Diff for /imach/src/imach.c between versions 1.90 and 1.125

version 1.90, 2003/06/24 12:34:15 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Some bugs corrected for windows. Also, when    Errors in calculation of health expectancies. Age was not initialized.
   mle=-1 a template is output in file "or"mypar.txt with the design    Forecasting file added.
   of the covariance matrix to be input.  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Revision 1.89  2003/06/24 12:30:52  brouard    Parameters are printed with %lf instead of %f (more numbers after the comma).
   (Module): Some bugs corrected for windows. Also, when    The log-likelihood is printed in the log file
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   Revision 1.88  2003/06/23 17:54:56  brouard    name. <head> headers where missing.
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.  
     * imach.c (Module): Weights can have a decimal point as for
   Revision 1.87  2003/06/18 12:26:01  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   Version 0.96    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.86  2003/06/17 20:04:08  brouard    1.
   (Module): Change position of html and gnuplot routines and added    Version 0.98g
   routine fileappend.  
     Revision 1.122  2006/03/20 09:45:41  brouard
   Revision 1.85  2003/06/17 13:12:43  brouard    (Module): Weights can have a decimal point as for
   * imach.c (Repository): Check when date of death was earlier that    English (a comma might work with a correct LC_NUMERIC environment,
   current date of interview. It may happen when the death was just    otherwise the weight is truncated).
   prior to the death. In this case, dh was negative and likelihood    Modification of warning when the covariates values are not 0 or
   was wrong (infinity). We still send an "Error" but patch by    1.
   assuming that the date of death was just one stepm after the    Version 0.98g
   interview.  
   (Repository): Because some people have very long ID (first column)    Revision 1.121  2006/03/16 17:45:01  lievre
   we changed int to long in num[] and we added a new lvector for    * imach.c (Module): Comments concerning covariates added
   memory allocation. But we also truncated to 8 characters (left  
   truncation)    * imach.c (Module): refinements in the computation of lli if
   (Repository): No more line truncation errors.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.120  2006/03/16 15:10:38  lievre
   place. It differs from routine "prevalence" which may be called    (Module): refinements in the computation of lli if
   many times. Probs is memory consuming and must be used with    status=-2 in order to have more reliable computation if stepm is
   parcimony.    not 1 month. Version 0.98f
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)  
     Revision 1.119  2006/03/15 17:42:26  brouard
   Revision 1.83  2003/06/10 13:39:11  lievre    (Module): Bug if status = -2, the loglikelihood was
   *** empty log message ***    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   Add log in  imach.c and  fullversion number is now printed.    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /*    (Module): Function pstamp added
    Interpolated Markov Chain    (Module): Version 0.98d
   
   Short summary of the programme:    Revision 1.117  2006/03/14 17:16:22  brouard
       (Module): varevsij Comments added explaining the second
   This program computes Healthy Life Expectancies from    table of variances if popbased=1 .
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   first survey ("cross") where individuals from different ages are    (Module): Function pstamp added
   interviewed on their health status or degree of disability (in the    (Module): Version 0.98d
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.116  2006/03/06 10:29:27  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Variance-covariance wrong links and
   computed from the time spent in each health state according to a    varian-covariance of ej. is needed (Saito).
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.115  2006/02/27 12:17:45  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): One freematrix added in mlikeli! 0.98c
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.114  2006/02/26 12:57:58  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Some improvements in processing parameter
   'age' is age and 'sex' is a covariate. If you want to have a more    filename with strsep.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.113  2006/02/24 14:20:24  brouard
   you to do it.  More covariates you add, slower the    (Module): Memory leaks checks with valgrind and:
   convergence.    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.112  2006/01/30 09:55:26  brouard
   identical for each individual. Also, if a individual missed an    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   hPijx is the probability to be observed in state i at age x+h    (Module): Comments can be added in data file. Missing date values
   conditional to the observed state i at age x. The delay 'h' can be    can be a simple dot '.'.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.110  2006/01/25 00:51:50  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    (Module): Lots of cleaning and bugs added (Gompertz)
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.109  2006/01/24 19:37:15  brouard
   hPijx.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.108  2006/01/19 18:05:42  lievre
   of the life expectancies. It also computes the stable prevalence.     Gnuplot problem appeared...
       To be fixed
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.107  2006/01/19 16:20:37  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Test existence of gnuplot in imach path
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.106  2006/01/19 13:24:36  brouard
   software can be distributed freely for non commercial use. Latest version    Some cleaning and links added in html output
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    *** empty log message ***
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.104  2005/09/30 16:11:43  lievre
   **********************************************************************/    (Module): sump fixed, loop imx fixed, and simplifications.
 /*    (Module): If the status is missing at the last wave but we know
   main    that the person is alive, then we can code his/her status as -2
   read parameterfile    (instead of missing=-1 in earlier versions) and his/her
   read datafile    contributions to the likelihood is 1 - Prob of dying from last
   concatwav    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   freqsummary    the healthy state at last known wave). Version is 0.98
   if (mle >= 1)  
     mlikeli    Revision 1.103  2005/09/30 15:54:49  lievre
   print results files    (Module): sump fixed, loop imx fixed, and simplifications.
   if mle==1   
      computes hessian    Revision 1.102  2004/09/15 17:31:30  brouard
   read end of parameter file: agemin, agemax, bage, fage, estepm    Add the possibility to read data file including tab characters.
       begin-prev-date,...  
   open gnuplot file    Revision 1.101  2004/09/15 10:38:38  brouard
   open html file    Fix on curr_time
   stable prevalence  
    for age prevalim()    Revision 1.100  2004/07/12 18:29:06  brouard
   h Pij x    Add version for Mac OS X. Just define UNIX in Makefile
   variance of p varprob  
   forecasting if prevfcast==1 prevforecast call prevalence()    Revision 1.99  2004/06/05 08:57:40  brouard
   health expectancies    *** empty log message ***
   Variance-covariance of DFLE  
   prevalence()    Revision 1.98  2004/05/16 15:05:56  brouard
    movingaverage()    New version 0.97 . First attempt to estimate force of mortality
   varevsij()     directly from the data i.e. without the need of knowing the health
   if popbased==1 varevsij(,popbased)    state at each age, but using a Gompertz model: log u =a + b*age .
   total life expectancies    This is the basic analysis of mortality and should be done before any
   Variance of stable prevalence    other analysis, in order to test if the mortality estimated from the
  end    cross-longitudinal survey is different from the mortality estimated
 */    from other sources like vital statistic data.
   
     The same imach parameter file can be used but the option for mle should be -3.
   
      Agnès, who wrote this part of the code, tried to keep most of the
 #include <math.h>    former routines in order to include the new code within the former code.
 #include <stdio.h>  
 #include <stdlib.h>    The output is very simple: only an estimate of the intercept and of
 #include <unistd.h>    the slope with 95% confident intervals.
   
 #include <sys/time.h>    Current limitations:
 #include <time.h>    A) Even if you enter covariates, i.e. with the
 #include "timeval.h"    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.97  2004/02/20 13:25:42  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Version 0.96d. Population forecasting command line is (temporarily)
 #define FILENAMELENGTH 132    suppressed.
 /*#define DEBUG*/  
 /*#define windows*/    Revision 1.96  2003/07/15 15:38:55  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    rewritten within the same printf. Workaround: many printfs.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define NINTERVMAX 8    matrix (cov(a12,c31) instead of numbers.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.94  2003/06/27 13:00:02  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Just cleaning
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.93  2003/06/25 16:33:55  brouard
 #define AGESUP 130    (Module): On windows (cygwin) function asctime_r doesn't
 #define AGEBASE 40    exist so I changed back to asctime which exists.
 #ifdef unix    (Module): Version 0.96b
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.92  2003/06/25 16:30:45  brouard
 #else    (Module): On windows (cygwin) function asctime_r doesn't
 #define DIRSEPARATOR '\\'    exist so I changed back to asctime which exists.
 #define ODIRSEPARATOR '/'  
 #endif    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /* $Id$ */    (Repository): Elapsed time after each iteration is now output. It
 /* $State$ */    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";    concerning matrix of covariance. It has extension -cov.htm.
 char fullversion[]="$Revision$ $Date$";   
 int erreur; /* Error number */    Revision 1.90  2003/06/24 12:34:15  brouard
 int nvar;    (Module): Some bugs corrected for windows. Also, when
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    mle=-1 a template is output in file "or"mypar.txt with the design
 int npar=NPARMAX;    of the covariance matrix to be input.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.89  2003/06/24 12:30:52  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Some bugs corrected for windows. Also, when
 int popbased=0;    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.88  2003/06/23 17:54:56  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int gipmx, gsw; /* Global variables on the number of contributions   
                    to the likelihood and the sum of weights (done by funcone)*/    Revision 1.87  2003/06/18 12:26:01  brouard
 int mle, weightopt;    Version 0.96
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.86  2003/06/17 20:04:08  brouard
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    (Module): Change position of html and gnuplot routines and added
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    routine fileappend.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.85  2003/06/17 13:12:43  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Repository): Check when date of death was earlier that
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    current date of interview. It may happen when the death was just
 FILE *ficlog, *ficrespow;    prior to the death. In this case, dh was negative and likelihood
 int globpr; /* Global variable for printing or not */    was wrong (infinity). We still send an "Error" but patch by
 double fretone; /* Only one call to likelihood */    assuming that the date of death was just one stepm after the
 long ipmx; /* Number of contributions */    interview.
 double sw; /* Sum of weights */    (Repository): Because some people have very long ID (first column)
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    we changed int to long in num[] and we added a new lvector for
 FILE *ficresilk;    memory allocation. But we also truncated to 8 characters (left
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    truncation)
 FILE *ficresprobmorprev;    (Repository): No more line truncation errors.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.84  2003/06/13 21:44:43  brouard
 char filerese[FILENAMELENGTH];    * imach.c (Repository): Replace "freqsummary" at a correct
 FILE  *ficresvij;    place. It differs from routine "prevalence" which may be called
 char fileresv[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
 FILE  *ficresvpl;    parcimony.
 char fileresvpl[FILENAMELENGTH];    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.83  2003/06/10 13:39:11  lievre
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    *** empty log message ***
 char tmpout[FILENAMELENGTH];   
 char command[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
 int  outcmd=0;    Add log in  imach.c and  fullversion number is now printed.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  */
 char lfileres[FILENAMELENGTH];  /*
 char filelog[FILENAMELENGTH]; /* Log file */     Interpolated Markov Chain
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Short summary of the programme:
 char popfile[FILENAMELENGTH];   
     This program computes Healthy Life Expectancies from
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define NR_END 1    interviewed on their health status or degree of disability (in the
 #define FREE_ARG char*    case of a health survey which is our main interest) -2- at least a
 #define FTOL 1.0e-10    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define NRANSI     computed from the time spent in each health state according to a
 #define ITMAX 200     model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 #define TOL 2.0e-4     simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define CGOLD 0.3819660     conditional to be observed in state i at the first wave. Therefore
 #define ZEPS 1.0e-10     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 #define GOLD 1.618034     where the markup *Covariates have to be included here again* invites
 #define GLIMIT 100.0     you to do it.  More covariates you add, slower the
 #define TINY 1.0e-20     convergence.
   
 static double maxarg1,maxarg2;    The advantage of this computer programme, compared to a simple
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    multinomial logistic model, is clear when the delay between waves is not
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    identical for each individual. Also, if a individual missed an
       intermediate interview, the information is lost, but taken into
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    account using an interpolation or extrapolation.  
 #define rint(a) floor(a+0.5)  
     hPijx is the probability to be observed in state i at age x+h
 static double sqrarg;    conditional to the observed state i at age x. The delay 'h' can be
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    split into an exact number (nh*stepm) of unobserved intermediate
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 int imx;     matrix is simply the matrix product of nh*stepm elementary matrices
 int stepm;    and the contribution of each individual to the likelihood is simply
 /* Stepm, step in month: minimum step interpolation*/    hPijx.
   
 int estepm;    Also this programme outputs the covariance matrix of the parameters but also
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    of the life expectancies. It also computes the period (stable) prevalence.
    
 int m,nb;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 long *num;             Institut national d'études démographiques, Paris.
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    This software have been partly granted by Euro-REVES, a concerted action
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    from the European Union.
 double **pmmij, ***probs;    It is copyrighted identically to a GNU software product, ie programme and
 double dateintmean=0;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 double *weight;  
 int **s; /* Status */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double *agedc, **covar, idx;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;   
     **********************************************************************/
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /*
 double ftolhess; /* Tolerance for computing hessian */    main
     read parameterfile
 /**************** split *************************/    read datafile
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    concatwav
 {    freqsummary
   char  *ss;                            /* pointer */    if (mle >= 1)
   int   l1, l2;                         /* length counters */      mlikeli
     print results files
   l1 = strlen(path );                   /* length of path */    if mle==1
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );       computes hessian
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    read end of parameter file: agemin, agemax, bage, fage, estepm
   if ( ss == NULL ) {                   /* no directory, so use current */        begin-prev-date,...
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    open gnuplot file
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    open html file
     /* get current working directory */    period (stable) prevalence
     /*    extern  char* getcwd ( char *buf , int len);*/     for age prevalim()
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    h Pij x
       return( GLOCK_ERROR_GETCWD );    variance of p varprob
     }    forecasting if prevfcast==1 prevforecast call prevalence()
     strcpy( name, path );               /* we've got it */    health expectancies
   } else {                              /* strip direcotry from path */    Variance-covariance of DFLE
     ss++;                               /* after this, the filename */    prevalence()
     l2 = strlen( ss );                  /* length of filename */     movingaverage()
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    varevsij()
     strcpy( name, ss );         /* save file name */    if popbased==1 varevsij(,popbased)
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    total life expectancies
     dirc[l1-l2] = 0;                    /* add zero */    Variance of period (stable) prevalence
   }   end
   l1 = strlen( dirc );                  /* length of directory */  */
   /*#ifdef windows  
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }   
 #endif  #include <math.h>
   */  #include <stdio.h>
   ss = strrchr( name, '.' );            /* find last / */  #include <stdlib.h>
   ss++;  #include <string.h>
   strcpy(ext,ss);                       /* save extension */  #include <unistd.h>
   l1= strlen( name);  
   l2= strlen(ss)+1;  #include <limits.h>
   strncpy( finame, name, l1-l2);  #include <sys/types.h>
   finame[l1-l2]= 0;  #include <sys/stat.h>
   return( 0 );                          /* we're done */  #include <errno.h>
 }  extern int errno;
   
   /* #include <sys/time.h> */
 /******************************************/  #include <time.h>
   #include "timeval.h"
 void replace_back_to_slash(char *s, char*t)  
 {  /* #include <libintl.h> */
   int i;  /* #define _(String) gettext (String) */
   int lg=0;  
   i=0;  #define MAXLINE 256
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  #define GNUPLOTPROGRAM "gnuplot"
     (s[i] = t[i]);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     if (t[i]== '\\') s[i]='/';  #define FILENAMELENGTH 132
   }  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int nbocc(char *s, char occ)  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   int i,j=0;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   int lg=20;  
   i=0;  #define NINTERVMAX 8
   lg=strlen(s);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   for(i=0; i<= lg; i++) {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   if  (s[i] == occ ) j++;  #define NCOVMAX 8 /* Maximum number of covariates */
   }  #define MAXN 20000
   return j;  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 void cutv(char *u,char *v, char*t, char occ)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   /* cuts string t into u and v where u is ended by char occ excluding it  #define DIRSEPARATOR '/'
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #define CHARSEPARATOR "/"
      gives u="abcedf" and v="ghi2j" */  #define ODIRSEPARATOR '\\'
   int i,lg,j,p=0;  #else
   i=0;  #define DIRSEPARATOR '\\'
   for(j=0; j<=strlen(t)-1; j++) {  #define CHARSEPARATOR "\\"
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define ODIRSEPARATOR '/'
   }  #endif
   
   lg=strlen(t);  /* $Id$ */
   for(j=0; j<p; j++) {  /* $State$ */
     (u[j] = t[j]);  
   }  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
      u[p]='\0';  char fullversion[]="$Revision$ $Date$";
   char strstart[80];
    for(j=0; j<= lg; j++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   }  int nvar;
 }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 /********************** nrerror ********************/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 void nrerror(char error_text[])  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  int *wav; /* Number of waves for this individuual 0 is possible */
   exit(EXIT_FAILURE);  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
 /*********************** vector *******************/  int ijmin, ijmax; /* Individuals having jmin and jmax */
 double *vector(int nl, int nh)  int gipmx, gsw; /* Global variables on the number of contributions
 {                     to the likelihood and the sum of weights (done by funcone)*/
   double *v;  int mle, weightopt;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!v) nrerror("allocation failure in vector");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return v-nl+NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /************************ free vector ******************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void free_vector(double*v, int nl, int nh)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /************************ivector *******************************/  long ipmx; /* Number of contributions */
 int *ivector(long nl,long nh)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   int *v;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  FILE *ficresilk;
   if (!v) nrerror("allocation failure in ivector");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   return v-nl+NR_END;  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /******************free ivector **************************/  char filerese[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  FILE *ficresstdeij;
 {  char fileresstde[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficrescveij;
 }  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /************************lvector *******************************/  char fileresv[FILENAMELENGTH];
 long *lvector(long nl,long nh)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   long *v;  char title[MAXLINE];
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   return v-nl+NR_END;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /******************free lvector **************************/  
 void free_lvector(long *v, long nl, long nh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   free((FREE_ARG)(v+nl-NR_END));  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /******************* imatrix *******************************/  char popfile[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)   
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {   
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   int **m;   struct timezone tzp;
     extern int gettimeofday();
   /* allocate pointers to rows */   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   long time_value;
   if (!m) nrerror("allocation failure 1 in matrix()");   extern long time();
   m += NR_END;   char strcurr[80], strfor[80];
   m -= nrl;   
     char *endptr;
     long lval;
   /* allocate rows and set pointers to them */   double dval;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   #define NR_END 1
   m[nrl] += NR_END;   #define FREE_ARG char*
   m[nrl] -= ncl;   #define FTOL 1.0e-10
     
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   #define NRANSI
     #define ITMAX 200
   /* return pointer to array of pointers to rows */   
   return m;   #define TOL 2.0e-4
 }   
   #define CGOLD 0.3819660
 /****************** free_imatrix *************************/  #define ZEPS 1.0e-10
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
       int **m;  
       long nch,ncl,nrh,nrl;   #define GOLD 1.618034
      /* free an int matrix allocated by imatrix() */   #define GLIMIT 100.0
 {   #define TINY 1.0e-20
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   
   free((FREE_ARG) (m+nrl-NR_END));   static double maxarg1,maxarg2;
 }   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /******************* matrix *******************************/   
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   if (!m) nrerror("allocation failure 1 in matrix()");  int agegomp= AGEGOMP;
   m += NR_END;  
   m -= nrl;  int imx;
   int stepm=1;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* Stepm, step in month: minimum step interpolation*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int estepm;
   m[nrl] -= ncl;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int m,nb;
   return m;  long *num;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
    */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /*************************free matrix ************************/  double dateintmean=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  double *weight;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **s; /* Status */
   free((FREE_ARG)(m+nrl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   m += NR_END;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   m -= nrl;    */
     char  *ss;                            /* pointer */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int   l1, l2;                         /* length counters */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    l1 = strlen(path );                   /* length of path */
   m[nrl] -= ncl;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl][ncl] += NR_END;      /* get current working directory */
   m[nrl][ncl] -= nll;      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=ncl+1; j<=nch; j++)       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     m[nrl][j]=m[nrl][j-1]+nlay;        return( GLOCK_ERROR_GETCWD );
         }
   for (i=nrl+1; i<=nrh; i++) {      /* got dirc from getcwd*/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      printf(" DIRC = %s \n",dirc);
     for (j=ncl+1; j<=nch; j++)     } else {                              /* strip direcotry from path */
       m[i][j]=m[i][j-1]+nlay;      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
   return m;       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])      strcpy( name, ss );         /* save file name */
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   */      dirc[l1-l2] = 0;                    /* add zero */
 }      printf(" DIRC2 = %s \n",dirc);
     }
 /*************************free ma3x ************************/    /* We add a separator at the end of dirc if not exists */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      dirc[l1] =  DIRSEPARATOR;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      dirc[l1+1] = 0;
   free((FREE_ARG)(m+nrl-NR_END));      printf(" DIRC3 = %s \n",dirc);
 }    }
     ss = strrchr( name, '.' );            /* find last / */
 /***************** f1dim *************************/    if (ss >0){
 extern int ncom;       ss++;
 extern double *pcom,*xicom;      strcpy(ext,ss);                     /* save extension */
 extern double (*nrfunc)(double []);       l1= strlen( name);
        l2= strlen(ss)+1;
 double f1dim(double x)       strncpy( finame, name, l1-l2);
 {       finame[l1-l2]= 0;
   int j;     }
   double f;  
   double *xt;     return( 0 );                          /* we're done */
    }
   xt=vector(1,ncom);   
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   
   f=(*nrfunc)(xt);   /******************************************/
   free_vector(xt,1,ncom);   
   return f;   void replace_back_to_slash(char *s, char*t)
 }   {
     int i;
 /*****************brent *************************/    int lg=0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     i=0;
 {     lg=strlen(t);
   int iter;     for(i=0; i<= lg; i++) {
   double a,b,d,etemp;      (s[i] = t[i]);
   double fu,fv,fw,fx;      if (t[i]== '\\') s[i]='/';
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;   }
   double e=0.0;   
    int nbocc(char *s, char occ)
   a=(ax < cx ? ax : cx);   {
   b=(ax > cx ? ax : cx);     int i,j=0;
   x=w=v=bx;     int lg=20;
   fw=fv=fx=(*f)(x);     i=0;
   for (iter=1;iter<=ITMAX;iter++) {     lg=strlen(s);
     xm=0.5*(a+b);     for(i=0; i<= lg; i++) {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     if  (s[i] == occ ) j++;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    }
     printf(".");fflush(stdout);    return j;
     fprintf(ficlog,".");fflush(ficlog);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void cutv(char *u,char *v, char*t, char occ)
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    /* cuts string t into u and v where u ends before first occurence of char 'occ'
 #endif       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){        gives u="abcedf" and v="ghi2j" */
       *xmin=x;     int i,lg,j,p=0;
       return fx;     i=0;
     }     for(j=0; j<=strlen(t)-1; j++) {
     ftemp=fu;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     if (fabs(e) > tol1) {     }
       r=(x-w)*(fx-fv);   
       q=(x-v)*(fx-fw);     lg=strlen(t);
       p=(x-v)*q-(x-w)*r;     for(j=0; j<p; j++) {
       q=2.0*(q-r);       (u[j] = t[j]);
       if (q > 0.0) p = -p;     }
       q=fabs(q);        u[p]='\0';
       etemp=e;   
       e=d;      for(j=0; j<= lg; j++) {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))       if (j>=(p+1))(v[j-p-1] = t[j]);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     }
       else {   }
         d=p/q;   
         u=x+d;   /********************** nrerror ********************/
         if (u-a < tol2 || b-u < tol2)   
           d=SIGN(tol1,xm-x);   void nrerror(char error_text[])
       }   {
     } else {     fprintf(stderr,"ERREUR ...\n");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     fprintf(stderr,"%s\n",error_text);
     }     exit(EXIT_FAILURE);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   }
     fu=(*f)(u);   /*********************** vector *******************/
     if (fu <= fx) {   double *vector(int nl, int nh)
       if (u >= x) a=x; else b=x;   {
       SHFT(v,w,x,u)     double *v;
         SHFT(fv,fw,fx,fu)     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         } else {     if (!v) nrerror("allocation failure in vector");
           if (u < x) a=u; else b=u;     return v-nl+NR_END;
           if (fu <= fw || w == x) {   }
             v=w;   
             w=u;   /************************ free vector ******************/
             fv=fw;   void free_vector(double*v, int nl, int nh)
             fw=fu;   {
           } else if (fu <= fv || v == x || v == w) {     free((FREE_ARG)(v+nl-NR_END));
             v=u;   }
             fv=fu;   
           }   /************************ivector *******************************/
         }   int *ivector(long nl,long nh)
   }   {
   nrerror("Too many iterations in brent");     int *v;
   *xmin=x;     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   return fx;     if (!v) nrerror("allocation failure in ivector");
 }     return v-nl+NR_END;
   }
 /****************** mnbrak ***********************/  
   /******************free ivector **************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   void free_ivector(int *v, long nl, long nh)
             double (*func)(double))   {
 {     free((FREE_ARG)(v+nl-NR_END));
   double ulim,u,r,q, dum;  }
   double fu;   
    /************************lvector *******************************/
   *fa=(*func)(*ax);   long *lvector(long nl,long nh)
   *fb=(*func)(*bx);   {
   if (*fb > *fa) {     long *v;
     SHFT(dum,*ax,*bx,dum)     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       SHFT(dum,*fb,*fa,dum)     if (!v) nrerror("allocation failure in ivector");
       }     return v-nl+NR_END;
   *cx=(*bx)+GOLD*(*bx-*ax);   }
   *fc=(*func)(*cx);   
   while (*fb > *fc) {   /******************free lvector **************************/
     r=(*bx-*ax)*(*fb-*fc);   void free_lvector(long *v, long nl, long nh)
     q=(*bx-*cx)*(*fb-*fa);   {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     free((FREE_ARG)(v+nl-NR_END));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   }
     ulim=(*bx)+GLIMIT*(*cx-*bx);   
     if ((*bx-u)*(u-*cx) > 0.0) {   /******************* imatrix *******************************/
       fu=(*func)(u);   int **imatrix(long nrl, long nrh, long ncl, long nch)
     } else if ((*cx-u)*(u-ulim) > 0.0) {        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
       fu=(*func)(u);   {
       if (fu < *fc) {     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     int **m;
           SHFT(*fb,*fc,fu,(*func)(u))    
           }     /* allocate pointers to rows */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
       u=ulim;     if (!m) nrerror("allocation failure 1 in matrix()");
       fu=(*func)(u);     m += NR_END;
     } else {     m -= nrl;
       u=(*cx)+GOLD*(*cx-*bx);    
       fu=(*func)(u);    
     }     /* allocate rows and set pointers to them */
     SHFT(*ax,*bx,*cx,u)     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
       SHFT(*fa,*fb,*fc,fu)     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }     m[nrl] += NR_END;
 }     m[nrl] -= ncl;
    
 /*************** linmin ************************/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
    
 int ncom;     /* return pointer to array of pointers to rows */
 double *pcom,*xicom;    return m;
 double (*nrfunc)(double []);   }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   /****************** free_imatrix *************************/
 {   void free_imatrix(m,nrl,nrh,ncl,nch)
   double brent(double ax, double bx, double cx,         int **m;
                double (*f)(double), double tol, double *xmin);         long nch,ncl,nrh,nrl;
   double f1dim(double x);        /* free an int matrix allocated by imatrix() */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   {
               double *fc, double (*func)(double));     free((FREE_ARG) (m[nrl]+ncl-NR_END));
   int j;     free((FREE_ARG) (m+nrl-NR_END));
   double xx,xmin,bx,ax;   }
   double fx,fb,fa;  
    /******************* matrix *******************************/
   ncom=n;   double **matrix(long nrl, long nrh, long ncl, long nch)
   pcom=vector(1,n);   {
   xicom=vector(1,n);     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   nrfunc=func;     double **m;
   for (j=1;j<=n;j++) {   
     pcom[j]=p[j];     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     xicom[j]=xi[j];     if (!m) nrerror("allocation failure 1 in matrix()");
   }     m += NR_END;
   ax=0.0;     m -= nrl;
   xx=1.0;   
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #ifdef DEBUG    m[nrl] += NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] -= ncl;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=n;j++) {     return m;
     xi[j] *= xmin;     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
     p[j] += xi[j];      */
   }   }
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);   /*************************free matrix ************************/
 }   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /*************** powell ************************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     free((FREE_ARG)(m+nrl-NR_END));
             double (*func)(double []))   }
 {   
   void linmin(double p[], double xi[], int n, double *fret,   /******************* ma3x *******************************/
               double (*func)(double []));   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i,ibig,j;   {
   double del,t,*pt,*ptt,*xit;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double fp,fptt;    double ***m;
   double *xits;  
   pt=vector(1,n);     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ptt=vector(1,n);     if (!m) nrerror("allocation failure 1 in matrix()");
   xit=vector(1,n);     m += NR_END;
   xits=vector(1,n);     m -= nrl;
   *fret=(*func)(p);   
   for (j=1;j<=n;j++) pt[j]=p[j];     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (*iter=1;;++(*iter)) {     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fp=(*fret);     m[nrl] += NR_END;
     ibig=0;     m[nrl] -= ncl;
     del=0.0;   
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficrespow,"%d %.12f",*iter,*fret);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for (i=1;i<=n;i++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       printf(" %d %.12f",i, p[i]);    m[nrl][ncl] += NR_END;
       fprintf(ficlog," %d %.12lf",i, p[i]);    m[nrl][ncl] -= nll;
       fprintf(ficrespow," %.12lf", p[i]);    for (j=ncl+1; j<=nch; j++)
     }      m[nrl][j]=m[nrl][j-1]+nlay;
     printf("\n");   
     fprintf(ficlog,"\n");    for (i=nrl+1; i<=nrh; i++) {
     fprintf(ficrespow,"\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (i=1;i<=n;i++) {       for (j=ncl+1; j<=nch; j++)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];         m[i][j]=m[i][j-1]+nlay;
       fptt=(*fret);     }
 #ifdef DEBUG    return m;
       printf("fret=%lf \n",*fret);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       fprintf(ficlog,"fret=%lf \n",*fret);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 #endif    */
       printf("%d",i);fflush(stdout);  }
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);   /*************************free ma3x ************************/
       if (fabs(fptt-(*fret)) > del) {   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         del=fabs(fptt-(*fret));   {
         ibig=i;     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       printf("%d %.12e",i,(*fret));  }
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /*************** function subdirf ***********/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  char *subdirf(char fileres[])
         printf(" x(%d)=%.12e",j,xit[j]);  {
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       for(j=1;j<=n;j++) {    strcat(tmpout,"/"); /* Add to the right */
         printf(" p=%.12e",p[j]);    strcat(tmpout,fileres);
         fprintf(ficlog," p=%.12e",p[j]);    return tmpout;
       }  }
       printf("\n");  
       fprintf(ficlog,"\n");  /*************** function subdirf2 ***********/
 #endif  char *subdirf2(char fileres[], char *preop)
     }   {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {   
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
       int k[2],l;    strcpy(tmpout,optionfilefiname);
       k[0]=1;    strcat(tmpout,"/");
       k[1]=-1;    strcat(tmpout,preop);
       printf("Max: %.12e",(*func)(p));    strcat(tmpout,fileres);
       fprintf(ficlog,"Max: %.12e",(*func)(p));    return tmpout;
       for (j=1;j<=n;j++) {  }
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /*************** function subdirf3 ***********/
       }  char *subdirf3(char fileres[], char *preop, char *preop2)
       printf("\n");  {
       fprintf(ficlog,"\n");   
       for(l=0;l<=1;l++) {    /* Caution optionfilefiname is hidden */
         for (j=1;j<=n;j++) {    strcpy(tmpout,optionfilefiname);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcat(tmpout,"/");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,preop);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,preop2);
         }    strcat(tmpout,fileres);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return tmpout;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  /***************** f1dim *************************/
   extern int ncom;
   extern double *pcom,*xicom;
       free_vector(xit,1,n);   extern double (*nrfunc)(double []);
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);   double f1dim(double x)
       free_vector(pt,1,n);   {
       return;     int j;
     }     double f;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     double *xt;
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];     xt=vector(1,ncom);
       xit[j]=p[j]-pt[j];     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
       pt[j]=p[j];     f=(*nrfunc)(xt);
     }     free_vector(xt,1,ncom);
     fptt=(*func)(ptt);     return f;
     if (fptt < fp) {   }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   
       if (t < 0.0) {   /*****************brent *************************/
         linmin(p,xit,n,fret,func);   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
         for (j=1;j<=n;j++) {   {
           xi[j][ibig]=xi[j][n];     int iter;
           xi[j][n]=xit[j];     double a,b,d,etemp;
         }    double fu,fv,fw,fx;
 #ifdef DEBUG    double ftemp;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double p,q,r,tol1,tol2,u,v,w,x,xm;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double e=0.0;
         for(j=1;j<=n;j++){   
           printf(" %.12e",xit[j]);    a=(ax < cx ? ax : cx);
           fprintf(ficlog," %.12e",xit[j]);    b=(ax > cx ? ax : cx);
         }    x=w=v=bx;
         printf("\n");    fw=fv=fx=(*f)(x);
         fprintf(ficlog,"\n");    for (iter=1;iter<=ITMAX;iter++) {
 #endif      xm=0.5*(a+b);
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     }       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }       printf(".");fflush(stdout);
 }       fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 /**** Prevalence limit (stable prevalence)  ****************/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 {  #endif
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
      matrix by transitions matrix until convergence is reached */        *xmin=x;
         return fx;
   int i, ii,j,k;      }
   double min, max, maxmin, maxmax,sumnew=0.;      ftemp=fu;
   double **matprod2();      if (fabs(e) > tol1) {
   double **out, cov[NCOVMAX], **pmij();        r=(x-w)*(fx-fv);
   double **newm;        q=(x-v)*(fx-fw);
   double agefin, delaymax=50 ; /* Max number of years to converge */        p=(x-v)*q-(x-w)*r;
         q=2.0*(q-r);
   for (ii=1;ii<=nlstate+ndeath;ii++)        if (q > 0.0) p = -p;
     for (j=1;j<=nlstate+ndeath;j++){        q=fabs(q);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        etemp=e;
     }        e=d;
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
    cov[1]=1.;          d=CGOLD*(e=(x >= xm ? a-x : b-x));
          else {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          d=p/q;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          u=x+d;
     newm=savm;          if (u-a < tol2 || b-u < tol2)
     /* Covariates have to be included here again */            d=SIGN(tol1,xm-x);
      cov[2]=agefin;        }
         } else {
       for (k=1; k<=cptcovn;k++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       }      fu=(*f)(u);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (fu <= fx) {
       for (k=1; k<=cptcovprod;k++)        if (u >= x) a=x; else b=x;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        SHFT(v,w,x,u)
           SHFT(fv,fw,fx,fu)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          } else {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/            if (u < x) a=u; else b=u;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/            if (fu <= fw || w == x) {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);              v=w;
               w=u;
     savm=oldm;              fv=fw;
     oldm=newm;              fw=fu;
     maxmax=0.;            } else if (fu <= fv || v == x || v == w) {
     for(j=1;j<=nlstate;j++){              v=u;
       min=1.;              fv=fu;
       max=0.;            }
       for(i=1; i<=nlstate; i++) {          }
         sumnew=0;    }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    nrerror("Too many iterations in brent");
         prlim[i][j]= newm[i][j]/(1-sumnew);    *xmin=x;
         max=FMAX(max,prlim[i][j]);    return fx;
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  /****************** mnbrak ***********************/
       maxmax=FMAX(maxmax,maxmin);  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
     if(maxmax < ftolpl){              double (*func)(double))
       return prlim;  {
     }    double ulim,u,r,q, dum;
   }    double fu;
 }   
     *fa=(*func)(*ax);
 /*************** transition probabilities ***************/     *fb=(*func)(*bx);
     if (*fb > *fa) {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      SHFT(dum,*ax,*bx,dum)
 {        SHFT(dum,*fb,*fa,dum)
   double s1, s2;        }
   /*double t34;*/    *cx=(*bx)+GOLD*(*bx-*ax);
   int i,j,j1, nc, ii, jj;    *fc=(*func)(*cx);
     while (*fb > *fc) {
     for(i=1; i<= nlstate; i++){      r=(*bx-*ax)*(*fb-*fc);
     for(j=1; j<i;j++){      q=(*bx-*cx)*(*fb-*fa);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
         /*s2 += param[i][j][nc]*cov[nc];*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      ulim=(*bx)+GLIMIT*(*cx-*bx);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      if ((*bx-u)*(u-*cx) > 0.0) {
       }        fu=(*func)(u);
       ps[i][j]=s2;      } else if ((*cx-u)*(u-ulim) > 0.0) {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        fu=(*func)(u);
     }        if (fu < *fc) {
     for(j=i+1; j<=nlstate+ndeath;j++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            SHFT(*fb,*fc,fu,(*func)(u))
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       }        u=ulim;
       ps[i][j]=s2;        fu=(*func)(u);
     }      } else {
   }        u=(*cx)+GOLD*(*cx-*bx);
     /*ps[3][2]=1;*/        fu=(*func)(u);
       }
   for(i=1; i<= nlstate; i++){      SHFT(*ax,*bx,*cx,u)
      s1=0;        SHFT(*fa,*fb,*fc,fu)
     for(j=1; j<i; j++)        }
       s1+=exp(ps[i][j]);  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  /*************** linmin ************************/
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  int ncom;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double *pcom,*xicom;
     for(j=i+1; j<=nlstate+ndeath; j++)  double (*nrfunc)(double []);
       ps[i][j]= exp(ps[i][j])*ps[i][i];   
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   } /* end i */  {
     double brent(double ax, double bx, double cx,
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){                 double (*f)(double), double tol, double *xmin);
     for(jj=1; jj<= nlstate+ndeath; jj++){    double f1dim(double x);
       ps[ii][jj]=0;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       ps[ii][ii]=1;                double *fc, double (*func)(double));
     }    int j;
   }    double xx,xmin,bx,ax;
     double fx,fb,fa;
    
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    ncom=n;
     for(jj=1; jj<= nlstate+ndeath; jj++){    pcom=vector(1,n);
      printf("%lf ",ps[ii][jj]);    xicom=vector(1,n);
    }    nrfunc=func;
     printf("\n ");    for (j=1;j<=n;j++) {
     }      pcom[j]=p[j];
     printf("\n ");printf("%lf ",cov[2]);*/      xicom[j]=xi[j];
 /*    }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    ax=0.0;
   goto end;*/    xx=1.0;
     return ps;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
 }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   #ifdef DEBUG
 /**************** Product of 2 matrices ******************/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #endif
 {    for (j=1;j<=n;j++) {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      xi[j] *= xmin;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      p[j] += xi[j];
   /* in, b, out are matrice of pointers which should have been initialized     }
      before: only the contents of out is modified. The function returns    free_vector(xicom,1,n);
      a pointer to pointers identical to out */    free_vector(pcom,1,n);
   long i, j, k;  }
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  char *asc_diff_time(long time_sec, char ascdiff[])
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  {
         out[i][k] +=in[i][j]*b[j][k];    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   return out;    sec_left = (time_sec) % (60*60*24);
 }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /************* Higher Matrix Product ***************/    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    return ascdiff;
 {  }
   /* Computes the transition matrix starting at age 'age' over   
      'nhstepm*hstepm*stepm' months (i.e. until  /*************** powell ************************/
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
      nhstepm*hstepm matrices.               double (*func)(double []))
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   {
      (typically every 2 years instead of every month which is too big     void linmin(double p[], double xi[], int n, double *fret,
      for the memory).                double (*func)(double []));
      Model is determined by parameters x and covariates have to be     int i,ibig,j;
      included manually here.     double del,t,*pt,*ptt,*xit;
     double fp,fptt;
      */    double *xits;
     int niterf, itmp;
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];    pt=vector(1,n);
   double **newm;    ptt=vector(1,n);
     xit=vector(1,n);
   /* Hstepm could be zero and should return the unit matrix */    xits=vector(1,n);
   for (i=1;i<=nlstate+ndeath;i++)    *fret=(*func)(p);
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) pt[j]=p[j];
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for (*iter=1;;++(*iter)) {
       po[i][j][0]=(i==j ? 1.0 : 0.0);      fp=(*fret);
     }      ibig=0;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      del=0.0;
   for(h=1; h <=nhstepm; h++){      last_time=curr_time;
     for(d=1; d <=hstepm; d++){      (void) gettimeofday(&curr_time,&tzp);
       newm=savm;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /* Covariates have to be included here again */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       cov[1]=1.;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;     for (i=1;i<=n;i++) {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        printf(" %d %.12f",i, p[i]);
       for (k=1; k<=cptcovage;k++)        fprintf(ficlog," %d %.12lf",i, p[i]);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fprintf(ficrespow," %.12lf", p[i]);
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      if(*iter <=3){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        tm = *localtime(&curr_time.tv_sec);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         strcpy(strcurr,asctime(&tm));
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*       asctime_r(&tm,strcurr); */
       savm=oldm;        forecast_time=curr_time;
       oldm=newm;        itmp = strlen(strcurr);
     }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for(i=1; i<=nlstate+ndeath; i++)          strcurr[itmp-1]='\0';
       for(j=1;j<=nlstate+ndeath;j++) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         po[i][j][h]=newm[i][j];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        for(niterf=10;niterf<=30;niterf+=10){
          */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       }          tmf = *localtime(&forecast_time.tv_sec);
   } /* end h */  /*      asctime_r(&tmf,strfor); */
   return po;          strcpy(strfor,asctime(&tmf));
 }          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 /*************** log-likelihood *************/          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 double func( double *x)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 {        }
   int i, ii, j, k, mi, d, kk;      }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for (i=1;i<=n;i++) {
   double **out;        for (j=1;j<=n;j++) xit[j]=xi[j][i];
   double sw; /* Sum of weights */        fptt=(*fret);
   double lli; /* Individual log likelihood */  #ifdef DEBUG
   int s1, s2;        printf("fret=%lf \n",*fret);
   double bbh, survp;        fprintf(ficlog,"fret=%lf \n",*fret);
   long ipmx;  #endif
   /*extern weight */        printf("%d",i);fflush(stdout);
   /* We are differentiating ll according to initial status */        fprintf(ficlog,"%d",i);fflush(ficlog);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        linmin(p,xit,n,fret,func);
   /*for(i=1;i<imx;i++)         if (fabs(fptt-(*fret)) > del) {
     printf(" %d\n",s[4][i]);          del=fabs(fptt-(*fret));
   */          ibig=i;
   cov[1]=1.;        }
   #ifdef DEBUG
   for(k=1; k<=nlstate; k++) ll[k]=0.;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   if(mle==1){        for (j=1;j<=n;j++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          printf(" x(%d)=%.12e",j,xit[j]);
       for(mi=1; mi<= wav[i]-1; mi++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         for (ii=1;ii<=nlstate+ndeath;ii++)        }
           for (j=1;j<=nlstate+ndeath;j++){        for(j=1;j<=n;j++) {
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" p=%.12e",p[j]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog," p=%.12e",p[j]);
           }        }
         for(d=0; d<dh[mi][i]; d++){        printf("\n");
           newm=savm;        fprintf(ficlog,"\n");
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #endif
           for (kk=1; kk<=cptcovage;kk++) {      }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           }  #ifdef DEBUG
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        int k[2],l;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        k[0]=1;
           savm=oldm;        k[1]=-1;
           oldm=newm;        printf("Max: %.12e",(*func)(p));
         } /* end mult */        fprintf(ficlog,"Max: %.12e",(*func)(p));
               for (j=1;j<=n;j++) {
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          printf(" %.12e",p[j]);
         /* But now since version 0.9 we anticipate for bias and large stepm.          fprintf(ficlog," %.12e",p[j]);
          * If stepm is larger than one month (smallest stepm) and if the exact delay         }
          * (in months) between two waves is not a multiple of stepm, we rounded to         printf("\n");
          * the nearest (and in case of equal distance, to the lowest) interval but now        fprintf(ficlog,"\n");
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        for(l=0;l<=1;l++) {
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          for (j=1;j<=n;j++) {
          * probability in order to take into account the bias as a fraction of the way            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          * -stepm/2 to stepm/2 .            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          * For stepm=1 the results are the same as for previous versions of Imach.          }
          * For stepm > 1 the results are less biased than in previous versions.           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s1=s[mw[mi][i]][i];        }
         s2=s[mw[mi+1][i]][i];  #endif
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias is positive if real duration  
          * is higher than the multiple of stepm and negative otherwise.        free_vector(xit,1,n);
          */        free_vector(xits,1,n);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        free_vector(ptt,1,n);
         if( s2 > nlstate){         free_vector(pt,1,n);
           /* i.e. if s2 is a death state and if the date of death is known then the contribution        return;
              to the likelihood is the probability to die between last step unit time and current       }
              step unit time, which is also the differences between probability to die before dh       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
              and probability to die before dh-stepm .       for (j=1;j<=n;j++) {
              In version up to 0.92 likelihood was computed        ptt[j]=2.0*p[j]-pt[j];
         as if date of death was unknown. Death was treated as any other        xit[j]=p[j]-pt[j];
         health state: the date of the interview describes the actual state        pt[j]=p[j];
         and not the date of a change in health state. The former idea was      }
         to consider that at each interview the state was recorded      fptt=(*func)(ptt);
         (healthy, disable or death) and IMaCh was corrected; but when we      if (fptt < fp) {
         introduced the exact date of death then we should have modified        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         the contribution of an exact death to the likelihood. This new        if (t < 0.0) {
         contribution is smaller and very dependent of the step unit          linmin(p,xit,n,fret,func);
         stepm. It is no more the probability to die between last interview          for (j=1;j<=n;j++) {
         and month of death but the probability to survive from last            xi[j][ibig]=xi[j][n];
         interview up to one month before death multiplied by the            xi[j][n]=xit[j];
         probability to die within a month. Thanks to Chris          }
         Jackson for correcting this bug.  Former versions increased  #ifdef DEBUG
         mortality artificially. The bad side is that we add another loop          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         which slows down the processing. The difference can be up to 10%          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         lower mortality.          for(j=1;j<=n;j++){
           */            printf(" %.12e",xit[j]);
           lli=log(out[s1][s2] - savm[s1][s2]);            fprintf(ficlog," %.12e",xit[j]);
         }else{          }
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          printf("\n");
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          fprintf(ficlog,"\n");
         }   #endif
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        }
         /*if(lli ==000.0)*/      }
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */    }
         ipmx +=1;  }
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /**** Prevalence limit (stable or period prevalence)  ****************/
       } /* end of wave */  
     } /* end of individual */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  else if(mle==2){  {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       matrix by transitions matrix until convergence is reached */
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    int i, ii,j,k;
           for (j=1;j<=nlstate+ndeath;j++){    double min, max, maxmin, maxmax,sumnew=0.;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double **matprod2();
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    double **out, cov[NCOVMAX], **pmij();
           }    double **newm;
         for(d=0; d<=dh[mi][i]; d++){    double agefin, delaymax=50 ; /* Max number of years to converge */
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for (ii=1;ii<=nlstate+ndeath;ii++)
           for (kk=1; kk<=cptcovage;kk++) {      for (j=1;j<=nlstate+ndeath;j++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }      }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));     cov[1]=1.;
           savm=oldm;   
           oldm=newm;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         } /* end mult */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
             newm=savm;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      /* Covariates have to be included here again */
         /* But now since version 0.9 we anticipate for bias and large stepm.       cov[2]=agefin;
          * If stepm is larger than one month (smallest stepm) and if the exact delay    
          * (in months) between two waves is not a multiple of stepm, we rounded to         for (k=1; k<=cptcovn;k++) {
          * the nearest (and in case of equal distance, to the lowest) interval but now          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the        }
          * probability in order to take into account the bias as a fraction of the way        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        for (k=1; k<=cptcovprod;k++)
          * -stepm/2 to stepm/2 .          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          * For stepm=1 the results are the same as for previous versions of Imach.  
          * For stepm > 1 the results are less biased than in previous versions.         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         s1=s[mw[mi][i]][i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         s2=s[mw[mi+1][i]][i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias is positive if real duration      savm=oldm;
          * is higher than the multiple of stepm and negative otherwise.      oldm=newm;
          */      maxmax=0.;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      for(j=1;j<=nlstate;j++){
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        min=1.;
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */        max=0.;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        for(i=1; i<=nlstate; i++) {
         /*if(lli ==000.0)*/          sumnew=0;
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         ipmx +=1;          prlim[i][j]= newm[i][j]/(1-sumnew);
         sw += weight[i];          max=FMAX(max,prlim[i][j]);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          min=FMIN(min,prlim[i][j]);
       } /* end of wave */        }
     } /* end of individual */        maxmin=max-min;
   }  else if(mle==3){  /* exponential inter-extrapolation */        maxmax=FMAX(maxmax,maxmin);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      if(maxmax < ftolpl){
       for(mi=1; mi<= wav[i]-1; mi++){        return prlim;
         for (ii=1;ii<=nlstate+ndeath;ii++)      }
           for (j=1;j<=nlstate+ndeath;j++){    }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  /*************** transition probabilities ***************/
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  {
           for (kk=1; kk<=cptcovage;kk++) {    double s1, s2;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    /*double t34;*/
           }    int i,j,j1, nc, ii, jj;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for(i=1; i<= nlstate; i++){
           savm=oldm;        for(j=1; j<i;j++){
           oldm=newm;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         } /* end mult */            /*s2 += param[i][j][nc]*cov[nc];*/
                   s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         /* But now since version 0.9 we anticipate for bias and large stepm.          }
          * If stepm is larger than one month (smallest stepm) and if the exact delay           ps[i][j]=s2;
          * (in months) between two waves is not a multiple of stepm, we rounded to   /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          * the nearest (and in case of equal distance, to the lowest) interval but now        }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        for(j=i+1; j<=nlstate+ndeath;j++){
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          * probability in order to take into account the bias as a fraction of the way            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
          * -stepm/2 to stepm/2 .          }
          * For stepm=1 the results are the same as for previous versions of Imach.          ps[i][j]=s2;
          * For stepm > 1 the results are less biased than in previous versions.         }
          */      }
         s1=s[mw[mi][i]][i];      /*ps[3][2]=1;*/
         s2=s[mw[mi+1][i]][i];     
         bbh=(double)bh[mi][i]/(double)stepm;       for(i=1; i<= nlstate; i++){
         /* bias is positive if real duration        s1=0;
          * is higher than the multiple of stepm and negative otherwise.        for(j=1; j<i; j++)
          */          s1+=exp(ps[i][j]);
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */        for(j=i+1; j<=nlstate+ndeath; j++)
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          s1+=exp(ps[i][j]);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        ps[i][i]=1./(s1+1.);
         /*if(lli ==000.0)*/        for(j=1; j<i; j++)
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          ps[i][j]= exp(ps[i][j])*ps[i][i];
         ipmx +=1;        for(j=i+1; j<=nlstate+ndeath; j++)
         sw += weight[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end of wave */      } /* end i */
     } /* end of individual */     
   }else if (mle==4){  /* ml=4 no inter-extrapolation */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          ps[ii][jj]=0;
       for(mi=1; mi<= wav[i]-1; mi++){          ps[ii][ii]=1;
         for (ii=1;ii<=nlstate+ndeath;ii++)        }
           for (j=1;j<=nlstate+ndeath;j++){      }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);     
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for(d=0; d<dh[mi][i]; d++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           newm=savm;  /*         printf("ddd %lf ",ps[ii][jj]); */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*       } */
           for (kk=1; kk<=cptcovage;kk++) {  /*       printf("\n "); */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*        } */
           }  /*        printf("\n ");printf("%lf ",cov[2]); */
                  /*
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        goto end;*/
           savm=oldm;      return ps;
           oldm=newm;  }
         } /* end mult */  
         /**************** Product of 2 matrices ******************/
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         if( s2 > nlstate){   {
           lli=log(out[s1][s2] - savm[s1][s2]);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         }else{       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    /* in, b, out are matrice of pointers which should have been initialized
         }       before: only the contents of out is modified. The function returns
         ipmx +=1;       a pointer to pointers identical to out */
         sw += weight[i];    long i, j, k;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for(i=nrl; i<= nrh; i++)
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */      for(k=ncolol; k<=ncoloh; k++)
       } /* end of wave */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     } /* end of individual */          out[i][k] +=in[i][j]*b[j][k];
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    return out;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  /************* Higher Matrix Product ***************/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           }  {
         for(d=0; d<dh[mi][i]; d++){    /* Computes the transition matrix starting at age 'age' over
           newm=savm;       'nhstepm*hstepm*stepm' months (i.e. until
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
           for (kk=1; kk<=cptcovage;kk++) {       nhstepm*hstepm matrices.
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           }       (typically every 2 years instead of every month which is too big
                for the memory).
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       Model is determined by parameters x and covariates have to be
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       included manually here.
           savm=oldm;  
           oldm=newm;       */
         } /* end mult */  
           int i, j, d, h, k;
         s1=s[mw[mi][i]][i];    double **out, cov[NCOVMAX];
         s2=s[mw[mi+1][i]][i];    double **newm;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  
         ipmx +=1;    /* Hstepm could be zero and should return the unit matrix */
         sw += weight[i];    for (i=1;i<=nlstate+ndeath;i++)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for (j=1;j<=nlstate+ndeath;j++){
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/        oldm[i][j]=(i==j ? 1.0 : 0.0);
       } /* end of wave */        po[i][j][0]=(i==j ? 1.0 : 0.0);
     } /* end of individual */      }
   } /* End of if */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(h=1; h <=nhstepm; h++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for(d=1; d <=hstepm; d++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        newm=savm;
   return -l;        /* Covariates have to be included here again */
 }        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 /*************** log-likelihood *************/        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 double funcone( double *x)        for (k=1; k<=cptcovage;k++)
 {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* Same as likeli but slower because of a lot of printf and if */        for (k=1; k<=cptcovprod;k++)
   int i, ii, j, k, mi, d, kk;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  
   double lli; /* Individual log likelihood */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double llt;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int s1, s2;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
   double bbh, survp;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*extern weight */        savm=oldm;
   /* We are differentiating ll according to initial status */        oldm=newm;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      }
   /*for(i=1;i<imx;i++)       for(i=1; i<=nlstate+ndeath; i++)
     printf(" %d\n",s[4][i]);        for(j=1;j<=nlstate+ndeath;j++) {
   */          po[i][j][h]=newm[i][j];
   cov[1]=1.;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
     } /* end h */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    return po;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++){  /*************** log-likelihood *************/
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double func( double *x)
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  {
         }    int i, ii, j, k, mi, d, kk;
       for(d=0; d<dh[mi][i]; d++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         newm=savm;    double **out;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double sw; /* Sum of weights */
         for (kk=1; kk<=cptcovage;kk++) {    double lli; /* Individual log likelihood */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    int s1, s2;
         }    double bbh, survp;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    long ipmx;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /*extern weight */
         savm=oldm;    /* We are differentiating ll according to initial status */
         oldm=newm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       } /* end mult */    /*for(i=1;i<imx;i++)
             printf(" %d\n",s[4][i]);
       s1=s[mw[mi][i]][i];    */
       s2=s[mw[mi+1][i]][i];    cov[1]=1.;
       bbh=(double)bh[mi][i]/(double)stepm;   
       /* bias is positive if real duration    for(k=1; k<=nlstate; k++) ll[k]=0.;
        * is higher than the multiple of stepm and negative otherwise.  
        */    if(mle==1){
       if( s2 > nlstate && (mle <5) ){  /* Jackson */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         lli=log(out[s1][s2] - savm[s1][s2]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       } else if (mle==1){        for(mi=1; mi<= wav[i]-1; mi++){
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          for (ii=1;ii<=nlstate+ndeath;ii++)
       } else if(mle==2){            for (j=1;j<=nlstate+ndeath;j++){
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       } else if(mle==3){  /* exponential inter-extrapolation */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            }
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          for(d=0; d<dh[mi][i]; d++){
         lli=log(out[s1][s2]); /* Original formula */            newm=savm;
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         lli=log(out[s1][s2]); /* Original formula */            for (kk=1; kk<=cptcovage;kk++) {
       } /* End of if */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       ipmx +=1;            }
       sw += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            savm=oldm;
       if(globpr){            oldm=newm;
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\          } /* end mult */
  %10.6f %10.6f %10.6f ", \       
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){           * If stepm is larger than one month (smallest stepm) and if the exact delay
           llt +=ll[k]*gipmx/gsw;           * (in months) between two waves is not a multiple of stepm, we rounded to
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         fprintf(ficresilk," %10.6f\n", -llt);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
     } /* end of wave */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   } /* end of individual */           * -stepm/2 to stepm/2 .
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];           * For stepm=1 the results are the same as for previous versions of Imach.
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */           * For stepm > 1 the results are less biased than in previous versions.
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */           */
   if(globpr==0){ /* First time we count the contributions and weights */          s1=s[mw[mi][i]][i];
     gipmx=ipmx;          s2=s[mw[mi+1][i]][i];
     gsw=sw;          bbh=(double)bh[mi][i]/(double)stepm;
   }          /* bias bh is positive if real duration
   return -l;           * is higher than the multiple of stepm and negative otherwise.
 }           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 char *subdirf(char fileres[])          if( s2 > nlstate){
 {            /* i.e. if s2 is a death state and if the date of death is known
                  then the contribution to the likelihood is the probability to
   strcpy(tmpout,optionfilefiname);               die between last step unit time and current  step unit time,
   strcat(tmpout,"/"); /* Add to the right */               which is also equal to probability to die before dh
   strcat(tmpout,fileres);               minus probability to die before dh-stepm .
   return tmpout;               In version up to 0.92 likelihood was computed
 }          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 char *subdirf2(char fileres[], char *preop)          and not the date of a change in health state. The former idea was
 {          to consider that at each interview the state was recorded
             (healthy, disable or death) and IMaCh was corrected; but when we
   strcpy(tmpout,optionfilefiname);          introduced the exact date of death then we should have modified
   strcat(tmpout,"/");          the contribution of an exact death to the likelihood. This new
   strcat(tmpout,preop);          contribution is smaller and very dependent of the step unit
   strcat(tmpout,fileres);          stepm. It is no more the probability to die between last interview
   return tmpout;          and month of death but the probability to survive from last
 }          interview up to one month before death multiplied by the
 char *subdirf3(char fileres[], char *preop, char *preop2)          probability to die within a month. Thanks to Chris
 {          Jackson for correcting this bug.  Former versions increased
             mortality artificially. The bad side is that we add another loop
   strcpy(tmpout,optionfilefiname);          which slows down the processing. The difference can be up to 10%
   strcat(tmpout,"/");          lower mortality.
   strcat(tmpout,preop);            */
   strcat(tmpout,preop2);            lli=log(out[s1][s2] - savm[s1][s2]);
   strcat(tmpout,fileres);  
   return tmpout;  
 }          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++)
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 {            /*survp += out[s1][j]; */
   /* This routine should help understanding what is done with             lli= log(survp);
      the selection of individuals/waves and          }
      to check the exact contribution to the likelihood.         
      Plotting could be done.          else if  (s2==-4) {
    */            for (j=3,survp=0. ; j<=nlstate; j++)  
   int k;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp);
   if(*globpri !=0){ /* Just counts and sums, no printings */          }
     strcpy(fileresilk,"ilk");   
     strcat(fileresilk,fileres);          else if  (s2==-5) {
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            for (j=1,survp=0. ; j<=2; j++)  
       printf("Problem with resultfile: %s\n", fileresilk);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            lli= log(survp);
     }          }
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");         
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          else{
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(k=1; k<=nlstate; k++)             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          }
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   *fretone=(*funcone)(p);          ipmx +=1;
   if(*globpri !=0){          sw += weight[i];
     fclose(ficresilk);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));        } /* end of wave */
     fflush(fichtm);       } /* end of individual */
   }     }  else if(mle==2){
   return;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /*********** Maximum Likelihood Estimation ***************/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i,j, iter;          for(d=0; d<=dh[mi][i]; d++){
   double **xi;            newm=savm;
   double fret;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double fretone; /* Only one call to likelihood */            for (kk=1; kk<=cptcovage;kk++) {
   char filerespow[FILENAMELENGTH];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   xi=matrix(1,npar,1,npar);            }
   for (i=1;i<=npar;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       xi[i][j]=(i==j ? 1.0 : 0.0);            savm=oldm;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            oldm=newm;
   strcpy(filerespow,"pow");           } /* end mult */
   strcat(filerespow,fileres);       
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with resultfile: %s\n", filerespow);          s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          bbh=(double)bh[mi][i]/(double)stepm;
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          ipmx +=1;
   for (i=1;i<=nlstate;i++)          sw += weight[i];
     for(j=1;j<=nlstate+ndeath;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        } /* end of wave */
   fprintf(ficrespow,"\n");      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
   powell(p,xi,npar,ftol,&iter,&fret,func);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fclose(ficrespow);        for(mi=1; mi<= wav[i]-1; mi++){
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 /**** Computes Hessian and covariance matrix ***/            newm=savm;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   double  **a,**y,*x,pd;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **hess;            }
   int i, j,jk;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int *indx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   double hessii(double p[], double delta, int theta, double delti[]);            oldm=newm;
   double hessij(double p[], double delti[], int i, int j);          } /* end mult */
   void lubksb(double **a, int npar, int *indx, double b[]) ;       
   void ludcmp(double **a, int npar, int *indx, double *d) ;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   hess=matrix(1,npar,1,npar);          bbh=(double)bh[mi][i]/(double)stepm;
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   printf("\nCalculation of the hessian matrix. Wait...\n");          ipmx +=1;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          sw += weight[i];
   for (i=1;i<=npar;i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("%d",i);fflush(stdout);        } /* end of wave */
     fprintf(ficlog,"%d",i);fflush(ficlog);      } /* end of individual */
     hess[i][i]=hessii(p,ftolhess,i,delti);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     /*printf(" %f ",p[i]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /*printf(" %lf ",hess[i][i]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
             for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=npar;i++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++)  {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (j>i) {               savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(".%d%d",i,j);fflush(stdout);            }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          for(d=0; d<dh[mi][i]; d++){
         hess[i][j]=hessij(p,delti,i,j);            newm=savm;
         hess[j][i]=hess[i][j];                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         /*printf(" %lf ",hess[i][j]);*/            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }         
   printf("\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficlog,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            oldm=newm;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          } /* end mult */
          
   a=matrix(1,npar,1,npar);          s1=s[mw[mi][i]][i];
   y=matrix(1,npar,1,npar);          s2=s[mw[mi+1][i]][i];
   x=vector(1,npar);          if( s2 > nlstate){
   indx=ivector(1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   for (i=1;i<=npar;i++)          }else{
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   ludcmp(a,npar,indx,&pd);          }
           ipmx +=1;
   for (j=1;j<=npar;j++) {          sw += weight[i];
     for (i=1;i<=npar;i++) x[i]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     x[j]=1;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     lubksb(a,npar,indx,x);        } /* end of wave */
     for (i=1;i<=npar;i++){       } /* end of individual */
       matcov[i][j]=x[i];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   printf("\n#Hessian matrix#\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficlog,"\n#Hessian matrix#\n");            for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++) {               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) {               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("%.3e ",hess[i][j]);            }
       fprintf(ficlog,"%.3e ",hess[i][j]);          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     printf("\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficlog,"\n");            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   /* Recompute Inverse */         
   for (i=1;i<=npar;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   ludcmp(a,npar,indx,&pd);            savm=oldm;
             oldm=newm;
   /*  printf("\n#Hessian matrix recomputed#\n");          } /* end mult */
        
   for (j=1;j<=npar;j++) {          s1=s[mw[mi][i]][i];
     for (i=1;i<=npar;i++) x[i]=0;          s2=s[mw[mi+1][i]][i];
     x[j]=1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     lubksb(a,npar,indx,x);          ipmx +=1;
     for (i=1;i<=npar;i++){           sw += weight[i];
       y[i][j]=x[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       printf("%.3e ",y[i][j]);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       fprintf(ficlog,"%.3e ",y[i][j]);        } /* end of wave */
     }      } /* end of individual */
     printf("\n");    } /* End of if */
     fprintf(ficlog,"\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   free_matrix(a,1,npar,1,npar);  }
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  /*************** log-likelihood *************/
   free_ivector(indx,1,npar);  double funcone( double *x)
   free_matrix(hess,1,npar,1,npar);  {
     /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
 }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
 /*************** hessian matrix ****************/    double lli; /* Individual log likelihood */
 double hessii( double x[], double delta, int theta, double delti[])    double llt;
 {    int s1, s2;
   int i;    double bbh, survp;
   int l=1, lmax=20;    /*extern weight */
   double k1,k2;    /* We are differentiating ll according to initial status */
   double p2[NPARMAX+1];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double res;    /*for(i=1;i<imx;i++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      printf(" %d\n",s[4][i]);
   double fx;    */
   int k=0,kmax=10;    cov[1]=1.;
   double l1;  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(l=0 ; l <=lmax; l++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     l1=pow(10,l);      for(mi=1; mi<= wav[i]-1; mi++){
     delts=delt;        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(k=1 ; k <kmax; k=k+1){          for (j=1;j<=nlstate+ndeath;j++){
       delt = delta*(l1*k);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       p2[theta]=x[theta] +delt;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       k1=func(p2)-fx;          }
       p2[theta]=x[theta]-delt;        for(d=0; d<dh[mi][i]; d++){
       k2=func(p2)-fx;          newm=savm;
       /*res= (k1-2.0*fx+k2)/delt/delt; */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          for (kk=1; kk<=cptcovage;kk++) {
                   cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 #ifdef DEBUG          }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 #endif          savm=oldm;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          oldm=newm;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        } /* end mult */
         k=kmax;       
       }        s1=s[mw[mi][i]][i];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        s2=s[mw[mi+1][i]][i];
         k=kmax; l=lmax*10.;        bbh=(double)bh[mi][i]/(double)stepm;
       }        /* bias is positive if real duration
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          * is higher than the multiple of stepm and negative otherwise.
         delts=delt;         */
       }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     }          lli=log(out[s1][s2] - savm[s1][s2]);
   }        } else if  (s2==-2) {
   delti[theta]=delts;          for (j=1,survp=0. ; j<=nlstate; j++)
   return res;             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp);
 }        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 double hessij( double x[], double delti[], int thetai,int thetaj)        } else if(mle==2){
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i;        } else if(mle==3){  /* exponential inter-extrapolation */
   int l=1, l1, lmax=20;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double k1,k2,k3,k4,res,fx;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double p2[NPARMAX+1];          lli=log(out[s1][s2]); /* Original formula */
   int k;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   fx=func(x);        } /* End of if */
   for (k=1; k<=2; k++) {        ipmx +=1;
     for (i=1;i<=npar;i++) p2[i]=x[i];        sw += weight[i];
     p2[thetai]=x[thetai]+delti[thetai]/k;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     k1=func(p2)-fx;        if(globpr){
             fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     p2[thetai]=x[thetai]+delti[thetai]/k;   %11.6f %11.6f %11.6f ", \
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     k2=func(p2)-fx;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     p2[thetai]=x[thetai]-delti[thetai]/k;            llt +=ll[k]*gipmx/gsw;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     k3=func(p2)-fx;          }
             fprintf(ficresilk," %10.6f\n", -llt);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } /* end of wave */
     k4=func(p2)-fx;    } /* end of individual */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 #ifdef DEBUG    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    if(globpr==0){ /* First time we count the contributions and weights */
 #endif      gipmx=ipmx;
   }      gsw=sw;
   return res;    }
 }    return -l;
   }
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)   
 {   /*************** function likelione ***********/
   int i,imax,j,k;   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double big,dum,sum,temp;   {
   double *vv;     /* This routine should help understanding what is done with
         the selection of individuals/waves and
   vv=vector(1,n);        to check the exact contribution to the likelihood.
   *d=1.0;        Plotting could be done.
   for (i=1;i<=n;i++) {      */
     big=0.0;     int k;
     for (j=1;j<=n;j++)   
       if ((temp=fabs(a[i][j])) > big) big=temp;     if(*globpri !=0){ /* Just counts and sums, no printings */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       strcpy(fileresilk,"ilk");
     vv[i]=1.0/big;       strcat(fileresilk,fileres);
   }       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   for (j=1;j<=n;j++) {         printf("Problem with resultfile: %s\n", fileresilk);
     for (i=1;i<j;i++) {         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       sum=a[i][j];       }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       a[i][j]=sum;       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     }       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     big=0.0;       for(k=1; k<=nlstate; k++)
     for (i=j;i<=n;i++) {         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       sum=a[i][j];       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for (k=1;k<j;k++)     }
         sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;     *fretone=(*funcone)(p);
       if ( (dum=vv[i]*fabs(sum)) >= big) {     if(*globpri !=0){
         big=dum;       fclose(ficresilk);
         imax=i;       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       }       fflush(fichtm);
     }     }
     if (j != imax) {     return;
       for (k=1;k<=n;k++) {   }
         dum=a[imax][k];   
         a[imax][k]=a[j][k];   
         a[j][k]=dum;   /*********** Maximum Likelihood Estimation ***************/
       }   
       *d = -(*d);   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       vv[imax]=vv[j];   {
     }     int i,j, iter;
     indx[j]=imax;     double **xi;
     if (a[j][j] == 0.0) a[j][j]=TINY;     double fret;
     if (j != n) {     double fretone; /* Only one call to likelihood */
       dum=1.0/(a[j][j]);     /*  char filerespow[FILENAMELENGTH];*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     xi=matrix(1,npar,1,npar);
     }     for (i=1;i<=npar;i++)
   }       for (j=1;j<=npar;j++)
   free_vector(vv,1,n);  /* Doesn't work */        xi[i][j]=(i==j ? 1.0 : 0.0);
 ;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 }     strcpy(filerespow,"pow");
     strcat(filerespow,fileres);
 void lubksb(double **a, int n, int *indx, double b[])     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 {       printf("Problem with resultfile: %s\n", filerespow);
   int i,ii=0,ip,j;       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double sum;     }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for (i=1;i<=n;i++) {     for (i=1;i<=nlstate;i++)
     ip=indx[i];       for(j=1;j<=nlstate+ndeath;j++)
     sum=b[ip];         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     b[ip]=b[i];     fprintf(ficrespow,"\n");
     if (ii)   
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     powell(p,xi,npar,ftol,&iter,&fret,func);
     else if (sum) ii=i;   
     b[i]=sum;     free_matrix(xi,1,npar,1,npar);
   }     fclose(ficrespow);
   for (i=n;i>=1;i--) {     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     sum=b[i];     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     b[i]=sum/a[i][i];   
   }   }
 }   
   /**** Computes Hessian and covariance matrix ***/
 /************ Frequencies ********************/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)  {
 {  /* Some frequencies */    double  **a,**y,*x,pd;
       double **hess;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int i, j,jk;
   int first;    int *indx;
   double ***freq; /* Frequencies */  
   double *pp, **prop;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   FILE *ficresp;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   char fileresp[FILENAMELENGTH];    void ludcmp(double **a, int npar, int *indx, double *d) ;
       double gompertz(double p[]);
   pp=vector(1,nlstate);    hess=matrix(1,npar,1,npar);
   prop=matrix(1,nlstate,iagemin,iagemax+3);  
   strcpy(fileresp,"p");    printf("\nCalculation of the hessian matrix. Wait...\n");
   strcat(fileresp,fileres);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for (i=1;i<=npar;i++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf("%d",i);fflush(stdout);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      fprintf(ficlog,"%d",i);fflush(ficlog);
     exit(0);     
   }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);     
   j1=0;      /*  printf(" %f ",p[i]);
             printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}   
     for (i=1;i<=npar;i++) {
   first=1;      for (j=1;j<=npar;j++)  {
         if (j>i) {
   for(k1=1; k1<=j;k1++){          printf(".%d%d",i,j);fflush(stdout);
     for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       j1++;          hess[i][j]=hessij(p,delti,i,j,func,npar);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);         
         scanf("%d", i);*/          hess[j][i]=hess[i][j];    
       for (i=-1; i<=nlstate+ndeath; i++)            /*printf(" %lf ",hess[i][j]);*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)          }
           for(m=iagemin; m <= iagemax+3; m++)      }
             freq[i][jk][m]=0;    }
     printf("\n");
     for (i=1; i<=nlstate; i++)      fprintf(ficlog,"\n");
       for(m=iagemin; m <= iagemax+3; m++)  
         prop[i][m]=0;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       dateintsum=0;   
       k2cpt=0;    a=matrix(1,npar,1,npar);
       for (i=1; i<=imx; i++) {    y=matrix(1,npar,1,npar);
         bool=1;    x=vector(1,npar);
         if  (cptcovn>0) {    indx=ivector(1,npar);
           for (z1=1; z1<=cptcoveff; z1++)     for (i=1;i<=npar;i++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
               bool=0;    ludcmp(a,npar,indx,&pd);
         }  
         if (bool==1){    for (j=1;j<=npar;j++) {
           for(m=firstpass; m<=lastpass; m++){      for (i=1;i<=npar;i++) x[i]=0;
             k2=anint[m][i]+(mint[m][i]/12.);      x[j]=1;
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      lubksb(a,npar,indx,x);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      for (i=1;i<=npar;i++){
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        matcov[i][j]=x[i];
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      }
               if (m<lastpass) {    }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    printf("\n#Hessian matrix#\n");
               }    fprintf(ficlog,"\n#Hessian matrix#\n");
                   for (i=1;i<=npar;i++) {
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      for (j=1;j<=npar;j++) {
                 dateintsum=dateintsum+k2;        printf("%.3e ",hess[i][j]);
                 k2cpt++;        fprintf(ficlog,"%.3e ",hess[i][j]);
               }      }
               /*}*/      printf("\n");
           }      fprintf(ficlog,"\n");
         }    }
       }  
            /* Recompute Inverse */
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       if  (cptcovn>0) {    ludcmp(a,npar,indx,&pd);
         fprintf(ficresp, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*  printf("\n#Hessian matrix recomputed#\n");
         fprintf(ficresp, "**********\n#");  
       }    for (j=1;j<=npar;j++) {
       for(i=1; i<=nlstate;i++)       for (i=1;i<=npar;i++) x[i]=0;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      x[j]=1;
       fprintf(ficresp, "\n");      lubksb(a,npar,indx,x);
             for (i=1;i<=npar;i++){
       for(i=iagemin; i <= iagemax+3; i++){        y[i][j]=x[i];
         if(i==iagemax+3){        printf("%.3e ",y[i][j]);
           fprintf(ficlog,"Total");        fprintf(ficlog,"%.3e ",y[i][j]);
         }else{      }
           if(first==1){      printf("\n");
             first=0;      fprintf(ficlog,"\n");
             printf("See log file for details...\n");    }
           }    */
           fprintf(ficlog,"Age %d", i);  
         }    free_matrix(a,1,npar,1,npar);
         for(jk=1; jk <=nlstate ; jk++){    free_matrix(y,1,npar,1,npar);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    free_vector(x,1,npar);
             pp[jk] += freq[jk][m][i];     free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  }
           if(pp[jk]>=1.e-10){  
             if(first==1){  /*************** hessian matrix ****************/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
             }  {
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    int i;
           }else{    int l=1, lmax=20;
             if(first==1)    double k1,k2;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double p2[NPARMAX+1];
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double res;
           }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         }    double fx;
     int k=0,kmax=10;
         for(jk=1; jk <=nlstate ; jk++){    double l1;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    fx=func(x);
         }           for (i=1;i<=npar;i++) p2[i]=x[i];
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    for(l=0 ; l <=lmax; l++){
           pos += pp[jk];      l1=pow(10,l);
           posprop += prop[jk][i];      delts=delt;
         }      for(k=1 ; k <kmax; k=k+1){
         for(jk=1; jk <=nlstate ; jk++){        delt = delta*(l1*k);
           if(pos>=1.e-5){        p2[theta]=x[theta] +delt;
             if(first==1)        k1=func(p2)-fx;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        p2[theta]=x[theta]-delt;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        k2=func(p2)-fx;
           }else{        /*res= (k1-2.0*fx+k2)/delt/delt; */
             if(first==1)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  #ifdef DEBUG
           }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           if( i <= iagemax){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             if(pos>=1.e-5){  #endif
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
               /*probs[i][jk][j1]= pp[jk]/pos;*/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          k=kmax;
             }        }
             else        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);          k=kmax; l=lmax*10.;
           }        }
         }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
                   delts=delt;
         for(jk=-1; jk <=nlstate+ndeath; jk++)        }
           for(m=-1; m <=nlstate+ndeath; m++)      }
             if(freq[jk][m][i] !=0 ) {    }
             if(first==1)    delti[theta]=delts;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    return res;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);   
             }  }
         if(i <= iagemax)  
           fprintf(ficresp,"\n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         if(first==1)  {
           printf("Others in log...\n");    int i;
         fprintf(ficlog,"\n");    int l=1, l1, lmax=20;
       }    double k1,k2,k3,k4,res,fx;
     }    double p2[NPARMAX+1];
   }    int k;
   dateintmean=dateintsum/k2cpt;   
      fx=func(x);
   fclose(ficresp);    for (k=1; k<=2; k++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);      for (i=1;i<=npar;i++) p2[i]=x[i];
   free_vector(pp,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /* End of Freq */      k1=func(p2)-fx;
 }   
       p2[thetai]=x[thetai]+delti[thetai]/k;
 /************ Prevalence ********************/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)      k2=func(p2)-fx;
 {     
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people      p2[thetai]=x[thetai]-delti[thetai]/k;
      in each health status at the date of interview (if between dateprev1 and dateprev2).      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      We still use firstpass and lastpass as another selection.      k3=func(p2)-fx;
   */   
        p2[thetai]=x[thetai]-delti[thetai]/k;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***freq; /* Frequencies */      k4=func(p2)-fx;
   double *pp, **prop;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double pos,posprop;   #ifdef DEBUG
   double  y2; /* in fractional years */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int iagemin, iagemax;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   iagemin= (int) agemin;    }
   iagemax= (int) agemax;    return res;
   /*pp=vector(1,nlstate);*/  }
   prop=matrix(1,nlstate,iagemin,iagemax+3);   
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/  /************** Inverse of matrix **************/
   j1=0;  void ludcmp(double **a, int n, int *indx, double *d)
     {
   j=cptcoveff;    int i,imax,j,k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double big,dum,sum,temp;
       double *vv;
   for(k1=1; k1<=j;k1++){   
     for(i1=1; i1<=ncodemax[k1];i1++){    vv=vector(1,n);
       j1++;    *d=1.0;
           for (i=1;i<=n;i++) {
       for (i=1; i<=nlstate; i++)        big=0.0;
         for(m=iagemin; m <= iagemax+3; m++)      for (j=1;j<=n;j++)
           prop[i][m]=0.0;        if ((temp=fabs(a[i][j])) > big) big=temp;
            if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       for (i=1; i<=imx; i++) { /* Each individual */      vv[i]=1.0/big;
         bool=1;    }
         if  (cptcovn>0) {    for (j=1;j<=n;j++) {
           for (z1=1; z1<=cptcoveff; z1++)       for (i=1;i<j;i++) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         sum=a[i][j];
               bool=0;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
         }         a[i][j]=sum;
         if (bool==1) {       }
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/      big=0.0;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */      for (i=j;i<=n;i++) {
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */        sum=a[i][j];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        for (k=1;k<j;k++)
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          sum -= a[i][k]*a[k][j];
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);         a[i][j]=sum;
               if (s[m][i]>0 && s[m][i]<=nlstate) {         if ( (dum=vv[i]*fabs(sum)) >= big) {
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/          big=dum;
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];          imax=i;
                 prop[s[m][i]][iagemax+3] += weight[i];         }
               }       }
             }      if (j != imax) {
           } /* end selection of waves */        for (k=1;k<=n;k++) {
         }          dum=a[imax][k];
       }          a[imax][k]=a[j][k];
       for(i=iagemin; i <= iagemax+3; i++){            a[j][k]=dum;
                 }
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {         *d = -(*d);
           posprop += prop[jk][i];         vv[imax]=vv[j];
         }       }
       indx[j]=imax;
         for(jk=1; jk <=nlstate ; jk++){           if (a[j][j] == 0.0) a[j][j]=TINY;
           if( i <=  iagemax){       if (j != n) {
             if(posprop>=1.e-5){         dum=1.0/(a[j][j]);
               probs[i][jk][j1]= prop[jk][i]/posprop;        for (i=j+1;i<=n;i++) a[i][j] *= dum;
             }       }
           }     }
         }/* end jk */     free_vector(vv,1,n);  /* Doesn't work */
       }/* end i */   ;
     } /* end i1 */  }
   } /* end k1 */  
     void lubksb(double **a, int n, int *indx, double b[])
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/  {
   /*free_vector(pp,1,nlstate);*/    int i,ii=0,ip,j;
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    double sum;
 }  /* End of prevalence */   
     for (i=1;i<=n;i++) {
 /************* Waves Concatenation ***************/      ip=indx[i];
       sum=b[ip];
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      b[ip]=b[i];
 {      if (ii)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
      Death is a valid wave (if date is known).      else if (sum) ii=i;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      b[i]=sum;
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    }
      and mw[mi+1][i]. dh depends on stepm.    for (i=n;i>=1;i--) {
      */      sum=b[i];
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
   int i, mi, m;      b[i]=sum/a[i][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    }
      double sum=0., jmean=0.;*/  }
   int first;  
   int j, k=0,jk, ju, jl;  void pstamp(FILE *fichier)
   double sum=0.;  {
   first=0;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   jmin=1e+5;  }
   jmax=-1;  
   jmean=0.;  /************ Frequencies ********************/
   for(i=1; i<=imx; i++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     mi=0;  {  /* Some frequencies */
     m=firstpass;   
     while(s[m][i] <= nlstate){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       if(s[m][i]>=1)    int first;
         mw[++mi][i]=m;    double ***freq; /* Frequencies */
       if(m >=lastpass)    double *pp, **prop;
         break;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       else    char fileresp[FILENAMELENGTH];
         m++;   
     }/* end while */    pp=vector(1,nlstate);
     if (s[m][i] > nlstate){    prop=matrix(1,nlstate,iagemin,iagemax+3);
       mi++;     /* Death is another wave */    strcpy(fileresp,"p");
       /* if(mi==0)  never been interviewed correctly before death */    strcat(fileresp,fileres);
          /* Only death is a correct wave */    if((ficresp=fopen(fileresp,"w"))==NULL) {
       mw[mi][i]=m;      printf("Problem with prevalence resultfile: %s\n", fileresp);
     }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     wav[i]=mi;    }
     if(mi==0){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       if(first==0){    j1=0;
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);   
         first=1;    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       if(first==1){  
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);    first=1;
       }  
     } /* end mi==0 */    for(k1=1; k1<=j;k1++){
   } /* End individuals */      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   for(i=1; i<=imx; i++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(mi=1; mi<wav[i];mi++){          scanf("%d", i);*/
       if (stepm <=0)        for (i=-5; i<=nlstate+ndeath; i++)  
         dh[mi][i]=1;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       else{            for(m=iagemin; m <= iagemax+3; m++)
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */              freq[i][jk][m]=0;
           if (agedc[i] < 2*AGESUP) {  
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       for (i=1; i<=nlstate; i++)  
             if(j==0) j=1;  /* Survives at least one month after exam */        for(m=iagemin; m <= iagemax+3; m++)
             else if(j<0){          prop[i][m]=0;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);       
               j=1; /* Careful Patch */        dateintsum=0;
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);        k2cpt=0;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        for (i=1; i<=imx; i++) {
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);          bool=1;
             }          if  (cptcovn>0) {
             k=k+1;            for (z1=1; z1<=cptcoveff; z1++)
             if (j >= jmax) jmax=j;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             if (j <= jmin) jmin=j;                bool=0;
             sum=sum+j;          }
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          if (bool==1){
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            for(m=firstpass; m<=lastpass; m++){
           }              k2=anint[m][i]+(mint[m][i]/12.);
         }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         else{                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           k=k+1;                if (m<lastpass) {
           if (j >= jmax) jmax=j;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           else if (j <= jmin)jmin=j;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                }
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/               
           if(j<0){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                  dateintsum=dateintsum+k2;
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                  k2cpt++;
           }                }
           sum=sum+j;                /*}*/
         }            }
         jk= j/stepm;          }
         jl= j -jk*stepm;        }
         ju= j -(jk+1)*stepm;         
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           if(jl==0){        pstamp(ficresp);
             dh[mi][i]=jk;        if  (cptcovn>0) {
             bh[mi][i]=0;          fprintf(ficresp, "\n#********** Variable ");
           }else{ /* We want a negative bias in order to only have interpolation ie          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   * at the price of an extra matrix product in likelihood */          fprintf(ficresp, "**********\n#");
             dh[mi][i]=jk+1;        }
             bh[mi][i]=ju;        for(i=1; i<=nlstate;i++)
           }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         }else{        fprintf(ficresp, "\n");
           if(jl <= -ju){       
             dh[mi][i]=jk;        for(i=iagemin; i <= iagemax+3; i++){
             bh[mi][i]=jl;       /* bias is positive if real duration          if(i==iagemax+3){
                                  * is higher than the multiple of stepm and negative otherwise.            fprintf(ficlog,"Total");
                                  */          }else{
           }            if(first==1){
           else{              first=0;
             dh[mi][i]=jk+1;              printf("See log file for details...\n");
             bh[mi][i]=ju;            }
           }            fprintf(ficlog,"Age %d", i);
           if(dh[mi][i]==0){          }
             dh[mi][i]=1; /* At least one step */          for(jk=1; jk <=nlstate ; jk++){
             bh[mi][i]=ju; /* At least one step */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              pp[jk] += freq[jk][m][i];
           }          }
         } /* end if mle */          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
     } /* end wave */              pos += freq[jk][m][i];
   }            if(pp[jk]>=1.e-10){
   jmean=sum/k;              if(first==1){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              }
  }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
 /*********** Tricode ****************************/              if(first==1)
 void tricode(int *Tvar, int **nbcode, int imx)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               }
   int Ndum[20],ij=1, k, j, i, maxncov=19;          }
   int cptcode=0;  
   cptcoveff=0;           for(jk=1; jk <=nlstate ; jk++){
              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   for (k=0; k<maxncov; k++) Ndum[k]=0;              pp[jk] += freq[jk][m][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;          }      
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            pos += pp[jk];
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum             posprop += prop[jk][i];
                                modality*/           }
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/          for(jk=1; jk <=nlstate ; jk++){
       Ndum[ij]++; /*store the modality */            if(pos>=1.e-5){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              if(first==1)
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                                        Tvar[j]. If V=sex and male is 0 and               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                                        female is 1, then  cptcode=1.*/            }else{
     }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=0; i<=cptcode; i++) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */            }
     }            if( i <= iagemax){
               if(pos>=1.e-5){
     ij=1;                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for (i=1; i<=ncodemax[j]; i++) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
       for (k=0; k<= maxncov; k++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         if (Ndum[k] != 0) {              }
           nbcode[Tvar[j]][ij]=k;               else
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                       }
           ij++;          }
         }         
         if (ij > ncodemax[j]) break;           for(jk=-1; jk <=nlstate+ndeath; jk++)
       }              for(m=-1; m <=nlstate+ndeath; m++)
     }               if(freq[jk][m][i] !=0 ) {
   }                if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  for (k=0; k< maxncov; k++) Ndum[k]=0;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
  for (i=1; i<=ncovmodel-2; i++) {           if(i <= iagemax)
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/            fprintf(ficresp,"\n");
    ij=Tvar[i];          if(first==1)
    Ndum[ij]++;            printf("Others in log...\n");
  }          fprintf(ficlog,"\n");
         }
  ij=1;      }
  for (i=1; i<= maxncov; i++) {    }
    if((Ndum[i]!=0) && (i<=ncovcol)){    dateintmean=dateintsum/k2cpt;
      Tvaraff[ij]=i; /*For printing */   
      ij++;    fclose(ficresp);
    }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
  }    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  cptcoveff=ij-1; /*Number of simple covariates*/    /* End of Freq */
 }  }
   
 /*********** Health Expectancies ****************/  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 {       in each health status at the date of interview (if between dateprev1 and dateprev2).
   /* Health expectancies */       We still use firstpass and lastpass as another selection.
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    */
   double age, agelim, hf;   
   double ***p3mat,***varhe;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   double **dnewm,**doldm;    double ***freq; /* Frequencies */
   double *xp;    double *pp, **prop;
   double **gp, **gm;    double pos,posprop;
   double ***gradg, ***trgradg;    double  y2; /* in fractional years */
   int theta;    int iagemin, iagemax;
   
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    iagemin= (int) agemin;
   xp=vector(1,npar);    iagemax= (int) agemax;
   dnewm=matrix(1,nlstate*nlstate,1,npar);    /*pp=vector(1,nlstate);*/
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficreseij,"# Health expectancies\n");    j1=0;
   fprintf(ficreseij,"# Age");   
   for(i=1; i<=nlstate;i++)    j=cptcoveff;
     for(j=1; j<=nlstate;j++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficreseij," %1d-%1d (SE)",i,j);   
   fprintf(ficreseij,"\n");    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   if(estepm < stepm){        j1++;
     printf ("Problem %d lower than %d\n",estepm, stepm);       
   }        for (i=1; i<=nlstate; i++)  
   else  hstepm=estepm;             for(m=iagemin; m <= iagemax+3; m++)
   /* We compute the life expectancy from trapezoids spaced every estepm months            prop[i][m]=0.0;
    * This is mainly to measure the difference between two models: for example       
    * if stepm=24 months pijx are given only every 2 years and by summing them        for (i=1; i<=imx; i++) { /* Each individual */
    * we are calculating an estimate of the Life Expectancy assuming a linear           bool=1;
    * progression in between and thus overestimating or underestimating according          if  (cptcovn>0) {
    * to the curvature of the survival function. If, for the same date, we             for (z1=1; z1<=cptcoveff; z1++)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
    * to compare the new estimate of Life expectancy with the same linear                 bool=0;
    * hypothesis. A more precise result, taking into account a more precise          }
    * curvature will be obtained if estepm is as small as stepm. */          if (bool==1) {
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   /* For example we decided to compute the life expectancy with the smallest unit */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      nhstepm is the number of hstepm from age to agelim                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
      nstepm is the number of stepm from age to agelin.                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
      Look at hpijx to understand the reason of that which relies in memory size                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
      and note for a fixed period like estepm months */                if (s[m][i]>0 && s[m][i]<=nlstate) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      survival function given by stepm (the optimization length). Unfortunately it                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      means that if the survival funtion is printed only each two years of age and if                  prop[s[m][i]][iagemax+3] += weight[i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                 }
      results. So we changed our mind and took the option of the best precision.              }
   */            } /* end selection of waves */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           }
         }
   agelim=AGESUP;        for(i=iagemin; i <= iagemax+3; i++){  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         
     /* nhstepm age range expressed in number of stepm */          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);             posprop += prop[jk][i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */           }
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          for(jk=1; jk <=nlstate ; jk++){    
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if( i <=  iagemax){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);              if(posprop>=1.e-5){
     gp=matrix(0,nhstepm,1,nlstate*nlstate);                probs[i][jk][j1]= prop[jk][i]/posprop;
     gm=matrix(0,nhstepm,1,nlstate*nlstate);              }
             }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          }/* end jk */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        }/* end i */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        } /* end i1 */
      } /* end k1 */
    
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     /* Computing Variances of health expectancies */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){   /************* Waves Concatenation ***************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
       /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       cptj=0;       Death is a valid wave (if date is known).
       for(j=1; j<= nlstate; j++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         for(i=1; i<=nlstate; i++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           cptj=cptj+1;       and mw[mi+1][i]. dh depends on stepm.
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){       */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    int i, mi, m;
         }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       }       double sum=0., jmean=0.;*/
          int first;
          int j, k=0,jk, ju, jl;
       for(i=1; i<=npar; i++)     double sum=0.;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    first=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      jmin=1e+5;
           jmax=-1;
       cptj=0;    jmean=0.;
       for(j=1; j<= nlstate; j++){    for(i=1; i<=imx; i++){
         for(i=1;i<=nlstate;i++){      mi=0;
           cptj=cptj+1;      m=firstpass;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          mw[++mi][i]=m;
           }        if(m >=lastpass)
         }          break;
       }        else
       for(j=1; j<= nlstate*nlstate; j++)          m++;
         for(h=0; h<=nhstepm-1; h++){      }/* end while */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      if (s[m][i] > nlstate){
         }        mi++;     /* Death is another wave */
      }         /* if(mi==0)  never been interviewed correctly before death */
               /* Only death is a correct wave */
 /* End theta */        mw[mi][i]=m;
       }
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);  
       wav[i]=mi;
      for(h=0; h<=nhstepm-1; h++)      if(mi==0){
       for(j=1; j<=nlstate*nlstate;j++)        nbwarn++;
         for(theta=1; theta <=npar; theta++)        if(first==0){
           trgradg[h][j][theta]=gradg[h][theta][j];          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                first=1;
         }
      for(i=1;i<=nlstate*nlstate;i++)        if(first==1){
       for(j=1;j<=nlstate*nlstate;j++)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         varhe[i][j][(int)age] =0.;        }
       } /* end mi==0 */
      printf("%d|",(int)age);fflush(stdout);    } /* End individuals */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  
      for(h=0;h<=nhstepm-1;h++){    for(i=1; i<=imx; i++){
       for(k=0;k<=nhstepm-1;k++){      for(mi=1; mi<wav[i];mi++){
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);        if (stepm <=0)
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);          dh[mi][i]=1;
         for(i=1;i<=nlstate*nlstate;i++)        else{
           for(j=1;j<=nlstate*nlstate;j++)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
     }              if(j==0) j=1;  /* Survives at least one month after exam */
     /* Computing expectancies */              else if(j<0){
     for(i=1; i<=nlstate;i++)                nberr++;
       for(j=1; j<=nlstate;j++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                j=1; /* Temporary Dangerous patch */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                           fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
         }              k=k+1;
               if (j >= jmax){
     fprintf(ficreseij,"%3.0f",age );                jmax=j;
     cptj=0;                ijmax=i;
     for(i=1; i<=nlstate;i++)              }
       for(j=1; j<=nlstate;j++){              if (j <= jmin){
         cptj++;                jmin=j;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );                ijmin=i;
       }              }
     fprintf(ficreseij,"\n");              sum=sum+j;
                  /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);            }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          else{
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   printf("\n");  
   fprintf(ficlog,"\n");            k=k+1;
             if (j >= jmax) {
   free_vector(xp,1,npar);              jmax=j;
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);              ijmax=i;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);            }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);            else if (j <= jmin){
 }              jmin=j;
               ijmin=i;
 /************ Variance ******************/            }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   /* Variance of health expectancies */            if(j<0){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              nberr++;
   /* double **newm;*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **dnewm,**doldm;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **dnewmp,**doldmp;            }
   int i, j, nhstepm, hstepm, h, nstepm ;            sum=sum+j;
   int k, cptcode;          }
   double *xp;          jk= j/stepm;
   double **gp, **gm;  /* for var eij */          jl= j -jk*stepm;
   double ***gradg, ***trgradg; /*for var eij */          ju= j -(jk+1)*stepm;
   double **gradgp, **trgradgp; /* for var p point j */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   double *gpp, *gmp; /* for var p point j */            if(jl==0){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              dh[mi][i]=jk;
   double ***p3mat;              bh[mi][i]=0;
   double age,agelim, hf;            }else{ /* We want a negative bias in order to only have interpolation ie
   double ***mobaverage;                    * at the price of an extra matrix product in likelihood */
   int theta;              dh[mi][i]=jk+1;
   char digit[4];              bh[mi][i]=ju;
   char digitp[25];            }
           }else{
   char fileresprobmorprev[FILENAMELENGTH];            if(jl <= -ju){
               dh[mi][i]=jk;
   if(popbased==1){              bh[mi][i]=jl;       /* bias is positive if real duration
     if(mobilav!=0)                                   * is higher than the multiple of stepm and negative otherwise.
       strcpy(digitp,"-populbased-mobilav-");                                   */
     else strcpy(digitp,"-populbased-nomobil-");            }
   }            else{
   else               dh[mi][i]=jk+1;
     strcpy(digitp,"-stablbased-");              bh[mi][i]=ju;
             }
   if (mobilav!=0) {            if(dh[mi][i]==0){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=1; /* At least one step */
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){              bh[mi][i]=ju; /* At least one step */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            }
     }          } /* end if mle */
   }        }
       } /* end wave */
   strcpy(fileresprobmorprev,"prmorprev");     }
   sprintf(digit,"%-d",ij);    jmean=sum/k;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */   }
   strcat(fileresprobmorprev,fileres);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  /*********** Tricode ****************************/
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  void tricode(int *Tvar, int **nbcode, int imx)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  {
   }   
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    int cptcode=0;
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    cptcoveff=0;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);   
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
     fprintf(ficresprobmorprev," p.%-d SE",j);    for (k=1; k<=7; k++) ncodemax[k]=0;
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   }        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   fprintf(ficresprobmorprev,"\n");                                 modality*/
   fprintf(ficgp,"\n# Routine varevsij");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        Ndum[ij]++; /*store the modality */
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 /*   } */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                                         Tvar[j]. If V=sex and male is 0 and
                                          female is 1, then  cptcode=1.*/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      }
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)      for (i=0; i<=cptcode; i++) {
     for(j=1; j<=nlstate;j++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      }
   fprintf(ficresvij,"\n");  
       ij=1;
   xp=vector(1,npar);      for (i=1; i<=ncodemax[j]; i++) {
   dnewm=matrix(1,nlstate,1,npar);        for (k=0; k<= maxncov; k++) {
   doldm=matrix(1,nlstate,1,nlstate);          if (Ndum[k] != 0) {
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);            nbcode[Tvar[j]][ij]=k;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
            
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            ij++;
   gpp=vector(nlstate+1,nlstate+ndeath);          }
   gmp=vector(nlstate+1,nlstate+ndeath);          if (ij > ncodemax[j]) break;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        }  
         }
   if(estepm < stepm){    }  
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   else  hstepm=estepm;     
   /* For example we decided to compute the life expectancy with the smallest unit */   for (i=1; i<=ncovmodel-2; i++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      nhstepm is the number of hstepm from age to agelim      ij=Tvar[i];
      nstepm is the number of stepm from age to agelin.      Ndum[ij]++;
      Look at hpijx to understand the reason of that which relies in memory size   }
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   ij=1;
      survival function given by stepm (the optimization length). Unfortunately it   for (i=1; i<= maxncov; i++) {
      means that if the survival funtion is printed every two years of age and if     if((Ndum[i]!=0) && (i<=ncovcol)){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        Tvaraff[ij]=i; /*For printing */
      results. So we changed our mind and took the option of the best precision.       ij++;
   */     }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    }
   agelim = AGESUP;   
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   cptcoveff=ij-1; /*Number of simple covariates*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*********** Health Expectancies ****************/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     gm=matrix(0,nhstepm,1,nlstate);  
   {
     /* Health expectancies, no variances */
     for(theta=1; theta <=npar; theta++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    double age, agelim, hf;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double ***p3mat;
       }    double eip;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       if (popbased==1) {    fprintf(ficreseij,"# Age");
         if(mobilav ==0){    for(i=1; i<=nlstate;i++){
           for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++){
             prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficreseij," e%1d%1d ",i,j);
         }else{ /* mobilav */       }
           for(i=1; i<=nlstate;i++)      fprintf(ficreseij," e%1d. ",i);
             prlim[i][i]=mobaverage[(int)age][i][ij];    }
         }    fprintf(ficreseij,"\n");
       }  
      
       for(j=1; j<= nlstate; j++){    if(estepm < stepm){
         for(h=0; h<=nhstepm; h++){      printf ("Problem %d lower than %d\n",estepm, stepm);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    else  hstepm=estepm;  
         }    /* We compute the life expectancy from trapezoids spaced every estepm months
       }     * This is mainly to measure the difference between two models: for example
       /* This for computing probability of death (h=1 means     * if stepm=24 months pijx are given only every 2 years and by summing them
          computed over hstepm matrices product = hstepm*stepm months)      * we are calculating an estimate of the Life Expectancy assuming a linear
          as a weighted average of prlim.     * progression in between and thus overestimating or underestimating according
       */     * to the curvature of the survival function. If, for the same date, we
       for(j=nlstate+1;j<=nlstate+ndeath;j++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         for(i=1,gpp[j]=0.; i<= nlstate; i++)     * to compare the new estimate of Life expectancy with the same linear
           gpp[j] += prlim[i][i]*p3mat[i][j][1];     * hypothesis. A more precise result, taking into account a more precise
       }         * curvature will be obtained if estepm is as small as stepm. */
       /* end probability of death */  
     /* For example we decided to compute the life expectancy with the smallest unit */
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       nhstepm is the number of hstepm from age to agelim
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         nstepm is the number of stepm from age to agelin.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
       if (popbased==1) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         if(mobilav ==0){       survival function given by stepm (the optimization length). Unfortunately it
           for(i=1; i<=nlstate;i++)       means that if the survival funtion is printed only each two years of age and if
             prlim[i][i]=probs[(int)age][i][ij];       you sum them up and add 1 year (area under the trapezoids) you won't get the same
         }else{ /* mobilav */        results. So we changed our mind and took the option of the best precision.
           for(i=1; i<=nlstate;i++)    */
             prlim[i][i]=mobaverage[(int)age][i][ij];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         }  
       }    agelim=AGESUP;
     /* If stepm=6 months */
       for(j=1; j<= nlstate; j++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for(h=0; h<=nhstepm; h++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)     
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  /* nhstepm age range expressed in number of stepm */
         }    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
       /* This for computing probability of death (h=1 means    /* if (stepm >= YEARM) hstepm=1;*/
          computed over hstepm matrices product = hstepm*stepm months)     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          as a weighted average of prlim.    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    for (age=bage; age<=fage; age ++){
         for(i=1,gmp[j]=0.; i<= nlstate; i++)  
          gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }          hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       /* end probability of death */     
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(j=1; j<= nlstate; j++) /* vareij */     
         for(h=0; h<=nhstepm; h++){      printf("%d|",(int)age);fflush(stdout);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         }     
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      /* Computing expectancies */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     } /* End theta */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
            
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     for(h=0; h<=nhstepm; h++) /* veij */          }
       for(j=1; j<=nlstate;j++)     
         for(theta=1; theta <=npar; theta++)      fprintf(ficreseij,"%3.0f",age );
           trgradg[h][j][theta]=gradg[h][theta][j];      for(i=1; i<=nlstate;i++){
         eip=0;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        for(j=1; j<=nlstate;j++){
       for(theta=1; theta <=npar; theta++)          eip +=eij[i][j][(int)age];
         trgradgp[j][theta]=gradgp[theta][j];          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           }
         fprintf(ficreseij,"%9.4f", eip );
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     for(i=1;i<=nlstate;i++)      fprintf(ficreseij,"\n");
       for(j=1;j<=nlstate;j++)     
         vareij[i][j][(int)age] =0.;    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(h=0;h<=nhstepm;h++){    printf("\n");
       for(k=0;k<=nhstepm;k++){    fprintf(ficlog,"\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  }
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  {
     }    /* Covariances of health expectancies eij and of total life expectancies according
        to initial status i, ei. .
     /* pptj */    */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    double age, agelim, hf;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    double ***p3matp, ***p3matm, ***varhe;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    double **dnewm,**doldm;
         varppt[j][i]=doldmp[j][i];    double *xp, *xm;
     /* end ppptj */    double **gp, **gm;
     /*  x centered again */    double ***gradg, ***trgradg;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      int theta;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  
      double eip, vip;
     if (popbased==1) {  
       if(mobilav ==0){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for(i=1; i<=nlstate;i++)    xp=vector(1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    xm=vector(1,npar);
       }else{ /* mobilav */     dnewm=matrix(1,nlstate*nlstate,1,npar);
         for(i=1; i<=nlstate;i++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           prlim[i][i]=mobaverage[(int)age][i][ij];   
       }    pstamp(ficresstdeij);
     }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                  fprintf(ficresstdeij,"# Age");
     /* This for computing probability of death (h=1 means    for(i=1; i<=nlstate;i++){
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       for(j=1; j<=nlstate;j++)
        as a weighted average of prlim.        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     */      fprintf(ficresstdeij," e%1d. ",i);
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    }
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     fprintf(ficresstdeij,"\n");
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }        pstamp(ficrescveij);
     /* end probability of death */    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    for(i=1; i<=nlstate;i++)
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for(j=1; j<=nlstate;j++){
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        cptj= (j-1)*nlstate+i;
       for(i=1; i<=nlstate;i++){        for(i2=1; i2<=nlstate;i2++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          for(j2=1; j2<=nlstate;j2++){
       }            cptj2= (j2-1)*nlstate+i2;
     }             if(cptj2 <= cptj)
     fprintf(ficresprobmorprev,"\n");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
     fprintf(ficresvij,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)    fprintf(ficrescveij,"\n");
       for(j=1; j<=nlstate;j++){   
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficresvij,"\n");    }
     free_matrix(gp,0,nhstepm,1,nlstate);    else  hstepm=estepm;  
     free_matrix(gm,0,nhstepm,1,nlstate);    /* We compute the life expectancy from trapezoids spaced every estepm months
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);     * This is mainly to measure the difference between two models: for example
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);     * if stepm=24 months pijx are given only every 2 years and by summing them
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * we are calculating an estimate of the Life Expectancy assuming a linear
   } /* End age */     * progression in between and thus overestimating or underestimating according
   free_vector(gpp,nlstate+1,nlstate+ndeath);     * to the curvature of the survival function. If, for the same date, we
   free_vector(gmp,nlstate+1,nlstate+ndeath);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);     * to compare the new estimate of Life expectancy with the same linear
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     * hypothesis. A more precise result, taking into account a more precise
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");     * curvature will be obtained if estepm is as small as stepm. */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    /* For example we decided to compute the life expectancy with the smallest unit */
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */       nhstepm is the number of hstepm from age to agelim
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */       nstepm is the number of stepm from age to agelin.
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));       and note for a fixed period like estepm months */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);       means that if the survival funtion is printed only each two years of age and if
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
 */       results. So we changed our mind and took the option of the best precision.
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    */
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   
   free_vector(xp,1,npar);    /* If stepm=6 months */
   free_matrix(doldm,1,nlstate,1,nlstate);    /* nhstepm age range expressed in number of stepm */
   free_matrix(dnewm,1,nlstate,1,npar);    agelim=AGESUP;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* if (stepm >= YEARM) hstepm=1;*/
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficresprobmorprev);   
   fflush(ficgp);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fflush(fichtm);     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }  /* end varevsij */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 /************ Variance of prevlim ******************/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    gm=matrix(0,nhstepm,1,nlstate*nlstate);
 {  
   /* Variance of prevalence limit */    for (age=bage; age<=fage; age ++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/  
   double **newm;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double **dnewm,**doldm;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   int i, j, nhstepm, hstepm;   
   int k, cptcode;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double *xp;  
   double *gp, *gm;      /* Computing  Variances of health expectancies */
   double **gradg, **trgradg;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   double age,agelim;         decrease memory allocation */
   int theta;      for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficresvpl,"# Age");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %1d-%1d",i,i);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   fprintf(ficresvpl,"\n");        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    
   xp=vector(1,npar);        for(j=1; j<= nlstate; j++){
   dnewm=matrix(1,nlstate,1,npar);          for(i=1; i<=nlstate; i++){
   doldm=matrix(1,nlstate,1,nlstate);            for(h=0; h<=nhstepm-1; h++){
                 gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   hstepm=1*YEARM; /* Every year of age */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */             }
   agelim = AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        
     if (stepm >= YEARM) hstepm=1;        for(ij=1; ij<= nlstate*nlstate; ij++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for(h=0; h<=nhstepm-1; h++){
     gradg=matrix(1,npar,1,nlstate);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     gp=vector(1,nlstate);          }
     gm=vector(1,nlstate);      }/* End theta */
      
     for(theta=1; theta <=npar; theta++){     
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(h=0; h<=nhstepm-1; h++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=1; j<=nlstate*nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            trgradg[h][j][theta]=gradg[h][theta][j];
       for(i=1;i<=nlstate;i++)     
         gp[i] = prlim[i][i];  
            for(ij=1;ij<=nlstate*nlstate;ij++)
       for(i=1; i<=npar; i++) /* Computes gradient */        for(ji=1;ji<=nlstate*nlstate;ji++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          varhe[ij][ji][(int)age] =0.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)       printf("%d|",(int)age);fflush(stdout);
         gm[i] = prlim[i][i];       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
       for(i=1;i<=nlstate;i++)        for(k=0;k<=nhstepm-1;k++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     } /* End theta */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
     trgradg =matrix(1,nlstate,1,npar);            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     for(j=1; j<=nlstate;j++)        }
       for(theta=1; theta <=npar; theta++)      }
         trgradg[j][theta]=gradg[theta][j];  
       /* Computing expectancies */
     for(i=1;i<=nlstate;i++)      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       varpl[i][(int)age] =0.;      for(i=1; i<=nlstate;i++)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for(j=1; j<=nlstate;j++)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for(i=1;i<=nlstate;i++)            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */           
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");      fprintf(ficresstdeij,"%3.0f",age );
     free_vector(gp,1,nlstate);      for(i=1; i<=nlstate;i++){
     free_vector(gm,1,nlstate);        eip=0.;
     free_matrix(gradg,1,npar,1,nlstate);        vip=0.;
     free_matrix(trgradg,1,nlstate,1,npar);        for(j=1; j<=nlstate;j++){
   } /* End age */          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   free_vector(xp,1,npar);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   free_matrix(doldm,1,nlstate,1,npar);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 }      }
       fprintf(ficresstdeij,"\n");
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      fprintf(ficrescveij,"%3.0f",age );
 {      for(i=1; i<=nlstate;i++)
   int i, j=0,  i1, k1, l1, t, tj;        for(j=1; j<=nlstate;j++){
   int k2, l2, j1,  z1;          cptj= (j-1)*nlstate+i;
   int k=0,l, cptcode;          for(i2=1; i2<=nlstate;i2++)
   int first=1, first1;            for(j2=1; j2<=nlstate;j2++){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;              cptj2= (j2-1)*nlstate+i2;
   double **dnewm,**doldm;              if(cptj2 <= cptj)
   double *xp;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   double *gp, *gm;            }
   double **gradg, **trgradg;        }
   double **mu;      fprintf(ficrescveij,"\n");
   double age,agelim, cov[NCOVMAX];     
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    }
   int theta;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   char fileresprob[FILENAMELENGTH];    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   char fileresprobcov[FILENAMELENGTH];    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   char fileresprobcor[FILENAMELENGTH];    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***varpij;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   strcpy(fileresprob,"prob");     fprintf(ficlog,"\n");
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    free_vector(xm,1,npar);
     printf("Problem with resultfile: %s\n", fileresprob);    free_vector(xp,1,npar);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   strcpy(fileresprobcov,"probcov");     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   strcat(fileresprobcov,fileres);  }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);  /************ Variance ******************/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   }  {
   strcpy(fileresprobcor,"probcor");     /* Variance of health expectancies */
   strcat(fileresprobcor,fileres);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    /* double **newm;*/
     printf("Problem with resultfile: %s\n", fileresprobcor);    double **dnewm,**doldm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    double **dnewmp,**doldmp;
   }    int i, j, nhstepm, hstepm, h, nstepm ;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int k, cptcode;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double *xp;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double **gp, **gm;  /* for var eij */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double ***gradg, ***trgradg; /*for var eij */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double **gradgp, **trgradgp; /* for var p point j */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double *gpp, *gmp; /* for var p point j */
       double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double ***p3mat;
   fprintf(ficresprob,"# Age");    double age,agelim, hf;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double ***mobaverage;
   fprintf(ficresprobcov,"# Age");    int theta;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    char digit[4];
   fprintf(ficresprobcov,"# Age");    char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){    if(popbased==1){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      if(mobilav!=0)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      else strcpy(digitp,"-populbased-nomobil-");
     }      }
  /* fprintf(ficresprob,"\n");    else
   fprintf(ficresprobcov,"\n");      strcpy(digitp,"-stablbased-");
   fprintf(ficresprobcor,"\n");  
  */    if (mobilav!=0) {
  xp=vector(1,npar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      }
   first=1;    }
   fprintf(ficgp,"\n# Routine varprob");  
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    strcpy(fileresprobmorprev,"prmorprev");
   fprintf(fichtm,"\n");    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   cov[1]=1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   tj=cptcoveff;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    }
   j1=0;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   for(t=1; t<=tj;t++){   
     for(i1=1; i1<=ncodemax[t];i1++){     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       j1++;    pstamp(ficresprobmorprev);
       if  (cptcovn>0) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficresprob, "\n#********** Variable ");     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob, "**********\n#\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
         fprintf(ficresprobcov, "\n#********** Variable ");       for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fprintf(ficresprobcov, "**********\n#\n");    }  
             fprintf(ficresprobmorprev,"\n");
         fprintf(ficgp, "\n#********** Variable ");     fprintf(ficgp,"\n# Routine varevsij");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         fprintf(ficgp, "**********\n#\n");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           /*   } */
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    pstamp(ficresvij);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
             if(popbased==1)
         fprintf(ficresprobcor, "\n#********** Variable ");          fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    else
         fprintf(ficresprobcor, "**********\n#");          fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       }    fprintf(ficresvij,"# Age");
           for(i=1; i<=nlstate;i++)
       for (age=bage; age<=fage; age ++){       for(j=1; j<=nlstate;j++)
         cov[2]=age;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         for (k=1; k<=cptcovn;k++) {    fprintf(ficresvij,"\n");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }    xp=vector(1,npar);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    dnewm=matrix(1,nlstate,1,npar);
         for (k=1; k<=cptcovprod;k++)    doldm=matrix(1,nlstate,1,nlstate);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    gpp=vector(nlstate+1,nlstate+ndeath);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    gmp=vector(nlstate+1,nlstate+ndeath);
         trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for(theta=1; theta <=npar; theta++){   
           for(i=1; i<=npar; i++)    if(estepm < stepm){
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);      printf ("Problem %d lower than %d\n",estepm, stepm);
               }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    else  hstepm=estepm;  
               /* For example we decided to compute the life expectancy with the smallest unit */
           k=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           for(i=1; i<= (nlstate); i++){       nhstepm is the number of hstepm from age to agelim
             for(j=1; j<=(nlstate+ndeath);j++){       nstepm is the number of stepm from age to agelin.
               k=k+1;       Look at hpijx to understand the reason of that which relies in memory size
               gp[k]=pmmij[i][j];       and note for a fixed period like k years */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
                  means that if the survival funtion is printed every two years of age and if
           for(i=1; i<=npar; i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);       results. So we changed our mind and took the option of the best precision.
         */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           k=0;    agelim = AGESUP;
           for(i=1; i<=(nlstate); i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             for(j=1; j<=(nlstate+ndeath);j++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
               k=k+1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               gm[k]=pmmij[i][j];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           }      gp=matrix(0,nhstepm,1,nlstate);
            gm=matrix(0,nhstepm,1,nlstate);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)   
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];    
         }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(theta=1; theta <=npar; theta++)        }
             trgradg[j][theta]=gradg[theta][j];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        if (popbased==1) {
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          if(mobilav ==0){
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            for(i=1; i<=nlstate;i++)
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              prlim[i][i]=probs[(int)age][i][ij];
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }else{ /* mobilav */
             for(i=1; i<=nlstate;i++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);              prlim[i][i]=mobaverage[(int)age][i][ij];
                   }
         k=0;        }
         for(i=1; i<=(nlstate); i++){   
           for(j=1; j<=(nlstate+ndeath);j++){        for(j=1; j<= nlstate; j++){
             k=k+1;          for(h=0; h<=nhstepm; h++){
             mu[k][(int) age]=pmmij[i][j];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        /* This for computing probability of death (h=1 means
             varpij[i][j][(int)age] = doldm[i][j];           computed over hstepm matrices product = hstepm*stepm months)
            as a weighted average of prlim.
         /*printf("\n%d ",(int)age);        */
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           }*/        }    
         /* end probability of death */
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         fprintf(ficresprobcor,"\n%d ",(int)age);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        if (popbased==1) {
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          if(mobilav ==0){
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=probs[(int)age][i][ij];
         i=0;          }else{ /* mobilav */
         for (k=1; k<=(nlstate);k++){            for(i=1; i<=nlstate;i++)
           for (l=1; l<=(nlstate+ndeath);l++){               prlim[i][i]=mobaverage[(int)age][i][ij];
             i=i++;          }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){        for(j=1; j<= nlstate; j++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          for(h=0; h<=nhstepm; h++){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
             }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }          }
         }/* end of loop for state */        }
       } /* end of loop for age */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
       /* Confidence intervalle of pij  */           as a weighted average of prlim.
       /*        */
         fprintf(ficgp,"\nset noparametric;unset label");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        }    
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        /* end probability of death */
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        for(j=1; j<= nlstate; j++) /* vareij */
       */          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          }
       first1=1;  
       for (k2=1; k2<=(nlstate);k2++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for (l2=1; l2<=(nlstate+ndeath);l2++){           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           if(l2==k2) continue;        }
           j=(k2-1)*(nlstate+ndeath)+l2;  
           for (k1=1; k1<=(nlstate);k1++){      } /* End theta */
             for (l1=1; l1<=(nlstate+ndeath);l1++){   
               if(l1==k1) continue;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;      for(h=0; h<=nhstepm; h++) /* veij */
               for (age=bage; age<=fage; age ++){         for(j=1; j<=nlstate;j++)
                 if ((int)age %5==0){          for(theta=1; theta <=npar; theta++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            trgradg[h][j][theta]=gradg[h][theta][j];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   mu1=mu[i][(int) age]/stepm*YEARM ;        for(theta=1; theta <=npar; theta++)
                   mu2=mu[j][(int) age]/stepm*YEARM;          trgradgp[j][theta]=gradgp[theta][j];
                   c12=cv12/sqrt(v1*v2);   
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      for(i=1;i<=nlstate;i++)
                   /* Eigen vectors */        for(j=1;j<=nlstate;j++)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          vareij[i][j][(int)age] =0.;
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;      for(h=0;h<=nhstepm;h++){
                   v12=-v21;        for(k=0;k<=nhstepm;k++){
                   v22=v11;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   tnalp=v21/v11;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   if(first1==1){          for(i=1;i<=nlstate;i++)
                     first1=0;            for(j=1;j<=nlstate;j++)
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   }        }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      }
                   /*printf(fignu*/   
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      /* pptj */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   if(first==1){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                     first=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                     fprintf(ficgp,"\nset parametric;unset label");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);          varppt[j][i]=doldmp[j][i];
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      /* end ppptj */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\      /*  x centered again */
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\   
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      if (popbased==1) {
                     fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        if(mobilav ==0){
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);          for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);            prlim[i][i]=probs[(int)age][i][ij];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        }else{ /* mobilav */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            prlim[i][i]=mobaverage[(int)age][i][ij];
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      }
                   }else{               
                     first=0;      /* This for computing probability of death (h=1 means
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);         computed over hstepm (estepm) matrices product = hstepm*stepm months)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);         as a weighted average of prlim.
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(i=1,gmp[j]=0.;i<= nlstate; i++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   }/* if first */      }    
                 } /* age mod 5 */      /* end probability of death */
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               first=1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             } /*l12 */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           } /* k12 */        for(i=1; i<=nlstate;i++){
         } /*l1 */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       }/* k1 */        }
     } /* loop covariates */      }
   }      fprintf(ficresprobmorprev,"\n");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      fprintf(ficresvij,"%.0f ",age );
   free_vector(xp,1,npar);      for(i=1; i<=nlstate;i++)
   fclose(ficresprob);        for(j=1; j<=nlstate;j++){
   fclose(ficresprobcov);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   fclose(ficresprobcor);        }
   /*  fclose(ficgp);*/      fprintf(ficresvij,"\n");
 }      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 /******************* Printing html file ***********/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   int lastpass, int stepm, int weightopt, char model[],\    } /* End age */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   int popforecast, int estepm ,\    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   double jprev1, double mprev1,double anprev1, \    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   double jprev2, double mprev2,double anprev2){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   int jj1, k1, i1, cpt;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   /*char optionfilehtm[FILENAMELENGTH];*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 /*     printf("Problem with %s \n",optionfilehtm), exit(0); */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 /*   } */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  - Life expectancies by age and initial health status (estepm=%2d months): \    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    <a href=\"%s\">%s</a> <br>\n</li>", \  */
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\  
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  m=cptcoveff;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  jj1=0;    fclose(ficresprobmorprev);
  for(k1=1; k1<=m;k1++){    fflush(ficgp);
    for(i1=1; i1<=ncodemax[k1];i1++){    fflush(fichtm);
      jj1++;  }  /* end varevsij */
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  /************ Variance of prevlim ******************/
        for (cpt=1; cpt<=cptcoveff;cpt++)   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  {
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /* Variance of prevalence limit */
      }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      /* Pij */    double **newm;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \    double **dnewm,**doldm;
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         int i, j, nhstepm, hstepm;
      /* Quasi-incidences */    int k, cptcode;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    double *xp;
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \    double *gp, *gm;
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     double **gradg, **trgradg;
        /* Stable prevalence in each health state */    double age,agelim;
        for(cpt=1; cpt<nlstate;cpt++){    int theta;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \   
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    pstamp(ficresvpl);
        }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresvpl,"# Age");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    for(i=1; i<=nlstate;i++)
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);        fprintf(ficresvpl," %1d-%1d",i,i);
      }    fprintf(ficresvpl,"\n");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \  
 health expectancies in states (1) and (2): %s%d.png<br>\    xp=vector(1,npar);
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    dnewm=matrix(1,nlstate,1,npar);
    } /* end i1 */    doldm=matrix(1,nlstate,1,nlstate);
  }/* End k1 */   
  fprintf(fichtm,"</ul>");    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
     agelim = AGESUP;
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\      if (stepm >= YEARM) hstepm=1;
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\      gradg=matrix(1,npar,1,nlstate);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\      gp=vector(1,nlstate);
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\      gm=vector(1,nlstate);
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\  
          rfileres,rfileres,\      for(theta=1; theta <=npar; theta++){
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\        for(i=1; i<=npar; i++){ /* Computes gradient */
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\        }
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"),\        for(i=1;i<=nlstate;i++)
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));          gp[i] = prlim[i][i];
      
 /*  if(popforecast==1) fprintf(fichtm,"\n */        for(i=1; i<=npar; i++) /* Computes gradient */
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*      <br>",fileres,fileres,fileres,fileres); */        for(i=1;i<=nlstate;i++)
 /*  else  */          gm[i] = prlim[i][i];
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */  
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
  m=cptcoveff;      } /* End theta */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
       trgradg =matrix(1,nlstate,1,npar);
  jj1=0;  
  for(k1=1; k1<=m;k1++){      for(j=1; j<=nlstate;j++)
    for(i1=1; i1<=ncodemax[k1];i1++){        for(theta=1; theta <=npar; theta++)
      jj1++;          trgradg[j][theta]=gradg[theta][j];
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(i=1;i<=nlstate;i++)
        for (cpt=1; cpt<=cptcoveff;cpt++)         varpl[i][(int)age] =0.;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      }      for(i=1;i<=nlstate;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\  
 interval) in state (%d): %s%d%d.png <br>\      fprintf(ficresvpl,"%.0f ",age );
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);        for(i=1; i<=nlstate;i++)
      }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    } /* end i1 */      fprintf(ficresvpl,"\n");
  }/* End k1 */      free_vector(gp,1,nlstate);
  fprintf(fichtm,"</ul>");      free_vector(gm,1,nlstate);
  fflush(fichtm);      free_matrix(gradg,1,npar,1,nlstate);
 }      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   char dirfileres[132],optfileres[132];    free_matrix(dnewm,1,nlstate,1,nlstate);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;  }
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */  
 /*     printf("Problem with file %s",optionfilegnuplot); */  /************ Variance of one-step probabilities  ******************/
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 /*   } */  {
     int i, j=0,  i1, k1, l1, t, tj;
   /*#ifdef windows */    int k2, l2, j1,  z1;
   fprintf(ficgp,"cd \"%s\" \n",pathc);    int k=0,l, cptcode;
     /*#endif */    int first=1, first1;
   m=pow(2,cptcoveff);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   strcpy(dirfileres,optionfilefiname);    double *xp;
   strcpy(optfileres,"vpl");    double *gp, *gm;
  /* 1eme*/    double **gradg, **trgradg;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double **mu;
    for (k1=1; k1<= m ; k1 ++) {    double age,agelim, cov[NCOVMAX];
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    int theta;
      fprintf(ficgp,"set xlabel \"Age\" \n\    char fileresprob[FILENAMELENGTH];
 set ylabel \"Probability\" \n\    char fileresprobcov[FILENAMELENGTH];
 set ter png small\n\    char fileresprobcor[FILENAMELENGTH];
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    double ***varpij;
   
      for (i=1; i<= nlstate ; i ++) {    strcpy(fileresprob,"prob");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprob,fileres);
        else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      }      printf("Problem with resultfile: %s\n", fileresprob);
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      for (i=1; i<= nlstate ; i ++) {    }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(fileresprobcov,"probcov");
        else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobcov,fileres);
      }     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);       printf("Problem with resultfile: %s\n", fileresprobcov);
      for (i=1; i<= nlstate ; i ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
        else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(fileresprobcor,"probcor");
      }      strcat(fileresprobcor,fileres);
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    }      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   /*2 eme*/    }
       printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   for (k1=1; k1<= m ; k1 ++) {     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for (i=1; i<= nlstate+1 ; i ++) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       k=2*i;    pstamp(ficresprob);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresprob,"# Age");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    pstamp(ficresprobcov);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       }       fprintf(ficresprobcov,"# Age");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    pstamp(ficresprobcor);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    fprintf(ficresprobcor,"# Age");
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
       }         for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }  
         else fprintf(ficgp," \%%*lf (\%%*lf)");   /* fprintf(ficresprob,"\n");
       }       fprintf(ficresprobcov,"\n");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fprintf(ficresprobcor,"\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");   */
     }   xp=vector(1,npar);
   }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*3eme*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   for (k1=1; k1<= m ; k1 ++) {     first=1;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficgp,"\n# Routine varprob");
       k=2+nlstate*(2*cpt-2);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);    fprintf(fichtm,"\n");
       fprintf(ficgp,"set ter png small\n\  
 set size 0.65,0.65\n\    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    file %s<br>\n",optionfilehtmcov);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  and drawn. It helps understanding how is the covariance between two incidences.\
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       */  standard deviations wide on each axis. <br>\
       for (i=1; i< nlstate ; i ++) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       }   
     }    cov[1]=1;
   }    tj=cptcoveff;
       if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   /* CV preval stable (period) */    j1=0;
   for (k1=1; k1<= m ; k1 ++) {     for(t=1; t<=tj;t++){
     for (cpt=1; cpt<=nlstate ; cpt ++) {      for(i1=1; i1<=ncodemax[t];i1++){
       k=3;        j1++;
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);        if  (cptcovn>0) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          fprintf(ficresprob, "\n#********** Variable ");
 set ter png small\nset size 0.65,0.65\n\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 unset log y\n\          fprintf(ficresprob, "**********\n#\n");
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          fprintf(ficresprobcov, "\n#********** Variable ");
                 for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (i=1; i< nlstate ; i ++)          fprintf(ficresprobcov, "**********\n#\n");
         fprintf(ficgp,"+$%d",k+i+1);         
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficgp, "\n#********** Variable ");
                 for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       l=3+(nlstate+ndeath)*cpt;          fprintf(ficgp, "**********\n#\n");
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);         
       for (i=1; i< nlstate ; i ++) {         
         l=3+(nlstate+ndeath)*cpt;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
         fprintf(ficgp,"+$%d",l+i+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            
     }           fprintf(ficresprobcor, "\n#********** Variable ");    
   }            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficresprobcor, "**********\n#");    
   /* proba elementaires */        }
   for(i=1,jk=1; i <=nlstate; i++){       
     for(k=1; k <=(nlstate+ndeath); k++){        for (age=bage; age<=fage; age ++){
       if (k != i) {          cov[2]=age;
         for(j=1; j <=ncovmodel; j++){          for (k=1; k<=cptcovn;k++) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           jk++;           }
           fprintf(ficgp,"\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }          for (k=1; k<=cptcovprod;k++)
       }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }         
    }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
      for(jk=1; jk <=m; jk++) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);      
        if (ng==2)          for(theta=1; theta <=npar; theta++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            for(i=1; i<=npar; i++)
        else              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
          fprintf(ficgp,"\nset title \"Probability\"\n");           
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        i=1;           
        for(k2=1; k2<=nlstate; k2++) {            k=0;
          k3=i;            for(i=1; i<= (nlstate); i++){
          for(k=1; k<=(nlstate+ndeath); k++) {              for(j=1; j<=(nlstate+ndeath);j++){
            if (k != k2){                k=k+1;
              if(ng==2)                gp[k]=pmmij[i][j];
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              }
              else            }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);           
              ij=1;            for(i=1; i<=npar; i++)
              for(j=3; j <=ncovmodel; j++) {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                  ij++;            k=0;
                }            for(i=1; i<=(nlstate); i++){
                else              for(j=1; j<=(nlstate+ndeath);j++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                k=k+1;
              }                gm[k]=pmmij[i][j];
              fprintf(ficgp,")/(1");              }
                          }
              for(k1=1; k1 <=nlstate; k1++){          
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
                ij=1;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                for(j=3; j <=ncovmodel; j++){          }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                    ij++;            for(theta=1; theta <=npar; theta++)
                  }              trgradg[j][theta]=gradg[theta][j];
                  else         
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
                }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                fprintf(ficgp,")");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
              }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
              i=i+ncovmodel;  
            }          pmij(pmmij,cov,ncovmodel,x,nlstate);
          } /* end k */         
        } /* end k2 */          k=0;
      } /* end jk */          for(i=1; i<=(nlstate); i++){
    } /* end ng */            for(j=1; j<=(nlstate+ndeath);j++){
    fflush(ficgp);               k=k+1;
 }  /* end gnuplot */              mu[k][(int) age]=pmmij[i][j];
             }
           }
 /*************** Moving average **************/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   int i, cpt, cptcod;  
   int modcovmax =1;          /*printf("\n%d ",(int)age);
   int mobilavrange, mob;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   double age;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose             }*/
                            a covariate has 2 modalities */  
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){          fprintf(ficresprobcor,"\n%d ",(int)age);
     if(mobilav==1) mobilavrange=5; /* default */  
     else mobilavrange=mobilav;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     for (age=bage; age<=fage; age++)            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       for (i=1; i<=nlstate;i++)          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for (cptcod=1;cptcod<=modcovmax;cptcod++)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     /* We keep the original values on the extreme ages bage, fage and for           }
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2          i=0;
        we use a 5 terms etc. until the borders are no more concerned.           for (k=1; k<=(nlstate);k++){
     */             for (l=1; l<=(nlstate+ndeath);l++){
     for (mob=3;mob <=mobilavrange;mob=mob+2){              i=i++;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         for (i=1; i<=nlstate;i++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){              for (j=1; j<=i;j++){
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];              }
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];            }
               }          }/* end of loop for state */
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;        } /* end of loop for age */
           }  
         }        /* Confidence intervalle of pij  */
       }/* end age */        /*
     }/* end mob */          fprintf(ficgp,"\nset noparametric;unset label");
   }else return -1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   return 0;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 }/* End movingaverage */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 /************** Forecasting ******************/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){        */
   /* proj1, year, month, day of starting projection   
      agemin, agemax range of age        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
      dateprev1 dateprev2 range of dates during which prevalence is computed        first1=1;
      anproj2 year of en of projection (same day and month as proj1).        for (k2=1; k2<=(nlstate);k2++){
   */          for (l2=1; l2<=(nlstate+ndeath);l2++){
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;            if(l2==k2) continue;
   int *popage;            j=(k2-1)*(nlstate+ndeath)+l2;
   double agec; /* generic age */            for (k1=1; k1<=(nlstate);k1++){
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              for (l1=1; l1<=(nlstate+ndeath);l1++){
   double *popeffectif,*popcount;                if(l1==k1) continue;
   double ***p3mat;                i=(k1-1)*(nlstate+ndeath)+l1;
   double ***mobaverage;                if(i<=j) continue;
   char fileresf[FILENAMELENGTH];                for (age=bage; age<=fage; age ++){
                   if ((int)age %5==0){
   agelim=AGESUP;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   strcpy(fileresf,"f");                     mu1=mu[i][(int) age]/stepm*YEARM ;
   strcat(fileresf,fileres);                    mu2=mu[j][(int) age]/stepm*YEARM;
   if((ficresf=fopen(fileresf,"w"))==NULL) {                    c12=cv12/sqrt(v1*v2);
     printf("Problem with forecast resultfile: %s\n", fileresf);                    /* Computing eigen value of matrix of covariance */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   printf("Computing forecasting: result on file '%s' \n", fileresf);                    /* Eigen vectors */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
   if (mobilav!=0) {                    v22=v11;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    tnalp=v21/v11;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                    if(first1==1){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                      first1=0;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     }                    }
   }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   if (stepm<=12) stepsize=1;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   if(estepm < stepm){                    if(first==1){
     printf ("Problem %d lower than %d\n",estepm, stepm);                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
   else  hstepm=estepm;                         fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   hstepm=hstepm/stepm;                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                                fractional in yp1 */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   anprojmean=yp;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   yp2=modf((yp1*12),&yp);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   mprojmean=yp;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   yp1=modf((yp2*30.5),&yp);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   jprojmean=yp;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if(jprojmean==0) jprojmean=1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if(mprojmean==0) jprojmean=1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   i1=cptcoveff;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   if (cptcovn < 1){i1=1;}                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                       }else{
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);                       first=0;
                         fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   fprintf(ficresf,"#****** Routine prevforecast **\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 /*            if (h==(int)(YEARM*yearp)){ */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       k=k+1;                    }/* if first */
       fprintf(ficresf,"\n#******");                  } /* age mod 5 */
       for(j=1;j<=cptcoveff;j++) {                } /* end loop age */
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                first=1;
       fprintf(ficresf,"******\n");              } /*l12 */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");            } /* k12 */
       for(j=1; j<=nlstate+ndeath;j++){           } /*l1 */
         for(i=1; i<=nlstate;i++)                      }/* k1 */
           fprintf(ficresf," p%d%d",i,j);      } /* loop covariates */
         fprintf(ficresf," p.%d",j);    }
       }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         fprintf(ficresf,"\n");    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
         for (agec=fage; agec>=(ageminpar-1); agec--){     fclose(ficresprob);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     fclose(ficresprobcov);
           nhstepm = nhstepm/hstepm;     fclose(ficresprobcor);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fflush(ficgp);
           oldm=oldms;savm=savms;    fflush(fichtmcov);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    }
           
           for (h=0; h<=nhstepm; h++){  
             if (h*hstepm/YEARM*stepm ==yearp) {  /******************* Printing html file ***********/
               fprintf(ficresf,"\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               for(j=1;j<=cptcoveff;j++)                     int lastpass, int stepm, int weightopt, char model[],\
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);                    int popforecast, int estepm ,\
             }                     double jprev1, double mprev1,double anprev1, \
             for(j=1; j<=nlstate+ndeath;j++) {                    double jprev2, double mprev2,double anprev2){
               ppij=0.;    int jj1, k1, i1, cpt;
               for(i=1; i<=nlstate;i++) {  
                 if (mobilav==1)      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                 else {  </ul>");
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
                 }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                 if (h*hstepm/YEARM*stepm== yearp) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);     fprintf(fichtm,"\
                 }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
               } /* end i */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
               if (h*hstepm/YEARM*stepm==yearp) {     fprintf(fichtm,"\
                 fprintf(ficresf," %.3f", ppij);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
             }/* end j */     fprintf(fichtm,"\
           } /* end h */   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     <a href=\"%s\">%s</a> <br>\n",
         } /* end agec */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       } /* end yearp */     fprintf(fichtm,"\
     } /* end cptcod */   - Population projections by age and states: \
   } /* end  cptcov */     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
          
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
   fclose(ficresf);   m=cptcoveff;
 }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
 /************** Forecasting *****not tested NB*************/   jj1=0;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   for(k1=1; k1<=m;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       jj1++;
   int *popage;       if (cptcovn > 0) {
   double calagedatem, agelim, kk1, kk2;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   double *popeffectif,*popcount;         for (cpt=1; cpt<=cptcoveff;cpt++)
   double ***p3mat,***tabpop,***tabpopprev;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double ***mobaverage;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   char filerespop[FILENAMELENGTH];       }
        /* Pij */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
   agelim=AGESUP;       /* Quasi-incidences */
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
      before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
            /* Period (stable) prevalence in each health state */
            for(cpt=1; cpt<nlstate;cpt++){
   strcpy(filerespop,"pop");            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   strcat(filerespop,fileres);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {         }
     printf("Problem with forecast resultfile: %s\n", filerespop);       for(cpt=1; cpt<=nlstate;cpt++) {
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   printf("Computing forecasting: result on file '%s' \n", filerespop);       }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);     } /* end i1 */
    }/* End k1 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   fprintf(fichtm,"</ul>");
   
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   fprintf(fichtm,"\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
   stepsize=(int) (stepm+YEARM-1)/YEARM;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if (stepm<=12) stepsize=1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     
   agelim=AGESUP;   fprintf(fichtm,"\
      - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   hstepm=1;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   hstepm=hstepm/stepm;    fprintf(fichtm,"\
      - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   if (popforecast==1) {     <a href=\"%s\">%s</a> <br>\n</li>",
     if((ficpop=fopen(popfile,"r"))==NULL) {             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       printf("Problem with population file : %s\n",popfile);exit(0);   fprintf(fichtm,"\
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     }      <a href=\"%s\">%s</a> <br>\n</li>",
     popage=ivector(0,AGESUP);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     popeffectif=vector(0,AGESUP);   fprintf(fichtm,"\
     popcount=vector(0,AGESUP);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     i=1;      fprintf(fichtm,"\
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     imx=i;   fprintf(fichtm,"\
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       k=k+1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       fprintf(ficrespop,"\n#******");  /*      <br>",fileres,fileres,fileres,fileres); */
       for(j=1;j<=cptcoveff;j++) {  /*  else  */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       }   fflush(fichtm);
       fprintf(ficrespop,"******\n");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);   m=cptcoveff;
       if (popforecast==1)  fprintf(ficrespop," [Population]");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         
       for (cpt=0; cpt<=0;cpt++) {    jj1=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for(k1=1; k1<=m;k1++){
              for(i1=1; i1<=ncodemax[k1];i1++){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        jj1++;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        if (cptcovn > 0) {
           nhstepm = nhstepm/hstepm;          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                    for (cpt=1; cpt<=cptcoveff;cpt++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           oldm=oldms;savm=savms;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         }
                for(cpt=1; cpt<=nlstate;cpt++) {
           for (h=0; h<=nhstepm; h++){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
             if (h==(int) (calagedatem+YEARM*cpt)) {  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
               kk1=0.;kk2=0;  health expectancies in states (1) and (2): %s%d.png<br>\
               for(i=1; i<=nlstate;i++) {                <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
                 if (mobilav==1)      } /* end i1 */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   }/* End k1 */
                 else {   fprintf(fichtm,"</ul>");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   fflush(fichtm);
                 }  }
               }  
               if (h==(int)(calagedatem+12*cpt)){  /******************* Gnuplot file **************/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    char dirfileres[132],optfileres[132];
               }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
             }    int ng;
             for(i=1; i<=nlstate;i++){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
               kk1=0.;  /*     printf("Problem with file %s",optionfilegnuplot); */
                 for(j=1; j<=nlstate;j++){  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   /*   } */
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];    /*#ifdef windows */
             }    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)     m=pow(2,cptcoveff);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    strcpy(dirfileres,optionfilefiname);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(optfileres,"vpl");
         }   /* 1eme*/
       }    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) {
   /******/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        fprintf(ficgp,"set xlabel \"Age\" \n\
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     set ylabel \"Probability\" \n\
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   set ter png small\n\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   set size 0.65,0.65\n\
           nhstepm = nhstepm/hstepm;   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for (i=1; i<= nlstate ; i ++) {
           oldm=oldms;savm=savms;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           else fprintf(ficgp," \%%*lf (\%%*lf)");
           for (h=0; h<=nhstepm; h++){       }
             if (h==(int) (calagedatem+YEARM*cpt)) {       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       for (i=1; i<= nlstate ; i ++) {
             }          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             for(j=1; j<=nlstate+ndeath;j++) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
               kk1=0.;kk2=0;       }
               for(i=1; i<=nlstate;i++) {                     fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           for (i=1; i<= nlstate ; i ++) {
               }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                 else fprintf(ficgp," \%%*lf (\%%*lf)");
             }       }  
           }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     }
         }    }
       }    /*2 eme*/
    }    
   }    for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
      
   if (popforecast==1) {      for (i=1; i<= nlstate+1 ; i ++) {
     free_ivector(popage,0,AGESUP);        k=2*i;
     free_vector(popeffectif,0,AGESUP);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     free_vector(popcount,0,AGESUP);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }  
   fclose(ficrespop);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 } /* End of popforecast */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 int fileappend(FILE *fichier, char *optionfich)        for (j=1; j<= nlstate+1 ; j ++) {
 {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if((fichier=fopen(optionfich,"a"))==NULL) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with file: %s\n", optionfich);        }  
     fprintf(ficlog,"Problem with file: %s\n", optionfich);        fprintf(ficgp,"\" t\"\" w l 0,");
     return (0);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   fflush(fichier);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   return (1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
 }        }  
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 {        else fprintf(ficgp,"\" t\"\" w l 0,");
       }
   char ca[32], cb[32], cc[32];    }
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;   
   int numlinepar;    /*3eme*/
    
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for (k1=1; k1<= m ; k1 ++) {
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
   for(i=1; i <=nlstate; i++){        /*       k=2+nlstate*(2*cpt-2); */
     jj=0;        k=2+(nlstate+1)*(cpt-1);
     for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       if(j==i) continue;        fprintf(ficgp,"set ter png small\n\
       jj++;  set size 0.65,0.65\n\
       /*ca[0]= k+'a'-1;ca[1]='\0';*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       printf("%1d%1d",i,j);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficparo,"%1d%1d",i,j);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for(k=1; k<=ncovmodel;k++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         /*        printf(" %lf",param[i][j][k]); */          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         /*        fprintf(ficparo," %lf",param[i][j][k]); */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         printf(" 0.");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficparo," 0.");         
       }        */
       printf("\n");        for (i=1; i< nlstate ; i ++) {
       fprintf(ficparo,"\n");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
     }          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   }         
   printf("# Scales (for hessian or gradient estimation)\n");        }
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/       }
   for(i=1; i <=nlstate; i++){    }
     jj=0;   
     for(j=1; j <=nlstate+ndeath; j++){    /* CV preval stable (period) */
       if(j==i) continue;    for (k1=1; k1<= m ; k1 ++) {
       jj++;      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fprintf(ficparo,"%1d%1d",i,j);        k=3;
       printf("%1d%1d",i,j);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       fflush(stdout);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       for(k=1; k<=ncovmodel;k++){  set ter png small\nset size 0.65,0.65\n\
         /*      printf(" %le",delti3[i][j][k]); */  unset log y\n\
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         printf(" 0.");       
         fprintf(ficparo," 0.");        for (i=1; i< nlstate ; i ++)
       }          fprintf(ficgp,"+$%d",k+i+1);
       numlinepar++;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       printf("\n");       
       fprintf(ficparo,"\n");        l=3+(nlstate+ndeath)*cpt;
     }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   }        for (i=1; i< nlstate ; i ++) {
   printf("# Covariance matrix\n");          l=3+(nlstate+ndeath)*cpt;
 /* # 121 Var(a12)\n\ */          fprintf(ficgp,"+$%d",l+i+1);
 /* # 122 Cov(b12,a12) Var(b12)\n\ */        }
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      }
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    }  
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */   
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    /* proba elementaires */
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    for(i=1,jk=1; i <=nlstate; i++){
   fflush(stdout);      for(k=1; k <=(nlstate+ndeath); k++){
   fprintf(ficparo,"# Covariance matrix\n");        if (k != i) {
   /* # 121 Var(a12)\n\ */          for(j=1; j <=ncovmodel; j++){
   /* # 122 Cov(b12,a12) Var(b12)\n\ */            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   /* #   ...\n\ */            jk++;
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */            fprintf(ficgp,"\n");
             }
   for(itimes=1;itimes<=2;itimes++){        }
     jj=0;      }
     for(i=1; i <=nlstate; i++){     }
       for(j=1; j <=nlstate+ndeath; j++){  
         if(j==i) continue;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(k=1; k<=ncovmodel;k++){       for(jk=1; jk <=m; jk++) {
           jj++;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
           ca[0]= k+'a'-1;ca[1]='\0';         if (ng==2)
           if(itimes==1){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             printf("#%1d%1d%d",i,j,k);         else
             fprintf(ficparo,"#%1d%1d%d",i,j,k);           fprintf(ficgp,"\nset title \"Probability\"\n");
           }else{         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
             printf("%1d%1d%d",i,j,k);         i=1;
             fprintf(ficparo,"%1d%1d%d",i,j,k);         for(k2=1; k2<=nlstate; k2++) {
             /*  printf(" %.5le",matcov[i][j]); */           k3=i;
           }           for(k=1; k<=(nlstate+ndeath); k++) {
           ll=0;             if (k != k2){
           for(li=1;li <=nlstate; li++){               if(ng==2)
             for(lj=1;lj <=nlstate+ndeath; lj++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
               if(lj==li) continue;               else
               for(lk=1;lk<=ncovmodel;lk++){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 ll++;               ij=1;
                 if(ll<=jj){               for(j=3; j <=ncovmodel; j++) {
                   cb[0]= lk +'a'-1;cb[1]='\0';                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                   if(ll<jj){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                     if(itimes==1){                   ij++;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                 }
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                 else
                     }else{                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                       printf(" 0.");               }
                       fprintf(ficparo," 0.");               fprintf(ficgp,")/(1");
                     }               
                   }else{               for(k1=1; k1 <=nlstate; k1++){  
                     if(itimes==1){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                       printf(" Var(%s%1d%1d)",ca,i,j);                 ij=1;
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);                 for(j=3; j <=ncovmodel; j++){
                     }else{                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                       printf(" 0.");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                       fprintf(ficparo," 0.");                     ij++;
                     }                   }
                   }                   else
                 }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
               } /* end lk */                 }
             } /* end lj */                 fprintf(ficgp,")");
           } /* end li */               }
           printf("\n");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           fprintf(ficparo,"\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           numlinepar++;               i=i+ncovmodel;
         } /* end k*/             }
       } /*end j */           } /* end k */
     } /* end i */         } /* end k2 */
   }       } /* end jk */
      } /* end ng */
 } /* end of prwizard */     fflush(ficgp);
   }  /* end gnuplot */
 /***********************************************/  
 /**************** Main Program *****************/  
 /***********************************************/  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 int main(int argc, char *argv[])  
 {    int i, cpt, cptcod;
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    int modcovmax =1;
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    int mobilavrange, mob;
   int jj, imk;    double age;
   int numlinepar=0; /* Current linenumber of parameter file */  
   /*  FILE *fichtm; *//* Html File */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   /* FILE *ficgp;*/ /*Gnuplot File */                             a covariate has 2 modalities */
   double agedeb, agefin,hf;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   double fret;      if(mobilav==1) mobilavrange=5; /* default */
   double **xi,tmp,delta;      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
   double dum; /* Dummy variable */        for (i=1; i<=nlstate;i++)
   double ***p3mat;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   double ***mobaverage;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   int *indx;      /* We keep the original values on the extreme ages bage, fage and for
   char line[MAXLINE], linepar[MAXLINE];         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];         we use a 5 terms etc. until the borders are no more concerned.
   char pathr[MAXLINE];       */
   int firstobs=1, lastobs=10;      for (mob=3;mob <=mobilavrange;mob=mob+2){
   int sdeb, sfin; /* Status at beginning and end */        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   int c,  h , cpt,l;          for (i=1; i<=nlstate;i++){
   int ju,jl, mi;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   int mobilav=0,popforecast=0;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   int hstepm, nhstepm;                }
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;            }
           }
   double bage, fage, age, agelim, agebase;        }/* end age */
   double ftolpl=FTOL;      }/* end mob */
   double **prlim;    }else return -1;
   double *severity;    return 0;
   double ***param; /* Matrix of parameters */  }/* End movingaverage */
   double  *p;  
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */  /************** Forecasting ******************/
   double *delti; /* Scale */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   double ***eij, ***vareij;    /* proj1, year, month, day of starting projection
   double **varpl; /* Variances of prevalence limits by age */       agemin, agemax range of age
   double *epj, vepp;       dateprev1 dateprev2 range of dates during which prevalence is computed
   double kk1, kk2;       anproj2 year of en of projection (same day and month as proj1).
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   char z[1]="c", occ;    double *popeffectif,*popcount;
     double ***p3mat;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double ***mobaverage;
   char strstart[80], *strt, strtend[80];    char fileresf[FILENAMELENGTH];
   char *stratrunc;  
   int lstra;    agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   long total_usecs;   
   struct timeval start_time, end_time, curr_time;    strcpy(fileresf,"f");
   struct timezone tzp;    strcat(fileresf,fileres);
   extern int gettimeofday();    if((ficresf=fopen(fileresf,"w"))==NULL) {
   struct tm tmg, tm, *gmtime(), *localtime();      printf("Problem with forecast resultfile: %s\n", fileresf);
   long time_value;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   extern long time();    }
      printf("Computing forecasting: result on file '%s' \n", fileresf);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   (void) gettimeofday(&start_time,&tzp);  
   tm = *localtime(&start_time.tv_sec);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   tmg = *gmtime(&start_time.tv_sec);  
   strcpy(strstart,asctime(&tm));    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*  printf("Localtime (at start)=%s",strstart); */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 /*  tp.tv_sec = tp.tv_sec +86400; */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /*  tm = *localtime(&start_time.tv_sec); */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */      }
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    }
 /*   tmg.tm_hour=tmg.tm_hour + 1; */  
 /*   tp.tv_sec = mktime(&tmg); */    stepsize=(int) (stepm+YEARM-1)/YEARM;
 /*   strt=asctime(&tmg); */    if (stepm<=12) stepsize=1;
 /*   printf("Time(after) =%s",strstart);  */    if(estepm < stepm){
 /*  (void) time (&time_value);      printf ("Problem %d lower than %d\n",estepm, stepm);
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    }
 *  tm = *localtime(&time_value);    else  hstepm=estepm;  
 *  strstart=asctime(&tm);  
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);     hstepm=hstepm/stepm;
 */    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
   getcwd(pathcd, size);    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   printf("\n%s\n%s",version,fullversion);    mprojmean=yp;
   if(argc <=1){    yp1=modf((yp2*30.5),&yp);
     printf("\nEnter the parameter file name: ");    jprojmean=yp;
     scanf("%s",pathtot);    if(jprojmean==0) jprojmean=1;
   }    if(mprojmean==0) jprojmean=1;
   else{  
     strcpy(pathtot,argv[1]);    i1=cptcoveff;
   }    if (cptcovn < 1){i1=1;}
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/   
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/   
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  /*            if (h==(int)(YEARM*yearp)){ */
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   chdir(path);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   strcpy(command,"mkdir ");        k=k+1;
   strcat(command,optionfilefiname);        fprintf(ficresf,"\n#******");
   if((outcmd=system(command)) != 0){        for(j=1;j<=cptcoveff;j++) {
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */        }
     /* fclose(ficlog); */        fprintf(ficresf,"******\n");
 /*     exit(1); */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   }        for(j=1; j<=nlstate+ndeath;j++){
 /*   if((imk=mkdir(optionfilefiname))<0){ */          for(i=1; i<=nlstate;i++)              
 /*     perror("mkdir"); */            fprintf(ficresf," p%d%d",i,j);
 /*   } */          fprintf(ficresf," p.%d",j);
         }
   /*-------- arguments in the command line --------*/        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
           fprintf(ficresf,"\n");
   /* Log file */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   strcat(filelog, optionfilefiname);  
   strcat(filelog,".log");    /* */          for (agec=fage; agec>=(ageminpar-1); agec--){
   if((ficlog=fopen(filelog,"w"))==NULL)    {            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
     printf("Problem with logfile %s\n",filelog);            nhstepm = nhstepm/hstepm;
     goto end;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
   fprintf(ficlog,"Log filename:%s\n",filelog);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(ficlog,"\n%s\n%s",version,fullversion);         
   fprintf(ficlog,"\nEnter the parameter file name: ");            for (h=0; h<=nhstepm; h++){
   fprintf(ficlog,"pathtot=%s\n\              if (h*hstepm/YEARM*stepm ==yearp) {
  path=%s \n\                fprintf(ficresf,"\n");
  optionfile=%s\n\                for(j=1;j<=cptcoveff;j++)
  optionfilext=%s\n\                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               }
   printf("Localtime (at start):%s",strstart);              for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficlog,"Localtime (at start): %s",strstart);                ppij=0.;
   fflush(ficlog);                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1)
   /* */                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   strcpy(fileres,"r");                  else {
   strcat(fileres, optionfilefiname);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   strcat(fileres,".txt");    /* Other files have txt extension */                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
   /*---------arguments file --------*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                } /* end i */
     printf("Problem with optionfile %s\n",optionfile);                if (h*hstepm/YEARM*stepm==yearp) {
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                  fprintf(ficresf," %.3f", ppij);
     fflush(ficlog);                }
     goto end;              }/* end j */
   }            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
   strcpy(filereso,"o");      } /* end cptcod */
   strcat(filereso,fileres);    } /* end  cptcov */
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */         
     printf("Problem with Output resultfile: %s\n", filereso);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  
     fflush(ficlog);    fclose(ficresf);
     goto end;  }
   }  
   /************** Forecasting *****not tested NB*************/
   /* Reads comments: lines beginning with '#' */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   numlinepar=0;   
   while((c=getc(ficpar))=='#' && c!= EOF){    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     ungetc(c,ficpar);    int *popage;
     fgets(line, MAXLINE, ficpar);    double calagedatem, agelim, kk1, kk2;
     numlinepar++;    double *popeffectif,*popcount;
     puts(line);    double ***p3mat,***tabpop,***tabpopprev;
     fputs(line,ficparo);    double ***mobaverage;
     fputs(line,ficlog);    char filerespop[FILENAMELENGTH];
   }  
   ungetc(c,ficpar);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    agelim=AGESUP;
   numlinepar++;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);   
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   
   fflush(ficlog);   
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(filerespop,"pop");
     ungetc(c,ficpar);    strcat(filerespop,fileres);
     fgets(line, MAXLINE, ficpar);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     numlinepar++;      printf("Problem with forecast resultfile: %s\n", filerespop);
     puts(line);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     fputs(line,ficparo);    }
     fputs(line,ficlog);    printf("Computing forecasting: result on file '%s' \n", filerespop);
   }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   ungetc(c,ficpar);  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
      
   covar=matrix(0,NCOVMAX,1,n);     if (mobilav!=0) {
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      }
      }
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    if (stepm<=12) stepsize=1;
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);   
     fclose (ficparo);    agelim=AGESUP;
     fclose (ficlog);   
     exit(0);    hstepm=1;
   }    hstepm=hstepm/stepm;
   /* Read guess parameters */   
   /* Reads comments: lines beginning with '#' */    if (popforecast==1) {
   while((c=getc(ficpar))=='#' && c!= EOF){      if((ficpop=fopen(popfile,"r"))==NULL) {
     ungetc(c,ficpar);        printf("Problem with population file : %s\n",popfile);exit(0);
     fgets(line, MAXLINE, ficpar);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     numlinepar++;      }
     puts(line);      popage=ivector(0,AGESUP);
     fputs(line,ficparo);      popeffectif=vector(0,AGESUP);
     fputs(line,ficlog);      popcount=vector(0,AGESUP);
   }     
   ungetc(c,ficpar);      i=1;  
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     
   for(i=1; i <=nlstate; i++){      imx=i;
     j=0;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     for(jj=1; jj <=nlstate+ndeath; jj++){    }
       if(jj==i) continue;  
       j++;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       if ((i1 != i) && (j1 != j)){        k=k+1;
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        fprintf(ficrespop,"\n#******");
         exit(1);        for(j=1;j<=cptcoveff;j++) {
       }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       if(mle==1)        fprintf(ficrespop,"******\n");
         printf("%1d%1d",i,j);        fprintf(ficrespop,"# Age");
       fprintf(ficlog,"%1d%1d",i,j);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
       for(k=1; k<=ncovmodel;k++){        if (popforecast==1)  fprintf(ficrespop," [Population]");
         fscanf(ficpar," %lf",&param[i][j][k]);       
         if(mle==1){        for (cpt=0; cpt<=0;cpt++) {
           printf(" %lf",param[i][j][k]);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           fprintf(ficlog," %lf",param[i][j][k]);         
         }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
         else            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
           fprintf(ficlog," %lf",param[i][j][k]);            nhstepm = nhstepm/hstepm;
         fprintf(ficparo," %lf",param[i][j][k]);           
       }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar,"\n");            oldm=oldms;savm=savms;
       numlinepar++;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       if(mle==1)         
         printf("\n");            for (h=0; h<=nhstepm; h++){
       fprintf(ficlog,"\n");              if (h==(int) (calagedatem+YEARM*cpt)) {
       fprintf(ficparo,"\n");                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     }              }
   }                for(j=1; j<=nlstate+ndeath;j++) {
   fflush(ficlog);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                  if (mobilav==1)
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   p=param[1][1];                  else {
                       kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   /* Reads comments: lines beginning with '#' */                  }
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);                if (h==(int)(calagedatem+12*cpt)){
     fgets(line, MAXLINE, ficpar);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     numlinepar++;                    /*fprintf(ficrespop," %.3f", kk1);
     puts(line);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     fputs(line,ficparo);                }
     fputs(line,ficlog);              }
   }              for(i=1; i<=nlstate;i++){
   ungetc(c,ficpar);                kk1=0.;
                   for(j=1; j<=nlstate;j++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */                  }
   for(i=1; i <=nlstate; i++){                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     for(j=1; j <=nlstate+ndeath-1; j++){              }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       if ((i1-i)*(j1-j)!=0){              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
         exit(1);            }
       }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%1d%1d",i,j);          }
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       fprintf(ficlog,"%1d%1d",i1,j1);   
       for(k=1; k<=ncovmodel;k++){    /******/
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
         fprintf(ficlog," %le",delti3[i][j][k]);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
       }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
       fscanf(ficpar,"\n");            nhstepm = nhstepm/hstepm;
       numlinepar++;           
       printf("\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo,"\n");            oldm=oldms;savm=savms;
       fprintf(ficlog,"\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     }            for (h=0; h<=nhstepm; h++){
   }              if (h==(int) (calagedatem+YEARM*cpt)) {
   fflush(ficlog);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
   delti=delti3[1][1];              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                   }
   /* Reads comments: lines beginning with '#' */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     numlinepar++;          }
     puts(line);        }
     fputs(line,ficparo);     }
     fputs(line,ficlog);    }
   }   
   ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     
   matcov=matrix(1,npar,1,npar);    if (popforecast==1) {
   for(i=1; i <=npar; i++){      free_ivector(popage,0,AGESUP);
     fscanf(ficpar,"%s",&str);      free_vector(popeffectif,0,AGESUP);
     if(mle==1)      free_vector(popcount,0,AGESUP);
       printf("%s",str);    }
     fprintf(ficlog,"%s",str);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficparo,"%s",str);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(j=1; j <=i; j++){    fclose(ficrespop);
       fscanf(ficpar," %le",&matcov[i][j]);  } /* End of popforecast */
       if(mle==1){  
         printf(" %.5le",matcov[i][j]);  int fileappend(FILE *fichier, char *optionfich)
       }  {
       fprintf(ficlog," %.5le",matcov[i][j]);    if((fichier=fopen(optionfich,"a"))==NULL) {
       fprintf(ficparo," %.5le",matcov[i][j]);      printf("Problem with file: %s\n", optionfich);
     }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     fscanf(ficpar,"\n");      return (0);
     numlinepar++;    }
     if(mle==1)    fflush(fichier);
       printf("\n");    return (1);
     fprintf(ficlog,"\n");  }
     fprintf(ficparo,"\n");  
   }  
   for(i=1; i <=npar; i++)  /**************** function prwizard **********************/
     for(j=i+1;j<=npar;j++)  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
       matcov[i][j]=matcov[j][i];  {
      
   if(mle==1)    /* Wizard to print covariance matrix template */
     printf("\n");  
   fprintf(ficlog,"\n");    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   fflush(ficlog);    int numlinepar;
   
   /*-------- Rewriting paramater file ----------*/    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    for(i=1; i <=nlstate; i++){
   strcat(rfileres,".");    /* */      jj=0;
   strcat(rfileres,optionfilext);    /* Other files have txt extension */      for(j=1; j <=nlstate+ndeath; j++){
   if((ficres =fopen(rfileres,"w"))==NULL) {        if(j==i) continue;
     printf("Problem writing new parameter file: %s\n", fileres);goto end;        jj++;
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   }        printf("%1d%1d",i,j);
   fprintf(ficres,"#%s\n",version);        fprintf(ficparo,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
   /*-------- data file ----------*/          /*        printf(" %lf",param[i][j][k]); */
   if((fic=fopen(datafile,"r"))==NULL)    {          /*        fprintf(ficparo," %lf",param[i][j][k]); */
     printf("Problem with datafile: %s\n", datafile);goto end;          printf(" 0.");
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          fprintf(ficparo," 0.");
   }        }
         printf("\n");
   n= lastobs;        fprintf(ficparo,"\n");
   severity = vector(1,maxwav);      }
   outcome=imatrix(1,maxwav+1,1,n);    }
   num=lvector(1,n);    printf("# Scales (for hessian or gradient estimation)\n");
   moisnais=vector(1,n);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   annais=vector(1,n);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   moisdc=vector(1,n);    for(i=1; i <=nlstate; i++){
   andc=vector(1,n);      jj=0;
   agedc=vector(1,n);      for(j=1; j <=nlstate+ndeath; j++){
   cod=ivector(1,n);        if(j==i) continue;
   weight=vector(1,n);        jj++;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        fprintf(ficparo,"%1d%1d",i,j);
   mint=matrix(1,maxwav,1,n);        printf("%1d%1d",i,j);
   anint=matrix(1,maxwav,1,n);        fflush(stdout);
   s=imatrix(1,maxwav+1,1,n);        for(k=1; k<=ncovmodel;k++){
   tab=ivector(1,NCOVMAX);          /*      printf(" %le",delti3[i][j][k]); */
   ncodemax=ivector(1,8);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
   i=1;          fprintf(ficparo," 0.");
   while (fgets(line, MAXLINE, fic) != NULL)    {        }
     if ((i >= firstobs) && (i <=lastobs)) {        numlinepar++;
                 printf("\n");
       for (j=maxwav;j>=1;j--){        fprintf(ficparo,"\n");
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       }
         strcpy(line,stra);    }
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    printf("# Covariance matrix\n");
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 121 Var(a12)\n\ */
       }  /* # 122 Cov(b12,a12) Var(b12)\n\ */
           /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficparo,"# Covariance matrix\n");
       for (j=ncovcol;j>=1;j--){    /* # 121 Var(a12)\n\ */
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       }     /* #   ...\n\ */
       lstra=strlen(stra);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */   
         stratrunc = &(stra[lstra-9]);    for(itimes=1;itimes<=2;itimes++){
         num[i]=atol(stratrunc);      jj=0;
       }      for(i=1; i <=nlstate; i++){
       else        for(j=1; j <=nlstate+ndeath; j++){
         num[i]=atol(stra);          if(j==i) continue;
                   for(k=1; k<=ncovmodel;k++){
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            jj++;
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
       i=i+1;              printf("#%1d%1d%d",i,j,k);
     }              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   }            }else{
   /* printf("ii=%d", ij);              printf("%1d%1d%d",i,j,k);
      scanf("%d",i);*/              fprintf(ficparo,"%1d%1d%d",i,j,k);
   imx=i-1; /* Number of individuals */              /*  printf(" %.5le",matcov[i][j]); */
             }
   /* for (i=1; i<=imx; i++){            ll=0;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            for(li=1;li <=nlstate; li++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              for(lj=1;lj <=nlstate+ndeath; lj++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                if(lj==li) continue;
     }*/                for(lk=1;lk<=ncovmodel;lk++){
    /*  for (i=1; i<=imx; i++){                  ll++;
      if (s[4][i]==9)  s[4][i]=-1;                   if(ll<=jj){
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                    cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
  for (i=1; i<=imx; i++)                      if(itimes==1){
                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
      else weight[i]=1;*/                      }else{
                         printf(" 0.");
   /* Calculation of the number of parameter from char model*/                        fprintf(ficparo," 0.");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                      }
   Tprod=ivector(1,15);                     }else{
   Tvaraff=ivector(1,15);                       if(itimes==1){
   Tvard=imatrix(1,15,1,2);                        printf(" Var(%s%1d%1d)",ca,i,j);
   Tage=ivector(1,15);                              fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                          }else{
   if (strlen(model) >1){ /* If there is at least 1 covariate */                        printf(" 0.");
     j=0, j1=0, k1=1, k2=1;                        fprintf(ficparo," 0.");
     j=nbocc(model,'+'); /* j=Number of '+' */                      }
     j1=nbocc(model,'*'); /* j1=Number of '*' */                    }
     cptcovn=j+1;                   }
     cptcovprod=j1; /*Number of products */                } /* end lk */
                   } /* end lj */
     strcpy(modelsav,model);             } /* end li */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            printf("\n");
       printf("Error. Non available option model=%s ",model);            fprintf(ficparo,"\n");
       fprintf(ficlog,"Error. Non available option model=%s ",model);            numlinepar++;
       goto end;          } /* end k*/
     }        } /*end j */
           } /* end i */
     /* This loop fills the array Tvar from the string 'model'.*/    } /* end itimes */
   
     for(i=(j+1); i>=1;i--){  } /* end of prwizard */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */   /******************* Gompertz Likelihood ******************************/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */  double gompertz(double x[])
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  {
       /*scanf("%d",i);*/    double A,B,L=0.0,sump=0.,num=0.;
       if (strchr(strb,'*')) {  /* Model includes a product */    int i,n=0; /* n is the size of the sample */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  
         if (strcmp(strc,"age")==0) { /* Vn*age */    for (i=0;i<=imx-1 ; i++) {
           cptcovprod--;      sump=sump+weight[i];
           cutv(strb,stre,strd,'V');      /*    sump=sump+1;*/
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      num=num+1;
           cptcovage++;    }
             Tage[cptcovage]=i;   
             /*printf("stre=%s ", stre);*/   
         }    /* for (i=0; i<=imx; i++)
         else if (strcmp(strd,"age")==0) { /* or age*Vn */       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
           cptcovprod--;  
           cutv(strb,stre,strc,'V');    for (i=1;i<=imx ; i++)
           Tvar[i]=atoi(stre);      {
           cptcovage++;        if (cens[i] == 1 && wav[i]>1)
           Tage[cptcovage]=i;          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         }       
         else {  /* Age is not in the model */        if (cens[i] == 0 && wav[i]>1)
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
           Tvar[i]=ncovcol+k1;               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */       
           Tprod[k1]=i;        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
           Tvard[k1][1]=atoi(strc); /* m*/        if (wav[i] > 1 ) { /* ??? */
           Tvard[k1][2]=atoi(stre); /* n */          L=L+A*weight[i];
           Tvar[cptcovn+k2]=Tvard[k1][1];          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         }
           for (k=1; k<=lastobs;k++)       }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
           k2=k2+2;   
         }    return -2*L*num/sump;
       }  }
       else { /* no more sum */  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  /******************* Printing html file ***********/
        /*  scanf("%d",i);*/  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
       cutv(strd,strc,strb,'V');                    int lastpass, int stepm, int weightopt, char model[],\
       Tvar[i]=atoi(strc);                    int imx,  double p[],double **matcov,double agemortsup){
       }    int i,k;
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
         scanf("%d",i);*/    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     } /* end of loop + */    for (i=1;i<=2;i++)
   } /* end model */      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    fprintf(fichtm,"</ul>");
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/  
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  
    for (k=agegomp;k<(agemortsup-2);k++)
   scanf("%d ",i);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   fclose(fic);*/  
    
     /*  if(mle==1){*/    fflush(fichtm);
   if (weightopt != 1) { /* Maximisation without weights*/  }
     for(i=1;i<=n;i++) weight[i]=1.0;  
   }  /******************* Gnuplot file **************/
     /*-calculation of age at interview from date of interview and age at death -*/  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   agev=matrix(1,maxwav,1,imx);  
     char dirfileres[132],optfileres[132];
   for (i=1; i<=imx; i++) {    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     for(m=2; (m<= maxwav); m++) {    int ng;
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  
         anint[m][i]=9999;  
         s[m][i]=-1;    /*#ifdef windows */
       }    fprintf(ficgp,"cd \"%s\" \n",pathc);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){      /*#endif */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         s[m][i]=-1;    strcpy(dirfileres,optionfilefiname);
       }    strcpy(optfileres,"vpl");
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    fprintf(ficgp,"set out \"graphmort.png\"\n ");
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     fprintf(ficgp, "set ter png small\n set log y\n");
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    fprintf(ficgp, "set size 0.65,0.65\n");
       }    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     }  
   }  }
   
   for (i=1; i<=imx; i++)  {  
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
     for(m=firstpass; (m<= lastpass); m++){  
       if(s[m][i] >0){  
         if (s[m][i] >= nlstate+1) {  /***********************************************/
           if(agedc[i]>0)  /**************** Main Program *****************/
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)  /***********************************************/
               agev[m][i]=agedc[i];  
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  int main(int argc, char *argv[])
             else {  {
               if ((int)andc[i]!=9999){    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    int linei, month, year,iout;
                 agev[m][i]=-1;    int jj, ll, li, lj, lk, imk;
               }    int numlinepar=0; /* Current linenumber of parameter file */
             }    int itimes;
         }    int NDIM=2;
         else if(s[m][i] !=9){ /* Standard case, age in fractional  
                                  years but with the precision of a    char ca[32], cb[32], cc[32];
                                  month */    char dummy[]="                         ";
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /*  FILE *fichtm; *//* Html File */
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    /* FILE *ficgp;*/ /*Gnuplot File */
             agev[m][i]=1;    struct stat info;
           else if(agev[m][i] <agemin){     double agedeb, agefin,hf;
             agemin=agev[m][i];    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
           }    double fret;
           else if(agev[m][i] >agemax){    double **xi,tmp,delta;
             agemax=agev[m][i];  
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double dum; /* Dummy variable */
           }    double ***p3mat;
           /*agev[m][i]=anint[m][i]-annais[i];*/    double ***mobaverage;
           /*     agev[m][i] = age[i]+2*m;*/    int *indx;
         }    char line[MAXLINE], linepar[MAXLINE];
         else { /* =9 */    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
           agev[m][i]=1;    char pathr[MAXLINE], pathimach[MAXLINE];
           s[m][i]=-1;    char **bp, *tok, *val; /* pathtot */
         }    int firstobs=1, lastobs=10;
       }    int sdeb, sfin; /* Status at beginning and end */
       else /*= 0 Unknown */    int c,  h , cpt,l;
         agev[m][i]=1;    int ju,jl, mi;
     }    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
         int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   }    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   for (i=1; i<=imx; i++)  {    int mobilav=0,popforecast=0;
     for(m=firstpass; (m<=lastpass); m++){    int hstepm, nhstepm;
       if (s[m][i] > (nlstate+ndeath)) {    int agemortsup;
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         float  sumlpop=0.;
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         goto end;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       }  
     }    double bage, fage, age, agelim, agebase;
   }    double ftolpl=FTOL;
     double **prlim;
   /*for (i=1; i<=imx; i++){    double *severity;
   for (m=firstpass; (m<lastpass); m++){    double ***param; /* Matrix of parameters */
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    double  *p;
 }    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
 }*/    double *delti; /* Scale */
     double ***eij, ***vareij;
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double **varpl; /* Variances of prevalence limits by age */
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     double *epj, vepp;
     double kk1, kk2;
   free_vector(severity,1,maxwav);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   free_imatrix(outcome,1,maxwav+1,1,n);    double **ximort;
   free_vector(moisnais,1,n);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   free_vector(annais,1,n);    int *dcwave;
   /* free_matrix(mint,1,maxwav,1,n);  
      free_matrix(anint,1,maxwav,1,n);*/    char z[1]="c", occ;
   free_vector(moisdc,1,n);  
   free_vector(andc,1,n);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
        char *stratrunc;
   wav=ivector(1,imx);    int lstra;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);  
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    long total_usecs;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);   
      /*   setlocale (LC_ALL, ""); */
   /* Concatenates waves */  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */  /*   setlocale (LC_MESSAGES, ""); */
   
   Tcode=ivector(1,100);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     (void) gettimeofday(&start_time,&tzp);
   ncodemax[1]=1;    curr_time=start_time;
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    tm = *localtime(&start_time.tv_sec);
           tmg = *gmtime(&start_time.tv_sec);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     strcpy(strstart,asctime(&tm));
                                  the estimations*/  
   h=0;  /*  printf("Localtime (at start)=%s",strstart); */
   m=pow(2,cptcoveff);  /*  tp.tv_sec = tp.tv_sec +86400; */
    /*  tm = *localtime(&start_time.tv_sec); */
   for(k=1;k<=cptcoveff; k++){  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     for(i=1; i <=(m/pow(2,k));i++){  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       for(j=1; j <= ncodemax[k]; j++){  /*   tmg.tm_hour=tmg.tm_hour + 1; */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*   tp.tv_sec = mktime(&tmg); */
           h++;  /*   strt=asctime(&tmg); */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /*   printf("Time(after) =%s",strstart);  */
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  /*  (void) time (&time_value);
         }   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       }  *  tm = *localtime(&time_value);
     }  *  strstart=asctime(&tm);
   }   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   */
      codtab[1][2]=1;codtab[2][2]=2; */  
   /* for(i=1; i <=m ;i++){     nberr=0; /* Number of errors and warnings */
      for(k=1; k <=cptcovn; k++){    nbwarn=0;
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    getcwd(pathcd, size);
      }  
      printf("\n");    printf("\n%s\n%s",version,fullversion);
      }    if(argc <=1){
      scanf("%d",i);*/      printf("\nEnter the parameter file name: ");
           fgets(pathr,FILENAMELENGTH,stdin);
   /*------------ gnuplot -------------*/      i=strlen(pathr);
   strcpy(optionfilegnuplot,optionfilefiname);      if(pathr[i-1]=='\n')
   strcat(optionfilegnuplot,".gp");        pathr[i-1]='\0';
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {     for (tok = pathr; tok != NULL; ){
     printf("Problem with file %s",optionfilegnuplot);        printf("Pathr |%s|\n",pathr);
   }        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   else{        printf("val= |%s| pathr=%s\n",val,pathr);
     fprintf(ficgp,"\n# %s\n", version);         strcpy (pathtot, val);
     fprintf(ficgp,"# %s\n", optionfilegnuplot);         if(pathr[0] == '\0') break; /* Dirty */
     fprintf(ficgp,"set missing 'NaNq'\n");      }
   }    }
   /*  fclose(ficgp);*/    else{
   /*--------- index.htm --------*/      strcpy(pathtot,argv[1]);
     }
   strcpy(optionfilehtm,optionfilefiname);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   strcat(optionfilehtm,".htm");    /*cygwin_split_path(pathtot,path,optionfile);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    /* cutv(path,optionfile,pathtot,'\\');*/
   }  
     /* Split argv[0], imach program to get pathimach */
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 \n\   /*   strcpy(pathimach,argv[0]); */
 <hr  size=\"2\" color=\"#EC5E5E\">\    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
  <ul><li><h4>Parameter files</h4>\n\    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    chdir(path); /* Can be a relative path */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
  - Date and time at start: %s</ul>\n",\      printf("Current directory %s!\n",pathcd);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\    strcpy(command,"mkdir ");
           model,fileres,fileres,\    strcat(command,optionfilefiname);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    if((outcmd=system(command)) != 0){
   /*fclose(fichtm);*/      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   fflush(fichtm);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   strcpy(pathr,path);  /*     exit(1); */
   strcat(pathr,optionfilefiname);    }
   chdir(optionfilefiname); /* Move to directory named optionfile */  /*   if((imk=mkdir(optionfilefiname))<0){ */
   strcpy(lfileres,fileres);  /*     perror("mkdir"); */
   strcat(lfileres,"/");  /*   } */
   strcat(lfileres,optionfilefiname);  
       /*-------- arguments in the command line --------*/
   /* Calculates basic frequencies. Computes observed prevalence at single age  
      and prints on file fileres'p'. */    /* Log file */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);    strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
   fprintf(fichtm,"\n");    if((ficlog=fopen(filelog,"w"))==NULL)    {
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      printf("Problem with logfile %s\n",filelog);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      goto end;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    }
           imx,agemin,agemax,jmin,jmax,jmean);    fprintf(ficlog,"Log filename:%s\n",filelog);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"\n%s\n%s",version,fullversion);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"\nEnter the parameter file name: \n");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   path=%s \n\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   optionfile=%s\n\
        optionfilext=%s\n\
       optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    printf("Local time (at start):%s",strstart);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/  /*   (void) gettimeofday(&curr_time,&tzp); */
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  
   for (k=1; k<=npar;k++)    /* */
     printf(" %d %8.5f",k,p[k]);    strcpy(fileres,"r");
   printf("\n");    strcat(fileres, optionfilefiname);
   globpr=1; /* to print the contributions */    strcat(fileres,".txt");    /* Other files have txt extension */
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    /*---------arguments file --------*/
   for (k=1; k<=npar;k++)  
     printf(" %d %8.5f",k,p[k]);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   printf("\n");      printf("Problem with optionfile %s\n",optionfile);
   if(mle>=1){ /* Could be 1 or 2 */      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fflush(ficlog);
   }      goto end;
         }
   /*--------- results files --------------*/  
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
     
     strcpy(filereso,"o");
   jk=1;    strcat(filereso,fileres);
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("Problem with Output resultfile: %s\n", filereso);
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   for(i=1,jk=1; i <=nlstate; i++){      fflush(ficlog);
     for(k=1; k <=(nlstate+ndeath); k++){      goto end;
       if (k != i)     }
         {  
           printf("%d%d ",i,k);    /* Reads comments: lines beginning with '#' */
           fprintf(ficlog,"%d%d ",i,k);    numlinepar=0;
           fprintf(ficres,"%1d%1d ",i,k);    while((c=getc(ficpar))=='#' && c!= EOF){
           for(j=1; j <=ncovmodel; j++){      ungetc(c,ficpar);
             printf("%f ",p[jk]);      fgets(line, MAXLINE, ficpar);
             fprintf(ficlog,"%f ",p[jk]);      numlinepar++;
             fprintf(ficres,"%f ",p[jk]);      puts(line);
             jk++;       fputs(line,ficparo);
           }      fputs(line,ficlog);
           printf("\n");    }
           fprintf(ficlog,"\n");    ungetc(c,ficpar);
           fprintf(ficres,"\n");  
         }    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     }    numlinepar++;
   }    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   if(mle!=0){    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     /* Computing hessian and covariance matrix */    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     ftolhess=ftol; /* Usually correct */    fflush(ficlog);
     hesscov(matcov, p, npar, delti, ftolhess, func);    while((c=getc(ficpar))=='#' && c!= EOF){
   }      ungetc(c,ficpar);
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fgets(line, MAXLINE, ficpar);
   printf("# Scales (for hessian or gradient estimation)\n");      numlinepar++;
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      puts(line);
   for(i=1,jk=1; i <=nlstate; i++){      fputs(line,ficparo);
     for(j=1; j <=nlstate+ndeath; j++){      fputs(line,ficlog);
       if (j!=i) {    }
         fprintf(ficres,"%1d%1d",i,j);    ungetc(c,ficpar);
         printf("%1d%1d",i,j);  
         fprintf(ficlog,"%1d%1d",i,j);     
         for(k=1; k<=ncovmodel;k++){    covar=matrix(0,NCOVMAX,1,n);
           printf(" %.5e",delti[jk]);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
           fprintf(ficlog," %.5e",delti[jk]);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
           fprintf(ficres," %.5e",delti[jk]);  
           jk++;    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         }    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         printf("\n");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
         fprintf(ficlog,"\n");  
         fprintf(ficres,"\n");    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       }    delti=delti3[1][1];
     }    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   }    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
          prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   if(mle==1)      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fclose (ficparo);
   for(i=1,k=1;i<=npar;i++){      fclose (ficlog);
     /*  if (k>nlstate) k=1;      goto end;
         i1=(i-1)/(ncovmodel*nlstate)+1;       exit(0);
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    }
         printf("%s%d%d",alph[k],i1,tab[i]);    else if(mle==-3) {
     */      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     fprintf(ficres,"%3d",i);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     if(mle==1)      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       printf("%3d",i);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     fprintf(ficlog,"%3d",i);      matcov=matrix(1,npar,1,npar);
     for(j=1; j<=i;j++){    }
       fprintf(ficres," %.5e",matcov[i][j]);    else{
       if(mle==1)      /* Read guess parameters */
         printf(" %.5e",matcov[i][j]);      /* Reads comments: lines beginning with '#' */
       fprintf(ficlog," %.5e",matcov[i][j]);      while((c=getc(ficpar))=='#' && c!= EOF){
     }        ungetc(c,ficpar);
     fprintf(ficres,"\n");        fgets(line, MAXLINE, ficpar);
     if(mle==1)        numlinepar++;
       printf("\n");        puts(line);
     fprintf(ficlog,"\n");        fputs(line,ficparo);
     k++;        fputs(line,ficlog);
   }      }
          ungetc(c,ficpar);
   while((c=getc(ficpar))=='#' && c!= EOF){     
     ungetc(c,ficpar);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     fgets(line, MAXLINE, ficpar);      for(i=1; i <=nlstate; i++){
     puts(line);        j=0;
     fputs(line,ficparo);        for(jj=1; jj <=nlstate+ndeath; jj++){
   }          if(jj==i) continue;
   ungetc(c,ficpar);          j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
   estepm=0;          if ((i1 != i) && (j1 != j)){
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   if (estepm==0 || estepm < stepm) estepm=stepm;  It might be a problem of design; if ncovcol and the model are correct\n \
   if (fage <= 2) {  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
     bage = ageminpar;            exit(1);
     fage = agemaxpar;          }
   }          fprintf(ficparo,"%1d%1d",i1,j1);
              if(mle==1)
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            printf("%1d%1d",i,j);
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficlog,"%1d%1d",i,j);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for(k=1; k<=ncovmodel;k++){
                fscanf(ficpar," %lf",&param[i][j][k]);
   while((c=getc(ficpar))=='#' && c!= EOF){            if(mle==1){
     ungetc(c,ficpar);              printf(" %lf",param[i][j][k]);
     fgets(line, MAXLINE, ficpar);              fprintf(ficlog," %lf",param[i][j][k]);
     puts(line);            }
     fputs(line,ficparo);            else
   }              fprintf(ficlog," %lf",param[i][j][k]);
   ungetc(c,ficpar);            fprintf(ficparo," %lf",param[i][j][k]);
             }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          fscanf(ficpar,"\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          numlinepar++;
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          if(mle==1)
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            printf("\n");
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          fprintf(ficlog,"\n");
              fprintf(ficparo,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }  
     fgets(line, MAXLINE, ficpar);      fflush(ficlog);
     puts(line);  
     fputs(line,ficparo);      p=param[1][1];
   }     
   ungetc(c,ficpar);      /* Reads comments: lines beginning with '#' */
        while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        fgets(line, MAXLINE, ficpar);
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;        numlinepar++;
         puts(line);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fputs(line,ficparo);
   fprintf(ficparo,"pop_based=%d\n",popbased);           fputs(line,ficlog);
   fprintf(ficres,"pop_based=%d\n",popbased);         }
         ungetc(c,ficpar);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(i=1; i <=nlstate; i++){
     fgets(line, MAXLINE, ficpar);        for(j=1; j <=nlstate+ndeath-1; j++){
     puts(line);          fscanf(ficpar,"%1d%1d",&i1,&j1);
     fputs(line,ficparo);          if ((i1-i)*(j1-j)!=0){
   }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   ungetc(c,ficpar);            exit(1);
           }
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);          printf("%1d%1d",i,j);
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          fprintf(ficparo,"%1d%1d",i1,j1);
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          fprintf(ficlog,"%1d%1d",i1,j1);
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          for(k=1; k<=ncovmodel;k++){
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            fscanf(ficpar,"%le",&delti3[i][j][k]);
   /* day and month of proj2 are not used but only year anproj2.*/            printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
   while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficlog," %le",delti3[i][j][k]);
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          fscanf(ficpar,"\n");
     puts(line);          numlinepar++;
     fputs(line,ficparo);          printf("\n");
   }          fprintf(ficparo,"\n");
   ungetc(c,ficpar);          fprintf(ficlog,"\n");
         }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fflush(ficlog);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
       delti=delti3[1][1];
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/  
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */   
   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\        ungetc(c,ficpar);
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\        fgets(line, MAXLINE, ficpar);
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        numlinepar++;
          puts(line);
   /*------------ free_vector  -------------*/        fputs(line,ficparo);
   /*  chdir(path); */        fputs(line,ficlog);
        }
   free_ivector(wav,1,imx);      ungetc(c,ficpar);
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      matcov=matrix(1,npar,1,npar);
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         for(i=1; i <=npar; i++){
   free_lvector(num,1,n);        fscanf(ficpar,"%s",&str);
   free_vector(agedc,1,n);        if(mle==1)
   /*free_matrix(covar,0,NCOVMAX,1,n);*/          printf("%s",str);
   /*free_matrix(covar,1,NCOVMAX,1,n);*/        fprintf(ficlog,"%s",str);
   fclose(ficparo);        fprintf(ficparo,"%s",str);
   fclose(ficres);        for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
   /*--------------- Prevalence limit  (stable prevalence) --------------*/            printf(" %.5le",matcov[i][j]);
             }
   strcpy(filerespl,"pl");          fprintf(ficlog," %.5le",matcov[i][j]);
   strcat(filerespl,fileres);          fprintf(ficparo," %.5le",matcov[i][j]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        }
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        fscanf(ficpar,"\n");
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        numlinepar++;
   }        if(mle==1)
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);          printf("\n");
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        fprintf(ficlog,"\n");
   fprintf(ficrespl,"#Stable prevalence \n");        fprintf(ficparo,"\n");
   fprintf(ficrespl,"#Age ");      }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for(i=1; i <=npar; i++)
   fprintf(ficrespl,"\n");        for(j=i+1;j<=npar;j++)
             matcov[i][j]=matcov[j][i];
   prlim=matrix(1,nlstate,1,nlstate);     
       if(mle==1)
   agebase=ageminpar;        printf("\n");
   agelim=agemaxpar;      fprintf(ficlog,"\n");
   ftolpl=1.e-10;     
   i1=cptcoveff;      fflush(ficlog);
   if (cptcovn < 1){i1=1;}     
       /*-------- Rewriting parameter file ----------*/
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      strcpy(rfileres,"r");    /* "Rparameterfile */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       k=k+1;      strcat(rfileres,".");    /* */
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       fprintf(ficrespl,"\n#******");      if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("\n#******");        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"\n#******");        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       for(j=1;j<=cptcoveff;j++) {      }
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficres,"#%s\n",version);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }    /* End of mle != -3 */
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    /*-------- data file ----------*/
       fprintf(ficrespl,"******\n");    if((fic=fopen(datafile,"r"))==NULL)    {
       printf("******\n");      printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"******\n");      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
             }
       for (age=agebase; age<=agelim; age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    n= lastobs;
         fprintf(ficrespl,"%.0f ",age );    severity = vector(1,maxwav);
         for(j=1;j<=cptcoveff;j++)    outcome=imatrix(1,maxwav+1,1,n);
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    num=lvector(1,n);
         for(i=1; i<=nlstate;i++)    moisnais=vector(1,n);
           fprintf(ficrespl," %.5f", prlim[i][i]);    annais=vector(1,n);
         fprintf(ficrespl,"\n");    moisdc=vector(1,n);
       }    andc=vector(1,n);
     }    agedc=vector(1,n);
   }    cod=ivector(1,n);
   fclose(ficrespl);    weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   /*------------- h Pij x at various ages ------------*/    mint=matrix(1,maxwav,1,n);
       anint=matrix(1,maxwav,1,n);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    s=imatrix(1,maxwav+1,1,n);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    tab=ivector(1,NCOVMAX);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    ncodemax=ivector(1,8);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    i=1;
   printf("Computing pij: result on file '%s' \n", filerespij);    linei=0;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
         linei=linei+1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   /*if (stepm<=24) stepsize=2;*/        if(line[j] == '\t')
           line[j] = ' ';
   agelim=AGESUP;      }
   hstepm=stepsize*YEARM; /* Every year of age */      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         ;
       };
   /* hstepm=1;   aff par mois*/      line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");        fprintf(ficlog,"Comment line\n%s\n",line);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        printf("Comment line\n%s\n",line);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        continue;
       k=k+1;      }
       fprintf(ficrespij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)       for (j=maxwav;j>=1;j--){
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        cutv(stra, strb,line,' ');
       fprintf(ficrespij,"******\n");        errno=0;
                 lval=strtol(strb,&endptr,10);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         if( strb[0]=='\0' || (*endptr != '\0')){
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         /*        nhstepm=nhstepm*YEARM; aff par mois*/        }
         s[j][i]=lval;
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
         oldm=oldms;savm=savms;        strcpy(line,stra);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          cutv(stra, strb,line,' ');
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         for(i=1; i<=nlstate;i++)        }
           for(j=1; j<=nlstate+ndeath;j++)        else  if(iout=sscanf(strb,"%s.") != 0){
             fprintf(ficrespij," %1d-%1d",i,j);          month=99;
         fprintf(ficrespij,"\n");          year=9999;
         for (h=0; h<=nhstepm; h++){        }else{
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           for(i=1; i<=nlstate;i++)          exit(1);
             for(j=1; j<=nlstate+ndeath;j++)        }
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);        anint[j][i]= (double) year;
           fprintf(ficrespij,"\n");        mint[j][i]= (double)month;
         }        strcpy(line,stra);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* ENd Waves */
         fprintf(ficrespij,"\n");     
       }      cutv(stra, strb,line,' ');
     }      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   }      }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);        month=99;
         year=9999;
   fclose(ficrespij);      }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        exit(1);
       }
   /*---------- Forecasting ------------------*/      andc[i]=(double) year;
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/      moisdc[i]=(double) month;
   if(prevfcast==1){      strcpy(line,stra);
     /*    if(stepm ==1){*/     
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      cutv(stra, strb,line,' ');
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
 /*      }  */      }
 /*      else{ */      else  if(iout=sscanf(strb,"%s.") != 0){
 /*        erreur=108; */        month=99;
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */        year=9999;
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      }else{
 /*      } */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   }        exit(1);
         }
       annais[i]=(double)(year);
   /*---------- Health expectancies and variances ------------*/      moisnais[i]=(double)(month);
       strcpy(line,stra);
   strcpy(filerest,"t");     
   strcat(filerest,fileres);      cutv(stra, strb,line,' ');
   if((ficrest=fopen(filerest,"w"))==NULL) {      errno=0;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      dval=strtod(strb,&endptr);
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      if( strb[0]=='\0' || (*endptr != '\0')){
   }        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         exit(1);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       }
       weight[i]=dval;
       strcpy(line,stra);
   strcpy(filerese,"e");     
   strcat(filerese,fileres);      for (j=ncovcol;j>=1;j--){
   if((ficreseij=fopen(filerese,"w"))==NULL) {        cutv(stra, strb,line,' ');
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        errno=0;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        lval=strtol(strb,&endptr,10);
   }        if( strb[0]=='\0' || (*endptr != '\0')){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          exit(1);
         }
   strcpy(fileresv,"v");        if(lval <-1 || lval >1){
   strcat(fileresv,fileres);          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);   For example, for multinomial values like 1, 2 and 3,\n \
   }   build V1=0 V2=0 for the reference value (1),\n \
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          V1=1 V2=0 for (2) \n \
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */   Exiting.\n",lval,linei, i,line,j);
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          exit(1);
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\        }
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);        covar[j][i]=(double)(lval);
   */        strcpy(line,stra);
       }
   if (mobilav!=0) {      lstra=strlen(stra);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        stratrunc = &(stra[lstra-9]);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        num[i]=atol(stratrunc);
     }      }
   }      else
         num[i]=atol(stra);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       k=k+1;      
       fprintf(ficrest,"\n#****** ");      i=i+1;
       for(j=1;j<=cptcoveff;j++)     } /* End loop reading  data */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(fic);
       fprintf(ficrest,"******\n");    /* printf("ii=%d", ij);
        scanf("%d",i);*/
       fprintf(ficreseij,"\n#****** ");    imx=i-1; /* Number of individuals */
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* for (i=1; i<=imx; i++){
       fprintf(ficreseij,"******\n");      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       fprintf(ficresvij,"\n#****** ");      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       for(j=1;j<=cptcoveff;j++)       }*/
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     /*  for (i=1; i<=imx; i++){
       fprintf(ficresvij,"******\n");       if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   
       oldm=oldms;savm=savms;    /* for (i=1; i<=imx; i++) */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     
       /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       else weight[i]=1;*/
       oldm=oldms;savm=savms;  
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);    /* Calculation of the number of parameters from char model */
       if(popbased==1){    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);    Tprod=ivector(1,15);
       }    Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
      Tage=ivector(1,15);      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    if (strlen(model) >1){ /* If there is at least 1 covariate */
       fprintf(ficrest,"\n");      j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       epj=vector(1,nlstate+1);      j1=nbocc(model,'*'); /* j1=Number of '*' */
       for(age=bage; age <=fage ;age++){      cptcovn=j+1;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      cptcovprod=j1; /*Number of products */
         if (popbased==1) {     
           if(mobilav ==0){      strcpy(modelsav,model);
             for(i=1; i<=nlstate;i++)      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
               prlim[i][i]=probs[(int)age][i][k];        printf("Error. Non available option model=%s ",model);
           }else{ /* mobilav */         fprintf(ficlog,"Error. Non available option model=%s ",model);
             for(i=1; i<=nlstate;i++)        goto end;
               prlim[i][i]=mobaverage[(int)age][i][k];      }
           }     
         }      /* This loop fills the array Tvar from the string 'model'.*/
           
         fprintf(ficrest," %4.0f",age);      for(i=(j+1); i>=1;i--){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        /*scanf("%d",i);*/
           }        if (strchr(strb,'*')) {  /* Model includes a product */
           epj[nlstate+1] +=epj[j];          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
         }          if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
         for(i=1, vepp=0.;i <=nlstate;i++)            cutv(strb,stre,strd,'V');
           for(j=1;j <=nlstate;j++)            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             vepp += vareij[i][j][(int)age];            cptcovage++;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));              Tage[cptcovage]=i;
         for(j=1;j <=nlstate;j++){              /*printf("stre=%s ", stre);*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          }
         }          else if (strcmp(strd,"age")==0) { /* or age*Vn */
         fprintf(ficrest,"\n");            cptcovprod--;
       }            cutv(strb,stre,strc,'V');
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            Tvar[i]=atoi(stre);
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            cptcovage++;
       free_vector(epj,1,nlstate+1);            Tage[cptcovage]=i;
     }          }
   }          else {  /* Age is not in the model */
   free_vector(weight,1,n);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
   free_imatrix(Tvard,1,15,1,2);            Tvar[i]=ncovcol+k1;
   free_imatrix(s,1,maxwav+1,1,n);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
   free_matrix(anint,1,maxwav,1,n);             Tprod[k1]=i;
   free_matrix(mint,1,maxwav,1,n);            Tvard[k1][1]=atoi(strc); /* m*/
   free_ivector(cod,1,n);            Tvard[k1][2]=atoi(stre); /* n */
   free_ivector(tab,1,NCOVMAX);            Tvar[cptcovn+k2]=Tvard[k1][1];
   fclose(ficreseij);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
   fclose(ficresvij);            for (k=1; k<=lastobs;k++)
   fclose(ficrest);              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
   fclose(ficpar);            k1++;
               k2=k2+2;
   /*------- Variance of stable prevalence------*/             }
         }
   strcpy(fileresvpl,"vpl");        else { /* no more sum */
   strcat(fileresvpl,fileres);          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {         /*  scanf("%d",i);*/
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);        cutv(strd,strc,strb,'V');
     exit(0);        Tvar[i]=atoi(strc);
   }        }
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);        strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){          scanf("%d",i);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } /* end of loop + */
       k=k+1;    } /* end model */
       fprintf(ficresvpl,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       fprintf(ficresvpl,"******\n");  
           /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    printf("cptcovprod=%d ", cptcovprod);
       oldm=oldms;savm=savms;    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    scanf("%d ",i);*/
     }  
   }      /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
   fclose(ficresvpl);      for(i=1;i<=n;i++) weight[i]=1.0;
     }
   /*---------- End : free ----------------*/      /*-calculation of age at interview from date of interview and age at death -*/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    agev=matrix(1,maxwav,1,imx);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    for (i=1; i<=imx; i++) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(m=2; (m<= maxwav); m++) {
           if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
   free_matrix(covar,0,NCOVMAX,1,n);          anint[m][i]=9999;
   free_matrix(matcov,1,npar,1,npar);          s[m][i]=-1;
   /*free_vector(delti,1,npar);*/        }
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
   free_matrix(agev,1,maxwav,1,imx);          nberr++;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          s[m][i]=-1;
         }
   free_ivector(ncodemax,1,8);        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
   free_ivector(Tvar,1,15);          nberr++;
   free_ivector(Tprod,1,15);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
   free_ivector(Tvaraff,1,15);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
   free_ivector(Tage,1,15);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
   free_ivector(Tcode,1,100);        }
       }
   fflush(fichtm);    }
   fflush(ficgp);  
       for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   if(erreur >0){      for(m=firstpass; (m<= lastpass); m++){
     printf("End of Imach with error or warning %d\n",erreur);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          if (s[m][i] >= nlstate+1) {
   }else{            if(agedc[i]>0)
    printf("End of Imach\n");              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
    fprintf(ficlog,"End of Imach\n");                agev[m][i]=agedc[i];
   }            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
   printf("See log file on %s\n",filelog);              else {
   fclose(ficlog);                if ((int)andc[i]!=9999){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                  nbwarn++;
   (void) gettimeofday(&end_time,&tzp);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
   tm = *localtime(&end_time.tv_sec);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
   tmg = *gmtime(&end_time.tv_sec);                  agev[m][i]=-1;
   strcpy(strtend,asctime(&tm));                }
   printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend);               }
   fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend);           }
   /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/          else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
   printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
   fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
   /*  printf("Total time was %d uSec.\n", total_usecs);*/              agev[m][i]=1;
 /*   if(fileappend(fichtm,optionfilehtm)){ */            else if(agev[m][i] <agemin){
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);              agemin=agev[m][i];
   fclose(fichtm);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
   fclose(ficgp);            }
   /*------ End -----------*/            else if(agev[m][i] >agemax){
               agemax=agev[m][i];
   end:              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 #ifdef windows            }
   /* chdir(pathcd);*/            /*agev[m][i]=anint[m][i]-annais[i];*/
 #endif             /*     agev[m][i] = age[i]+2*m;*/
   chdir(path);          }
  /*system("wgnuplot graph.plt");*/          else { /* =9 */
  /*system("../gp37mgw/wgnuplot graph.plt");*/            agev[m][i]=1;
  /*system("cd ../gp37mgw");*/            s[m][i]=-1;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          }
   strcpy(plotcmd,GNUPLOTPROGRAM);        }
   strcat(plotcmd," ");        else /*= 0 Unknown */
   strcat(plotcmd,optionfilegnuplot);          agev[m][i]=1;
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);      }
   system(plotcmd);     
   printf(" Wait...");    }
     for (i=1; i<=imx; i++)  {
  /*#ifdef windows*/      for(m=firstpass; (m<=lastpass); m++){
   while (z[0] != 'q') {        if (s[m][i] > (nlstate+ndeath)) {
     /* chdir(path); */          nberr++;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     scanf("%s",z);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     if (z[0] == 'c') system("./imach");          goto end;
     else if (z[0] == 'e') system(optionfilehtm);        }
     else if (z[0] == 'g') system(plotcmd);      }
     else if (z[0] == 'q') exit(0);    }
   }  
   /*#endif */    /*for (i=1; i<=imx; i++){
 }    for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.90  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>