gm[k]=pmmij[i][j];   
             }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    pstamp(ficresprobmorprev);
          fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         }      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           for(theta=1; theta <=npar; theta++)    }  
             trgradg[j][theta]=gradg[theta][j];    fprintf(ficresprobmorprev,"\n");
            fprintf(ficgp,"\n# Routine varevsij");
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  /*   } */
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         pmij(pmmij,cov,ncovmodel,x,nlstate);    if(popbased==1)
              fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
         k=0;    else
         for(i=1; i<=(nlstate); i++){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficresvij,"# Age");
             k=k+1;    for(i=1; i<=nlstate;i++)
             mu[k][(int) age]=pmmij[i][j];      for(j=1; j<=nlstate;j++)
           }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         }    fprintf(ficresvij,"\n");
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    xp=vector(1,npar);
             varpij[i][j][(int)age] = doldm[i][j];    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
         /*printf("\n%d ",(int)age);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           }*/    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficresprob,"\n%d ",(int)age);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficresprobcov,"\n%d ",(int)age);    
         fprintf(ficresprobcor,"\n%d ",(int)age);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    else  hstepm=estepm;   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /* For example we decided to compute the life expectancy with the smallest unit */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
         i=0;       Look at function hpijx to understand why (it is linked to memory size questions) */
         for (k=1; k<=(nlstate);k++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for (l=1; l<=(nlstate+ndeath);l++){       survival function given by stepm (the optimization length). Unfortunately it
             i=i++;       means that if the survival funtion is printed every two years of age and if
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);       results. So we changed our mind and took the option of the best precision.
             for (j=1; j<=i;j++){    */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    agelim = AGESUP;
             }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         }/* end of loop for state */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       } /* end of loop for age */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       /* Confidence intervalle of pij  */      gp=matrix(0,nhstepm,1,nlstate);
       /*      gm=matrix(0,nhstepm,1,nlstate);
         fprintf(ficgp,"\nset noparametric;unset label");  
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      for(theta=1; theta <=npar; theta++){
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        }
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        if (popbased==1) {
       first1=1;          if(mobilav ==0){
       for (k2=1; k2<=(nlstate);k2++){            for(i=1; i<=nlstate;i++)
         for (l2=1; l2<=(nlstate+ndeath);l2++){              prlim[i][i]=probs[(int)age][i][ij];
           if(l2==k2) continue;          }else{ /* mobilav */ 
           j=(k2-1)*(nlstate+ndeath)+l2;            for(i=1; i<=nlstate;i++)
           for (k1=1; k1<=(nlstate);k1++){              prlim[i][i]=mobaverage[(int)age][i][ij];
             for (l1=1; l1<=(nlstate+ndeath);l1++){          }
               if(l1==k1) continue;        }
               i=(k1-1)*(nlstate+ndeath)+l1;    
               if(i<=j) continue;        for(j=1; j<= nlstate; j++){
               for (age=bage; age<=fage; age ++){          for(h=0; h<=nhstepm; h++){
                 if ((int)age %5==0){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   mu1=mu[i][(int) age]/stepm*YEARM ;        /* This for computing probability of death (h=1 means
                   mu2=mu[j][(int) age]/stepm*YEARM;           computed over hstepm matrices product = hstepm*stepm months) 
                   c12=cv12/sqrt(v1*v2);           as a weighted average of prlim.
                   /* Computing eigen value of matrix of covariance */        */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                   /* Eigen vectors */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        }    
                   /*v21=sqrt(1.-v11*v11); *//* error */        /* end probability of death */
                   v21=(lc1-v1)/cv12*v11;  
                   v12=-v21;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   v22=v11;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   tnalp=v21/v11;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   if(first1==1){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                     first1=0;   
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        if (popbased==1) {
                   }          if(mobilav ==0){
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            for(i=1; i<=nlstate;i++)
                   /*printf(fignu*/              prlim[i][i]=probs[(int)age][i][ij];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          }else{ /* mobilav */ 
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */            for(i=1; i<=nlstate;i++)
                   if(first==1){              prlim[i][i]=mobaverage[(int)age][i][ij];
                     first=0;          }
                     fprintf(ficgp,"\nset parametric;unset label");        }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\          for(h=0; h<=nhstepm; h++){
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\          }
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        }
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        /* This for computing probability of death (h=1 means
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);           computed over hstepm matrices product = hstepm*stepm months) 
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);           as a weighted average of prlim.
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        }    
                   }else{        /* end probability of death */
                     first=0;  
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);        for(j=1; j<= nlstate; j++) /* vareij */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          for(h=0; h<=nhstepm; h++){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   }/* if first */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                 } /* age mod 5 */        }
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      } /* End theta */
               first=1;  
             } /*l12 */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           } /* k12 */  
         } /*l1 */      for(h=0; h<=nhstepm; h++) /* veij */
       }/* k1 */        for(j=1; j<=nlstate;j++)
     } /* loop covariates */          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        for(theta=1; theta <=npar; theta++)
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);          trgradgp[j][theta]=gradgp[theta][j];
   free_vector(xp,1,npar);    
   fclose(ficresprob);  
   fclose(ficresprobcov);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fclose(ficresprobcor);      for(i=1;i<=nlstate;i++)
   fflush(ficgp);        for(j=1;j<=nlstate;j++)
   fflush(fichtmcov);          vareij[i][j][(int)age] =0.;
 }  
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
 /******************* Printing html file ***********/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   int lastpass, int stepm, int weightopt, char model[],\          for(i=1;i<=nlstate;i++)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            for(j=1;j<=nlstate;j++)
                   int popforecast, int estepm ,\              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   double jprev1, double mprev1,double anprev1, \        }
                   double jprev2, double mprev2,double anprev2){      }
   int jj1, k1, i1, cpt;    
       /* pptj */
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 </ul>");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \        for(i=nlstate+1;i<=nlstate+ndeath;i++)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",          varppt[j][i]=doldmp[j][i];
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));      /* end ppptj */
    fprintf(fichtm,"\      /*  x centered again */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    fprintf(fichtm,"\   
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",      if (popbased==1) {
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));        if(mobilav ==0){
    fprintf(fichtm,"\          for(i=1; i<=nlstate;i++)
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \            prlim[i][i]=probs[(int)age][i][ij];
    <a href=\"%s\">%s</a> <br>\n",        }else{ /* mobilav */ 
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));          for(i=1; i<=nlstate;i++)
    fprintf(fichtm,"\            prlim[i][i]=mobaverage[(int)age][i][ij];
  - Population projections by age and states: \        }
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));      }
                
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  m=cptcoveff;         as a weighted average of prlim.
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
  jj1=0;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
  for(k1=1; k1<=m;k1++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
    for(i1=1; i1<=ncodemax[k1];i1++){      }    
      jj1++;      /* end probability of death */
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for (cpt=1; cpt<=cptcoveff;cpt++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        for(i=1; i<=nlstate;i++){
      }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
      /* Pij */        }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \      } 
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);          fprintf(ficresprobmorprev,"\n");
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\      fprintf(ficresvij,"%.0f ",age );
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \      for(i=1; i<=nlstate;i++)
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);        for(j=1; j<=nlstate;j++){
        /* Period (stable) prevalence in each health state */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
        for(cpt=1; cpt<nlstate;cpt++){        }
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \      fprintf(ficresvij,"\n");
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);      free_matrix(gp,0,nhstepm,1,nlstate);
        }      free_matrix(gm,0,nhstepm,1,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    } /* End age */
    } /* end i1 */    free_vector(gpp,nlstate+1,nlstate+ndeath);
  }/* End k1 */    free_vector(gmp,nlstate+1,nlstate+ndeath);
  fprintf(fichtm,"</ul>");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
  fprintf(fichtm,"\    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
  fprintf(fichtm,"\    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  fprintf(fichtm,"\    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  */
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
  fprintf(fichtm,"\    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \  
    <a href=\"%s\">%s</a> <br>\n</li>",    free_vector(xp,1,npar);
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));    free_matrix(doldm,1,nlstate,1,nlstate);
  fprintf(fichtm,"\    free_matrix(dnewm,1,nlstate,1,npar);
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    <a href=\"%s\">%s</a> <br>\n</li>",    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  fprintf(fichtm,"\    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",    fclose(ficresprobmorprev);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));    fflush(ficgp);
  fprintf(fichtm,"\    fflush(fichtm); 
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",  }  /* end varevsij */
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));  
  fprintf(fichtm,"\  /************ Variance of prevlim ******************/
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));  {
     /* Variance of prevalence limit */
 /*  if(popforecast==1) fprintf(fichtm,"\n */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */  
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    double **dnewm,**doldm;
 /*      <br>",fileres,fileres,fileres,fileres); */    int i, j, nhstepm, hstepm;
 /*  else  */    double *xp;
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    double *gp, *gm;
  fflush(fichtm);    double **gradg, **trgradg;
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    double age,agelim;
     int theta;
  m=cptcoveff;    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
  jj1=0;    fprintf(ficresvpl,"# Age");
  for(k1=1; k1<=m;k1++){    for(i=1; i<=nlstate;i++)
    for(i1=1; i1<=ncodemax[k1];i1++){        fprintf(ficresvpl," %1d-%1d",i,i);
      jj1++;    fprintf(ficresvpl,"\n");
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    xp=vector(1,npar);
        for (cpt=1; cpt<=cptcoveff;cpt++)    dnewm=matrix(1,nlstate,1,npar);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    doldm=matrix(1,nlstate,1,nlstate);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    
      }    hstepm=1*YEARM; /* Every year of age */
      for(cpt=1; cpt<=nlstate;cpt++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \    agelim = AGESUP;
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);        nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      }      if (stepm >= YEARM) hstepm=1;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 health expectancies in states (1) and (2): %s%d.png<br>\      gradg=matrix(1,npar,1,nlstate);
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);      gp=vector(1,nlstate);
    } /* end i1 */      gm=vector(1,nlstate);
  }/* End k1 */  
  fprintf(fichtm,"</ul>");      for(theta=1; theta <=npar; theta++){
  fflush(fichtm);        for(i=1; i<=npar; i++){ /* Computes gradient */
 }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
 /******************* Gnuplot file **************/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   char dirfileres[132],optfileres[132];      
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(i=1; i<=npar; i++) /* Computes gradient */
   int ng;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*     printf("Problem with file %s",optionfilegnuplot); */        for(i=1;i<=nlstate;i++)
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          gm[i] = prlim[i][i];
 /*   } */  
         for(i=1;i<=nlstate;i++)
   /*#ifdef windows */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   fprintf(ficgp,"cd \"%s\" \n",pathc);      } /* End theta */
     /*#endif */  
   m=pow(2,cptcoveff);      trgradg =matrix(1,nlstate,1,npar);
   
   strcpy(dirfileres,optionfilefiname);      for(j=1; j<=nlstate;j++)
   strcpy(optfileres,"vpl");        for(theta=1; theta <=npar; theta++)
  /* 1eme*/          trgradg[j][theta]=gradg[theta][j];
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {      for(i=1;i<=nlstate;i++)
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);        varpl[i][(int)age] =0.;
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
      fprintf(ficgp,"set xlabel \"Age\" \n\      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 set ylabel \"Probability\" \n\      for(i=1;i<=nlstate;i++)
 set ter png small\n\        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
      for (i=1; i<= nlstate ; i ++) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficresvpl,"\n");
        else fprintf(ficgp," \%%*lf (\%%*lf)");      free_vector(gp,1,nlstate);
      }      free_vector(gm,1,nlstate);
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);      free_matrix(gradg,1,npar,1,nlstate);
      for (i=1; i<= nlstate ; i ++) {      free_matrix(trgradg,1,nlstate,1,npar);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } /* End age */
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }    free_vector(xp,1,npar);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    free_matrix(doldm,1,nlstate,1,npar);
      for (i=1; i<= nlstate ; i ++) {    free_matrix(dnewm,1,nlstate,1,nlstate);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
        else fprintf(ficgp," \%%*lf (\%%*lf)");  }
      }    
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));  /************ Variance of one-step probabilities  ******************/
    }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
   /*2 eme*/    int i, j=0,  k1, l1, tj;
      int k2, l2, j1,  z1;
   for (k1=1; k1<= m ; k1 ++) {    int k=0, l;
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);    int first=1, first1, first2;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        double **dnewm,**doldm;
     for (i=1; i<= nlstate+1 ; i ++) {    double *xp;
       k=2*i;    double *gp, *gm;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    double **gradg, **trgradg;
       for (j=1; j<= nlstate+1 ; j ++) {    double **mu;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double age, cov[NCOVMAX+1];
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       }      int theta;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    char fileresprob[FILENAMELENGTH];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    char fileresprobcov[FILENAMELENGTH];
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    char fileresprobcor[FILENAMELENGTH];
       for (j=1; j<= nlstate+1 ; j ++) {    double ***varpij;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(fileresprob,"prob"); 
       }      strcat(fileresprob,fileres);
       fprintf(ficgp,"\" t\"\" w l 0,");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);      printf("Problem with resultfile: %s\n", fileresprob);
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
         else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(fileresprobcov,"probcov"); 
       }      strcat(fileresprobcov,fileres);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       else fprintf(ficgp,"\" t\"\" w l 0,");      printf("Problem with resultfile: %s\n", fileresprobcov);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
      strcpy(fileresprobcor,"probcor"); 
   /*3eme*/    strcat(fileresprobcor,fileres);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {      printf("Problem with resultfile: %s\n", fileresprobcor);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       /*       k=2+nlstate*(2*cpt-2); */    }
       k=2+(nlstate+1)*(cpt-1);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficgp,"set ter png small\n\    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 set size 0.65,0.65\n\    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    pstamp(ficresprob);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(ficresprob,"# Age");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    pstamp(ficresprobcov);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            fprintf(ficresprobcov,"# Age");
       */    pstamp(ficresprobcor);
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);    fprintf(ficresprobcor,"# Age");
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/  
          
       }    for(i=1; i<=nlstate;i++)
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);      for(j=1; j<=(nlstate+ndeath);j++){
     }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /* CV preval stable (period) */      }  
   for (k1=1; k1<= m ; k1 ++) {   /* fprintf(ficresprob,"\n");
     for (cpt=1; cpt<=nlstate ; cpt ++) {    fprintf(ficresprobcov,"\n");
       k=3;    fprintf(ficresprobcor,"\n");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);   */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\    xp=vector(1,npar);
 set ter png small\nset size 0.65,0.65\n\    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 unset log y\n\    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
          varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       for (i=1; i< nlstate ; i ++)    first=1;
         fprintf(ficgp,"+$%d",k+i+1);    fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          fprintf(fichtm,"\n");
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       for (i=1; i< nlstate ; i ++) {    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         l=3+(nlstate+ndeath)*cpt;    file %s<br>\n",optionfilehtmcov);
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       }  and drawn. It helps understanding how is the covariance between two incidences.\
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);     They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   }    It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   /* proba elementaires */  standard deviations wide on each axis. <br>\
   for(i=1,jk=1; i <=nlstate; i++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     for(k=1; k <=(nlstate+ndeath); k++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       if (k != i) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    cov[1]=1;
           jk++;    /* tj=cptcoveff; */
           fprintf(ficgp,"\n");    tj = (int) pow(2,cptcoveff);
         }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       }    j1=0;
     }    for(j1=1; j1<=tj;j1++){
    }      /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        if  (cptcovn>0) {
      for(jk=1; jk <=m; jk++) {          fprintf(ficresprob, "\n#********** Variable "); 
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        if (ng==2)          fprintf(ficresprob, "**********\n#\n");
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
        else          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          fprintf(ficgp,"\nset title \"Probability\"\n");          fprintf(ficresprobcov, "**********\n#\n");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          
        i=1;          fprintf(ficgp, "\n#********** Variable "); 
        for(k2=1; k2<=nlstate; k2++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          k3=i;          fprintf(ficgp, "**********\n#\n");
          for(k=1; k<=(nlstate+ndeath); k++) {          
            if (k != k2){          
              if(ng==2)          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              else          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          
              ij=1;          fprintf(ficresprobcor, "\n#********** Variable ");    
              for(j=3; j <=ncovmodel; j++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficresprobcor, "**********\n#");    
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                  ij++;        
                }        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                else        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        gp=vector(1,(nlstate)*(nlstate+ndeath));
              }        gm=vector(1,(nlstate)*(nlstate+ndeath));
              fprintf(ficgp,")/(1");        for (age=bage; age<=fage; age ++){ 
                        cov[2]=age;
              for(k1=1; k1 <=nlstate; k1++){            for (k=1; k<=cptcovn;k++) {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                ij=1;                                                           * 1  1 1 1 1
                for(j=3; j <=ncovmodel; j++){                                                           * 2  2 1 1 1
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                                                           * 3  1 2 1 1
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                                                           */
                    ij++;            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
                  }          }
                  else          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for (k=1; k<=cptcovprod;k++)
                }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                fprintf(ficgp,")");          
              }      
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          for(theta=1; theta <=npar; theta++){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            for(i=1; i<=npar; i++)
              i=i+ncovmodel;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
            }            
          } /* end k */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        } /* end k2 */            
      } /* end jk */            k=0;
    } /* end ng */            for(i=1; i<= (nlstate); i++){
    fflush(ficgp);              for(j=1; j<=(nlstate+ndeath);j++){
 }  /* end gnuplot */                k=k+1;
                 gp[k]=pmmij[i][j];
               }
 /*************** Moving average **************/            }
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){            
             for(i=1; i<=npar; i++)
   int i, cpt, cptcod;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   int modcovmax =1;      
   int mobilavrange, mob;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   double age;            k=0;
             for(i=1; i<=(nlstate); i++){
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose              for(j=1; j<=(nlstate+ndeath);j++){
                            a covariate has 2 modalities */                k=k+1;
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                gm[k]=pmmij[i][j];
               }
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){            }
     if(mobilav==1) mobilavrange=5; /* default */       
     else mobilavrange=mobilav;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     for (age=bage; age<=fage; age++)              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     /* We keep the original values on the extreme ages bage, fage and for            for(theta=1; theta <=npar; theta++)
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2              trgradg[j][theta]=gradg[theta][j];
        we use a 5 terms etc. until the borders are no more concerned.          
     */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     for (mob=3;mob <=mobilavrange;mob=mob+2){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  
         for (i=1; i<=nlstate;i++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){          
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];          k=0;
               for (cpt=1;cpt<=(mob-1)/2;cpt++){          for(i=1; i<=(nlstate); i++){
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];            for(j=1; j<=(nlstate+ndeath);j++){
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];              k=k+1;
               }              mu[k][(int) age]=pmmij[i][j];
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;            }
           }          }
         }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       }/* end age */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     }/* end mob */              varpij[i][j][(int)age] = doldm[i][j];
   }else return -1;  
   return 0;          /*printf("\n%d ",(int)age);
 }/* End movingaverage */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /************** Forecasting ******************/            }*/
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  
   /* proj1, year, month, day of starting projection          fprintf(ficresprob,"\n%d ",(int)age);
      agemin, agemax range of age          fprintf(ficresprobcov,"\n%d ",(int)age);
      dateprev1 dateprev2 range of dates during which prevalence is computed          fprintf(ficresprobcor,"\n%d ",(int)age);
      anproj2 year of en of projection (same day and month as proj1).  
   */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   int *popage;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   double agec; /* generic age */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   double *popeffectif,*popcount;          }
   double ***p3mat;          i=0;
   double ***mobaverage;          for (k=1; k<=(nlstate);k++){
   char fileresf[FILENAMELENGTH];            for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
   agelim=AGESUP;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                for (j=1; j<=i;j++){
   strcpy(fileresf,"f");                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
   strcat(fileresf,fileres);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   if((ficresf=fopen(fileresf,"w"))==NULL) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     printf("Problem with forecast resultfile: %s\n", fileresf);              }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);            }
   }          }/* end of loop for state */
   printf("Computing forecasting: result on file '%s' \n", fileresf);        } /* end of loop for age */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if (mobilav!=0) {        
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* Confidence intervalle of pij  */
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        /*
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          fprintf(ficgp,"\nunset parametric;unset label");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   if (stepm<=12) stepsize=1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   if(estepm < stepm){        */
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   else  hstepm=estepm;          first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
   hstepm=hstepm/stepm;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and            if(l2==k2) continue;
                                fractional in yp1 */            j=(k2-1)*(nlstate+ndeath)+l2;
   anprojmean=yp;            for (k1=1; k1<=(nlstate);k1++){
   yp2=modf((yp1*12),&yp);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   mprojmean=yp;                if(l1==k1) continue;
   yp1=modf((yp2*30.5),&yp);                i=(k1-1)*(nlstate+ndeath)+l1;
   jprojmean=yp;                if(i<=j) continue;
   if(jprojmean==0) jprojmean=1;                for (age=bage; age<=fage; age ++){ 
   if(mprojmean==0) jprojmean=1;                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   i1=cptcoveff;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if (cptcovn < 1){i1=1;}                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      mu1=mu[i][(int) age]/stepm*YEARM ;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);                    mu2=mu[j][(int) age]/stepm*YEARM;
                      c12=cv12/sqrt(v1*v2);
   fprintf(ficresf,"#****** Routine prevforecast **\n");                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 /*            if (h==(int)(YEARM*yearp)){ */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){                    if ((lc2 <0) || (lc1 <0) ){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                      if(first2==1){
       k=k+1;                        first1=0;
       fprintf(ficresf,"\n#******");                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
       for(j=1;j<=cptcoveff;j++) {                      }
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
       }                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
       fprintf(ficresf,"******\n");                      /* lc2=fabs(lc2); */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");                    }
       for(j=1; j<=nlstate+ndeath;j++){  
         for(i=1; i<=nlstate;i++)                                  /* Eigen vectors */
           fprintf(ficresf," p%d%d",i,j);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         fprintf(ficresf," p.%d",j);                    /*v21=sqrt(1.-v11*v11); *//* error */
       }                    v21=(lc1-v1)/cv12*v11;
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {                    v12=-v21;
         fprintf(ficresf,"\n");                    v22=v11;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);                      tnalp=v21/v11;
                     if(first1==1){
         for (agec=fage; agec>=(ageminpar-1); agec--){                      first1=0;
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           nhstepm = nhstepm/hstepm;                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           oldm=oldms;savm=savms;                    /*printf(fignu*/
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                            /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           for (h=0; h<=nhstepm; h++){                    if(first==1){
             if (h*hstepm/YEARM*stepm ==yearp) {                      first=0;
               fprintf(ficresf,"\n");                      fprintf(ficgp,"\nset parametric;unset label");
               for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\nset ter png small size 320, 240");
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
             for(j=1; j<=nlstate+ndeath;j++) {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
               ppij=0.;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
               for(i=1; i<=nlstate;i++) {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 if (mobilav==1)                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                 else {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                 }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                 if (h*hstepm/YEARM*stepm== yearp) {                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                 }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               } /* end i */                    }else{
               if (h*hstepm/YEARM*stepm==yearp) {                      first=0;
                 fprintf(ficresf," %.3f", ppij);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
               }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             }/* end j */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           } /* end h */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         } /* end agec */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       } /* end yearp */                    }/* if first */
     } /* end cptcod */                  } /* age mod 5 */
   } /* end  cptcov */                } /* end loop age */
                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                first=1;
               } /*l12 */
   fclose(ficresf);            } /* k12 */
 }          } /*l1 */
         }/* k1 */
 /************** Forecasting *****not tested NB*************/        /* } */ /* loop covariates */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   int *popage;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   double calagedatem, agelim, kk1, kk2;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   double *popeffectif,*popcount;    free_vector(xp,1,npar);
   double ***p3mat,***tabpop,***tabpopprev;    fclose(ficresprob);
   double ***mobaverage;    fclose(ficresprobcov);
   char filerespop[FILENAMELENGTH];    fclose(ficresprobcor);
     fflush(ficgp);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fflush(fichtmcov);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   agelim=AGESUP;  
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
    /******************* Printing html file ***********/
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   strcpy(filerespop,"pop");                    int popforecast, int estepm ,\
   strcat(filerespop,fileres);                    double jprev1, double mprev1,double anprev1, \
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                    double jprev2, double mprev2,double anprev2){
     printf("Problem with forecast resultfile: %s\n", filerespop);    int jj1, k1, i1, cpt;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   printf("Computing forecasting: result on file '%s' \n", filerespop);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   if (mobilav!=0) {     fprintf(fichtm,"\
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     fprintf(fichtm,"\
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   stepsize=(int) (stepm+YEARM-1)/YEARM;     <a href=\"%s\">%s</a> <br>\n",
   if (stepm<=12) stepsize=1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       fprintf(fichtm,"\
   agelim=AGESUP;   - Population projections by age and states: \
       <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   hstepm=1;  
   hstepm=hstepm/stepm;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    
   if (popforecast==1) {   m=pow(2,cptcoveff);
     if((ficpop=fopen(popfile,"r"))==NULL) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);   jj1=0;
     }   for(k1=1; k1<=m;k1++){
     popage=ivector(0,AGESUP);     for(i1=1; i1<=ncodemax[k1];i1++){
     popeffectif=vector(0,AGESUP);       jj1++;
     popcount=vector(0,AGESUP);       if (cptcovn > 0) {
             fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     i=1;           for (cpt=1; cpt<=cptcoveff;cpt++) 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     imx=i;       }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       /* Pij */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){       /* Quasi-incidences */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       k=k+1;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
       fprintf(ficrespop,"\n#******");  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       for(j=1;j<=cptcoveff;j++) {         /* Period (stable) prevalence in each health state */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         for(cpt=1; cpt<=nlstate;cpt++){
       }           fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
       fprintf(ficrespop,"******\n");  <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fprintf(ficrespop,"# Age");         }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       for(cpt=1; cpt<=nlstate;cpt++) {
       if (popforecast==1)  fprintf(ficrespop," [Population]");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
        <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       for (cpt=0; cpt<=0;cpt++) {       }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       } /* end i1 */
           }/* End k1 */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   fprintf(fichtm,"</ul>");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  
             fprintf(fichtm,"\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           oldm=oldms;savm=savms;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           for (h=0; h<=nhstepm; h++){           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
             if (h==(int) (calagedatem+YEARM*cpt)) {   fprintf(fichtm,"\
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;   fprintf(fichtm,"\
               for(i=1; i<=nlstate;i++) {                 - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 if (mobilav==1)           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   fprintf(fichtm,"\
                 else {   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     <a href=\"%s\">%s</a> <br>\n</li>",
                 }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
               }   fprintf(fichtm,"\
               if (h==(int)(calagedatem+12*cpt)){   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     <a href=\"%s\">%s</a> <br>\n</li>",
                   /*fprintf(ficrespop," %.3f", kk1);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/   fprintf(fichtm,"\
               }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
             }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
             for(i=1; i<=nlstate;i++){   fprintf(fichtm,"\
               kk1=0.;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
                 for(j=1; j<=nlstate;j++){           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   fprintf(fichtm,"\
                 }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
             }  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           }  /*      <br>",fileres,fileres,fileres,fileres); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*  else  */
         }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       }   fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   /******/  
    m=pow(2,cptcoveff);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   jj1=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   for(k1=1; k1<=m;k1++){
           nhstepm = nhstepm/hstepm;     for(i1=1; i1<=ncodemax[k1];i1++){
                 jj1++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       if (cptcovn > 0) {
           oldm=oldms;savm=savms;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           for (cpt=1; cpt<=cptcoveff;cpt++) 
           for (h=0; h<=nhstepm; h++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             if (h==(int) (calagedatem+YEARM*cpt)) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       }
             }       for(cpt=1; cpt<=nlstate;cpt++) {
             for(j=1; j<=nlstate+ndeath;j++) {         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               kk1=0.;kk2=0;  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
               for(i=1; i<=nlstate;i++) {                <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           }
               }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);          health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
             }  true period expectancies (those weighted with period prevalences are also\
           }   drawn in addition to the population based expectancies computed using\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   observed and cahotic prevalences: %s%d.png<br>\
         }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       }     } /* end i1 */
    }   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
     fflush(fichtm);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   
   if (popforecast==1) {  /******************* Gnuplot file **************/
     free_ivector(popage,0,AGESUP);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);    char dirfileres[132],optfileres[132];
   }    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int ng=0;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   fclose(ficrespop);  /*     printf("Problem with file %s",optionfilegnuplot); */
 } /* End of popforecast */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
 int fileappend(FILE *fichier, char *optionfich)  
 {    /*#ifdef windows */
   if((fichier=fopen(optionfich,"a"))==NULL) {    fprintf(ficgp,"cd \"%s\" \n",pathc);
     printf("Problem with file: %s\n", optionfich);      /*#endif */
     fprintf(ficlog,"Problem with file: %s\n", optionfich);    m=pow(2,cptcoveff);
     return (0);  
   }    strcpy(dirfileres,optionfilefiname);
   fflush(fichier);    strcpy(optfileres,"vpl");
   return (1);   /* 1eme*/
 }    fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 /**************** function prwizard **********************/       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
 {       fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   /* Wizard to print covariance matrix template */  set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   char ca[32], cb[32], cc[32];  
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;       for (i=1; i<= nlstate ; i ++) {
   int numlinepar;         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       }
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   for(i=1; i <=nlstate; i++){       for (i=1; i<= nlstate ; i ++) {
     jj=0;         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
     for(j=1; j <=nlstate+ndeath; j++){         else fprintf(ficgp," %%*lf (%%*lf)");
       if(j==i) continue;       } 
       jj++;       fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       /*ca[0]= k+'a'-1;ca[1]='\0';*/       for (i=1; i<= nlstate ; i ++) {
       printf("%1d%1d",i,j);         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
       fprintf(ficparo,"%1d%1d",i,j);         else fprintf(ficgp," %%*lf (%%*lf)");
       for(k=1; k<=ncovmodel;k++){       }  
         /*        printf(" %lf",param[i][j][k]); */       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         /*        fprintf(ficparo," %lf",param[i][j][k]); */     }
         printf(" 0.");    }
         fprintf(ficparo," 0.");    /*2 eme*/
       }    fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
       printf("\n");    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficparo,"\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
   }      
   printf("# Scales (for hessian or gradient estimation)\n");      for (i=1; i<= nlstate+1 ; i ++) {
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        k=2*i;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   for(i=1; i <=nlstate; i++){        for (j=1; j<= nlstate+1 ; j ++) {
     jj=0;          if (j==i) fprintf(ficgp," %%lf (%%lf)");
     for(j=1; j <=nlstate+ndeath; j++){          else fprintf(ficgp," %%*lf (%%*lf)");
       if(j==i) continue;        }   
       jj++;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficparo,"%1d%1d",i,j);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       printf("%1d%1d",i,j);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fflush(stdout);        for (j=1; j<= nlstate+1 ; j ++) {
       for(k=1; k<=ncovmodel;k++){          if (j==i) fprintf(ficgp," %%lf (%%lf)");
         /*      printf(" %le",delti3[i][j][k]); */          else fprintf(ficgp," %%*lf (%%*lf)");
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */        }   
         printf(" 0.");        fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficparo," 0.");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
       numlinepar++;          if (j==i) fprintf(ficgp," %%lf (%%lf)");
       printf("\n");          else fprintf(ficgp," %%*lf (%%*lf)");
       fprintf(ficparo,"\n");        }   
     }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
   }        else fprintf(ficgp,"\" t\"\" w l lt 0,");
   printf("# Covariance matrix\n");      }
 /* # 121 Var(a12)\n\ */    }
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    /*3eme*/
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    for (k1=1; k1<= m ; k1 ++) { 
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      for (cpt=1; cpt<= nlstate ; cpt ++) {
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        /*       k=2+nlstate*(2*cpt-2); */
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        k=2+(nlstate+1)*(cpt-1);
   fflush(stdout);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   fprintf(ficparo,"# Covariance matrix\n");        fprintf(ficgp,"set ter png small size 320, 240\n\
   /* # 121 Var(a12)\n\ */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /* #   ...\n\ */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   for(itimes=1;itimes<=2;itimes++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     jj=0;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     for(i=1; i <=nlstate; i++){          
       for(j=1; j <=nlstate+ndeath; j++){        */
         if(j==i) continue;        for (i=1; i< nlstate ; i ++) {
         for(k=1; k<=ncovmodel;k++){          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           jj++;          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           ca[0]= k+'a'-1;ca[1]='\0';          
           if(itimes==1){        } 
             printf("#%1d%1d%d",i,j,k);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
             fprintf(ficparo,"#%1d%1d%d",i,j,k);      }
           }else{    }
             printf("%1d%1d%d",i,j,k);    
             fprintf(ficparo,"%1d%1d%d",i,j,k);    /* CV preval stable (period) */
             /*  printf(" %.5le",matcov[i][j]); */    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
           }      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           ll=0;        k=3;
           for(li=1;li <=nlstate; li++){        fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
             for(lj=1;lj <=nlstate+ndeath; lj++){        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
               if(lj==li) continue;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
               for(lk=1;lk<=ncovmodel;lk++){  set ter png small size 320, 240\n\
                 ll++;  unset log y\n\
                 if(ll<=jj){  plot [%.f:%.f]  ", ageminpar, agemaxpar);
                   cb[0]= lk +'a'-1;cb[1]='\0';        for (i=1; i<= nlstate ; i ++){
                   if(ll<jj){          if(i==1)
                     if(itimes==1){            fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          else
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            fprintf(ficgp,", '' ");
                     }else{          l=(nlstate+ndeath)*(i-1)+1;
                       printf(" 0.");          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                       fprintf(ficparo," 0.");          for (j=1; j<= (nlstate-1) ; j ++)
                     }            fprintf(ficgp,"+$%d",k+l+j);
                   }else{          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
                     if(itimes==1){        } /* nlstate */
                       printf(" Var(%s%1d%1d)",ca,i,j);        fprintf(ficgp,"\n");
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);      } /* end cpt state*/ 
                     }else{    } /* end covariate */  
                       printf(" 0.");    
                       fprintf(ficparo," 0.");    /* proba elementaires */
                     }    for(i=1,jk=1; i <=nlstate; i++){
                   }      for(k=1; k <=(nlstate+ndeath); k++){
                 }        if (k != i) {
               } /* end lk */          for(j=1; j <=ncovmodel; j++){
             } /* end lj */            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           } /* end li */            jk++; 
           printf("\n");            fprintf(ficgp,"\n");
           fprintf(ficparo,"\n");          }
           numlinepar++;        }
         } /* end k*/      }
       } /*end j */     }
     } /* end i */    /*goto avoid;*/
   } /* end itimes */     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
 } /* end of prwizard */         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 /******************* Gompertz Likelihood ******************************/         if (ng==2)
 double gompertz(double x[])           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 {         else
   double A,B,L=0.0,sump=0.,num=0.;           fprintf(ficgp,"\nset title \"Probability\"\n");
   int i,n=0; /* n is the size of the sample */         fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   for (i=0;i<=imx-1 ; i++) {         for(k2=1; k2<=nlstate; k2++) {
     sump=sump+weight[i];           k3=i;
     /*    sump=sump+1;*/           for(k=1; k<=(nlstate+ndeath); k++) {
     num=num+1;             if (k != k2){
   }               if(ng==2)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else
   /* for (i=0; i<=imx; i++)                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/               ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
   for (i=1;i<=imx ; i++)                 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
     {                 /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
       if (cens[i] == 1 && wav[i]>1)                 /*        ij++; */
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));                 /* } */
                       /* else */
       if (cens[i] == 0 && wav[i]>1)                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))               }
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                 fprintf(ficgp,")/(1");
                     
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */               for(k1=1; k1 <=nlstate; k1++){   
       if (wav[i] > 1 ) { /* ??? */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         L=L+A*weight[i];                 ij=1;
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                 for(j=3; j <=ncovmodel; j++){
       }                   /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
     }                   /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                   /* } */
                     /* else */
   return -2*L*num/sump;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 }                 }
                  fprintf(ficgp,")");
 /******************* Printing html file ***********/               }
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                   int lastpass, int stepm, int weightopt, char model[],\               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   int imx,  double p[],double **matcov,double agemortsup){               i=i+ncovmodel;
   int i,k;             }
            } /* end k */
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");         } /* end k2 */
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);       } /* end jk */
   for (i=1;i<=2;i++)     } /* end ng */
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));   /* avoid: */
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");     fflush(ficgp); 
   fprintf(fichtm,"</ul>");  }  /* end gnuplot */
   
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");  
   /*************** Moving average **************/
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
  for (k=agegomp;k<(agemortsup-2);k++)    int i, cpt, cptcod;
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);    int modcovmax =1;
     int mobilavrange, mob;
      double age;
   fflush(fichtm);  
 }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
 /******************* Gnuplot file **************/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   char dirfileres[132],optfileres[132];      if(mobilav==1) mobilavrange=5; /* default */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      else mobilavrange=mobilav;
   int ng;      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   /*#ifdef windows */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   fprintf(ficgp,"cd \"%s\" \n",pathc);      /* We keep the original values on the extreme ages bage, fage and for 
     /*#endif */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
   strcpy(dirfileres,optionfilefiname);      for (mob=3;mob <=mobilavrange;mob=mob+2){
   strcpy(optfileres,"vpl");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   fprintf(ficgp,"set out \"graphmort.png\"\n ");          for (i=1; i<=nlstate;i++){
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   fprintf(ficgp, "set ter png small\n set log y\n");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   fprintf(ficgp, "set size 0.65,0.65\n");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 }                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
 /***********************************************/    }else return -1;
 /**************** Main Program *****************/    return 0;
 /***********************************************/  }/* End movingaverage */
   
 int main(int argc, char *argv[])  
 {  /************** Forecasting ******************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    /* proj1, year, month, day of starting projection 
   int linei, month, year,iout;       agemin, agemax range of age
   int jj, ll, li, lj, lk, imk;       dateprev1 dateprev2 range of dates during which prevalence is computed
   int numlinepar=0; /* Current linenumber of parameter file */       anproj2 year of en of projection (same day and month as proj1).
   int itimes;    */
   int NDIM=2;    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
   char ca[32], cb[32], cc[32];    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   char dummy[]="                         ";    double *popeffectif,*popcount;
   /*  FILE *fichtm; *//* Html File */    double ***p3mat;
   /* FILE *ficgp;*/ /*Gnuplot File */    double ***mobaverage;
   struct stat info;    char fileresf[FILENAMELENGTH];
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   double fret;   
   double **xi,tmp,delta;    strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
   double dum; /* Dummy variable */    if((ficresf=fopen(fileresf,"w"))==NULL) {
   double ***p3mat;      printf("Problem with forecast resultfile: %s\n", fileresf);
   double ***mobaverage;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   int *indx;    }
   char line[MAXLINE], linepar[MAXLINE];    printf("Computing forecasting: result on file '%s' \n", fileresf);
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   char pathr[MAXLINE], pathimach[MAXLINE];  
   char **bp, *tok, *val; /* pathtot */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */    if (mobilav!=0) {
   int c,  h , cpt,l;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int ju,jl, mi;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */      }
   int mobilav=0,popforecast=0;    }
   int hstepm, nhstepm;  
   int agemortsup;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   float  sumlpop=0.;    if (stepm<=12) stepsize=1;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    if(estepm < stepm){
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   double bage, fage, age, agelim, agebase;    else  hstepm=estepm;   
   double ftolpl=FTOL;  
   double **prlim;    hstepm=hstepm/stepm; 
   double *severity;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   double ***param; /* Matrix of parameters */                                 fractional in yp1 */
   double  *p;    anprojmean=yp;
   double **matcov; /* Matrix of covariance */    yp2=modf((yp1*12),&yp);
   double ***delti3; /* Scale */    mprojmean=yp;
   double *delti; /* Scale */    yp1=modf((yp2*30.5),&yp);
   double ***eij, ***vareij;    jprojmean=yp;
   double **varpl; /* Variances of prevalence limits by age */    if(jprojmean==0) jprojmean=1;
   double *epj, vepp;    if(mprojmean==0) jprojmean=1;
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    i1=cptcoveff;
   double **ximort;    if (cptcovn < 1){i1=1;}
   char *alph[]={"a","a","b","c","d","e"}, str[4];    
   int *dcwave;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
   char z[1]="c", occ;    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  /*            if (h==(int)(YEARM*yearp)){ */
   char  *strt, strtend[80];    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   char *stratrunc;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   int lstra;        k=k+1;
         fprintf(ficresf,"\n#******");
   long total_usecs;        for(j=1;j<=cptcoveff;j++) {
            fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /*   setlocale (LC_ALL, ""); */        }
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */        fprintf(ficresf,"******\n");
 /*   textdomain (PACKAGE); */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 /*   setlocale (LC_CTYPE, ""); */        for(j=1; j<=nlstate+ndeath;j++){ 
 /*   setlocale (LC_MESSAGES, ""); */          for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          fprintf(ficresf," p.%d",j);
   (void) gettimeofday(&start_time,&tzp);        }
   curr_time=start_time;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   tm = *localtime(&start_time.tv_sec);          fprintf(ficresf,"\n");
   tmg = *gmtime(&start_time.tv_sec);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   strcpy(strstart,asctime(&tm));  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
 /*  printf("Localtime (at start)=%s",strstart); */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 /*  tp.tv_sec = tp.tv_sec +86400; */            nhstepm = nhstepm/hstepm; 
 /*  tm = *localtime(&start_time.tv_sec); */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */            oldm=oldms;savm=savms;
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 /*   tmg.tm_hour=tmg.tm_hour + 1; */          
 /*   tp.tv_sec = mktime(&tmg); */            for (h=0; h<=nhstepm; h++){
 /*   strt=asctime(&tmg); */              if (h*hstepm/YEARM*stepm ==yearp) {
 /*   printf("Time(after) =%s",strstart);  */                fprintf(ficresf,"\n");
 /*  (void) time (&time_value);                for(j=1;j<=cptcoveff;j++) 
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 *  tm = *localtime(&time_value);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 *  strstart=asctime(&tm);              } 
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);              for(j=1; j<=nlstate+ndeath;j++) {
 */                ppij=0.;
                 for(i=1; i<=nlstate;i++) {
   nberr=0; /* Number of errors and warnings */                  if (mobilav==1) 
   nbwarn=0;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   getcwd(pathcd, size);                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   printf("\n%s\n%s",version,fullversion);                  }
   if(argc <=1){                  if (h*hstepm/YEARM*stepm== yearp) {
     printf("\nEnter the parameter file name: ");                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     fgets(pathr,FILENAMELENGTH,stdin);                  }
     i=strlen(pathr);                } /* end i */
     if(pathr[i-1]=='\n')                if (h*hstepm/YEARM*stepm==yearp) {
       pathr[i-1]='\0';                  fprintf(ficresf," %.3f", ppij);
    for (tok = pathr; tok != NULL; ){                }
       printf("Pathr |%s|\n",pathr);              }/* end j */
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');            } /* end h */
       printf("val= |%s| pathr=%s\n",val,pathr);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       strcpy (pathtot, val);          } /* end agec */
       if(pathr[0] == '\0') break; /* Dirty */        } /* end yearp */
     }      } /* end cptcod */
   }    } /* end  cptcov */
   else{         
     strcpy(pathtot,argv[1]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    fclose(ficresf);
   /*cygwin_split_path(pathtot,path,optionfile);  }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   /* Split argv[0], imach program to get pathimach */    
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    int *popage;
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    double calagedatem, agelim, kk1, kk2;
  /*   strcpy(pathimach,argv[0]); */    double *popeffectif,*popcount;
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */    double ***p3mat,***tabpop,***tabpopprev;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double ***mobaverage;
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    char filerespop[FILENAMELENGTH];
   chdir(path); /* Can be a relative path */  
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Current directory %s!\n",pathcd);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(command,"mkdir ");    agelim=AGESUP;
   strcat(command,optionfilefiname);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   if((outcmd=system(command)) != 0){    
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    
     /* fclose(ficlog); */    
 /*     exit(1); */    strcpy(filerespop,"pop"); 
   }    strcat(filerespop,fileres);
 /*   if((imk=mkdir(optionfilefiname))<0){ */    if((ficrespop=fopen(filerespop,"w"))==NULL) {
 /*     perror("mkdir"); */      printf("Problem with forecast resultfile: %s\n", filerespop);
 /*   } */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
   /*-------- arguments in the command line --------*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   /* Log file */  
   strcat(filelog, optionfilefiname);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {    if (mobilav!=0) {
     printf("Problem with logfile %s\n",filelog);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     goto end;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficlog,"Log filename:%s\n",filelog);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);      }
   fprintf(ficlog,"\nEnter the parameter file name: \n");    }
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\  
  path=%s \n\    stepsize=(int) (stepm+YEARM-1)/YEARM;
  optionfile=%s\n\    if (stepm<=12) stepsize=1;
  optionfilext=%s\n\    
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    agelim=AGESUP;
     
   printf("Local time (at start):%s",strstart);    hstepm=1;
   fprintf(ficlog,"Local time (at start): %s",strstart);    hstepm=hstepm/stepm; 
   fflush(ficlog);    
 /*   (void) gettimeofday(&curr_time,&tzp); */    if (popforecast==1) {
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
   /* */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   strcpy(fileres,"r");      } 
   strcat(fileres, optionfilefiname);      popage=ivector(0,AGESUP);
   strcat(fileres,".txt");    /* Other files have txt extension */      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
   /*---------arguments file --------*/      
       i=1;   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     printf("Problem with optionfile %s\n",optionfile);     
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      imx=i;
     fflush(ficlog);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     goto end;    }
   }  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   strcpy(filereso,"o");        fprintf(ficrespop,"\n#******");
   strcat(filereso,fileres);        for(j=1;j<=cptcoveff;j++) {
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("Problem with Output resultfile: %s\n", filereso);        }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        fprintf(ficrespop,"******\n");
     fflush(ficlog);        fprintf(ficrespop,"# Age");
     goto end;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   }        if (popforecast==1)  fprintf(ficrespop," [Population]");
         
   /* Reads comments: lines beginning with '#' */        for (cpt=0; cpt<=0;cpt++) { 
   numlinepar=0;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     fgets(line, MAXLINE, ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     numlinepar++;            nhstepm = nhstepm/hstepm; 
     puts(line);            
     fputs(line,ficparo);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficlog);            oldm=oldms;savm=savms;
   }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   ungetc(c,ficpar);          
             for (h=0; h<=nhstepm; h++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              if (h==(int) (calagedatem+YEARM*cpt)) {
   numlinepar++;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);              } 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);              for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                kk1=0.;kk2=0;
   fflush(ficlog);                for(i=1; i<=nlstate;i++) {              
   while((c=getc(ficpar))=='#' && c!= EOF){                  if (mobilav==1) 
     ungetc(c,ficpar);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     fgets(line, MAXLINE, ficpar);                  else {
     numlinepar++;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     puts(line);                  }
     fputs(line,ficparo);                }
     fputs(line,ficlog);                if (h==(int)(calagedatem+12*cpt)){
   }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   ungetc(c,ficpar);                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                    }
   covar=matrix(0,NCOVMAX,1,n);              }
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/              for(i=1; i<=nlstate;i++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                kk1=0.;
                   for(j=1; j<=nlstate;j++){
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                  }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=delti3[1][1];              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */            }
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);          }
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);        }
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   
     fclose (ficparo);    /******/
     fclose (ficlog);  
     goto end;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     exit(0);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   else if(mle==-3) {            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);            nhstepm = nhstepm/hstepm; 
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);            
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            oldm=oldms;savm=savms;
     matcov=matrix(1,npar,1,npar);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }            for (h=0; h<=nhstepm; h++){
   else{              if (h==(int) (calagedatem+YEARM*cpt)) {
     /* Read guess parameters */                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     /* Reads comments: lines beginning with '#' */              } 
     while((c=getc(ficpar))=='#' && c!= EOF){              for(j=1; j<=nlstate+ndeath;j++) {
       ungetc(c,ficpar);                kk1=0.;kk2=0;
       fgets(line, MAXLINE, ficpar);                for(i=1; i<=nlstate;i++) {              
       numlinepar++;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       puts(line);                }
       fputs(line,ficparo);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       fputs(line,ficlog);              }
     }            }
     ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++){     } 
       j=0;    }
       for(jj=1; jj <=nlstate+ndeath; jj++){   
         if(jj==i) continue;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         j++;  
         fscanf(ficpar,"%1d%1d",&i1,&j1);    if (popforecast==1) {
         if ((i1 != i) && (j1 != j)){      free_ivector(popage,0,AGESUP);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \      free_vector(popeffectif,0,AGESUP);
 It might be a problem of design; if ncovcol and the model are correct\n \      free_vector(popcount,0,AGESUP);
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);    }
           exit(1);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficparo,"%1d%1d",i1,j1);    fclose(ficrespop);
         if(mle==1)  } /* End of popforecast */
           printf("%1d%1d",i,j);  
         fprintf(ficlog,"%1d%1d",i,j);  int fileappend(FILE *fichier, char *optionfich)
         for(k=1; k<=ncovmodel;k++){  {
           fscanf(ficpar," %lf",&param[i][j][k]);    if((fichier=fopen(optionfich,"a"))==NULL) {
           if(mle==1){      printf("Problem with file: %s\n", optionfich);
             printf(" %lf",param[i][j][k]);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
             fprintf(ficlog," %lf",param[i][j][k]);      return (0);
           }    }
           else    fflush(fichier);
             fprintf(ficlog," %lf",param[i][j][k]);    return (1);
           fprintf(ficparo," %lf",param[i][j][k]);  }
         }  
         fscanf(ficpar,"\n");  
         numlinepar++;  /**************** function prwizard **********************/
         if(mle==1)  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
           printf("\n");  {
         fprintf(ficlog,"\n");  
         fprintf(ficparo,"\n");    /* Wizard to print covariance matrix template */
       }  
     }      char ca[32], cb[32];
     fflush(ficlog);    int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
     p=param[1][1];  
        printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     /* Reads comments: lines beginning with '#' */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i <=nlstate; i++){
       ungetc(c,ficpar);      jj=0;
       fgets(line, MAXLINE, ficpar);      for(j=1; j <=nlstate+ndeath; j++){
       numlinepar++;        if(j==i) continue;
       puts(line);        jj++;
       fputs(line,ficparo);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
       fputs(line,ficlog);        printf("%1d%1d",i,j);
     }        fprintf(ficparo,"%1d%1d",i,j);
     ungetc(c,ficpar);        for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
     for(i=1; i <=nlstate; i++){          /*        fprintf(ficparo," %lf",param[i][j][k]); */
       for(j=1; j <=nlstate+ndeath-1; j++){          printf(" 0.");
         fscanf(ficpar,"%1d%1d",&i1,&j1);          fprintf(ficparo," 0.");
         if ((i1-i)*(j1-j)!=0){        }
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        printf("\n");
           exit(1);        fprintf(ficparo,"\n");
         }      }
         printf("%1d%1d",i,j);    }
         fprintf(ficparo,"%1d%1d",i1,j1);    printf("# Scales (for hessian or gradient estimation)\n");
         fprintf(ficlog,"%1d%1d",i1,j1);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
         for(k=1; k<=ncovmodel;k++){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
           fscanf(ficpar,"%le",&delti3[i][j][k]);    for(i=1; i <=nlstate; i++){
           printf(" %le",delti3[i][j][k]);      jj=0;
           fprintf(ficparo," %le",delti3[i][j][k]);      for(j=1; j <=nlstate+ndeath; j++){
           fprintf(ficlog," %le",delti3[i][j][k]);        if(j==i) continue;
         }        jj++;
         fscanf(ficpar,"\n");        fprintf(ficparo,"%1d%1d",i,j);
         numlinepar++;        printf("%1d%1d",i,j);
         printf("\n");        fflush(stdout);
         fprintf(ficparo,"\n");        for(k=1; k<=ncovmodel;k++){
         fprintf(ficlog,"\n");          /*      printf(" %le",delti3[i][j][k]); */
       }          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
     }          printf(" 0.");
     fflush(ficlog);          fprintf(ficparo," 0.");
         }
     delti=delti3[1][1];        numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      }
      }
     /* Reads comments: lines beginning with '#' */    printf("# Covariance matrix\n");
     while((c=getc(ficpar))=='#' && c!= EOF){  /* # 121 Var(a12)\n\ */
       ungetc(c,ficpar);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
       fgets(line, MAXLINE, ficpar);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       numlinepar++;  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       puts(line);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       fputs(line,ficparo);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       fputs(line,ficlog);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     }  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     ungetc(c,ficpar);    fflush(stdout);
      fprintf(ficparo,"# Covariance matrix\n");
     matcov=matrix(1,npar,1,npar);    /* # 121 Var(a12)\n\ */
     for(i=1; i <=npar; i++){    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       fscanf(ficpar,"%s",&str);    /* #   ...\n\ */
       if(mle==1)    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
         printf("%s",str);    
       fprintf(ficlog,"%s",str);    for(itimes=1;itimes<=2;itimes++){
       fprintf(ficparo,"%s",str);      jj=0;
       for(j=1; j <=i; j++){      for(i=1; i <=nlstate; i++){
         fscanf(ficpar," %le",&matcov[i][j]);        for(j=1; j <=nlstate+ndeath; j++){
         if(mle==1){          if(j==i) continue;
           printf(" %.5le",matcov[i][j]);          for(k=1; k<=ncovmodel;k++){
         }            jj++;
         fprintf(ficlog," %.5le",matcov[i][j]);            ca[0]= k+'a'-1;ca[1]='\0';
         fprintf(ficparo," %.5le",matcov[i][j]);            if(itimes==1){
       }              printf("#%1d%1d%d",i,j,k);
       fscanf(ficpar,"\n");              fprintf(ficparo,"#%1d%1d%d",i,j,k);
       numlinepar++;            }else{
       if(mle==1)              printf("%1d%1d%d",i,j,k);
         printf("\n");              fprintf(ficparo,"%1d%1d%d",i,j,k);
       fprintf(ficlog,"\n");              /*  printf(" %.5le",matcov[i][j]); */
       fprintf(ficparo,"\n");            }
     }            ll=0;
     for(i=1; i <=npar; i++)            for(li=1;li <=nlstate; li++){
       for(j=i+1;j<=npar;j++)              for(lj=1;lj <=nlstate+ndeath; lj++){
         matcov[i][j]=matcov[j][i];                if(lj==li) continue;
                    for(lk=1;lk<=ncovmodel;lk++){
     if(mle==1)                  ll++;
       printf("\n");                  if(ll<=jj){
     fprintf(ficlog,"\n");                    cb[0]= lk +'a'-1;cb[1]='\0';
                        if(ll<jj){
     fflush(ficlog);                      if(itimes==1){
                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     /*-------- Rewriting parameter file ----------*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     strcpy(rfileres,"r");    /* "Rparameterfile */                      }else{
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                        printf(" 0.");
     strcat(rfileres,".");    /* */                        fprintf(ficparo," 0.");
     strcat(rfileres,optionfilext);    /* Other files have txt extension */                      }
     if((ficres =fopen(rfileres,"w"))==NULL) {                    }else{
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                      if(itimes==1){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;                        printf(" Var(%s%1d%1d)",ca,i,j);
     }                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     fprintf(ficres,"#%s\n",version);                      }else{
   }    /* End of mle != -3 */                        printf(" 0.");
                         fprintf(ficparo," 0.");
   /*-------- data file ----------*/                      }
   if((fic=fopen(datafile,"r"))==NULL)    {                    }
     printf("Problem while opening datafile: %s\n", datafile);goto end;                  }
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;                } /* end lk */
   }              } /* end lj */
             } /* end li */
   n= lastobs;            printf("\n");
   severity = vector(1,maxwav);            fprintf(ficparo,"\n");
   outcome=imatrix(1,maxwav+1,1,n);            numlinepar++;
   num=lvector(1,n);          } /* end k*/
   moisnais=vector(1,n);        } /*end j */
   annais=vector(1,n);      } /* end i */
   moisdc=vector(1,n);    } /* end itimes */
   andc=vector(1,n);  
   agedc=vector(1,n);  } /* end of prwizard */
   cod=ivector(1,n);  /******************* Gompertz Likelihood ******************************/
   weight=vector(1,n);  double gompertz(double x[])
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  { 
   mint=matrix(1,maxwav,1,n);    double A,B,L=0.0,sump=0.,num=0.;
   anint=matrix(1,maxwav,1,n);    int i,n=0; /* n is the size of the sample */
   s=imatrix(1,maxwav+1,1,n);  
   tab=ivector(1,NCOVMAX);    for (i=0;i<=imx-1 ; i++) {
   ncodemax=ivector(1,8);      sump=sump+weight[i];
       /*    sump=sump+1;*/
   i=1;      num=num+1;
   linei=0;    }
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {   
     linei=linei+1;   
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    /* for (i=0; i<=imx; i++) 
       if(line[j] == '\t')       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
         line[j] = ' ';  
     }    for (i=1;i<=imx ; i++)
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){      {
       ;        if (cens[i] == 1 && wav[i]>1)
     };          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     line[j+1]=0;  /* Trims blanks at end of line */        
     if(line[0]=='#'){        if (cens[i] == 0 && wav[i]>1)
       fprintf(ficlog,"Comment line\n%s\n",line);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
       printf("Comment line\n%s\n",line);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
       continue;        
     }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
     for (j=maxwav;j>=1;j--){          L=L+A*weight[i];
       cutv(stra, strb,line,' ');          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       errno=0;        }
       lval=strtol(strb,&endptr,10);      }
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/  
       if( strb[0]=='\0' || (*endptr != '\0')){   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);   
         exit(1);    return -2*L*num/sump;
       }  }
       s[j][i]=lval;  
        #ifdef GSL
       strcpy(line,stra);  /******************* Gompertz_f Likelihood ******************************/
       cutv(stra, strb,line,' ');  double gompertz_f(const gsl_vector *v, void *params)
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){  { 
       }    double A,B,LL=0.0,sump=0.,num=0.;
       else  if(iout=sscanf(strb,"%s.") != 0){    double *x= (double *) v->data;
         month=99;    int i,n=0; /* n is the size of the sample */
         year=9999;  
       }else{    for (i=0;i<=imx-1 ; i++) {
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);      sump=sump+weight[i];
         exit(1);      /*    sump=sump+1;*/
       }      num=num+1;
       anint[j][i]= (double) year;    }
       mint[j][i]= (double)month;   
       strcpy(line,stra);   
     } /* ENd Waves */    /* for (i=0; i<=imx; i++) 
           if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     cutv(stra, strb,line,' ');    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    for (i=1;i<=imx ; i++)
     }      {
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){        if (cens[i] == 1 && wav[i]>1)
       month=99;          A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
       year=9999;        
     }else{        if (cens[i] == 0 && wav[i]>1)
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);          A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
       exit(1);               +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
     }        
     andc[i]=(double) year;        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
     moisdc[i]=(double) month;        if (wav[i] > 1 ) { /* ??? */
     strcpy(line,stra);          LL=LL+A*weight[i];
              /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     cutv(stra, strb,line,' ');        }
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      }
     }  
     else  if(iout=sscanf(strb,"%s.") != 0){   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
       month=99;    printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
       year=9999;   
     }else{    return -2*LL*num/sump;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);  }
       exit(1);  #endif
     }  
     annais[i]=(double)(year);  /******************* Printing html file ***********/
     moisnais[i]=(double)(month);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     strcpy(line,stra);                    int lastpass, int stepm, int weightopt, char model[],\
                        int imx,  double p[],double **matcov,double agemortsup){
     cutv(stra, strb,line,' ');    int i,k;
     errno=0;  
     dval=strtod(strb,&endptr);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     if( strb[0]=='\0' || (*endptr != '\0')){    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);    for (i=1;i<=2;i++) 
       exit(1);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     }    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     weight[i]=dval;    fprintf(fichtm,"</ul>");
     strcpy(line,stra);  
      fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     for (j=ncovcol;j>=1;j--){  
       cutv(stra, strb,line,' ');   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
       errno=0;  
       lval=strtol(strb,&endptr,10);   for (k=agegomp;k<(agemortsup-2);k++) 
       if( strb[0]=='\0' || (*endptr != '\0')){     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);  
         exit(1);   
       }    fflush(fichtm);
       if(lval <-1 || lval >1){  }
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \  
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \  /******************* Gnuplot file **************/
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
  For example, for multinomial values like 1, 2 and 3,\n \  
  build V1=0 V2=0 for the reference value (1),\n \    char dirfileres[132],optfileres[132];
         V1=1 V2=0 for (2) \n \  
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \    int ng;
  output of IMaCh is often meaningless.\n \  
  Exiting.\n",lval,linei, i,line,j);  
         exit(1);    /*#ifdef windows */
       }    fprintf(ficgp,"cd \"%s\" \n",pathc);
       covar[j][i]=(double)(lval);      /*#endif */
       strcpy(line,stra);  
     }  
     lstra=strlen(stra);    strcpy(dirfileres,optionfilefiname);
        strcpy(optfileres,"vpl");
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
       stratrunc = &(stra[lstra-9]);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
       num[i]=atol(stratrunc);    fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     }    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     else    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
       num[i]=atol(stra);  
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  } 
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
      int readdata(char datafile[], int firstobs, int lastobs, int *imax)
     i=i+1;  {
   } /* End loop reading  data */  
   fclose(fic);    /*-------- data file ----------*/
   /* printf("ii=%d", ij);    FILE *fic;
      scanf("%d",i);*/    char dummy[]="                         ";
   imx=i-1; /* Number of individuals */    int i=0, j=0, n=0;
     int linei, month, year,iout;
   /* for (i=1; i<=imx; i++){    char line[MAXLINE], linetmp[MAXLINE];
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    char stra[MAXLINE], strb[MAXLINE];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    char *stratrunc;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int lstra;
     }*/  
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;    if((fic=fopen(datafile,"r"))==NULL)    {
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      printf("Problem while opening datafile: %s\n", datafile);return 1;
        fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
   /* for (i=1; i<=imx; i++) */    }
    
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;    i=1;
      else weight[i]=1;*/    linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   /* Calculation of the number of parameters from char model */      linei=linei+1;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   Tprod=ivector(1,15);        if(line[j] == '\t')
   Tvaraff=ivector(1,15);          line[j] = ' ';
   Tvard=imatrix(1,15,1,2);      }
   Tage=ivector(1,15);            for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
            ;
   if (strlen(model) >1){ /* If there is at least 1 covariate */      };
     j=0, j1=0, k1=1, k2=1;      line[j+1]=0;  /* Trims blanks at end of line */
     j=nbocc(model,'+'); /* j=Number of '+' */      if(line[0]=='#'){
     j1=nbocc(model,'*'); /* j1=Number of '*' */        fprintf(ficlog,"Comment line\n%s\n",line);
     cptcovn=j+1;        printf("Comment line\n%s\n",line);
     cptcovprod=j1; /*Number of products */        continue;
          }
     strcpy(modelsav,model);      trimbb(linetmp,line); /* Trims multiple blanks in line */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      strcpy(line, linetmp);
       printf("Error. Non available option model=%s ",model);    
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;      for (j=maxwav;j>=1;j--){
     }        cutv(stra, strb, line, ' '); 
            if(strb[0]=='.') { /* Missing status */
     /* This loop fills the array Tvar from the string 'model'.*/          lval=-1;
         }else{
     for(i=(j+1); i>=1;i--){          errno=0;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */          lval=strtol(strb,&endptr,10); 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          if( strb[0]=='\0' || (*endptr != '\0')){
       /*scanf("%d",i);*/            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
       if (strchr(strb,'*')) {  /* Model includes a product */            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/            return 1;
         if (strcmp(strc,"age")==0) { /* Vn*age */          }
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');        s[j][i]=lval;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/        
           cptcovage++;        strcpy(line,stra);
             Tage[cptcovage]=i;        cutv(stra, strb,line,' ');
             /*printf("stre=%s ", stre);*/        if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }        }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           cptcovprod--;          month=99;
           cutv(strb,stre,strc,'V');          year=9999;
           Tvar[i]=atoi(stre);        }else{
           cptcovage++;          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           Tage[cptcovage]=i;          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
         }          return 1;
         else {  /* Age is not in the model */        }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/        anint[j][i]= (double) year; 
           Tvar[i]=ncovcol+k1;        mint[j][i]= (double)month; 
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        strcpy(line,stra);
           Tprod[k1]=i;      } /* ENd Waves */
           Tvard[k1][1]=atoi(strc); /* m*/      
           Tvard[k1][2]=atoi(stre); /* n */      cutv(stra, strb,line,' '); 
           Tvar[cptcovn+k2]=Tvard[k1][1];      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      }
           for (k=1; k<=lastobs;k++)      else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        month=99;
           k1++;        year=9999;
           k2=k2+2;      }else{
         }        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       }          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
       else { /* no more sum */          return 1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      }
        /*  scanf("%d",i);*/      andc[i]=(double) year; 
       cutv(strd,strc,strb,'V');      moisdc[i]=(double) month; 
       Tvar[i]=atoi(strc);      strcpy(line,stra);
       }      
       strcpy(modelsav,stra);        cutv(stra, strb,line,' '); 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         scanf("%d",i);*/      }
     } /* end of loop + */      else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
   } /* end model */        month=99;
          year=9999;
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.      }else{
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          return 1;
   printf("cptcovprod=%d ", cptcovprod);      }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
   scanf("%d ",i);*/        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
     /*  if(mle==1){*/  
   if (weightopt != 1) { /* Maximisation without weights*/      }
     for(i=1;i<=n;i++) weight[i]=1.0;      annais[i]=(double)(year);
   }      moisnais[i]=(double)(month); 
     /*-calculation of age at interview from date of interview and age at death -*/      strcpy(line,stra);
   agev=matrix(1,maxwav,1,imx);      
       cutv(stra, strb,line,' '); 
   for (i=1; i<=imx; i++) {      errno=0;
     for(m=2; (m<= maxwav); m++) {      dval=strtod(strb,&endptr); 
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){      if( strb[0]=='\0' || (*endptr != '\0')){
         anint[m][i]=9999;        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         s[m][i]=-1;        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
       }        fflush(ficlog);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        return 1;
         nberr++;      }
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      weight[i]=dval; 
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      strcpy(line,stra);
         s[m][i]=-1;      
       }      for (j=ncovcol;j>=1;j--){
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){        cutv(stra, strb,line,' '); 
         nberr++;        if(strb[0]=='.') { /* Missing status */
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);          lval=-1;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);        }else{
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */          errno=0;
       }          lval=strtol(strb,&endptr,10); 
     }          if( strb[0]=='\0' || (*endptr != '\0')){
   }            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
   for (i=1; i<=imx; i++)  {            return 1;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
     for(m=firstpass; (m<= lastpass); m++){        }
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){        if(lval <-1 || lval >1){
         if (s[m][i] >= nlstate+1) {          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
           if(agedc[i]>0)   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
               agev[m][i]=agedc[i];   For example, for multinomial values like 1, 2 and 3,\n \
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   build V1=0 V2=0 for the reference value (1),\n \
             else {          V1=1 V2=0 for (2) \n \
               if ((int)andc[i]!=9999){   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
                 nbwarn++;   output of IMaCh is often meaningless.\n \
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);   Exiting.\n",lval,linei, i,line,j);
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
                 agev[m][i]=-1;   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
               }   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
             }   For example, for multinomial values like 1, 2 and 3,\n \
         }   build V1=0 V2=0 for the reference value (1),\n \
         else if(s[m][i] !=9){ /* Standard case, age in fractional          V1=1 V2=0 for (2) \n \
                                  years but with the precision of a month */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   output of IMaCh is often meaningless.\n \
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)   Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
             agev[m][i]=1;          return 1;
           else if(agev[m][i] <agemin){        }
             agemin=agev[m][i];        covar[j][i]=(double)(lval);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        strcpy(line,stra);
           }      }  
           else if(agev[m][i] >agemax){      lstra=strlen(stra);
             agemax=agev[m][i];       
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           }        stratrunc = &(stra[lstra-9]);
           /*agev[m][i]=anint[m][i]-annais[i];*/        num[i]=atol(stratrunc);
           /*     agev[m][i] = age[i]+2*m;*/      }
         }      else
         else { /* =9 */        num[i]=atol(stra);
           agev[m][i]=1;      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           s[m][i]=-1;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
         }      
       }      i=i+1;
       else /*= 0 Unknown */    } /* End loop reading  data */
         agev[m][i]=1;  
     }    *imax=i-1; /* Number of individuals */
        fclose(fic);
   }   
   for (i=1; i<=imx; i++)  {    return (0);
     for(m=firstpass; (m<=lastpass); m++){    /* endread: */
       if (s[m][i] > (nlstate+ndeath)) {      printf("Exiting readdata: ");
         nberr++;      fclose(fic);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          return (1);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      
         goto end;  
       }  
     }  }
   }  void removespace(char *str) {
     char *p1 = str, *p2 = str;
   /*for (i=1; i<=imx; i++){    do
   for (m=firstpass; (m<lastpass); m++){      while (*p2 == ' ')
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        p2++;
 }    while (*p1++ == *p2++);
   }
 }*/  
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
   agegomp=(int)agemin;     * - cptcovs number of simple covariates
   free_vector(severity,1,maxwav);     * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
   free_imatrix(outcome,1,maxwav+1,1,n);     *     which is a new column after the 9 (ncovcol) variables. 
   free_vector(moisnais,1,n);     * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
   free_vector(annais,1,n);     * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
   /* free_matrix(mint,1,maxwav,1,n);     *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      free_matrix(anint,1,maxwav,1,n);*/     * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
   free_vector(moisdc,1,n);   */
   free_vector(andc,1,n);  {
     int i, j, k, ks;
        int  j1, k1, k2;
   wav=ivector(1,imx);    char modelsav[80];
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    char stra[80], strb[80], strc[80], strd[80],stre[80];
   bh=imatrix(1,lastpass-firstpass+1,1,imx);  
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    /*removespace(model);*/
        if (strlen(model) >1){ /* If there is at least 1 covariate */
   /* Concatenates waves */      j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */      cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
   Tcode=ivector(1,100);                    /* including age products which are counted in cptcovage.
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                    * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
   ncodemax[1]=1;      cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
            strcpy(modelsav,model); 
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of      if (strstr(model,"AGE") !=0){
                                  the estimations*/        printf("Error. AGE must be in lower case 'age' model=%s ",model);
   h=0;        fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
   m=pow(2,cptcoveff);        return 1;
        }
   for(k=1;k<=cptcoveff; k++){      if (strstr(model,"v") !=0){
     for(i=1; i <=(m/pow(2,k));i++){        printf("Error. 'v' must be in upper case 'V' model=%s ",model);
       for(j=1; j <= ncodemax[k]; j++){        fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        return 1;
           h++;      }
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      /*   Design
         }       *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
       }       *  <          ncovcol=8                >
     }       * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
   }       *   k=  1    2      3       4     5       6      7        8
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
      codtab[1][2]=1;codtab[2][2]=2; */       *  covar[k,i], value of kth covariate if not including age for individual i:
   /* for(i=1; i <=m ;i++){       *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
      for(k=1; k <=cptcovn; k++){       *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
      }       *  Tage[++cptcovage]=k
      printf("\n");       *       if products, new covar are created after ncovcol with k1
      }       *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
      scanf("%d",i);*/       *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
           *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
   /*------------ gnuplot -------------*/       *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
   strcpy(optionfilegnuplot,optionfilefiname);       *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
   if(mle==-3)       *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
     strcat(optionfilegnuplot,"-mort");       *  <          ncovcol=8                >
   strcat(optionfilegnuplot,".gp");       *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
     printf("Problem with file %s",optionfilegnuplot);       * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
   }       * p Tprod[1]@2={                         6, 5}
   else{       *p Tvard[1][1]@4= {7, 8, 5, 6}
     fprintf(ficgp,"\n# %s\n", version);       * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
     fprintf(ficgp,"# %s\n", optionfilegnuplot);       *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficgp,"set missing 'NaNq'\n");       *How to reorganize?
   }       * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
   /*  fclose(ficgp);*/       * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
   /*--------- index.htm --------*/       *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */       */
   if(mle==-3)  
     strcat(optionfilehtm,"-mort");      /* This loop fills the array Tvar from the string 'model'.*/
   strcat(optionfilehtm,".htm");      /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
     printf("Problem with %s \n",optionfilehtm), exit(0);      /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
   }      /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */      /*  k=1 Tvar[1]=2 (from V2) */
   strcat(optionfilehtmcov,"-cov.htm");      /*  k=5 Tvar[5] */
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      /* for (k=1; k<=cptcovn;k++) { */
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
   }      /*  } */
   else{      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      /*
 <hr size=\"2\" color=\"#EC5E5E\"> \n\       * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\      for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);          Tvar[k]=0;
   }      cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \        cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 <hr size=\"2\" color=\"#EC5E5E\"> \n\                                       modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 \n\        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 <hr  size=\"2\" color=\"#EC5E5E\">\        /*scanf("%d",i);*/
  <ul><li><h4>Parameter files</h4>\n\        if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\          cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\          if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\            /* covar is not filled and then is empty */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\            cptcovprod--;
  - Date and time at start: %s</ul>\n",\            cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\            Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\            cptcovage++; /* Sums the number of covariates which include age as a product */
           fileres,fileres,\            Tage[cptcovage]=k;  /* Tage[1] = 4 */
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);            /*printf("stre=%s ", stre);*/
   fflush(fichtm);          } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
   strcpy(pathr,path);            cutl(stre,strb,strc,'V');
   strcat(pathr,optionfilefiname);            Tvar[k]=atoi(stre);
   chdir(optionfilefiname); /* Move to directory named optionfile */            cptcovage++;
              Tage[cptcovage]=k;
   /* Calculates basic frequencies. Computes observed prevalence at single age          } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
      and prints on file fileres'p'. */            /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);            cptcovn++;
             cptcovprodnoage++;k1++;
   fprintf(fichtm,"\n");            cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\            Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\                                    because this model-covariate is a construction we invent a new column
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\                                    ncovcol + k1
           imx,agemin,agemax,jmin,jmax,jmean);                                    If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                    Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
                k2=k2+2;
                Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
   /* For Powell, parameters are in a vector p[] starting at p[1]            Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            for (i=1; i<=lastobs;i++){
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */              /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/              covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
   if (mle==-3){          } /* End age is not in the model */
     ximort=matrix(1,NDIM,1,NDIM);        } /* End if model includes a product */
     cens=ivector(1,n);        else { /* no more sum */
     ageexmed=vector(1,n);          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     agecens=vector(1,n);         /*  scanf("%d",i);*/
     dcwave=ivector(1,n);          cutl(strd,strc,strb,'V');
            ks++; /**< Number of simple covariates */
     for (i=1; i<=imx; i++){          cptcovn++;
       dcwave[i]=-1;          Tvar[k]=atoi(strd);
       for (m=firstpass; m<=lastpass; m++)        }
         if (s[m][i]>nlstate) {        strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           dcwave[i]=m;        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/          scanf("%d",i);*/
           break;      } /* end of loop + */
         }    } /* end model */
     }    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     for (i=1; i<=imx; i++) {      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       if (wav[i]>0){  
         ageexmed[i]=agev[mw[1][i]][i];    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
         j=wav[i];    printf("cptcovprod=%d ", cptcovprod);
         agecens[i]=1.;    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
         if (ageexmed[i]> 1 && wav[i] > 0){    scanf("%d ",i);*/
           agecens[i]=agev[mw[j][i]][i];  
           cens[i]= 1;  
         }else if (ageexmed[i]< 1)    return (0); /* with covar[new additional covariate if product] and Tage if age */ 
           cens[i]= -1;    /*endread:*/
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)      printf("Exiting decodemodel: ");
           cens[i]=0 ;      return (1);
       }  }
       else cens[i]=-1;  
     }  int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
      {
     for (i=1;i<=NDIM;i++) {    int i, m;
       for (j=1;j<=NDIM;j++)  
         ximort[i][j]=(i == j ? 1.0 : 0.0);    for (i=1; i<=imx; i++) {
     }      for(m=2; (m<= maxwav); m++) {
            if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
     p[1]=0.0268; p[NDIM]=0.083;          anint[m][i]=9999;
     /*printf("%lf %lf", p[1], p[2]);*/          s[m][i]=-1;
            }
            if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     printf("Powell\n");  fprintf(ficlog,"Powell\n");          *nberr = *nberr + 1;
     strcpy(filerespow,"pow-mort");          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
     strcat(filerespow,fileres);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {          s[m][i]=-1;
       printf("Problem with resultfile: %s\n", filerespow);        }
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     }          (*nberr)++;
     fprintf(ficrespow,"# Powell\n# iter -2*LL");          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
     /*  for (i=1;i<=nlstate;i++)          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
         for(j=1;j<=nlstate+ndeath;j++)          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        }
     */      }
     fprintf(ficrespow,"\n");    }
      
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);    for (i=1; i<=imx; i++)  {
     fclose(ficrespow);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
          for(m=firstpass; (m<= lastpass); m++){
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
     for(i=1; i <=NDIM; i++)            if(agedc[i]>0){
       for(j=i+1;j<=NDIM;j++)              if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
         matcov[i][j]=matcov[j][i];                agev[m][i]=agedc[i];
                /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     printf("\nCovariance matrix\n ");              }else {
     for(i=1; i <=NDIM; i++) {                if ((int)andc[i]!=9999){
       for(j=1;j<=NDIM;j++){                  nbwarn++;
         printf("%f ",matcov[i][j]);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
       }                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
       printf("\n ");                  agev[m][i]=-1;
     }                }
                  }
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);            } /* agedc > 0 */
     for (i=1;i<=NDIM;i++)          }
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));          else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
     lsurv=vector(1,AGESUP);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     lpop=vector(1,AGESUP);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     tpop=vector(1,AGESUP);              agev[m][i]=1;
     lsurv[agegomp]=100000;            else if(agev[m][i] < *agemin){ 
                  *agemin=agev[m][i];
     for (k=agegomp;k<=AGESUP;k++) {              printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
       agemortsup=k;            }
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;            else if(agev[m][i] >*agemax){
     }              *agemax=agev[m][i];
                  /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
     for (k=agegomp;k<agemortsup;k++)            }
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));            /*agev[m][i]=anint[m][i]-annais[i];*/
                /*     agev[m][i] = age[i]+2*m;*/
     for (k=agegomp;k<agemortsup;k++){          }
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;          else { /* =9 */
       sumlpop=sumlpop+lpop[k];            agev[m][i]=1;
     }            s[m][i]=-1;
              }
     tpop[agegomp]=sumlpop;        }
     for (k=agegomp;k<(agemortsup-3);k++){        else /*= 0 Unknown */
       /*  tpop[k+1]=2;*/          agev[m][i]=1;
       tpop[k+1]=tpop[k]-lpop[k];      }
     }      
        }
        for (i=1; i<=imx; i++)  {
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");      for(m=firstpass; (m<=lastpass); m++){
     for (k=agegomp;k<(agemortsup-2);k++)        if (s[m][i] > (nlstate+ndeath)) {
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);          (*nberr)++;
              printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
              fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */          return 1;
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        }
          }
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \    }
                      stepm, weightopt,\  
                      model,imx,p,matcov,agemortsup);    /*for (i=1; i<=imx; i++){
        for (m=firstpass; (m<lastpass); m++){
     free_vector(lsurv,1,AGESUP);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     free_vector(lpop,1,AGESUP);  }
     free_vector(tpop,1,AGESUP);  
   } /* Endof if mle==-3 */  }*/
    
   else{ /* For mle >=1 */  
      printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  
     for (k=1; k<=npar;k++)    return (0);
       printf(" %d %8.5f",k,p[k]);   /* endread:*/
     printf("\n");      printf("Exiting calandcheckages: ");
     globpr=1; /* to print the contributions */      return (1);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  }
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  
     for (k=1; k<=npar;k++)  #if defined(_MSC_VER)
       printf(" %d %8.5f",k,p[k]);  /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
     printf("\n");  /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
     if(mle>=1){ /* Could be 1 or 2 */  //#include "stdafx.h"
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  //#include <stdio.h>
     }  //#include <tchar.h>
      //#include <windows.h>
     /*--------- results files --------------*/  //#include <iostream>
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
      
      LPFN_ISWOW64PROCESS fnIsWow64Process;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  BOOL IsWow64()
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  {
     for(i=1,jk=1; i <=nlstate; i++){          BOOL bIsWow64 = FALSE;
       for(k=1; k <=(nlstate+ndeath); k++){  
         if (k != i) {          //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           printf("%d%d ",i,k);          //  (HANDLE, PBOOL);
           fprintf(ficlog,"%d%d ",i,k);  
           fprintf(ficres,"%1d%1d ",i,k);          //LPFN_ISWOW64PROCESS fnIsWow64Process;
           for(j=1; j <=ncovmodel; j++){  
             printf("%lf ",p[jk]);          HMODULE module = GetModuleHandle(_T("kernel32"));
             fprintf(ficlog,"%lf ",p[jk]);          const char funcName[] = "IsWow64Process";
             fprintf(ficres,"%lf ",p[jk]);          fnIsWow64Process = (LPFN_ISWOW64PROCESS)
             jk++;                  GetProcAddress(module, funcName);
           }  
           printf("\n");          if (NULL != fnIsWow64Process)
           fprintf(ficlog,"\n");          {
           fprintf(ficres,"\n");                  if (!fnIsWow64Process(GetCurrentProcess(),
         }                          &bIsWow64))
       }                          //throw std::exception("Unknown error");
     }                          printf("Unknown error\n");
     if(mle!=0){          }
       /* Computing hessian and covariance matrix */          return bIsWow64 != FALSE;
       ftolhess=ftol; /* Usually correct */  }
       hesscov(matcov, p, npar, delti, ftolhess, func);  #endif
     }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  void syscompilerinfo()
     printf("# Scales (for hessian or gradient estimation)\n");   {
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");     /* #include "syscompilerinfo.h"*/
     for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){  #if defined __INTEL_COMPILER
         if (j!=i) {  #if defined(__GNUC__)
           fprintf(ficres,"%1d%1d",i,j);          struct utsname sysInfo;  /* For Intel on Linux and OS/X */
           printf("%1d%1d",i,j);  #endif
           fprintf(ficlog,"%1d%1d",i,j);  #elif defined(__GNUC__) 
           for(k=1; k<=ncovmodel;k++){  #ifndef  __APPLE__
             printf(" %.5e",delti[jk]);  #include <gnu/libc-version.h>  /* Only on gnu */
             fprintf(ficlog," %.5e",delti[jk]);  #endif
             fprintf(ficres," %.5e",delti[jk]);     struct utsname sysInfo;
             jk++;     int cross = CROSS;
           }     if (cross){
           printf("\n");             printf("Cross-");
           fprintf(ficlog,"\n");             fprintf(ficlog, "Cross-");
           fprintf(ficres,"\n");     }
         }  #endif
       }  
     }  #include <stdint.h>
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     printf("Compiled with:");fprintf(ficlog,"Compiled with:");
     if(mle>=1)  #if defined(__clang__)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  #endif
     /* # 121 Var(a12)\n\ */  #if defined(__ICC) || defined(__INTEL_COMPILER)
     /* # 122 Cov(b12,a12) Var(b12)\n\ */     printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */  #endif
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */  #if defined(__GNUC__) || defined(__GNUG__)
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */     printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */  #endif
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  #if defined(__HP_cc) || defined(__HP_aCC)
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */     printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
      #endif
      #if defined(__IBMC__) || defined(__IBMCPP__)
     /* Just to have a covariance matrix which will be more understandable     printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
        even is we still don't want to manage dictionary of variables  #endif
     */  #if defined(_MSC_VER)
     for(itimes=1;itimes<=2;itimes++){     printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
       jj=0;  #endif
       for(i=1; i <=nlstate; i++){  #if defined(__PGI)
         for(j=1; j <=nlstate+ndeath; j++){     printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
           if(j==i) continue;  #endif
           for(k=1; k<=ncovmodel;k++){  #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
             jj++;     printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
             ca[0]= k+'a'-1;ca[1]='\0';  #endif
             if(itimes==1){     printf(" for ");fprintf(ficlog," for ");
               if(mle>=1)     
                 printf("#%1d%1d%d",i,j,k);  // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
               fprintf(ficlog,"#%1d%1d%d",i,j,k);  #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
               fprintf(ficres,"#%1d%1d%d",i,j,k);      // Windows (x64 and x86)
             }else{     printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
               if(mle>=1)  #elif __unix__ // all unices, not all compilers
                 printf("%1d%1d%d",i,j,k);      // Unix
               fprintf(ficlog,"%1d%1d%d",i,j,k);     printf("Unix ");fprintf(ficlog,"Unix ");
               fprintf(ficres,"%1d%1d%d",i,j,k);  #elif __linux__
             }      // linux
             ll=0;     printf("linux ");fprintf(ficlog,"linux ");
             for(li=1;li <=nlstate; li++){  #elif __APPLE__
               for(lj=1;lj <=nlstate+ndeath; lj++){      // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
                 if(lj==li) continue;     printf("Mac OS ");fprintf(ficlog,"Mac OS ");
                 for(lk=1;lk<=ncovmodel;lk++){  #endif
                   ll++;  
                   if(ll<=jj){  /*  __MINGW32__   */
                     cb[0]= lk +'a'-1;cb[1]='\0';  /*  __CYGWIN__   */
                     if(ll<jj){  /* __MINGW64__  */
                       if(itimes==1){  // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
                         if(mle>=1)  /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  /* _WIN64  // Defined for applications for Win64. */
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  /* _M_X64 // Defined for compilations that target x64 processors. */
                       }else{  /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
                         if(mle>=1)  
                           printf(" %.5e",matcov[jj][ll]);  #if UINTPTR_MAX == 0xffffffff
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
                         fprintf(ficres," %.5e",matcov[jj][ll]);  #elif UINTPTR_MAX == 0xffffffffffffffff
                       }     printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
                     }else{  #else
                       if(itimes==1){     printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
                         if(mle>=1)  #endif
                           printf(" Var(%s%1d%1d)",ca,i,j);  
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);  #if defined(__GNUC__)
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);  # if defined(__GNUC_PATCHLEVEL__)
                       }else{  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                         if(mle>=1)                              + __GNUC_MINOR__ * 100 \
                           printf(" %.5e",matcov[jj][ll]);                              + __GNUC_PATCHLEVEL__)
                         fprintf(ficlog," %.5e",matcov[jj][ll]);  # else
                         fprintf(ficres," %.5e",matcov[jj][ll]);  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                       }                              + __GNUC_MINOR__ * 100)
                     }  # endif
                   }     printf(" using GNU C version %d.\n", __GNUC_VERSION__);
                 } /* end lk */     fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
               } /* end lj */  
             } /* end li */     if (uname(&sysInfo) != -1) {
             if(mle>=1)       printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
               printf("\n");       fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
             fprintf(ficlog,"\n");     }
             fprintf(ficres,"\n");     else
             numlinepar++;        perror("uname() error");
           } /* end k*/     //#ifndef __INTEL_COMPILER 
         } /*end j */  #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
       } /* end i */     printf("GNU libc version: %s\n", gnu_get_libc_version()); 
     } /* end itimes */     fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
      #endif
     fflush(ficlog);  #endif
     fflush(ficres);  
         //   void main()
     while((c=getc(ficpar))=='#' && c!= EOF){     //   {
       ungetc(c,ficpar);  #if defined(_MSC_VER)
       fgets(line, MAXLINE, ficpar);     if (IsWow64()){
       puts(line);             printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
       fputs(line,ficparo);             fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
     }     }
     ungetc(c,ficpar);     else{
                 printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
     estepm=0;             fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     }
     if (estepm==0 || estepm < stepm) estepm=stepm;     //      printf("\nPress Enter to continue...");
     if (fage <= 2) {     //      getchar();
       bage = ageminpar;     //   }
       fage = agemaxpar;  
     }  #endif
         
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
      int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     while((c=getc(ficpar))=='#' && c!= EOF){    /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       ungetc(c,ficpar);    int i, j, k, i1 ;
       fgets(line, MAXLINE, ficpar);    double ftolpl = 1.e-10;
       puts(line);    double age, agebase, agelim;
       fputs(line,ficparo);  
     }      strcpy(filerespl,"pl");
     ungetc(c,ficpar);      strcat(filerespl,fileres);
          if((ficrespl=fopen(filerespl,"w"))==NULL) {
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      }
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
          pstamp(ficrespl);
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficrespl,"# Period (stable) prevalence \n");
       ungetc(c,ficpar);      fprintf(ficrespl,"#Age ");
       fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       puts(line);      fprintf(ficrespl,"\n");
       fputs(line,ficparo);    
     }      /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     ungetc(c,ficpar);  
          agebase=ageminpar;
          agelim=agemaxpar;
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;  
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      i1=pow(2,cptcoveff);
          if (cptcovn < 1){i1=1;}
     fscanf(ficpar,"pop_based=%d\n",&popbased);  
     fprintf(ficparo,"pop_based=%d\n",popbased);        for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     fprintf(ficres,"pop_based=%d\n",popbased);        /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
            //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     while((c=getc(ficpar))=='#' && c!= EOF){          k=k+1;
       ungetc(c,ficpar);          /* to clean */
       fgets(line, MAXLINE, ficpar);          //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
       puts(line);          fprintf(ficrespl,"\n#******");
       fputs(line,ficparo);          printf("\n#******");
     }          fprintf(ficlog,"\n#******");
     ungetc(c,ficpar);          for(j=1;j<=cptcoveff;j++) {
                fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          }
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          fprintf(ficrespl,"******\n");
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          printf("******\n");
     /* day and month of proj2 are not used but only year anproj2.*/          fprintf(ficlog,"******\n");
      
              fprintf(ficrespl,"#Age ");
              for(j=1;j<=cptcoveff;j++) {
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/            fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/          }
              for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */          fprintf(ficrespl,"\n");
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);          
              for (age=agebase; age<=agelim; age++){
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\          /* for (age=agebase; age<=agebase; age++){ */
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            fprintf(ficrespl,"%.0f ",age );
                  for(j=1;j<=cptcoveff;j++)
    /*------------ free_vector  -------------*/              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    /*  chdir(path); */            for(i=1; i<=nlstate;i++)
                fprintf(ficrespl," %.5f", prlim[i][i]);
     free_ivector(wav,1,imx);            fprintf(ficrespl,"\n");
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          } /* Age */
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);          /* was end of cptcod */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        } /* cptcov */
     free_lvector(num,1,n);  }
     free_vector(agedc,1,n);  
     /*free_matrix(covar,0,NCOVMAX,1,n);*/  int hPijx(double *p, int bage, int fage){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      /*------------- h Pij x at various ages ------------*/
     fclose(ficparo);  
     fclose(ficres);    int stepsize;
     int agelim;
     int hstepm;
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/    int nhstepm;
      int h, i, i1, j, k;
     strcpy(filerespl,"pl");  
     strcat(filerespl,fileres);    double agedeb;
     if((ficrespl=fopen(filerespl,"w"))==NULL) {    double ***p3mat;
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;  
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     }      if((ficrespij=fopen(filerespij,"w"))==NULL) {
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);        printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
     pstamp(ficrespl);      }
     fprintf(ficrespl,"# Period (stable) prevalence \n");      printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficrespl,"#Age ");      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    
     fprintf(ficrespl,"\n");      stepsize=(int) (stepm+YEARM-1)/YEARM;
        /*if (stepm<=24) stepsize=2;*/
     prlim=matrix(1,nlstate,1,nlstate);  
       agelim=AGESUP;
     agebase=ageminpar;      hstepm=stepsize*YEARM; /* Every year of age */
     agelim=agemaxpar;      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
     ftolpl=1.e-10;  
     i1=cptcoveff;      /* hstepm=1;   aff par mois*/
     if (cptcovn < 1){i1=1;}      pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      i1= pow(2,cptcoveff);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
         k=k+1;     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     /*   k=k+1;  */
         fprintf(ficrespl,"\n#******");      for (k=1; k <= (int) pow(2,cptcoveff); k++){
         printf("\n#******");        fprintf(ficrespij,"\n#****** ");
         fprintf(ficlog,"\n#******");        for(j=1;j<=cptcoveff;j++) 
         for(j=1;j<=cptcoveff;j++) {          fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficrespij,"******\n");
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
         }          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficrespl,"******\n");          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         printf("******\n");          
         fprintf(ficlog,"******\n");          /*        nhstepm=nhstepm*YEARM; aff par mois*/
                  
         for (age=agebase; age<=agelim; age++){          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          oldm=oldms;savm=savms;
           fprintf(ficrespl,"%.0f ",age );          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           for(j=1;j<=cptcoveff;j++)          fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)            for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespl," %.5f", prlim[i][i]);              fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespl,"\n");          fprintf(ficrespij,"\n");
         }          for (h=0; h<=nhstepm; h++){
       }            /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
     }            fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
     fclose(ficrespl);            for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
     /*------------- h Pij x at various ages ------------*/                fprintf(ficrespij," %.5f", p3mat[i][j][h]);
              fprintf(ficrespij,"\n");
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);          }
     if((ficrespij=fopen(filerespij,"w"))==NULL) {          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficrespij,"\n");
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        }
     }        /*}*/
     printf("Computing pij: result on file '%s' \n", filerespij);      }
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  }
    
     stepsize=(int) (stepm+YEARM-1)/YEARM;  
     /*if (stepm<=24) stepsize=2;*/  /***********************************************/
   /**************** Main Program *****************/
     agelim=AGESUP;  /***********************************************/
     hstepm=stepsize*YEARM; /* Every year of age */  
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  int main(int argc, char *argv[])
   {
     /* hstepm=1;   aff par mois*/  #ifdef GSL
     pstamp(ficrespij);    const gsl_multimin_fminimizer_type *T;
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");    size_t iteri = 0, it;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    int rval = GSL_CONTINUE;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int status = GSL_SUCCESS;
         k=k+1;    double ssval;
         fprintf(ficrespij,"\n#****** ");  #endif
         for(j=1;j<=cptcoveff;j++)    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
         fprintf(ficrespij,"******\n");  
            int jj, ll, li, lj, lk;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    int numlinepar=0; /* Current linenumber of parameter file */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int itimes;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int NDIM=2;
     int vpopbased=0;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  
     char ca[32], cb[32];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  FILE *fichtm; *//* Html File */
           oldm=oldms;savm=savms;    /* FILE *ficgp;*/ /*Gnuplot File */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      struct stat info;
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");    double agedeb;
           for(i=1; i<=nlstate;i++)    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    double fret;
           fprintf(ficrespij,"\n");    double dum; /* Dummy variable */
           for (h=0; h<=nhstepm; h++){    double ***p3mat;
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double ***mobaverage;
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)    char line[MAXLINE];
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
             fprintf(ficrespij,"\n");    char pathr[MAXLINE], pathimach[MAXLINE]; 
           }    char *tok, *val; /* pathtot */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int firstobs=1, lastobs=10;
           fprintf(ficrespij,"\n");    int c,  h , cpt;
         }    int jl;
       }    int i1, j1, jk, stepsize;
     }    int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     fclose(ficrespij);    int agemortsup;
     float  sumlpop=0.;
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     for(i=1;i<=AGESUP;i++)    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       for(j=1;j<=NCOVMAX;j++)  
         for(k=1;k<=NCOVMAX;k++)    double bage=0, fage=110, age, agelim, agebase;
           probs[i][j][k]=0.;    double ftolpl=FTOL;
     double **prlim;
     /*---------- Forecasting ------------------*/    double ***param; /* Matrix of parameters */
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/    double  *p;
     if(prevfcast==1){    double **matcov; /* Matrix of covariance */
       /*    if(stepm ==1){*/    double ***delti3; /* Scale */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);    double *delti; /* Scale */
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/    double ***eij, ***vareij;
       /*      }  */    double **varpl; /* Variances of prevalence limits by age */
       /*      else{ */    double *epj, vepp;
       /*        erreur=108; */  
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    double **ximort;
       /*      } */    char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     }    int *dcwave;
    
     char z[1]="c";
     /*---------- Health expectancies and variances ------------*/  
     /*char  *strt;*/
     strcpy(filerest,"t");    char strtend[80];
     strcat(filerest,fileres);  
     if((ficrest=fopen(filerest,"w"))==NULL) {  
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /*   setlocale (LC_ALL, ""); */
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
     }  /*   textdomain (PACKAGE); */
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);  /*   setlocale (LC_CTYPE, ""); */
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);  /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     strcpy(filerese,"e");    rstart_time = time(NULL);  
     strcat(filerese,fileres);    /*  (void) gettimeofday(&start_time,&tzp);*/
     if((ficreseij=fopen(filerese,"w"))==NULL) {    start_time = *localtime(&rstart_time);
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    curr_time=start_time;
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /*tml = *localtime(&start_time.tm_sec);*/
     }    /* strcpy(strstart,asctime(&tml)); */
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);    strcpy(strstart,asctime(&start_time));
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
   /*  printf("Localtime (at start)=%s",strstart); */
     strcpy(fileresstde,"stde");  /*  tp.tm_sec = tp.tm_sec +86400; */
     strcat(fileresstde,fileres);  /*  tm = *localtime(&start_time.tm_sec); */
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
     }  /*   tp.tm_sec = mktime(&tmg); */
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  /*   strt=asctime(&tmg); */
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
     strcpy(filerescve,"cve");  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
     strcat(filerescve,fileres);  *  tm = *localtime(&time_value);
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {  *  strstart=asctime(&tm);
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);  */
     }  
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);    nberr=0; /* Number of errors and warnings */
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);    nbwarn=0;
     getcwd(pathcd, size);
     strcpy(fileresv,"v");  
     strcat(fileresv,fileres);    printf("\n%s\n%s",version,fullversion);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {    if(argc <=1){
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      printf("\nEnter the parameter file name: ");
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      fgets(pathr,FILENAMELENGTH,stdin);
     }      i=strlen(pathr);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      if(pathr[i-1]=='\n')
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        pathr[i-1]='\0';
       i=strlen(pathr);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        pathr[i-1]='\0';
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\     for (tok = pathr; tok != NULL; ){
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);        printf("Pathr |%s|\n",pathr);
     */        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
     if (mobilav!=0) {        strcpy (pathtot, val);
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(pathr[0] == '\0') break; /* Dirty */
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      }
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    }
         printf(" Error in movingaverage mobilav=%d\n",mobilav);    else{
       }      strcpy(pathtot,argv[1]);
     }    }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    /*cygwin_split_path(pathtot,path,optionfile);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
         k=k+1;    /* cutv(path,optionfile,pathtot,'\\');*/
         fprintf(ficrest,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    /* Split argv[0], imach program to get pathimach */
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
         fprintf(ficrest,"******\n");    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
         fprintf(ficreseij,"\n#****** ");   /*   strcpy(pathimach,argv[0]); */
         fprintf(ficresstdeij,"\n#****** ");    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
         fprintf(ficrescveij,"\n#****** ");    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
         for(j=1;j<=cptcoveff;j++) {    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    chdir(path); /* Can be a relative path */
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Current directory %s!\n",pathcd);
         }    strcpy(command,"mkdir ");
         fprintf(ficreseij,"******\n");    strcat(command,optionfilefiname);
         fprintf(ficresstdeij,"******\n");    if((outcmd=system(command)) != 0){
         fprintf(ficrescveij,"******\n");      printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
         fprintf(ficresvij,"\n#****** ");      /* fclose(ficlog); */
         for(j=1;j<=cptcoveff;j++)  /*     exit(1); */
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         fprintf(ficresvij,"******\n");  /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*   } */
         oldm=oldms;savm=savms;  
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);      /*-------- arguments in the command line --------*/
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);    
      /* Log file */
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    strcat(filelog, optionfilefiname);
         oldm=oldms;savm=savms;    strcat(filelog,".log");    /* */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);    if((ficlog=fopen(filelog,"w"))==NULL)    {
         if(popbased==1){      printf("Problem with logfile %s\n",filelog);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      goto end;
         }    }
     fprintf(ficlog,"Log filename:%s\n",filelog);
         pstamp(ficrest);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");    fprintf(ficlog,"\nEnter the parameter file name: \n");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
         fprintf(ficrest,"\n");   path=%s \n\
    optionfile=%s\n\
         epj=vector(1,nlstate+1);   optionfilext=%s\n\
         for(age=bage; age <=fage ;age++){   optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           if (popbased==1) {    syscompilerinfo();
             if(mobilav ==0){  
               for(i=1; i<=nlstate;i++)    printf("Local time (at start):%s",strstart);
                 prlim[i][i]=probs[(int)age][i][k];    fprintf(ficlog,"Local time (at start): %s",strstart);
             }else{ /* mobilav */    fflush(ficlog);
               for(i=1; i<=nlstate;i++)  /*   (void) gettimeofday(&curr_time,&tzp); */
                 prlim[i][i]=mobaverage[(int)age][i][k];  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
             }  
           }    /* */
            strcpy(fileres,"r");
           fprintf(ficrest," %4.0f",age);    strcat(fileres, optionfilefiname);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    strcat(fileres,".txt");    /* Other files have txt extension */
             for(i=1, epj[j]=0.;i <=nlstate;i++) {  
               epj[j] += prlim[i][i]*eij[i][j][(int)age];    /*---------arguments file --------*/
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
             }    if((ficpar=fopen(optionfile,"r"))==NULL)    {
             epj[nlstate+1] +=epj[j];      printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
           }      fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
           for(i=1, vepp=0.;i <=nlstate;i++)      /* goto end; */
             for(j=1;j <=nlstate;j++)      exit(70); 
               vepp += vareij[i][j][(int)age];    }
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
           for(j=1;j <=nlstate;j++){  
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
           }    strcpy(filereso,"o");
           fprintf(ficrest,"\n");    strcat(filereso,fileres);
         }    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      printf("Problem with Output resultfile: %s\n", filereso);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         free_vector(epj,1,nlstate+1);      fflush(ficlog);
       }      goto end;
     }    }
     free_vector(weight,1,n);  
     free_imatrix(Tvard,1,15,1,2);    /* Reads comments: lines beginning with '#' */
     free_imatrix(s,1,maxwav+1,1,n);    numlinepar=0;
     free_matrix(anint,1,maxwav,1,n);    while((c=getc(ficpar))=='#' && c!= EOF){
     free_matrix(mint,1,maxwav,1,n);      ungetc(c,ficpar);
     free_ivector(cod,1,n);      fgets(line, MAXLINE, ficpar);
     free_ivector(tab,1,NCOVMAX);      numlinepar++;
     fclose(ficreseij);      fputs(line,stdout);
     fclose(ficresstdeij);      fputs(line,ficparo);
     fclose(ficrescveij);      fputs(line,ficlog);
     fclose(ficresvij);    }
     fclose(ficrest);    ungetc(c,ficpar);
     fclose(ficpar);  
      fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     /*------- Variance of period (stable) prevalence------*/      numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     strcpy(fileresvpl,"vpl");    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     strcat(fileresvpl,fileres);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    fflush(ficlog);
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);    while((c=getc(ficpar))=='#' && c!= EOF){
       exit(0);      ungetc(c,ficpar);
     }      fgets(line, MAXLINE, ficpar);
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);      numlinepar++;
       fputs(line, stdout);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      //puts(line);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fputs(line,ficparo);
         k=k+1;      fputs(line,ficlog);
         fprintf(ficresvpl,"\n#****** ");    }
         for(j=1;j<=cptcoveff;j++)    ungetc(c,ficpar);
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficresvpl,"******\n");     
          covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
         varpl=matrix(1,nlstate,(int) bage, (int) fage);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
         oldm=oldms;savm=savms;    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);       v1+v2*age+v2*v3 makes cptcovn = 3
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    */
       }    if (strlen(model)>1) 
     }      ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
     fclose(ficresvpl);      ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     /*---------- End : free ----------------*/    nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    npar= nforce*ncovmodel; /* Number of parameters like aij*/
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
   }  /* mle==-3 arrives here for freeing */      fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
   free_matrix(prlim,1,nlstate,1,nlstate);      fflush(stdout);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      fclose (ficlog);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      goto end;
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     free_matrix(covar,0,NCOVMAX,1,n);    delti=delti3[1][1];
     free_matrix(matcov,1,npar,1,npar);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     /*free_vector(delti,1,npar);*/    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     free_matrix(agev,1,maxwav,1,imx);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_ivector(ncodemax,1,8);      fclose (ficparo);
     free_ivector(Tvar,1,15);      fclose (ficlog);
     free_ivector(Tprod,1,15);      goto end;
     free_ivector(Tvaraff,1,15);      exit(0);
     free_ivector(Tage,1,15);    }
     free_ivector(Tcode,1,100);    else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     free_imatrix(codtab,1,100,1,10);      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   fflush(fichtm);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   fflush(ficgp);      matcov=matrix(1,npar,1,npar);
      }
     else{
   if((nberr >0) || (nbwarn>0)){      /* Read guessed parameters */
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      /* Reads comments: lines beginning with '#' */
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      while((c=getc(ficpar))=='#' && c!= EOF){
   }else{        ungetc(c,ficpar);
     printf("End of Imach\n");        fgets(line, MAXLINE, ficpar);
     fprintf(ficlog,"End of Imach\n");        numlinepar++;
   }        fputs(line,stdout);
   printf("See log file on %s\n",filelog);        fputs(line,ficparo);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fputs(line,ficlog);
   (void) gettimeofday(&end_time,&tzp);      }
   tm = *localtime(&end_time.tv_sec);      ungetc(c,ficpar);
   tmg = *gmtime(&end_time.tv_sec);      
   strcpy(strtend,asctime(&tm));      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);      for(i=1; i <=nlstate; i++){
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);        j=0;
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));        for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);          j++;
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));          fscanf(ficpar,"%1d%1d",&i1,&j1);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);          if ((i1 != i) && (j1 != j)){
   /*  printf("Total time was %d uSec.\n", total_usecs);*/            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 /*   if(fileappend(fichtm,optionfilehtm)){ */  It might be a problem of design; if ncovcol and the model are correct\n \
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
   fclose(fichtm);            exit(1);
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);          }
   fclose(fichtmcov);          fprintf(ficparo,"%1d%1d",i1,j1);
   fclose(ficgp);          if(mle==1)
   fclose(ficlog);            printf("%1d%1d",i,j);
   /*------ End -----------*/          fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
    printf("Before Current directory %s!\n",pathcd);            if(mle==1){
    if(chdir(pathcd) != 0)              printf(" %lf",param[i][j][k]);
     printf("Can't move to directory %s!\n",path);              fprintf(ficlog," %lf",param[i][j][k]);
   if(getcwd(pathcd,MAXLINE) > 0)            }
     printf("Current directory %s!\n",pathcd);            else
   /*strcat(plotcmd,CHARSEPARATOR);*/              fprintf(ficlog," %lf",param[i][j][k]);
   sprintf(plotcmd,"gnuplot");            fprintf(ficparo," %lf",param[i][j][k]);
 #ifndef UNIX          }
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);          fscanf(ficpar,"\n");
 #endif          numlinepar++;
   if(!stat(plotcmd,&info)){          if(mle==1)
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);            printf("\n");
     if(!stat(getenv("GNUPLOTBIN"),&info)){          fprintf(ficlog,"\n");
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);          fprintf(ficparo,"\n");
     }else        }
       strcpy(pplotcmd,plotcmd);      }  
 #ifdef UNIX      fflush(ficlog);
     strcpy(plotcmd,GNUPLOTPROGRAM);  
     if(!stat(plotcmd,&info)){      /* Reads scales values */
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      p=param[1][1];
     }else      
       strcpy(pplotcmd,plotcmd);      /* Reads comments: lines beginning with '#' */
 #endif      while((c=getc(ficpar))=='#' && c!= EOF){
   }else        ungetc(c,ficpar);
     strcpy(pplotcmd,plotcmd);        fgets(line, MAXLINE, ficpar);
          numlinepar++;
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);        fputs(line,stdout);
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);        fputs(line,ficparo);
         fputs(line,ficlog);
   if((outcmd=system(plotcmd)) != 0){      }
     printf("\n Problem with gnuplot\n");      ungetc(c,ficpar);
   }  
   printf(" Wait...");      for(i=1; i <=nlstate; i++){
   while (z[0] != 'q') {        for(j=1; j <=nlstate+ndeath-1; j++){
     /* chdir(path); */          fscanf(ficpar,"%1d%1d",&i1,&j1);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");          if ( (i1-i) * (j1-j) != 0){
     scanf("%s",z);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 /*     if (z[0] == 'c') system("./imach"); */            exit(1);
     if (z[0] == 'e') {          }
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);          printf("%1d%1d",i,j);
       system(optionfilehtm);          fprintf(ficparo,"%1d%1d",i1,j1);
     }          fprintf(ficlog,"%1d%1d",i1,j1);
     else if (z[0] == 'g') system(plotcmd);          for(k=1; k<=ncovmodel;k++){
     else if (z[0] == 'q') exit(0);            fscanf(ficpar,"%le",&delti3[i][j][k]);
   }            printf(" %le",delti3[i][j][k]);
   end:            fprintf(ficparo," %le",delti3[i][j][k]);
   while (z[0] != 'q') {            fprintf(ficlog," %le",delti3[i][j][k]);
     printf("\nType  q for exiting: ");          }
     scanf("%s",z);          fscanf(ficpar,"\n");
   }          numlinepar++;
 }          printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.183


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>